1
|
Ganta KK, McManus M, Blanc R, Wang Q, Jung W, Brody R, Carrington M, Paris R, Chandramouli S, McNamara RP, Luzuriaga K. Acute infectious mononucleosis generates persistent, functional EBNA-1 antibodies with high cross-reactivity to alpha-crystalline beta. Cell Rep 2025; 44:115709. [PMID: 40372913 DOI: 10.1016/j.celrep.2025.115709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/14/2025] [Accepted: 04/25/2025] [Indexed: 05/17/2025] Open
Abstract
We investigate the magnitude, specificity, and functional properties of Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA-1)-specific antibodies in young adults over the course of primary infection. EBNA-1-specific binding antibodies, as well as antibodies capable of antibody-dependent cellular phagocytosis (ADCP) and antibody-dependent complement deposition (ADCD), are detected. These antibodies primarily target a region of EBNA-1 known to elicit cross-reactive antibodies to several self-peptides. Higher EBNA-1 binding and ADCD antibodies are observed in individuals with at least one HLA-DRB1∗15:01 allele. Alpha-crystallin beta (CRYAB) binding and complement-fixing antibodies are detected at 6 months and 1 year following infectious mononucleosis, and CRYAB antibodies are resistant to denaturation, consistent with an affinity-matured response. Blocking experiments show that CRYAB antibodies are cross-reactive with EBNA-1. Altogether, high levels of functional EBNA-1 antibodies are generated in primary EBV infection, some of which are cross-reactive with CRYAB. Further investigation is warranted to determine whether these responses contribute to autoimmunity.
Collapse
Affiliation(s)
| | - Margaret McManus
- Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Ross Blanc
- Ragon Institute of Mass General Brigham, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Qixin Wang
- Ragon Institute of Mass General Brigham, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Wonyeong Jung
- Ragon Institute of Mass General Brigham, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Robin Brody
- Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Mary Carrington
- Ragon Institute of Mass General Brigham, MIT, and Harvard, Cambridge, MA 02139, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20814, USA; Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | | | | | - Ryan P McNamara
- Ragon Institute of Mass General Brigham, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | | |
Collapse
|
2
|
Zhang H, Bhakta D, Saha A, Peddireddy SP, Bao S, Li L, Handali S, Secor WE, Fraga LAO, Fairley JK, Sarkar A. Sample-sparing multiplexed antibody Fc biomarker discovery using a reconfigurable integrated microfluidic platform. LAB ON A CHIP 2025. [PMID: 40337849 PMCID: PMC12060099 DOI: 10.1039/d5lc00042d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/28/2025] [Indexed: 05/09/2025]
Abstract
Control of endemic infectious diseases is often impeded by the lack of sensitive and specific yet easy-to-obtain biomarkers. Antibody fragment crystallizable (Fc) regions, such as Fc glycosylation, which are modulated in a pathogen-specific and disease-state-specific manner have emerged as potential such biomarkers. However current methods to perform large-scale antigen-specific antibody Fc feature screening for biomarker discovery often require too much sample volume, cost and expertise to be realistically realizable in many disease contexts. Here we present a simple, flexible and reconfigurable microfluidic device, made using rapid prototyping techniques, that can perform highly multiplexed and high-throughput biomarker discovery targeting both antibody fragment antigen-binding (Fab) and Fc features including antigen specificity, antibody isotypes, subclasses, N-glycosylation and Fc receptor binding. Using integration of an antigen microarray and reconfigurable microfluidics for sample and probe distribution, the device can perform a total of 1400 assays measuring 100 antibody Fab and Fc features per sample from a low sample volume (15 μL). The device demonstrates cleanroom-free simple fabrication and ease of use comparable to standard immunoassay platforms. Performance comparable to existing methods was validated and a biomarker screening for schistosomiasis, a helminth-mediated infection, was performed using clinical samples where antibody subclass-based biomarkers were successfully identified distinguishing current infection from former infection and endemic controls.
Collapse
Affiliation(s)
- Hanhao Zhang
- Department of Biomedical Engineering, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA.
| | - Divya Bhakta
- Department of Biomedical Engineering, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA.
| | - Anushka Saha
- Department of Biomedical Engineering, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA.
| | - Sai Preetham Peddireddy
- Department of Biomedical Engineering, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA.
| | - Shumin Bao
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Lei Li
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Sukwan Handali
- Division of Parasitic Diseases and Malaria, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - W Evan Secor
- Division of Parasitic Diseases and Malaria, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Lucia A O Fraga
- Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Jessica K Fairley
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Aniruddh Sarkar
- Department of Biomedical Engineering, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA.
| |
Collapse
|
3
|
Wang C, Tian H, Shang J. Assessment of methods in E1E2 vs. E2 immunogen studies for HCV vaccine research. J Hepatol 2025; 82:e273-e274. [PMID: 39701297 DOI: 10.1016/j.jhep.2024.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Affiliation(s)
- Chenxi Wang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, 999078, China.
| | - Huichuan Tian
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Jin Shang
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China
| |
Collapse
|
4
|
Cooper CL, Morrow G, Yuan M, Postler TS, Neal ML, Cross RW, Woolsey C, Agans KN, Borisevich V, McNamara RP, Atyeo C, Roy V, Germosen D, Hou F, Li SL, Reiserova L, Choi Y, Wilson A, Wagner D, Wallace-Selman O, Carpov A, Geng F, Frederick DJ, DeStefano J, Ercolini AM, Enriquez AS, Hastie KM, Ramos da Silva S, Sayeed E, Coleman JW, Kilianski A, Alter G, Saphire EO, Aitchison JD, Geisbert TW, Gupta SB, Feinberg MB, Parks CL. Preclinical development of a replication-competent vesicular stomatitis virus-based Lassa virus vaccine candidate advanced into human clinical trials. EBioMedicine 2025; 114:105647. [PMID: 40157130 PMCID: PMC11994357 DOI: 10.1016/j.ebiom.2025.105647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Lassa fever (LF) is a zoonotic haemorrhagic disease caused by Lassa virus (LASV), which is endemic in West African countries. The multimammate rat is the main animal reservoir and its geographic range is expected to expand due to influences like climate change and land usage, and this will place larger parts of Africa at risk. We conducted preclinical development on a promising experimental vaccine that allowed its advancement into human trials. METHODS The LF vaccine is based on a vesicular stomatitis virus (VSV) vector in which the VSV glycoprotein (G) was replaced with the LASV glycoprotein complex (GPC). Earlier studies showed that this vaccine (VSVΔG-LASV-GPC) was efficacious in macaques, thus we regenerated VSVΔG-LASV-GPC using laboratory and documentation practices required to support vaccine manufacturing and human trials. The efficacy of the clinical vaccine candidate was assessed in cynomolgus macaques and more extensive immunologic analysis was performed than previously to investigate immune responses associated with protection. FINDINGS A single VSVΔG-LASV-GPC vaccination elicited innate, humoural and cellular immune responses, prevented development of substantial LASV viraemia, and protected animals from disease. Vaccinated macaques developed polyfunctional antibodies and serum was shown to neutralize virus expressing GPCs representative of geographically diverse LASV lineages. INTERPRETATION The VSVΔG-LASV-GPC clinical candidate elicited immunity that protected 10 of 10 vaccinated macaques from disease supporting its use in a clinical development program, which recently progressed to phase 2 clinical trials. Moreover, immunologic analysis showed that virus-neutralizing serum antibodies likely played a role in preventing LASV disease in vaccinated macaques. FUNDING This work was supported by the Coalition for Epidemic Preparedness Innovations (CEPI), The National Institute of Allergy and Infectious Diseases (NIAID)/National Institutes of Health (NIH), The Bill and Melinda Gates Global Vaccine Accelerator Program, the Burroughs Wellcome Fund, and financial gifts and support by Nancy Zimmerman, Mark and Lisa Schwartz, and Terry and Susan Ragon.
Collapse
Affiliation(s)
| | - Gavin Morrow
- IAVI, Vaccine Design and Development Laboratory, Jersey City, NJ 07302, USA
| | - Maoli Yuan
- IAVI, Vaccine Design and Development Laboratory, Jersey City, NJ 07302, USA
| | - Thomas S Postler
- IAVI, Vaccine Design and Development Laboratory, Jersey City, NJ 07302, USA
| | - Maxwell L Neal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Robert W Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Courtney Woolsey
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Krystle N Agans
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Viktoriya Borisevich
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ryan P McNamara
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA 02139, USA
| | - Caroline Atyeo
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA 02139, USA
| | - Vicky Roy
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA 02139, USA
| | - Daritza Germosen
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA 02139, USA
| | - Fuxiang Hou
- IAVI, Vaccine Design and Development Laboratory, Jersey City, NJ 07302, USA
| | - Shui L Li
- IAVI, Vaccine Design and Development Laboratory, Jersey City, NJ 07302, USA
| | - Lucia Reiserova
- IAVI, Vaccine Design and Development Laboratory, Jersey City, NJ 07302, USA
| | - Yesle Choi
- IAVI, Vaccine Design and Development Laboratory, Jersey City, NJ 07302, USA
| | - Aaron Wilson
- IAVI, Vaccine Design and Development Laboratory, Jersey City, NJ 07302, USA
| | - Denise Wagner
- IAVI, Vaccine Design and Development Laboratory, Jersey City, NJ 07302, USA
| | | | - Alexei Carpov
- IAVI, Vaccine Design and Development Laboratory, Jersey City, NJ 07302, USA
| | - Fuqiang Geng
- IAVI, Vaccine Design and Development Laboratory, Jersey City, NJ 07302, USA
| | | | - Joanne DeStefano
- IAVI, Vaccine Design and Development Laboratory, Jersey City, NJ 07302, USA
| | - Anne M Ercolini
- IAVI, Vaccine Design and Development Laboratory, Jersey City, NJ 07302, USA
| | - Adrian S Enriquez
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Kathryn M Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | | | | | - John W Coleman
- IAVI, Vaccine Design and Development Laboratory, Jersey City, NJ 07302, USA
| | | | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA 02139, USA
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA; Departments of Pediatrics and Biochemistry, University of Washington, Seattle, WA 98109, USA
| | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | - Christopher L Parks
- IAVI, Vaccine Design and Development Laboratory, Jersey City, NJ 07302, USA.
| |
Collapse
|
5
|
Carpenter MC, Shrestha S, Bharadwaj P, Concetta C, Sharma S, Weiner JA, de Haan N, Pongracz T, Le Moine A, Holovska V, Marchant A, Ackerman ME. Functional and phenotypic profiles of HLA-specific antibodies in relation to antibody-mediated kidney transplant rejection. Hum Immunol 2025; 86:111247. [PMID: 39889319 PMCID: PMC11922655 DOI: 10.1016/j.humimm.2025.111247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 02/02/2025]
Abstract
Donor Specific Antibodies (DSAs) are associated with a higher risk of Antibody Mediated Rejection (AMR). However, not all DSAs are pathogenic, and patients that raise DSAs have a wide spectrum of outcomes ranging from the complete absence of graft injury to severe AMR. Hence, characterization of both the qualitative features and titer of DSAs has the potential to predict AMR risk and treatment outcome for sensitized patients. Here, using HLA-A2+ cell-based assays, we investigate the qualitative features of immunoglobulin G (IgG) alloantibodies including Fc receptor binding properties and Fc-mediated effector function over time. Compared to seronegative controls, reactive antibodies in seropositive participants were predominantly IgG1, and exhibited elevated levels of binding to the receptors involved in Antibody Dependent Cellular Phagocytosis (ADCP) and Antibody Dependent Cellular Cytotoxicity (ADCC) activity. Further analysis of seropositive individuals revealed that these activities were predictive ofAMR status. Collectively, these results suggest a role for phagocytic and cytotoxic antibody effector functions of DSA in contributing to graft injury.
Collapse
Affiliation(s)
| | - Sweta Shrestha
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College Hanover NH USA
| | - Pranay Bharadwaj
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College Hanover NH USA
| | - Catalano Concetta
- Institute for Medical Immunology, Université libre de Bruxelles Charleroi Belgium; Department of Nephrology, Dialysis and Renal Transplantation, Hôpital Erasme, Université libre de Bruxelles Bruxelles Belgium
| | - Shilpee Sharma
- Institute for Medical Immunology, Université libre de Bruxelles Charleroi Belgium
| | - Joshua A Weiner
- Thayer School of Engineering, Dartmouth College Hanover NH USA
| | - Noortje de Haan
- Center for Proteomics and Metabolomics Leiden University Medical Center Leiden the Netherlands
| | - Tamas Pongracz
- Center for Proteomics and Metabolomics Leiden University Medical Center Leiden the Netherlands
| | - Alain Le Moine
- Department of Nephrology, Dialysis and Renal Transplantation, Hôpital Erasme, Université libre de Bruxelles Bruxelles Belgium
| | - Vanda Holovska
- HLA Laboratory, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB), Hôpital Erasme ULB Brussels Belgium
| | - Arnaud Marchant
- Institute for Medical Immunology, Université libre de Bruxelles Charleroi Belgium
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College Hanover NH USA; Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College Hanover NH USA.
| |
Collapse
|
6
|
Mugahid D, Lyon J, Demurjian C, Eolin N, Whittaker C, Godek M, Lauffenburger D, Fortune S, Levine S. A practical guide to FAIR data management in the age of multi-OMICS and AI. Front Immunol 2025; 15:1439434. [PMID: 39902035 PMCID: PMC11788310 DOI: 10.3389/fimmu.2024.1439434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 12/17/2024] [Indexed: 02/05/2025] Open
Abstract
Multi-cellular biological systems, including the immune system, are highly complex, dynamic, and adaptable. Systems biologists aim to understand such complexity at a quantitative level. However, these ambitious efforts are often limited by access to a variety of high-density intra-, extra- and multi-cellular measurements resolved in time and space and across a variety of perturbations. The advent of automation, OMICs and single-cell technologies now allows high dimensional multi-modal data acquisition from the same biological samples multiplexed at scale (multi-OMICs). As a result, systems biologists -theoretically- have access to more data than ever. However, the mathematical frameworks and computational tools needed to analyze and interpret such data are often still nascent, limiting the biological insights that can be obtained without years of computational method development and validation. More pressingly, much of the data sits in silos in formats that are incomprehensible to other scientists or machines limiting its value to the vaster scientific community, especially the computational biologists tasked with analyzing these vast amounts of data in more nuanced ways. With the rapid development and increasing interest in using artificial intelligence (AI) for the life sciences, improving how biologic data is organized and shared is more pressing than ever for scientific progress. Here, we outline a practical approach to multi-modal data management and FAIR sharing, which are in line with the latest US and EU funders' data sharing policies. This framework can help extend the longevity and utility of data by allowing facile use and reuse, accelerating scientific discovery in the biomedical sciences.
Collapse
Affiliation(s)
- Douaa Mugahid
- Department of Immunology and Infectious Diseases, T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Jared Lyon
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Charlie Demurjian
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Nathan Eolin
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Charlie Whittaker
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Mark Godek
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States
| | - Douglas Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Sarah Fortune
- Department of Immunology and Infectious Diseases, T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Stuart Levine
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
7
|
Gemander N, Kemlin D, Depickère S, Kelkar NS, Sharma S, Pannus P, Waegemans A, Olislagers V, Georges D, Dhondt E, Braga M, Heyndrickx L, Michiels J, Thiriard A, Lemy A, Baudoux T, Vandevenne M, Goossens ME, Matagne A, Desombere I, Ariën KK, Ackerman ME, Le Moine A, Marchant A. COVID-19 vaccine responses are influenced by distinct risk factors in naive and SARS-CoV-2 experienced hemodialysis recipients. Vaccine 2025; 44:126544. [PMID: 39608249 DOI: 10.1016/j.vaccine.2024.126544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/28/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Clinical risk factors of deficient immune responses to COVID-19 mRNA vaccination in SARS-CoV-2 naive hemodialysis recipients (HDR) have already been identified. Clinical factors influencing hybrid immunity induced by SARS-CoV-2 infection and vaccination in HDR have not been reported. METHODS A comprehensive analysis of antibody (Ab) and T cell responses to two doses of BNT162b2 mRNA vaccination was performed in 103 HDR, including 75 SARS-CoV-2 naive and 28 experienced patients, and in 106 healthy controls (HC) not undergoing HD, including 40 SARS-CoV-2 naive and 66 experienced subjects. Clinical risk factors associated with lower humoral and cellular immunity were analyzed in SARS-CoV-2 naive and experienced HDR by univariate and multivariate analyses. RESULTS Naive HDR had lower neutralizing and non-neutralizing antibody responses to vaccination than naive HC; lower vaccine responses were correlated with previous transplantation, immunosuppressive treatment, corticosteroid treatment, hypoalbuminemia, older age, hypertension, and negative response to hepatitis B vaccination. In contrast, vaccine responses of SARS-CoV-2 experienced HDR were similar to those of HC and were correlated with time between infection and vaccination and with previous transplantation, but not with the other risk factors associated with lower vaccine responses in naive HDR. CONCLUSION COVID-19 vaccine responses are influenced by distinct risk factors in SARS-CoV-2 naive and experienced HDR. These observations have important implications for the understanding of vaccine-induced immunity and for the management of this vulnerable patient population.
Collapse
Affiliation(s)
- Nicolas Gemander
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium; Department of Nephrology, Dialysis and Transplantation, Erasme Hospital, Université libre de Bruxelles (ULB), Brussels, Belgium.
| | - Delphine Kemlin
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium; Department of Nephrology, Dialysis and Transplantation, Erasme Hospital, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Stéphanie Depickère
- Platform for Interventional Studies, Scientific Direction Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | - Natasha S Kelkar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA
| | - Shilpee Sharma
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Pieter Pannus
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Alexandra Waegemans
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Véronique Olislagers
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Daphnée Georges
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium; Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Liège, Belgium
| | - Emilie Dhondt
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Margarida Braga
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Leo Heyndrickx
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Johan Michiels
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Anaïs Thiriard
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Anne Lemy
- Department of Nephrology, Marie Curie Hospital, Charleroi, Belgium
| | - Thomas Baudoux
- Department of Nephrology, Dialysis and Transplantation, Erasme Hospital, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Marylène Vandevenne
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Liège, Belgium
| | - Maria E Goossens
- Platform for Interventional Studies, Scientific Direction Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | - André Matagne
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Liège, Belgium
| | - Isabelle Desombere
- Laboratory of Immune Response, Scientific Direction Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Margaret E Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Alain Le Moine
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium; Department of Nephrology, Dialysis and Transplantation, Erasme Hospital, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Arnaud Marchant
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| |
Collapse
|
8
|
Ganta KK, McManus M, Blanc R, Wang Q, Jung W, Brody R, Carrington M, Paris R, Chandramouli S, McNamara R, Luzuriaga K. Acute infectious mononucleosis generates persistent, functional EBNA-1 antibodies with high cross-reactivity to alpha crystalline beta. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.18.629009. [PMID: 39763959 PMCID: PMC11702679 DOI: 10.1101/2024.12.18.629009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Epstein-Barr Virus (EBV) infects over 95% of the world's population and is the most common cause of infectious mononucleosis (IM). Epidemiologic studies have linked EBV with certain cancers or autoimmune conditions, including multiple sclerosis (MS). Recent studies suggest that molecular mimicry between EBV proteins, particularly EBV nuclear antigen 1 (EBNA-1), and self-proteins is a plausible mechanism through which EBV infection may contribute to the development of autoimmune disorders. We used a systems immunology approach to investigate the magnitude, specificity, and functional properties of EBNA-1 specific antibodies in a cohort of 97 young adults with IM from presentation through 1-year post-primary infection compared to a control cohort of EBV-seropositive individuals. Levels of EBNA-1 specific IgG1 and IgG3 binding antibodies increased over the course of infection. EBNA-1 antibodies capable of mediating antibody-dependent cellular phagocytosis (ADCP) and antibody-dependent complement deposition (ADCD) were detected at or after 6 months. Binding and ADCP- and ADCD-leveraged antibodies primarily targeted a region of EBNA-1 known to elicit cross-reactive antibodies to several self-peptides in individuals with MS. Significantly higher binding and ADCD-active antibodies targeting EBNA-1 were observed in individuals with at least one HLA-DRB1*15:01 allele, a known genetic risk factor for MS; Importantly, high levels of antibodies capable of binding alpha crystalline beta (CRYAB) and mediating complement deposition were detected at 6 months and 1-year following IM; CRYAB antibodies were resistant to denaturing forces, indicating an affinity matured response. Blocking experiments confirmed that CRYAB antibodies were cross-reactive with EBNA-1. Altogether, these results demonstrate that high levels of functional antibodies targeting EBNA-1 are generated in early EBV infection, some of which are cross-reactive with CRYAB. Further investigation is warranted to determine how these antibody responses may contribute to the subsequent development of MS.
Collapse
|
9
|
Irvine EB, Darrah PA, Wang S, Wang C, McNamara RP, Roederer M, Seder RA, Lauffenburger DA, Flynn JL, Fortune SM, Alter G. Humoral correlates of protection against Mycobacterium tuberculosis following intravenous BCG vaccination in rhesus macaques. iScience 2024; 27:111128. [PMID: 39669431 PMCID: PMC11634979 DOI: 10.1016/j.isci.2024.111128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/06/2024] [Accepted: 10/04/2024] [Indexed: 12/14/2024] Open
Abstract
Altering Bacille Calmette-Guérin (BCG) immunization from low-dose intradermal (i.d.) to high-dose intravenous (i.v.) vaccination provides a high level of protection against Mycobacterium tuberculosis (Mtb). In addition to strong T cell immunity, i.v. BCG drives robust humoral immune responses that track with bacterial control. However, given the near-complete protection afforded by high-dose i.v. BCG immunization, a precise correlate of protection was difficult to define. Here we leveraged plasma and bronchoalveolar lavage fluid (BAL) from a cohort of rhesus macaques that received decreasing doses of i.v. BCG and aimed to define correlates of immunity following Mtb challenge. We show an i.v. BCG dose-dependent induction of mycobacterial-specific humoral immune responses. Antibody responses at peak immunogenicity predicted bacterial control post-challenge. Multivariate analyses revealed antibody-mediated complement and natural killer (NK) cell-activating humoral networks as key signatures of protective immunity. This work extends our understanding of humoral biomarkers and potential mechanisms of i.v. BCG-mediated protection against Mtb.
Collapse
Affiliation(s)
- Edward B. Irvine
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Patricia A. Darrah
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD 20892, USA
| | - Shu Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chuangqi Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ryan P. McNamara
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert A. Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD 20892, USA
| | - Douglas A. Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - JoAnne L. Flynn
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Sarah M. Fortune
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
10
|
Case JB, Sanapala S, Dillen C, Rhodes V, Zmasek C, Chicz TM, Switzer CE, Scheaffer SM, Georgiev G, Jacob-Dolan C, Hauser BM, Dos Anjos DCC, Adams LJ, Soudani N, Liang CY, Ying B, McNamara RP, Scheuermann RH, Boon ACM, Fremont DH, Whelan SPJ, Schmidt AG, Sette A, Grifoni A, Frieman MB, Diamond MS. A trivalent mucosal vaccine encoding phylogenetically inferred ancestral RBD sequences confers pan-Sarbecovirus protection in mice. Cell Host Microbe 2024; 32:2131-2147.e8. [PMID: 39561781 PMCID: PMC11637904 DOI: 10.1016/j.chom.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/13/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024]
Abstract
The continued emergence of SARS-CoV-2 variants and the threat of future Sarbecovirus zoonoses have spurred the design of vaccines that can induce broad immunity against multiple coronaviruses. Here, we use computational methods to infer ancestral phylogenetic reconstructions of receptor binding domain (RBD) sequences across multiple Sarbecovirus clades and incorporate them into a multivalent adenoviral-vectored vaccine. Mice immunized with this pan-Sarbecovirus vaccine are protected in the upper and lower respiratory tracts against infection by historical and contemporary SARS-CoV-2 variants, SARS-CoV, and pre-emergent SHC014 and Pangolin/GD coronavirus strains. Using genetic and immunological approaches, we demonstrate that vaccine-induced protection unexpectedly is conferred principally by CD4+ and CD8+ T cell-mediated anamnestic responses. Importantly, prior mRNA vaccination or SARS-CoV-2 respiratory infection does not alter the efficacy of the mucosally delivered pan-Sarbecovirus vaccine. These data highlight the promise of a phylogenetic approach for antigen and vaccine design against existing and pre-emergent Sarbecoviruses with pandemic potential.
Collapse
Affiliation(s)
- James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shilpa Sanapala
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carly Dillen
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Victoria Rhodes
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Christian Zmasek
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Taras M Chicz
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Charlotte E Switzer
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston 02115, MA, USA; Department of Bioengineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Suzanne M Scheaffer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - George Georgiev
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Catherine Jacob-Dolan
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Blake M Hauser
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Lucas J Adams
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nadia Soudani
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chieh-Yu Liang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Baoling Ying
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ryan P McNamara
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | | | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aaron G Schmidt
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Alba Grifoni
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Matthew B Frieman
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Vaccines and Immunity against Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
11
|
Kelkar NS, Curtis NC, Lahey TP, Wieland-Alter W, Stout JE, Larson EC, Jauro S, Scanga CA, Darrah PA, Roederer M, Seder RA, von Reyn CF, Lee J, Ackerman ME. Humoral correlate of vaccine-mediated protection from tuberculosis identified in humans and non-human primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.627012. [PMID: 39713388 PMCID: PMC11661070 DOI: 10.1101/2024.12.05.627012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Development of an effective tuberculosis (TB) vaccine has been challenged by incomplete understanding of specific factors that provide protection against Mycobacterium tuberculosis (Mtb) and the lack of a known correlate of protection (CoP). Using a combination of samples from a vaccine showing efficacy (DarDar [NCT00052195]) and Bacille Calmette-Guerin (BCG)-immunized humans and nonhuman primates (NHP), we identify a humoral CoP that translates across species and vaccine regimens. Antibodies specific to the DarDar vaccine strain (M. obuense) sonicate (MOS) correlate with protection from the efficacy endpoint of definite TB. In humans, antibodies to MOS also scale with vaccine dose, are elicited by BCG vaccination, are observed during TB disease, and demonstrate cross-reactivity with Mtb; in NHP, MOS-specific antibodies scale with dose and serve as a CoP mediated by BCG vaccination. Collectively, this study reports a novel humoral CoP and specific antigenic targets that may be relevant to achieving vaccine-mediated protection from TB.
Collapse
Affiliation(s)
- Natasha S. Kelkar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA
| | | | - Timothy P. Lahey
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Wendy Wieland-Alter
- Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH, USA
| | - Jason E. Stout
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Erica C. Larson
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Solomon Jauro
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles A. Scanga
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patricia A. Darrah
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institute of Health (NIH), Bethesda, MD, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institute of Health (NIH), Bethesda, MD, USA
| | - Robert A. Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institute of Health (NIH), Bethesda, MD, USA
| | - C. Fordham von Reyn
- Dartmouth International Vaccine Initiative, Geisel School of Medicine, 1 Medical Center Drive, Lebanon, NH, USA
| | - Jiwon Lee
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Margaret E. Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
12
|
Abraham AA, Tan ZC, Shrestha P, Bozich ER, Meyer AS. A multivalent binding model infers antibody Fc species from systems serology. PLoS Comput Biol 2024; 20:e1012663. [PMID: 39715286 PMCID: PMC11706497 DOI: 10.1371/journal.pcbi.1012663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/07/2025] [Accepted: 11/20/2024] [Indexed: 12/25/2024] Open
Abstract
Systems serology aims to broadly profile the antigen binding, Fc biophysical features, immune receptor engagement, and effector functions of antibodies. This experimental approach excels at identifying antibody functional features that are relevant to a particular disease. However, a crucial limitation of this approach is its incomplete description of what structural features of the antibodies are responsible for the observed immune receptor engagement and effector functions. Knowing these antibody features is important for both understanding how effector responses are naturally controlled through antibody Fc structure and designing antibody therapies with specific effector profiles. Here, we address this limitation by modeling the molecular interactions occurring in these assays and using this model to infer quantities of specific antibody Fc species among the antibodies being profiled. We used several validation strategies to show that the model accurately infers antibody properties and then applied the model to infer previously unavailable antibody fucosylation information from existing systems serology data. Using this capability, we find that COVID-19 vaccine efficacy is associated with the induction of afucosylated spike protein-targeting IgG. Our results also question an existing assumption that controllers of HIV exhibit gp120-targeting IgG that are less fucosylated than those of progressors. Additionally, we confirm that afucosylated IgG is associated with membrane-associated antigens for COVID-19 and HIV, and present new evidence indicating that this relationship is specific to the host cell membrane. Finally, we use the model to identify redundant assay measurements and subsets of information-rich measurements from which Fc properties can be inferred. In total, our modeling approach provides a quantitative framework for the reasoning typically applied in these studies, improving the ability to draw mechanistic conclusions from these data.
Collapse
Affiliation(s)
- Armaan A. Abraham
- Department of Bioengineering, University of California, Los Angeles, California, United States of America
| | - Zhixin Cyrillus Tan
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, California, United States of America
| | | | - Emily R. Bozich
- Department of Bioengineering, University of California, Los Angeles, California, United States of America
| | - Aaron S. Meyer
- Department of Bioengineering, University of California, Los Angeles, California, United States of America
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, California, United States of America
| |
Collapse
|
13
|
Grobben M, Bakker M, Schriek AI, Levels LJ, Umotoy JC, Tejjani K, van Breemen MJ, Lin RN, de Taeye SW, Ozorowski G, Kootstra NA, Ward AB, Kent SJ, Hogarth PM, Wines BD, Sanders RW, Chung AW, van Gils MJ. Polyfunctionality and breadth of HIV-1 antibodies are associated with delayed disease progression. PLoS Pathog 2024; 20:e1012739. [PMID: 39661636 PMCID: PMC11634010 DOI: 10.1371/journal.ppat.1012739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/09/2024] [Indexed: 12/13/2024] Open
Abstract
HIV-1 infection leads to chronic disease requiring life-long treatment and therefore alternative therapeutics, a cure and/or a protective vaccine are needed. Antibody-mediated effector functions could have a role in the fight against HIV-1. However, the properties underlying the potential beneficial effects of antibodies during HIV-1 infection are poorly understood. To identify a specific profile of antibody features associated with delayed disease progression, we studied antibody polyfunctionality during untreated HIV-1 infection in the well-documented Amsterdam Cohort Studies. Serum samples were analyzed from untreated individuals with HIV-1 at approximately 6 months (n = 166) and 3 years (n = 382) post-seroconversion (post-SC). A Luminex antibody Fc array was used to profile 15 different Fc features for serum antibodies against 20 different HIV-1 envelope glycoprotein antigens and the resulting data was also compared with data on neutralization breadth. We found that high HIV-1 specific IgG1 levels and low IgG2 and IgG4 levels at 3 years post-SC were associated with delayed disease progression. Moreover, delayed disease progression was associated with a broad and polyfunctional antibody response. Specifically, the capacity to interact with all Fc γ receptors (FcγRs) and C1q, and in particular with FcγRIIa, correlated positively with delayed disease progression. There were strong correlations between antibody Fc features and neutralization breadth and several antibody features that were associated with delayed disease progression were also associated with the development of broad and potent antibody neutralization. In summary, we identified a strong association between broad, polyfunctional antibodies and delayed disease progression. These findings contribute new information for the fight against HIV-1, especially for new antibody-based therapy and cure strategies.
Collapse
Affiliation(s)
- Marloes Grobben
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Margreet Bakker
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Angela I. Schriek
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Liesbeth J.J. Levels
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Jeffrey C. Umotoy
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Khadija Tejjani
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Mariëlle J. van Breemen
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Ryan N. Lin
- The Scripps Research Institute, Department of Structural Biology and Computational Biology, La Jolla, California, United States of America
| | - Steven W. de Taeye
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Gabriel Ozorowski
- The Scripps Research Institute, Department of Structural Biology and Computational Biology, La Jolla, California, United States of America
| | - Neeltje A. Kootstra
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
| | - Andrew B. Ward
- The Scripps Research Institute, Department of Structural Biology and Computational Biology, La Jolla, California, United States of America
| | - Stephen J. Kent
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Department of Microbiology and Immunology, Melbourne, Australia
- Alfred Hospital and Central Clinical School, Monash University, Melbourne Sexual Health Centre and Department of Infectious Diseases, Melbourne, Australia
| | - P. Mark Hogarth
- Burnet Institute, Immune Therapies Group, Melbourne, Australia
- Central Clinical School, Monash University, Department of Immunology, Melbourne, Australia
| | - Bruce D. Wines
- Burnet Institute, Immune Therapies Group, Melbourne, Australia
- Central Clinical School, Monash University, Department of Immunology, Melbourne, Australia
| | - Rogier W. Sanders
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Weill Medical College of Cornell University, Department of Microbiology and Immunology, New York, New York, United States of America
| | - Amy W. Chung
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Department of Microbiology and Immunology, Melbourne, Australia
| | - Marit J. van Gils
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Hederman AP, Remmel CA, Sharma S, Natarajan H, Weiner JA, Wrapp D, Donner C, Delforge ML, d’Angelo P, Furione M, Fornara C, McLellan JS, Lilleri D, Marchant A, Ackerman ME. Discrimination of primary and chronic cytomegalovirus infection based on humoral immune profiles in pregnancy. J Clin Invest 2024; 134:e180560. [PMID: 39207860 PMCID: PMC11473158 DOI: 10.1172/jci180560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUNDMost humans have been infected with cytomegalovirus (CMV) by midlife without clinical signs of disease. However, in settings in which the immune system is undeveloped or compromised, the virus is not adequately controlled and consequently presents a major infectious cause of both congenital disease during pregnancy as well as opportunistic infection in children and adults. With clear evidence that risk to the fetus varies with gestational age at the time of primary maternal infection, further research on humoral responses to primary CMV infection during pregnancy is needed.METHODSHere, systems serology tools were applied to characterize antibody responses to CMV infection in pregnant and nonpregnant women experiencing either primary or chronic infection.RESULTSWhereas strikingly different antibody profiles were observed depending on infection status, limited differences were associated with pregnancy status. Beyond known differences in IgM responses used clinically for identification of primary infection, distinctions observed in IgA and FcγR-binding antibodies and among antigen specificities accurately predicted infection status. Machine learning was used to define the transition from primary to chronic states and predict time since infection with high accuracy. Humoral responses diverged over time in an antigen-specific manner, with IgG3 responses toward tegument decreasing over time as typical of viral infections, while those directed to pentamer and glycoprotein B were lower during acute and greatest during chronic infection.CONCLUSIONIn sum, this work provides insights into the antibody response associated with CMV infection status in the context of pregnancy, revealing aspects of humoral immunity that have the potential to improve CMV diagnostics.FUNDINGCYMAF consortium and NIH NIAID.
Collapse
Affiliation(s)
- Andrew P. Hederman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | | | - Shilpee Sharma
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| | - Harini Natarajan
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire, USA
| | - Joshua A. Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Daniel Wrapp
- Department of Molecular Biosciences, The University of Texas, Austin, Texas, USA
| | - Catherine Donner
- Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B.), CUB Hôpital Erasme, Department of Obstetrics and Gynecology, Brussels, Belgium
| | - Marie-Luce Delforge
- ULB, H.U.B., CUB Hôpital Erasme, National Reference Center for Congenital Infections, Brussels, Belgium
| | - Piera d’Angelo
- Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Milena Furione
- Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Chiara Fornara
- Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas, Austin, Texas, USA
| | - Daniele Lilleri
- Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Arnaud Marchant
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| | - Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire, USA
| |
Collapse
|
15
|
Zamora D, Dasgupta S, Stevens-Ayers T, Edmison B, Winston DJ, Razonable RR, Mehta AK, Lyon GM, Boeckh M, Singh N, Koelle DM, Limaye AP. Cytomegalovirus immunity in high-risk liver transplant recipients following preemptive antiviral therapy versus prophylaxis. JCI Insight 2024; 9:e180115. [PMID: 39099206 PMCID: PMC11457861 DOI: 10.1172/jci.insight.180115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024] Open
Abstract
CMV-specific T cells, NK cells, and neutralizing antibodies (nAbs) were assessed in a randomized trial of CMV prevention with preemptive antiviral therapy (PET) versus prophylactic antiviral therapy (PRO) in donor-seropositive/recipient-seronegative (D+R-) liver transplant recipients (LTxR) at 100 days (end of intervention) and at 6 and 12 months after transplant. The PET group had significantly increased numbers of circulating polyfunctional T cells, NK cells, and nAbs compared with the PRO group at day 100, and several CMV immune parameters remained significantly higher by 12 months after transplant. Among PET recipients, preceding CMV viremia (vs. no preceding viremia) was associated with significantly higher levels of most CMV immune parameters at day 100. Higher numbers of CMV-specific polyfunctional T cells and NKG2C+ NK cells at day 100 were associated with a decreased incidence of CMV disease in multivariable Cox regression. The strongest associations with protection against CMV disease were with increased numbers of CMV-specific polyfunctional CD4+ T cells, CD3negCD56dimCD57negNKG2Cpos cells, and CD3negCD56dimCD57posNKG2Cpos NK cells. Our results suggest that PET is superior to PRO for CMV disease prevention by allowing low-level CMV replication and associated antigen exposure that is promptly controlled by antiviral therapy and facilitates enhanced CMV protective immunity in D+R- LTxR.
Collapse
Affiliation(s)
- Danniel Zamora
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Sayan Dasgupta
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Terry Stevens-Ayers
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Bradley Edmison
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Drew J. Winston
- Division of Infectious Diseases, UCLA Medical Center, Los Angeles, California, USA
| | - Raymund R. Razonable
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Aneesh K. Mehta
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - G. Marshall Lyon
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael Boeckh
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Nina Singh
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Transplant Infectious Diseases, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - David M. Koelle
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Global Health and
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Benaroya Research Institute, Seattle, Washington, USA
| | - Ajit P. Limaye
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
16
|
Jung W, Abdelnour A, Kaplonek P, Herrero R, Shih-Lu Lee J, Barbati DR, Chicz TM, Levine KS, Fantin RC, Loria V, Porras C, Lauffenburger DA, Gail MH, Aparicio A, Hildesheim A, Alter G, McNamara RP. SARS-CoV-2 infection prior to vaccination amplifies Fc-mediated humoral profiles in an age-dependent manner. Cell Rep 2024; 43:114684. [PMID: 39213155 DOI: 10.1016/j.celrep.2024.114684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/24/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Immunity acquired by vaccination following infection, termed hybrid immunity, has been shown to confer enhanced protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by enhancing the breadth and potency of immune responses. Here, we assess Fc-mediated humoral profiles in hybrid immunity and their association with age and vaccine type. Participants are divided into three groups: infection only, vaccination only, and vaccination following infection (i.e., hybrid immunity). Using systems serology, we profile humoral immune responses against spikes and subdomains of SARS-CoV-2 variants. We find that hybrid immunity is characterized by superior Fc receptor binding and natural killer (NK) cell-, neutrophil-, and complement-activating antibodies, which is higher than what can be expected from the sum of the vaccination and infection. These differences between hybrid immunity and vaccine-induced immunity are more pronounced in aged adults, especially for immunoglobulin (Ig)G1, IgG2, and Fcγ receptor-binding antibodies. Our findings suggest that vaccination strategies that aim to mimic hybrid immunity should consider age as an important modifier.
Collapse
Affiliation(s)
- Wonyeong Jung
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Paulina Kaplonek
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Rolando Herrero
- Agencia Costarricense de Investigaciones Biomédicas, Fundación INCIENSA, San José, Costa Rica
| | | | - Domenic R Barbati
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Taras M Chicz
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Kate S Levine
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Romain Clement Fantin
- Agencia Costarricense de Investigaciones Biomédicas, Fundación INCIENSA, San José, Costa Rica
| | - Viviana Loria
- Agencia Costarricense de Investigaciones Biomédicas, Fundación INCIENSA, San José, Costa Rica
| | - Carolina Porras
- Agencia Costarricense de Investigaciones Biomédicas, Fundación INCIENSA, San José, Costa Rica
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mitchell H Gail
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Amada Aparicio
- Caja Costarricense de Seguro Social, San José, Costa Rica
| | - Allan Hildesheim
- Agencia Costarricense de Investigaciones Biomédicas, Fundación INCIENSA, San José, Costa Rica
| | - Galit Alter
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA.
| | - Ryan P McNamara
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
17
|
O’Reilly S, Byrne J, Feeney ER, Mallon PWG, Gautier V. Navigating the Landscape of B Cell Mediated Immunity and Antibody Monitoring in SARS-CoV-2 Vaccine Efficacy: Tools, Strategies and Clinical Trial Insights. Vaccines (Basel) 2024; 12:1089. [PMID: 39460256 PMCID: PMC11511438 DOI: 10.3390/vaccines12101089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
Correlates of Protection (CoP) are biomarkers above a defined threshold that can replace clinical outcomes as primary endpoints, predicting vaccine effectiveness to support the approval of new vaccines or follow up studies. In the context of COVID-19 vaccination, CoPs can help address challenges such as demonstrating vaccine effectiveness in special populations, against emerging SARS-CoV-2 variants or determining the durability of vaccine-elicited immunity. While anti-spike IgG titres and viral neutralising capacity have been characterised as CoPs for COVID-19 vaccination, the contribution of other components of the humoral immune response to immediate and long-term protective immunity is less well characterised. This review examines the evidence supporting the use of CoPs in COVID-19 clinical vaccine trials, and how they can be used to define a protective threshold of immunity. It also highlights alternative humoral immune biomarkers, including Fc effector function, mucosal immunity, and the generation of long-lived plasma and memory B cells and discuss how these can be applied to clinical studies and the tools available to study them.
Collapse
Affiliation(s)
- Sophie O’Reilly
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Joanne Byrne
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eoin R. Feeney
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Elm Park, Dublin 4, Ireland
| | - Patrick W. G. Mallon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Elm Park, Dublin 4, Ireland
| | - Virginie Gautier
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
18
|
Tong X, Wang Q, Jung W, Chicz TM, Blanc R, Parker LJ, Barouch DH, McNamara RP. Compartment-specific antibody correlates of protection to SARS-CoV-2 Omicron in macaques. iScience 2024; 27:110174. [PMID: 39224511 PMCID: PMC11367469 DOI: 10.1016/j.isci.2024.110174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/09/2024] [Accepted: 05/31/2024] [Indexed: 09/04/2024] Open
Abstract
Antibodies represent a primary mediator of protection against respiratory viruses. Serum neutralizing antibodies (NAbs) are often considered a primary correlate of protection. However, detailed antibody profiles including characterization of antibody functions in different anatomic compartments are poorly understood. Here we show that antibody correlates of protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge are different in systemic versus mucosal compartments in rhesus macaques. In serum, NAbs were the strongest correlate of protection and linked to spike-specific binding antibodies and other extra-NAb functions that create a larger protective network. In bronchiolar lavage (BAL), antibody-dependent cellular phagocytosis (ADCP) proved the strongest correlate of protection rather than NAbs. Within BAL, ADCP was linked to mucosal spike-specific immunoglobulin (Ig)G, IgA/secretory IgA, and Fcγ-receptor binding antibodies. Our results support a model in which antibodies with different functions mediate protection at different anatomic sites.
Collapse
Affiliation(s)
- Xin Tong
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Qixin Wang
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Wonyeong Jung
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Taras M. Chicz
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Ross Blanc
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Lily J. Parker
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Dan H. Barouch
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ryan P. McNamara
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
19
|
Saha A, Chakraborty T, Rahimikollu J, Xiao H, de Oliveira LBP, Hand TW, Handali S, Secor WE, Fraga LAO, Fairley JK, Das J, Sarkar A. Deep humoral profiling coupled to interpretable machine learning unveils diagnostic markers and pathophysiology of schistosomiasis. Sci Transl Med 2024; 16:eadk7832. [PMID: 39292803 PMCID: PMC12033386 DOI: 10.1126/scitranslmed.adk7832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/27/2024] [Accepted: 08/27/2024] [Indexed: 09/20/2024]
Abstract
Schistosomiasis, a highly prevalent parasitic disease, affects more than 200 million people worldwide. Current diagnostics based on parasite egg detection in stool detect infection only at a late stage, and current antibody-based tests cannot distinguish past from current infection. Here, we developed and used a multiplexed antibody profiling platform to obtain a comprehensive repertoire of antihelminth humoral profiles including isotype, subclass, Fc receptor (FcR) binding, and glycosylation profiles of antigen-specific antibodies. Using Essential Regression (ER) and SLIDE, interpretable machine learning methods, we identified latent factors (context-specific groups) that move beyond biomarkers and provide insights into the pathophysiology of different stages of schistosome infection. By comparing profiles of infected and healthy individuals, we identified modules with unique humoral signatures of active disease, including hallmark signatures of parasitic infection such as elevated immunoglobulin G4 (IgG4). However, we also captured previously uncharacterized humoral responses including elevated FcR binding and specific antibody glycoforms in patients with active infection, helping distinguish them from those without active infection but with equivalent antibody titers. This signature was validated in an independent cohort. Our approach also uncovered two distinct endotypes, nonpatent infection and prior infection, in those who were not actively infected. Higher amounts of IgG1 and FcR1/FcR3A binding were also found to be likely protective of the transition from nonpatent to active infection. Overall, we unveiled markers for antibody-based diagnostics and latent factors underlying the pathogenesis of schistosome infection. Our results suggest that selective antigen targeting could be useful in early detection, thus controlling infection severity.
Collapse
Affiliation(s)
- Anushka Saha
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30309, USA
| | - Trirupa Chakraborty
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Integrative Systems Biology Program, Pittsburgh, PA 15213, USA
| | - Javad Rahimikollu
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Joint CMU-Pitt Ph.D. Program in Computational Biology, Pittsburgh, PA 15213, USA
| | - Hanxi Xiao
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Joint CMU-Pitt Ph.D. Program in Computational Biology, Pittsburgh, PA 15213, USA
| | - Lorena B. Pereira de Oliveira
- Programa Multicêntrico de Bioquímica e Biologia Molecular (PMBqBM), Federal University of Juiz de Fora, Campus Governador Valadares, Juiz de Fora, Minas Gerais 36036-900, Brazil
- University Vale do Rio Doce, Governador Valadares, Minas Gerais 36036-900, Brazil
| | - Timothy W. Hand
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sukwan Handali
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - W. Evan Secor
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Lucia A. O. Fraga
- Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Jessica K. Fairley
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Jishnu Das
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Aniruddh Sarkar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30309, USA
| |
Collapse
|
20
|
Spatola M, Nziza N, Irvine EB, Cizmeci D, Jung W, Van LH, Nhat LTH, Ha VTN, Phu NH, Ho DTN, Thwaites GE, Lauffenburger DA, Fortune S, Thuong NTT, Alter G. Distinctive antibody responses to Mycobacterium tuberculosis in pulmonary and brain infection. Brain 2024; 147:3247-3260. [PMID: 38442687 PMCID: PMC11370789 DOI: 10.1093/brain/awae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), remains a global health burden. While M. tuberculosis is primarily a respiratory pathogen, it can spread to other organs, including the brain and meninges, causing TB meningitis (TBM). However, little is known about the immunological mechanisms that lead to differential disease across organs. Attention has focused on differences in T cell responses in the control of M. tuberculosis in the lungs, but emerging data point to a role for antibodies, as both biomarkers of disease control and as antimicrobial molecules. Given an increasing appreciation for compartmentalized antibody responses across the blood-brain barrier, here we characterized the antibody profiles across the blood and brain compartments in TBM and determined whether M. tuberculosis-specific humoral immune responses differed between M. tuberculosis infection of the lung (pulmonary TB) and TBM. Using a high throughput systems serology approach, we deeply profiled the antibody responses against 10 different M. tuberculosis antigens, including lipoarabinomannan (LAM) and purified protein derivative (PPD), in HIV-negative adults with pulmonary TB (n = 10) versus TBM (n = 60). Antibody studies included analysis of immunoglobulin isotypes (IgG, IgM, IgA) and subclass levels (IgG1-4) and the capacity of M. tuberculosis-specific antibodies to bind to Fc receptors or C1q and to activate innate immune effector functions (complement and natural killer cell activation; monocyte or neutrophil phagocytosis). Machine learning methods were applied to characterize serum and CSF responses in TBM, identify prognostic factors associated with disease severity, and define the key antibody features that distinguish TBM from pulmonary TB. In individuals with TBM, we identified CSF-specific antibody profiles that marked a unique and compartmentalized humoral response against M. tuberculosis, characterized by an enrichment of M. tuberculosis-specific antibodies able to robustly activate complement and drive phagocytosis by monocytes and neutrophils, all of which were associated with milder TBM severity at presentation. Moreover, individuals with TBM exhibited M. tuberculosis-specific antibodies in the serum with an increased capacity to activate phagocytosis by monocytes, compared with individuals with pulmonary TB, despite having lower IgG titres and Fcγ receptor-binding capacity. Collectively, these data point to functionally divergent humoral responses depending on the site of infection (i.e. lungs versus brain) and demonstrate a highly compartmentalized M. tuberculosis-specific antibody response within the CSF in TBM. Moreover, our results suggest that phagocytosis- and complement-mediating antibodies may promote attenuated neuropathology and milder TBM disease.
Collapse
Affiliation(s)
- Marianna Spatola
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA 02139, USA
| | - Nadège Nziza
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA 02139, USA
| | - Edward B Irvine
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA 02139, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Deniz Cizmeci
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wonyeong Jung
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Le Hong Van
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, 700000 Ho Chi Minh City, Vietnam
| | - Le Thanh Hoang Nhat
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, 700000 Ho Chi Minh City, Vietnam
| | - Vu Thi Ngoc Ha
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, 700000 Ho Chi Minh City, Vietnam
| | - Nguyen Hoan Phu
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, 700000 Ho Chi Minh City, Vietnam
- Vietnam National University, School of Medicine, 700000 Ho Chi Minh City, Vietnam
| | - Dang Trung Nghia Ho
- Hospital for Tropical Diseases, 700000 Ho Chi Minh City, Vietnam
- Pham Ngoc Thach University of Medicine, 700000 Ho Chi Minh City, Vietnam
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, 700000 Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7LG, UK
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sarah Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nguyen Thuy Thuong Thuong
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, 700000 Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7LG, UK
| | - Galit Alter
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
21
|
Zhang X, Shi H, Hendy DA, Bachelder EM, Ainslie KM, Ross TM. Multi-COBRA hemagglutinin formulated with cGAMP microparticles elicits protective immune responses against influenza viruses. mSphere 2024; 9:e0016024. [PMID: 38920382 PMCID: PMC11288037 DOI: 10.1128/msphere.00160-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
In humans, seasonal influenza viruses cause epidemics. Avian influenza viruses are of particular concern because they can infect multiple species and lead to unpredictable and severe disease. Therefore, there is an urgent need for a universal influenza vaccine that provides protection against all influenza strains. The cyclic GMP-AMP (cGAMP) is a promising adjuvant for subunit vaccines, which promotes type I interferons' production through the stimulator of interferon genes (STING) pathway. The encapsulation of cGAMP in acetalated dextran (Ace-DEX) microparticles (MPs) enhances its intracellular delivery. In this study, the Computationally Optimized Broadly Reactive Antigen (COBRA) methodology was used to generate H1, H3, and H5 vaccine candidates. Monovalent and multivalent COBRA HA vaccines formulated with cGAMP Ace-DEX MPs were evaluated in mice for protective antibody responses. cGAMP MPs adjuvanted COBRA HA vaccines elicited robust antigen-specific antibodies following vaccination. Compared with COBRA HA vaccine groups with no adjuvant or blank MPs, the cGAMP MPs enhanced HAI activity elicited by COBRA HA vaccines. The HAI activity was not significantly different between cGAMP MPs adjuvanted monovalent or multivalent COBRA HA vaccines. The cGAMP MPs adjuvanted COBRA vaccine groups had higher antigen-specific IgG2a-binding titers than the COBRA vaccine groups with no adjuvant or blank MPs. The COBRA vaccines formulated with cGAMP MPs mitigated diseases caused by influenza viral challenge and decreased pulmonary viral titers in mice. Therefore, the formulation of COBRA vaccines plus cGAMP MPs is a promising universal influenza vaccine that elicits protective immune responses against human seasonal and pre-pandemic strains. IMPORTANCE Influenza viruses cause severe respiratory disease, particularly in the very young and the elderly. Next-generation influenza vaccines are needed to protect against new influenza variants. This report used a promising adjuvant, cyclic GMP-AMP (cGAMP), to enhance the elicited antibodies by an improved influenza hemagglutinin candidate and protect against influenza virus infection. Overall, adding adjuvants to influenza vaccines is an effective method to improve vaccines.
Collapse
Affiliation(s)
- Xiaojian Zhang
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Hua Shi
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Dylan A. Hendy
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Eric M. Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kristy M. Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, USA
- Department of Infection Biology, Lehner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
22
|
Miles JR, Lu P, Bai S, Aguillón-Durán GP, Rodríguez-Herrera JE, Gunn BM, Restrepo BI, Lu LL. Antigen specificity shapes antibody functions in tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597169. [PMID: 38895452 PMCID: PMC11185737 DOI: 10.1101/2024.06.03.597169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Tuberculosis (TB) is the number one infectious disease cause of death worldwide due to an incomplete understanding of immunity. Emerging data highlight antibody functions mediated by the Fc domain as immune correlates. However, the mechanisms by which antibody functions impact the causative agent Mycobacterium tuberculosis (Mtb) are unclear. Here, we examine how antigen specificity determined by the Fab domain shapes Fc effector functions against Mtb. Using the critical structural and secreted virulence proteins Mtb cell wall and ESAT-6 & CFP-10, we observe that antigen specificity alters subclass, antibody post-translational glycosylation, and Fc effector functions in TB patients. Moreover, Mtb cell wall IgG3 enhances disease through opsonophagocytosis of extracellular Mtb . In contrast, polyclonal and a human monoclonal IgG1 we generated targeting ESAT-6 & CFP-10 inhibit intracellular Mtb . These data show that antibodies have multiple roles in TB and antigen specificity is a critical determinant of the protective and pathogenic capacity.
Collapse
|
23
|
Hjelmar KJS, de Armas LR, Goldberg E, Pallikkuth S, Mathad J, Montepiedra G, Gupta A, Pahwa S. Impact of in-utero exposure to HIV and latent TB on infant humoral responses. Front Immunol 2024; 15:1423435. [PMID: 38994354 PMCID: PMC11236605 DOI: 10.3389/fimmu.2024.1423435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Introduction Latent tuberculosis infection (LTBI) is a common coinfection in people living with HIV (PWH). How LTBI and HIV exposure in utero influence the development of infant humoral immunity is not well characterized. To address this question, we assessed the relationship between maternal humoral responses in pregnant women with HIV or with HIV/LTBI on humoral responses in infants to BCG vaccination and TB acquisition. Methods Plasma samples were obtained from mother infant pairs during pregnancy (14-34 wks gestation) and in infants at 12 and 44 wks of age from the IMPAACT P1078 clinical trial. LTBI was established by Interferon gamma release assay (IGRA). Progression to active TB (ATB) disease was observed in 5 women at various times after giving birth. All infants were BCG vaccinated at birth and tested for IGRA at 44 weeks. Mtb (PPD, ESAT6/CFP10, Ag85A, LAM), HIV (GP120), and Influenza (HA) specific IgG, IgM, and IgA were measured in plasma samples using a bead based Luminex assay with Flexmap 3D. Results In maternal plasma there were no differences in Mtb-specific antibodies or viral antibodies in relation to maternal IGRA status. ATB progressors showed increases in Mtb-specific antibodies at diagnosis compared to study entry. However, when compared to the non-progressors at entry, progressors had higher levels of Ag85A IgG and reduced ESAT6/CFP10 IgG and LAM IgG, IgM, and IgA1. All infants showed a decrease in IgG to viral antigens (HIV GP120 and HA) from 12 to 44 weeks attributed to waning of maternally transferred antibody titers. However, Mtb-specific (PPD, ESAT6/CFP10, Ag85A, and LAM) IgG and IgM increased from 12 to 44 weeks. HIV and HA IgG levels in maternal and 12-week infant plasma were highly correlated, and ESAT6/CFP10 IgG and LAM IgG showed a relationship between maternal and infant Abs. Finally, in the subset of infants that tested IGRA positive at 44 weeks, we observed a trend for lower LAM IgM compared to IGRA- infants at 44 weeks. Discussion The results from our study raise the possibility that antibodies to LAM are associated with protection from progression to ATB and support further research into the development of humoral immunity against TB through infection or vaccination.
Collapse
Affiliation(s)
- Kimberly J. S. Hjelmar
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Lesley R. de Armas
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Evan Goldberg
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jyoti Mathad
- Department of Medicine, Department of Obstetrics & Gynecology, Weill Cornell Medical College, New York City, NY, United States
| | - Grace Montepiedra
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Amita Gupta
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Savita Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
24
|
Weiner JA, Natarajan H, McIntosh CJ, Yang ES, Choe M, Papia CL, Axelrod KS, Kovacikova G, Pegu A, Ackerman ME. Selection of positive controls and their impact on anti-drug antibody assay performance. J Immunol Methods 2024; 528:113657. [PMID: 38479453 DOI: 10.1016/j.jim.2024.113657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/03/2024] [Indexed: 03/17/2024]
Abstract
Development of assays to reliably identify and characterize anti-drug antibodies (ADAs) depends on positive control anti-idiotype (anti-id) reagents, which are used to demonstrate that the standards recommended by regulatory authorities are met. This work employs a set of therapeutic antibodies under clinical development and their corresponding anti-ids to investigate how different positive control reagent properties impact ADA assay development. Positive controls exhibited different response profiles and apparent assay analytical sensitivity values depending on assay format. Neither anti-id affinity for drug, nor sensitivity in direct immunoassays related to sensitivity in ADA assays. Anti-ids were differentially able to detect damage to drug conjugates used in bridging assays and were differentially drug tolerant. These parameters also failed to relate to assay sensitivity, further complicating selection of anti-ids for use in ADA assay development based on functional characteristics. Given this variability among anti-ids, alternative controls that could be employed across multiple antibody drugs were investigated as a more uniform means to define ADA detection sensitivity across drug products and assay protocols, which could help better relate assay results to clinical risks of ADA responses. Overall, this study highlights the importance of positive control selection to reliable detection and clinical interpretation of the presence and magnitude of ADA responses.
Collapse
Affiliation(s)
- Joshua A Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Harini Natarajan
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, NH, USA
| | - Calum J McIntosh
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cassidy L Papia
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | | | | | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA; Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, NH, USA.
| |
Collapse
|
25
|
Kelkar NS, Goldberg BS, Dufloo J, Bruel T, Schwartz O, Hessell AJ, Ackerman ME. Sex- and species-associated differences in complement-mediated immunity in humans and rhesus macaques. mBio 2024; 15:e0028224. [PMID: 38385704 PMCID: PMC10936177 DOI: 10.1128/mbio.00282-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
The complement system can be viewed as a "moderator" of innate immunity, "instructor" of humoral immunity, and "regulator" of adaptive immunity. While sex is known to affect humoral and cellular immune systems, its impact on complement in humans and rhesus macaques, a commonly used non-human primate model system, has not been well studied. To address this knowledge gap, we analyzed serum samples from 90 humans and 72 rhesus macaques for the abundance and activity of the complement system components. While sequences of cascade proteins were highly conserved, dramatically different levels were observed between species. Whereas the low levels detected in rhesus samples raised questions about the suitability of the test for use with macaque samples, differences in levels of complement proteins were observed in male and female humans. Levels of total and antibody-dependent deposition of C1q and C3b on a glycosylated antigen differed between humans and rhesus, suggesting differential recognition of glycans and balance between classical and alternative activation pathways. Functional differences in complement-mediated lysis of antibody-sensitized cells were observed in multiple assays and showed that human females frequently exhibited higher lytic activity than human males or rhesus macaques, which typically did not exhibit such sex-associated differences. Other differences between species and sexes were observed in more narrow contexts-for only certain antibodies, antigens, or assays. Collectively, these results expand knowledge of sex-associated differences in the complement system in humans, identifying differences absent from rhesus macaques.IMPORTANCEThe complement system is a critical part of host defense to many bacterial, fungal, and viral infections. In parallel, rich epidemiological, clinical, and biomedical research evidence demonstrates that sex is an important biological variable in immunity, and many sex-specific differences in immune system are intimately tied with disease outcomes. This study focuses on the intersection of these two factors to define the impact of sex on complement pathway components and activities. This work expands our knowledge of sex-associated differences in the complement system in humans and also identifies the differences that appear to be absent in rhesus macaques, a popular non-human primate model. Whereas differences between species suggest potential limitations in the ability of macaque model to recapitulate human biology, knowledge of sex-based differences in humans has the potential to inform clinical research and practice.
Collapse
Affiliation(s)
- Natasha S. Kelkar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, USA
| | | | - Jérémy Dufloo
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, Paris, France
| | - Timothée Bruel
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, Paris, France
- Vaccine Research Institute, Créteil, France
| | - Olivier Schwartz
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, Paris, France
- Vaccine Research Institute, Créteil, France
| | - Ann J. Hessell
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Margaret E. Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, USA
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
26
|
Chumbe A, Grobben M, Capella-Pujol J, Koekkoek SM, Zon I, Slamanig S, Merat SJ, Beaumont T, Sliepen K, Schinkel J, van Gils MJ. A panel of hepatitis C virus glycoproteins for the characterization of antibody responses using antibodies with diverse recognition and neutralization patterns. Virus Res 2024; 341:199308. [PMID: 38171391 PMCID: PMC10821612 DOI: 10.1016/j.virusres.2024.199308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/28/2023] [Accepted: 01/01/2024] [Indexed: 01/05/2024]
Abstract
A vaccine against Hepatitis C virus (HCV) is urgently needed to limit the spread of HCV. The large antigenic diversity of the HCV glycoprotein E1E2 makes it difficult to design a vaccine but also to fully understand the antibody response after infection or vaccination. Here we designed a panel of HCV pseudoparticles (HCVpps) that cover a wide range of genetically and antigenically diverse E1E2s. We validate our panel using neutralization and a binding antibody multiplex assay (BAMA). The panel of HCVpps includes E1E2 glycoproteins from acute and chronically infected cases in the Netherlands, as well as E1E2 glycoproteins from previously reported HCVs. Using eight monoclonal antibodies targeting multiple antigenic regions on E1E2, we could categorize four groups of neutralization sensitive viruses with viruses showing neutralization titers over a 100-fold range. One HCVpp (AMS0230) was extremely neutralization resistant and only neutralized by AR4-targeting antibodies. In addition, using binding antibody multiplex competition assay, we delineated mAb epitopes and their interactions. The binding and neutralization sensitivity of the HCVpps were confirmed using patient sera. At the end, eleven HCVpps with unique antibody binding and neutralization profiles were selected as the final panel for standardized HCV antibody assessments. In conclusion, this HCVpp panel can be used to evaluate antibody binding and neutralization breadth and potency as well as delineate the epitopes targeted in sera from patients or candidate vaccine trials. The HCVpp panel in combination with the established antibody competition assay present highly valuable tools for HCV vaccine development and evaluation.
Collapse
Affiliation(s)
- Ana Chumbe
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Marloes Grobben
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Joan Capella-Pujol
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Sylvie M Koekkoek
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Ian Zon
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Stefan Slamanig
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | | | - Tim Beaumont
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands; AIMM Therapeutics, Amsterdam, the Netherlands
| | - Kwinten Sliepen
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Janke Schinkel
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands.
| | - Marit J van Gils
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands.
| |
Collapse
|
27
|
Tong X, Wang Q, Jung W, Chicz TM, Blanc R, Parker LJ, Barouch DH, McNamara RP. Compartment-Specific Antibody Correlates of Protection to SARS-CoV-2 Omicron in Macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582951. [PMID: 38464001 PMCID: PMC10925337 DOI: 10.1101/2024.03.01.582951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Antibodies represent a primary mediator of protection against respiratory viruses such as SARS-CoV-2. Serum neutralizing antibodies (NAbs) are often considered a primary correlate of protection. However, detailed antibody profiles including characterization of antibody functions in different anatomic compartments are not well understood. Here we show that antibody correlates of protection against SARS-CoV-2 challenge are different in systemic versus mucosal compartments in rhesus macaques. In serum, neutralizing antibodies were the strongest correlate of protection and were linked to Spike-specific binding antibodies and other extra-neutralizing antibody functions that create a larger protective network. In contrast, in bronchiolar lavage (BAL), antibody-dependent cellular phagocytosis (ADCP) proved the strongest correlate of protection rather than NAbs. Within BAL, ADCP was linked to mucosal Spike-specific IgG, IgA/secretory IgA, and Fcγ-receptor binding antibodies. Our results support a model in which antibodies with different functions mediate protection at different anatomic sites. The correlation of ADCP and other Fc functional antibody responses with protection in BAL suggests that these antibody responses may be critical for protection against SARS-CoV-2 Omicron challenge in mucosa.
Collapse
Affiliation(s)
- Xin Tong
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, United States
| | - Qixin Wang
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, United States
| | - Wonyeong Jung
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, United States
| | - Taras M. Chicz
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, United States
| | - Ross Blanc
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, United States
| | - Lily J. Parker
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, United States
| | - Dan H. Barouch
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, United States
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ryan P. McNamara
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, United States
| |
Collapse
|
28
|
Zhang X, Shi H, Hendy DA, Bachelder EM, Ainslie KM, Ross TM. Multi-COBRA hemagglutinin formulated with cGAMP microparticles elicit protective immune responses against influenza viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582355. [PMID: 38464191 PMCID: PMC10925245 DOI: 10.1101/2024.02.27.582355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Influenza viruses cause a common respiratory disease known as influenza. In humans, seasonal influenza viruses can lead to epidemics, with avian influenza viruses of particular concern because they can infect multiple species and lead to unpredictable and severe disease. Therefore, there is an urgent need for a universal influenza vaccine that provides protection against seasonal and pre-pandemic influenza virus strains. The cyclic GMP-AMP (cGAMP) is a promising adjuvant for subunit vaccines that promotes type I interferons production through the stimulator of interferon genes (STING) pathway. The encapsulation of cGAMP in acetalated dextran (Ace-DEX) microparticles (MPs) enhances its intracellular delivery. In this study, the Computationally Optimized Broadly Reactive Antigen (COBRA) methodology was used to generate H1, H3, and H5 vaccine candidates. Monovalent and multivalent COBRA HA vaccines formulated with cGAMP Ace-DEX MPs were evaluated in a mouse model for antibody responses and protection against viral challenge. Serological analysis showed that cGAMP MPs adjuvanted monovalent and multivalent COBRA vaccines elicited robust antigen-specific antibody responses after a prime-boost vaccination and antibody titers were further enhanced after second boost. Compared to COBRA vaccine groups with no adjuvant or blank MPs, the cGAMP MPs enhanced HAI antibody responses against COBRA vaccination. The HAI antibody titers were not significantly different between cGAMP MPs adjuvanted monovalent and multivalent COBRA vaccine groups for most of the viruses tested in panels. The cGAMP MPs adjuvanted COBRA vaccines groups had higher antigen-specific IgG2a binding titers than the COBRA vaccine groups with no adjuvant or blank MPs. The COBRA vaccines formulated with cGAMP MPs mitigated disease caused by influenza viral challenge and decreased pulmonary viral titers in mice. Therefore, the formulation of COBRA vaccines plus cGAMP MPs is a promising universal influenza vaccine that elicits protective immune responses against human seasonal and pre-pandemic strains.
Collapse
Affiliation(s)
- Xiaojian Zhang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Hua Shi
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Dylan A. Hendy
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Eric M. Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Kristy M. Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Florida Research and Innovation Center, Port Saint, Cleveland Clinic Florida, Port St. Lucie, FL, USA; Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
- Department of Infection Biology, Lehner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
29
|
Lasrado N, Collier ARY, Miller J, Hachmann NP, Liu J, Anand T, A. Bondzie E, Fisher JL, Mazurek CR, Patio RC, Rodrigues SL, Rowe M, Surve N, Ty DM, Wu C, Chicz TM, Tong X, Korber B, McNamara RP, Barouch DH. Waning immunity and IgG4 responses following bivalent mRNA boosting. SCIENCE ADVANCES 2024; 10:eadj9945. [PMID: 38394195 PMCID: PMC10889350 DOI: 10.1126/sciadv.adj9945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Messenger RNA (mRNA) vaccines were highly effective against the ancestral SARS-CoV-2 strain, but the efficacy of bivalent mRNA boosters against XBB variants was substantially lower. Here, we show limited durability of neutralizing antibody (NAb) responses against XBB variants and isotype switching to immunoglobulin G4 (IgG4) responses following bivalent mRNA boosting. Bivalent mRNA boosting elicited modest XBB.1-, XBB.1.5-, and XBB.1.16-specific NAbs that waned rapidly within 3 months. In contrast, bivalent mRNA boosting induced more robust and sustained NAbs against the ancestral WA1/2020 strain, suggesting immune imprinting. Following bivalent mRNA boosting, serum antibody responses were primarily IgG2 and IgG4 responses with poor Fc functional activity. In contrast, a third monovalent mRNA immunization boosted all isotypes including IgG1 and IgG3 with robust Fc functional activity. These data show substantial immune imprinting for the ancestral spike and isotype switching to IgG4 responses following bivalent mRNA boosting, with important implications for future booster designs and boosting strategies.
Collapse
Affiliation(s)
- Ninaad Lasrado
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ai-ris Y. Collier
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jessica Miller
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nicole P. Hachmann
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jinyan Liu
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Trisha Anand
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Esther A. Bondzie
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jana L. Fisher
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Camille R. Mazurek
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Robert C. Patio
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Marjorie Rowe
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nehalee Surve
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Darren M. Ty
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Cindy Wu
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Taras M. Chicz
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Xin Tong
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Bette Korber
- Los Alamos National Laboratory and New Mexico Consortium, Los Alamos, NM, USA
| | | | - Dan H. Barouch
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| |
Collapse
|
30
|
Slein MD, Backes IM, Garland CR, Kelkar NS, Leib DA, Ackerman ME. Effector functions are required for broad and potent protection of neonatal mice with antibodies targeting HSV glycoprotein D. Cell Rep Med 2024; 5:101417. [PMID: 38350452 PMCID: PMC10897633 DOI: 10.1016/j.xcrm.2024.101417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/26/2023] [Accepted: 01/17/2024] [Indexed: 02/15/2024]
Abstract
Multiple failed herpes simplex virus (HSV) vaccine candidates induce robust neutralizing antibody (Ab) responses in clinical trials, raising the hypothesis that Fc-domain-dependent effector functions may be critical for protection. While neonatal HSV (nHSV) infection results in mortality and lifelong neurological morbidity in humans, it is uncommon among neonates with a seropositive birthing parent, supporting the hypothesis that Ab-based therapeutics could protect neonates from HSV. We therefore investigated the mechanisms of monoclonal Ab (mAb)-mediated protection in a mouse model of nHSV infection. For a panel of glycoprotein D (gD)-specific mAbs, neutralization and effector functions contributed to nHSV-1 protection. In contrast, effector functions alone were sufficient to protect against nHSV-2, exposing a functional dichotomy between virus types consistent with vaccine trial results. Effector functions are therefore crucial for protection by these gD-specific mAbs, informing effective Ab and vaccine design and demonstrating the potential of polyfunctional Abs as therapeutics for nHSV infections.
Collapse
Affiliation(s)
- Matthew D Slein
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Iara M Backes
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Callaghan R Garland
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Natasha S Kelkar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - David A Leib
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA.
| | - Margaret E Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
31
|
Bowman KA, Wiggins CD, DeRiso E, Paul S, Strle K, Branda JA, Steere AC, Lauffenburger DA, Alter G. Borrelia-specific antibody profiles and complement deposition in joint fluid distinguish antibiotic-refractory from -responsive Lyme arthritis. iScience 2024; 27:108804. [PMID: 38303696 PMCID: PMC10830897 DOI: 10.1016/j.isci.2024.108804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/24/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
Lyme arthritis, caused by the spirochete Borrelia burgdorferi, is the most common feature of late disseminated Lyme disease in the United States. While most Lyme arthritis resolves with antibiotics, termed "antibiotic-responsive", some individuals develop progressive synovitis despite antibiotic therapy, called "antibiotic-refractory" Lyme arthritis (LA). The primary drivers behind antibiotic-refractory arthritis remain incompletely understood. We performed a matched, cross-compartmental comparison of antibody profiles from blood and joint fluid of individuals with antibiotic-responsive (n = 11) or antibiotic-refractory LA (n = 31). While serum antibody profiles poorly discriminated responsive from refractory patients, a discrete profile of B.burgdorferi-specific antibodies in joint fluid discriminated antibiotic-responsive from refractory LA. Cross-compartmental comparison of antibody glycosylation, IgA1, and antibody-dependent complement deposition (ADCD) revealed more poorly coordinated humoral responses and increased ADCD in refractory disease. These data reveal B.burgdorferi-specific serological markers that may support early stratification and clinical management, and point to antibody-dependent complement activation as a key mechanism underlying persistent disease.
Collapse
Affiliation(s)
- Kathryn A. Bowman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Brigham and Women’s Hospital, Division of Infectious Diseases, Boston, MA 02115, USA
| | - Christine D. Wiggins
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Elizabeth DeRiso
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Steffan Paul
- Marks Group, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Klemen Strle
- Tufts University School of Medicine Boston, Boston, MA, USA
| | - John A. Branda
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Allen C. Steere
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Douglas A. Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Moderna Therapeutics Inc., Cambridge, MA 02139, USA
| |
Collapse
|
32
|
Adhikari EH, Lu P, Kang YJ, McDonald AR, Pruszynski JE, Bates TA, McBride SK, Trank-Greene M, Tafesse FG, Lu LL. Diverging Maternal and Cord Antibody Functions From SARS-CoV-2 Infection and Vaccination in Pregnancy. J Infect Dis 2024; 229:462-472. [PMID: 37815524 PMCID: PMC10873180 DOI: 10.1093/infdis/jiad421] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/27/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023] Open
Abstract
Maternal immunity impacts the infant, but how is unclear. To understand the implications of the immune exposures of vaccination and infection in pregnancy for neonatal immunity, we evaluated antibody functions in paired peripheral maternal and cord blood. We compared those who in pregnancy received mRNA coronavirus disease 2019 (COVID-19) vaccine, were infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the combination. We found that vaccination enriched a subset of neutralizing activities and Fc effector functions that was driven by IgG1 and was minimally impacted by antibody glycosylation in maternal blood. In paired cord blood, maternal vaccination also enhanced IgG1. However, Fc effector functions compared to neutralizing activities were preferentially transferred. Moreover, changes in IgG posttranslational glycosylation contributed more to cord than peripheral maternal blood antibody functional potency. These differences were enhanced with the combination of vaccination and infection as compared to either alone. Thus, Fc effector functions and antibody glycosylation highlight underexplored maternal opportunities to safeguard newborns.
Collapse
Affiliation(s)
- Emily H Adhikari
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Parkland Health, Dallas Texas, USA
| | - Pei Lu
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ye Jin Kang
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ann R McDonald
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jessica E Pruszynski
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Timothy A Bates
- Department of Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Savannah K McBride
- Department of Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Mila Trank-Greene
- Department of Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Fikadu G Tafesse
- Department of Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Lenette L Lu
- Parkland Health, Dallas Texas, USA
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
33
|
Nziza N, Deng Y, Wood L, Dhanoa N, Dulit-Greenberg N, Chen T, Kane AS, Swank Z, Davis JP, Demokritou M, Chitnis AP, Fasano A, Edlow AG, Jain N, Horwitz BH, McNamara RP, Walt DR, Lauffenburger DA, Julg B, Shreffler WG, Alter G, Yonker LM. Humoral profiles of toddlers and young children following SARS-CoV-2 mRNA vaccination. Nat Commun 2024; 15:905. [PMID: 38291080 PMCID: PMC10827750 DOI: 10.1038/s41467-024-45181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024] Open
Abstract
Although young children generally experience mild symptoms following infection with SARS-CoV-2, severe acute and long-term complications can occur. SARS-CoV-2 mRNA vaccines elicit robust immunoglobulin profiles in children ages 5 years and older, and in adults, corresponding with substantial protection against hospitalizations and severe disease. Whether similar immune responses and humoral protection can be observed in vaccinated infants and young children, who have a developing and vulnerable immune system, remains poorly understood. To study the impact of mRNA vaccination on the humoral immunity of infant, we use a system serology approach to comprehensively profile antibody responses in a cohort of children ages 6 months to 5 years who were vaccinated with the mRNA-1273 COVID-19 vaccine (25 μg). Responses are compared with vaccinated adults (100 μg), in addition to naturally infected toddlers and young children. Despite their lower vaccine dose, vaccinated toddlers elicit a functional antibody response as strong as adults, with higher antibody-dependent phagocytosis compared to adults, without report of side effects. Moreover, mRNA vaccination is associated with a higher IgG3-dependent humoral profile against SARS-CoV-2 compared to natural infection, supporting that mRNA vaccination is effective at eliciting a robust antibody response in toddlers and young children.
Collapse
Affiliation(s)
- Nadège Nziza
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Yixiang Deng
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lianna Wood
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Boston Children's Hospital, Department of Pediatric Gastroenterology, Boston, MA, USA
| | - Navneet Dhanoa
- Massachusetts General Hospital, Department of Pediatrics, Boston, MA, USA
| | | | - Tina Chen
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Abigail S Kane
- Massachusetts General Hospital, Department of Pediatrics, Boston, MA, USA
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA, USA
| | - Zoe Swank
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jameson P Davis
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA, USA
| | - Melina Demokritou
- Massachusetts General Hospital, Department of Pediatrics, Boston, MA, USA
| | - Anagha P Chitnis
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA, USA
| | - Alessio Fasano
- Massachusetts General Hospital, Department of Pediatrics, Boston, MA, USA
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Andrea G Edlow
- Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Boston, MA, USA
- Massachusetts General Hospital, Vincent Center for Reproductive Biology, Boston, MA, USA
| | - Nitya Jain
- Massachusetts General Hospital, Department of Pediatrics, Boston, MA, USA
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bruce H Horwitz
- Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, Department of Emergency Medicine, Boston, MA, USA
| | - Ryan P McNamara
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - David R Walt
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Boris Julg
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Wayne G Shreffler
- Massachusetts General Hospital, Department of Pediatrics, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lael M Yonker
- Massachusetts General Hospital, Department of Pediatrics, Boston, MA, USA.
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Tong X, Deng Y, Cizmeci D, Fontana L, Carlock MA, Hanley HB, McNamara RP, Lingwood D, Ross TM, Alter G. Distinct Functional Humoral Immune Responses Are Induced after Live Attenuated and Inactivated Seasonal Influenza Vaccination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:24-34. [PMID: 37975667 PMCID: PMC10872955 DOI: 10.4049/jimmunol.2200956] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
Influenza viruses infect 5-30% of the world's population annually, resulting in millions of incidents of hospitalization and thousands of mortalities worldwide every year. Although annual vaccination has significantly reduced hospitalization rates in vulnerable populations, the current vaccines are estimated to offer a wide range of protection from 10 to 60% annually. Such incomplete immunity may be related to both poor antigenic coverage of circulating strains, as well as to the insufficient induction of protective immunity. Beyond the role of hemagglutinin (HA) and neuraminidase (NA), vaccine-induced Abs have the capacity to induce a broader array of Ab effector functions, including Ab-dependent cellular cytotoxicity, that has been implicated in universal immunity against influenza viruses. However, whether different vaccine platforms can induce functional humoral immunity in a distinct manner remains incompletely defined. In this study, we compared vaccine-induced humoral immune responses induced by two seasonal influenza vaccines in Homo sapiens, the i.m. inactivated vaccine (IIV/Fluzone) and the live attenuated mucosal vaccine (LAIV/FluMist). Whereas the inactivated influenza vaccine induced superior Ab titers and FcγR binding capacity to diverse HA and NA Ags, the live attenuated influenza mucosal vaccine induced a more robust functional humoral immune response against both the HA and NA domains. Multivariate Ab analysis further highlighted the significantly different overall functional humoral immune profiles induced by the two vaccines, marked by differences in IgG titers, FcR binding, and both NK cell-recruiting and opsonophagocytic Ab functions. These results highlight the striking differences in Ab Fc-effector profiles induced systemically by two distinct influenza vaccine platforms.
Collapse
Affiliation(s)
- Xin Tong
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Yixiang Deng
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Deniz Cizmeci
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Laura Fontana
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Michael A. Carlock
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Hannah B. Hanley
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | | | - Daniel Lingwood
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| |
Collapse
|
35
|
Deng Y, Atyeo C, Yuan D, Chicz TM, Tibbitts T, Gorman M, Taylor S, Lecouturier V, Lauffenburger DA, Chicz RM, Alter G, McNamara RP. Beta-spike-containing boosters induce robust and functional antibody responses to SARS-CoV-2 in macaques primed with distinct vaccines. Cell Rep 2023; 42:113292. [PMID: 38007686 PMCID: PMC11289877 DOI: 10.1016/j.celrep.2023.113292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/29/2023] [Accepted: 09/29/2023] [Indexed: 11/27/2023] Open
Abstract
The reduced effectiveness of COVID-19 vaccines due to the emergence of variants of concern (VOCs) necessitated the use of vaccine boosters to bolster protection against disease. However, it remains unclear how boosting expands protective breadth when primary vaccine platforms are distinct and how boosters containing VOC spike(s) broaden humoral responses. Here, we report that boosters composed of recombinant spike antigens of ancestral (prototype) and Beta VOCs elicit a robust, pan-VOC, and multi-functional humoral response in non-human primates largely independent of the primary vaccine series platform. Interestingly, Beta-spike-containing boosters stimulate immunoglobulin A (IgA) with a greater breadth of recognition in protein-primed recipients when administered with adjuvant system 03 (AS03). Our results highlight the utility of a component-based booster strategy for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for broad humoral recognition, independent of primary vaccine series. This is of high global health importance given the heterogeneity of primary vaccination platforms distributed.
Collapse
Affiliation(s)
- Yixiang Deng
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Dansu Yuan
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Taras M Chicz
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Matthew Gorman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Sabian Taylor
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | | | | | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Ryan P McNamara
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
36
|
Routhu NK, Stampfer SD, Lai L, Akhtar A, Tong X, Yuan D, Chicz TM, McNamara RP, Jakkala K, Davis-Gardner ME, St Pierre EL, Smith B, Green KM, Golden N, Picou B, Jean SM, Wood J, Cohen J, Moore IN, Patel N, Guebre-Xabier M, Smith G, Glenn G, Kozlowski PA, Alter G, Ahmed R, Suthar MS, Amara RR. Efficacy of mRNA-1273 and Novavax ancestral or BA.1 spike booster vaccines against SARS-CoV-2 BA.5 infection in nonhuman primates. Sci Immunol 2023; 8:eadg7015. [PMID: 37191508 PMCID: PMC10451060 DOI: 10.1126/sciimmunol.adg7015] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
Omicron SARS-CoV-2 variants escape vaccine-induced neutralizing antibodies and cause nearly all current COVID-19 cases. Here, we compared the efficacy of three booster vaccines against Omicron BA.5 challenge in rhesus macaques: mRNA-1273, the Novavax ancestral spike protein vaccine (NVX-CoV2373), or Omicron BA.1 spike protein version (NVX-CoV2515). All three booster vaccines induced a strong BA.1 cross-reactive binding antibody and changed immunoglobulin G (Ig) dominance from IgG1 to IgG4 in the serum. All three booster vaccines also induced strong and comparable neutralizing antibody responses against multiple variants of concern, including BA.5 and BQ.1.1, along with long-lived plasma cells in the bone marrow. The ratio of BA.1 to WA-1 spike-specific antibody-secreting cells in the blood was higher in NVX-CoV2515 animals compared with NVX-CoV2373 animals, suggesting a better recall of BA.1-specific memory B cells by the BA.1 spike-specific vaccine compared with the ancestral spike-specific vaccine. Further, all three booster vaccines induced low levels of spike-specific CD4 but not CD8 T cell responses in the blood. After challenge with SARS-CoV-2 BA.5 variant, all three vaccines showed strong protection in the lungs and controlled virus replication in the nasopharynx. In addition, both Novavax vaccines blunted viral replication in nasopharynx at day 2. The protection against SARS-CoV-2 BA.5 infection in the upper respiratory airways correlated with binding, neutralizing, and ADNP activities of the serum antibody. These data have important implications for COVID-19 vaccine development, because vaccines that lower nasopharyngeal virus may help to reduce transmission.
Collapse
Affiliation(s)
- Nanda Kishore Routhu
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Samuel David Stampfer
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Lilin Lai
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Akil Akhtar
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Xin Tong
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Dansu Yuan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Taras M. Chicz
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Ryan P. McNamara
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Kishor Jakkala
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Meredith E. Davis-Gardner
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Brandon Smith
- Tulane National Primate Research Center, Covington, LA, USA
| | | | - Nadia Golden
- Tulane National Primate Research Center, Covington, LA, USA
| | - Breanna Picou
- Tulane National Primate Research Center, Covington, LA, USA
| | - Sherrie M. Jean
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Jennifer Wood
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Joyce Cohen
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Psychiatry and Behavioral Sciences, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Ian N. Moore
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Nita Patel
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD 20878, USA
| | | | - Gale Smith
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD 20878, USA
| | - Greg Glenn
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD 20878, USA
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Mehul S. Suthar
- Department of Pediatrics, Division of Infectious Diseases Vaccine Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329
| | - Rama Rao Amara
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
37
|
Kelkar NS, Goldberg BS, Dufloo J, Bruel T, Schwartz O, Hessell AJ, Ackerman ME. Sex and species associated differences in Complement-mediated immunity in Humans and Rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563614. [PMID: 37961263 PMCID: PMC10634758 DOI: 10.1101/2023.10.23.563614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The complement system can be viewed as a 'moderator' of innate immunity, 'instructor' of humoral immunity, and 'regulator' of adaptive immunity. While sex and aging are known to affect humoral and cellular immune systems, their impact on the complement pathway in humans and rhesus macaques, a commonly used non-human primate model system, have not been well-studied. To address this knowledge gap, we analyzed serum samples from 90 humans and 75 rhesus macaques for the abundance and activity of the complement system components. While sequences of cascade proteins were highly conserved, dramatically different levels were observed between species. Whereas the low levels detected in rhesus samples raised questions about the suitability of the test, differences in levels of complement proteins were observed in male and female humans. Levels of total and antibody-dependent deposition of C1q and C3b on a glycosylated antigen differed between human and rhesus, suggesting differential recognition of glycans. Functional differences in complement-mediated lysis of antibody-sensitized cells were observed in multiple assays and showed that human females frequently exhibited higher lytic activity than human males or rhesus macaques, which typically did not exhibit such sexual dimorphism. Other differences between species and sexes were observed in more narrow contexts-for only certain antibodies, antigens, or assays. Collectively, these results expand our knowledge of sexual dimorphism in the complement system in humans, identifying differences that appear to be absent from rhesus macaques.
Collapse
Affiliation(s)
- Natasha S. Kelkar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA
| | - Benjamin S. Goldberg
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- Present Address: Metaphore Biotechnologies Inc., Cambridge, MA, USA
| | - Jérémy Dufloo
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, 75015 Paris, France
- Present Address: Institute for Integrative Systems Biology (I2SysBio), Universitat da Valencia-CSIC, 46980 Valencia, Spain
| | - Timothée Bruel
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, 75015 Paris, France
- Vaccine Research Institute, 9400 Créteil, France
| | - Olivier Schwartz
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, 75015 Paris, France
- Vaccine Research Institute, 9400 Créteil, France
| | - Ann J. Hessell
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Margaret E. Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
38
|
Szittner Z, Bentlage AEH, Temming AR, Schmidt DE, Visser R, Lissenberg-Thunnissen S, Mok JY, van Esch WJE, Sonneveld ME, de Graaf EL, Wuhrer M, Porcelijn L, de Haas M, van der Schoot CE, Vidarsson G. Cellular surface plasmon resonance-based detection of anti-HPA-1a antibody glycosylation in fetal and neonatal alloimmune thrombocytopenia. Front Immunol 2023; 14:1225603. [PMID: 37868955 PMCID: PMC10585714 DOI: 10.3389/fimmu.2023.1225603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/06/2023] [Indexed: 10/24/2023] Open
Abstract
Fetal and neonatal alloimmune thrombocytopenia (FNAIT) can occur due to maternal IgG antibodies targeting platelet antigens, causing life-threatening bleeding in the neonate. However, the disease manifests itself in only a fraction of pregnancies, most commonly with anti-HPA-1a antibodies. We found that in particular, the core fucosylation in the IgG-Fc tail is highly variable in anti-HPA-1a IgG, which strongly influences the binding to leukocyte IgG-Fc receptors IIIa/b (FcγRIIIa/b). Currently, gold-standard IgG-glycoanalytics rely on complicated methods (e.g., mass spectrometry (MS)) that are not suited for diagnostic purposes. Our aim was to provide a simplified method to quantify the biological activity of IgG antibodies targeting cells. We developed a cellular surface plasmon resonance imaging (cSPRi) technique based on FcγRIII-binding to IgG-opsonized cells and compared the results with MS. The strength of platelet binding to FcγR was monitored under flow using both WT FcγRIIIa (sensitive to Fc glycosylation status) and mutant FcγRIIIa-N162A (insensitive to Fc glycosylation status). The quality of the anti-HPA-1a glycosylation was monitored as the ratio of binding signals from the WT versus FcγRIIIa-N162A, using glycoengineered recombinant anti-platelet HPA-1a as a standard. The method was validated with 143 plasma samples with anti-HPA-1a antibodies analyzed by MS with known clinical outcomes and tested for validation of the method. The ratio of patient signal from the WT versus FcγRIIIa-N162A correlated with the fucosylation of the HPA-1a antibodies measured by MS (r=-0.52). Significantly, FNAIT disease severity based on Buchanan bleeding score was similarly discriminated against by MS and cSPRi. In conclusion, the use of IgG receptors, in this case, FcγRIIIa, on SPR chips can yield quantitative and qualitative information on platelet-bound anti-HPA-1a antibodies. Using opsonized cells in this manner circumvents the need for purification of specific antibodies and laborious MS analysis to obtain qualitative antibody traits such as IgG fucosylation, for which no clinical test is currently available.
Collapse
Affiliation(s)
- Zoltán Szittner
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Arthur E. H. Bentlage
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - A. Robin Temming
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - David E. Schmidt
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Remco Visser
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Suzanne Lissenberg-Thunnissen
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | | | | | - Myrthe E. Sonneveld
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Erik L. de Graaf
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Leendert Porcelijn
- Department of Immunohematology Diagnostics, Sanquin, Amsterdam, Netherlands
| | - Masja de Haas
- Department of Immunohematology Diagnostics, Sanquin, Amsterdam, Netherlands
- Translational Immunohematology, Research, Amsterdam, Netherlands
- Department of Hematology, Leiden University Medical Centre, Leiden, Netherlands
| | - C. Ellen van der Schoot
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
39
|
Nziza N, Tran TM, DeRiso EA, Dolatshahi S, Herman JD, de Lacerda L, Junqueira C, Lieberman J, Ongoiba A, Doumbo S, Kayentao K, Traore B, Crompton PD, Alter G. Accumulation of Neutrophil Phagocytic Antibody Features Tracks With Naturally Acquired Immunity Against Malaria in Children. J Infect Dis 2023; 228:759-768. [PMID: 37150885 PMCID: PMC10503956 DOI: 10.1093/infdis/jiad115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 04/21/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND Studies have demonstrated the protective role of antibodies against malaria. Young children are known to be particularly vulnerable to malaria, pointing to the evolution of naturally acquired clinical immunity over time. However, whether changes in antibody functionality track with the acquisition of naturally acquired malaria immunity remains incompletely understood. METHODS Using systems serology, we characterized sporozoite- and merozoite-specific antibody profiles of uninfected Malian children before the malaria season who differed in their ability to control parasitemia and fever following Plasmodium falciparum (Pf) infection. We then assessed the contributions of individual traits to overall clinical outcomes, focusing on the immunodominant sporozoite CSP and merozoite AMA1 and MSP1 antigens. RESULTS Humoral immunity evolved with age, with an expansion of both magnitude and functional quality, particularly within blood-stage phagocytic antibody activity. Moreover, concerning clinical outcomes postinfection, protected children had higher antibody-dependent neutrophil activity along with higher levels of MSP1-specific IgG3 and IgA and CSP-specific IgG3 and IgG4 prior to the malaria season. CONCLUSIONS These data point to the natural evolution of functional humoral immunity to Pf with age and highlight particular antibody Fc-effector profiles associated with the control of malaria in children, providing clues for the design of next-generation vaccines or therapeutics.
Collapse
Affiliation(s)
- Nadege Nziza
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, USA
| | - Tuan M Tran
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Elizabeth A DeRiso
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, USA
| | - Sepideh Dolatshahi
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, USA
| | - Jonathan D Herman
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, USA
| | - Luna de Lacerda
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
| | - Caroline Junqueira
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Aissata Ongoiba
- Malaria Research and Training Centre, Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Safiatou Doumbo
- Malaria Research and Training Centre, Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Kassoum Kayentao
- Malaria Research and Training Centre, Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Boubacar Traore
- Malaria Research and Training Centre, Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
40
|
Çapkın E, Kutlu A, Yüce M. Repurposing Fc gamma receptor I (FcγRI, CD64) for site-oriented monoclonal antibody capture: A proof-of-concept study for real-time detection of tumor necrosis factor-alpha (TNF -α). Heliyon 2023; 9:e19469. [PMID: 37809995 PMCID: PMC10558606 DOI: 10.1016/j.heliyon.2023.e19469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 10/10/2023] Open
Abstract
The controlled orientation of biomolecules on the sensor surface is crucial for achieving high sensitivity and accurate detection of target molecules in biosensing. FcγRI is an immune cell surface receptor for recognizing IgG-coated targets, such as opsonized pathogens or immune complexes. It plays a crucial role in T cell activation and internalization of the cargos, leading downstream signaling cascades. In this study, we repurposed the FcγRI as an analytical ligand molecule for site-oriented ADA capture, a monoclonal antibody-based biosimilar drug, on a plasmonic sensor surface and demonstrated the real-time detection of the corresponding analyte molecule, TNF-α. The study encompasses the analysis of comparative ligand behaviors on the surface, biosensor kinetics, concentration-dependent studies, and sensor specificity assays. The findings of this study suggest that FcγRI has a significant potential to serve as a universal ligand molecule for site-specific monoclonal antibody capture, and it can be used for biosensing studies, as it represents low nanomolar range affinity and excellent selectivity towards the target. However, there is still room for improvement in the surface stability and sensing response, and further studies are needed to reveal its performance on the monoclonal antibodies with various antigen binding sites and glycoforms.
Collapse
Affiliation(s)
- Eda Çapkın
- Sabanci University, Faculty of Engineering and Natural Sciences, 34956, Istanbul, Turkey
| | - Aslı Kutlu
- Istinye University, Faculty of Natural Science and Engineering, 34396, Istanbul, Turkey
| | - Meral Yüce
- Imperial College London, Department of Bioengineering, SW7 2AZ, London, UK
- Sabanci University, SUNUM Nanotechnology Research and Application Center, 34956, Istanbul, Turkey
| |
Collapse
|
41
|
Slein MD, Backes IM, Garland CR, Kelkar NS, Leib DA, Ackerman ME. Antibody effector functions are required for broad and potent protection of neonates from herpes simplex virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555423. [PMID: 37693377 PMCID: PMC10491243 DOI: 10.1101/2023.08.29.555423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The failure of multiple herpes simplex virus (HSV) vaccine candidates that induce neutralizing antibody responses raises the hypothesis that other activities, such as Fc domain-dependent effector functions, may be critical for protection. While neonatal HSV (nHSV) infection result in mortality and lifelong neurological morbidity in humans, it is uncommon among neonates with a seropositive birthing parent, suggesting the potential efficacy of antibody-based therapeutics to protect neonates. We therefore investigated the mechanisms of monoclonal antibody (mAb)-mediated protection in a mouse model of nHSV infection. Both neutralization and effector functions contributed to robust protection against nHSV-1. In contrast, effector functions alone were sufficient to protect against nHSV-2, exposing a functional dichotomy between virus types that is consistent with vaccine trial results. Together, these results emphasize that effector functions are crucial for optimal mAb-mediated protection, informing effective Ab and vaccine design, and demonstrating the potential of polyfunctional Abs as potent therapeutics for nHSV infections.
Collapse
Affiliation(s)
- Matthew D. Slein
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Iara M. Backes
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Callaghan R. Garland
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Natasha S. Kelkar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - David A. Leib
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Margaret E. Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
- Lead Contact
| |
Collapse
|
42
|
McNamara RP, Maron JS, Boucau J, Roy V, Webb NE, Bertera HL, Barczak AK, Positives Study Staff T, Franko N, Logue JK, Kemp M, Li JZ, Zhou L, Hsieh CL, McLellan JS, Siedner MJ, Seaman MS, Lemieux JE, Chu HY, Alter G. Anamnestic humoral correlates of immunity across SARS-CoV-2 variants of concern. mBio 2023; 14:e0090223. [PMID: 37535402 PMCID: PMC10470538 DOI: 10.1128/mbio.00902-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/22/2023] [Indexed: 08/04/2023] Open
Abstract
While immune correlates against SARS-CoV-2 are typically defined at peak immunogenicity following vaccination, immunologic responses that expand selectively during the anamnestic response following infection can provide mechanistic and detailed insights into the immune mechanisms of protection. Moreover, whether anamnestic correlates are conserved across variants of concern (VOC), including the Delta and more distant Omicron VOC, remains unclear. To define the anamnestic correlates of immunity, across VOCs, we deeply profiled the humoral immune response in individuals infected with sequence-confirmed Delta or Omicron VOC after completing the vaccination series. While limited acute N-terminal domain and receptor-binding domain (RBD)-specific immune expansion was observed following breakthrough infection, a significant immunodominant expansion of opsonophagocytic Spike-specific antibody responses focused largely on the conserved S2-domain of SARS-CoV-2 was observed. This S2-specific functional humoral response continued to evolve over 2-3 weeks following Delta or Omicron breakthrough, targeting multiple VOCs and common coronaviruses. Strong responses were observed on the fusion peptide (FP) region and the heptad repeat 1 (HR1) region adjacent to the RBD. Notably, the FP is highly conserved across SARS-related coronaviruses and even non-SARS-related betacoronavirus. Taken together, our results point to a critical role of highly conserved, functional S2-specific responses in the anamnestic antibody response to SARS-CoV-2 infection across VOCs. These humoral responses linked to virus clearance can guide next-generation vaccine-boosting approaches to confer broad protection against future SARS-related coronaviruses. IMPORTANCE The Spike protein of SARS-CoV-2 is the primary target of antibody-based recognition. Selective pressures, be it the adaption to human-to-human transmission or evasion of previously acquired immunity, have spurred the emergence of variants of the virus such as the Delta and Omicron lineages. Therefore, understanding how antibody responses are expanded in breakthrough cases of previously vaccinated individuals can provide insights into key correlates of protection against current and future variants. Here, we show that vaccinated individuals who had documented COVID-19 breakthrough showed anamnestic antibody expansions targeting the conserved S2 subdomain of Spike, particularly within the fusion peptide region. These S2-directed antibodies were highly leveraged for non-neutralizing, phagocytic functions and were similarly expanded independent of the variant. We propose that through deep profiling of anamnestic antibody responses in breakthrough cases, we can identify antigen targets susceptible to novel monoclonal antibody therapy or vaccination-boosting strategies.
Collapse
Affiliation(s)
- Ryan P. McNamara
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Jenny S. Maron
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Julie Boucau
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Vicky Roy
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Nicholas E. Webb
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Harry L. Bertera
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Amy K. Barczak
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - The Positives Study Staff
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Nicholas Franko
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Jennifer K. Logue
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Megan Kemp
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Jonathan Z. Li
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Ling Zhou
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Ching-Lin Hsieh
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Jason S. McLellan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Mark J. Siedner
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Michael S. Seaman
- Harvard Medical School, Boston, Massachusetts, USA
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Jacob E. Lemieux
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- The Broad Institute, Cambridge, Massachusetts, USA
| | - Helen Y. Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
43
|
Boudreau CM, Burke JS, Yousif AS, Sangesland M, Jastrzebski S, Verschoor C, Kuchel G, Lingwood D, Kleanthous H, De Bruijn I, Landolfi V, Sridhar S, Alter G. Antibody-mediated NK cell activation as a correlate of immunity against influenza infection. Nat Commun 2023; 14:5170. [PMID: 37620306 PMCID: PMC10449820 DOI: 10.1038/s41467-023-40699-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Antibodies play a critical role in protection against influenza; yet titers and viral neutralization represent incomplete correlates of immunity. Instead, the ability of antibodies to leverage the antiviral power of the innate immune system has been implicated in protection from and clearance of influenza infection. Here, post-hoc analysis of the humoral immune response to influenza is comprehensively profiled in a cohort of vaccinated older adults (65 + ) monitored for influenza infection during the 2012/2013 season in the United States (NCT: 01427309). While robust humoral immune responses arose against the vaccine and circulating strains, influenza-specific antibody effector profiles differed in individuals that later became infected with influenza, who are deficient in NK cell activating antibodies to both hemagglutinin and neuraminidase, compared to individuals who remained uninfected. Furthermore, NK cell activation was strongly associated with the NK cell senescence marker CD57, arguing for the need for selective induction of influenza-specific afucosylated NK activating antibodies in older adults to achieve protection. High dose vaccination, currently used for older adults, was insufficient to generate this NK cell-activating humoral response. Next generation vaccines able to selectively bolster NK cell activating antibodies may be required to achieve protection in the setting of progressively senescent NK cells.
Collapse
Affiliation(s)
- Carolyn M Boudreau
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02129, USA
- PhD Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA, 02115, USA
| | - John S Burke
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02129, USA
| | - Ashraf S Yousif
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02129, USA
| | - Maya Sangesland
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02129, USA
- PhD Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA, 02115, USA
| | | | - Chris Verschoor
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - George Kuchel
- Center on Aging, UCONN Health Center, Farmington, CT, 06030, USA
| | - Daniel Lingwood
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02129, USA
| | | | | | | | | | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02129, USA.
| |
Collapse
|
44
|
Hederman AP, Natarajan H, Heyndrickx L, Ariën KK, Wiener JA, Wright PF, Bloch EM, Tobian AAR, Redd AD, Blankson JN, Rottenstreich A, Zarbiv G, Wolf D, Goetghebuer T, Marchant A, Ackerman ME. SARS-CoV-2 vaccination elicits broad and potent antibody effector functions to variants of concern in vulnerable populations. Nat Commun 2023; 14:5171. [PMID: 37620337 PMCID: PMC10449910 DOI: 10.1038/s41467-023-40960-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
SARS-CoV-2 variants have continuously emerged in the face of effective vaccines. Reduced neutralization against variants raises questions as to whether other antibody functions are similarly compromised, or if they might compensate for lost neutralization activity. Here, the breadth and potency of antibody recognition and effector function is surveyed following either infection or vaccination. Considering pregnant women as a model cohort with higher risk of severe illness and death, we observe similar binding and functional breadth for healthy and immunologically vulnerable populations, but considerably greater functional antibody breadth and potency across variants associated with vaccination. In contrast, greater antibody functional activity targeting the endemic coronavirus OC43 is noted among convalescent individuals, illustrating a dichotomy in recognition between close and distant human coronavirus strains associated with exposure history. This analysis of antibody functions suggests the differential potential for antibody effector functions to contribute to protecting vaccinated and convalescent subjects as novel variants continue to evolve.
Collapse
Affiliation(s)
| | - Harini Natarajan
- Department of Immunology and Microbiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA
| | - Leo Heyndrickx
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Kevin K Ariën
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Joshua A Wiener
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Peter F Wright
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Evan M Bloch
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Aaron A R Tobian
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Andrew D Redd
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joel N Blankson
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Amihai Rottenstreich
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Gila Zarbiv
- Clinical Virology Unit, Hadassah University Medical Center, Jerusalem, Israel
| | - Dana Wolf
- Clinical Virology Unit, Hadassah University Medical Center, Jerusalem, Israel
| | - Tessa Goetghebuer
- Institute for Medical Immunology, Université libre de Bruxelles, Charleroi, Belgium
- Pediatric Department, CHU St Pierre, Brussels, Belgium
| | - Arnaud Marchant
- Institute for Medical Immunology, Université libre de Bruxelles, Charleroi, Belgium
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
- Department of Immunology and Microbiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
45
|
Tong X, McNamara RP, Avendaño MJ, Serrano EF, García-Salum T, Pardo-Roa C, Bertera HL, Chicz TM, Levican J, Poblete E, Salinas E, Muñoz A, Riquelme A, Alter G, Medina RA. Waning and boosting of antibody Fc-effector functions upon SARS-CoV-2 vaccination. Nat Commun 2023; 14:4174. [PMID: 37443074 PMCID: PMC10345146 DOI: 10.1038/s41467-023-39189-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 06/01/2023] [Indexed: 07/15/2023] Open
Abstract
Since the emergence of SARS-CoV-2, vaccines targeting COVID-19 have been developed with unprecedented speed and efficiency. CoronaVac, utilising an inactivated form of the COVID-19 virus and the mRNA26 based Pfizer/BNT162b2 vaccines are widely distributed. Beyond the ability of vaccines to induce production of neutralizing antibodies, they might lead to the generation of antibodies attenuating the disease by recruiting cytotoxic and opsonophagocytic functions. However, the Fc-effector functions of vaccine induced antibodies are much less studied than virus neutralization. Here, using systems serology, we follow the longitudinal Fc-effector profiles induced by CoronaVac and BNT162b2 up until five months following the two-dose vaccine regimen. Compared to BNT162b2, CoronaVac responses wane more slowly, albeit the levels remain lower than that of BNT162b2 recipients throughout the entire observation period. However, mRNA vaccine boosting of CoronaVac responses, including response to the Omicron variant, induce significantly higher peak of antibody functional responses with increased humoral breadth. In summary, we show that vaccine platform-induced humoral responses are not limited to virus neutralization but rather utilise antibody dependent effector functions. We demonstrate that this functionality wanes with different kinetics and can be rescued and expanded via boosting with subsequent homologous and heterologous vaccination.
Collapse
Affiliation(s)
- X Tong
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - R P McNamara
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - M J Avendaño
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - E F Serrano
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - T García-Salum
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
- Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - C Pardo-Roa
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
- Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - H L Bertera
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - T M Chicz
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - J Levican
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - E Poblete
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - E Salinas
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
- Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - A Muñoz
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - A Riquelme
- Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, 8331150, Chile
| | - G Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA.
| | - R A Medina
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile.
- Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile.
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
46
|
Kaplonek P, Cizmeci D, Kwatra G, Izu A, Lee JSL, Bertera HL, Fischinger S, Mann C, Amanat F, Wang W, Koen AL, Fairlie L, Cutland CL, Ahmed K, Dheda K, Barnabas SL, Bhorat QE, Briner C, Krammer F, Saphire EO, Gilbert SC, Lambe T, Pollard AJ, Nunes M, Wuhrer M, Lauffenburger DA, Madhi SA, Alter G. ChAdOx1 nCoV-19 (AZD1222) vaccine-induced Fc receptor binding tracks with differential susceptibility to COVID-19. Nat Immunol 2023; 24:1161-1172. [PMID: 37322179 PMCID: PMC10307634 DOI: 10.1038/s41590-023-01513-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 04/12/2023] [Indexed: 06/17/2023]
Abstract
Despite the success of COVID-19 vaccines, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern have emerged that can cause breakthrough infections. Although protection against severe disease has been largely preserved, the immunological mediators of protection in humans remain undefined. We performed a substudy on the ChAdOx1 nCoV-19 (AZD1222) vaccinees enrolled in a South African clinical trial. At peak immunogenicity, before infection, no differences were observed in immunoglobulin (Ig)G1-binding antibody titers; however, the vaccine induced different Fc-receptor-binding antibodies across groups. Vaccinees who resisted COVID-19 exclusively mounted FcγR3B-binding antibodies. In contrast, enhanced IgA and IgG3, linked to enriched FcγR2B binding, was observed in individuals who experienced breakthrough. Antibodies unable to bind to FcγR3B led to immune complex clearance and resulted in inflammatory cascades. Differential antibody binding to FcγR3B was linked to Fc-glycosylation differences in SARS-CoV-2-specific antibodies. These data potentially point to specific FcγR3B-mediated antibody functional profiles as critical markers of immunity against COVID-19.
Collapse
Affiliation(s)
| | - Deniz Cizmeci
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Gaurav Kwatra
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Science and Innovation/National Research Foundation South African Research Chair Initiative in Vaccine Preventable Diseases Unit, University of the Witwatersrand, Johannesburg, South Africa
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Alane Izu
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Science and Innovation/National Research Foundation South African Research Chair Initiative in Vaccine Preventable Diseases Unit, University of the Witwatersrand, Johannesburg, South Africa
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Harry L Bertera
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Colin Mann
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wenjun Wang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Anthonet L Koen
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Science and Innovation/National Research Foundation South African Research Chair Initiative in Vaccine Preventable Diseases Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Lee Fairlie
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Wits Reproductive Health and HIV Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Clare L Cutland
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Keertan Dheda
- Division of Pulmonology, Groote Schuur Hospital and the University of Cape Town, Cape Town, South Africa
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Shaun L Barnabas
- Family Centre for Research With Ubuntu, Department of Paediatrics, University of Stellenbosch, Cape Town, South Africa
| | | | - Carmen Briner
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erica Ollman Saphire
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Sarah C Gilbert
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Marta Nunes
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Science and Innovation/National Research Foundation South African Research Chair Initiative in Vaccine Preventable Diseases Unit, University of the Witwatersrand, Johannesburg, South Africa
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shabir A Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- Department of Science and Innovation/National Research Foundation South African Research Chair Initiative in Vaccine Preventable Diseases Unit, University of the Witwatersrand, Johannesburg, South Africa.
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
47
|
Cruz Amaya J, Walcheck B, Smith-Gagen J, Lombardi VC, Hudig D. Detection of Antibody-Dependent Cell-Mediated Cytotoxicity-Supporting Antibodies by NK-92-CD16A Cell Externalization of CD107a: Recognition of Antibody Afucosylation and Assay Optimization. Antibodies (Basel) 2023; 12:44. [PMID: 37489366 PMCID: PMC10366760 DOI: 10.3390/antib12030044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/26/2023] Open
Abstract
Antibody-dependent cell-mediated cytotoxicity (ADCC) by natural killer (NK) lymphocytes eliminates cells infected with viruses. Anti-viral ADCC requires three components: (1) antibody; (2) effector lymphocytes with the Fc-IgG receptor CD16A; and (3) viral proteins in infected cell membranes. Fc-afucosylated antibodies bind with greater affinity to CD16A than fucosylated antibodies; individuals' variation in afucosylation contributes to differences in ADCC. Current assays for afucosylated antibodies involve expensive methods. We report an improved bioassay for antibodies that supports ADCC, which encompasses afucosylation. This assay utilizes the externalization of CD107a by NK-92-CD16A cells after antibody recognition. We used anti-CD20 monoclonal antibodies, GA101 WT or glycoengineered (GE), 10% or ~50% afucosylated, and CD20-positive Raji target cells. CD107a increased detection 7-fold compared to flow cytometry to detect Raji-bound antibodies. WT and GE antibody effective concentrations (EC50s) for CD107a externalization differed by 20-fold, with afucosylated GA101-GE more detectable. The EC50s for CD107a externalization vs. 51Cr cell death were similar for NK-92-CD16A and blood NK cells. Notably, the % CD107a-positive cells were negatively correlated with dead Raji cells and were nearly undetectable at high NK:Raji ratios required for cytotoxicity. This bioassay is very sensitive and adaptable to assess anti-viral antibodies but unsuitable as a surrogate assay to monitor cell death after ADCC.
Collapse
Affiliation(s)
- Judith Cruz Amaya
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA
| | - Bruce Walcheck
- Department of Veterinary and Biological Sciences, Center for Immunology and Masonic Cancer Center, University of Minnesota, 295J AS/VM Building, 1988 Fitch Avenue, Saint Paul, MN 55108, USA
| | - Julie Smith-Gagen
- School of Community Health Sciences, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA
| | - Vincent C. Lombardi
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA
| | - Dorothy Hudig
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA
| |
Collapse
|
48
|
Berry C, Pavot V, Anosova NG, Kishko M, Li L, Tibbitts T, Raillard A, Gautheron S, Cummings S, Bangari DS, Kar S, Atyeo C, Deng Y, Alter G, Gutzeit C, Koutsoukos M, Chicz RM, Lecouturier V. Beta-containing bivalent SARS-CoV-2 protein vaccine elicits durable broad neutralization in macaques and protection in hamsters. COMMUNICATIONS MEDICINE 2023; 3:75. [PMID: 37237062 PMCID: PMC10212738 DOI: 10.1038/s43856-023-00302-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Since the beginning of the COVID-19 pandemic, several variants of concern (VOC) have emerged for which there is evidence of an increase in transmissibility, more severe disease, and/or reduced vaccine effectiveness. Effective COVID-19 vaccine strategies are required to achieve broad protective immunity against current and future VOC. METHODS We conducted immunogenicity and challenge studies in macaques and hamsters using a bivalent recombinant vaccine formulation containing the SARS-CoV-2 prefusion-stabilized Spike trimers of the ancestral D614 and the variant Beta strains with AS03 adjuvant (CoV2 preS dTM-AS03) in a primary immunization setting. RESULTS We show that a primary immunization with the bivalent CoV2 preS dTM-AS03 elicits broader and durable (1 year) neutralizing antibody responses against VOC including Omicron BA.1 and BA.4/5, and SARS-CoV-1 as compared to the ancestral D614 or Beta variant monovalent vaccines in naïve non-human primates. In addition, the bivalent formulation confers protection against viral challenge with SARS-CoV-2 prototype D614G strain as well as Alpha and Beta variant strains in hamsters. CONCLUSIONS Our findings demonstrate the potential of a Beta-containing bivalent CoV2 preS dTM-AS03 formulation to provide broad and durable immunogenicity, as well as protection against VOC in naïve populations.
Collapse
Affiliation(s)
| | | | | | | | - Lu Li
- Sanofi, Vaccines R&D, Cambridge, MA, USA
| | | | | | | | | | | | | | - Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Yixiang Deng
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
49
|
Kaplonek P, Deng Y, Shih-Lu Lee J, Zar HJ, Zavadska D, Johnson M, Lauffenburger DA, Goldblatt D, Alter G. Hybrid immunity expands the functional humoral footprint of both mRNA and vector-based SARS-CoV-2 vaccines. Cell Rep Med 2023; 4:101048. [PMID: 37182520 PMCID: PMC10126214 DOI: 10.1016/j.xcrm.2023.101048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/13/2022] [Accepted: 04/20/2023] [Indexed: 05/16/2023]
Abstract
Despite the successes of current coronavirus disease 2019 (COVID-19) vaccines, waning immunity, the emergence of variants of concern, and breakthrough infections among vaccinees have begun to highlight opportunities to improve vaccine platforms. Real-world vaccine efficacy studies have highlighted the reduced risk of breakthrough infections and diseases among individuals infected and vaccinated, referred to as hybrid immunity. Thus, we sought to define whether hybrid immunity shapes the humoral immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) following Pfizer/BNT162b2, Moderna mRNA-1273, ChadOx1/AZD1222, and Ad26.COV2.S vaccination. Each vaccine exhibits a unique functional humoral profile in vaccination only or hybrid immunity. However, hybrid immunity shows a unique augmentation of S2-domain-specific functional immunity that was poorly induced for the vaccination only. These data highlight the importance of natural infection in breaking the immunodominance away from the evolutionarily unstable S1 domain and potentially affording enhanced cross-variant protection by targeting the more highly conserved S2 domain of SARS-CoV-2.
Collapse
Affiliation(s)
- Paulina Kaplonek
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Yixiang Deng
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Heather J Zar
- Department of Pediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa; SA MRC Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dace Zavadska
- Children's Clinical University Hospital, Riga, Latvia
| | - Marina Johnson
- Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David Goldblatt
- Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK.
| | - Galit Alter
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
50
|
Goldberg BS, Spencer DA, Pandey S, Ordonez T, Barnette P, Yu Y, Gao L, Dufloo J, Bruel T, Schwartz O, Ackerman ME, Hessell AJ. Complement contributes to antibody-mediated protection against repeated SHIV challenge. Proc Natl Acad Sci U S A 2023; 120:e2221247120. [PMID: 37155897 PMCID: PMC10193994 DOI: 10.1073/pnas.2221247120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
The first clinical efficacy trials of a broadly neutralizing antibody (bNAb) resulted in less benefit than expected and suggested that improvements are needed to prevent HIV infection. While considerable effort has focused on optimizing neutralization breadth and potency, it remains unclear whether augmenting the effector functions elicited by broadly neutralizing antibodies (bNAbs) may also improve their clinical potential. Among these effector functions, complement-mediated activities, which can culminate in the lysis of virions or infected cells, have been the least well studied. Here, functionally modified variants of the second-generation bNAb 10-1074 with ablated and enhanced complement activation profiles were used to examine the role of complement-associated effector functions. When administered prophylactically against simian-HIV challenge in rhesus macaques, more bNAb was required to prevent plasma viremia when complement activity was eliminated. Conversely, less bNAb was required to protect animals from plasma viremia when complement activity was enhanced. These results suggest that complement-mediated effector functions contribute to in vivo antiviral activity, and that their engineering may contribute to the further improvements in the efficacy of antibody-mediated prevention strategies.
Collapse
Affiliation(s)
| | - David A. Spencer
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| | - Shilpi Pandey
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| | - Tracy Ordonez
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| | - Philip Barnette
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| | - Yun Yu
- Biostatistics Shared Resources, Knight Cancer Institute, Oregon Health and Science University, Portland, OR97239
- Biostatistics & Bioinformatics Core, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR97006
| | - Lina Gao
- Biostatistics Shared Resources, Knight Cancer Institute, Oregon Health and Science University, Portland, OR97239
- Biostatistics & Bioinformatics Core, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR97006
| | - Jérémy Dufloo
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, 75015Paris, France
- Université de Paris, École doctorale BioSPC 562, 75013Paris, France
| | - Timothée Bruel
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, 75015Paris, France
- Vaccine Research Institute, 94000Créteil, France
| | - Olivier Schwartz
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, 75015Paris, France
- Vaccine Research Institute, 94000Créteil, France
| | - Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH03755
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH03755
| | - Ann J. Hessell
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| |
Collapse
|