1
|
Bo H, Zhang Y, Dong J, Li X, Zhao X, Wei H, Li Z, Wang D. Characterization of the avian influenza viruses distribution in the environment of live poultry market in China, 2019-2023. Infect Dis Poverty 2025; 14:36. [PMID: 40346680 PMCID: PMC12063257 DOI: 10.1186/s40249-025-01304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/10/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND The prevalence and transmission of avian influenza viruses (AIVs) in the live poultry market (LPM) is a serious public health concern. This study was to investigate the prevalence of different subtypes of avian influenza viruses in environment of LPM, and to analyze the differences and seasonality of the nucleic acid positive rate (NAPR) of A type, H5, H7, and H9 subtypes in feces, sewage, drinking water, breeding cages, and chopping boards. METHODS Feces, breeding cages swabs, drinking water, sewage and chopping boards swabs were collected from live poultry market during 2019-2023 from southern and northern China. Real-time PCR was used to screen for virus subtypes. Viruses were isolated, and deep sequencing was performed to obtain whole-genome sequences. Chi-square test was used for statistical analysis of categorical variable, GraphPad Prism software were used to construct graphs. RESULTS A total of 64,599 environmental samples were collected from live poultry markets in the southern China and northern China between 2019 and 2023. The average NAPR of the A type was significantly higher in the samples collected from the southern China than in those collected from the northern China (P < 0.05). The NAPR of H5, H7, and H9 subtypes carried by the five types of environmental samples in the southern China were significantly different (P < 0.05), and a higher NAPR was detected in chopping boards (10.84%), breeding cages (0.28%), and drinking water (40.97%) respectively. The average NAPR of the H9 and H5 subtypes displayed seasonality, reaching a peak in January and February in the southern China, while the peak of the H9 subtype was from October to February in the northern China. A total of 19 subtypes were identified. The H5 subtype significantly decreased, the H7 subtype was almost undetectable, and other subtypes, such as the H3 subtype, increased. CONCLUSIONS The highly pathogenic H5 subtype has significantly decreased in the live poultry market in China since 2022. However, the proportion of some subtypes, such as the H3 subtype, with low pathogenicity to poultry, has increased, while the H9 subtype remains at a high level. It must be noted that these low pathogenic avian influenza viruses often have no obvious symptoms, can circulate asymptomatically in infected poultry, and are highly pathogenic to humans. Our findings provide insights into the control and prevention of avian influenza viruses and the risk of pandemics associated with avian influenza viruses in the live poultry market.
Collapse
Affiliation(s)
- Hong Bo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Health Commission, Beijing, 102206, China
- Key Laboratory for Biosafety, National Health Commission, Beijing, 102206, China
| | - Ye Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Health Commission, Beijing, 102206, China
- Key Laboratory for Biosafety, National Health Commission, Beijing, 102206, China
| | - Jie Dong
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Health Commission, Beijing, 102206, China
- Key Laboratory for Biosafety, National Health Commission, Beijing, 102206, China
| | - Xiyan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Health Commission, Beijing, 102206, China
- Key Laboratory for Biosafety, National Health Commission, Beijing, 102206, China
| | - Xiang Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Health Commission, Beijing, 102206, China
- Key Laboratory for Biosafety, National Health Commission, Beijing, 102206, China
| | - Hejiang Wei
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Health Commission, Beijing, 102206, China
- Key Laboratory for Biosafety, National Health Commission, Beijing, 102206, China
| | - Zi Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Health Commission, Beijing, 102206, China
- Key Laboratory for Biosafety, National Health Commission, Beijing, 102206, China
| | - Dayan Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Health Commission, Beijing, 102206, China.
- Key Laboratory for Biosafety, National Health Commission, Beijing, 102206, China.
| |
Collapse
|
2
|
Wang Q, Yang B, Zhu Y, Pei J, Tang L, Chen X, Zhang GJ, Li YT. Trans-dimensional nanocoral gold foam interfaces affords ultrasensitive detection of influenza virus. Anal Chim Acta 2025; 1337:343576. [PMID: 39800523 DOI: 10.1016/j.aca.2024.343576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 05/02/2025]
Abstract
Development of sensitive and cost-effective strategies for detecting influenza viruses is crucial to combat the spread of infectious diseases. In this study, a novel trans-dimensional nanocoral gold foam (NCGF) was fabricated on screen-printed carbon electrodes using hydrogen template electrodeposition method. This unique structure, with interconnected large and small pores, significantly increased the specific surface area and stability of the sensor. Based on this nanostructure, the antibodies were further modified and used for influenza A viruses (IAVs) detection by enzyme-linked immunoelectrochemical method. The combination of the large specific surface area of NCGF and the catalytic reaction of alkaline phosphatase led to a dual amplification of electrochemical signals, enabling ultra-sensitive detection of IAVs. The NCGF-based biosensor demonstrated exceptional stability, sensitivity, and achieved a reliable limit of detection as low as 13.14 fg/mL, which is several orders of magnitude improvement in sensitivity over conventional electrochemical immunosensor. Furthermore, 72 clinical samples were analyzed using a portable detection device that could directly read signals from a mobile phone, and the results correlated well with gold standard PCR method. Overall, this rapid, sensitive, and portable assay provides a valuable option for early viral infection diagnosis.
Collapse
Affiliation(s)
- Qingcui Wang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, PR China
| | - Biru Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, PR China
| | - Yaqi Zhu
- Department of Clinical Laboratory, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, PR China
| | - Jiameng Pei
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, PR China
| | - Lina Tang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, PR China
| | - Xiaohua Chen
- Department of Laboratory Medicine, General Hospital of Central Theater Command, Wuhan, 430070, PR China.
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, PR China; Hubei Shizhen Laboratory, Wuhan, Hubei, 430065, PR China.
| | - Yu-Tao Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, PR China; Hubei Shizhen Laboratory, Wuhan, Hubei, 430065, PR China.
| |
Collapse
|
3
|
Zhao Z, Luo S, Gao Y, Dai M, Yan J, Yang Y, Li H, Zhang Y, Mao Z. A case report of human infection with avian influenza H10N3 with a complex respiratory disease history. BMC Infect Dis 2024; 24:918. [PMID: 39232670 PMCID: PMC11373451 DOI: 10.1186/s12879-024-09830-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND On March 16th 2024, the first case of Human infection with avian influenza H10N3 since the end of the global COVID-19 Pandemic was reported in Kunming, China. To enhance comprehension of the source of infection and risk factors of the H10N3 virus infection, this case report summarizes the clinical features, epidemiological investigation, and laboratory test results. Provides recommendations for the prevention and control of Human infection with avian influenza H10N3. CASE PRESENTATION A 51-year-old male with a history of COVID-19 infection and a smoking habit of 30 years, worked in livestock breeding and was exposed to sick and dead poultry before falling ill with fever and chills on 28th February 2024. A week later, he was diagnosed with severe pneumonia, influenza, and respiratory failure by the Third People's Hospital of Kunming(KM-TPH). He was discharged on 17th April and none of his 6 close contacts showed any symptoms of illness. Environmental samples taken from the epidemic spot revealed that peacock feces tested positive for avian influenza sub-type H9 and waterfowl specimens showed positive results for avian influenza sub-type H5. Gene sequencing conducted on positive specimens from the patient's respiratory tract by the Chinese Centre for Disease Control and Prevention (CCDC) showed a high degree of similarity (98.6-99.5%) with the strain responsible for the second global case of human infected with H10N3 (reported from Zhejiang, China 2022). CONCLUSIONS According to the available epidemiological information, there is limited evidence to suggest that H10N3 viruses are excessively lethal. However, adaptive site mutations have been observed in the H10N3 isoform of mammals. While it is unlikely that the H10N3 virus will spread among humans, the possibility of additional cases cannot be entirely ruled out. Symptoms of human infection with H10N3 avian influenza are similar to those of common respiratory infections, which may result in them being overlooked during initial clinical consultations. Therefore, it is essential to improve surveillance of the H10 sub-type of avian influenza and to increase the awareness of hospital-related workers of cases of pneumonia of unknown origin.
Collapse
Affiliation(s)
- Zhenxi Zhao
- Department of Acute Infectious Disease Prevention and Control (Emergency Response Office), Kunming Center for Disease Control and Prevention, Kunming, Yunnan Province, China
| | - Siyi Luo
- Department of Acute Infectious Disease Prevention and Control (Emergency Response Office), Kunming Center for Disease Control and Prevention, Kunming, Yunnan Province, China
| | - Yudong Gao
- Department of Acute Infectious Disease Prevention and Control (Emergency Response Office), Kunming Center for Disease Control and Prevention, Kunming, Yunnan Province, China
| | - Min Dai
- Department of Acute Infectious Disease Prevention and Control (Emergency Response Office), Kunming Center for Disease Control and Prevention, Kunming, Yunnan Province, China
| | - Jun Yan
- Department of Microbiological experiment, Kunming Center for Disease Control and Prevention, Kunming, Yunnan Province, China
| | - Ying Yang
- Department of Microbiological experiment, Kunming Center for Disease Control and Prevention, Kunming, Yunnan Province, China
| | - Hongwei Li
- Department of Acute Infectious Disease Prevention and Control, Guandu District for Disease Control and Prevention, Kunming, Yunnan Province, China
| | - Yan Zhang
- Third People's Hospital of Kunming, Kunming, Yunnan Province, China
| | - Zhipeng Mao
- Department of Acute Infectious Disease Prevention and Control (Emergency Response Office), Kunming Center for Disease Control and Prevention, Kunming, Yunnan Province, China.
| |
Collapse
|
4
|
Ding S, Zhou J, Xiong J, Du X, Yang W, Huang J, Liu Y, Huang L, Liao M, Zhang J, Qi W. Continued evolution of H10N3 influenza virus with adaptive mutations poses an increased threat to mammals. Virol Sin 2024; 39:546-555. [PMID: 38871182 PMCID: PMC11401466 DOI: 10.1016/j.virs.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024] Open
Abstract
The H10 subtype avian influenza virus (AIV) poses an ongoing threat to both birds and humans. Notably, fatal human cases of H10N3 and H10N8 infections have drawn public attention. In 2022, we isolated two H10N3 viruses (A/chicken/Shandong/0101/2022 and A/chicken/Shandong/0603/2022) from diseased chickens in China. Genome analysis revealed that these viruses were genetically associated with human-origin H10N3 virus, with internal genes originating from local H9N2 viruses. Compared to the H10N8 virus (A/chicken/Jiangxi/102/2013), the H10N3 viruses exhibited enhanced thermostability, increased viral release from erythrocytes, and accumulation of hemagglutinin (HA) protein. Additionally, we evaluated the pathogenicity of both H10N3 and H10N8 viruses in mice. We found that viral titers could be detected in the lungs and nasal turbinates of mice infected with the two H10N3 viruses, whereas H10N8 virus titers were detectable in the lungs and brains of mice. Notably, the proportion of double HA Q222R and G228S mutations in H10N3 viruses has increased since 2019. However, the functional roles of the Q222R and G228S double mutations in the HA gene of H10N3 viruses remain unknown and warrant further investigation. Our study highlights the potential public health risk posed by the H10N3 virus. A spillover event of AIV to humans could be a foretaste of a looming pandemic. Therefore, it is imperative to continuously monitor the evolution of the H10N3 influenza virus to ensure targeted prevention and control measures against influenza outbreaks.
Collapse
Affiliation(s)
- Shiping Ding
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Jiangtao Zhou
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Junlong Xiong
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Xiaowen Du
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510550, China
| | - Wenzhuo Yang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Jinyu Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Yi Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Lihong Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Ming Liao
- National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, 510642, China; College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510550, China
| | - Jiahao Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Wenbao Qi
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Xu C, Wang Z, Yu B, Pan Z, Ni J, Feng Y, Huang S, Wu M, Zhou J, Fang L, Wu Z. Simultaneous and ultrafast detection of pan-SARS-coronaviruses and influenza A/B viruses by a novel multiplex real-time RT-PCR assay. Virus Res 2024; 346:199410. [PMID: 38815870 PMCID: PMC11177080 DOI: 10.1016/j.virusres.2024.199410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Here we report an ultrafast quadruplex RT-qPCR assay with robust diagnostic ability to detect and distinguish pan-SARS-CoVs and influenza A/B viruses within 35 min. This quadruplex RT-qPCR assay comprised of one novel RNA-based internal control targeting human β2-microglobulin (B2M) for process accuracy and three newly-designed primers-probe sets targeting the envelope protein (E) of pan-SARS-CoV, matrix protein (MP) of influenza A virus and non-structural (NS) region of influenza B virus. This quadruplex assay exhibited a sensitivity comparable to its singleplex counterparts and a slightly higher to that of the Centers for Disease Control and Prevention-recommended SARS-CoV-2 and influenza A/B assays. The novel assay showed no false-positive amplifications with other common respiratory viruses, and its 95 % limits of detection for pan-SARS-CoV and influenza A/B virus was 4.26-4.52 copies/reaction. Moreover, the assay was reproducible with less than 1 % coefficient of variation and adaptable testing different clinical and environmental samples. Our ultrafast quadruplex RT-qPCR assay can serve as an attractive tool for effective differentiation of influenza A/B virus and SARS-CoV-2, but more importantly prognose the reemergence/emergence of SARS and novel coronaviruses or influenza viruses from animal spillover.
Collapse
Affiliation(s)
- Changping Xu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China; Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zhengyang Wang
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Beibei Yu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Zhenhuang Pan
- Yiwu Center for Disease Control and Prevention, Yiwu, China
| | - Jun Ni
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Yan Feng
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Shiwang Huang
- Shangcheng District Center for Disease Control and Prevention, Hangzhou, China
| | - Maomao Wu
- Wenzhou Center for Disease Control and Prevention, Wenzhou, China
| | - Jiancang Zhou
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Lei Fang
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, China.
| | - Zhiwei Wu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
6
|
Lee CY. Exploring Potential Intermediates in the Cross-Species Transmission of Influenza A Virus to Humans. Viruses 2024; 16:1129. [PMID: 39066291 PMCID: PMC11281536 DOI: 10.3390/v16071129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The influenza A virus (IAV) has been a major cause of several pandemics, underscoring the importance of elucidating its transmission dynamics. This review investigates potential intermediate hosts in the cross-species transmission of IAV to humans, focusing on the factors that facilitate zoonotic events. We evaluate the roles of various animal hosts, including pigs, galliformes, companion animals, minks, marine mammals, and other animals, in the spread of IAV to humans.
Collapse
Affiliation(s)
- Chung-Young Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
7
|
De Conto F. Avian Influenza A Viruses Modulate the Cellular Cytoskeleton during Infection of Mammalian Hosts. Pathogens 2024; 13:249. [PMID: 38535592 PMCID: PMC10975405 DOI: 10.3390/pathogens13030249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 02/11/2025] Open
Abstract
Influenza is one of the most prevalent causes of death worldwide. Influenza A viruses (IAVs) naturally infect various avian and mammalian hosts, causing seasonal epidemics and periodic pandemics with high morbidity and mortality. The recent SARS-CoV-2 pandemic showed how an animal virus strain could unpredictably acquire the ability to infect humans with high infection transmissibility. Importantly, highly pathogenic avian influenza A viruses (AIVs) may cause human infections with exceptionally high mortality. Because these latter infections pose a pandemic potential, analyzing the ecology and evolution features of host expansion helps to identify new broad-range therapeutic strategies. Although IAVs are the prototypic example of molecular strategies that capitalize on their coding potential, the outcome of infection depends strictly on the complex interactions between viral and host cell factors. Most of the studies have focused on the influenza virus, while the contribution of host factors remains largely unknown. Therefore, a comprehensive understanding of mammals' host response to AIV infection is crucial. This review sheds light on the involvement of the cellular cytoskeleton during the highly pathogenic AIV infection of mammalian hosts, allowing a better understanding of its modulatory role, which may be relevant to therapeutic interventions for fatal disease prevention and pandemic management.
Collapse
Affiliation(s)
- Flora De Conto
- Department of Medicine and Surgery, University of Parma, Viale Antonio Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
8
|
El-Kafrawy SA, Alsayed SM, Faizo AA, Bajrai LH, Uthman NA, Alsaeed MS, Hassan AM, Alquthami KM, Alandijany TA, Zumla A, Azhar EI. Genetic diversity and molecular analysis of human influenza virus among pilgrims during Hajj. Heliyon 2024; 10:e23027. [PMID: 38163192 PMCID: PMC10755270 DOI: 10.1016/j.heliyon.2023.e23027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
The risk of transmission of respiratory tract infections is considerably enhanced at mass gathering (MG) religious events. Hajj is an annual Islamic MG event with approximately 3 million Muslim pilgrims from over 180 countries concentrated in Makkah, Saudi Arabia. This study aimed to investigate the genetic diversity of influenza viruses circulating among pilgrims during the Hajj pilgrimage. We performed a cross-sectional analytical study where nasopharyngeal swabs (NPs) from pilgrims with respiratory tract illnesses presenting to healthcare facilities during the 2019 Hajj were screened for influenza viruses. Influenza A subtypes and influenza B lineages were determined by multiplex RT-PCR for positive influenza samples. The phylogenetic analysis was carried out for the hemagglutination (HA) gene. Out of 185 nasopharyngeal samples, 54 were positive for the human influenza virus. Of these, 27 were influenza A H1N1 and 19 H3N2, 4 were untypable influenza A, and 4 were influenza B. Phylogenetic analysis revealed that the H1N1 and H3N2 strains differentiated into different and independent genetic groups and formed close clusters with selected strains of influenza viruses from various locations. To conclude, this study demonstrates a high genetic diversity of circulating influenza A subtypes among pilgrims during the Hajj Season. There is a need for further larger studies to investigate in-depth the genetic characteristics of influenza viruses and other respiratory viruses during Hajj seasons.
Collapse
Affiliation(s)
- Sherif A. El-Kafrawy
- Special Infectious Agents Unit BSL-3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Salma M. Alsayed
- Special Infectious Agents Unit BSL-3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Arwa A. Faizo
- Special Infectious Agents Unit BSL-3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Leena H. Bajrai
- Special Infectious Agents Unit BSL-3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Norah A. Uthman
- Special Infectious Agents Unit BSL-3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Moneerah S. Alsaeed
- Special Infectious Agents Unit BSL-3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed M. Hassan
- Special Infectious Agents Unit BSL-3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | - Thamir A. Alandijany
- Special Infectious Agents Unit BSL-3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alimuddin Zumla
- Division of Infection and Immunity, Centre for Clinical Microbiology, University College London Royal Free Campus, London WC1E 6DE, UK
- NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London W1T 7DN, UK
| | - Esam I. Azhar
- Special Infectious Agents Unit BSL-3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
9
|
Xie R, Wang W, Gao Y, Liu W, Yue B, Liu S, Fan W, Song S, Yan L. Evolution and mammalian adaptation of H3 and H10 subtype avian influenza viruses in wild birds in Yancheng Wetland of China. Vet Microbiol 2023; 279:109669. [PMID: 36724731 DOI: 10.1016/j.vetmic.2023.109669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/24/2023]
Abstract
Wild birds play a critical role in avian influenza virus (AIV) ecology and some outbreaks of avian influenza in human originate from wild birds, suggesting that epidemiological surveillance and interspecies-transmission analysis of AIVs in wild birds are critical. Since 2019, we have performed sampling in Yancheng Wetland along the East Asian-Australasian Flyway. Totally, 2054 fecal swabs were collected and one H3N8, two H3N1, one H10N8, and three H10N1 were isolated. Three H3 gene of AIVs we isolated belonged to Eurasian lineage, but the four H10 gene clustered into North American lineage. What's more, the H3 and the foreign H10 gene had generated novel reassortants in Yancheng wetland. Receptor binding assay indicated that nearly all strains, except D369/H10N1, presented a dual receptor-binding profile and bound to avian-type receptor preferentially. In animal experiment, all isolates could infect mice without prior adaptation and induce histopathological changes in mice lungs, moreover, all H3 subtype AIVs obviously triggered weight loss of mice. In addition to lung and turbinate, D322/H3N1, D338/H3N8, D211/H10N8 and D266/H10N1 could spread to brain and kidney or liver or spleen, showing a wider range of tissue tropism. Multiple mutants associated with mammalian adaptation were also detected in all isolates according to molecular analysis. These findings revealed that H3 and H10 AIVs circulating in wild birds in Yancheng Wetland underwent complex reassortment and increased mammalian adaptation, which highlighted the necessity to monitor the diverse reassortment of AIVs in wild birds and evaluate the risks of H3 and H10 viruses to human health.
Collapse
Affiliation(s)
- Ran Xie
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Wenjie Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yuan Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Wenjian Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Bin Yue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Shuhui Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Liping Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
10
|
He J, Hou S, Xiong C, Hu L, Gong L, Yu J, Zhou X, Chen Q, Yuan Y, He L, Zhu M, Li W, Shi Y, Sun Y, Pan H, Su B, Lu Y, Wu J. Avian influenza A virus H7N9 in China, a role reversal from reassortment receptor to the donator. J Med Virol 2023; 95:e28392. [PMID: 36484390 DOI: 10.1002/jmv.28392] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/10/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Reassortment can introduce one or more gene segments of influenza A viruses (IAVs) into another, resulting in novel subtypes. Since 2013, a new outbreak of human highly pathogenic avian influenza has emerged in the Yangtze River Delta (YRD) and South-Central regions of China. In this study, using Anhui province as an example, we discuss the possible impact of H7N9 IAVs on future influenza epidemics through a series of gene reassortment events. Sixty-one human H7N9 isolates were obtained from five outbreaks in Anhui province from 2013 to 2019. Bioinformatics analyses revealed that all of them were characterized by low pathogenicity and high human or mammalian tropism and had introduced novel avian influenza A virus (AIV) subtypes such as H7N2, H7N6, H9N9, H5N6, H6N6, and H10N6 through gene reassortment. In reassortment events, Anhui isolates may donate one or more segments of HA, NA, and the six internal protein-coding genes for the novel subtype AIVs. Our study revealed that H7N9, H9N2, and H5N1 can serve as stable and persistent gene pools for AIVs in the YRD and South-Central regions of China. Novel AIV subtypes might be generated continuously by reassortment. These AIVs may have obtained human-type receptor-binding abilities from their donors and prefer binding to them, which can cause human epidemics through accidental spillover infections. Facing the continual threat of emerging avian influenza, constant monitoring of AIVs should be conducted closely for agricultural and public health.
Collapse
Affiliation(s)
- Jun He
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China.,School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Sai Hou
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Chenglong Xiong
- School of Public Health, Fudan University, Shanghai, China.,Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Linjie Hu
- School of Public Health, Fudan University, Shanghai, China.,Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Lei Gong
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Junling Yu
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Xiaoyu Zhou
- School of Public Health, Fudan University, Shanghai, China.,Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Qingqing Chen
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Yuan Yuan
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Lan He
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Meng Zhu
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Weiwei Li
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Yonglin Shi
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Yong Sun
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Haifeng Pan
- School of Public Health, Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| | - Bin Su
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Yihan Lu
- School of Public Health, Fudan University, Shanghai, China.,Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Jiabing Wu
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China.,School of Public Health, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
11
|
Li P, Niu M, Li Y, Xu M, Zhao T, Cao X, Liang C, Wang Y, Li Y, Xiao C. Human infection with H3N8 avian influenza virus: A novel H9N2-original reassortment virus. J Infect 2022; 85:e187-e189. [PMID: 36058414 DOI: 10.1016/j.jinf.2022.08.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Peidong Li
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China; Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction Corps, Shihezi 832000, People's Republic of China
| | - Minghui Niu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China; Pharmacy School of Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China
| | - Yitao Li
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China; Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction Corps, Shihezi 832000, People's Republic of China
| | - Mingguo Xu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China; Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction Corps, Shihezi 832000, People's Republic of China
| | - Tianyi Zhao
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China; Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction Corps, Shihezi 832000, People's Republic of China
| | - Xingwang Cao
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China; Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction Corps, Shihezi 832000, People's Republic of China
| | - Chengzhe Liang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China; Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction Corps, Shihezi 832000, People's Republic of China
| | - Yong Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China; Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction Corps, Shihezi 832000, People's Republic of China
| | - Yaling Li
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China; Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction Corps, Shihezi 832000, People's Republic of China.
| | - Chencheng Xiao
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China; Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction Corps, Shihezi 832000, People's Republic of China.
| |
Collapse
|
12
|
Yin Y, Li B, Zhou L, Luo J, Liu X, Wang S, Lu Q, Tan W, Chen Z. Protein transduction domain-mediated influenza NP subunit vaccine generates a potent immune response and protection against influenza virus in mice. Emerg Microbes Infect 2021; 9:1933-1942. [PMID: 32811334 PMCID: PMC8284974 DOI: 10.1080/22221751.2020.1812436] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The nucleoprotein (NP) is a highly conserved internal protein of the influenza virus, a major target for universal influenza vaccine. Our previous studies have proven NP-based subunit vaccine can provide partial protection in mice. It is reported that the protein transduction domain (PTD) TAT protein from human immunodeficiency virus-1 (HIV-1) is able to penetrate cells when added exogenous protein and could effectively enhance the immune response induced by the exogenous protein. In present study, the recombinant protein TAT-NP, a fusion of TAT and NP was effectively expressed in Escherichia coli and purified as a candidate component for an influenza vaccine. We evaluated the immunogenicity and protective efficacy of recombinant influenza TAT-NP vaccine by intranasal immunization. In vitro experiments showed that TAT-NP could efficiently penetrate into cells. Animal results showed that mice vaccinated with TAT-NP could not only induce higher levels of IgG and mucosal IgA, but also elicit a robust cellular immune response. Moreover, the TAT-NP fusion protein could significantly increase the protection of mice against lethal doses of homologous influenza virus PR8 and could also provide mice protection against a lethal dose challenge against heterosubtypic H9N2 and H3N2 influenza virus. In conclusion, the recombinant TAT-NP might be a universal vaccine candidate against influenza virus.
Collapse
Affiliation(s)
- Yuan Yin
- Department of Clinical Laboratory, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Shanghai Institute of Biological Products, Shanghai, People's Republic of China
| | - BeiBei Li
- Shanghai Institute of Biological Products, Shanghai, People's Republic of China
| | - Linting Zhou
- Shanghai Institute of Biological Products, Shanghai, People's Republic of China
| | - Jian Luo
- Shanghai Institute of Biological Products, Shanghai, People's Republic of China
| | - Xueying Liu
- Shanghai Institute of Biological Products, Shanghai, People's Republic of China
| | - Shilei Wang
- Shanghai Institute of Biological Products, Shanghai, People's Republic of China
| | - Qun Lu
- Department of Clinical Laboratory, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Wensong Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Ze Chen
- Shanghai Institute of Biological Products, Shanghai, People's Republic of China.,College of Life Science, Hunan Normal University, Changsha, People's Republic of China
| |
Collapse
|
13
|
Yang H, Carney PJ, Chang JC, Stevens J. Molecular characterization and three-dimensional structures of avian H8, H11, H14, H15 and swine H4 influenza virus hemagglutinins. Heliyon 2020; 6:e04068. [PMID: 32529072 PMCID: PMC7281811 DOI: 10.1016/j.heliyon.2020.e04068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/25/2020] [Accepted: 05/21/2020] [Indexed: 11/08/2022] Open
Abstract
Of the eighteen hemagglutinin (HA) subtypes (H1–H18) that have been identified in bats and aquatic birds, many HA subtypes have been structurally characterized. However, several subtypes (H8, H11 and H12) still require characterization. To better understand all of these HA subtypes at the molecular level, HA structures from an A(H4N6) (A/swine/Missouri/A01727926/2015), an A(H8N4) (A/turkey/Ontario/6118/1968), an A(H11N9) (A/duck/Memphis/546/1974), an A(H14N5) A/mallard/Gurjev/263/1982, and an A(H15N9) (A/wedge-tailed shearwater/Western Australia/2576/1979 were determined by X-ray crystallography at 2.2Å, 2.3Å, 2.8Å, 3.0Å and 2.5Å resolution, respectively. The interactions between these viruses and host receptors were studied utilizing glycan-binding analyses with their recombinant HA. The data show that all avian HAs retain their strict binding preference to avian receptors, whereas swine H4 has a weak human receptor binding. The molecular characterization and structural analyses of the HA from these zoonotic influenza viruses not only provide a deeper appreciation and understanding of the structure of all HA subtypes, but also re-iterate why continuous global surveillance is needed.
Collapse
Affiliation(s)
- Hua Yang
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Paul J Carney
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jessie C Chang
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - James Stevens
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
14
|
Nanopore Sequencing Reveals Novel Targets for Detection and Surveillance of Human and Avian Influenza A Viruses. J Clin Microbiol 2020; 58:JCM.02127-19. [PMID: 32132187 DOI: 10.1128/jcm.02127-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/25/2020] [Indexed: 12/24/2022] Open
Abstract
Accurate detection of influenza A virus (IAV) is crucial for patient management, infection control, and epidemiological surveillance. The World Health Organization and the Centers for Disease Control and Prevention have recommended using the M gene as the diagnostic gene target for reverse-transcription-PCR (RT-PCR). However, M gene RT-PCR has reduced sensitivity for recent IAV due to novel gene mutations. Here, we sought to identify novel diagnostic targets for the molecular detection of IAV using long-read third-generation sequencing. Direct nanopore sequencing from 18 nasopharyngeal specimens and one saliva specimen showed that the 5' and 3' ends of the PB2 gene and the entire NS gene were highly abundant. Primers selected for PB2 and NS genes were well matched with seasonal or avian IAV gene sequences. Our novel PB2 and NS gene real-time RT-PCR assays showed limits of detection similar to or lower than that of M gene RT-PCR and achieved 100% sensitivity and specificity in the detection of A(H1N1), A(H3N2), and A(H7N9) in nasopharyngeal and saliva specimens. For 10 patients with IAV detected by M gene RT-PCR conversion in sequentially collected specimens, NS and/or PB2 gene RT-PCR was positive in 2 (20%) of the initial specimens that were missed by M gene RT-PCR. In conclusion, we have shown that PB2 or NS gene RT-PCRs are suitable alternatives to the recommended M gene RT-PCR for diagnosis of IAV. Long-read nanopore sequencing facilitates the identification of novel diagnostic targets.
Collapse
|
15
|
Valley-Omar Z, Cloete A, Pieterse R, Walaza S, Salie-Bassier Y, Smith M, Govender N, Seleka M, Hellferscee O, Mtshali PS, Allam M, Ismail A, Anthony T, Seutloali M, McCarthy K, van Helden L, Cohen C, Treurnicht FK. Human surveillance and phylogeny of highly pathogenic avian influenza A(H5N8) during an outbreak in poultry in South Africa, 2017. Influenza Other Respir Viruses 2020; 14:266-273. [PMID: 32058677 PMCID: PMC7182598 DOI: 10.1111/irv.12724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/19/2019] [Accepted: 01/15/2020] [Indexed: 12/14/2022] Open
Abstract
Background In June 2017, an outbreak of the highly pathogenic avian influenza A(H5N8) was detected in commercial poultry farms in South Africa, which rapidly spread to all nine South African provinces. Objectives We conducted active surveillance for the transmission of influenza A(H5N8) to humans working with infected birds during the South African outbreak. Methods Influenza A(H5N8)‐positive veterinary specimens were used to evaluate the ability of real‐time PCR‐based assays to detect contemporary avian influenza A(H5N8) strains. Whole genome sequences were generated from these specimens by next‐generation sequencing for phylogenetic characterization and screening for mammalian‐adaptive mutations. Results Human respiratory samples from 74 individuals meeting our case definition, all tested negative for avian influenza A(H5) by real‐time PCR, but 2 (3%) were positive for human influenza A(H3N2). 54% (40/74) reported wearing personal protective equipment including overalls, boots, gloves, masks, and goggles. 94% (59/63) of veterinary specimens positive for H5N8 were detected on an influenza A(H5) assay for human diagnostics. A commercial H5N8 assay detected H5 in only 6% (3/48) and N8 in 92% (44/48). Thirteen (13/25; 52%) A(H5N8) genomes generated from veterinary specimens clustered in a single monophyletic clade. These sequences contained the NS (P42S) and PB2 (L89V) mutations noted as markers of mammalian adaptation. Conclusions Diagnostic assays were able to detect and characterize influenza A(H5N8) viruses, but poor performance is reported for a commercial assay. Absence of influenza A(H5N8) in humans with occupational exposure and no clear impression of molecular adaptation for mammalian infection suggest that this avian pathogen continues to be low‐risk human pathogen.
Collapse
Affiliation(s)
- Ziyaad Valley-Omar
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,Department of Pathology, Division of Medical Virology, University of Cape Town, South Africa
| | - Alicia Cloete
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Reneé Pieterse
- Department of Agriculture, Western Cape Provincial Veterinary Laboratory, Stellenbosch, South Africa
| | - Sibongile Walaza
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Yusrah Salie-Bassier
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Mikhail Smith
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Nevashan Govender
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Mpho Seleka
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Orienka Hellferscee
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Phillip Senzo Mtshali
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Mushal Allam
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Arshad Ismail
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Tasneem Anthony
- Department of Agriculture, Western Cape Provincial Veterinary Laboratory, Stellenbosch, South Africa
| | - Michelle Seutloali
- Department of Agriculture, Western Cape Provincial Veterinary Laboratory, Stellenbosch, South Africa
| | - Kerrigan McCarthy
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Lesley van Helden
- Veterinary Services, Western Cape Department of Agriculture, South Africa
| | - Cheryl Cohen
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Florette Kathleen Treurnicht
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
16
|
Ning T, Nie J, Huang W, Li C, Li X, Liu Q, Zhao H, Wang Y. Antigenic Drift of Influenza A(H7N9) Virus Hemagglutinin. J Infect Dis 2019; 219:19-25. [PMID: 29982588 DOI: 10.1093/infdis/jiy408] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/28/2018] [Indexed: 01/03/2023] Open
Abstract
Background Since the emergence of influenza A(H7N9) virus in 2013, there have been 5 waves of influenza A(H7N9) epidemics in China. However, evolution of the hemagglutinin (HA) protein antigenicity has not been systematically investigated. Methods To better understand how antigenic drift in HA proteins of influenza (A)H7N9 virus occurs, 902 influenza A(H7N9) virus HA protein sequences from a public database were retrieved and analyzed. Fifty-three mutants with single amino acid substitutions in HA protein were introduced into pseudoviruses, and their antigenic characteristics were analyzed using pseudovirus-based assays. Results The frequencies of 9 mutations incrementally increased over the past 5 years, with mutations identified at multiple sites. While mean neutralization titers of most variants remained unchanged, 3 mutations, A143V, A143T, and R148K, displayed a median 4-fold lower susceptibility to neutralization by antisera against influenza A/Anhui/1/2013(H7N9) virus. Notably, A143V and A143T were located outside the previously reported antigenic sites. The most dominant variant (A143V/R148K) in the most recent season constituted 74.11% of all mutations and demonstrated a 10-fold reduction in its reactivity to influenza A/Anhui/1/2013(H7N9) virus antisera. Importantly, compared with the DNA construct without the corresponding HA protein mutation, DNA vaccine encoding the A143V/R148K mutant induced a 5-fold increase in the neutralizing activity against this circulating virus. Conclusions An appropriate vaccine strain should be considered in response to increasing antigenic drift in influenza A(H7N9) virus HA protein.
Collapse
Affiliation(s)
- Tingting Ning
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Jianhui Nie
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, Beijing, China
| | - Weijin Huang
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, Beijing, China
| | - Changgui Li
- Division of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Xuguang Li
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Canada
| | - Qiang Liu
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, Beijing, China
| | - Hui Zhao
- Division of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Youchun Wang
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Characterization of three H3N2 and one new reassortant H3N8 avian influenza virus in South China. INFECTION GENETICS AND EVOLUTION 2019; 75:104016. [PMID: 31472265 DOI: 10.1016/j.meegid.2019.104016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 11/22/2022]
|
18
|
Luo S, Xie Z, Huang J, Xie Z, Xie L, Zhang M, Li M, Wang S, Li D, Zeng T, Zhang Y, Fan Q, Deng X. Simultaneous Differentiation of the N1 to N9 Neuraminidase Subtypes of Avian Influenza Virus by a GeXP Analyzer-Based Multiplex Reverse Transcription PCR Assay. Front Microbiol 2019; 10:1271. [PMID: 31231349 PMCID: PMC6568037 DOI: 10.3389/fmicb.2019.01271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/22/2019] [Indexed: 11/13/2022] Open
Abstract
To date, nine neuraminidase (NA) subtypes of avian influenza virus (AIV) have been identified in poultry and wild birds. Rapid and effective methods for differentiating these nine NA subtypes are needed. We developed and validated a rapid, sensitive, and robust method utilizing a GeXP analyzer-based multiplex RT-PCR assay and capillary electrophoresis for the simultaneous differentiation of the N1 to N9 subtypes in a single-tube reaction. Ten pairs of primers-nine subtype-specific pairs and one pan-AIV pair-were screened and used to establish the GeXP multiplex RT-PCR assay. A single subtype was detected using the developed GeXP assay; the N1 to N9 AIV subtypes individually generated two target peaks: the NA subtype-specific peak and the general AIV peak. Different concentrations of multiplexed subtypes were tested with this GeXP assay and the peaks of the corresponding NA subtypes were generated, suggesting that this GeXP assay is useful for identifying NA subtypes in mixed samples. Moreover, no peaks were generated for other important avian viruses, indicating negative results and validating the lack of cross-reactions between AIV subtypes and other avian pathogens. RNA templates synthesized through in vitro transcription were used to analyze the sensitivity of the assay; the limit of detection was 100 copies per reaction mixture. The results obtained from clinical samples using this GeXP method were consistent with the results of the neuraminidase inhibition (NI) test, and the ability of the GeXP assay to identify mixed infections was superior to amplicon sequencing of isolated viruses. In conclusion, this GeXP assay is proposed as a specific, sensitive, rapid, high-throughput, and versatile diagnostic tool for nine NA subtypes of AIV.
Collapse
Affiliation(s)
- Sisi Luo
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Zhixun Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Jiaoling Huang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Zhiqin Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Liji Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Minxiu Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Meng Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Sheng Wang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Dan Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Tingting Zeng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Yanfang Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Qing Fan
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Xianwen Deng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| |
Collapse
|
19
|
Farrag MA, Hamed ME, Amer HM, Almajhdi FN. Epidemiology of respiratory viruses in Saudi Arabia: toward a complete picture. Arch Virol 2019; 164:1981-1996. [PMID: 31139937 PMCID: PMC7087236 DOI: 10.1007/s00705-019-04300-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/01/2019] [Indexed: 02/07/2023]
Abstract
Acute lower respiratory tract infection is a major health problem that affects more than 15% of the total population of Saudi Arabia each year. Epidemiological studies conducted over the last three decades have indicated that viruses are responsible for the majority of these infections. The epidemiology of respiratory viruses in Saudi Arabia is proposed to be affected mainly by the presence and mobility of large numbers of foreign workers and the gathering of millions of Muslims in Mecca during the Hajj and Umrah seasons. Knowledge concerning the epidemiology, circulation pattern, and evolutionary kinetics of respiratory viruses in Saudi Arabia are scant, with the available literature being inconsistent. This review summarizes the available data on the epidemiology and evolution of respiratory viruses. The demographic features associated with Middle East respiratory syndrome-related coronavirus infections are specifically analyzed for a better understanding of the epidemiology of this virus. The data support the view that continuous entry and exit of pilgrims and foreign workers with different ethnicities and socioeconomic backgrounds in Saudi Arabia is the most likely vehicle for global dissemination of respiratory viruses and for the emergence of new viruses (or virus variants) capable of greater dissemination.
Collapse
Affiliation(s)
- Mohamed A Farrag
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455QA6, Riyadh, 11451, Saudi Arabia
| | - Maaweya E Hamed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455QA6, Riyadh, 11451, Saudi Arabia
| | - Haitham M Amer
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Fahad N Almajhdi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455QA6, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
20
|
Zhu C, Hu C, Gui B, Chen Q, Zhang S, He G. Genetic characteristics of H9N2 avian influenza viruses isolated from free-range poultry in Eastern China, in 2014-2015. Poult Sci 2018; 97:3793-3800. [PMID: 30169762 DOI: 10.3382/ps/pey187] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 04/18/2018] [Indexed: 01/11/2023] Open
Abstract
Circulating H7N9 influenza viruses in live poultry markets continue to pose a threat to human health. Free-range poultry, one of the sources for these markets, are common in China as well as in many developing countries. Because the H9N2 virus could be a source of internal genes for the H7N9 virus, we conducted surveillance in free-range poultry and live poultry markets to study the evolution of H7N9 and H9N2 viruses in Eastern China. We found 28 samples positive for the H9N2 virus (a rate of 3.2%), but no positive samples for the H7N9 virus. Six representative H9N2 isolates were sequenced and analyzed, and the results showed that these viruses shared high nucleotide identities (99.0 to 100%) and were in a same branch in the phylogenetic trees. All these 6 viruses are closely clustered with Zhejiang H9N2 chicken isolates, and belonged to genotype G57, along with some novel H7N9 strains and H9N2 strains circulating in humans in China. We hope that surveillance of AIVs in free-range poultry will be strengthened for further identification more genetic diversity.
Collapse
Affiliation(s)
- Caihui Zhu
- School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Chuanxia Hu
- School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Boxiang Gui
- School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Qin Chen
- School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Shuyi Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Guimei He
- School of Life Sciences, East China Normal University, Shanghai 200062, China
| |
Collapse
|
21
|
Adlhoch C, Dabrera G, Penttinen P, Pebody R. Protective Measures for Humans against Avian Influenza A(H5N8) Outbreaks in 22 European Union/European Economic Area Countries and Israel, 2016-17. Emerg Infect Dis 2018; 24:1-8. [PMID: 29989531 PMCID: PMC6154149 DOI: 10.3201/eid2410.180269] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We sought to better understand national approaches for managing potential human health risks during outbreaks of infection with avian influenza A(H5N8) virus during 2016–17. Twenty-three countries in the Union/European Economic Area and Israel participated in this study. Risk to the general public was assessed as low in 18 countries and medium in 1 country. Of 524 exposed persons identified, 274 were passively monitored and 250 were actively monitored. Of 29 persons tested, all were negative for H5N8 virus. Vaccination and antiviral drug recommendations varied across countries. A high level of personal protection was recommended although a low risk was assessed. No transmission of this virus to humans was identified.
Collapse
|
22
|
Wu H, Yang F, Liu F, Peng X, Chen B, Cheng L, Lu X, Yao H, Wu N. Molecular characterization of H10 subtype avian influenza viruses isolated from poultry in Eastern China. Arch Virol 2018; 164:159-179. [PMID: 30302582 DOI: 10.1007/s00705-018-4019-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023]
Abstract
In recent years, avian-origin H10 influenza viruses have proved capable of infecting human beings, and they pose a potential public health threat. Seven H10 avian influenza viruses (AIVs), H10N3 (n = 2), H10N7 (n = 1), and H10N8 (n = 4), were isolated from chickens in Zhejiang Province, Eastern China, during surveillance of AIVs in live poultry markets in 2016 and 2017. Phylogenetic analysis indicated that Zhejiang H10 strains received gene segments from H10, H3, and H7 viruses from birds in East Asia. Animal inoculation tests showed that these isolates have low pathogenicity in mice and can replicate in this species. Our findings suggest these H10 AIVs have the ability to adapt to chicken or other poultry, and highlight the need of long-term surveillance.
Collapse
Affiliation(s)
- Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China.
| | - Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Fumin Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiuming Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Bin Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Linfang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangyun Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
23
|
Mostafa A, Abdelwhab EM, Mettenleiter TC, Pleschka S. Zoonotic Potential of Influenza A Viruses: A Comprehensive Overview. Viruses 2018; 10:v10090497. [PMID: 30217093 PMCID: PMC6165440 DOI: 10.3390/v10090497] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/24/2018] [Accepted: 09/13/2018] [Indexed: 02/06/2023] Open
Abstract
Influenza A viruses (IAVs) possess a great zoonotic potential as they are able to infect different avian and mammalian animal hosts, from which they can be transmitted to humans. This is based on the ability of IAV to gradually change their genome by mutation or even reassemble their genome segments during co-infection of the host cell with different IAV strains, resulting in a high genetic diversity. Variants of circulating or newly emerging IAVs continue to trigger global health threats annually for both humans and animals. Here, we provide an introduction on IAVs, highlighting the mechanisms of viral evolution, the host spectrum, and the animal/human interface. Pathogenicity determinants of IAVs in mammals, with special emphasis on newly emerging IAVs with pandemic potential, are discussed. Finally, an overview is provided on various approaches for the prevention of human IAV infections.
Collapse
Affiliation(s)
- Ahmed Mostafa
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany.
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Giza 12622, Egypt.
| | - Elsayed M Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany.
| |
Collapse
|
24
|
Yuen KY. Another avian influenza A subtype jumping into human: this time is H7N4. Sci Bull (Beijing) 2018; 63:1025-1026. [PMID: 36755450 DOI: 10.1016/j.scib.2018.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong China.
| |
Collapse
|
25
|
Huo X, Cui LB, Chen C, Wang D, Qi X, Zhou MH, Guo X, Wang F, Liu WJ, Kong W, Ni D, Chi Y, Ge Y, Huang H, Hu F, Li C, Zhao X, Ren R, Bao CJ, Gao GF, Zhu FC. Severe human infection with a novel avian-origin influenza A(H7N4) virus. Sci Bull (Beijing) 2018; 63:1043-1050. [PMID: 32288966 PMCID: PMC7104738 DOI: 10.1016/j.scib.2018.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 06/29/2018] [Accepted: 06/29/2018] [Indexed: 11/28/2022]
Abstract
Human infections with influenza H7 subtypes, such as H7N9, have raised concerns worldwide. Here, we report a human infection with a novel influenza A(H7N4) virus. A 68 years-old woman with cardiovascular and cholecystic comorbidities developed rapidly progressed pneumonia with influenza-like-illness as initial symptom, recovered after 23 days-hospitalization including 8 days in ICU. Laboratory indicators for liver and blood coagulation dysfunction were observed. Oseltamivir phosphate, glucocorticoids and antibiotics were jointly implemented, with nasal catheterization of oxygen inhalation for this patient. We obtained the medical records and collected serial respiratory and blood specimens from her. We collected throat, cloacal and/or feces samples of poultry and wild birds from the patient's backyard, neighborhood, local live poultry markets (LPMs) and the nearest lake. All close contacts of the patient were followed up and sampled with throat swabs and sera. Influenza viruses and other respiratory pathogens were tested by real-time RT-PCR, viral culturing and/or sequencing for human respiratory and bird samples. Micro-neutralizing assay was performed for sera. A novel reassortant wild bird-origin H7N4 virus is identified from the patient and her backyard poultry (chickens and ducks) by sequencing, which is distinct from previously-reported avian H7N4 and H7N9 viruses. At least four folds increase of neutralizing antibodies to H7N4 was detected in her convalescent sera. No samples from close contacts, wild birds or other poultry were tested positive for H7N4 by real-time RT-PCR.
Collapse
Affiliation(s)
- Xiang Huo
- Key Laboratories of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China,Key Laboratory of Infectious Diseases, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lun-biao Cui
- Key Laboratories of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China,Key Laboratory of Infectious Diseases, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Cong Chen
- Changzhou Center for Disease Control and Prevention, Changzhou 213022, China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Xian Qi
- Key Laboratories of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China,Key Laboratory of Infectious Diseases, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ming-hao Zhou
- Key Laboratories of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Xiling Guo
- Key Laboratories of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Fengming Wang
- Changzhou Center for Disease Control and Prevention, Changzhou 213022, China
| | - William J. Liu
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Weirong Kong
- Liyang Center for Disease Control and Prevention, Liyang 213300, China
| | - Daxin Ni
- Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Ying Chi
- Key Laboratories of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Yiyue Ge
- Key Laboratories of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Haodi Huang
- Key Laboratories of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Feifei Hu
- Changzhou Center for Disease Control and Prevention, Changzhou 213022, China
| | - Chao Li
- Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Xiang Zhao
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Ruiqi Ren
- Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Chang-jun Bao
- Key Laboratories of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China,Key Laboratory of Infectious Diseases, School of Public Health, Nanjing Medical University, Nanjing 211166, China,Corresponding authors.
| | - George F. Gao
- Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China,National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China,Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China,Corresponding authors.
| | - Feng-Cai Zhu
- Key Laboratories of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China; Key Laboratory of Infectious Diseases, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
26
|
Wang XX, Cheng W, Yu Z, Liu SL, Mao HY, Chen EF. Risk factors for avian influenza virus in backyard poultry flocks and environments in Zhejiang Province, China: a cross-sectional study. Infect Dis Poverty 2018; 7:65. [PMID: 29914558 PMCID: PMC6006748 DOI: 10.1186/s40249-018-0445-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/30/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Human infection of avian influenza virus (AIV) remains a great concern. Although live poultry markets are believed to be associated with human infections, ever more infections have been reported in rural areas with backyard poultry, especially in the fifth epidemic of H7N9. However, limited information is available on backyard poultry infection and surrounding environmental contamination. METHODS Two surveillance systems and a field survey were used to collect data and samples in Zhejiang Province. In total, 4538 samples were collected by surveillance systems and 3171 from the field survey between May 2015 and May 2017, while 352 backyard poultry owners were interviewed in May 2017 by questionnaire to investigate factors influencing the prevalence of avian influenza A virus and other AIV subtypes. RT-PCR was used to test the nucleic acids of viruses. ArcGIS 10.1 software was used to generate maps. Univariate and logistic regression analyses were conducted to identify risk factors for AIV infection. RESULTS Of the 428 poultry premises observed by the surveillance system, 53 (12.38%) were positive for influenza A virus. Of the 352 samples from poultry premises observed by field survey, 13 (3.39%) were positive for influenza A virus. The prevalence of AIV was unevenly distributed and the dominant subtype differed among cities. Eastern (Shaoxing and Ningbo) and southern (Wenzhou) cities exhibited a higher prevalence of AIV (16.33, 8.94, and 7.30% respectively). Contamination of AIV subtypes was most severe in January, especially in 2016 (23.26%, 70/301). The positive rate of subtype H5/H7/H9 was 2.53% (115/4538). Subtype H5 was the least prevalent, while subtypes H7 and H9 had similar positivity rates (1.50 and 1.32% respectively). Poultry flocks and environmental samples had a similar prevalence of AIV (4.46% vs 5.06%). The type of live birds was a risk factor and the sanitary condition of the setting was a protective factor against influenza A contamination. CONCLUSIONS AIV subtypes were prevalent in backyard poultry flocks and surrounding environments in Zhejiang Province. The types of live birds and sanitary conditions of the environment were associated with influenza A contamination. These findings shine a light on the characteristics of contamination of AIV subtypes and emphasize the importance of reducing AIV circulation in backyard poultry settings.
Collapse
Affiliation(s)
- Xiao-Xiao Wang
- Zhejiang Provincial Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang 310051 People’s Republic of China
| | - Wei Cheng
- Zhejiang Provincial Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang 310051 People’s Republic of China
| | - Zhao Yu
- Zhejiang Provincial Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang 310051 People’s Republic of China
| | - She-Lan Liu
- Zhejiang Provincial Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang 310051 People’s Republic of China
| | - Hai-Yan Mao
- Zhejiang Provincial Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang 310051 People’s Republic of China
| | - En-Fu Chen
- Zhejiang Provincial Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang 310051 People’s Republic of China
| |
Collapse
|
27
|
Tong XC, Weng SS, Xue F, Wu X, Xu TM, Zhang WH. First human infection by a novel avian influenza A(H7N4) virus. J Infect 2018; 77:249-257. [PMID: 29898409 DOI: 10.1016/j.jinf.2018.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 11/28/2022]
Abstract
Multiple reassortant strains of novel, highly pathogenic avian influenza A have recently emerged and spread over the world. Here we report on a 68-year-old woman in Jiangsu, China, with influenza A(H7N4) infection and associated illness, which strongly demonstrating the ability of the virus to spread from animals to humans and thus emphasizing the importance of continuous surveillance of the emerging viruses.
Collapse
Affiliation(s)
- Xue-Cheng Tong
- Department of Infectious Diseases, Third People's Hospital of Changzhou, Director's office, Building 3, No.300, Lanlin road, Changzhou, Jiangsu 213001, China
| | - Shan-Shan Weng
- Department of infectious disease, Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Feng Xue
- Department of Infectious Diseases, Third People's Hospital of Changzhou, Director's office, Building 3, No.300, Lanlin road, Changzhou, Jiangsu 213001, China
| | - Xing Wu
- Department of Infectious Diseases, Third People's Hospital of Changzhou, Director's office, Building 3, No.300, Lanlin road, Changzhou, Jiangsu 213001, China
| | - Tian-Min Xu
- Department of Infectious Diseases, Third People's Hospital of Changzhou, Director's office, Building 3, No.300, Lanlin road, Changzhou, Jiangsu 213001, China.
| | - Wen-Hong Zhang
- Department of infectious disease, Huashan Hospital of Fudan University, Shanghai 200040, China
| |
Collapse
|
28
|
Anderson AM, Baranowska-Hustad M, Braathen R, Grodeland G, Bogen B. Simultaneous Targeting of Multiple Hemagglutinins to APCs for Induction of Broad Immunity against Influenza. THE JOURNAL OF IMMUNOLOGY 2018; 200:2057-2066. [PMID: 29427414 DOI: 10.4049/jimmunol.1701088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 01/05/2018] [Indexed: 12/27/2022]
Abstract
There is a need for vaccines that can confer broad immunity against highly diverse pathogens, such as influenza. The efficacy of conventional influenza vaccines is dependent on accurate matching of vaccines to circulating strains, but slow and limited production capacities increase the probability of vaccine mismatches. In contrast, DNA vaccination allows for rapid production of vaccines encoding novel influenza Ags. The efficacy of DNA vaccination is greatly improved if the DNA-encoded vaccine proteins target APCs. In this study, we have used hemagglutinin (HA) genes from each of six group 1 influenza viruses (H5, H6, H8, H9, H11, and H13), and inserted these into a DNA vaccine format that induces delivery of the HA protein Ags to MHC class II molecules on APCs. Each of the targeted DNA vaccines induced high titers of strain-specific anti-HA Abs. Importantly, when the six HA vaccines were mixed and injected simultaneously, the strain-specific Ab titers were maintained. In addition, the vaccine mixture induced Abs that cross-reacted with strains not included in the vaccine mixture (H1) and could protect mice against a heterosubtypic challenge with the H1 viruses A/Puerto Rico/8/1934 (H1N1) and A/California/07/2009 (H1N1). The data suggest that vaccination with a mixture of HAs could be useful for induction of strain-specific immunity against strains represented in the mixture and, in addition, confer some degree of cross-protection against unrelated influenza strains.
Collapse
Affiliation(s)
- Ane Marie Anderson
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, 0027 Oslo, Norway.,Oslo University Hospital, 0027 Oslo, Norway; and
| | - Marta Baranowska-Hustad
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, 0027 Oslo, Norway.,Oslo University Hospital, 0027 Oslo, Norway; and
| | - Ranveig Braathen
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, 0027 Oslo, Norway.,Oslo University Hospital, 0027 Oslo, Norway; and
| | - Gunnveig Grodeland
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, 0027 Oslo, Norway; .,Oslo University Hospital, 0027 Oslo, Norway; and
| | - Bjarne Bogen
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, 0027 Oslo, Norway.,Oslo University Hospital, 0027 Oslo, Norway; and.,Centre for Immune Regulation, University of Oslo, 0027 Oslo, Norway
| |
Collapse
|
29
|
Impact of Mutations in the Hemagglutinin of H10N7 Viruses Isolated from Seals on Virus Replication in Avian and Human Cells. Viruses 2018; 10:v10020083. [PMID: 29443887 PMCID: PMC5850390 DOI: 10.3390/v10020083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 01/01/2023] Open
Abstract
Wild birds are the reservoir for low-pathogenic avian influenza viruses, which are frequently transmitted to domestic birds and occasionally to mammals. In 2014, an H10N7 virus caused severe mortality in harbor seals in northeastern Europe. Although the hemagglutinin (HA) of this virus was closely related to H10 of avian H10N4 virus, it possessed unique nonsynonymous mutations, particularly in the HA1 subunit in or adjacent to the receptor binding domain and proteolytic cleavage site. Here, the impact of these mutations on virus replication was studied in vitro. Using reverse genetics, an avian H10N4 virus was cloned, and nine recombinant viruses carrying one of eight unique mutations or the complete HA from the seal virus were rescued. Receptor binding affinity, replication in avian and mammalian cell cultures, cell-to-cell spread, and HA cleavability of these recombinant viruses were studied. Results show that wild-type recombinant H10N4 virus has high affinity to avian-type sialic acid receptors and no affinity to mammalian-type receptors. The H10N7 virus exhibits dual receptor binding affinity. Interestingly, Q220L (H10 numbering) in the rim of the receptor binding pocket increased the affinity of the H10N4 virus to mammal-type receptors and completely abolished the affinity to avian-type receptors. No remarkable differences in cell-to-cell spread or HA cleavability were observed. All viruses, including the wild-type H10N7 virus, replicated at higher levels in chicken cells than in human cells. These results indicate that H10N7 acquired adaptive mutations (e.g., Q220L) to enhance replication in mammals and retained replication efficiency in the original avian host.
Collapse
|
30
|
Hu M, Jin Y, Zhou J, Huang Z, Li B, Zhou W, Ren H, Yue J, Liang L. Genetic Characteristic and Global Transmission of Influenza A H9N2 Virus. Front Microbiol 2017; 8:2611. [PMID: 29312274 PMCID: PMC5744263 DOI: 10.3389/fmicb.2017.02611] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/14/2017] [Indexed: 11/20/2022] Open
Abstract
The H9N2 virus has been demonstrated to donate its genes to other subtypes of influenza A virus, forming new reassortant virus which may infect human beings. Understanding the genetic characteristic and the global transmission patterns of the virus would guide the prevention and control of potentially emerging avian influenza A virus. In this paper, we hierarchically classified the evolution of the H9N2 virus into three main lineages based on the phylogenetic characteristics of the virus. Due to the distribution of sampling locations, we named the three lineages as Worldwide lineage, Asia-Africa lineage, and China lineage. Codon usage analysis and selective positive site analysis of the lineages further showed the lineage-specific evolution of the virus. We reconstructed the transmission routes of the virus in the three lineages through phylogeography analysis, by which several epicenters for migration of the virus were identified. The hierarchical classification of the lineages implied a possible original seeding process of the virus, starting from the Worldwide lineages to the Asian-Africa lineages and to the China lineages. In the process of H9N2 virus global transmission, the United States was the origin of the virus. China Mainland, Hong Kong SAR, Japan, and Korea were important transfer centers. Based on both the transmission route and the distribution of the hosts in each lineage, we concluded that the wild birds' migration has contributed much to the long-distance global spread of the virus, while poultry trade and people's lifestyle may have contributed to the relatively short-distance transmission in some areas of the Asia and Africa.
Collapse
Affiliation(s)
- Mingda Hu
- Laboratory of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yuan Jin
- Laboratory of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jing Zhou
- Laboratory of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Zhisong Huang
- Laboratory of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Beiping Li
- Laboratory of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Wei Zhou
- Laboratory of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Hongguang Ren
- Laboratory of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Junjie Yue
- Laboratory of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Long Liang
- Laboratory of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
31
|
Molecular Markers for Interspecies Transmission of Avian Influenza Viruses in Mammalian Hosts. Int J Mol Sci 2017; 18:ijms18122706. [PMID: 29236050 PMCID: PMC5751307 DOI: 10.3390/ijms18122706] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/09/2017] [Accepted: 12/12/2017] [Indexed: 11/23/2022] Open
Abstract
In the last decade, a wide range of avian influenza viruses (AIVs) have infected various mammalian hosts and continuously threaten both human and animal health. It is a result of overcoming the inter-species barrier which is mostly associated with gene reassortment and accumulation of mutations in their gene segments. Several recent studies have shed insights into the phenotypic and genetic changes that are involved in the interspecies transmission of AIVs. These studies have a major focus on transmission from avian to mammalian species due to the high zoonotic potential of the viruses. As more mammalian species have been infected with these viruses, there is higher risk of genetic evolution of these viruses that may lead to the next human pandemic which represents and raises public health concern. Thus, understanding the mechanism of interspecies transmission and molecular determinants through which the emerging AIVs can acquire the ability to transmit to humans and other mammals is an important key in evaluating the potential risk caused by AIVs among humans. Here, we summarize previous and recent studies on molecular markers that are specifically involved in the transmission of avian-derived influenza viruses to various mammalian hosts including humans, pigs, horses, dogs, and marine mammals.
Collapse
|
32
|
Sarvestani ST, McAuley JL. The role of the NLRP3 inflammasome in regulation of antiviral responses to influenza A virus infection. Antiviral Res 2017; 148:32-42. [PMID: 29097227 DOI: 10.1016/j.antiviral.2017.10.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/20/2017] [Accepted: 10/27/2017] [Indexed: 12/25/2022]
Abstract
The innate immune system provides the host with both a dynamic barrier to prevent infection and a means to which rapid anti-microbial responses can be mounted. The inflammasome pathway is a critical host early response mechanism that enables detection of pathogens and initiates production of inflammatory cytokines, inducing recruitment of effector cells to the site of infection. The complete mechanism of inflammasome activation requires two signals: an initial priming step upon detection of pathogen, followed by activation of intracellular pattern recognition receptors critical to the formation of the inflammasome complex. The inflammasome complex is made of intracellular multiprotein oligomers which includes a sensor protein such as the nucleotide-binding oligomerization domain (NOD) like receptor proteins (NLRP), and an adapter protein, ASC, which critically activates pro-caspase-1. The mature caspase-1 then proteolytically cleaves cytosolic pro-IL-1β and pro-IL-18, which are then secreted as inflammatory cytokines that activate the inflammatory arm of the immune response to infection. Active caspase-1 also results in pyroptosis, which is a form of cell death triggered by inflammation. The induction and activation of IL-1β and IL-18 are considered critical signatures for inflammasome activation. With focus upon influenza A virus infection, this review will address present knowledge on the mechanisms of inflammasome complex activation, particularly how the viral components modulate activation of the cytosolic NOD-like receptor protein-3 (NLRP3)-dependent inflammasome complex. We also discuss potential therapeutic strategies that target the inflammasome to ameliorate illness, as well as novel methods of vaccination that target inflammasome stimulation with the aim to increase efficacy.
Collapse
Affiliation(s)
- Soroush T Sarvestani
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Julie L McAuley
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia.
| |
Collapse
|
33
|
Human infections with avian influenza viruses in mainland China: A particular risk for southeastern China. J Infect 2017; 75:274-276. [DOI: 10.1016/j.jinf.2017.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/24/2022]
|
34
|
Xu Q, Gel YR, Ramirez Ramirez LL, Nezafati K, Zhang Q, Tsui KL. Forecasting influenza in Hong Kong with Google search queries and statistical model fusion. PLoS One 2017; 12:e0176690. [PMID: 28464015 PMCID: PMC5413039 DOI: 10.1371/journal.pone.0176690] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/15/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The objective of this study is to investigate predictive utility of online social media and web search queries, particularly, Google search data, to forecast new cases of influenza-like-illness (ILI) in general outpatient clinics (GOPC) in Hong Kong. To mitigate the impact of sensitivity to self-excitement (i.e., fickle media interest) and other artifacts of online social media data, in our approach we fuse multiple offline and online data sources. METHODS Four individual models: generalized linear model (GLM), least absolute shrinkage and selection operator (LASSO), autoregressive integrated moving average (ARIMA), and deep learning (DL) with Feedforward Neural Networks (FNN) are employed to forecast ILI-GOPC both one week and two weeks in advance. The covariates include Google search queries, meteorological data, and previously recorded offline ILI. To our knowledge, this is the first study that introduces deep learning methodology into surveillance of infectious diseases and investigates its predictive utility. Furthermore, to exploit the strength from each individual forecasting models, we use statistical model fusion, using Bayesian model averaging (BMA), which allows a systematic integration of multiple forecast scenarios. For each model, an adaptive approach is used to capture the recent relationship between ILI and covariates. RESULTS DL with FNN appears to deliver the most competitive predictive performance among the four considered individual models. Combing all four models in a comprehensive BMA framework allows to further improve such predictive evaluation metrics as root mean squared error (RMSE) and mean absolute predictive error (MAPE). Nevertheless, DL with FNN remains the preferred method for predicting locations of influenza peaks. CONCLUSIONS The proposed approach can be viewed a feasible alternative to forecast ILI in Hong Kong or other countries where ILI has no constant seasonal trend and influenza data resources are limited. The proposed methodology is easily tractable and computationally efficient.
Collapse
Affiliation(s)
- Qinneng Xu
- City University of Hong Kong, Hong Kong SAR, China
| | - Yulia R. Gel
- University of Texas at Dallas, Dallas, United States of America
| | | | - Kusha Nezafati
- University of Texas at Dallas, Dallas, United States of America
| | | | | |
Collapse
|
35
|
Host-adaptive mechanism of H5N1 avian influenza virus hemagglutininn. Uirusu 2017; 65:187-198. [PMID: 27760917 DOI: 10.2222/jsv.65.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The H5N1 subtype is a highly pathogenic avian influenza virus currently circulating in birds in parts of Asia and northeast Africa, which has caused fatal human infections since 1997. Continuous circulation of the virus in endemic areas has allowed genetically diverse viruses to emerge, increasing the risk of H5N1 human infection. Although human infections with H5N1 have to date been limited, experimental evidence of the aerosol transmission of mutated viruses in a mammalian infection model has revealed the pandemic potential of H5N1 virus. One of the most important viral factors for host-adaptation of influenza virus is hemagglutinin (HA), which is the principal antigen on the viral surface and is responsible for viral binding to host receptors as well as endosomal membrane fusion. Our recent reports suggest that a fine balance of the HA properties, including receptor binding specificity and pH stability, is crucial for replication in human respiratory epithelia. This review provides an overview of current knowledge on the host-adaptive mechanism of H5N1 virus HA.
Collapse
|
36
|
Kuah LF, Tang LH, Sutton T, Lim JH, Sin WL, Lamirande E, Subbarao K, Lau YF. Induction of protective immunity against influenza A/Jiangxi-Donghu/346/2013 (H10N8) in mice. J Gen Virol 2017; 98:155-165. [PMID: 27983474 DOI: 10.1099/jgv.0.000683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human infections with A/Jiangxi-Donghu/346/2013 (H10N8) virus have raised concerns about its pandemic potential. In order to develop a vaccine against this virus, the immunogenicity of its haemagglutinin protein was evaluated in mice. Using both whole-virion and recombinant subunit protein vaccines, we showed that two doses of either vaccine elicited neutralizing antibody responses. The protective efficacy of the vaccine-induced responses was assessed using a reverse-genetics-derived H10 reassortant virus on the A/Puerto Rico/8/34 (H1N1) backbone. The reassortant virus replicated efficiently in the respiratory tract of unvaccinated mice whereas vaccinated mice were completely protected from challenge, with no detectable viral load in the lower respiratory tract. Finally, the serum neutralizing antibody responses elicited by the H10 vaccines also exhibited cross-neutralizing activity against three heterologous wild-type H10 viruses. Collectively, these findings demonstrate that different vaccine platforms presenting the H10 haemagglutinin protein induce protective immunity.
Collapse
Affiliation(s)
- Li-Fang Kuah
- Host-Pathogen Interactions Laboratory, DMERI, DSO National Laboratories, 27 Medical Drive, Singapore 117510, Singapore
| | - Lay-Hoon Tang
- Host-Pathogen Interactions Laboratory, DMERI, DSO National Laboratories, 27 Medical Drive, Singapore 117510, Singapore
| | - Troy Sutton
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | - Jie-Hui Lim
- Host-Pathogen Interactions Laboratory, DMERI, DSO National Laboratories, 27 Medical Drive, Singapore 117510, Singapore
| | - Wan-Ling Sin
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Elaine Lamirande
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | - Kanta Subbarao
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | - Yuk-Fai Lau
- Host-Pathogen Interactions Laboratory, DMERI, DSO National Laboratories, 27 Medical Drive, Singapore 117510, Singapore.,Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
37
|
Chan JFW, Sridhar S, Yip CCY, Lau SKP, Woo PCY. The role of laboratory diagnostics in emerging viral infections: the example of the Middle East respiratory syndrome epidemic. J Microbiol 2017; 55:172-182. [PMID: 28243939 PMCID: PMC7090747 DOI: 10.1007/s12275-017-7026-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/09/2017] [Indexed: 02/07/2023]
Abstract
Rapidly emerging infectious disease outbreaks place a great strain on laboratories to develop and implement sensitive and specific diagnostic tests for patient management and infection control in a timely manner. Furthermore, laboratories also play a role in real-time zoonotic, environmental, and epidemiological investigations to identify the ultimate source of the epidemic, facilitating measures to eventually control the outbreak. Each assay modality has unique pros and cons; therefore, incorporation of a battery of tests using traditional culture-based, molecular and serological diagnostics into diagnostic algorithms is often required. As such, laboratories face challenges in assay development, test evaluation, and subsequent quality assurance. In this review, we describe the different testing modalities available for the ongoing Middle East respiratory syndrome (MERS) epidemic including cell culture, nucleic acid amplification, antigen detection, and antibody detection assays. Applications of such tests in both acute clinical and epidemiological investigation settings are highlighted. Using the MERS epidemic as an example, we illustrate the various challenges faced by laboratories in test development and implementation in the setting of a rapidly emerging infectious disease. Future directions in the diagnosis of MERS and other emerging infectious disease investigations are also highlighted.
Collapse
Affiliation(s)
- Jasper F W Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China
| | - Siddharth Sridhar
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China
| | - Cyril C Y Yip
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China
| | - Susanna K P Lau
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China
| | - Patrick C Y Woo
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China.
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China.
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China.
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China.
| |
Collapse
|
38
|
Biological characterization of highly pathogenic avian influenza H5N1 viruses that infected humans in Egypt in 2014-2015. Arch Virol 2016; 162:687-700. [PMID: 27864633 DOI: 10.1007/s00705-016-3137-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/26/2016] [Indexed: 01/25/2023]
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 influenza viruses emerged as a human pathogen in 1997 with expected potential to undergo sustained human-to-human transmission and pandemic viral spread. HPAI H5N1 is endemic in Egyptian poultry and has caused sporadic human infection. The first outbreak in early 2006 was caused by clade 2.2 viruses that rapidly evolved genetically and antigenically. A sharp increase in the number of human cases was reported in Egypt in the 2014/2015 season. In this study, we analyzed and characterized three isolates of HPAI H5N1 viruses isolated from infected humans in Egypt in 2014/2015. Phylogenetic analysis demonstrated that the nucleotide sequences of eight segments of the three isolates were clustered with those of members of clade 2.2.1.2. We also found that the human isolates from 2014/2015 had a slight, non-significant difference in their affinity for human-like sialic acid receptors. In contrast, they showed significant differences in their replication kinetics in MDCK, MDCK-SIAT, and A549 cells as well as in embryonated chicken eggs. An antiviral bioassay study revealed that all of the isolates were susceptible to amantadine. Therefore, further investigation and monitoring is required to correlate the genetic and/or antigenic changes of the emerging HPAI H5N1 viruses with possible alteration in their characteristics and their potential to become a further threat to public health.
Collapse
|
39
|
Pushko P, Sun X, Tretyakova I, Hidajat R, Pulit-Penaloza JA, Belser JA, Maines TR, Tumpey TM. Mono- and quadri-subtype virus-like particles (VLPs) containing H10 subtype elicit protective immunity to H10 influenza in a ferret challenge model. Vaccine 2016; 34:5235-5242. [PMID: 27663671 DOI: 10.1016/j.vaccine.2016.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 10/21/2022]
Abstract
Avian-origin influenza represents a global public health concern. In 2013, the H10N8 virus caused documented human infections for the first time. Currently, there is no approved vaccine against H10 influenza. Recombinant virus-like particles (VLPs) represent a promising vaccine approach. In this study, we evaluated H10 VLPs containing hemagglutinin from H10N8 virus as an experimental vaccine in a ferret challenge model. In addition, we evaluated quadri-subtype VLPs co-localizing H5, H7, H9 and H10 subtypes. Both vaccines elicited serum antibody that reacted with the homologous H10 derived from H10N8 virus and cross-reacted with the heterologous H10N1 virus. Quadri-subtype vaccine also elicited serum antibody to the homologous H5, H7, and H9 antigens and cross-reacted with multiple clades of H5N1 virus. After heterologous challenge with the H10N1 virus, all vaccinated ferrets showed significantly reduced titers of replicating virus in the respiratory tract indicating protective effect of vaccination with either H10 VLPs or with quadri-subtype VLPs.
Collapse
Affiliation(s)
- Peter Pushko
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA.
| | - Xiangjie Sun
- Influenza Division, Centers for Disease Control and Prevention, 1600 Clifton Road N.E., Atlanta, GA, USA
| | - Irina Tretyakova
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA
| | - Rachmat Hidajat
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA
| | - Joanna A Pulit-Penaloza
- Influenza Division, Centers for Disease Control and Prevention, 1600 Clifton Road N.E., Atlanta, GA, USA
| | - Jessica A Belser
- Influenza Division, Centers for Disease Control and Prevention, 1600 Clifton Road N.E., Atlanta, GA, USA
| | - Taronna R Maines
- Influenza Division, Centers for Disease Control and Prevention, 1600 Clifton Road N.E., Atlanta, GA, USA
| | - Terrence M Tumpey
- Influenza Division, Centers for Disease Control and Prevention, 1600 Clifton Road N.E., Atlanta, GA, USA
| |
Collapse
|
40
|
The S128N mutation combined with an additional potential N-linked glycosylation site at residue 133 in hemagglutinin affects the antigenicity of the human H7N9 virus. Emerg Microbes Infect 2016; 5:e66. [PMID: 27381217 PMCID: PMC4972904 DOI: 10.1038/emi.2016.66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/17/2016] [Accepted: 04/05/2016] [Indexed: 11/09/2022]
|
41
|
Chan CM, Chu H, Zhang AJ, Leung LH, Sze KH, Kao RYT, Chik KKH, To KKW, Chan JFW, Chen H, Jin DY, Liu L, Yuen KY. Hemagglutinin of influenza A virus binds specifically to cell surface nucleolin and plays a role in virus internalization. Virology 2016; 494:78-88. [PMID: 27085069 DOI: 10.1016/j.virol.2016.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 01/09/2023]
Abstract
The hemagglutinin (HA) protein of influenza A virus initiates cell entry by binding to sialic acids on target cells. In the current study, we demonstrated that in addition to sialic acids, influenza A/Puerto Rico/8/34 H1N1 (PR8) virus HA specifically binds to cell surface nucleolin (NCL). The interaction between HA and NCL was initially revealed with virus overlay protein binding assay (VOPBA) and subsequently verified with co-immunoprecipitation. Importantly, inhibiting cell surface NCL with NCL antibody, blocking PR8 viruses with purified NCL protein, or depleting endogenous NCL with siRNA all substantially reduced influenza virus internalization. We further demonstrated that NCL was a conserved cellular factor required for the entry of multiple influenza A viruses, including H1N1, H3N2, H5N1, and H7N9. Overall, our findings identified a novel role of NCL in influenza virus life cycle and established NCL as one of the host cell surface proteins for the entry of influenza A virus.
Collapse
Affiliation(s)
- Che-Man Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Department of Microbiology, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Department of Microbiology, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Anna Jinxia Zhang
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Department of Microbiology, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Kong-Hung Sze
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Department of Microbiology, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Richard Yi-Tsun Kao
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Department of Microbiology, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Kenn Ka-Heng Chik
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Department of Microbiology, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Department of Microbiology, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Honglin Chen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Department of Microbiology, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Dong-Yan Jin
- Department of Biochemistry, The University of Hong Kong, Hong Kong, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Department of Microbiology, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
42
|
Features of human-infecting avian influenza viruses and mammalian adaptations. J Infect 2016; 73:95-7. [DOI: 10.1016/j.jinf.2016.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 02/15/2016] [Indexed: 11/18/2022]
|
43
|
To KKW, Mok KY, Chan ASF, Cheung NN, Wang P, Lui YM, Chan JFW, Chen H, Chan KH, Kao RYT, Yuen KY. Mycophenolic acid, an immunomodulator, has potent and broad-spectrum in vitro antiviral activity against pandemic, seasonal and avian influenza viruses affecting humans. J Gen Virol 2016; 97:1807-1817. [PMID: 27259985 DOI: 10.1099/jgv.0.000512] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Immunomodulators have been shown to improve the outcome of severe pneumonia. We have previously shown that mycophenolic acid (MPA), an immunomodulator, has antiviral activity against influenza A/WSN/1933(H1N1) using a high-throughput chemical screening assay. This study further investigated the antiviral activity and mechanism of action of MPA against contemporary clinical isolates of influenza A and B viruses. The 50 % cellular cytotoxicity (CC50) of MPA in Madin Darby canine kidney cell line was over 50 µM. MPA prevented influenza virus-induced cell death in the cell-protection assay, with significantly lower IC50 for influenza B virus B/411 than that of influenza A(H1N1)pdm09 virus H1/415 (0.208 vs 1.510 µM, P=0.0001). For H1/415, MPA interfered with the early stage of viral replication before protein synthesis. For B/411, MPA may also act at a later stage since MPA was active against B/411 even when added 12 h post-infection. Virus-yield reduction assay showed that the replication of B/411 was completely inhibited by MPA at concentrations ≥0.78 µM, while there was a dose-dependent reduction of viral titer for H1/415. The antiviral effect of MPA was completely reverted by guanosine supplementation. Plaque reduction assay showed that MPA had antiviral activity against eight different clinical isolates of A(H1N1), A(H3N2), A(H7N9) and influenza B viruses (IC50 <1 µM). In summary, MPA has broad-spectrum antiviral activity against human and avian-origin influenza viruses, in addition to its immunomodulatory activity. Together with a high chemotherapeutic index, the use of MPA as an antiviral agent should be further investigated in vivo.
Collapse
Affiliation(s)
- Kelvin K W To
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Ka-Yi Mok
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Andy S F Chan
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Nam N Cheung
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Pui Wang
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Yin-Ming Lui
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Jasper F W Chan
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Honglin Chen
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, 310003 Hangzhou, P. R. China.,Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Kwok-Hung Chan
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Richard Y T Kao
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Kwok-Yung Yuen
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, 310003 Hangzhou, P. R. China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| |
Collapse
|
44
|
Chan JFW, Choi GKY, Yip CCY, Cheng VCC, Yuen KY. Zika fever and congenital Zika syndrome: An unexpected emerging arboviral disease. J Infect 2016; 72:507-24. [PMID: 26940504 PMCID: PMC7112603 DOI: 10.1016/j.jinf.2016.02.011] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 02/18/2016] [Accepted: 02/20/2016] [Indexed: 02/09/2023]
Abstract
Unlike its mosquito-borne relatives, such as dengue, West Nile, and Japanese encephalitis viruses, which can cause severe human diseases, Zika virus (ZIKV) has emerged from obscurity by its association with a suspected "congenital Zika syndrome", while causing asymptomatic or mild exanthematous febrile infections which are dengue- or rubella-like in infected individuals. Despite having been discovered in Uganda for almost 60 years, <20 human cases were reported before 2007. The massive epidemics in the Pacific islands associated with the ZIKV Asian lineage in 2007 and 2013 were followed by explosive outbreaks in Latin America in 2015. Although increased mosquito breeding associated with the El Niño effect superimposed on global warming is suspected, genetic changes in its RNA virus genome may have led to better adaptation to mosquitoes, other animal reservoirs, and human. We reviewed the epidemiology, clinical manifestation, virology, pathogenesis, laboratory diagnosis, management, and prevention of this emerging infection. Laboratory diagnosis can be confounded by cross-reactivity with other circulating flaviviruses. Besides mosquito bite and transplacental transmission, the risk of other potential routes of transmission by transfusion, transplantation, sexual activity, breastfeeding, respiratory droplet, and animal bite is discussed. Epidemic control requires adequate clearance of mosquito breeding grounds, personal protection against mosquito bite, and hopefully a safe and effective vaccine.
Collapse
Affiliation(s)
- Jasper F W Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Garnet K Y Choi
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Cyril C Y Yip
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Vincent C C Cheng
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
45
|
Wu H, Peng X, Peng X, Cheng L, Jin C, Lu X, Xie T, Yao H, Wu N. Multiple amino acid substitutions involved in the adaptation of avian-origin influenza A (H10N7) virus in mice. Arch Virol 2016; 161:977-980. [PMID: 26699787 DOI: 10.1007/s00705-015-2722-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/10/2015] [Indexed: 11/29/2022]
Abstract
To identify substitutions that are possibly associated with the adaptation of avian-origin H10N7 virus to mammals, adaptation of the H10N7 virus in mouse lung was carried out by serial lung-to-lung passage. Genomic analysis of the mouse-adapted virus revealed amino acid changes in the PB2 (E627K), PA (T97I), and HA (G409E) proteins, and this virus was more virulent in mice than the wild-type virus. Our results suggest that these substitutions are involved in the enhancement of the replication efficiency of avian-origin H10N7 virus, resulting in severe disease in mice. Continued poultry surveillance of these substitutions in H10N7 viruses is required.
Collapse
Affiliation(s)
- Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Xiuming Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Xiaorong Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Linfang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Changzhong Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Xiangyun Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Tiansheng Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
46
|
Dixit R, Herz J, Dalton R, Booy R. Benefits of using heterologous polyclonal antibodies and potential applications to new and undertreated infectious pathogens. Vaccine 2016; 34:1152-61. [PMID: 26802604 PMCID: PMC7131169 DOI: 10.1016/j.vaccine.2016.01.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND Passive immunotherapy using polyclonal antibodies (immunoglobulins) has been used for over a century in the treatment and post-exposure prophylaxis of various infections and toxins. Heterologous polyclonal antibodies are obtained from animals hyperimmunised with a pathogen or toxin. AIMS The aims of this review are to examine the history of animal polyclonal antibody therapy use, their development into safe and effective products and the potential application to humans for emerging and neglected infectious diseases. METHODS A literature search of OVID Medline and OVID Embase databases was undertaken to identify articles on the safety, efficacy and ongoing development of polyclonal antibodies. The search contained database-specific MeSH and EMTREE terms in combination with pertinent text-words: polyclonal antibodies and rare/neglected diseases, antivenins, immunoglobulins, serum sickness, anaphylaxis, drug safety, post marketing surveillance, rabies, human influenza, Dengue, West Nile, Nipah, Hendra, Marburg, MERS, Hemorrhagic Fever Virus, and Crimean-Congo. No language limits were applied. The final search was completed on 20.06.2015. Of 1960 articles, title searches excluded many irrelevant articles, yielding 303 articles read in full. Of these, 179 are referenced in this study. RESULTS Serum therapy was first used in the 1890s against diphtheria. Early preparation techniques yielded products contaminated with reactogenic animal proteins. The introduction of enzymatic digestion, and purification techniques substantially improved their safety profile. The removal of the Fc fragment of antibodies further reduces hypersensitivity reactions. Clinical studies have demonstrated the efficacy of polyclonal antibodies against various infections, toxins and venoms. Products are being developed against infections for which prophylactic and therapeutic options are currently limited, such as avian influenza, Ebola and other zoonotic viruses. CONCLUSIONS Polyclonal antibodies have been successfully applied to rabies, envenomation and intoxication. Polyclonal production provides an exciting opportunity to revolutionise the prognosis of both longstanding neglected tropical diseases as well as emerging infectious threats to humans.
Collapse
Affiliation(s)
- Rashmi Dixit
- The Children's Hospital, Westmead, Sydney, Australia.
| | | | | | - Robert Booy
- The Children's Hospital, Westmead, Sydney, Australia
| |
Collapse
|
47
|
Millman AJ, Havers F, Iuliano AD, Davis CT, Sar B, Sovann L, Chin S, Corwin AL, Vongphrachanh P, Douangngeun B, Lindblade KA, Chittaganpitch M, Kaewthong V, Kile JC, Nguyen HT, Pham DV, Donis RO, Widdowson MA. Detecting Spread of Avian Influenza A(H7N9) Virus Beyond China. Emerg Infect Dis 2016; 21:741-9. [PMID: 25897654 PMCID: PMC4412232 DOI: 10.3201/eid2105.141756] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
This virus is unlikely to have spread substantially among humans in Vietnam, Thailand, Cambodia, and Laos. During February 2013–March 2015, a total of 602 human cases of low pathogenic avian influenza A(H7N9) were reported; no autochthonous cases were reported outside mainland China. In contrast, since highly pathogenic avian influenza A(H5N1) reemerged during 2003 in China, 784 human cases in 16 countries and poultry outbreaks in 53 countries have been reported. Whether the absence of reported A(H7N9) outside mainland China represents lack of spread or lack of detection remains unclear. We compared epidemiologic and virologic features of A(H5N1) and A(H7N9) and used human and animal influenza surveillance data collected during April 2013–May 2014 from 4 Southeast Asia countries to assess the likelihood that A(H7N9) would have gone undetected during 2014. Surveillance in Vietnam and Cambodia detected human A(H5N1) cases; no A(H7N9) cases were detected in humans or poultry in Southeast Asia. Although we cannot rule out the possible spread of A(H7N9), substantial spread causing severe disease in humans is unlikely.
Collapse
|
48
|
Tretyakova I, Hidajat R, Hamilton G, Horn N, Nickols B, Prather RO, Tumpey TM, Pushko P. Preparation of quadri-subtype influenza virus-like particles using bovine immunodeficiency virus gag protein. Virology 2016; 487:163-71. [PMID: 26529299 PMCID: PMC4679414 DOI: 10.1016/j.virol.2015.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/02/2015] [Accepted: 10/03/2015] [Indexed: 01/13/2023]
Abstract
Influenza VLPs comprised of hemagglutinin (HA), neuraminidase (NA), and matrix (M1) proteins have been previously used for immunological and virological studies. Here we demonstrated that influenza VLPs can be made in Sf9 cells by using the bovine immunodeficiency virus gag (Bgag) protein in place of M1. We showed that Bgag can be used to prepare VLPs for several influenza subtypes including H1N1 and H10N8. Furthermore, by using Bgag, we prepared quadri-subtype VLPs, which co-expressed within the VLP the four HA subtypes derived from avian-origin H5N1, H7N9, H9N2 and H10N8 viruses. VLPs showed hemagglutination and neuraminidase activities and reacted with specific antisera. The content and co-localization of each HA subtype within the quadri-subtype VLP were evaluated. Electron microscopy showed that Bgag-based VLPs resembled influenza virions with the diameter of 150-200nm. This is the first report of quadri-subtype design for influenza VLP and the use of Bgag for influenza VLP preparation.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Cell Line
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Immunodeficiency Virus, Bovine/genetics
- Immunodeficiency Virus, Bovine/immunology
- Influenza A Virus, H10N8 Subtype/genetics
- Influenza A Virus, H10N8 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H7N9 Subtype/genetics
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza A Virus, H9N2 Subtype/genetics
- Influenza A Virus, H9N2 Subtype/immunology
- Insecta
- Neuraminidase/immunology
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
- Sf9 Cells
- Spodoptera
- Vaccines, Virus-Like Particle/immunology
Collapse
Affiliation(s)
| | - Rachmat Hidajat
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD, USA
| | | | - Noah Horn
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD, USA
| | - Brian Nickols
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD, USA
| | | | - Terrence M Tumpey
- Influenza Division, Centers for Disease Control and Prevention, 1600 Clifton Road N.E., Atlanta, GA, USA
| | - Peter Pushko
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD, USA.
| |
Collapse
|
49
|
To KKW, Hung IFN, Lui YM, Mok FKY, Chan ASF, Li PTW, Wong TL, Ho DTY, Chan JFW, Chan KH, Yuen KY. Ongoing transmission of avian influenza A viruses in Hong Kong despite very comprehensive poultry control measures: A prospective seroepidemiology study. J Infect 2015; 72:207-13. [PMID: 26632329 DOI: 10.1016/j.jinf.2015.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 10/03/2015] [Accepted: 10/20/2015] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Stringent measures have been implemented in Hong Kong to prevent human infections due to avian influenza viruses (AIVs). Here, we report the seroprevalence of AIVs among high risk population. METHODS In this prospective study, blood samples were collected in October and November 2013 and in July 2014 from workers at live poultry market (LPM) and pig/cattle slaughterhouse (SH) in Hong Kong. Serum antibody titers against A(H5N1), A(H7N9) and A(H9N2) were determined. RESULTS When an hemagglutination inhibition (HI) titer of 40 was used as the cutoff, the A(H5N1) seropositive rate among LPM workers increased from 0% in 2013 to 37.8% in 2014 (P < 0.001) and the A(H9N2) seropositive rate increased from 10% to 55.6% (P < 0.001). There was no significant increase in A(H7N9) seropositive rate for LPM workers irrespective of cutoff titer. For SH workers, there was no significant increase in HI titer for any AIVs. Significantly more LPM workers had a ≥4-fold increase in A(H5N1) HI titer from 2013 to 2014 than SH workers (60% vs 8.3%, P = 0.020). CONCLUSIONS There was a significant increase of serum A(H5N1) and A(H9N2) HI titers among Hong Kong LPM workers between 2013 and 2014. Although we cannot exclude some degree of antibody cross-reactivity with other influenza viruses, our results suggest the occurrence of subclinical AIV infections in this population.
Collapse
Affiliation(s)
- Kelvin K W To
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Ivan F N Hung
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yin-Ming Lui
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Florence K Y Mok
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Andy S F Chan
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Patrick T W Li
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Tin-Lun Wong
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Deborah T Y Ho
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Jasper F W Chan
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Kwok-Hung Chan
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; Department of Microbiology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
50
|
Luo S, Xie Z, Xie L, Liu J, Xie Z, Deng X, Huang L, Huang J, Zeng T, Khan MI. Reverse-transcription, loop-mediated isothermal amplification assay for the sensitive and rapid detection of H10 subtype avian influenza viruses. Virol J 2015; 12:145. [PMID: 26377809 PMCID: PMC4574065 DOI: 10.1186/s12985-015-0378-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/07/2015] [Indexed: 12/02/2022] Open
Abstract
Background The H10 subtype avian influenza viruses (H10N4, H10N5 and H10N7) have been reported to cause disease in mammals, and the first human case of H10N8 subtype avian influenza virus was reported in 2013. Recently, H10 subtype avian influenza viruses (AIVs) have been followed more closely, but routine diagnostic tests are tedious, less sensitive and time consuming, rapid molecular detection assays for H10 AIVs are not available. Methods Based on conserved sequences within the HA gene of the H10 subtype AIVs, specific primer sets of H10 subtype of AIVs were designed and assay reaction conditions were optimized. A reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay was established for the rapid detection of H10 subtype AIVs. The specificity was validated using multiple subtypes of AIVs and other avian respiratory pathogens, and the limit of detection (LOD) was tested using concentration gradient of in vitro-transcribed RNA. Results The established assay was performed in a water bath at 63 °C for 40 min, and the amplification result was visualized directly as well as under daylight reflections. The H10-RT-LAMP assay can specifically amplify H10 subtype AIVs and has no cross-reactivity with other subtypes AIVs or avian pathogens. The LOD of the H10-RT-LAMP assay was 10 copies per μL of in vitro-transcribed RNA. Conclusions The RT-LAMP method reported here is demonstrated to be a potentially valuable means for the detection of H10 subtype AIV and rapid clinical diagnosis, being fast, simple, and low in cost. Consequently, it will be a very useful screening assay for the surveillance of H10 subtype AIVs in underequipped laboratories as well as in field conditions.
Collapse
Affiliation(s)
- Sisi Luo
- Guangxi Key Laboratory of Animal Vaccines and New Technology, Guangxi Veterinary Research Institute, Nanning, Guangxi, 530001, P.R. China.
| | - Zhixun Xie
- Guangxi Key Laboratory of Animal Vaccines and New Technology, Guangxi Veterinary Research Institute, Nanning, Guangxi, 530001, P.R. China.
| | - Liji Xie
- Guangxi Key Laboratory of Animal Vaccines and New Technology, Guangxi Veterinary Research Institute, Nanning, Guangxi, 530001, P.R. China.
| | - Jiabo Liu
- Guangxi Key Laboratory of Animal Vaccines and New Technology, Guangxi Veterinary Research Institute, Nanning, Guangxi, 530001, P.R. China.
| | - Zhiqin Xie
- Guangxi Key Laboratory of Animal Vaccines and New Technology, Guangxi Veterinary Research Institute, Nanning, Guangxi, 530001, P.R. China.
| | - Xianwen Deng
- Guangxi Key Laboratory of Animal Vaccines and New Technology, Guangxi Veterinary Research Institute, Nanning, Guangxi, 530001, P.R. China.
| | - Li Huang
- Guangxi Key Laboratory of Animal Vaccines and New Technology, Guangxi Veterinary Research Institute, Nanning, Guangxi, 530001, P.R. China.
| | - Jiaoling Huang
- Guangxi Key Laboratory of Animal Vaccines and New Technology, Guangxi Veterinary Research Institute, Nanning, Guangxi, 530001, P.R. China.
| | - Tingting Zeng
- Guangxi Key Laboratory of Animal Vaccines and New Technology, Guangxi Veterinary Research Institute, Nanning, Guangxi, 530001, P.R. China.
| | - Mazhar I Khan
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road Storrs, Connecticut, 06269-3089, USA.
| |
Collapse
|