1
|
Lannutti L, Gisder S, Florin-Christensen M, Genersch E, Schnittger L. Development of a ptp2-LAMP assay for the specific and sensitive detection of Nosema apis and its comparison with ptp3-LAMP for the detection of Nosema ceranae, in a region endemic for both microsporidium pathogens of the Western honey bee. Int J Parasitol 2025:S0020-7519(25)00063-3. [PMID: 40194691 DOI: 10.1016/j.ijpara.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/18/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025]
Abstract
The Western honey bee plays a pivotal role in global food security as the primary commercial pollinator. The microsporidian pathogens Nosema apis and Nosema ceranae infect the bee midgut, causing nosemosis, a debilitating infectious disease that results in considerable economic losses in apiculture. Traditionally, Nosema spp. infection is diagnosed by microscopic detection and quantification of spores. However, only molecular diagnostics allow differentiation between N. apis and N. ceranae. Loop-mediated isothermal amplification (LAMP) is a rapid, highly specific, and sensitive DNA detection method. The present study aimed to develop a LAMP protocol for N. apis based on the species-specific single copy polar tube protein 2 (ptp2) gene, and to analyze and compare its diagnostic performance with the previously developed polar tube protein 3 (ptp3) gene-based LAMP protocol for N. ceranae. The ptp2- and ptp3-LAMP assays specifically identified N. apis and N. ceranae, respectively. Their analytical sensitivity was tested using serial dilutions of plasmid and genomic DNA, demonstrating that ptp2- and ptp3-LAMP consistently detected down to 103ptp2 and 104ptp3-gene copies, respectively. Amplification was verified by agarose gel electrophoresis (conventional format), and by a change from pink to yellow color after addition of a suitable dye (colorimetric format). The ptp2- and ptp3-LAMP assays and a reference duplex PCR were applied to a panel of field samples (n = 55) from a region endemic for both Nosema spp. Conventional and colorimetric ptp2-LAMP showed an almost perfect test agreement (kappa value > 0.81) compared with duplex PCR. Conventional and colorimetric ptp3-LAMP assays showed a substantial (kappa value > 0.60) and almost perfect test agreement (kappa value > 0.81), respectively. The ptp2- and ptp3-LAMP assays provide excellent performance, ease of implementation, cost savings, and rapid execution, making them ideal choices for molecular detection and differentiation of N. apis and N. ceranae.
Collapse
Affiliation(s)
- Lucas Lannutti
- Escuela Superior de Ciencias Exactas y Naturales (ESCEyN), Universidad de Morón, Morón, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Department of Molecular Microbiology and Bee Diseases, Institute for Bee Research, Hohen Neuendorf, Germany
| | - Sebastian Gisder
- Department of Molecular Microbiology and Bee Diseases, Institute for Bee Research, Hohen Neuendorf, Germany
| | - Mónica Florin-Christensen
- Escuela Superior de Ciencias Exactas y Naturales (ESCEyN), Universidad de Morón, Morón, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Instituto de Patobiología Veterinaria (IPVET), CICVyA, INTA-Castelar, Hurlingham, Buenos Aires, Argentina
| | - Elke Genersch
- Department of Molecular Microbiology and Bee Diseases, Institute for Bee Research, Hohen Neuendorf, Germany
| | - Leonhard Schnittger
- Escuela Superior de Ciencias Exactas y Naturales (ESCEyN), Universidad de Morón, Morón, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Instituto de Patobiología Veterinaria (IPVET), CICVyA, INTA-Castelar, Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Ocaña-Cabrera JS, Martin-Solano S, Saegerman C. Environmental Sources of Possible Associated Pathogens and Contaminants of Stingless Bees in the Neotropics. INSECTS 2025; 16:350. [PMID: 40332795 PMCID: PMC12027748 DOI: 10.3390/insects16040350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/08/2025] [Accepted: 03/24/2025] [Indexed: 05/08/2025]
Abstract
Stingless bees are crucial for pollination and support diverse ecological relationships, offering economic benefits and contributing to enhanced crop yields. Their tropical pollinator status makes them highly sensitive to environmental changes and disruptions, which could affect their survival, as well as to pathogens that threaten their health. The lack of comprehensive research and the scattering of reports make it difficult to identify pathogens and contaminants. This review aims to provide an overview of diseases in stingless bees, examine chemical contaminants in their products, and explore threatened sources. Using the PRISMA flowchart, a total of 30 articles from 2009 to 2024 concerning pathogens and contaminants in stingless bees were retrieved. A total of 15 pathogens and 26 pollutants affect life expectancy and survival rate of stingless bees (mainly the genera Melipona and Tetragonisca) were identified in five major areas of the Neotropics, including Brazil, Mexico, Costa Rica, Australia, and Asia. Studies indicated that the bacterial genera Pseudomonas, Melissococcus, and Lysinibacillus are affecting the survival of stingless bees, particularly their brood, and contributing to annual colony deaths. Heavy metals, polycyclic aromatic hydrocarbons (PAHs), and microplastics have been detected in by-products of stingless bees, especially honey. Epidemiological research is crucial, including studies on pathogens associated with diseases, the effects of contaminants on bees, and the development of quality guidelines for stingless-bee products.
Collapse
Affiliation(s)
- Joseline Sofía Ocaña-Cabrera
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiège), Fundamental and Applied Research for Animal and Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 6, B43a, Sart-Tilman, 4000 Liege, Belgium;
| | - Sarah Martin-Solano
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui S/N, Sangolquí 171103, Ecuador;
| | - Claude Saegerman
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiège), Fundamental and Applied Research for Animal and Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 6, B43a, Sart-Tilman, 4000 Liege, Belgium;
| |
Collapse
|
3
|
Izquierdo F, Fernández Vadillo C, Fenoy S, Hurtado-Marcos C, Magnet A, Higes M, Martín-Hernández R, Del Aguila C. Production and characterization of monoclonal antibodies for specific detection of Nosema ceranae and Nosema apis in beehive samples. Int J Parasitol 2025; 55:163-172. [PMID: 39638107 DOI: 10.1016/j.ijpara.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Two microsporidian species infect honeybees worldwide, Nosema apis and Nosema ceranae. Two different clinical patterns are considered: nosemosis type A (N. apis) and nosemosis type C (N. ceranae). Nosemosis type A is characterized in acute forms and nosemosis type C shows no clear outward clinical signs. The development of a rapid and simple tool for Nosema detection could allow beekeepers or veterinarians to carry out diagnostic tests in situ. Currently, PCR and microscopy are expensive techniques that require qualified staff and may not be available in every laboratory. The present study describes the production and characterization of four monoclonal antibodies (mAbs) against N. ceranae and N. apis, and the development of an IFAT. An IFAT using the mAbs was compared with microscopy and PCR for 180 beehive samples. The diagnostic test revealed similar sensitivity and specificity percentages to IFAT (97.79% and 93.18%, respectively) and microscopy (97.79% and 95.45%), considering 100% for the PCR as the 'gold standard'. A mAb (7D2) was patented for its high specificity for N. ceranae. The IFAT using the mAbs is a good alternative to microscopy and PCR in laboratories where PCR is not available for the detection and identification of both Nosema spp.
Collapse
Affiliation(s)
- Fernando Izquierdo
- Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Carmen Fernández Vadillo
- Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Soledad Fenoy
- Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Carolina Hurtado-Marcos
- Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Angela Magnet
- Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Mariano Higes
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180 Marchamalo, Spain
| | - Raquel Martín-Hernández
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180 Marchamalo, Spain
| | - Carmen Del Aguila
- Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain.
| |
Collapse
|
4
|
Camenzind DW, Bruckner S, Neumann P, Van Oystaeyen A, Strobl V, Williams GR, Straub L. Microsporidian parasite impairs colony fitness in bumblebees. Open Biol 2025; 15:240304. [PMID: 39999878 PMCID: PMC11858756 DOI: 10.1098/rsob.240304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Emerging infectious diseases can have a major impact on fitness of novel hosts, thereby contributing to ongoing species declines. In social insects, collaborative brood care by workers and successful mating of male sexuals are key to colony fitness. The microsporidian endoparasite Nosema ceranae has spread almost globally, shifting across honeybee species and now to bumblebees. However, despite N. ceranae being linked to recent population declines, its possible impact on bumblebee colony fitness remains poorly understood. Here, we show that N. ceranae infections can significantly impact Bombus terrestris worker feeding glands, as well as longevity, sperm quality and mating abilities of drones. In the laboratory, workers and drones were either exposed to the parasite or not. Then, parasite infection rates and loads, as well as lethal and sublethal parameters, were assessed. Infected drones revealed higher parasite infection rates and spore titres, as well as mortality compared with female workers, suggesting sex-specific susceptibility. Furthermore, infections impaired feeding glands, affected sperm traits and altered mating behaviour, all of which are key to colony fitness. Our findings provide a mechanistic explanation on how N. ceranae contributes to the ongoing decline of wild bumblebee populations, calling for respective mitigation measures.
Collapse
Affiliation(s)
- Domenic W. Camenzind
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Selina Bruckner
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | | | - Verena Strobl
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Geoffrey R. Williams
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Department of Biological Sciences, Centre for Ecology, Evolution and Behaviour, Royal Holloway University of London, Egham, UK
| |
Collapse
|
5
|
Chen H, Bashir NH, Li Q, Liu C, Naeem M, Wang H, Gao W, Corlett RT, Liu C, Vidal MC. The Role of Pathogens in Bumblebee Decline: A Review. Pathogens 2025; 14:94. [PMID: 39861055 PMCID: PMC11768362 DOI: 10.3390/pathogens14010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/12/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Bumblebees, the most important wild pollinators in both agricultural and natural ecosystems, are declining worldwide. The global decline of bumblebees may threaten biodiversity, pollination services, and, ultimately, agricultural productivity. Several factors, including pesticide usage, climate change, habitat loss, and species invasion, have been documented in the decline of bumblebee species, but recent studies have revealed the dominating role of pathogens and parasites over any of these causes. Unfortunately, there is a lack of a full understanding of the role of pathogens and parasites in the decline of bumblebee species. The current study provides a comprehensive review of how pathogens and parasites contribute to the decline of bumblebee species. The study also explores the prevalence of each pathogen and parasite within bumblebee populations. Furthermore, we address the synergistic effects of pathogens and other stressors, such as pesticides, climatic effects, and habitat loss, on bumblebee populations. To summarize, we propose possible conservation and management strategies to preserve the critical role of bumblebees in pollination services and thus to support ecosystem and agricultural health.
Collapse
Affiliation(s)
- Huanhuan Chen
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (H.C.); (N.H.B.); (Q.L.); (M.N.); (H.W.); (W.G.)
- Key Laboratory of Yunnan Provincial Department of Education of the Deep-Time Evolution on Biodiversity from the Origin of the Pearl River, Qujing Normal University, Qujing, 655011, China
- Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nawaz Haider Bashir
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (H.C.); (N.H.B.); (Q.L.); (M.N.); (H.W.); (W.G.)
| | - Qiang Li
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (H.C.); (N.H.B.); (Q.L.); (M.N.); (H.W.); (W.G.)
- Key Laboratory of Yunnan Provincial Department of Education of the Deep-Time Evolution on Biodiversity from the Origin of the Pearl River, Qujing Normal University, Qujing, 655011, China
| | - Chao Liu
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (H.C.); (N.H.B.); (Q.L.); (M.N.); (H.W.); (W.G.)
| | - Muhammad Naeem
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (H.C.); (N.H.B.); (Q.L.); (M.N.); (H.W.); (W.G.)
| | - Haohan Wang
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (H.C.); (N.H.B.); (Q.L.); (M.N.); (H.W.); (W.G.)
| | - Wenrong Gao
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (H.C.); (N.H.B.); (Q.L.); (M.N.); (H.W.); (W.G.)
| | - Richard T. Corlett
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China;
| | - Cong Liu
- Biology Department, University of Massachusetts Boston, Boston, MA 02125, USA;
- Department of Organismic and Evolutional Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Mayra C. Vidal
- Biology Department, University of Massachusetts Boston, Boston, MA 02125, USA;
| |
Collapse
|
6
|
Mojgani N, Bagheri M, Ashique S, Islam A, Moharrami M, Modirrousta H, Hussain A. Honeybee defense mechanisms: Role of honeybee gut microbiota and antimicrobial peptides in maintaining colony health and preventing diseases. Microb Pathog 2025; 198:107161. [PMID: 39603566 DOI: 10.1016/j.micpath.2024.107161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/20/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Honeybees play a vital role in pollination and the maintenance of ecosystem biodiversity, making their health and well-being crucial for agriculture and environmental sustainability. Bee health is modulated by symbiotic microorganisms colonizing the gut in balanced proportions. Studies have demonstrated that these beneficial bacteria have the capacity to enhance the immune system of honey bees, having substantial impact on regulating their immunological responses and hence aiding in defending against pathogenic illnesses. Another important aspect of honeybee health is their innate immune system that is related to their ability to synthesize antimicrobial peptides (AMP). AMPs, the small, cationic peptides are the humoral effector molecules that are synthesized in the hemolymph of the insects after being exposed to microbial infectious agents. A number of honeybee's gut microbiota especially Lactic Acid Bacteria (LAB), are known to regulate the production of several AMPs and hence are able to provide protection to these insects against a number of disease agents by modulating their innate immune response via induction of the AMPs genes. These AMPs mainly produced by adult workers are an important and integral part of an insect's immune response. Several AMPs namely apidaecins, abaecins, hymenoptaecins and defensins produced in the adult honeybee, hold the ability to control or prevent a number of diseases in these pollinator insects.
Collapse
Affiliation(s)
- Naheed Mojgani
- Razi Vaccine and Serum Research Institute- Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Masoumeh Bagheri
- Razi Vaccine and Serum Research Institute- Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Sumel Ashique
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Anas Islam
- Faculty of Pharmacy, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Mojtaba Moharrami
- Razi Vaccine and Serum Research Institute- Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Hossein Modirrousta
- Razi Vaccine and Serum Research Institute- Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Abrar Hussain
- H.E.J Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
7
|
Qi Y, Wang C, Lang H, Wang Y, Wang X, Zheng H, Lu Y. Liposome-based RNAi delivery in honeybee for inhibiting parasite Nosema ceranae. Synth Syst Biotechnol 2024; 9:853-860. [PMID: 39139857 PMCID: PMC11320372 DOI: 10.1016/j.synbio.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/14/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Nosema ceranae, a parasite that parasitizes and reproduces in the gut of honeybees, has become a serious threat to the global apiculture industry. RNA interference (RNAi) technology can be used to inhibit N. ceranae growth by targeting silencing the thioredoxin reductase (TrxR) in N. ceranae. However, suitable carriers are one of the reasons limiting the application of RNAi due to the easy degradation of dsRNA in honeybees. As a vesicle composed of a lipid bilayer, liposomes are a good carrier for nucleic acid delivery, but studies in honeybees are lacking. In this study, liposomes were used for double-stranded RNA (dsRNA) dsTrxR delivery triggering RNAi to inhibit the N. ceranae growth in honeybees. Compared to naked dsTrxR, liposome-dsTrxR reduced N. ceranae numbers in the midgut and partially restored midgut morphology without affecting bee survival and gut microbial composition. The results of this study confirmed that liposomes could effectively protect dsRNA from entering the honeybee gut and provide a reference for using RNAi technology to suppress honeybee pests and diseases.
Collapse
Affiliation(s)
- Yue Qi
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Chen Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Haoyu Lang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yueyi Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Xiaofei Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
8
|
Fan X, Zhao H, Zang H, Dong S, Qiu J, Song Y, Li K, Jiang H, Wu Y, Lü Y, Zhou D, Fu Z, Chen D, Guo R. Extensive influence of microsporidian infection on sucrose solution consumption, antioxidant enzyme activity, cell structure, and lifespan of Asian honeybees. Front Immunol 2024; 15:1404766. [PMID: 39628478 PMCID: PMC11611804 DOI: 10.3389/fimmu.2024.1404766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/30/2024] [Indexed: 12/06/2024] Open
Abstract
Apis cerana is the original host of Vairimorpha (Nosema) ceranae, a widespread fungal parasite that causes bee nosemosis, which severely threatens the health of bee colonies and the sustainable development of the apiculture industry. To evaluate the impact of V. ceranae infection on A. c. cerana workers, V. ceranae spores were purified and used to inoculate newly emerged workers to evaluate the effects of V. ceranae infection. This was followed by an in-depth investigation of V. ceranae spore load and host sucrose solution consumption. Activities of four major antioxidant enzymes (SOD, PPO, CAT, and GST) were determined. Paraffin sections of the host midgut tissue were prepared and subjected to microscopic observation. The survival rates of V. ceranae-inoculated and uninoculated workers were analyzed. The results showed that spore load gradually increased and peaked at 12 dpi. The consumption of workers in the V. ceranae-inoculated group was extremely significant higher (P < 0.0001) than that of workers in the un-inoculated group. The results of antioxidant enzyme activity were suggestive of positive host defense via catalase (CAT) and glutathione-S-transferase (GST) in the middle stage of infection, as well as the negative fungal impact on superoxide dismutase (SOD) and polyphenol oxidase (PPO) at the whole stage of infection, reflecting the complex host-parasite interaction. Additionally, we observed a disruption in the structure of the host midgut epithelial cells. Moreover, the survival rate of workers in V. ceranae-inoculated groups was nearly always lower than that of workers in the uninoculated groups. These results demonstrate a consistent increase in spore load with the proliferation of V. ceranae, leading to persistent energetic stress and midgut epithelial cell structural damage to the host, ultimately resulting in a shortened lifespan for the host. Our findings enhance the current understanding of the interactions between A. cerana and V. ceranae as well as provide a solid basis for exploring the mechanisms underlying host response and V. ceranae infection.
Collapse
Affiliation(s)
- Xiaoxue Fan
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National & Local United Engineering Laboratory of Natural Biotoxin, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Apitherapy Research Institute of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Haodong Zhao
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - He Zang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National & Local United Engineering Laboratory of Natural Biotoxin, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Apitherapy Research Institute of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shunan Dong
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jianfeng Qiu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National & Local United Engineering Laboratory of Natural Biotoxin, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Apitherapy Research Institute of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuxuan Song
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Kunze Li
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Haibin Jiang
- Bee Pollination and Product Safety Research Laboratory, Apiculture Science Institute of Jilin Province, Jilin, Jilin, China
| | - Ying Wu
- Bee Pollination and Product Safety Research Laboratory, Apiculture Science Institute of Jilin Province, Jilin, Jilin, China
| | - Yang Lü
- Bee Research Institute, Heilongjiang Academy of Agricultural Sciences, Mudanjiang, Heilongjiang, China
| | - Dingding Zhou
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhongmin Fu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National & Local United Engineering Laboratory of Natural Biotoxin, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Apitherapy Research Institute of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Dafu Chen
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National & Local United Engineering Laboratory of Natural Biotoxin, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Apitherapy Research Institute of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Rui Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National & Local United Engineering Laboratory of Natural Biotoxin, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Apitherapy Research Institute of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
9
|
Parrella P, Elikan AB, Snow JW. Pathogen- and host-directed pharmacologic strategies for control of Vairimorpha (Nosema) spp. infection in honey bees. J Eukaryot Microbiol 2024; 71:e13026. [PMID: 38572630 DOI: 10.1111/jeu.13026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Microsporidia are obligate intracellular parasites of the Fungal Kingdom that cause widespread infections in nature, with important effects on invertebrates involved in food production systems. The two microsporidian species Vairimorpha (Nosema) ceranae (and the less common Vairimorpha (Nosema) apis) can cause individual disease in honey bees and contribute to colony collapse. The efficacy, safety, and availability of fumagillin, the only drug currently approved to treat microsporidia infection in bees, is uncertain. In this review, we will discuss some of the most promising alternative strategies for the mitigation of Vairimorpha spp. with an emphasis on infection by V. ceranae, now the dominant species infecting bees. We will focus on pharmacologic interventions where the mechanism of action is known and examine both pathogen-directed and host-directed approaches. As limiting toxicity to host cells has been especially emphasized in treating bees that are already facing numerous stressors, strategies that disrupt pathogen-specific targets may be especially advantageous. Therefore, efforts to increase the knowledge and tools for facilitating the discovery of such targets and pharmacologic agents directed against them should be prioritized.
Collapse
Affiliation(s)
- Parker Parrella
- Department of Biology, Barnard College, New York, New York, USA
| | | | - Jonathan W Snow
- Department of Biology, Barnard College, New York, New York, USA
| |
Collapse
|
10
|
Lau E, Maccaro J, McFrederick QS, Nieh JC. Exploring the interactions between Nosema ceranae infection and the honey bee gut microbiome. Sci Rep 2024; 14:20037. [PMID: 39198535 PMCID: PMC11358482 DOI: 10.1038/s41598-024-67796-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/16/2024] [Indexed: 09/01/2024] Open
Abstract
Managed colonies of the European honey bee, Apis mellifera, have faced considerable losses in recent years. A widespread contributing factor is a microsporidian pathogen, Nosema ceranae, which occurs worldwide, is increasingly resistant to antibiotic treatment, and can alter the host's immune response and nutritional uptake. These obligate gut pathogens share their environment with a natural honey bee microbiome whose composition can affect pathogen resistance. We tested the effect of N. ceranae infection on this microbiome by feeding 5 day-old adult bees that had natural, fully developed microbiomes with live N. ceranae spores (40,000 per bee) or a sham inoculation, sterile 2.0 M sucrose solution. We caged and reared these bees in a controlled lab environment and tracked their mortality over 12 d, after which we dissected them, measured their infection levels (gut spore counts), and analyzed their microbiomes. Bees fed live spores had two-fold higher mortality by 12 d and 36.5-fold more spores per bee than controls. There were also strong colony effects on infection levels, and 9% of spore-inoculated bees had no spore counts at all (defined as fed-spores-but-not-infected). Nosema ceranae infection had significant but subtle effects on the gut microbiomes of experimentally infected bees, bees with different infection levels, and fed-spores-but-not-infected vs. bees with gut spores. Specific bacteria, including Gilliamella ASVs, were positively associated with infection, indicating that multiple strains of core gut microbes either facilitate or resist N. ceranae infection. Future studies on the interactions between bacterial, pathogen, and host genotypes would be illuminating.
Collapse
Affiliation(s)
- Edmund Lau
- School of Biological Sciences, Department of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jessica Maccaro
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Quinn S McFrederick
- Department of Entomology, University of California, Riverside, CA, 92521, USA.
| | - James C Nieh
- School of Biological Sciences, Department of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
11
|
Shamaev ND, Shuralev EA, Mukminov MN. Current status of Nosema spp. infection cases in apis mellifera in eurasian countries and Ptp3 gene haplotypes in the Republic of Tatarstan, Russia. Vet Res Commun 2024; 48:2691-2698. [PMID: 38644458 DOI: 10.1007/s11259-024-10383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
The current status of Nosema spp. infections in A. mellifera throughout Eurasia was characterized using electronic databases. Although N. ceranae was predominantly detected in southwestern and south-central regions and N. apis in northwestern and north-central areas, most studies reported the occurrence of both species in Eurasia. In addition, the occurrence of Nosema spp. and Ptp3 gene haplotypes was investigated in the Republic of Tatarstan, Russia. Most of the examined honey bees were infected with both N. apis and N. ceranae. N. apis and N. ceranae isolates were either heterozygous or belonged to different strains and showed infection with more than one strain. New haplotypes were found for N. apis and N. ceranae in the Republic of Tatarstan, Russia. This study expands the data regarding existing haplotypes of Nosema species: there are currently 9 shared and 56 unique Ptp3 nucleotide sequence haplotypes of N. ceranae, and 2 shared and 7 unique haplotypes of N. apis, respectively.
Collapse
Affiliation(s)
- Nikolai D Shamaev
- Central Research Laboratory, Russian Medical Academy of Continuous Professional Education (Kazan State Medical Academy Branch), Republic of Tatarstan, 36 Butlerova St, Kazan, 420012, Russia.
- Department of Applied Ecology, Institute of Environmental Sciences, Kazan Federal University, Republic of Tatarstan, 18 Kremlyovskaya St, Kazan, 420008, Russia.
- Kazan State Medical University, Republic of Tatarstan, 49 Butlerova St, Kazan, 420012, Russia.
| | - Eduard A Shuralev
- Central Research Laboratory, Russian Medical Academy of Continuous Professional Education (Kazan State Medical Academy Branch), Republic of Tatarstan, 36 Butlerova St, Kazan, 420012, Russia
- Department of Applied Ecology, Institute of Environmental Sciences, Kazan Federal University, Republic of Tatarstan, 18 Kremlyovskaya St, Kazan, 420008, Russia
- Kazan State Academy of Veterinary Medicine named after N.E. Bauman, Republic of Tatarstan, 35 Sibirskiy tract St, 420029, Kazan, Russia
| | - Malik N Mukminov
- Central Research Laboratory, Russian Medical Academy of Continuous Professional Education (Kazan State Medical Academy Branch), Republic of Tatarstan, 36 Butlerova St, Kazan, 420012, Russia
- Department of Applied Ecology, Institute of Environmental Sciences, Kazan Federal University, Republic of Tatarstan, 18 Kremlyovskaya St, Kazan, 420008, Russia
| |
Collapse
|
12
|
Kang Y, Wu T, Han B, Yang S, Wang X, Wang Q, Gao J, Dai P. Interaction of acetamiprid, Varroa destructor, and Nosema ceranae in honey bees. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134380. [PMID: 38657514 DOI: 10.1016/j.jhazmat.2024.134380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Health of honey bees is threatened by a variety of stressors, including pesticides and parasites. Here, we investigated effects of acetamiprid, Varroa destructor, and Nosema ceranae, which act either alone or in combination. Our results suggested that interaction between the three factors was additive, with survival risk increasing as the number of stressors increased. Although exposure to 150 μg/L acetamiprid alone did not negatively impact honey bee survival, it caused severe damage to midgut tissue. Among the three stressors, V. destructor posed the greatest threat to honey bee survival, and N. ceranae exacerbated intestinal damage and increased thickness of the midgut wall. Transcriptomic analysis indicated that different combinations of stressors elicited specific gene expression responses in honey bees, and genes involved in energy metabolism, immunity, and detoxification were altered in response to multiple stressor combinations. Additionally, genes associated with Toll and Imd signalling, tyrosine metabolism, and phototransduction pathway were significantly suppressed in response to different combinations of multiple stressors. This study enhances our understanding of the adaptation mechanisms to multiple stressors and aids in development of suitable protective measures for honey bees. ENVIRONMENTAL IMPLICATION: We believe our study is environmentally relevant for the following reasons: This study investigates combined effects of pesticide, Varroa destructor, and Nosema ceranae. These stressors are known to pose a threat to long-term survival of honey bees (Apis mellifera) and stability of the ecosystems. The research provides valuable insights into the adaptive mechanisms of honey bees in response to multiple stressors and developing effective conservation strategies. Further research can identify traits that promote honey bee survival in the face of future challenges from multiple stressors to maintain the overall stability of environment.
Collapse
Affiliation(s)
- Yuxin Kang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tong Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Han
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Sa Yang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xing Wang
- Beijing Apicultural Station, Beijing, China
| | - Qiang Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jing Gao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Pingli Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
13
|
Sukkar D, Laval-Gilly P, Kanso A, Azoury S, Bonnefoy A, Falla-Angel J. A potential trade-off between offense and defense in honeybee innate immunity: Reduced phagocytosis in honeybee hemocytes correlates with a protective response after exposure to imidacloprid and amitraz. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105772. [PMID: 38458665 DOI: 10.1016/j.pestbp.2024.105772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 03/10/2024]
Abstract
Phagocytosis "offense" is a crucial process to protect the organism from diseases and the effects of foreign particles. Insects rely on the innate immune system and thus any hindrance to phagocytosis may greatly affect their resistance to diseases and response to pathogens. The European honeybee, a valuable species due to its economic and environmental contribution, is being challenged by colony collapse disorder leading to its decline. Exposure to multiple factors including pesticides like imidacloprid and amitraz may negatively alter their immune response and ultimately make them more susceptible to diseases. In this study, we compare the effect of different concentrations and mixtures of imidacloprid and amitraz with different concentrations of the immune stimulant, zymosan A. Results show that imidacloprid and amitraz have a synergistic negative effect on phagocytosis. The lowered phagocytosis induces significantly higher hemocyte viability suggesting a negatively correlated protective mechanism "defense" from pesticide-associated damage but may not be protective from pathogens.
Collapse
Affiliation(s)
- Dani Sukkar
- Université de Lorraine, INRAE, LSE, F-54000 Nancy, France; Université de Lorraine, IUT Thionville-Yutz, Plateforme de Recherche, Transfert de Technologie et Innovation (PRTI), 57970 Yutz, France; Lebanese University, Biology Department, Faculty of Sciences I, Hadath, Lebanon.
| | | | - Ali Kanso
- Lebanese University, Biology Department, Faculty of Sciences I, Hadath, Lebanon
| | - Sabine Azoury
- Université de Lorraine, INRAE, LSE, F-54000 Nancy, France; Lebanese University, Biology Department, Faculty of Sciences I, Hadath, Lebanon
| | - Antoine Bonnefoy
- Université de Lorraine, IUT Thionville-Yutz, Plateforme de Recherche, Transfert de Technologie et Innovation (PRTI), 57970 Yutz, France
| | | |
Collapse
|
14
|
Abban S, Smith B, Corona M, Cook SC, Evans JD, Chen Y, Alburaki M. Prevalence and distribution of Varroa destructor and Nosema spp. in symptomatic honey bee colonies across the USA from 2015 to 2022. Sci Rep 2024; 14:1726. [PMID: 38242935 PMCID: PMC10798951 DOI: 10.1038/s41598-024-51514-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/06/2024] [Indexed: 01/21/2024] Open
Abstract
USDA-ARS Bee Research Laboratory received symptomatic honey bee (Apis mellifera L.) samples across the United States for disease diagnosis. Here, we present a retrospective study and cartography of ectoparasite Varroa destructor and intracellular microsporidia parasite Nosema spp. These two major parasites were identified in the diseased honey bee samples between 2015 and 2022. Varroa infestation level (VIL) was examined by a wash technique (Mites/100 bees) and calculated as a percentage, while Nosema infection was quantified by microscopical spore count (Million Spores/Bee). Data were analyzed by month, year, state, and by nine geographical climate regions described in the U.S. Of adult bee samples (n = 4039) that were analyzed for Varroa mite infestation, the overall VIL in the U.S. ranged between 0.4 and 30.85%, with an overall national VIL and Varroa prevalence of 8.21% and 85.14%, respectively. Overall monthly data showed VIL constantly exceeded the critical level of 4% except from June to September and reached a maximum of 15% in January and December. Nationwide, VIL significantly (p < 0.001) increased from 2015 to 2018 (1.1-4.7%), plateaued from 2018 to 2021 (4.7-4.5%), followed by a significant decrease in 2022 (3.6%). Significant VIL differences (p < 0.001) were recorded among climate regions, with the highest mite infestation levels in the Upper Midwest region (13.9%) and the lowest in the West region (5.1%). Of adult bee samples (n = 2,994) that were analyzed for Nosema infection, Nosema spore count ranged between (1-16.8) million spores per bee among states, with a national average of 6.8 and a prevalence of 99.7%. The lowest and highest Nosema loads were respectively recorded in the South region (3.1) and Upper Midwest (10.5), a significant difference (p < 0.001). No statistical differences were recorded among the six other climate regions. Overall, VIL and Nosema infection correlated significantly (p < 0.001) with a regression coefficient of (R2 = 0.6). Our data, which originated from ailing bee colonies, showed significantly higher rates of maladies compared to data from healthy colonies obtained by the USDA-APHIS National Honey Bee Survey, demonstrating the role of bee diseases caused by Varroa mite and Nosema in honey bee population declines.
Collapse
Affiliation(s)
- Samuel Abban
- USDA-ARS Bee Research Laboratory, Beltsville, MD, 20705, USA
| | - Bart Smith
- USDA-ARS Bee Research Laboratory, Beltsville, MD, 20705, USA
| | - Miguel Corona
- USDA-ARS Bee Research Laboratory, Beltsville, MD, 20705, USA
| | - Steven C Cook
- USDA-ARS Bee Research Laboratory, Beltsville, MD, 20705, USA
| | - Jay D Evans
- USDA-ARS Bee Research Laboratory, Beltsville, MD, 20705, USA
| | - Yanping Chen
- USDA-ARS Bee Research Laboratory, Beltsville, MD, 20705, USA
| | | |
Collapse
|
15
|
Lee JK. Development of Enzyme-Linked Immunosorbent and Immunochromatography Assays for Diagnosing Nosema ceranae Infection in Honey Bees. INSECTS 2024; 15:59. [PMID: 38249065 PMCID: PMC10816434 DOI: 10.3390/insects15010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
Nosema ceranae (N. ceranae) infection is prevalent globally, causing a decline in bee populations and significant economic losses to apiarists. Although several methods have been proposed for diagnosing Nosema infections, limitations in these methods have hindered their broad applications. Therefore, this current study aimed to develop a specialized method for diagnosing Nosema infections. To achieve this, a sandwich enzyme-linked immunosorbent assay (ELISA) and immunochromatography assay (ICG) were developed, and their effectiveness in screening and diagnosing Nosema infection was assessed. In sandwich ELISA, the combination of the monoclonal antibodies (mAb) 19B2 and biotinylated-19B2 exhibited stronger binding affinity to the antigen than did other combinations of mAbs that were tested. Furthermore, the antigen detection limit achieved with the sandwich ELISA surpassed that previously reported with Western blotting. The ICG was designed using the same antibody combination as that used in sandwich ELISA; however, the assay exhibited a lower diagnostic ability for Nosema infection than the ELISA. The diagnostic models developed in this study offer practical applications for conducting rapid nosemosis detection tests. These innovative techniques will help to improve the timely identification and management of nosemosis.
Collapse
Affiliation(s)
- Jae Kwon Lee
- Department of Biology Education, College of Education, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
16
|
Kim M, Kim WJ, Park SJ. Analyzing Gut Microbial Community in Varroa destructor-Infested Western Honeybee ( Apis mellifera). J Microbiol Biotechnol 2023; 33:1495-1505. [PMID: 37482801 DOI: 10.4014/jmb.2306.06040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
The western honeybee Apis mellifera L., a vital crop pollinator and producer of honey and royal jelly, faces numerous threats including diseases, chemicals, and mite infestations, causing widespread concern. While extensive research has explored the link between gut microbiota and their hosts. However, the impact of Varroa destructor infestation remains understudied. In this study, we employed massive parallel amplicon sequencing assays to examine the diversity and structure of gut microbial communities in adult bee groups, comparing healthy (NG) and Varroa-infested (VG) samples. Additionally, we analyzed Varroa-infested hives to assess the whole body of larvae. Our results indicated a notable prevalence of the genus Bombella in larvae and the genera Gillamella, unidentified Lactobacillaceae, and Snodgrassella in adult bees. However, no statistically significant difference was observed between NG and VG. Furthermore, our PICRUSt analysis demonstrated distinct KEGG classification patterns between larval and adult bee groups, with larvae displaying a higher abundance of genes involved in cofactor and vitamin production. Notably, despite the complex nature of the honeybee bacterial community, methanogens were found to be present in low abundance in the honeybee microbiota.
Collapse
Affiliation(s)
- Minji Kim
- Department of Biology, Jeju National University, Jeju 63243, Republic of Korea
| | - Woo Jae Kim
- Center for Life Science (HCLS), Harbin Institute of Technology, No.92 West Dazhi Street, Nangang District, Harbin City, Hei Longjiang Province, P.R. China
| | - Soo-Je Park
- Department of Biology, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
17
|
Blot N, Clémencet J, Jourda C, Lefeuvre P, Warrit N, Esnault O, Delatte H. Geographic population structure of the honeybee microsporidian parasite Vairimorpha (Nosema) ceranae in the South West Indian Ocean. Sci Rep 2023; 13:12122. [PMID: 37495608 PMCID: PMC10372035 DOI: 10.1038/s41598-023-38905-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
The microsporidian Vairimorpha (Nosema) ceranae is one of the most common parasites of the honeybee. A single honeybee carries many parasites and therefore multiple alleles of V. ceranae genes that seem to be ubiquitous. As a consequence, nucleotide diversity analyses have not allowed discriminating genetic structure of parasite populations. We performed deep loci-targeted sequencing to monitor the haplotype frequencies of genome markers in isolates from discontinuous territories, namely the tropical islands of the South West Indian Ocean. The haplotype frequency distribution corroborated the suspected tetraploidy of the parasite. Most major haplotypes were ubiquitous in the area but with variable frequency. While oceanic isolates differed from European and Asian outgroups, parasite populations from distinct archipelagoes also differed in their haplotype distribution. Interestingly an original and very divergent Malagasy isolate was detected. The observed population structure allowed formulating hypotheses upon the natural history of V. ceranae in this oceanic area. We also discussed the usefulness of allelic distribution assessment, using multiple informative loci or genome-wide analyses, when parasite population is not clonal within a single host.
Collapse
Affiliation(s)
- Nicolas Blot
- Université Clermont Auvergne, CNRS, "Laboratoire Microorganismes: Génome et Environnement", Clermont-Ferrand, France.
| | - Johanna Clémencet
- Université de la Réunion, UMR Peuplements Végétaux et Bio-agresseurs en Milieu Tropical, 97410, Saint-Pierre, La Réunion, France
| | - Cyril Jourda
- CIRAD, UMR Peuplements Végétaux et Bio-agresseurs en Milieu Tropical, 97410, Saint-Pierre, La Réunion, France
| | - Pierre Lefeuvre
- CIRAD, UMR Peuplements Végétaux et Bio-agresseurs en Milieu Tropical, 97410, Saint-Pierre, La Réunion, France
| | - Natapot Warrit
- Center of Excellence in Entomology, Department of Biology, Faculty of Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Olivier Esnault
- Groupement de Défense Sanitaire de la Réunion, La Plaine des Cafres, France
| | - Hélène Delatte
- CIRAD, UMR Peuplements Végétaux et Bio-agresseurs en Milieu Tropical, 101, Antananarivo, Madagascar
| |
Collapse
|
18
|
Nekoei S, Rezvan M, Khamesipour F, Mayack C, Molento MB, Revainera PD. A systematic review of honey bee (Apis mellifera, Linnaeus, 1758) infections and available treatment options. Vet Med Sci 2023. [PMID: 37335585 PMCID: PMC10357250 DOI: 10.1002/vms3.1194] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/11/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Honey bees and honeycomb bees are very valuable for wild flowering plants and economically important crops due to their role as pollinators. However, these insects confront many disease threats (viruses, parasites, bacteria and fungi) and large pesticide concentrations in the environment. Varroa destructor is the most prevalent disease that has had the most negative effects on the fitness and survival of different honey bees (Apis mellifera and A. cerana). Moreover, honey bees are social insects and this ectoparasite can be easily transmitted within and across bee colonies. OBJECTIVE This review aims to provide a survey of the diversity and distribution of important bee infections and possible management and treatment options, so that honey bee colony health can be maintained. METHODS We used PRISMA guidelines throughout article selection, published between January 1960 and December 2020. PubMed, Google Scholar, Scopus, Cochrane Library, Web of Science and Ovid databases were searched. RESULTS We have collected 132 articles and retained 106 articles for this study. The data obtained revealed that V. destructor and Nosema spp. were found to be the major pathogens of honey bees worldwide. The impact of these infections can result in the incapacity of forager bees to fly, disorientation, paralysis, and death of many individuals in the colony. We find that both hygienic and chemical pest management strategies must be implemented to prevent, reduce the parasite loads and transmission of pathogens. The use of an effective miticide (fluvalinate-tau, coumaphos and amitraz) now seems to be an essential and common practice required to minimise the impact of Varroa mites and other pathogens on bee colonies. New, alternative biofriendly control methods, are on the rise, and could be critical for maintaining honey bee hive health and improving honey productivity. CONCLUSIONS We suggest that critical health control methods be adopted globally and that an international monitoring system be implemented to determine honey bee colony safety, regularly identify parasite prevalence, as well as potential risk factors, so that the impact of pathogens on bee health can be recognised and quantified on a global scale.
Collapse
Affiliation(s)
- Shahin Nekoei
- Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mahsa Rezvan
- Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Faham Khamesipour
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Christopher Mayack
- Faculty of Engineering and Natural Sciences, Department of Molecular Biology, Genetics, and Bioengineering, Sabanci University, İstanbul, Turkey
| | - Marcelo Beltrão Molento
- Laboratory of Veterinary Clinical Parasitology, Department of Veterinary Medicine, Federal University of Parana, Curitiba, PR, Brazil
- Microbiology, Parasitology, Pathology Program, Federal University of Parana, Curitiba, PR, Brazil
| | - Pablo Damián Revainera
- Centro de Investigación en Abejas Sociales (CIAS), Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Comisión de Investigaciones Científicas de la provincia de Buenos Aires (CIC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
19
|
Punko RN, Currie RW, Nasr ME, Hoover SE. Effect of Fumagilin-B treatment timing on nosema (Vairimorpha spp.; Microspora: Nosematidae) abundance and honey bee (Hymenoptera: Apidae) colonies under winter management in the Canadian Prairies. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:651-661. [PMID: 37119539 DOI: 10.1093/jee/toad066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/03/2023] [Accepted: 03/18/2023] [Indexed: 06/14/2023]
Abstract
Fumagilin-B is used to treat nosema infection in honey bee colonies; however, it is unclear whether treatment consistently reduces Vairimorpha ceranae (Fries et al.) abundance and improves colony strength and survival in the Canadian Prairies. This study assessed spring and fall fumagillin treatments on nosema abundance, colony strength, and mortality in 2 different beekeeping regions within Alberta, using both indoor and outdoor wintering management at each site. We compared 4 fumagillin treatments: Spring-only, Fall-only, Spring-and-Fall, and Control (no treatment). The spring treatment dose was ~68 mg/colony, whereas the fall treatment dose was 120 or 48 mg/colony, depending on the year. We found that the colonies were infected predominately with V. ceranae, with V. apis (Zander) present only in mixed infections in a subset of colonies. Although treatment in either the spring or fall did reduce nosema abundance in the short term, it did not eliminate the infection, making continued monitoring necessary. Colony strength was improved by spring treatment in some locations but not consistently, possibly due to the treatment timing or low dose. The combined spring and fall treatment increased colony survival over winter in one of 2 yr. Wintering method did not interact with treatment to affect nosema abundance in the spring. There does not appear to be a significant residual benefit of fall treatment as it did not reduce spring nosema abundance or increase colony population. Therefore, spring treatment should be applied to reduce spring V. ceranae abundance rather than relying on residual efficacy from previous fall treatments.
Collapse
Affiliation(s)
- Rosanna N Punko
- Department of Entomology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Robert W Currie
- Department of Entomology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Medhat E Nasr
- Alberta Agriculture and Forestry, Government of Alberta, Edmonton, AB, Canada
| | - Shelley E Hoover
- Department of Entomology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
20
|
Kim DJ, Woo RM, Kim KS, Woo SD. Screening of Entomopathogenic Fungal Culture Extracts with Honeybee Nosemosis Inhibitory Activity. INSECTS 2023; 14:538. [PMID: 37367354 DOI: 10.3390/insects14060538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
This study aimed to select the most effective culture extracts for controlling honeybee nosemosis using 342 entomopathogenic fungi of 24 species from 18 genera. The germination inhibitory activity of the fungal culture extract on Nosema ceranae spores was evaluated using an in vitro germination assay method. Among 89 fungal culture extracts showing germination inhibitory activity of approximately 80% or more, 44 fungal culture extracts that maintained their inhibitory activity even at a concentration of 1% were selected. Finally, the honeybee nosemosis inhibitory activity was evaluated using the cultured extracts of five fungal isolates having a Nosema inhibitory activity of approximately 60% or more, even when the extract was removed after treatment. As a result, the proliferation of Nosema spores was reduced by all fungal culture extract treatments. However, only the treatment of the culture extracts from Paecilomyces marquandii 364 and Pochonia bulbillosa 60 showed a reduction in honeybee mortality due to nosemosis. In particular, the extracts of these two fungal isolates also increased the survival of honeybees.
Collapse
Affiliation(s)
- Dong-Jun Kim
- Department of Agricultural Biology, College of Agriculture, Life & Environment Science, Chungbuk National University, Cheongju 28644, Republic of Korea
- Process Development Team, R&D Division, Plolagen Co., Ltd., Seoul 03722, Republic of Korea
| | - Ra-Mi Woo
- Department of Agricultural Biology, College of Agriculture, Life & Environment Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyu-Seek Kim
- Department of Agricultural Biology, College of Agriculture, Life & Environment Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Soo-Dong Woo
- Department of Agricultural Biology, College of Agriculture, Life & Environment Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
21
|
Žárský V, Karnkowska A, Boscaro V, Trznadel M, Whelan TA, Hiltunen-Thorén M, Onut-Brännström I, Abbott CL, Fast NM, Burki F, Keeling PJ. Contrasting outcomes of genome reduction in mikrocytids and microsporidians. BMC Biol 2023; 21:137. [PMID: 37280585 DOI: 10.1186/s12915-023-01635-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Intracellular symbionts often undergo genome reduction, losing both coding and non-coding DNA in a process that ultimately produces small, gene-dense genomes with few genes. Among eukaryotes, an extreme example is found in microsporidians, which are anaerobic, obligate intracellular parasites related to fungi that have the smallest nuclear genomes known (except for the relic nucleomorphs of some secondary plastids). Mikrocytids are superficially similar to microsporidians: they are also small, reduced, obligate parasites; however, as they belong to a very different branch of the tree of eukaryotes, the rhizarians, such similarities must have evolved in parallel. Since little genomic data are available from mikrocytids, we assembled a draft genome of the type species, Mikrocytos mackini, and compared the genomic architecture and content of microsporidians and mikrocytids to identify common characteristics of reduction and possible convergent evolution. RESULTS At the coarsest level, the genome of M. mackini does not exhibit signs of extreme genome reduction; at 49.7 Mbp with 14,372 genes, the assembly is much larger and gene-rich than those of microsporidians. However, much of the genomic sequence and most (8075) of the protein-coding genes code for transposons, and may not contribute much of functional relevance to the parasite. Indeed, the energy and carbon metabolism of M. mackini share several similarities with those of microsporidians. Overall, the predicted proteome involved in cellular functions is quite reduced and gene sequences are extremely divergent. Microsporidians and mikrocytids also share highly reduced spliceosomes that have retained a strikingly similar subset of proteins despite having reduced independently. In contrast, the spliceosomal introns in mikrocytids are very different from those of microsporidians in that they are numerous, conserved in sequence, and constrained to an exceptionally narrow size range (all 16 or 17 nucleotides long) at the shortest extreme of known intron lengths. CONCLUSIONS Nuclear genome reduction has taken place many times and has proceeded along different routes in different lineages. Mikrocytids show a mix of similarities and differences with other extreme cases, including uncoupling the actual size of a genome with its functional reduction.
Collapse
Affiliation(s)
- Vojtečh Žárský
- Department of Botany, University of British Columbia, V6T 1Z4, Vancouver, 3529-6270 University Boulevard, BC, Canada
| | - Anna Karnkowska
- Department of Botany, University of British Columbia, V6T 1Z4, Vancouver, 3529-6270 University Boulevard, BC, Canada
- Institute of Evolutionary Biology, Faculty of Biology, University of Warsaw, 02-089, Warsaw, Poland
| | - Vittorio Boscaro
- Department of Botany, University of British Columbia, V6T 1Z4, Vancouver, 3529-6270 University Boulevard, BC, Canada.
| | - Morelia Trznadel
- Department of Botany, University of British Columbia, V6T 1Z4, Vancouver, 3529-6270 University Boulevard, BC, Canada
| | - Thomas A Whelan
- Department of Botany, University of British Columbia, V6T 1Z4, Vancouver, 3529-6270 University Boulevard, BC, Canada
| | - Markus Hiltunen-Thorén
- Department of Organismal Biology, Uppsala University, Norbyv. 18D, 752 36, Uppsala, Sweden
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Ioana Onut-Brännström
- Department of Organismal Biology, Uppsala University, Norbyv. 18D, 752 36, Uppsala, Sweden
- Department of Ecology and Genetics, Uppsala University, 752 36, Uppsala, Sweden
- Natural History Museum, University of Oslo, 0562, Oslo, Norway
| | - Cathryn L Abbott
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, V9T 6N7, Canada
| | - Naomi M Fast
- Department of Botany, University of British Columbia, V6T 1Z4, Vancouver, 3529-6270 University Boulevard, BC, Canada
| | - Fabien Burki
- Department of Organismal Biology, Uppsala University, Norbyv. 18D, 752 36, Uppsala, Sweden
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, V6T 1Z4, Vancouver, 3529-6270 University Boulevard, BC, Canada.
| |
Collapse
|
22
|
Hurná B, Sučik M, Staroň M, Tutka Š, Maková Z, Galajda R, Valenčáková A. Molecular Detection of Nosema spp. in Three Eco Regions of Slovakia. Curr Issues Mol Biol 2023; 45:4814-4825. [PMID: 37367055 DOI: 10.3390/cimb45060306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/16/2023] [Accepted: 05/28/2023] [Indexed: 06/28/2023] Open
Abstract
Microsporidia are unicellular obligate intracellular parasitic fungi that infect a wide range of vertebrates and invertebrates. There are two known species of microsporidia infecting honey bees in Slovakia- first Nosema apis and also Nosema ceranae. Our aim was to examine samples of honey bees collected from bee queen breeders in three ecoregions of the Slovak Republic in 2021 and 2022. First, microscopic diagnostics were used, and then randomly selected samples were examined using molecular methods. There were 4018 samples examined using microscopic diagnostics and the positivity was demonstrated in 922 samples. From the microscopically diagnosed positive samples, 507 samples were randomly selected, and using molecular methods, the positivity was proved in 488 samples. After sequencing the positive PCR products and comparing the sequences (BLAST) with the sequences stored in the gene bank, the Nosema ceranae species was detected in all positive samples.
Collapse
Affiliation(s)
- Beáta Hurná
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Monika Sučik
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Martin Staroň
- VÚŽV Nitra-Institute of Apiculture Liptovský Hrádok, Gašperíkova 599, 033 80 Liptovský Hrádok, Slovakia
| | - Štefan Tutka
- VÚŽV Nitra-Institute of Apiculture Liptovský Hrádok, Gašperíkova 599, 033 80 Liptovský Hrádok, Slovakia
| | - Zuzana Maková
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Richard Galajda
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Alexandra Valenčáková
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| |
Collapse
|
23
|
De la Mora A, Morfin N, Tapia-Rivera JC, Macías-Macías JO, Tapia-González JM, Contreras-Escareño F, Petukhova T, Guzman-Novoa E. The Fungus Nosema ceranae and a Sublethal Dose of the Neonicotinoid Insecticide Thiamethoxam Differentially Affected the Health and Immunity of Africanized Honey Bees. Microorganisms 2023; 11:1258. [PMID: 37317233 DOI: 10.3390/microorganisms11051258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 06/16/2023] Open
Abstract
Honey bees (Apis mellifera L.) are affected by different biotic and abiotic stressors, such as the fungus Nosema ceranae and neonicotinoid insecticides, that negatively impact their health. However, most studies so far conducted have focused on the effect of these stressors separately and in European honey bees. Therefore, this study was conducted to analyze the impact of both stressors, singly and in combination, on honey bees of African descent that have demonstrated resistance to parasites and pesticides. Africanized honey bees (AHBs, Apis mellifera scutellata Lepeletier) were inoculated with N. ceranae (1 × 105 spores/bee) and/or chronically exposed for 18 days to a sublethal dose of thiamethoxam (0.025 ng/bee) to evaluate their single and combined effects on food consumption, survivorship, N. ceranae infection, and immunity at the cellular and humoral levels. No significant effects by any of the stressors were found for food consumption. However, thiamethoxam was the main stressor associated to a significant decrease in AHB survivorship, whereas N. ceranae was the main stressor affecting their humoral immune response by upregulating the expression of the gene AmHym-1. Additionally, both stressors, separately and combined, significantly decreased the concentration of haemocytes in the haemolymph of the bees. These findings indicate that N. ceranae and thiamethoxam differentially affect the lifespan and immunity of AHBs and do not seem to have synergistic effects when AHBs are simultaneously exposed to both stressors.
Collapse
Affiliation(s)
- Alvaro De la Mora
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Nuria Morfin
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G2W1, Canada
| | - José C Tapia-Rivera
- Centro de Investigaciones en Abejas, CUSUR, Universidad de Guadalajara, Enrique Arreola Silva 883, Zapotlan el Grande 49000, Jalisco, Mexico
| | - José O Macías-Macías
- Centro de Investigaciones en Abejas, CUSUR, Universidad de Guadalajara, Enrique Arreola Silva 883, Zapotlan el Grande 49000, Jalisco, Mexico
| | - José M Tapia-González
- Centro de Investigaciones en Abejas, CUSUR, Universidad de Guadalajara, Enrique Arreola Silva 883, Zapotlan el Grande 49000, Jalisco, Mexico
| | - Francisca Contreras-Escareño
- Departamento de Producción Agricola, CUCSUR, Universidad de Guadalajara, Independencia Nal. 161, Autlan 48900, Jalisco, Mexico
| | - Tatiana Petukhova
- Department of Population Medicine, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Ernesto Guzman-Novoa
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G2W1, Canada
| |
Collapse
|
24
|
Schüler V, Liu YC, Gisder S, Horchler L, Groth D, Genersch E. Significant, but not biologically relevant: Nosema ceranae infections and winter losses of honey bee colonies. Commun Biol 2023; 6:229. [PMID: 36859713 PMCID: PMC9977864 DOI: 10.1038/s42003-023-04587-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/13/2023] [Indexed: 03/03/2023] Open
Abstract
The Western honey bee Apis mellifera, which provides about 90% of commercial pollination, is under threat from diverse abiotic and biotic factors. The ectoparasitic mite Varroa destructor vectoring deformed wing virus (DWV) has been identified as the main biotic contributor to honey bee colony losses worldwide, while the role of the microsporidium Nosema ceranae is still controversially discussed. In an attempt to solve this controversy, we statistically analyzed a unique data set on honey bee colony health collected from a cohort of honey bee colonies over 15 years and comprising more than 3000 data sets on mite infestation levels, Nosema spp. infections, and winter losses. Multivariate statistical analysis confirms that V. destructor is the major cause of colony winter losses. Although N. ceranae infections are also statistically significantly correlated with colony losses, determination of the effect size reveals that N. ceranae infections are of no or low biological relevance.
Collapse
Affiliation(s)
- Vivian Schüler
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Friedrich-Engels-Str. 32, 16540, Hohen Neuendorf, Germany
| | - Yuk-Chien Liu
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Friedrich-Engels-Str. 32, 16540, Hohen Neuendorf, Germany
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Sebastian Gisder
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Friedrich-Engels-Str. 32, 16540, Hohen Neuendorf, Germany
| | - Lennart Horchler
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Friedrich-Engels-Str. 32, 16540, Hohen Neuendorf, Germany
| | - Detlef Groth
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Elke Genersch
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Friedrich-Engels-Str. 32, 16540, Hohen Neuendorf, Germany.
- Freie Universität Berlin, Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Robert-von-Ostertag-Str. 7, 14163, Berlin, Germany.
| |
Collapse
|
25
|
Phokasem P, Sinpoo C, Attasopa K, Krongdang S, Chantaphanwattana T, Ling TC, Pettis JS, Chantawannakul P, Chaimanee V, Disayathanoowat T. Preliminary Survey of Pathogens in the Asian Honey Bee ( Apis cerana) in Thailand. Life (Basel) 2023; 13:life13020438. [PMID: 36836795 PMCID: PMC9965378 DOI: 10.3390/life13020438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Widespread parasites, along with emerging threats, globalization, and climate change, have greatly affected honey bees' health, leading to colony losses worldwide. In this study, we investigated the detection of biotic stressors (i.e., viruses, microsporidian, bacteria, and fungi) in Apis cerana by surveying the colonies across different regions of Thailand (Chiang Mai in the north, Nong Khai and Khon Kaen in the northeast, and Chumphon and Surat Thani in the south, in addition to the Samui and Pha-ngan islands). In this study, we detected ABPV, BQCV, LSV, and Nosema ceranae in A. cerana samples through RT-PCR. ABPV was only detected from the samples of Chiang Mai, whereas we found BQCV only in those from Chumphon. LSV was detected only in the samples from the Samui and Pha-ngan islands, where historically no managed bees are known. Nosema ceranae was found in all of the regions except for Nong Khai and Khon Kaen in northeastern Thailand. Paenibacillus larvae and Ascosphaera apis were not detected in any of the A. cerana samples in this survey. The phylogenetic tree analysis of the pathogens provided insights into the pathogens' movements and their distribution ranges across different landscapes, indicating the flow of pathogens among the honey bees. Here, we describe the presence of emerging pathogens in the Asian honey bee as a valuable step in our understanding of these pathogens in terms of the decline in eastern honey bee populations.
Collapse
Affiliation(s)
- Patcharin Phokasem
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chainarong Sinpoo
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Korrawat Attasopa
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sasiprapa Krongdang
- Faculty of Science and Social Sciences, Burapha University Sa Kaeo Campus, Sa Kaeo 27160, Thailand
| | - Thunyarat Chantaphanwattana
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tial C. Ling
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Panuwan Chantawannakul
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Veeranan Chaimanee
- Department of Agro-Industrial Biotechnology, Maejo University Phrae Campus, Phrae 54140, Thailand
- Correspondence: (V.C.); (T.D.); Tel.: +66-871744049 (V.C.); +66-817249624 (T.D.)
| | - Terd Disayathanoowat
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (V.C.); (T.D.); Tel.: +66-871744049 (V.C.); +66-817249624 (T.D.)
| |
Collapse
|
26
|
Baigazanov A, Tikhomirova Y, Valitova N, Nurkenova M, Koigeldinova A, Abdullina E, Zaikovskaya O, Ikimbayeva N, Zainettinova D, Bauzhanova L. Occurrence of Nosemosis in honey bee, Apis mellifera L. at the apiaries of East Kazakhstan. PeerJ 2022; 10:e14430. [PMID: 36518264 PMCID: PMC9744157 DOI: 10.7717/peerj.14430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/30/2022] [Indexed: 12/03/2022] Open
Abstract
Nosemosis is the most common disease in honey bee Apis mellifera L., and is a major issue related to bee health worldwide. Therefore, the purpose of this research study was to determine prevalence of microsporidia parasitic infection of the genus Nosema spp. in East Kazakhstan Region (EKR). In the years of 2018 -2021, 394 honey bee samples were collected at 30 apiaries located in four districts of East Kazakhstan Region (Katon-Karagay, Urzhar, Borodulikhinsky, and Shemonaikhinsky). In order to determine the level of infestation, firstly, the presence of Nosema spp. spores was detected using optical microscopy, and then the average amount of spores per bee was counted using a hemocytometer. The degree of nosemosis prevalence was determined in points by means of a semi-quantitative method, and as a percentage from the total of samples and of the amount of positive tests. At the outcome of the study, microsporidia of the genus Nosema spp. were detected in 23.3% of cases (92 samples). Prevalence at its low degree was found in six samples (1.5%), at an average degree in 55 samples (14%), and at a high one in 31 samples (7.9%). This research study proved that microsporidia of the genus Nosema spp. are widely spread at the apiaries of East Kazakhstan Region in different orographic and climatic conditions. Notwithstanding that it was impossible to statistically determine any significant differences between the dependence of nosemosis prevalence and the apiary location, this indicator is actually higher in the mountainous regions than in the steppe. Concurrently, a close inverse correlation was recognized between the amount of spores in one bee and the level of infestation in bee families from the duration of the vegetation season at the apiary location. This gives grounds to assert that the environmental factors have an impact on formation and development of nosemosis. The results of the research presented in the article indicate the need for further research aimed at increasing the number of studied apiaries, and above all the use of molecular biology methods to distinguish the species that cause nosemosis infection (PCR).
Collapse
Affiliation(s)
- Abdrakhman Baigazanov
- Department of Veterinary, Faculty of Veterinary Medicine and Agricultural Management, Shakarim University, Semey, East Kazakhstan Region, Kazakhstan,Agrotechnopark Scientific Center, Veterinary and Food Safety Laboratory, Shakarim University, Semey, East Kazakstan Region, Kazakhstan
| | - Yelena Tikhomirova
- Department of Veterinary, Faculty of Veterinary Medicine and Agricultural Management, Shakarim University, Semey, East Kazakhstan Region, Kazakhstan
| | - Natalya Valitova
- School of Earth and Environmental Sciences, D. Serikbayev East Kazakhstan Technical University, Ust-Kamenogorsk, East Kazakhstan Region, Kazakhstan
| | - Maral Nurkenova
- Department of Veterinary, Faculty of Veterinary Medicine and Agricultural Management, Shakarim University, Semey, East Kazakhstan Region, Kazakhstan,Agrotechnopark Scientific Center, Veterinary and Food Safety Laboratory, Shakarim University, Semey, East Kazakstan Region, Kazakhstan
| | - Ainur Koigeldinova
- Agrotechnopark Scientific Center, Veterinary and Food Safety Laboratory, Shakarim University, Semey, East Kazakstan Region, Kazakhstan
| | - Elmira Abdullina
- Department of Veterinary, Faculty of Veterinary Medicine and Agricultural Management, Shakarim University, Semey, East Kazakhstan Region, Kazakhstan,Agrotechnopark Scientific Center, Veterinary and Food Safety Laboratory, Shakarim University, Semey, East Kazakstan Region, Kazakhstan
| | - Olga Zaikovskaya
- Agrotechnopark Scientific Center, Veterinary and Food Safety Laboratory, Shakarim University, Semey, East Kazakstan Region, Kazakhstan
| | - Nurgul Ikimbayeva
- Agrotechnopark Scientific Center, Veterinary and Food Safety Laboratory, Shakarim University, Semey, East Kazakstan Region, Kazakhstan
| | - Dinara Zainettinova
- Agrotechnopark Scientific Center, Veterinary and Food Safety Laboratory, Shakarim University, Semey, East Kazakstan Region, Kazakhstan
| | - Lyailya Bauzhanova
- Department of Zoo Technology, Genetics and Breeding, Toraighyrov University, Pavlodar, Pavlodar Region, Kazakhstan
| |
Collapse
|
27
|
Bahreini R, Nasr M, Docherty C, de Herdt O, Feindel D, Muirhead S. In Vivo Inhibitory Assessment of Potential Antifungal Agents on Nosema ceranae Proliferation in Honey Bees. Pathogens 2022; 11:pathogens11111375. [PMID: 36422626 PMCID: PMC9695399 DOI: 10.3390/pathogens11111375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Nosema ceranae Fries, 1996, causes contagious fungal nosemosis disease in managed honey bees, Apis mellifera L. It is associated around the world with winter losses and colony collapse disorder. We used a laboratory in vivo screening assay to test curcumin, fenbendazole, nitrofurazone and ornidazole against N. ceranae in honey bees to identify novel compounds with anti-nosemosis activity compared to the commercially available medication Fumagilin-B®. Over a 20-day period, Nosema-inoculated bees in Plexiglas cages were orally treated with subsequent dilutions of candidate compounds, or Fumagilin-B® at the recommended dose, with three replicates per treatment. Outcomes indicated that fenbendazole suppressed Nosema spore proliferation, resulting in lower spore abundance in live bees (0.36 ± 1.18 million spores per bee) and dead bees (0.03 ± 0.25 million spores per bee), in comparison to Fumagilin-B®-treated live bees (3.21 ± 2.19 million spores per bee) and dead bees (3.5 ± 0.6 million spores per bee). Our findings suggest that Fumagilin-B® at the recommended dose suppressed Nosema. However, it was also likely responsible for killing Nosema-infected bees (24% mortality). Bees treated with fenbendazole experienced a greater survival probability (71%), followed by ornidazole (69%), compared to Nosema-infected non-treated control bees (20%). This research revealed that among screened compounds, fenbendazole, along with ornidazole, has potential effective antifungal activities against N. ceranae in a controlled laboratory environment.
Collapse
Affiliation(s)
- Rassol Bahreini
- Plant and Bee Health Surveillance Section, Alberta Agriculture and Irrigation, Edmonton, AB T5Y 6H3, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Correspondence:
| | - Medhat Nasr
- Plant and Bee Health Surveillance Section, Alberta Agriculture and Irrigation, Edmonton, AB T5Y 6H3, Canada
- Saskatchewan Beekeepers Development Commission, Prince Albert, SK S6V 6Z2, Canada
| | - Cassandra Docherty
- Plant and Bee Health Surveillance Section, Alberta Agriculture and Irrigation, Edmonton, AB T5Y 6H3, Canada
| | - Olivia de Herdt
- Plant and Bee Health Surveillance Section, Alberta Agriculture and Irrigation, Edmonton, AB T5Y 6H3, Canada
| | - David Feindel
- Plant and Bee Health Surveillance Section, Alberta Agriculture and Irrigation, Edmonton, AB T5Y 6H3, Canada
| | - Samantha Muirhead
- Plant and Bee Health Surveillance Section, Alberta Agriculture and Irrigation, Edmonton, AB T5Y 6H3, Canada
| |
Collapse
|
28
|
Babin A, Schurr F, Rivière MP, Chauzat MP, Dubois E. Specific detection and quantification of three microsporidia infecting bees, Nosema apis, Nosema ceranae, and Nosema bombi, using probe-based real-time PCR. Eur J Protistol 2022; 86:125935. [DOI: 10.1016/j.ejop.2022.125935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/03/2022]
|
29
|
Jabal-Uriel C, Barrios L, Bonjour-Dalmon A, Caspi-Yona S, Chejanovsly N, Erez T, Henriques D, Higes M, Le Conte Y, Lopes AR, Meana A, Pinto MA, Reyes-Carreño M, Soroker V, Martín-Hernández R. Epidemiology of the Microsporidium Nosema ceranae in Four Mediterranean Countries. INSECTS 2022; 13:844. [PMID: 36135545 PMCID: PMC9505483 DOI: 10.3390/insects13090844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Nosema ceranae is a highly prevalent intracellular parasite of honey bees' midgut worldwide. This Microsporidium was monitored during a long-term study to evaluate the infection at apiary and intra-colony levels in six apiaries in four Mediterranean countries (France, Israel, Portugal, and Spain). Parameters on colony strength, honey production, beekeeping management, and climate were also recorded. Except for São Miguel (Azores, Portugal), all apiaries were positive for N. ceranae, with the lowest prevalence in mainland France and the highest intra-colony infection in Israel. A negative correlation between intra-colony infection and colony strength was observed in Spain and mainland Portugal. In these two apiaries, the queen replacement also influenced the infection levels. The highest colony losses occurred in mainland France and Spain, although they did not correlate with the Nosema infection levels, as parasitism was low in France and high in Spain. These results suggest that both the effects and the level of N. ceranae infection depends on location and beekeeping conditions. Further studies on host-parasite coevolution, and perhaps the interactions with other pathogens and the role of honey bee genetics, could assist in understanding the difference between nosemosis disease and infection, to develop appropriate strategies for its control.
Collapse
Affiliation(s)
- Clara Jabal-Uriel
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla La Mancha (IRIAF), CIAPA de Marchamalo (Guadalajara, Spain), 19180 Marchamalo, Spain
| | - Laura Barrios
- Unidad de Estadística, Centro Nacional de Investigaciones Científicas, 28006 Madrid, Spain
| | - Anne Bonjour-Dalmon
- INRAE, Unité de Recherche Abeilles et Environnement, National Institute for Agricultural, Food and Environmental Research, 84000 Avignon, France
| | - Shiran Caspi-Yona
- Mina and Aberhard Gudman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Nor Chejanovsly
- Department of Entomology, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel
| | - Tal Erez
- Department of Entomology, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel
- Department of Environmental Economics and Management, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem 7610001, Israel
| | - Dora Henriques
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Mariano Higes
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla La Mancha (IRIAF), CIAPA de Marchamalo (Guadalajara, Spain), 19180 Marchamalo, Spain
| | - Yves Le Conte
- INRAE, Unité de Recherche Abeilles et Environnement, National Institute for Agricultural, Food and Environmental Research, 84000 Avignon, France
| | - Ana R. Lopes
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Aránzazu Meana
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Maria Alice Pinto
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maritza Reyes-Carreño
- INRAE, Unité de Recherche Abeilles et Environnement, National Institute for Agricultural, Food and Environmental Research, 84000 Avignon, France
| | - Victoria Soroker
- Department of Entomology, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel
| | - Raquel Martín-Hernández
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla La Mancha (IRIAF), CIAPA de Marchamalo (Guadalajara, Spain), 19180 Marchamalo, Spain
- Instituto de Recursos Humanos para la Ciencia y la Tecnología, Fundación Parque Científico y Tecnológico de Castilla-La Mancha, 02006 Albacete, Spain
| |
Collapse
|
30
|
Iwasaki JM, Hogendoorn K. Mounting evidence that managed and introduced bees have negative impacts on wild bees: an updated review. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100043. [PMID: 36003276 PMCID: PMC9387436 DOI: 10.1016/j.cris.2022.100043] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Worldwide, the use of managed bees for crop pollination and honey production has increased dramatically. Concerns about the pressures of these increases on native ecosystems has resulted in a recent expansion in the literature on this subject. To collate and update current knowledge, we performed a systematic review of the literature on the effects of managed and introduced bees on native ecosystems, focusing on the effects on wild bees. To enable comparison over time, we used the same search terms and focused on the same impacts as earlier reviews. This review covers: (a) interference and resource competition between introduced or managed bees and native bees; (b) effects of introduced or managed bees on pollination of native plants and weeds; and (c) transmission and infectivity of pathogens; and classifies effects into positive, negative, or neutral. Compared to a 2017 review, we found that the number of papers on this issue has increased by 47%. The highest increase was seen in papers on pathogen spill-over, but in the last five years considerable additional information about competition between managed and wild bees has also become available. Records of negative effects have increased from 53% of papers reporting negative effects in 2017 to 66% at present. The majority of these studies investigated effects on visitation and foraging behaviour. While only a few studies experimentally assessed impacts on wild bee reproductive output, 78% of these demonstrated negative effects. Plant composition and pollination was negatively affected in 7% of studies, and 79% of studies on pathogens reported potential negative effects of managed or introduced bees on wild bees. Taken together, the evidence increasingly suggests that managed and introduced bees negatively affect wild bees, and this knowledge should inform actions to prevent further harm to native ecosystems.
Collapse
Affiliation(s)
- Jay M. Iwasaki
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide SA 5064, Australia
| | - Katja Hogendoorn
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide SA 5064, Australia
| |
Collapse
|
31
|
Gómez-Moracho T, Durand AM, Lihoreau M. The gut parasite Nosema ceranae impairs olfactory learning in bumblebees. J Exp Biol 2022; 225:jeb244340. [PMID: 35726829 DOI: 10.1242/jeb.244340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022]
Abstract
Pollinators are exposed to numerous parasites and pathogens when foraging on flowers. These biological stressors may affect critical cognitive abilities required for foraging. Here, we tested whether exposure to Nosema ceranae, one of the most widespread parasites of honey bees also found in wild pollinators, impacts cognition in bumblebees. We investigated different forms of olfactory learning and memory using conditioning of the proboscis extension reflex. Seven days after being exposed to parasite spores, bumblebees showed lower performance in absolute, differential and reversal learning than controls. The consistent observations across different types of olfactory learning indicate a general negative effect of N. ceranae exposure that did not specifically target particular brain areas or neural processes. We discuss the potential mechanisms by which N. ceranae impairs bumblebee cognition and the broader consequences for populations of pollinators.
Collapse
Affiliation(s)
- Tamara Gómez-Moracho
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, 31062 Toulouse cedex 09, France
| | - Alice Mélusine Durand
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, 31062 Toulouse cedex 09, France
| | - Mathieu Lihoreau
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, 31062 Toulouse cedex 09, France
| |
Collapse
|
32
|
Lopes AR, Martín-Hernández R, Higes M, Segura SK, Henriques D, Pinto MA. Colonisation Patterns of Nosema ceranae in the Azores Archipelago. Vet Sci 2022; 9:vetsci9070320. [PMID: 35878337 PMCID: PMC9323992 DOI: 10.3390/vetsci9070320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Nosema ceranae is a highly prevalent pathogen of Apis mellifera, which is distributed worldwide. However, there may still exist isolated areas that remain free of N. ceranae. Herein, we used molecular tools to survey the Azores to detect N. ceranae and unravel its colonisation patterns. To that end, we sampled 474 colonies from eight islands in 2014/2015 and 91 from four islands in 2020. The findings revealed that N. ceranae was not only present but also the dominant species in the Azores. In 2014/2015, N. apis was rare and N. ceranae prevalence varied between 2.7% in São Jorge and 50.7% in Pico. In 2020, N. ceranae prevalence increased significantly (p < 0.001) in Terceira and São Jorge also showing higher infection levels. The spatiotemporal patterns suggest that N. ceranae colonised the archipelago recently, and it rapidly spread across other islands, where at least two independent introductions might have occurred. Flores and Santa Maria have escaped the N. ceranae invasion, and it is remarkable that Santa Maria is also free of Varroa destructor, which makes it one of the last places in Europe where the honey bee remains naive to these two major biotic stressors.
Collapse
Affiliation(s)
- Ana Rita Lopes
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (A.R.L.); (D.H.)
| | - Raquel Martín-Hernández
- Laboratorio de Patología Apícola, IRIAF—Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Camino de San Martín, 19180 Marchamalo, Spain; (R.M.-H.); (M.H.)
- Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FSE/EC-ESF), Fundación Parque Científico y Tecnológico de Castilla—La Mancha, 02006 Albacete, Spain
| | - Mariano Higes
- Laboratorio de Patología Apícola, IRIAF—Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Camino de San Martín, 19180 Marchamalo, Spain; (R.M.-H.); (M.H.)
| | - Sara Kafafi Segura
- Zoología y Antropología Física, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28014 Madrid, Spain;
| | - Dora Henriques
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (A.R.L.); (D.H.)
| | - Maria Alice Pinto
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (A.R.L.); (D.H.)
- Correspondence:
| |
Collapse
|
33
|
Nosemosis in Honeybees: A Review Guide on Biology and Diagnostic Methods. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nosema apis and Nosema ceranae are dangerous parasites of the honey bee (Apis mellifera). N. ceranae is more pathogenic and, nowadays, more widespread than N. apis. There are also cases of mixed infections or infections of only N. apis. Both N. apis and N. ceranae can lead to the weakening or death of A. mellifera colonies. It is crucial to make a fast and reliable diagnosis to monitor the disease and to start the correct treatment. Additionally, there is a need for further research on the pathogenicity of Nosema spp. and also on their prevalence in different regions of the world. In this paper, we present reliable diagnostic methods for Nosema spp. infection in honey bees and list the advantages and disadvantages of each method. We have also included basic information about nosemosis and the majority of diagnostic methods in order to provide a source of knowledge for veterinarians and researchers.
Collapse
|
34
|
High genetic variability of Nosema ceranae populations in Apis mellifera from East Asia compared to central Asia and the Americas. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02835-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Molecular Detection and Differentiation of Arthropod, Fungal, Protozoan, Bacterial and Viral Pathogens of Honeybees. Vet Sci 2022; 9:vetsci9050221. [PMID: 35622749 PMCID: PMC9145064 DOI: 10.3390/vetsci9050221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
The honeybee Apis mellifera is highly appreciated worldwide because of its products, but also as it is a pollinator of crops and wild plants. The beehive is vulnerable to infections due to arthropods, fungi, protozoa, bacteria and/or viruses that manage to by-pass the individual and social immune mechanisms of bees. Due to the close proximity of bees in the beehive and their foraging habits, infections easily spread within and between beehives. Moreover, international trade of bees has caused the global spread of infections, several of which result in significant losses for apiculture. Only in a few cases can infections be diagnosed with the naked eye, by direct observation of the pathogen in the case of some arthropods, or by pathogen-associated distinctive traits. Development of molecular methods based on the amplification and analysis of one or more genes or genomic segments has brought significant progress to the study of bee pathogens, allowing for: (i) the precise and sensitive identification of the infectious agent; (ii) the analysis of co-infections; (iii) the description of novel species; (iv) associations between geno- and pheno-types and (v) population structure studies. Sequencing of bee pathogen genomes has allowed for the identification of new molecular targets and the development of specific genotypification strategies.
Collapse
|
36
|
Recent Advances in the Biocontrol of Nosemosis in Honey Bees (Apis mellifera L.). J Fungi (Basel) 2022; 8:jof8050424. [PMID: 35628680 PMCID: PMC9145624 DOI: 10.3390/jof8050424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022] Open
Abstract
Nosemosis is a disease triggered by the single-celled spore-forming fungi Nosema apis and Nosema ceranae, which can cause extensive colony losses in honey bees (Apis mellifera L.). Fumagillin is an effective antibiotic treatment to control nosemosis, but due to its toxicity, it is currently banned in many countries. Accordingly, in the beekeeping sector, there is a strong demand for alternative ecological methods that can be used for the prevention and therapeutic control of nosemosis in honey bee colonies. Numerous studies have shown that plant extracts, RNA interference (RNAi) and beneficial microbes could provide viable non-antibiotic alternatives. In this article, recent scientific advances in the biocontrol of nosemosis are summarized.
Collapse
|
37
|
Presence of Known and Emerging Honey Bee Pathogens in Apiaries of Veneto Region (Northeast of Italy) during Spring 2020 and 2021. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042134] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A progressive honey bee population decline has been reported worldwide during the last decades, and it could be attributed to several causes, in particular to the presence of pathogens and parasites that can act individually or in synergy. The health status of nine apiaries located in different areas of the Veneto region (northeast of Italy) was assessed for two consecutive years (2020 and 2021) in spring, during the resumption of honey bee activity, for determining the presence of known (Nosema spp., Varroa mite and viruses) and less known or emerging pathogens (Lotmaria passim and Crithidia mellificae) in honey bees. After honey bees sampling from each of the nine apiaries, Nosema apis, Nosema ceranae, L. passim, C. mellificae, ABPV, CBPV, IAPV, KBV, BQCV, SBV, DWV-A, DWV-B and V. destructor were investigated either by microscopic observation or PCR protocols. The viruses BQCV, SBV, CBPV followed by N. ceranae and L. passim were the most prevalent pathogens, and many of the investigated hives, despite asymptomatic, had different degrees of co-infection. This study aimed to highlight, during the resumption of honey bee activity in spring, the prevalence and spreading in the regional territory of different honey bee pathogens, which could alone or synergistically alter the homeostasis of bees colonies. The information gathered would increase our knowledge about the presence of these microorganisms and parasites in the territory and could contribute to improve beekeepers practice.
Collapse
|
38
|
Jabal-Uriel C, Albarracín VN, Calatayud J, Higes M, Martín-Hernández R. Age and Season Effect the Timing of Adult Worker Honeybee Infection by Nosema ceranae. Front Cell Infect Microbiol 2022; 11:823050. [PMID: 35155274 PMCID: PMC8836290 DOI: 10.3389/fcimb.2021.823050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
The microsporidia Nosema ceranae is an intracellular parasite of honeybees’ midgut, highly prevalent in Apis mellifera colonies for which important epidemiological information is still unknown. Our research aimed at understanding how age and season influence the onset of infection in honeybees and its development in the colony environment. Adult worker honeybees of less than 24h were marked and introduced into 6 different colonies in assays carried out in spring and autumn. Bees of known age were individually analyzed by PCR for Nosema spp. infection and those resulting positive were studied to determine the load by Real Time-qPCR. The age of onset and development of infection in each season was studied on a total of 2401 bees and the probability and the load of infection for both periods was established with two statistical models. First N. ceranae infected honeybees were detected at day 5 post emergence (p.e.; spring) and at day 4 p.e. (autumn) and in-hive prevalence increased from that point onwards, reaching the highest mean infection on day 18 p.e. (spring). The probability of infection increased significantly with age in both periods although the age variable better correlated in spring. The N. ceranae load tended to increase with age in both periods, although the age-load relationship was clearer in spring than in autumn. Therefore, age and season play an important role on the probability and the development of N. ceranae infection in honeybees, bringing important information to understand how it spreads within a colony.
Collapse
Affiliation(s)
- Clara Jabal-Uriel
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
| | - Verónica N. Albarracín
- Facultad de Agronomía y Zootecnia de la Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Joaquín Calatayud
- Departamento de Biología, Geología, Física y Química inorgánica, Universidad Rey Juan Carlos, Madrid, Spain
| | - Mariano Higes
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
| | - Raquel Martín-Hernández
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
- Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT – ESF/EC-FSE), Fundación Parque Científico y Tecnológico de Castilla – La Mancha, Albacete, Spain
- *Correspondence: Raquel Martín-Hernández,
| |
Collapse
|
39
|
Honey bee pathogenesis posing threat to its global population: a short review. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00062-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
40
|
Abstract
Nosemosis is a serious microsporidian disease of adult European honey bees caused by the spore-forming unicellular fungi Nosema apis and Nosema ceranae. In this paper we describe the currently known techniques for nosemosis prevention and control including Good Beekeeping Practices (GBPs) and biosecurity measures (BMBs). Topics such as queen renewal, nosema-resistant bees and hygienic and control methods are described. Strong efforts are currently provided to find more a sustainable solution than the use of antibiotics. So far, it seems that the best way to approach nosemosis is given by an “integrated pest management strategy”, which foresees the contemporary application of different, specific GBPs and BMBs.
Collapse
|
41
|
Polymorphism of 16s rRNA Gene: Any Effect on the Biomolecular Quantitation of the Honey Bee (Apis mellifera L., 1758) Pathogen Nosema ceranae? APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12010422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The microsporidian Nosema ceranae is a severe threat to the western honey bee Apis mellifera, as it is responsible for nosemosis type C, which leads the colonies to dwindle and collapse. Infection quantification is essential to clinical and research aims. Assessment is made often with molecular assays based on rRNA genes, which are present in the N. ceranae genome as multiple and polymorphic copies. This study aims to compare two different methods of Real-Time PCR (qPCR), respectively relying on the 16S rRNA and Hsp70 genes, the first of which is described as a multiple and polymorphic gene. Young worker bees, hatched in the laboratory and artificially inoculated with N. ceranae spores, were incubated at 33 °C and subject to different treatment regimens. Samples were taken post-infection and analyzed with both qPCR methods. Compared to Hsp70, the 16S rRNA method systematically detected higher abundance. Straightforward conversion between the two methods is made impossible by erratic 16s rRNA/Hsp70 ratios. The 16s rRNA polymorphism showed an increase around the inoculated dose, where a higher prevalence of ungerminated spores was expected due to the treatment effects. The possible genetic background of that irregular distribution is discussed in detail. The polymorphic nature of 16S rRNA showed to be a limit in the infection quantification. More reliably, the N. ceranae abundance can be assessed in honey bee samples with methods based on the single-copy gene Hsp70.
Collapse
|
42
|
Differential diagnosis of bees nosemosis - procedure and significance. ZBORNIK MATICE SRPSKE ZA PRIRODNE NAUKE 2022. [DOI: 10.2298/zmspn2243053s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
For the living world, in the existing ecosystem, for the reproduction,
production and spread of plant species, bees are one of the most important
parts of nature. In the pollination of certain field and fruit-vegetable
plant species, bees participate with almost 100%. Any factor that
contributes to reducing the presence of bees in nature, directly affects
the fertility of the plant world, and indirectly affects the rest of the
entire living population. Nosemosis is a microorganism that has a great
impact on the health of bees. In the previous period, Nosema sp. is
classified as a single-celled parasite, a protozoan, but today it is
classified as a fungus (Microsporidia). There are about 30 different species
of Nosema in nature. For the bee population, especially with regard to the
European honey bee (Apis millifera), two species of Nosema are very
important, Nosema apis and Nosema ceranae. The correct confirmation of the
type Nosema provides a better understanding of the outcomes and consequences
for the apiary in which the clinical picture of nosemosis has occurred. The
phenotypic diagnostic method, despite the present morphological differences,
does not provide the possibility of reliable confirmation of the Nosema
species. For these reasons, in order to make a differential diagnosis, it is
necessary to determine which type of Nosema is present by molecular methods.
In our work, by molecular method (PCR), we analyzed bees sampled from two
administrative areas. The examination showed that Nosema ceranae was found
in the two examined areas, while the presence of Nosema apis was not
confirmed. These results may indicate that Nosema ceranae is predominant in
the study area and has completely replaced Nosema apis.
Collapse
|
43
|
Snow JW. Nosema apis and N. ceranae Infection in Honey bees: A Model for Host-Pathogen Interactions in Insects. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:153-177. [PMID: 35544003 DOI: 10.1007/978-3-030-93306-7_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There has been increased focus on the role of microbial attack as a potential cause of recent declines in the health of the western honey bee, Apis mellifera. The Nosema species, N. apis and N. ceranae, are microsporidian parasites that are pathogenic to honey bees, and infection by these species has been implicated as a key factor in honey bee losses. Honey bees infected with both Nosema spp. display significant changes in their biology at the cellular, tissue, and organismal levels impacting host metabolism, immune function, physiology, and behavior. Infected individuals lead to colony dysfunction and can contribute to colony disease in some circumstances. The means through which parasite growth and tissue pathology in the midgut lead to the dramatic physiological and behavioral changes at the organismal level are only partially understood. In addition, we possess only a limited appreciation of the elements of the host environment that impact pathogen growth and development. Critical for answering these questions is a mechanistic understanding of the host and pathogen machinery responsible for host-pathogen interactions. A number of approaches are already being used to elucidate these mechanisms, and promising new tools may allow for gain- and loss-of-function experiments to accelerate future progress.
Collapse
|
44
|
Palmer-Young EC, Raffel TR, Evans JD. Hot and sour: parasite adaptations to honeybee body temperature and pH. Proc Biol Sci 2021; 288:20211517. [PMID: 34847766 PMCID: PMC8634619 DOI: 10.1098/rspb.2021.1517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/28/2021] [Indexed: 01/14/2023] Open
Abstract
Host temperature and gut chemistry can shape resistance to parasite infection. Heat and acidity can limit trypanosomatid infection in warm-blooded hosts and could shape infection resistance in insects as well. The colony-level endothermy and acidic guts of social bees provide unique opportunities to study how temperature and acidity shape insect-parasite associations. We compared temperature and pH tolerance between three trypanosomatid parasites from social bees and a related trypanosomatid from poikilothermic mosquitoes, which have alkaline guts. Relative to the mosquito parasites, all three bee parasites had higher heat tolerance that reflected body temperatures of hosts. Heat tolerance of the honeybee parasite Crithidia mellificae was exceptional for its genus, implicating honeybee endothermy as a plausible filter of parasite establishment. The lesser heat tolerance of the emerging Lotmaria passim suggests possible spillover from a less endothermic host. Whereas both honeybee parasites tolerated the acidic pH found in bee intestines, mosquito parasites tolerated the alkaline conditions found in mosquito midguts, suggesting that both gut pH and temperature could structure host-parasite specificity. Elucidating how host temperature and gut pH affect infection-and corresponding parasite adaptations to these factors-could help explain trypanosomatids' distribution among insects and invasion of mammals.
Collapse
|
45
|
Parekh F, Daughenbaugh KF, Flenniken ML. Chemical Stimulants and Stressors Impact the Outcome of Virus Infection and Immune Gene Expression in Honey Bees ( Apis mellifera). Front Immunol 2021; 12:747848. [PMID: 34804032 PMCID: PMC8596368 DOI: 10.3389/fimmu.2021.747848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
Western honey bees (Apis mellifera) are ecologically, agriculturally, and economically important plant pollinators. High average annual losses of honey bee colonies in the US have been partially attributed to agrochemical exposure and virus infections. To examine the potential negative synergistic impacts of agrochemical exposure and virus infection, as well as the potential promise of phytochemicals to ameliorate the impact of pathogenic infections on honey bees, we infected bees with a panel of viruses (i.e., Flock House virus, deformed wing virus, or Sindbis virus) and exposed to one of three chemical compounds. Specifically, honey bees were fed sucrose syrup containing: (1) thyme oil, a phytochemical and putative immune stimulant, (2) fumagillin, a beekeeper applied fungicide, or (3) clothianidin, a grower-applied insecticide. We determined that virus abundance was lower in honey bees fed 0.16 ppb thyme oil augmented sucrose syrup, compared to bees fed sucrose syrup alone. Parallel analysis of honey bee gene expression revealed that honey bees fed thyme oil augmented sucrose syrup had higher expression of key RNAi genes (argonaute-2 and dicer-like), antimicrobial peptide expressing genes (abaecin and hymenoptaecin), and vitellogenin, a putative honey bee health and age indicator, compared to bees fed only sucrose syrup. Virus abundance was higher in bees fed fumagillin (25 ppm or 75 ppm) or 1 ppb clothianidin containing sucrose syrup relative to levels in bees fed only sucrose syrup. Whereas, honey bees fed 10 ppb clothianidin had lower virus levels, likely because consuming a near lethal dose of insecticide made them poor hosts for virus infection. The negative impact of fumagillin and clothianidin on honey bee health was indicated by the lower expression of argonaute-2, dicer-like, abaecin, and hymenoptaecin, and vitellogenin. Together, these results indicate that chemical stimulants and stressors impact the outcome of virus infection and immune gene expression in honey bees.
Collapse
Affiliation(s)
- Fenali Parekh
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States.,Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States.,Pollinator Health Center, Montana State University, Bozeman, MT, United States
| | - Katie F Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States.,Pollinator Health Center, Montana State University, Bozeman, MT, United States
| | - Michelle L Flenniken
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States.,Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States.,Pollinator Health Center, Montana State University, Bozeman, MT, United States
| |
Collapse
|
46
|
Vairimorpha ceranae was the only detected microsporidian species from Iranian honey bee colonies: a molecular and phylogenetic study. Parasitol Res 2021; 121:355-366. [PMID: 34792656 DOI: 10.1007/s00436-021-07381-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
Nosemosis caused by Vairimorpha ceranae is one of the most important threats to honeybee colonies worldwide. This study aimed to determine the prevalence and intensity of Vairimorpha infection in different types of colonies and locations in Iran. In October 2017 and May 2018, 376 colonies from 97 apiaries were selected for each month according to a randomly clustered design. By considering 3-5 colonies for each apiary, 20 adult bees as pooled samples were collected from each colony. In microscopic analysis, 46.52% and 46.1% of samples in May and October showed Vairimorpha spores, respectively. The infection intensities in May and October were 5.94 ± 0.19 (× 106) and 5.86 ± 0.23 (× 106) spores/bee in a pooled sample, respectively. The mean infection intensity ranged from 1.8 to 12.5 (× 106) spores/bee. Statistically, there were no significant differences in the prevalence and intensity of V. ceranae infection between May and October samples. No significant differences were found among the prevalence rates of infection in the types of colonies; however, the intensity was significantly higher in migratory and mountainous colonies in May and only in migratory colonies in October. There was a significant correlation between the prevalence and intensity of V. ceranae infection (r2 = 0.695). PCR analysis showed that the samples were only infected with V. ceranae. No intraspecific variation to V. ceranae was found by direct sequencing of the amplified fragment of 16S rRNA. The obtained sequence was mainly 100% similar to those of V. ceranae isolates from European countries.
Collapse
|
47
|
Epidemiology of Nosema spp. and the effect of indoor and outdoor wintering on honey bee colony population and survival in the Canadian Prairies. PLoS One 2021; 16:e0258801. [PMID: 34695141 PMCID: PMC8544878 DOI: 10.1371/journal.pone.0258801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
The epidemiology of Nosema spp. in honey bees, Apis mellifera, may be affected by winter conditions as cold temperatures and differing wintering methods (indoor and outdoor) provide varying levels of temperature stress and defecation flight opportunities. Across the Canadian Prairies, including Alberta, the length and severity of winter vary among geographic locations. This study investigates the seasonal pattern of Nosema abundance in two Alberta locations using indoor and outdoor wintering methods and its impact on bee population, survival, and commercial viability. This study found that N. ceranae had a distinct seasonal pattern in Alberta, with high spore abundance in spring, declining to low levels in the summer and fall. The results showed that fall Nosema monitoring might not be the best indicator of treatment needs or future colony health outcomes. There was no clear pattern for differences in N. ceranae abundance by location or wintering method. However, wintering method affected survival with colonies wintered indoors having lower mortality and more rapid spring population build-up than outdoor-wintered colonies. The results suggest that the existing Nosema threshold should be reinvestigated with wintering method in mind to provide more favorable outcomes for beekeepers. Average Nosema abundance in the spring was a significant predictor of end-of-study winter colony mortality, highlighting the importance of spring Nosema monitoring and treatments.
Collapse
|
48
|
Özgör E. The Effects of Nosema apis and Nosema ceranae Infection on Survival and Phenoloxidase Gene Expression in Galleria mellonella (Lepidoptera: Galleriidae) Compared to Apis mellifera. INSECTS 2021; 12:953. [PMID: 34680722 PMCID: PMC8538655 DOI: 10.3390/insects12100953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/23/2022]
Abstract
The study aims to prove the possibility of colonization of N. apis and N. ceranae to the intestine of the greater wax moth, detect the differences of greater wax moth based on the presence of Nosema species and examine the effect of Nosema species on the phenoloxidase level of greater wax moth compared with honeybees. Each group was fed on the 1st day of the experiment with its appropriate diet containing 106 Nosema spores per insect. Each group was checked daily, and dead insects were counted. Furthermore, changes in the level of expression of the phenoloxidase-related gene after Nosema spp. treatment on the 6th, 9th and 12th days, which was detected by Q-PCR, and the mRNA level of phenoloxidase gene were measured in all experiment groups with the CFX Connect Real-Time PCR Detection System. This study shows that Apis mellifera L. has a 66.7% mortality rate in mixed Nosema infections, a 50% mortality rate in N. ceranae infection, a 40% mortality rate in N. apis infection, while there is no death in G. mellonella. A significant difference was found in the mixed Nosema infection group compared to the single Nosema infection groups by means of A. mellifera and G. mellonella (Duncan, p < 0.05). G. mellonella histopathology also shows that Nosema spores multiply in the epithelial cells of greater wax moth without causing any death. The increase in the mRNA level of Phenoloxidase gene in A. mellifera was detected (Kruskal-Wallis, p < 0.05), while the mRNA level of the Phenoloxidase gene did not change in G. mellonella (Kruskal-Wallis, p > 0.05). These findings prove that the Nosema species can colonize into the greater wax moth, which contributes to the dissemination of these Nosema species between beehives.
Collapse
Affiliation(s)
- Erkay Özgör
- Department of Molecular Biology and Genetics, Cyprus International University, 99258 Mersin-10, Turkey; ; Tel.: +90-3926711111
- Cyprus Bee and Bee Products Research Centre, Cyprus International University, 99258 Mersin-10, Turkey
| |
Collapse
|
49
|
Kaskinova M, Saltykova E, Poskryakov A, Nikolenko A, Gaifullina L. The Current State of the Protected Apis mellifera mellifera Population in Russia: Hybridization and Nosematosis. Animals (Basel) 2021; 11:2892. [PMID: 34679912 PMCID: PMC8532984 DOI: 10.3390/ani11102892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022] Open
Abstract
The Southern Urals of Russia are the habitat of one of the surviving populations of the dark forest bee-the Burzyan population of Apis mellifera mellifera. In this study, we present the results of the subspecies identification of bee colonies in the Altyn-Solok Nature Reserve in the Southern Ural Mountains using the intergenic mtDNA COI-COII locus and the assessment of the prevalence of nosematosis. Analysis of the mtDNA COI-COII intergenic locus in the studied sample showed that 30.4% of the colonies belong to the lineage C. The PCR diagnostics of nosematosis in 92 colonies selected from different sectors of the Altyn-Solok Nature Reserve showed that about half of the analyzed colonies were infected with Nosema apis. Nosema ceranae was found in eight colonies. Both of these factors can lead to the extinction of this population of the dark forest bee.
Collapse
Affiliation(s)
- Milyausha Kaskinova
- Ufa Federal Research Center, Institute of Biochemistry and Genetics, Russian Academy of Sciences, 450054 Ufa, Russia; (E.S.); (A.P.); (A.N.); (L.G.)
| | | | | | | | | |
Collapse
|
50
|
Truong AT, Sevin S, Kim S, Yoo MS, Cho YS, Yoon B. Rapidly quantitative detection of Nosema ceranae in honeybees using ultra-rapid real-time quantitative PCR. J Vet Sci 2021; 22:e40. [PMID: 34056881 PMCID: PMC8170219 DOI: 10.4142/jvs.2021.22.e40] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 03/10/2021] [Accepted: 04/12/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The microsporidian parasite Nosema ceranae is a global problem in honeybee populations and is known to cause winter mortality. A sensitive and rapid tool for stable quantitative detection is necessary to establish further research related to the diagnosis, prevention, and treatment of this pathogen. OBJECTIVES The present study aimed to develop a quantitative method that incorporates ultra-rapid real-time quantitative polymerase chain reaction (UR-qPCR) for the rapid enumeration of N. ceranae in infected bees. METHODS A procedure for UR-qPCR detection of N. ceranae was developed, and the advantages of molecular detection were evaluated in comparison with microscopic enumeration. RESULTS UR-qPCR was more sensitive than microscopic enumeration for detecting two copies of N. ceranae DNA and 24 spores per bee. Meanwhile, the limit of detection by microscopy was 2.40 × 10⁴ spores/bee, and the stable detection level was ≥ 2.40 × 10⁵ spores/bee. The results of N. ceranae calculations from the infected honeybees and purified spores by UR-qPCR showed that the DNA copy number was approximately 8-fold higher than the spore count. Additionally, honeybees infected with N. ceranae with 2.74 × 10⁴ copies of N. ceranae DNA were incapable of detection by microscopy. The results of quantitative analysis using UR-qPCR were accomplished within 20 min. CONCLUSIONS UR-qPCR is expected to be the most rapid molecular method for Nosema detection and has been developed for diagnosing nosemosis at low levels of infection.
Collapse
Affiliation(s)
- A Tai Truong
- Department of Life Science, College of Fusion Science, Kyonggi University, Suwon 16227, Korea.,Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen 250000, Vietnam.,Parasitic and Honeybee Disease Laboratory, Bacterial Disease Division, Department of Animal & Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Sedat Sevin
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Ankara 06560, Turkey
| | - Seonmi Kim
- Department of Life Science, College of Fusion Science, Kyonggi University, Suwon 16227, Korea
| | - Mi Sun Yoo
- Parasitic and Honeybee Disease Laboratory, Bacterial Disease Division, Department of Animal & Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Yun Sang Cho
- Parasitic and Honeybee Disease Laboratory, Bacterial Disease Division, Department of Animal & Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea.
| | - Byoungsu Yoon
- Department of Life Science, College of Fusion Science, Kyonggi University, Suwon 16227, Korea.
| |
Collapse
|