1
|
Yu Q, Ding X, Xu C, Zhu L, Lou Y. Anti-asthmatic effects of Andrographolide on OVA-stimulated mice via Th17 cell differentiation-mediated glycolytic pathway. Arch Biochem Biophys 2025:110514. [PMID: 40541898 DOI: 10.1016/j.abb.2025.110514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 06/10/2025] [Accepted: 06/17/2025] [Indexed: 06/22/2025]
Abstract
BACKGROUND Asthma has always been considered a major global health issue. Despite the significant efficacy of the established treatment, the incidence of exacerbation and mortality remains alarmingly high. Andrographolide (AG), extracted from the traditional Chinese herb Andrographis paniculate, has been proved to be anti-asthmatic with different mechanisms. But there have been no studies involving the regulatory function of AG in asthma through glycolysis. Herein, we aim to explore the potential effects and mechanism of glycolytic pathway in AG inhibition of asthma. METHODS Animals were randomly divided into 6 groups: a control group, an OVA model group, AG (0.1mg/kg) group, AG (0.5mg/kg) group, AG (1mg/kg) group and DEX (2mg/kg) group. The OVA models were established and the BALF, serum and lung tissue of the mice were collected separately for the administration of ELISA, rt-PCR, western blot and immunofluorescence staining. Network pharmacology and flow cytometry were also utilized to analyze and verify the potential targets of AG in treatment of asthma by glycolysis. RESULTS AG attenuated the OVA-induced production of HK2, lactate and PKM2 in lung tissue and the production of IL-1β in serum and lung tissue; AG restrained the OVA-stimulated expression of mRNA of Glut-1, LDHA and PKM2 in lung tissue; AG inhibited the OVA-mediated protein expression of HK2, Glut-1, LDHA, phosphorylation of PKM2, IL-17 in lung tissue; AG also alleviated the expression of PKM2 in lung tissue. Network pharmacology revealed 36 target genes including IL-1β and potential mechanism Th17 cell differentiation which was suppressed by AG. CONCLUSIONS We conclude that AG inhibits the inflammatory response of asthma in OVA-stimulated mice by blocking the activation of glycolytic pathway, especially by targeting Th17 cell differentiation.
Collapse
Affiliation(s)
- Qian Yu
- Department of Pulmonary and Critical Care Medicine, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - XuChun Ding
- Department of Pulmonary and Critical Care Medicine, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - ChunXiu Xu
- Hangzhou College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - LiHong Zhu
- Department of Pulmonary and Critical Care Medicine, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - YaFang Lou
- Department of Pulmonary and Critical Care Medicine, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Shi Y, Blander JM. Patterns of bacterial viability governing noncanonical inflammasome activation. Curr Opin Immunol 2025; 92:102512. [PMID: 39675154 DOI: 10.1016/j.coi.2024.102512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
Noncanonical inflammasomes are instrumental in defense against Gram-negative bacteria, activated primarily by bacterial lipopolysaccharide. This review examines commonalities and distinctions in noncanonical inflammasome activation either by virulence factor activity indicating cellular invasion or by detection of bacterial mRNA signaling the undesired presence of live bacteria in sterile tissue. These inflammasome triggers, alongside other examples discussed, reflect properties exclusive to live bacteria. The emerging picture underscores noncanonical inflammasome activation hinging on detection of indicators of bacterial viability such as the presence of certain molecules or activity of specific processes. The complex interpretation of combinatorial signals is essential for inflammasome activation according to the specific facet of infection confronting the host. Decoding these signals and their convergence on inflammasome activation will inform interventions and therapies for infectious diseases.
Collapse
Affiliation(s)
- Yuhua Shi
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA; Immunology and Microbial Pathogenesis Programs, Weill Cornell and Sloan Kettering Institute Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
3
|
Holley CL, Monteleone M, Fisch D, Libert AES, Ju RJ, Choi JH, Condon ND, Emming S, Crawford J, Lawrence GMEP, Coombs JR, Lefevre JG, Bajracharya R, Lahoud MH, Yap AS, Hamilton N, Stehbens SJ, Kagan JC, Ariotti N, Burgener SS, Schroder K. Pyroptotic cell corpses are crowned with F-actin-rich filopodia that engage CLEC9A signaling in incoming dendritic cells. Nat Immunol 2025; 26:42-52. [PMID: 39633178 PMCID: PMC11695261 DOI: 10.1038/s41590-024-02024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 10/24/2024] [Indexed: 12/07/2024]
Abstract
While apoptosis dismantles the cell to enforce immunological silence, pyroptotic cell death provokes inflammation. Little is known of the structural architecture of cells undergoing pyroptosis, and whether pyroptotic corpses are immunogenic. Here we report that inflammasomes trigger the Gasdermin-D- and calcium-dependent eruption of filopodia from the plasma membrane minutes before pyroptotic cell rupture, to crown the resultant corpse with filopodia. As a rich store of F-actin, pyroptotic filopodia are recognized by dendritic cells through the F-actin receptor, CLEC9A (DNGR1). We propose that cells assemble filopodia before cell rupture to serve as a posthumous mark for a cell that has died by gasdermin-induced pyroptosis, or MLKL-induced necroptosis, for recognition by dendritic cells. This study reveals the spectacular morphology of pyroptosis and identifies a mechanism by which inflammasomes induce pyroptotic cells to construct a de novo alarmin that activates dendritic cells via CLEC9A, which coordinates the transition from innate to adaptive immunity1,2.
Collapse
Affiliation(s)
- Caroline L Holley
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Mercedes Monteleone
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.
| | - Daniel Fisch
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandre E S Libert
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Robert J Ju
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Joon H Choi
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nicholas D Condon
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Stefan Emming
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Joanna Crawford
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Grace M E P Lawrence
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Jared R Coombs
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - James G Lefevre
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Faculty of Science, University of Queensland, Brisbane, Queensland, Australia
| | - Rinie Bajracharya
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Mireille H Lahoud
- Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Alpha S Yap
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas Hamilton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Samantha J Stehbens
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nicholas Ariotti
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Sabrina S Burgener
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
4
|
Mackay A, Velcicky J, Gommermann N, Mattes H, Janser P, Wright M, Dubois C, Brenneisen S, Ilic S, Vangrevelinghe E, Stiefl N, Boettcher A, Schoenboerner M, Vogelsanger M, Muller-Bentz S, Kamke M, Rubert J, Kauffmann M, Desrayaud S, Trunzer M, Srinivas H, Hinniger A, von Burg N, Beltz K, Dekker C, Farady CJ. Discovery of NP3-253, a Potent Brain Penetrant Inhibitor of the NLRP3 Inflammasome. J Med Chem 2024; 67:20780-20798. [PMID: 39574318 DOI: 10.1021/acs.jmedchem.4c02350] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Activation of the NLRP3 inflammasome in response to danger signals is a key innate immune mechanism and results in the production of the pro-inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) as well as pyroptotic cell death. Aberrant NLRP3 activation has been linked to many acute and chronic conditions ranging from atherosclerosis to Alzheimer's disease and cancer, and based on the clinical success of IL-1-targeting therapies, NLRP3 has emerged as an attractive therapeutic target. Herein we describe our discovery, characterization, and structure-based optimization of a pyridazine-based series of NLRP3 inhibitors initiating from an high-throughput screening campaign. The scaffold, exemplified by lead molecule NP3-253, has excellent potency and physicochemical and pharmacokinetic properties, including good brain penetration. The establishment of pharmacokinetic/pharmacodynamic relationships in the periphery and central nervous system in mechanistic models facilitates the use of NP3-253 as a tool to further interrogate the biology of NLRP3 in peripheral and neuroinflammatory models.
Collapse
Affiliation(s)
- Angela Mackay
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | - Juraj Velcicky
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | | | - Henri Mattes
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | - Philipp Janser
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | - Michael Wright
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | - Celine Dubois
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | | | - Slavica Ilic
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | | | | | | | | | | | | | - Marion Kamke
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | - Joelle Rubert
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | | | | | - Markus Trunzer
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | | | | | | | - Karen Beltz
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | - Carien Dekker
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | | |
Collapse
|
5
|
Sun R, Chu J, Li P. Inflammasomes and idiopathic inflammatory myopathies. Front Immunol 2024; 15:1449969. [PMID: 39723212 PMCID: PMC11668653 DOI: 10.3389/fimmu.2024.1449969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/15/2024] [Indexed: 12/28/2024] Open
Abstract
Idiopathic inflammatory myopathies (IIM) are a group of systemic autoimmune diseases characterized by muscle weakness and elevated serum creatine kinase levels. Recent research has highlighted the role of the innate immune system, particularly inflammasomes, in the pathogenesis of IIM. This review focuses on the role of inflammasomes, specifically NLRP3 and AIM2, and their associated proteins in the development of IIM. We discuss the molecular mechanisms of pyroptosis, a programmed cell death pathway that triggers inflammation, and its association with IIM. The NLRP3 inflammasome, in particular, has been implicated in muscle fiber necrosis and the subsequent release of damage-associated molecular patterns (DAMPs), leading to inflammation. We also explore the potential therapeutic implications of targeting the NLRP3 inflammasome with inhibitors such as glyburide and MCC950, which have shown promise in reducing inflammation and improving muscle function in preclinical models. Additionally, we discuss the role of caspases, particularly caspase-1, in the canonical pyroptotic pathway associated with IIM. The understanding of these mechanisms offers new avenues for therapeutic intervention and a better comprehension of IIM pathophysiology.
Collapse
Affiliation(s)
- Rui Sun
- Department of Rheumatology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Jiyan Chu
- Department of Rheumatology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
- Graduate School, Dalian Medical University, Dalian, Liaoning, China
| | - Ping Li
- Department of Rheumatology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Ziehr BK, MacDonald JA. Regulation of NLRPs by reactive oxygen species: A story of crosstalk. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119823. [PMID: 39173681 DOI: 10.1016/j.bbamcr.2024.119823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/28/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
The nucleotide oligomerization domain (NOD)-like receptors containing pyrin (NLRP) family of cytosolic pattern-recognition receptors play an integral role in host defense following exposure to a diverse set of pathogenic and sterile threats. The canonical event following ligand recognition is the formation of a heterooligomeric signaling complex termed the inflammasome that produces pro-inflammatory cytokines. Dysregulation of this process is associated with many autoimmune, cardiovascular, metabolic, and neurodegenerative diseases. Despite the range of activating stimuli which affect varied cell types, recent literature makes evident that reactive oxygen species (ROS) are integral to the initiation and propagation of inflammasome signaling. Notably, ROS production and inflammasome activation act in a positive feedback loop to promote this potent immune response. While NLRP3 is by far the most extensively studied NLRP, there is also sufficient literature to make these conclusions for other NLRPs family members. In all cases, a knowledge gap exists regarding the molecular targets and effects of ROS. Future research to define these targets and to parse the order and timing of ROS-mediated NLRP activation will provide meaningful insights into inflammasome biology. This will create novel therapeutic opportunities for the numerous illnesses that are impacted by inflammasome activity.
Collapse
Affiliation(s)
- Bjoern K Ziehr
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Justin A MacDonald
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada.
| |
Collapse
|
7
|
Saleem A, Saleem Bhat S, A. Omonijo F, A Ganai N, M. Ibeagha-Awemu E, Mudasir Ahmad S. Immunotherapy in mastitis: state of knowledge, research gaps and way forward. Vet Q 2024; 44:1-23. [PMID: 38973225 PMCID: PMC11232650 DOI: 10.1080/01652176.2024.2363626] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
Mastitis is an inflammatory condition that affects dairy cow's mammary glands. Traditional treatment approaches with antibiotics are increasingly leading to challenging scenarios such as antimicrobial resistance. In order to mitigate the unwanted side effects of antibiotics, alternative strategies such as those that harness the host immune system response, also known as immunotherapy, have been implemented. Immunotherapy approaches to treat bovine mastitis aims to enhance the cow's immune response against pathogens by promoting pathogen clearance, and facilitating tissue repair. Various studies have demonstrated the potential of immunotherapy for reducing the incidence, duration and severity of mastitis. Nevertheless, majority of reported therapies are lacking in specificity hampering their broad application to treat mastitis. Meanwhile, advancements in mastitis immunotherapy hold great promise for the dairy industry, with potential to provide effective and sustainable alternatives to traditional antibiotic-based approaches. This review synthesizes immunotherapy strategies, their current understanding and potential future perspectives. The future perspectives should focus on the development of precision immunotherapies tailored to address individual pathogens/group of pathogens, development of combination therapies to address antimicrobial resistance, and the integration of nano- and omics technologies. By addressing research gaps, the field of mastitis immunotherapy can make significant strides in the control, treatment and prevention of mastitis, ultimately benefiting both animal and human health/welfare, and environment health.
Collapse
Affiliation(s)
- Afnan Saleem
- Division of Animal Biotechnology, SKUAST-K, Srinagar, India
| | | | - Faith A. Omonijo
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Canada
| | | | - Eveline M. Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Canada
| | | |
Collapse
|
8
|
Xu X, Jin W, Chang R, Ding X. Research progress of SREBP and its role in the pathogenesis of autoimmune rheumatic diseases. Front Immunol 2024; 15:1398921. [PMID: 39224584 PMCID: PMC11366632 DOI: 10.3389/fimmu.2024.1398921] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Autoimmune rheumatic diseases comprise a group of immune-related disorders characterized by non-organ-specific inflammation. These diseases include systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), ankylosing spondylitis (AS), gout, among others. Typically involving the hematologic system, these diseases may also affect multiple organs and systems. The pathogenesis of autoimmune rheumatic immune diseases is complex, with diverse etiologies, all associated with immune dysfunction. The current treatment options for this type of disease are relatively limited and come with certain side effects. Therefore, the urgent challenge remains to identify novel therapeutic targets for these diseases. Sterol regulatory element-binding proteins (SREBPs) are basic helix-loop-helix-leucine zipper transcription factors that regulate the expression of genes involved in lipid and cholesterol biosynthesis. The expression and transcriptional activity of SREBPs can be modulated by extracellular stimuli such as polyunsaturated fatty acids, amino acids, glucose, and energy pathways including AKT-mTORC and AMP-activated protein kinase (AMPK). Studies have shown that SREBPs play roles in regulating lipid metabolism, cytokine production, inflammation, and the proliferation of germinal center B (GCB) cells. These functions are significant in the pathogenesis of rheumatic and immune diseases (Graphical abstract). Therefore, this paper reviews the potential mechanisms of SREBPs in the development of SLE, RA, and gout, based on an exploration of their functions.
Collapse
Affiliation(s)
| | | | | | - Xinghong Ding
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
9
|
Neamțu M, Bild V, Vasincu A, Arcan OD, Bulea D, Ababei DC, Rusu RN, Macadan I, Sciucă AM, Neamțu A. Inflammasome Molecular Insights in Autoimmune Diseases. Curr Issues Mol Biol 2024; 46:3502-3532. [PMID: 38666950 PMCID: PMC11048795 DOI: 10.3390/cimb46040220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Autoimmune diseases (AIDs) emerge due to an irregular immune response towards self- and non-self-antigens. Inflammation commonly accompanies these conditions, with inflammatory factors and inflammasomes playing pivotal roles in their progression. Key concepts in molecular biology, inflammation, and molecular mimicry are crucial to understanding AID development. Exposure to foreign antigens can cause inflammation, potentially leading to AIDs through molecular mimicry triggered by cross-reactive epitopes. Molecular mimicry emerges as a key mechanism by which infectious or chemical agents trigger autoimmunity. In certain susceptible individuals, autoreactive T or B cells may be activated by a foreign antigen due to resemblances between foreign and self-peptides. Chronic inflammation, typically driven by abnormal immune responses, is strongly associated with AID pathogenesis. Inflammasomes, which are vital cytosolic multiprotein complexes assembled in response to infections and stress, are crucial to activating inflammatory processes in macrophages. Chronic inflammation, characterized by prolonged tissue injury and repair cycles, can significantly damage tissues, thereby increasing the risk of AIDs. Inhibiting inflammasomes, particularly in autoinflammatory disorders, has garnered significant interest, with pharmaceutical advancements targeting cytokines and inflammasomes showing promise in AID management.
Collapse
Affiliation(s)
- Monica Neamțu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Veronica Bild
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
- Center of Biomedical Research of the Romanian Academy, 8 Carol I Avenue, 700506 Iasi, Romania
| | - Alexandru Vasincu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Oana Dana Arcan
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Delia Bulea
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Daniela-Carmen Ababei
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Răzvan-Nicolae Rusu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Ioana Macadan
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Ana Maria Sciucă
- Department of Oral Medicine, Oral Dermatology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Andrei Neamțu
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| |
Collapse
|
10
|
Wu X, Yang J, Wu J, Yang X. Therapeutic potential of MCC950, a specific inhibitor of NLRP3 inflammasome in systemic lupus erythematosus. Biomed Pharmacother 2024; 172:116261. [PMID: 38340397 DOI: 10.1016/j.biopha.2024.116261] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder with a pathogenesis that remains incompletely understood, resulting in limited treatment options. MCC950, a highly specific NLRP3 inflammasome inhibitor, effectively suppresses the activation of NLRP3, thus reducing the production of caspase-1, the pro-inflammatory cytokines IL-1β and IL-18. This review highlights the pivotal role of NLRP3 inflammasome activation pathways in the pathogenesis of SLE and discusses the potential therapeutic application of MCC950 in SLE. Notably, it comprehensively elucidates the mechanism of MCC950 targeting the NLRP3 pathway in SLE treatment, outlining its potential role in regulating autophagy and necroptosis. The insights gained contribute to a deeper understanding of the value of MCC950 in SLE therapy, serving as a robust foundation for further research and potential clinical applications.
Collapse
Affiliation(s)
- Xiaoxiao Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Junhao Yang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155North Nanjing Street, Heping District, Shenyang 110001, China
| | - Juanjie Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Xuyan Yang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China.
| |
Collapse
|
11
|
Yang F, Ma N, Li S, Chen F, Huang X, Zhao L, Cao L. Tanshinone IIA Alleviates Early Brain Injury after Subarachnoid Hemorrhage in Rats by Inhibiting the Activation of NF-κB/NLRP3 Inflammasome. Biol Pharm Bull 2024; 47:279-291. [PMID: 38057100 DOI: 10.1248/bpb.b23-00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The abnormal activation of the nuclear factor-kappa B (NF-κB)/nod-like receptor family-pyrin domain-containing 3 (NLRP3) signaling pathway is closely related to early brain injury after subarachnoid hemorrhage (SAH). Targeting the NLRP3-inflammasome has been considered an efficient therapy for the local inflammatory response after SAH. Tanshinone IIA (Tan IIA), a major component extracted from Salvia miltiorrhiza, has been reported to have anti-inflammatory effects. The aim of this study was to investigate the effect and mechanism of Tan IIA on early brain injury after SAH. In vivo SAH injury was established by endovascular perforation technique in Sprague-Dawley rats. Limb-placement test and corner turning test were used to measure the behavior. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining, hematoxylin-eosin (H&E) staining, and immunofluorescence were used to evaluate the nerve damage. Real-time RT quantitative PCR (RT-qPCR) was used to quantify the levels of inflammatory factors. Western blot was performed for the activation of the NF-κB/NLRP3 pathway. An in vitro SAH model was used to validate the conclusion. We found that the neurobehavioral impairment and cerebral edema in SAH model rats given Tan IIA were alleviated. Further study demonstrated that Tan IIA could inhibit SAH-secondary neuronal apoptosis around hematoma and alleviate brain injury. Tan IIA down-regulated the expression of interleukin-6 (IL)-6, monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor (TNF)-α, and inhibited the activation of NF-κB. And the overexpression of pro-inflammatory factors NLRP3, IL-1β, and IL-18 induced after SAH was also reversed by Tan IIA. In conclusions, Tan IIA could inhibit the NF-κB/NLRP3 inflammasome activation to protect and ameliorate SAH-followed early brain injury, and may be a preventive and therapeutic strategy against SAH.
Collapse
Affiliation(s)
- Fanhui Yang
- Department of Nuclear Medicine, The Affiliated Hospital of North Sichuan Medical College
| | - Ningshuai Ma
- Department of Ultrasonography, The Affiliated Hospital of North Sichuan Medical College
| | - Suping Li
- Department of Nuclear Medicine, The Affiliated Hospital of North Sichuan Medical College
| | - Fei Chen
- Department of Nuclear Medicine, The Affiliated Hospital of North Sichuan Medical College
| | - Xiaohong Huang
- Department of Nuclear Medicine, The Affiliated Hospital of North Sichuan Medical College
| | - Li Zhao
- Department of Neurology, The Affiliated Hospital of North Sichuan Medical College
- Institute of Neurological Diseases, North Sichuan Medical College
| | - Lingzhi Cao
- Department of Nuclear Medicine, The Affiliated Hospital of North Sichuan Medical College
| |
Collapse
|
12
|
Blicharz L, Czuwara J, Rudnicka L, Torrelo A. Autoinflammatory Keratinization Diseases-The Concept, Pathophysiology, and Clinical Implications. Clin Rev Allergy Immunol 2023; 65:377-402. [PMID: 38103162 PMCID: PMC10847199 DOI: 10.1007/s12016-023-08971-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2023] [Indexed: 12/17/2023]
Abstract
Recent advances in medical genetics elucidated the background of diseases characterized by superficial dermal and epidermal inflammation with resultant aberrant keratosis. This led to introducing the term autoinflammatory keratinization diseases encompassing entities in which monogenic mutations cause spontaneous activation of the innate immunity and subsequent disruption of the keratinization process. Originally, autoinflammatory keratinization diseases were attributed to pathogenic variants of CARD14 (generalized pustular psoriasis with concomitant psoriasis vulgaris, palmoplantar pustulosis, type V pityriasis rubra pilaris), IL36RN (generalized pustular psoriasis without concomitant psoriasis vulgaris, impetigo herpetiformis, acrodermatitis continua of Hallopeau), NLRP1 (familial forms of keratosis lichenoides chronica), and genes of the mevalonate pathway, i.e., MVK, PMVK, MVD, and FDPS (porokeratosis). Since then, endotypes underlying novel entities matching the concept of autoinflammatory keratinization diseases have been discovered (mutations of JAK1, POMP, and EGFR). This review describes the concept and pathophysiology of autoinflammatory keratinization diseases and outlines the characteristic clinical features of the associated entities. Furthermore, a novel term for NLRP1-associated autoinflammatory disease with epithelial dyskeratosis (NADED) describing the spectrum of autoinflammatory keratinization diseases secondary to NLRP1 mutations is proposed.
Collapse
Affiliation(s)
- Leszek Blicharz
- Department of Dermatology, Medical University of Warsaw, 02-008, Warsaw, Poland
| | - Joanna Czuwara
- Department of Dermatology, Medical University of Warsaw, 02-008, Warsaw, Poland.
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, 02-008, Warsaw, Poland
| | - Antonio Torrelo
- Department of Dermatology, University Children's Hospital Niño Jesús, 28009, Madrid, Spain.
| |
Collapse
|
13
|
Zihad SNK, Sifat N, Islam MA, Monjur-Al-Hossain A, Sikdar KYK, Sarker MMR, Shilpi JA, Uddin SJ. Role of pattern recognition receptors in sensing Mycobacterium tuberculosis. Heliyon 2023; 9:e20636. [PMID: 37842564 PMCID: PMC10570006 DOI: 10.1016/j.heliyon.2023.e20636] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 09/06/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023] Open
Abstract
Mycobacterium tuberculosis is one of the major invasive intracellular pathogens causing most deaths by a single infectious agent. The interaction between host immune cells and this pathogen is the focal point of the disease, Tuberculosis. Host immune cells not only mount the protective action against this pathogen but also serve as the primary niche for growth. Thus, recognition of this pathogen by host immune cells and following signaling cascades are key dictators of the disease state. Immune cells, mainly belonging to myeloid cell lineage, recognize a wide variety of Mycobacterium tuberculosis ligands ranging from carbohydrate and lipids to proteins to nucleic acids by different membrane-bound and soluble pattern recognition receptors. Simultaneous interaction between different host receptors and pathogen ligands leads to immune-inflammatory response as well as contributes to virulence. This review summarizes the contribution of pattern recognition receptors of host immune cells in recognizing Mycobacterium tuberculosis and subsequent initiation of signaling pathways to provide the molecular insight of the specific Mtb ligands interacting with specific PRR, key adaptor molecules of the downstream signaling pathways and the resultant effector functions which will aid in identifying novel drug targets, and developing novel drugs and adjuvants.
Collapse
Affiliation(s)
| | - Nazifa Sifat
- Department of Pharmacy, ASA University of Bangladesh, Dhaka, 1207, Bangladesh
| | | | | | | | - Md Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, Dhaka, 1205, Bangladesh
- Department of Pharmacy, Gono University, Nolam, Mirzanagar, Savar, Dhaka 1344, Bangladesh
| | - Jamil A. Shilpi
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
14
|
Lohinai ZM, Ruksakiet K, Földes A, Dinya E, Levine M. Genetic Control of GCF Exudation: Innate Immunity Genes and Periodontitis Susceptibility. Int J Mol Sci 2023; 24:14249. [PMID: 37762554 PMCID: PMC10532312 DOI: 10.3390/ijms241814249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/07/2023] [Accepted: 08/13/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic periodontitis is a bacterial infection associated with dentally adherent biofilm (plaque) accumulation and age-related comorbidities. The disease begins as an inflammatory exudate from gingival margins, gingival crevicular fluid (GCF) in response to biofilm lysine. After a week of experimental gingivitis (no oral hygiene), biofilm lysine concentration was linearly related to biofilm accumulation (plaque index) but to GCF as an arch-shaped double curve which separated 9 strong from 6 weak GCF responders (hosts). Host DNA was examined for single nucleotide polymorphisms (SNPs) of alleles reported in 7 periodontitis-associated genes. Across all 15 hosts, an adenine SNP (A) at IL1B-511 (rs16944), was significant for strong GCF (Fisher's exact test, p < 0.05), and a thymidine SNP (T) at IL1B+3954 (rs1143634) for weak GCF provided 2 hosts possessing IL6-1363(T), rs2069827, were included. The phenotype of IL1B+3954(T) was converted from weak to strong in one host, and of the non-T allele from strong to weak in the other (specific epistasis, Fisher's exact test, p < 0.01). Together with homozygous alternate or reference SNPs at IL10-1082 or CD14-260 in 4 hosts, all hosts were identified as strong or weak GCF responders. The GCF response is therefore a strong or weak genetic trait that indicates strong or weak innate immunity in EG and controllable or uncontrollable periodontal disease, dental implant survival and late-life comorbidities.
Collapse
Affiliation(s)
- Zsolt M. Lohinai
- Department of Restorative Dentistry and Endodontics, Semmelweis University, H-1088 Budapest, Hungary;
| | - Kasidid Ruksakiet
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (K.R.); (A.F.)
- Department of Restorative Dentistry, Faculty of Dentistry, Naresuan University, Phitsanulok 65000, Thailand
| | - Anna Földes
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (K.R.); (A.F.)
| | - Elek Dinya
- Digital Health Department, Semmelweis University, H-1094 Budapest, Hungary;
| | - Martin Levine
- Department of Periodontology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
15
|
Liu H, Wang K, Han D, Sun W, Xu S. Co-exposure of avermectin and imidacloprid induces DNA damage, pyroptosis, and immune dysfunction in epithelioma papulosum cyprini cells via ROS-mediated Keap1/Nrf2/TXNIP axis. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108985. [PMID: 37536468 DOI: 10.1016/j.fsi.2023.108985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
Pesticide mixtures can reduce pest resistance, however, their overuse severely threatens aquatic animal survival and public health. Avermectin (AVM) and imidacloprid (IMI) are potent insecticides often employed in agriculture. By inducing oxidative stress, these chemicals can induce cell death. Here, we evaluated the combined toxicity of AVM and IMI on EPC cells based on the concept of toxicity units (TU). We established EPC cell models exposed to AVM and IMI alone and in combination. The results showed that AVM and IMI had additive effects on the toxicity of EPC cells. Meanwhile, the co-exposure of AVM and IMI exacerbated oxidative stress and induced excessive production of reactive oxygen species (ROS), triggered Keap1/Nrf2/TXNIP axis, caused DNA damage and increased the expression of genes related to pyroptosis. In addition, co-exposure to AVM and IMI caused immunosuppression of EPC cells. The ROS inhibitor N-Acetyl-l-cysteine (NAC) can dramatically reverse these alterations brought on by AVM and IMI co-exposure. The findings above conclude that co-exposure to AVM and IMI causes DNA damage, pyroptosis, and immunosuppression in EPC cells through the ROS-mediated Keap1/Nrf2/TXNIP pathway. This study revealed the joint toxicity of AVM and IMI on EPC cells, and reminded people to consider its impact on aquatic animals when using pesticide mixtures.
Collapse
Affiliation(s)
- Huanyi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Kun Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Dongxu Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wenying Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
16
|
Corripio-Miyar Y, MacLeod CL, Mair I, Mellanby RJ, Moore BD, McNeilly TN. Self-Adjuvanting Calcium-Phosphate-Coated Microcrystal-Based Vaccines Induce Pyroptosis in Human and Livestock Immune Cells. Vaccines (Basel) 2023; 11:1229. [PMID: 37515044 PMCID: PMC10385459 DOI: 10.3390/vaccines11071229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Successful vaccines require adjuvants able to activate the innate immune system, eliciting antigen-specific immune responses and B-cell-mediated antibody production. However, unwanted secondary effects and the lack of effectiveness of traditional adjuvants has prompted investigation into novel adjuvants in recent years. Protein-coated microcrystals modified with calcium phosphate (CaP-PCMCs) in which vaccine antigens are co-immobilised within amino acid crystals represent one of these promising self-adjuvanting vaccine delivery systems. CaP-PCMCs has been shown to enhance antigen-specific IgG responses in mouse models; however, the exact mechanism of action of these microcrystals is currently unclear. Here, we set out to investigate this mechanism by studying the interaction between CaP-PCMCs and mammalian immune cells in an in vitro system. Incubation of cells with CaP-PCMCs induced rapid pyroptosis of peripheral blood mononuclear cells and monocyte-derived dendritic cells from cattle, sheep and humans, which was accompanied by the release of interleukin-1β and the activation of Caspase-1. We show that this pyroptotic event was cell-CaP-PCMCs contact dependent, and neither soluble calcium nor microcrystals without CaP (soluble PCMCs) induced pyroptosis. Our results corroborate CaP-PCMCs as a promising delivery system for vaccine antigens, showing great potential for subunit vaccines where the enhancement or find tuning of adaptive immunity is required.
Collapse
Affiliation(s)
| | - Clair Lyle MacLeod
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XQ, UK
| | - Iris Mair
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian EH25 9RG, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Richard J Mellanby
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian EH25 9RG, UK
| | - Barry D Moore
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XQ, UK
| | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| |
Collapse
|
17
|
Wang J, Sun Z, Xie J, Ji W, Cui Y, Ai Z, Liang G. Inflammasome and pyroptosis in autoimmune liver diseases. Front Immunol 2023; 14:1150879. [PMID: 36969233 PMCID: PMC10030845 DOI: 10.3389/fimmu.2023.1150879] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
Autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), and IgG4-related sclerosing cholangitis (IgG4-SC) are the four main forms of autoimmune liver diseases (AILDs), which are all defined by an aberrant immune system attack on the liver. Most previous studies have shown that apoptosis and necrosis are the two major modes of hepatocyte death in AILDs. Recent studies have reported that inflammasome-mediated pyroptosis is critical for the inflammatory response and severity of liver injury in AILDs. This review summarizes our present understanding of inflammasome activation and function, as well as the connections among inflammasomes, pyroptosis, and AILDs, thus highlighting the shared features across the four disease models and gaps in our knowledge. In addition, we summarize the correlation among NLRP3 inflammasome activation in the liver-gut axis, liver injury, and intestinal barrier disruption in PBC and PSC. We summarize the differences in microbial and metabolic characteristics between PSC and IgG4-SC, and highlight the uniqueness of IgG4-SC. We explore the different roles of NLRP3 in acute and chronic cholestatic liver injury, as well as the complex and controversial crosstalk between various types of cell death in AILDs. We also discuss the most up-to-date developments in inflammasome- and pyroptosis-targeted medicines for autoimmune liver disorders.
Collapse
Affiliation(s)
- Jixuan Wang
- School of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhiwen Sun
- Department of Liver, Spleen and Stomach Diseases, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jingri Xie
- Department of Liver, Spleen and Stomach Diseases, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wanli Ji
- School of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yang Cui
- School of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zongxiong Ai
- School of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Guoying Liang, ; Zongxiong Ai,
| | - Guoying Liang
- Department of Liver, Spleen and Stomach Diseases, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Guoying Liang, ; Zongxiong Ai,
| |
Collapse
|
18
|
Romerio A, Gotri N, Franco AR, Artusa V, Shaik MM, Pasco ST, Atxabal U, Matamoros-Recio A, Mínguez-Toral M, Zalamea JD, Franconetti A, Abrescia NGA, Jimenez-Barbero J, Anguita J, Martín-Santamaría S, Peri F. New Glucosamine-Based TLR4 Agonists: Design, Synthesis, Mechanism of Action, and In Vivo Activity as Vaccine Adjuvants. J Med Chem 2023; 66:3010-3029. [PMID: 36728697 PMCID: PMC9969399 DOI: 10.1021/acs.jmedchem.2c01998] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We disclose here a panel of small-molecule TLR4 agonists (the FP20 series) whose structure is derived from previously developed TLR4 ligands (FP18 series). The new molecules have increased chemical stability and a shorter, more efficient, and scalable synthesis. The FP20 series showed selective activity as TLR4 agonists with a potency similar to FP18. Interestingly, despite the chemical similarity with the FP18 series, FP20 showed a different mechanism of action and immunofluorescence microscopy showed no NF-κB nor p-IRF-3 nuclear translocation but rather MAPK and NLRP3-dependent inflammasome activation. The computational studies related a 3D shape of FP20 series with agonist binding properties inside the MD-2 pocket. FP20 displayed a CMC value lower than 5 μM in water, and small unilamellar vesicle (SUV) formation was observed in the biological activity concentration range. FP20 showed no toxicity in mouse vaccination experiments with OVA antigen and induced IgG production, thus indicating a promising adjuvant activity.
Collapse
Affiliation(s)
- Alessio Romerio
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Nicole Gotri
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Ana Rita Franco
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Valentina Artusa
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Mohammed Monsoor Shaik
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Samuel T. Pasco
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Unai Atxabal
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Alejandra Matamoros-Recio
- Centro
de Investigaciones Biológicas Margarita Salas CSIC, C/Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Marina Mínguez-Toral
- Centro
de Investigaciones Biológicas Margarita Salas CSIC, C/Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Juan Diego Zalamea
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Antonio Franconetti
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Nicola G. A. Abrescia
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain,Ikerbasque,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Bizkaia, Spain
| | - Jesus Jimenez-Barbero
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain,Ikerbasque,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Bizkaia, Spain,Department
of Organic Chemistry, II Faculty of Science and Technology, EHU-UPV, 48940 Leioa, Spain,Centro
de Investigación Biomédica En Red de Enfermedades Respiratorias, 28029 Madrid, Spain
| | - Juan Anguita
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain,Ikerbasque,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Bizkaia, Spain
| | | | - Francesco Peri
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy,
| |
Collapse
|
19
|
Keestra-Gounder AM, Nagao PE. Inflammasome activation by Gram-positive bacteria: Mechanisms of activation and regulation. Front Immunol 2023; 14:1075834. [PMID: 36761775 PMCID: PMC9902775 DOI: 10.3389/fimmu.2023.1075834] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
The inflammasomes are intracellular multimeric protein complexes consisting of an innate immune sensor, the adapter protein ASC and the inflammatory caspases-1 and/or -11 and are important for the host defense against pathogens. Activaton of the receptor leads to formation of the inflammasomes and subsequent processing and activation of caspase-1 that cleaves the proinflammatory cytokines IL-1β and IL-18. Active caspase-1, and in some instances caspase-11, cleaves gasdermin D that translocates to the cell membrane where it forms pores resulting in the cell death program called pyroptosis. Inflammasomes can detect a range of microbial ligands through direct interaction or indirectly through diverse cellular processes including changes in ion fluxes, production of reactive oxygen species and disruption of various host cell functions. In this review, we will focus on the NLRP3, NLRP6, NLRC4 and AIM2 inflammasomes and how they are activated and regulated during infections with Gram-positive bacteria, including Staphylococcus spp., Streptococcus spp. and Listeria monocytogenes.
Collapse
Affiliation(s)
- A. Marijke Keestra-Gounder
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Prescilla Emy Nagao
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Li J, Cui Y, Jin X, Ruan H, He D, Che X, Gao J, Zhang H, Guo J, Zhang J. Significance of pyroptosis-related gene in the diagnosis and classification of rheumatoid arthritis. Front Endocrinol (Lausanne) 2023; 14:1144250. [PMID: 37008939 PMCID: PMC10057543 DOI: 10.3389/fendo.2023.1144250] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/17/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA), a chronic autoimmune inflammatory disease, is often characterized by persistent morning stiffness, joint pain, and swelling. Early diagnosis and timely treatment of RA can effectively delay the progression of the condition and significantly reduce the incidence of disability. In the study, we explored the function of pyroptosis-related genes (PRGs) in the diagnosis and classification of rheumatoid arthritis based on Gene Expression Omnibus (GEO) datasets. METHOD We downloaded the GSE93272 dataset from the GEO database, which contains 35 healthy controls and 67 RA patients. Firstly, the GSE93272 was normalized by the R software "limma" package. Then, we screened PRGs by SVM-RFE, LASSO, and RF algorithms. To further investigate the prevalence of RA, we established a nomogram model. Besides, we grouped gene expression profiles into two clusters and explored their relationship with infiltrating immune cells. Finally, we analyzed the relationship between the two clusters and the cytokines. RESULT CHMP3, TP53, AIM2, NLRP1, and PLCG1 were identified as PRGs. The nomogram model revealed that decision-making based on established model might be beneficial for RA patients, and the predictive power of the nomogram model was significant. In addition, we identified two different pyroptosis patterns (pyroptosis clusters A and B) based on the 5 PRGs. We found that eosinophil, gamma delta T cell, macrophage, natural killer cell, regulatory T cell, type 17 T helper cell, and type 2 T helper cell were significant high expressed in cluster B. And, we identified gene clusters A and B based on 56 differentially expressed genes (DEGs) between pyroptosis cluster A and B. And we calculated the pyroptosis score for each sample to quantify the different patterns. The patients in pyroptosis cluster B or gene cluster B had higher pyroptosis scores than those in pyroptosis cluster A or gene cluster A. CONCLUSION In summary, PRGs play vital roles in the development and occurrence of RA. Our findings might provide novel views for the immunotherapy strategies with RA.
Collapse
Affiliation(s)
- Jian Li
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang, China
| | - Yongfeng Cui
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang, China
| | - Xin Jin
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang, China
| | - Hongfeng Ruan
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang, China
- Department of Orthopaedics, The First Affiliated Hospital of Zhejiang University of Chinese Medicine, Hangzhou, China
| | - Dongan He
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang, China
| | - Xiaoqian Che
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang, China
| | - Jiawei Gao
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang, China
| | - Haiming Zhang
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang, China
- *Correspondence: Haiming Zhang, ; Jiandong Guo, ; Jinxi Zhang,
| | - Jiandong Guo
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang, China
- *Correspondence: Haiming Zhang, ; Jiandong Guo, ; Jinxi Zhang,
| | - Jinxi Zhang
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang, China
- *Correspondence: Haiming Zhang, ; Jiandong Guo, ; Jinxi Zhang,
| |
Collapse
|
21
|
Ramos-Martinez E, Vega-Sánchez AE, Pérez-Rubio G, Mejia M, Buendía-Roldán I, González-Pérez MI, Mateos-Toledo HN, Andrade WA, Falfán-Valencia R, Rojas-Serrano J. Enhanced Activity of NLRP3 Inflammasome in the Lung of Patients with Anti-Synthetase Syndrome. Cells 2022; 12:cells12010060. [PMID: 36611853 PMCID: PMC9818379 DOI: 10.3390/cells12010060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022] Open
Abstract
Anti-synthetase syndrome (ASSD) is an autoimmune disorder characterized by inflammatory interstitial lung disease (ILD). The main objective of this work was to quantify the concentrations of cytokines and molecules associated with inflammasome activation in bronchoalveolar lavage (BAL) of patients with ASSD and a comparison group of systemic sclerosis (SSc) patients. Cytokines and lactate dehydrogenase (LDH) were determined using the concentrated BAL protein. The activity of caspase-1 and concentration of NLRP3 with the protein purified from the cell pellet in each group of patients. We found higher caspase-1 levels in ASSD vs. SSc, 1.25 RFU vs. 0.75 RFU p = 0.003, and LDH levels at 0.15 OD vs. 0.09 OD p < 0.001. A significant difference was observed in molecules associated with inflammasome activation, IL-18: 1.42 pg/mL vs. 0.87 pg/mL p = 0.02 and IFN-γ: 0.9 pg/mL vs. 0.86 pg/mL, p = 0.01. A positive correlation was found between caspase-1 and LDH in the patients with ASSD Rho 0.58 (p = 0.008) but not in the SSc group. In patients with ASSD, greater caspase-1 and higher LDH activity were observed in BAL, suggesting cell death due to pyroptosis and activation of the inflammasome pathway.
Collapse
Affiliation(s)
- Espiridión Ramos-Martinez
- Experimental Medicine Research Unit, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 06720, Mexico
| | - Angel E. Vega-Sánchez
- Interstitial Lung Disease and Rheumatology Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Mayra Mejia
- Interstitial Lung Disease and Rheumatology Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Ivette Buendía-Roldán
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Montserrat I. González-Pérez
- Interstitial Lung Disease and Rheumatology Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Heidegger N. Mateos-Toledo
- Interstitial Lung Disease and Rheumatology Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Warrison A. Andrade
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
- Correspondence: (R.F.-V.); (J.R.-S.)
| | - Jorge Rojas-Serrano
- Interstitial Lung Disease and Rheumatology Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
- Correspondence: (R.F.-V.); (J.R.-S.)
| |
Collapse
|
22
|
The H240R Protein of African Swine Fever Virus Inhibits Interleukin 1β Production by Inhibiting NEMO Expression and NLRP3 Oligomerization. J Virol 2022; 96:e0095422. [DOI: 10.1128/jvi.00954-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
African swine fever (ASF), a lethal hemorrhagic disease, is caused by African swine fever virus (ASFV). There are no commercially available vaccines or antivirals for the disease.
Collapse
|
23
|
Pagliari C, Kanashiro-Galo L, Sotto MN. Inflammasome and Inflammatory Programmed Cell Death in Chromoblastomycosis. Mycopathologia 2022; 188:63-70. [PMID: 36273348 DOI: 10.1007/s11046-022-00679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/05/2022] [Indexed: 10/24/2022]
Abstract
Chromoblastomycosis (CBM) is a chronic, progressive fungal disease of the skin and subcutaneous tissue caused by a group of dematiaceous fungi. Verrucous lesions present parasite-rich granulomas and predominance of a Th2 patterns of cytokines. The inflammasome constitutes a macromolecular protein complex that play a role in the activation of caspase 1 that cleaves pro-IL1β and pro-IL18, essential mediators of inflammation, and also activates pyroptosis. We intended to explore the presence and a possible role of inflammasome elements in cutaneous human lesions in CBM, considering the expression of IL1β, IL18, caspase 1, NLRP1, and also RIPK3, a key downstream component of necroptosis signaling. 35 skin biopsies of cutaneous lesions of verrucous form of CBM and 10 biopsies from normal skin were selected. The diagnosis was based on histological and clinical analysis. An immunohistochemical protocol was performed. The histopathological analysis evidenced epidermis with hyperkeratosis, irregular acanthosis, and micro abscesses. The dermis presented suppurative granulomas and inflammatory infiltrate composed by giant cells, macrophages, epithelioid cells, lymphocytes, and some eosinophils. Positive cells were distributed in the inflammatory infiltrate, with an increased number of cells expressing caspase 1, IL1β and IL18. Cells expressing RIPK3 and NLRP1 were less frequent. The intense presence of caspase 1, IL1β and IL18, allied to NLRP1 expression, suggest that inflammasome and pyroptosis could play a role in the immune response against fungal agents of CBM. Our results, allied to data from literature, could suggest that inflammasome-mediated response and pyroptosis could be a target to be explored to decrease CBM lesions.
Collapse
|
24
|
Weiss AM, Hossainy S, Rowan SJ, Hubbell JA, Esser-Kahn AP. Immunostimulatory Polymers as Adjuvants, Immunotherapies, and Delivery Systems. Macromolecules 2022; 55:6913-6937. [PMID: 36034324 PMCID: PMC9404695 DOI: 10.1021/acs.macromol.2c00854] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/16/2022] [Indexed: 12/14/2022]
Abstract
![]()
Activating innate immunity in a controlled manner is
necessary
for the development of next-generation therapeutics. Adjuvants, or
molecules that modulate the immune response, are critical components
of vaccines and immunotherapies. While small molecules and biologics
dominate the adjuvant market, emerging evidence supports the use of
immunostimulatory polymers in therapeutics. Such polymers can stabilize
and deliver cargo while stimulating the immune system by functioning
as pattern recognition receptor (PRR) agonists. At the same time,
in designing polymers that engage the immune system, it is important
to consider any unintended initiation of an immune response that results
in adverse immune-related events. Here, we highlight biologically
derived and synthetic polymer scaffolds, as well as polymer–adjuvant
systems and stimuli-responsive polymers loaded with adjuvants, that
can invoke an immune response. We present synthetic considerations
for the design of such immunostimulatory polymers, outline methods
to target their delivery, and discuss their application in therapeutics.
Finally, we conclude with our opinions on the design of next-generation
immunostimulatory polymers, new applications of immunostimulatory
polymers, and the development of improved preclinical immunocompatibility
tests for new polymers.
Collapse
Affiliation(s)
- Adam M. Weiss
- Pritzker School of Molecular Engineering, University of Chicago 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
- Department of Chemistry, University of Chicago 5735 S Ellis Ave., Chicago, Illinois 60637, United States
| | - Samir Hossainy
- Pritzker School of Molecular Engineering, University of Chicago 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Stuart J. Rowan
- Pritzker School of Molecular Engineering, University of Chicago 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
- Department of Chemistry, University of Chicago 5735 S Ellis Ave., Chicago, Illinois 60637, United States
| | - Jeffrey A. Hubbell
- Pritzker School of Molecular Engineering, University of Chicago 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Aaron P. Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
| |
Collapse
|
25
|
Theobald SJ, Simonis A, Mudler JM, Göbel U, Acton R, Kohlhas V, Albert MC, Hellmann AM, Malin JJ, Winter S, Hallek M, Walczak H, Nguyen PH, Koch M, Rybniker J. Spleen tyrosine kinase mediates innate and adaptive immune crosstalk in SARS-CoV-2 mRNA vaccination. EMBO Mol Med 2022; 14:e15888. [PMID: 35785445 PMCID: PMC9349614 DOI: 10.15252/emmm.202215888] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/15/2022] Open
Abstract
Durable cell‐mediated immune responses require efficient innate immune signaling and the release of pro‐inflammatory cytokines. How precisely mRNA vaccines trigger innate immune cells for shaping antigen specific adaptive immunity remains unknown. Here, we show that SARS‐CoV‐2 mRNA vaccination primes human monocyte‐derived macrophages for activation of the NLRP3 inflammasome. Spike protein exposed macrophages undergo NLRP3‐driven pyroptotic cell death and subsequently secrete mature interleukin‐1β. These effects depend on activation of spleen tyrosine kinase (SYK) coupled to C‐type lectin receptors. Using autologous cocultures, we show that SYK and NLRP3 orchestrate macrophage‐driven activation of effector memory T cells. Furthermore, vaccination‐induced macrophage priming can be enhanced with repetitive antigen exposure providing a rationale for prime‐boost concepts to augment innate immune signaling in SARS‐CoV‐2 vaccination. Collectively, these findings identify SYK as a regulatory node capable of differentiating between primed and unprimed macrophages, which modulate spike protein‐specific T cell responses.
Collapse
Affiliation(s)
- Sebastian J Theobald
- Department I of Internal Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Alexander Simonis
- Department I of Internal Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Julie M Mudler
- Department I of Internal Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Ulrike Göbel
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Richard Acton
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Viktoria Kohlhas
- Department I of Internal Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Marie-Christine Albert
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University Hospital of Cologne, Cologne, Germany
| | - Anna-Maria Hellmann
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, Cologne, Germany.,Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Medical Faculty of Medicine, University Hospital of Cologne, Cologne, Germany
| | - Jakob J Malin
- Department I of Internal Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Sandra Winter
- Department I of Internal Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Henning Walczak
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University Hospital of Cologne, Cologne, Germany.,Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Phuong-Hien Nguyen
- Department I of Internal Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Manuel Koch
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University Hospital of Cologne, Cologne, Germany.,Institute for Dental Research and Oral Musculoskeletal Biology,Medical Faculty, University of Cologne, Cologne, Germany
| | - Jan Rybniker
- Department I of Internal Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| |
Collapse
|
26
|
Evavold CL, Kagan JC. Diverse Control Mechanisms of the Interleukin-1 Cytokine Family. Front Cell Dev Biol 2022; 10:910983. [PMID: 35832789 PMCID: PMC9272893 DOI: 10.3389/fcell.2022.910983] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/17/2022] [Indexed: 11/15/2022] Open
Abstract
The majority of interleukin-1 (IL-1) family cytokines lack amino terminal secretion signals or transmembrane domains for secretion along the conventional biosynthetic pathway. Yet, these factors must be translocated from the cytoplasm across the plasma membrane into the extracellular space in order to regulate inflammation. Recent work has identified an array of mechanisms by which IL-1 family cytokines can be released into the extracellular space, with supramolecular organizing centers known as inflammasomes serving as dominant drivers of this process. In this review, we discuss current knowledge of the mechanisms of IL-1 family cytokine synthesis, processing, and release from cells. Using this knowledge, we propose a model whereby host metabolic state dictates the route of IL-1β secretion, with implications for microbial infection and sterile inflammation.
Collapse
Affiliation(s)
- Charles L. Evavold
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
- *Correspondence: Charles L. Evavold, ; Jonathan C. Kagan,
| | - Jonathan C. Kagan
- Division of Gastroenterology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- *Correspondence: Charles L. Evavold, ; Jonathan C. Kagan,
| |
Collapse
|
27
|
Liu Y, Tao X, Tao J. Strategies of Targeting Inflammasome in the Treatment of Systemic Lupus Erythematosus. Front Immunol 2022; 13:894847. [PMID: 35664004 PMCID: PMC9157639 DOI: 10.3389/fimmu.2022.894847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple organ dysfunction resulting from the production of multiple autoantibodies and adaptive immune system abnormalities involving T and B lymphocytes. In recent years, inflammasomes have been recognized as an important component of innate immunity and have attracted increasing attention because of their pathogenic role in SLE. In short, inflammasomes regulate the abnormal differentiation of immune cells, modulate pathogenic autoantibodies, and participate in organ damage. However, due to the clinical heterogeneity of SLE, the pathogenic roles of inflammasomes are variable, and thus, the efficacy of inflammasome-targeting therapies is uncertain. To provide a foundation for the development of such therapeutic strategies, in this paper, we review the role of different inflammasomes in the pathogenesis of SLE and their correlation with clinical phenotypes and propose some corresponding treatment strategies.
Collapse
Affiliation(s)
- Yaling Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xinyu Tao
- Department of Clinical Medicine "5 + 3" Integration, The First Clinical College, Anhui Medical University, Hefei, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
28
|
Challagundla N, Saha B, Agrawal-Rajput R. Insights into inflammasome regulation: cellular, molecular, and pathogenic control of inflammasome activation. Immunol Res 2022; 70:578-606. [PMID: 35610534 DOI: 10.1007/s12026-022-09286-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
Maintenance of immune homeostasis is an intricate process wherein inflammasomes play a pivotal role by contributing to innate and adaptive immune responses. Inflammasomes are ensembles of adaptor proteins that can trigger a signal following innate sensing of pathogens or non-pathogens eventuating in the inductions of IL-1β and IL-18. These inflammatory cytokines substantially influence the antigen-presenting cell's costimulatory functions and T helper cell differentiation, contributing to adaptive immunity. As acute and chronic disease conditions may accompany parallel tissue damage, we analyze the critical role of extracellular factors such as cytokines, amyloids, cholesterol crystals, etc., intracellular metabolites, and signaling molecules regulating inflammasome activation/inhibition. We develop an operative framework for inflammasome function and regulation by host cell factors and pathogens. While inflammasomes influence the innate and adaptive immune components' interplay modulating the anti-pathogen adaptive immune response, pathogens may target inflammasome inhibition as a survival strategy. As trapped between health and diseases, inflammasomes serve as promising therapeutic targets and their modus operandi serves as a scientific rationale for devising better therapeutic strategies.
Collapse
Affiliation(s)
- Naveen Challagundla
- Immunology lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382007, India
| | - Bhaskar Saha
- National Centre for Cell Science, Lab-5, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Reena Agrawal-Rajput
- Immunology lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382007, India.
| |
Collapse
|
29
|
Liu Z, Li D, Liu X, Zhang B, Zang Y, Ma J, Zhang W, Niu Y, Shen C. Elevated Serum Procalcitonin to Predict Severity and Prognosis of Extensive Burns. J INVEST SURG 2022; 35:1510-1518. [PMID: 35574977 DOI: 10.1080/08941939.2022.2073489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zhaoxing Liu
- Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Dawei Li
- Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Xinzhu Liu
- Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Bohan Zhang
- Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Yu Zang
- Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Jinglong Ma
- Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Wen Zhang
- Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Yuezeng Niu
- Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Chuanan Shen
- Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
30
|
Chen X, Tian PC, Wang K, Wang M, Wang K. Pyroptosis: Role and Mechanisms in Cardiovascular Disease. Front Cardiovasc Med 2022; 9:897815. [PMID: 35647057 PMCID: PMC9130572 DOI: 10.3389/fcvm.2022.897815] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/04/2022] [Indexed: 12/30/2022] Open
Abstract
Cardiovascular disease (CVD) is a common disease that poses a huge threat to human health. Irreversible cardiac damage due to cardiomyocyte death and lack of regenerative capacity under stressful conditions, ultimately leading to impaired cardiac function, is the leading cause of death worldwide. The regulation of cardiomyocyte death plays a crucial role in CVD. Previous studies have shown that the modes of cardiomyocyte death include apoptosis and necrosis. However, another new form of death, pyroptosis, plays an important role in CVD pathogenesis. Pyroptosis induces the amplification of inflammatory response, increases myocardial infarct size, and accelerates the occurrence of cardiovascular disease, and the control of cardiomyocyte pyroptosis holds great promise for the treatment of cardiovascular disease. In this paper, we summarized the characteristics, occurrence and regulation mechanism of pyroptosis are reviewed, and also discussed its role and mechanisms in CVD, such as atherosclerosis (AS), myocardial infarction (MI), arrhythmia and cardiac hypertrophy.
Collapse
Affiliation(s)
- Xinzhe Chen
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peng-Chao Tian
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, National Center for Cardiovascular Diseases, Peking Union Medical College, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Kai Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Man Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Kun Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
31
|
Eslamloo K, Kumar S, Xue X, Parrish KS, Purcell SL, Fast MD, Rise ML. Global gene expression responses of Atlantic salmon skin to Moritella viscosa. Sci Rep 2022; 12:4622. [PMID: 35301338 PMCID: PMC8931016 DOI: 10.1038/s41598-022-08341-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/03/2022] [Indexed: 12/19/2022] Open
Abstract
Moritella viscosa is a Gram-negative pathogen that causes large, chronic ulcers, known as winter-ulcer disease, in the skin of several fish species including Atlantic salmon. We used a bath challenge approach to profile the transcriptome responses of M. viscosa-infected Atlantic salmon skin at the lesion (Mv-At) and away from the lesion (Mv-Aw) sites. M. viscosa infection was confirmed through RNA-based qPCR assays. RNA-Seq identified 5212 and 2911 transcripts differentially expressed in the Mv-At compared to no-infection control and Mv-Aw groups, respectively. Also, there were 563 differentially expressed transcripts when comparing the Mv-Aw to control samples. Our results suggest that M. viscosa caused massive and strong, but largely infection site-focused, transcriptome dysregulations in Atlantic salmon skin, and its effects beyond the skin lesion site were comparably subtle. The M. viscosa-induced transcripts of Atlantic salmon were mainly involved in innate and adaptive immune response-related pathways, whereas the suppressed transcripts by this pathogen were largely connected to developmental and cellular processes. As validated by qPCR, M. viscosa dysregulated transcripts encoding receptors, signal transducers, transcription factors and immune effectors playing roles in TLR- and IFN-dependent pathways as well as immunoregulation, antigen presentation and T-cell development. This study broadened the current understanding of molecular pathways underlying M. viscosa-triggered responses of Atlantic salmon, and identified biomarkers that may assist to diagnose and combat this pathogen.
Collapse
Affiliation(s)
- Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada. .,Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada.
| | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Kathleen S Parrish
- Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - Sara L Purcell
- Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - Mark D Fast
- Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
32
|
Martynova E, Rizvanov A, Urbanowicz RA, Khaiboullina S. Inflammasome Contribution to the Activation of Th1, Th2, and Th17 Immune Responses. Front Microbiol 2022; 13:851835. [PMID: 35369454 PMCID: PMC8969514 DOI: 10.3389/fmicb.2022.851835] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/22/2022] [Indexed: 12/24/2022] Open
Abstract
Inflammasomes are cytosolic polyprotein complexes formed in response to various external and internal stimuli, including viral and bacterial antigens. The main product of the inflammasome is active caspase 1 which proteolytically cleaves, releasing functional interleukin-1 beta (IL-1β) and interleukin-18 (IL-18). These cytokines play a central role in shaping immune response to pathogens. In this review, we will focus on the mechanisms of inflammasome activation, as well as their role in development of Th1, Th2, and Th17 lymphocytes. The contribution of cytokines IL-1β, IL-18, and IL-33, products of activated inflammasomes, are summarized. Additionally, the role of cytokines released from tissue cells in promoting differentiation of lymphocyte populations is discussed.
Collapse
Affiliation(s)
| | | | - Richard A. Urbanowicz
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | | |
Collapse
|
33
|
Huang K, Wang C, Vagts C, Raguveer V, Finn PW, Perkins DL. Long non-coding RNAs (lncRNAs) NEAT1 and MALAT1 are differentially expressed in severe COVID-19 patients: An integrated single-cell analysis. PLoS One 2022; 17:e0261242. [PMID: 35007307 PMCID: PMC8746747 DOI: 10.1371/journal.pone.0261242] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/25/2021] [Indexed: 01/08/2023] Open
Abstract
Hyperactive and damaging inflammation is a hallmark of severe rather than mild Coronavirus disease 2019 (COVID-19). To uncover key inflammatory differentiators between severe and mild COVID-19, we applied an unbiased single-cell transcriptomic analysis. We integrated two single-cell RNA-seq datasets with COVID-19 patient samples, one that sequenced bronchoalveolar lavage (BAL) cells and one that sequenced peripheral blood mononuclear cells (PBMCs). The combined cell population was then analyzed with a focus on genes associated with disease severity. The immunomodulatory long non-coding RNAs (lncRNAs) NEAT1 and MALAT1 were highly differentially expressed between mild and severe patients in multiple cell types. Within those same cell types, the concurrent detection of other severity-associated genes involved in cellular stress response and apoptosis regulation suggests that the pro-inflammatory functions of these lncRNAs may foster cell stress and damage. Thus, NEAT1 and MALAT1 are potential components of immune dysregulation in COVID-19 that may provide targets for severity related diagnostic measures or therapy.
Collapse
Affiliation(s)
- Kai Huang
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Catherine Wang
- College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Christen Vagts
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Vanitha Raguveer
- College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Patricia W. Finn
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - David L. Perkins
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Division of Nephrology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
34
|
Deets KA, Nichols Doyle R, Rauch I, Vance RE. Inflammasome activation leads to cDC1-independent cross-priming of CD8 T cells by epithelial cell-derived antigen. eLife 2021; 10:e72082. [PMID: 34939932 PMCID: PMC8719880 DOI: 10.7554/elife.72082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022] Open
Abstract
The innate immune system detects pathogens and initiates adaptive immune responses. Inflammasomes are central components of the innate immune system, but whether inflammasomes provide sufficient signals to activate adaptive immunity is unclear. In intestinal epithelial cells (IECs), inflammasomes activate a lytic form of cell death called pyroptosis, leading to epithelial cell expulsion and the release of cytokines. Here, we employed a genetic system to show that simultaneous antigen expression and inflammasome activation specifically in IECs is sufficient to activate CD8+ T cells. By genetic elimination of direct T cell priming by IECs, we found that IEC-derived antigens were cross-presented to CD8+ T cells. However, cross-presentation of IEC-derived antigen to CD8+ T cells only partially depended on IEC pyroptosis. In the absence of inflammasome activation, cross-priming of CD8+ T cells required Batf3+ dendritic cells (conventional type one dendritic cells [cDC1]), whereas cross-priming in the presence of inflammasome activation required a Zbtb46+ but Batf3-independent cDC population. These data suggest the existence of parallel inflammasome-dependent and inflammasome-independent pathways for cross-presentation of IEC-derived antigens.
Collapse
Affiliation(s)
- Katherine A Deets
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Randilea Nichols Doyle
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Isabella Rauch
- Department of Molecular Microbiology and Immunology, Oregon Health and Science UniversityPortlandUnited States
| | - Russell E Vance
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Cancer Research Laboratory, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
35
|
Interleukin-1 Links Autoimmune and Autoinflammatory Pathophysiology in Mixed-Pattern Psoriasis. Mediators Inflamm 2021; 2021:2503378. [PMID: 34697538 PMCID: PMC8541875 DOI: 10.1155/2021/2503378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/07/2021] [Accepted: 09/29/2021] [Indexed: 01/25/2023] Open
Abstract
Autoinflammatory and autoimmune diseases are characterized by an oversensitive immune system with loss of the physiological endogenous regulation, involving multifactorial self-reactive pathological mechanisms of mono- or polygenic nature. Failure in regulatory mechanisms triggers a complex network of dynamic relationships between innate and adaptive immunity, leading to coexistent autoinflammatory and autoimmune processes. Sustained exposure to a trigger or a genetic alteration at the level of the receptors of the natural immune system may lead to abnormal activation of the innate immune system, adaptive system activation, loss of self-tolerance, and systemic inflammation. The IL-1 family members critically activate and regulate innate and adaptive immune responses' diversity and plasticity in autoimmune and/or autoinflammatory conditions. The IL-23/IL-17 axis is key in the communication between innate immunity (IL-23-producing myeloid cells) and adaptive immunity (Th17- and IL-17-expressing CD8+ T cells). In psoriasis, these cytokines are decisive to the different clinical presentations, whether as plaque psoriasis (psoriasis vulgaris), generalized pustular psoriasis (pustular psoriasis), or mixed forms. These forms reflect a gradient between autoimmune pathophysiology with predominant adaptive immune response and autoinflammatory pathophysiology with predominant innate immune response.
Collapse
|
36
|
Fan X, Zhang J, Dai Y, Shan K, Xu J. Blockage of P2X7R suppresses Th1/Th17-mediated immune responses and corneal allograft rejection via inhibiting NLRP3 inflammasome activation. Exp Eye Res 2021; 212:108792. [PMID: 34656546 DOI: 10.1016/j.exer.2021.108792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/10/2021] [Accepted: 10/11/2021] [Indexed: 01/03/2023]
Abstract
P2X7R is a vital modifier of various inflammatory and immune-related diseases. However, the immunomodulatory effects of P2X7R on corneal allograft rejection remains unknown. Here we showed that P2X7R expression was significantly upregulated in corneal grafts of allogeneic transplant mice. Pharmacological blockage of P2X7R remarkably prolonged graft survival time, and reduced inflammatory cell infiltration in corneal grafts, in particular Th1/Th17 cells. Meanwhile, the frequencies of Th1/Th17 cells in draining lymph nodes were significantly decreased in P2X7R blocked allogeneic mice. Further results showed that the effect of P2X7R on promoting Th1/Th17 mediated immune responses in corneal allograft rejection relied heavily on its activation on the NLRP3/caspase-1/IL-1β axis, while P2X7R blockage could mitigate such activation. Nevertheless, the addition of IL-1β in vivo abrogated the protective effect of P2X7R blockage on promoting corneal graft survival. These findings demonstrate that blockage of P2X7R can substantially alleviate corneal allograft rejection and promote grafts survival, highlighting it as a promising target for preventing or treating corneal allograft rejection.
Collapse
Affiliation(s)
- Xiangyu Fan
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Jing Zhang
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, 200031, China
| | - Yiqin Dai
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, 200031, China
| | - Kun Shan
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Jianjiang Xu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, 200031, China.
| |
Collapse
|
37
|
Opoku-Temeng C, Malachowa N, Kobayashi SD, DeLeo FR. Innate Host Defense against Klebsiella pneumoniae and the Outlook for Development of Immunotherapies. J Innate Immun 2021; 14:167-181. [PMID: 34628410 DOI: 10.1159/000518679] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/14/2021] [Indexed: 11/19/2022] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae) is a Gram-negative commensal bacterium and opportunistic pathogen. In healthy individuals, the innate immune system is adept at protecting against K. pneumoniae infection. Notably, the serum complement system and phagocytic leukocytes (e.g., neutrophils) are highly effective at eliminating K. pneumoniae and thereby preventing severe disease. On the other hand, the microbe is a major cause of healthcare-associated infections, especially in individuals with underlying susceptibility factors, such as pre-existing severe illness or immune suppression. The burden of K. pneumoniae infections in hospitals is compounded by antibiotic resistance. Treatment of these infections is often difficult largely because the microbes are usually resistant to multiple antibiotics (multidrug resistant [MDR]). There are a limited number of treatment options for these infections and new therapies, and preventative measures are needed. Here, we review host defense against K. pneumoniae and discuss recent therapeutic measures and vaccine approaches directed to treat and prevent severe disease caused by MDR K. pneumoniae.
Collapse
Affiliation(s)
- Clement Opoku-Temeng
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Natalia Malachowa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Scott D Kobayashi
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
38
|
Liang W, Xie BK, Ding PW, Wang M, Yuan J, Cheng X, Liao YH, Yu M. Sacubitril/Valsartan Alleviates Experimental Autoimmune Myocarditis by Inhibiting Th17 Cell Differentiation Independently of the NLRP3 Inflammasome Pathway. Front Pharmacol 2021; 12:727838. [PMID: 34603042 PMCID: PMC8479108 DOI: 10.3389/fphar.2021.727838] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Abstract
Sacubitril/valsartan (Sac/Val) is a recently approved drug that is commonly used for treatment of heart failure. Several studies indicated that Sac/Val also regulated the secretion of inflammatory factors. However, the effect and mechanism of this drug modulation of inflammatory immune responses are uncertain. In this study, an experimental autoimmune myocarditis (EAM) mouse model was established by injection of α-myosin-heavy chain peptides. The effect of oral Sac/Val on EAM was evaluated by histological staining of heart tissues, measurements of cardiac troponin T and inflammatory markers (IL-6 and hsCRP). The effects of Sac/Val on NLRP3 inflammasome activation and Th1/Th17 cell differentiation were also determined. To further explore the signaling pathways, the expressions of cardiac soluble guanylyl cyclase (sGC) and NF-κB p65 were investigated. The results showed that Sac/Val downregulated the inflammatory response and attenuated the severity of EAM, but did not influence NLRP3 inflammasomes activation. Moreover, Sac/Val treatment inhibited cardiac Th17 cell differentiation, and this might be associated with sGC/NF-κB p65 signaling pathway. These findings indicate the potential use of Sac/Val for treatment of myocarditis.
Collapse
Affiliation(s)
- Wei Liang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bai-Kang Xie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei-Wu Ding
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yuan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Hua Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Miao Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Du X, Que W, Hu X, Yu X, Guo WZ, Zhang S, Li XK. Oridonin Prolongs the Survival of Mouse Cardiac Allografts by Attenuating the NF-κB/NLRP3 Pathway. Front Immunol 2021; 12:719574. [PMID: 34566976 PMCID: PMC8462485 DOI: 10.3389/fimmu.2021.719574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/19/2021] [Indexed: 01/08/2023] Open
Abstract
Background Oridonin (Ori), the main bioactive ingredient of the natural anti-inflammatory herb Rabdosia rubescens, could be a covalent inhibitor of the NLRP3 inflammasome. Solid organ transplantation provides a life-saving optional therapy for patients with end-stage organ dysfunction. The long-term survival of solid organ transplantation remains restricted because of the possibility of rejection and the toxicity, infection, cardiovascular disease, and malignancy related to immunosuppressive (IS) drugs. However, the pathogenic mechanisms involved remain unclear. The ideal IS drugs to prevent allograft rejection have not been identified. Here, we investigated whether Ori could prolong the in vivo survival of completely mismatched cardiac allografts. Methods The cardiac transplantation models were conducted among three groups of mice from C57BL/6NCrSlc (B6/N) or C3H/HeNSlc (C3H) to C3H: the syngeneic and the allogeneic group, whose recipients were treated with vehicle of Ori, and the Ori treatment group, in which the recipients were transplanted hearts from MHC-I mismatched donors and treated with different dosages of Ori from post-operative day (POD) 0 to 7. Then, we investigated the effect of Ori on bone marrow-derived dendritic cell (BMDC) and allogeneic mixed lymphocyte reaction in vitro. Results Ori with 3, 10, and 15 mg/kg Ori could prolong the survival (MST = 22.8, 49.2, and 65.3 days, respectively). We found that infiltrating CD8+ T cells and macrophages were decreased, and regulatory T cells (Tregs) were expanded in allografts on POD7. The mRNA level of IL-1β and IFN-γ of allografts was downregulated. Mechanistically, Ori-treated BMDCs suppressed T-cell proliferation and IFN-γ+CD4+ T-cell differentiation, along with the expansion of Tregs and IL-10+CD4+ T cells. Ori inhibited NOD, LRR-, and pyrin domain-containing protein 3 (NLRP3) expression; attenuated NF-κB and IκBα phosphorylation in LPS-activated BMDCs; downregulated NLRP3, Caspase-1, IL-1β, IL-18, and IFN-γ; and upregulated IL-10 expression. Conclusions Our findings highlight the potential of Ori as a novel and natural IS agent to improve transplant tolerance. Ori could exert IS activity through decreasing IL-1β and IL-18 production and Th1 differentiation and proliferation and expanding Tregs via inhibiting the NF-κB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Xiaoxiao Du
- Henan Key Laboratory of Digestive Organ Transplantation, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Weitao Que
- Henan Key Laboratory of Digestive Organ Transplantation, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Xin Hu
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Xiao Yu
- Henan Key Laboratory of Digestive Organ Transplantation, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wen-Zhi Guo
- Henan Key Laboratory of Digestive Organ Transplantation, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuijun Zhang
- Henan Key Laboratory of Digestive Organ Transplantation, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Kang Li
- Henan Key Laboratory of Digestive Organ Transplantation, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
40
|
Fischer FA, Mies LFM, Nizami S, Pantazi E, Danielli S, Demarco B, Ohlmeyer M, Lee MSJ, Coban C, Kagan JC, Di Daniel E, Bezbradica JS. TBK1 and IKKε act like an OFF switch to limit NLRP3 inflammasome pathway activation. Proc Natl Acad Sci U S A 2021; 118:2009309118. [PMID: 34518217 PMCID: PMC8463895 DOI: 10.1073/pnas.2009309118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome activation is beneficial during infection and vaccination but, when uncontrolled, is detrimental and contributes to inflammation-driven pathologies. Hence, discovering endogenous mechanisms that regulate NLRP3 activation is important for disease interventions. Activation of NLRP3 is regulated at the transcriptional level and by posttranslational modifications. Here, we describe a posttranslational phospho-switch that licenses NLRP3 activation in macrophages. The ON switch is controlled by the protein phosphatase 2A (PP2A) downstream of a variety of NLRP3 activators in vitro and in lipopolysaccharide-induced peritonitis in vivo. The OFF switch is regulated by two closely related kinases, TANK-binding kinase 1 (TBK1) and I-kappa-B kinase epsilon (IKKε). Pharmacological inhibition of TBK1 and IKKε, as well as simultaneous deletion of TBK1 and IKKε, but not of either kinase alone, increases NLRP3 activation. In addition, TBK1/IKKε inhibitors counteract the effects of PP2A inhibition on inflammasome activity. We find that, mechanistically, TBK1 interacts with NLRP3 and controls the pathway activity at a site distinct from NLRP3-serine 3, previously reported to be under PP2A control. Mutagenesis of NLRP3 confirms serine 3 as an important phospho-switch site but, surprisingly, reveals that this is not the sole site regulated by either TBK1/IKKε or PP2A, because all retain the control over the NLRP3 pathway even when serine 3 is mutated. Altogether, a model emerges whereby TLR-activated TBK1 and IKKε act like a "parking brake" for NLRP3 activation at the time of priming, while PP2A helps remove this parking brake in the presence of NLRP3 activating signals, such as bacterial pore-forming toxins or endogenous danger signals.
Collapse
Affiliation(s)
- Fabian A Fischer
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Linda F M Mies
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Sohaib Nizami
- Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Eirini Pantazi
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Sara Danielli
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Benjamin Demarco
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Michael Ohlmeyer
- Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Atux Iskay LLC, Plainsboro, NJ 08536
| | - Michelle Sue Jann Lee
- Division of Malaria Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Cevayir Coban
- Division of Malaria Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Elena Di Daniel
- Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford OX3 7FZ, United Kingdom;
| | - Jelena S Bezbradica
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom;
| |
Collapse
|
41
|
Huang K, Wang C, Vagts C, Raguveer V, Finn PW, Perkins DL. Long non-coding RNAs (lncRNAs) NEAT1 and MALAT1 are differentially expressed in severe COVID-19 patients: An integrated single cell analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.03.26.21254445. [PMID: 33821282 PMCID: PMC8020982 DOI: 10.1101/2021.03.26.21254445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hyperactive and damaging inflammation is a hallmark of severe rather than mild COVID-19 syndrome. To uncover key inflammatory differentiators between severe and mild COVID-19 disease, we applied an unbiased single-cell transcriptomic analysis. We integrated a bronchoalveolar lavage (BAL) dataset with a peripheral blood mononuclear cell dataset (PBMC) and analyzed the combined cell population, focusing on genes associated with disease severity. Distinct cell populations were detected in both BAL and PBMC where the immunomodulatory long non-coding RNAs (lncRNAs) NEAT1 and MALAT1 were highly differentially expressed between mild and severe patients. The detection of other severity associated genes involved in cellular stress response and apoptosis regulation suggests that the pro-inflammatory functions of these lncRNAs may foster cell stress and damage. The lncRNAs NEAT1 and MALAT1 are potential components of immune dysregulation in COVID-19 that may provide targets for severity related diagnostic measures or therapy.
Collapse
Affiliation(s)
- Kai Huang
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago IL, 60612 United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago IL, 60612 United States
| | - Catherine Wang
- College of Medicine, University of Illinois at Chicago, Chicago IL, 60612 United States
| | - Christen Vagts
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago IL, 60612 United States
| | - Vanitha Raguveer
- College of Medicine, University of Illinois at Chicago, Chicago IL, 60612 United States
| | - Patricia W. Finn
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago IL, 60612 United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago IL, 60612 United States
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago IL, 60612 United States
| | - David L. Perkins
- Department of Bioengineering, University of Illinois at Chicago, Chicago IL, 60612 United States
- Division of Nephrology, Department of Medicine, University of Illinois at Chicago, Chicago IL, 60612 United States
- Department of Surgery, University of Illinois at Chicago, Chicago IL, 60612 United States
| |
Collapse
|
42
|
Xiao C, Cheng S, Li R, Wang Y, Zeng D, Jiang H, Liang Y, Huang R, Pan H, Wu X, Fang Y, Chen C, Li X, Zhang R, Wang X, Yang Z, Yang W. Isoforskolin Alleviates AECOPD by Improving Pulmonary Function and Attenuating Inflammation Which Involves Downregulation of Th17/IL-17A and NF-κB/NLRP3. Front Pharmacol 2021; 12:721273. [PMID: 34393799 PMCID: PMC8361481 DOI: 10.3389/fphar.2021.721273] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a major cause of morbidity and mortality worldwide, is widely considered to be related to cigarette smoke (CS), and viral infections trigger acute exacerbation of COPD (AECOPD). Isoforskolin (ISOF) is a bioactive component from the plant Coleus forskohlii, native to Yunnan in China. It has been demonstrated that ISOF has anti-inflammatory effect on acute lung injury animal models. In the present study, we investigated the efficacy and mechanism of ISOF for the prevention and treatment of AECOPD. Mice were exposed to CS for 18 weeks and then infected with influenza virus A/Puerto Rico/8/34 (H1N1). ISOF (0.5, 2 mg/kg) was intragastrically administered once a day after 8 weeks of exposure to cigarette smoke when the body weight and lung function of model mice declined significantly. The viral load, pulmonary function, lung morphology, Th17 cells, and inflammatory cytokines in lung tissues were evaluated. The expression of nuclear factor κB (NF-κB) and NOD-like receptor pyrin domain–containing protein 3 (NLRP3) inflammasome pathways were detected. The results showed that ISOF treatment reduced the viral load in the lung homogenate, decreased the lung index of model mice, and lung pathological injuries were alleviated. ISOF also improved the pulmonary function with increased FEV0.1/FVC and decreased Rn and Rrs. The levels of inflammatory mediators (TNF-α, IL-1β, IL-6, IL-17A, MCP-1, MIG, IP-10, and CRP) in the lung homogenate were reduced after ISOF treatment. ISOF decreased the proportion of Th17 cells in the lung tissues by the flow cytometry test, and the protein expression levels of RORγt and p-STAT3 were also decreased. Furthermore, ISOF significantly inhibited the activation of NF-κB signaling and NLRP3 inflammasome in the lung tissues of model mice. In conclusion, ISOF alleviates AECOPD by improving pulmonary function and attenuating inflammation via the downregulation of proinflammatory cytokines, Th17/IL-17 A, and NF-κB/NLRP3 pathways.
Collapse
Affiliation(s)
- Chuang Xiao
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Sha Cheng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Runfeng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yutao Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Deyou Zeng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Haiming Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yaping Liang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Rong Huang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Hanxiao Pan
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Xiao Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yan Fang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Chen Chen
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Xian Li
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Rongping Zhang
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Xinhua Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weimin Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| |
Collapse
|
43
|
Deng J, Zhang BZ, Chu H, Wang XL, Wang Y, Gong HR, Li R, Yang D, Li C, Dou Y, Gao P, Cai JP, Jin M, Du Q, Chan JFW, Kao RYT, Yuen KY, Huang JD. Adenosine synthase A contributes to recurrent Staphylococcus aureus infection by dampening protective immunity. EBioMedicine 2021; 70:103505. [PMID: 34332295 PMCID: PMC8340124 DOI: 10.1016/j.ebiom.2021.103505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Staphylococcus aureus is a common human pathogen capable of causing diverse illnesses with possible recurrent infections. Although recent studies have highlighted the role of cellular immunity in recurrent infections, the mechanism by which S. aureus evades host responses remains largely unexplored. Methods: This study utilizes in vitro and in vivo infection experiments to investigate difference of pro-inflammatory responses and subsequent adaptive immune responses between adsA mutant and WT S. aureus strain infection. Findings: We demonstrated that adenosine synthase A (AdsA), a potent S. aureus virulence factor, can alter Th17 responses by interfering with NLRP3 inflammasome-mediated IL-1β production. Specifically, S. aureus virulence factor AdsA dampens Th1/Th17 immunity by limiting the release of IL-1β and other Th polarizing cytokines. In particular, AdsA obstructs the release of IL-1β via the adenosine/A2aR/NLRP3 axis. Using a murine infection model, pharmacological inhibition of A2a receptor enhanced S. aureus-specific Th17 responses, whereas inhibition of NLRP3 and caspase-1 downregulated these responses. Our results showed that AdsA contributes to recurrent S. aureus infection by restraining protective Th1/Th17 responses. Interpretation: Our study provides important mechanistic insights for therapeutic and vaccination strategies against S. aureus infections.
Collapse
Affiliation(s)
- Jian Deng
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Bao-Zhong Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hin Chu
- Department of Microbiology, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Xiao-Lei Wang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Yixin Wang
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Hua-Rui Gong
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Renhao Li
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Dong Yang
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Cun Li
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Ying Dou
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Peng Gao
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Jian-Piao Cai
- Department of Microbiology, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Meilin Jin
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qian Du
- The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jasper Fuk-Woo Chan
- Department of Microbiology, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | | | - Kwok-Yung Yuen
- Department of Microbiology, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Jian-Dong Huang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
44
|
Li Y, Ling J, Jiang Q. Inflammasomes in Alveolar Bone Loss. Front Immunol 2021; 12:691013. [PMID: 34177950 PMCID: PMC8221428 DOI: 10.3389/fimmu.2021.691013] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022] Open
Abstract
Bone remodeling is tightly controlled by osteoclast-mediated bone resorption and osteoblast-mediated bone formation. Fine tuning of the osteoclast-osteoblast balance results in strict synchronization of bone resorption and formation, which maintains structural integrity and bone tissue homeostasis; in contrast, dysregulated bone remodeling may cause pathological osteolysis, in which inflammation plays a vital role in promoting bone destruction. The alveolar bone presents high turnover rate, complex associations with the tooth and periodontium, and susceptibility to oral pathogenic insults and mechanical stress, which enhance its complexity in host defense and bone remodeling. Alveolar bone loss is also involved in systemic bone destruction and is affected by medication or systemic pathological factors. Therefore, it is essential to investigate the osteoimmunological mechanisms involved in the dysregulation of alveolar bone remodeling. The inflammasome is a supramolecular protein complex assembled in response to pattern recognition receptors and damage-associated molecular patterns, leading to the maturation and secretion of pro-inflammatory cytokines and activation of inflammatory responses. Pyroptosis downstream of inflammasome activation also facilitates the clearance of intracellular pathogens and irritants. However, inadequate or excessive activity of the inflammasome may allow for persistent infection and infection spreading or uncontrolled destruction of the alveolar bone, as commonly observed in periodontitis, periapical periodontitis, peri-implantitis, orthodontic tooth movement, medication-related osteonecrosis of the jaw, nonsterile or sterile osteomyelitis of the jaw, and osteoporosis. In this review, we present a framework for understanding the role and mechanism of canonical and noncanonical inflammasomes in the pathogenesis and development of etiologically diverse diseases associated with alveolar bone loss. Inappropriate inflammasome activation may drive alveolar osteolysis by regulating cellular players, including osteoclasts, osteoblasts, osteocytes, periodontal ligament cells, macrophages, monocytes, neutrophils, and adaptive immune cells, such as T helper 17 cells, causing increased osteoclast activity, decreased osteoblast activity, and enhanced periodontium inflammation by creating a pro-inflammatory milieu in a context- and cell type-dependent manner. We also discuss promising therapeutic strategies targeting inappropriate inflammasome activity in the treatment of alveolar bone loss. Novel strategies for inhibiting inflammasome signaling may facilitate the development of versatile drugs that carefully balance the beneficial contributions of inflammasomes to host defense.
Collapse
Affiliation(s)
- Yang Li
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Junqi Ling
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qianzhou Jiang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| |
Collapse
|
45
|
Schwartz DM, Kitakule MM, Dizon BL, Gutierrez-Huerta C, Blackstone SA, Burma AM, Son A, Deuitch N, Rosenzweig S, Komarow H, Stone DL, Jones A, Nehrebecky M, Hoffmann P, Romeo T, de Jesus AA, Alehashemi S, Garg M, Torreggiani S, Montealegre Sanchez GA, Honer K, Souto Adeva G, Barron KS, Aksentijevich I, Ombrello AK, Goldbach-Mansky R, Kastner DL, Milner JD, Frischmeyer-Guerrerio P. Systematic evaluation of nine monogenic autoinflammatory diseases reveals common and disease-specific correlations with allergy-associated features. Ann Rheum Dis 2021; 80:788-795. [PMID: 33619160 PMCID: PMC8380268 DOI: 10.1136/annrheumdis-2020-219137] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/13/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Monogenic autoinflammatory diseases (AID) are caused by mutations in innate immune genes. The effects of these mutations on allergic inflammation are unknown. OBJECTIVES We investigated allergic, immunological and clinical phenotypes in FMF (familial Mediterranean fever), CAPS (cryopyrin-associated periodic syndrome), TRAPS (tumour necrosis factor receptor-associated periodic syndrome), HIDS (hyper-IgD syndrome), PAPA (pyogenic arthritis, pyoderma gangrenosum and acne), DADA2 (deficiency of adenosine deaminase 2), HA20 (haploinsufficiency of A20), CANDLE (chronic atypical neutrophilic dermatosis, lipodystrophy, elevated temperature) and SAVI (STING-associated vasculopathy of infancy). METHODS In this cross-sectional study, clinical data were assessed in 425 patients with AID using questionnaires and chart reviews. Comparator data were obtained from public databases. Peripheral blood mononuclear cells obtained from 55 patients were stimulated and CD4+ cytokine production assessed. RESULTS Clinical laboratory features of Type 2 immunity were elevated in CAPS but reduced in most AID, particularly DADA2. Physician-diagnosed allergic diseases were prevalent in multiple AID, including CAPS and DADA2. T helper 2 (Th2) cells were expanded in CAPS, TRAPS and HIDS; Th9 cells were expanded in HA20. CONCLUSIONS CAPS is characterised by an enhanced Type 2 signature, whereas FMF and CANDLE are associated with reduced Type 2 responses. DADA2 is associated with reduced Type 2 responses but a high rate of physician-diagnosed allergy. Therefore, NLRP3-driven autoinflammation may promote Type 2 immunity, whereas AID like DADA2 may manifest clinical phenotypes that masquerade as allergic disorders. Further investigations are needed to determine the contribution of autoinflammation to allergic clinical and immunological phenotypes, to improve the treatment of patients with AID.
Collapse
Affiliation(s)
- Daniella Muallem Schwartz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Moses M Kitakule
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Brian Lp Dizon
- NIAMS, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Sarah A Blackstone
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Aarohan M Burma
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Aran Son
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Natalie Deuitch
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Sofia Rosenzweig
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Hirsh Komarow
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Deborah L Stone
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Anne Jones
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Michele Nehrebecky
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Patrycja Hoffmann
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Tina Romeo
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Adriana Almeida de Jesus
- Translational Autoinflammatory Diseases Section, LCIM, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Sara Alehashemi
- Translational Autoinflammatory Diseases Section, LCIM, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Megha Garg
- Rheumatology, Rochester Regional Health System, Rochester, New York, USA
| | - Sofia Torreggiani
- Translational Autoinflammatory Diseases Section, LCIM, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Gina A Montealegre Sanchez
- Translational Autoinflammatory Diseases Section, LCIM, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Katelin Honer
- Translational Autoinflammatory Diseases Section, LCIM, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Gema Souto Adeva
- Translational Autoinflammatory Diseases Section, LCIM, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Karyl S Barron
- NIAID, National Institutes of Health, Bethesda, Maryland, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Amanda K Ombrello
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section, LCIM, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Daniel L Kastner
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Joshua D Milner
- Division of Pediatric Allergy, Immunology and Rheumatology, Columbia University, New York, New York, USA
| | | |
Collapse
|
46
|
Common pathogen-associated molecular patterns induce the hyper-activation of NLRP3 inflammasome in circulating B lymphocytes of HIV-infected individuals. AIDS 2021; 35:899-910. [PMID: 33821820 DOI: 10.1097/qad.0000000000002833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Despite the antiretroviral treatment, people with HIV (PWH) still experience systemic chronic inflammation and immune-senescence, which represent risk factors for severe comorbidities and inefficient response to pathogens and vaccines. Given the dysregulation of NLRP3 inflammasome in PWH and the recently demonstrated role played by NLRP3 in B lymphocytes, we hypothesized that NLRP3 dysregulation in B cells can contribute to chronic inflammation and humoral dysfunction in PWH. DESIGN NLRP3 inflammasome activation was evaluated in B lymphocytes and correlated with antibodies production and immunization response in PWH. METHODS NLRP3 inflammasome activation was compared in B lymphocytes isolated from PWH and healthy donors, in resting and stimulated conditions. Functional polymorphic variants in NLRP3 and IL1B genes were analysed in a cohort of PWH submitted to anti-HBV vaccine to assess the effect of NLRP3 inflammasome on humoral response. RESULTS The NLRP3 inflammasome activation in response to common PAMPs (LPS, ß-glucan) resulted higher in B lymphocytes of PWH than in HD. CpG-induced IgM secretion was also increased in B cells of PWH. NLRP3, but not IL1B, gain-of-function polymorphism associated to anti-HBs levels. CONCLUSION These data reveal the dysregulation of NLRP3 inflammasome in B lymphocytes of PWH. Differently from myeloid compartment, which present an exhausted NLRP3 inflammasome, the complex appears to be hyper-activated in B cells of PWH, likely contributing to chronic inflammation and affecting humoral response.
Collapse
|
47
|
Chen TT, Xiao F, Li N, Shan S, Qi M, Wang ZY, Zhang SN, Wei W, Sun WY. Inflammasome as an Effective Platform for Fibrosis Therapy. J Inflamm Res 2021; 14:1575-1590. [PMID: 33907438 PMCID: PMC8069677 DOI: 10.2147/jir.s304180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is the final stage of the development of chronic inflammation. It is characterized by excessive deposition of the extracellular matrix, leading to tissue structure damage and organ dysfunction, which is a serious threat to human health and life. However, the molecular mechanism of fibrosis is still unclear. Inflammasome is a molecular complex of proteins that has been becoming a key innate sensor for host immunity and is involved in pyroptosis, pathogen infection, metabolic syndrome, cellular stress, and tumor metastasis. Inflammasome signaling and downstream cytokine responses mediated by the inflammasome have been found to play an important role in fibrosis. The inflammasome regulates the secretion of IL-1β and IL-18, which are both critical for the process of fibrosis. Recently, researches on the function of inflammasome have attracted extensive attention, and data derived from these researches have increased our understanding of the effects and regulation of inflammasome during fibrosis. In this review, we emphasize the growing evidence for both indirect and direct effects of inflammasomes in triggering fibrosis as well as potential novel targets for antifibrotic therapies.
Collapse
Affiliation(s)
- Ting-Ting Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, People's Republic of China
| | - Feng Xiao
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, People's Republic of China
| | - Nan Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, People's Republic of China
| | - Shan Shan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, People's Republic of China
| | - Meng Qi
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, People's Republic of China
| | - Zi-Ying Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, People's Republic of China
| | - Sheng-Nan Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, People's Republic of China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, People's Republic of China
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, People's Republic of China
| |
Collapse
|
48
|
Abstract
A fundamental concept in immunology is that the innate immune system initiates or instructs downstream adaptive immune responses. Inflammasomes are central players in innate immunity to pathogens, but how inflammasomes shape adaptive immunity is complex and relatively poorly understood. Here we highlight recent work on the interplay between inflammasomes and adaptive immunity. We address how inflammasome-dependent release of cytokines and antigen activates, shapes or even inhibits adaptive immune responses. We consider how distinct tissue or cellular contexts may alter the effects of inflammasome activation on adaptive immunity and how this contributes to beneficial or detrimental outcomes in infectious diseases, cancer and autoimmunity. We aspire to provide a framework for thinking about inflammasomes and their connection to the adaptive immune response.
Collapse
|
49
|
Huot N, Rascle P, Petitdemange C, Contreras V, Stürzel CM, Baquero E, Harper JL, Passaes C, Legendre R, Varet H, Madec Y, Sauermann U, Stahl-Hennig C, Nattermann J, Saez-Cirion A, Le Grand R, Keith Reeves R, Paiardini M, Kirchhoff F, Jacquelin B, Müller-Trutwin M. SIV-induced terminally differentiated adaptive NK cells in lymph nodes associated with enhanced MHC-E restricted activity. Nat Commun 2021; 12:1282. [PMID: 33627642 PMCID: PMC7904927 DOI: 10.1038/s41467-021-21402-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells play a critical understudied role during HIV infection in tissues. In a natural host of SIV, the African green monkey (AGM), NK cells mediate a strong control of SIVagm infection in secondary lymphoid tissues. We demonstrate that SIVagm infection induces the expansion of terminally differentiated NKG2alow NK cells in secondary lymphoid organs displaying an adaptive transcriptional profile and increased MHC-E-restricted cytotoxicity in response to SIV Env peptides while expressing little IFN-γ. Such NK cell differentiation was lacking in SIVmac-infected macaques. Adaptive NK cells displayed no increased NKG2C expression. This study reveals a previously unknown profile of NK cell adaptation to a viral infection, thus accelerating strategies toward NK-cell directed therapies and viral control in tissues.
Collapse
Affiliation(s)
- Nicolas Huot
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Philippe Rascle
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France ,grid.508487.60000 0004 7885 7602Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Caroline Petitdemange
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Vanessa Contreras
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | | | - Eduard Baquero
- grid.462718.eInstitut Pasteur, Unité de Virologie Structurale, Paris, France
| | - Justin L. Harper
- grid.189967.80000 0001 0941 6502Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA USA
| | - Caroline Passaes
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Rachel Legendre
- grid.428999.70000 0001 2353 6535Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Paris, France
| | - Hugo Varet
- grid.428999.70000 0001 2353 6535Biomics Platform, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
| | - Yoann Madec
- grid.428999.70000 0001 2353 6535 Institut Pasteur; Epidemiology of Emerging Diseases Unit, Paris, France
| | - Ulrike Sauermann
- grid.418215.b0000 0000 8502 7018Deutsches Primatenzentrum - Leibniz Institut für Primatenforschung, Göttingen, Germany
| | - Christiane Stahl-Hennig
- grid.418215.b0000 0000 8502 7018Deutsches Primatenzentrum - Leibniz Institut für Primatenforschung, Göttingen, Germany
| | - Jacob Nattermann
- grid.452463.2Medizinische Klinik und Poliklinik I, Universitätsklinikum Bonn, Germany; German Center for Infection Research (DZIF), Bonn, Germany
| | - Asier Saez-Cirion
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Roger Le Grand
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - R. Keith Reeves
- grid.38142.3c000000041936754XCenter for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | - Mirko Paiardini
- grid.189967.80000 0001 0941 6502Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA USA
| | | | - Beatrice Jacquelin
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Michaela Müller-Trutwin
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| |
Collapse
|
50
|
Narla S, Azzam M, Townsend S, Vellaichamy G, Marzano AV, Alavi A, Lowes MA, Hamzavi IH. Identifying key components and therapeutic targets of the immune system in hidradenitis suppurativa with an emphasis on neutrophils. Br J Dermatol 2021; 184:1004-1013. [PMID: 32893875 DOI: 10.1111/bjd.19538] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/05/2020] [Accepted: 08/29/2020] [Indexed: 12/13/2022]
Abstract
Hidradenitis suppurativa (HS) is a chronic, inflammatory, recurrent and debilitating skin disease of the hair follicle unit that typically develops after puberty. The disorder is characterized by comedones, painful inflammatory nodules, abscesses, dermal tunnels and scarring, with a predilection for intertriginous areas of the body (axillae, inguinal and anogenital regions). Recruitment of neutrophils to HS lesion sites may play an essential role in the development of the painful inflammatory nodules and abscesses that characterize the disease. This is a review of the major mediators involved in the recruitment of neutrophils to sites of active inflammation, including bacterial components (endotoxins, exotoxins, capsule fragments, etc.), the complement pathway anaphylatoxins C3a and C5a, tumour necrosis factor-alpha, interleukin (IL)-17, IL-8 (CXCL8), IL-36, IL-1, lipocalin-2, leukotriene B4, platelet-activating factor, kallikreins, matrix metalloproteinases, and myeloperoxidase inhibitors. Pharmacological manipulation of the various pathways involved in the process of neutrophil recruitment and activation could allow for successful control and stabilization of HS lesions and the remission of active, severe flares.
Collapse
Affiliation(s)
- S Narla
- Department of Dermatology, Henry Ford Hospital, Detroit, MI, USA
| | - M Azzam
- University of Nevada School of Medicine, Reno, NV, USA
| | - S Townsend
- Wayne State School of Medicine, Detroit, MI, USA
| | | | - A V Marzano
- Dermatology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Physiopathology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - A Alavi
- Division of Dermatology, Department of Medicine, Women's College Hospital, University of Toronto, Toronto, ON, Canada
| | - M A Lowes
- The Rockefeller University, New York, NY, USA
| | - I H Hamzavi
- Department of Dermatology, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|