1
|
Cipriani C, Carilli M, Rizzo M, Miele MT, Sinibaldi-Vallebona P, Matteucci C, Bove P, Balestrieri E. Bioactive Compounds as Alternative Approaches for Preventing Urinary Tract Infections in the Era of Antibiotic Resistance. Antibiotics (Basel) 2025; 14:144. [PMID: 40001388 PMCID: PMC11851568 DOI: 10.3390/antibiotics14020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections worldwide. They occur in the urinary system when a microorganism, commonly present on the perineal skin or rectum, reaches the bladder through the urethra, and adheres to the luminal surface of uroepithelial cells, forming biofilms. The treatment of UTIs includes antibiotics, but their indiscriminate use has favored the development of multidrug-resistant bacteria strains, which represent a serious challenge to today's microbiology. The pathogenesis of the infection and antibiotic resistance synergistically contribute to hindering the eradication of the disease while favoring the establishment of persistent infections. The repeated requirement for antibiotic treatment and the limited therapeutic options have further contributed to the increase in antibiotic resistance and the occurrence of potential relapses by therapeutic failure. To limit antimicrobial resistance and broaden the choice of non-antibiotic preventive approaches, this review reports studies focused on the bacteriostatic/bactericidal activity, inhibition of bacterial adhesion and quorum sensing, restoration of uroepithelial integrity and immune response of molecules, vitamins, and compounds obtained from plants. To date, different supplementations are recommended by the European Association of Urology for the management of UTIs as an alternative approach to antibiotic treatment, while a variety of bioactive compounds are under investigation, mostly at the level of in vitro and preclinical studies. Although the evidence is promising, they are far from being included in the clinical practice of UTIs.
Collapse
Affiliation(s)
- Chiara Cipriani
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.R.); (M.T.M.); (P.S.-V.); (C.M.); (E.B.)
| | - Marco Carilli
- Robotic and Minimally Invasive Urology Unit, Azienda Ospedaliera Universitaria, Policlinico Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (M.C.); (P.B.)
| | - Marta Rizzo
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.R.); (M.T.M.); (P.S.-V.); (C.M.); (E.B.)
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.R.); (M.T.M.); (P.S.-V.); (C.M.); (E.B.)
| | - Paola Sinibaldi-Vallebona
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.R.); (M.T.M.); (P.S.-V.); (C.M.); (E.B.)
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.R.); (M.T.M.); (P.S.-V.); (C.M.); (E.B.)
| | - Pierluigi Bove
- Robotic and Minimally Invasive Urology Unit, Azienda Ospedaliera Universitaria, Policlinico Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (M.C.); (P.B.)
- Department of Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.R.); (M.T.M.); (P.S.-V.); (C.M.); (E.B.)
| |
Collapse
|
2
|
Zhang M, Xiong J, Yang Z, Zhu B, Wu Y, Chen X, Wu X. NinaB and BCO Collaboratively Participate in the β-Carotene Catabolism in Crustaceans: A Case Study on Chinese Mitten Crab Eriocheir sinensis. Int J Mol Sci 2024; 25:5592. [PMID: 38891781 PMCID: PMC11171921 DOI: 10.3390/ijms25115592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Carotenoid cleavage oxygenases can cleave carotenoids into a range of biologically important products. Carotenoid isomerooxygenase (NinaB) and β, β-carotene 15, 15'-monooxygenase (BCO1) are two important oxygenases. In order to understand the roles that both oxygenases exert in crustaceans, we first investigated NinaB-like (EsNinaBl) and BCO1-like (EsBCO1l) within the genome of Chinese mitten crab (Eriocheir sinensis). Their functions were then deciphered through an analysis of their expression patterns, an in vitro β-carotene degradation assay, and RNA interference. The results showed that both EsNinaBl and EsBCO1l contain an RPE65 domain and exhibit high levels of expression in the hepatopancreas. During the molting stage, EsNinaBl exhibited significant upregulation in stage C, whereas EsBCO1l showed significantly higher expression levels at stage AB. Moreover, dietary supplementation with β-carotene resulted in a notable increase in the expression of EsNinaBl and EsBCO1l in the hepatopancreas. Further functional assays showed that the EsNinaBl expressed in E. coli underwent significant changes in its color, from orange to light; in addition, its β-carotene cleavage was higher than that of EsBCO1l. After the knockdown of EsNinaBl or EsBCO1l in juvenile E. sinensis, the expression levels of both genes were significantly decreased in the hepatopancreas, accompanied by a notable increase in the redness (a*) values. Furthermore, a significant increase in the β-carotene content was observed in the hepatopancreas when EsNinaBl-mRNA was suppressed, which suggests that EsNinaBl plays an important role in carotenoid cleavage, specifically β-carotene. In conclusion, our findings suggest that EsNinaBl and EsBCO1l may exhibit functional co-expression and play a crucial role in carotenoid cleavage in crabs.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; (M.Z.); (J.X.); (Z.Y.); (B.Z.); (Y.W.)
| | - Jingyi Xiong
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; (M.Z.); (J.X.); (Z.Y.); (B.Z.); (Y.W.)
| | - Zonglin Yang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; (M.Z.); (J.X.); (Z.Y.); (B.Z.); (Y.W.)
| | - Boxiang Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; (M.Z.); (J.X.); (Z.Y.); (B.Z.); (Y.W.)
| | - Yuting Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; (M.Z.); (J.X.); (Z.Y.); (B.Z.); (Y.W.)
| | - Xiaowu Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; (M.Z.); (J.X.); (Z.Y.); (B.Z.); (Y.W.)
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Xugan Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; (M.Z.); (J.X.); (Z.Y.); (B.Z.); (Y.W.)
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
3
|
Yazarlou F, Alizadeh F, Lipovich L, Giordo R, Ghafouri-Fard S. Tracing vitamins on the long non-coding lane of the transcriptome: vitamin regulation of LncRNAs. GENES & NUTRITION 2024; 19:5. [PMID: 38475720 PMCID: PMC10935982 DOI: 10.1186/s12263-024-00739-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024]
Abstract
A major revelation of genome-scale biological studies in the post-genomic era has been that two-thirds of human genes do not encode proteins. The majority of non-coding RNA transcripts in humans are long non-coding RNA (lncRNA) molecules, non-protein-coding regulatory transcripts with sizes greater than 500 nucleotides. LncRNAs are involved in nearly every aspect of cellular physiology, playing fundamental regulatory roles both in normal cells and in disease. As result, they are functionally linked to multiple human diseases, from cancer to autoimmune, inflammatory, and neurological disorders. Numerous human conditions and diseases stem from gene-environment interactions; in this regard, a wealth of reports demonstrate that the intake of specific and essential nutrients, including vitamins, shapes our transcriptome, with corresponding impacts on health. Vitamins command a vast array of biological activities, acting as coenzymes, antioxidants, hormones, and regulating cellular proliferation and coagulation. Emerging evidence suggests that vitamins and lncRNAs are interconnected through several regulatory axes. This type of interaction is expected, since lncRNA has been implicated in sensing the environment in eukaryotes, conceptually similar to riboswitches and other RNAs that act as molecular sensors in prokaryotes. In this review, we summarize the peer-reviewed literature to date that has reported specific functional linkages between vitamins and lncRNAs, with an emphasis on mammalian models and humans, while providing a brief overview of the source, metabolism, and function of the vitamins most frequently investigated within the context of lncRNA molecular mechanisms, and discussing the published research findings that document specific connections between vitamins and lncRNAs.
Collapse
Affiliation(s)
- Fatemeh Yazarlou
- Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Box 505055, Dubai, United Arab Emirates
| | - Fatemeh Alizadeh
- Department of Genomic Psychiatry and Behavioral Genomics (DGPBG), Roozbeh Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leonard Lipovich
- Department of Biology, College of Science, Mathematics, and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
- Shenzhen Huayuan Biological Science Research Institute, Shenzhen Huayuan Biotechnology Co. Ltd., 601 Building C1, Guangming Science Park, Fenghuang Street, 518000, Shenzhen, Guangdong, People's Republic of China
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, 3222 Scott Hall, 540 E. Canfield St., Detroit, MI, 48201, USA
| | - Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Box 505055, Dubai, United Arab Emirates.
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, Sassari, 07100, Italy.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
He M, Lv X, Cao X, Yuan Z, Quan K, Getachew T, Mwacharo JM, Haile A, Li Y, Wang S, Sun W. CRABP2 Promotes the Proliferation of Dermal Papilla Cells via the Wnt/β-Catenin Pathway. Animals (Basel) 2023; 13:2033. [PMID: 37370543 DOI: 10.3390/ani13122033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/01/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
In our previous study of Hu sheep hair follicles, we found that CRABP2 was highly expressed in DPCs, which suggested that CRABP2 may influence the number of DPCs. In the present study, we aimed to understand the effect of CRABP2 in Hu sheep dermal papilla cells (DPCs). First, we explored the influence of CRABP2 on the ability of Hu sheep DPCs' proliferation. Based on the results obtained from some experiments, such as CCK-8, EDU, qPCR, and Western blot experiment, we found that the overexpression of CRABP2 facilitated the proliferation of DPCs compared to the negative control group. Then, we also detected the effect of CRABP2 on the Wnt/β-catenin pathway based on the important function of the Wnt/β-catenin pathway in hair follicles. The results showed that CRABP2 could activate the Wnt/β-catenin pathway in DPCs, and it rescues the proliferation of DPCs when the Wnt/β-catenin pathway was inhibited. In summary, our findings indicate that CRABP2 is a vital functional gene in the proliferation of Hu sheep DPCs. Our study will be of great use for revealing the roles of CRABP2 in the hair follicles of Hu sheep.
Collapse
Grants
- 32172689,BK20210810,20KJB230003,22KJA230001,PZCZ201739,32061143036,2022D01D47,G2022014148L the National Natural Science Foundation of China (32172689), Natural Science Foundation of Jiangsu Province (BK20210810), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (20KJB230003 and 22KJA230001), Major New Varieti
- KYCX23_359 the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX23_3593) and Distinguished Talents Project Foundation of Yangzhou University
Collapse
Affiliation(s)
- Mingliang He
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Kai Quan
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Joram M Mwacharo
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Aynalem Haile
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Yutao Li
- CSIRO Agriculture and Food, 306 Carmody Rd., St. Lucia, QLD 4067, Australia
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Rodriguez M, Enger BD, Weiss WP, Lee K, Lee C. Effects of different vitamin A supplies on performance and the risk of ketosis in transition cows. J Dairy Sci 2023; 106:2361-2373. [PMID: 36823005 DOI: 10.3168/jds.2022-22491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/29/2022] [Indexed: 02/25/2023]
Abstract
This experiment investigated the effects of feeding low and high supplies of vitamin A (VA) during the transition period on plasma metabolites, prevalence of ketosis, and early milk production. In a randomized complete block design, 42 prefresh Holstein cows and 21 heifers were blocked by parity and calving date and assigned to 1 of 3 dietary treatments (n = 21 per treatment unless noted): CON, a transition diet with supplemental VA (75,000 IU/d) to meet the requirement; LVA, a transition diet with no supplemental VA; or HVA, a transition diet receiving supplemental VA (187,500 IU/d) 2.5 times greater than the requirement. Experimental periods were prepartum (-14 d prepartum), postpartum (1 to 30 d in milk), and carryover period (31 to 58 d in milk; common lactating diet with adequate VA was fed). Differences in dry matter intake in the pre- and postpartum periods and milk yield were not detected among treatment. Milk fat, protein, and lactose yields were similar among treatments and not affected by VA. Somatic cell count increased linearly with increasing VA. Body weight and body condition score decreased postpartum, but no VA effect was observed. Plasma retinol concentrations (n = 10 per treatment) decreased at d 2 postpartum and increased as lactation progressed, but the concentrations were unaffected by treatment. Plasma β-carotene (n = 10 per treatment) had a treatment by time interaction and its concentration decreased after parturition and remained low for 2 wk. Plasma fatty acids and β-hydroxybutyrate did not differ among treatments. Milk retinol concentration and yield (n = 10 per treatment) increased as VA supply increased. Segmented neutrophils (%) decreased, and lymphocytes (%) increased in blood with increasing VA supply. In conclusion, providing different supplies of VA did not affect production, mobilization of body fat, and risk of ketosis; however, excessive VA supply may have negatively affected the immune response, in part contributing to increased milk somatic cell counts during early lactation.
Collapse
Affiliation(s)
- M Rodriguez
- Department of Animal Sciences, The Ohio State University, Wooster 44691
| | - B D Enger
- Department of Animal Sciences, The Ohio State University, Wooster 44691
| | - W P Weiss
- Department of Animal Sciences, The Ohio State University, Wooster 44691
| | - K Lee
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - C Lee
- Department of Animal Sciences, The Ohio State University, Wooster 44691.
| |
Collapse
|
6
|
Xia J, Li S, Liu S, Zhang L. Aldehyde dehydrogenase in solid tumors and other diseases: Potential biomarkers and therapeutic targets. MedComm (Beijing) 2023; 4:e195. [PMID: 36694633 PMCID: PMC9842923 DOI: 10.1002/mco2.195] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 01/18/2023] Open
Abstract
The family of aldehyde dehydrogenases (ALDHs) contains 19 isozymes and is involved in the oxidation of endogenous and exogenous aldehydes to carboxylic acids, which contributes to cellular and tissue homeostasis. ALDHs play essential parts in detoxification, biosynthesis, and antioxidants, which are of important value for cell proliferation, differentiation, and survival in normal body tissues. However, ALDHs are frequently dysregulated and associated with various diseases like Alzheimer's disease, Parkinson's disease, and especially solid tumors. Notably, the involvement of the ALDHs in tumor progression is responsible for the maintenance of the stem-cell-like phenotype, triggering rapid and aggressive clinical progressions. ALDHs have captured increasing attention as biomarkers for disease diagnosis and prognosis. Nevertheless, these require further longitudinal clinical studies in large populations for broad application. This review summarizes our current knowledge regarding ALDHs as potential biomarkers in tumors and several non-tumor diseases, as well as recent advances in our understanding of the functions and underlying molecular mechanisms of ALDHs in disease development. Finally, we discuss the therapeutic potential of ALDHs in diseases, especially in tumor therapy with an emphasis on their clinical implications.
Collapse
Affiliation(s)
- Jie Xia
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Siqin Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer MedicineNanjing Medical UniversityNanjingChina
| | - Lixing Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
7
|
Steg A, Oczkowicz M, Smołucha G. Omics as a Tool to Help Determine the Effectiveness of Supplements. Nutrients 2022; 14:nu14245305. [PMID: 36558464 PMCID: PMC9784029 DOI: 10.3390/nu14245305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
There has been considerable interest in dietary supplements in the last two decades. Companies are releasing new specifics at an alarming pace, while dietary supplements are one of the less-studied substances released for public consumption. However, access to state-of-the-art and high-throughput techniques, such as the ones used in omics, make it possible to check the impact of a substance on human transcriptome or proteome and provide answers to whether its use is reasonable and beneficial. In this review, the main domains of omics are briefly introduced. The review focuses on the three most widely used omics techniques: NGS, LC-MS, NMR, and their usefulness in studying dietary supplements. Examples of studies are described for some of the most commonly supplemented substances, such as vitamins: D, E, A, and plant extracts: resveratrol, green tea, ginseng, and curcumin extract. Techniques used in omics have proven to be useful in studying dietary supplements. NGS techniques are helpful in identifying pathways that change upon supplementation and determining polymorphisms or conditions that qualify for the necessity of a given supplementation. LC-MS techniques are used to establish the serum content of supplemented a compound and its effects on metabolites. Both LC-MS and NMR help establish the actual composition of a compound, its primary and secondary metabolites, and its potential toxicity. Moreover, NMR techniques determine what conditions affect the effectiveness of supplementation.
Collapse
|
8
|
Sarkarat R, Mohamadnia S, Tavakoli O. Recent advances in non-conventional techniques for extraction of phycobiliproteins and carotenoids from microalgae. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00256-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Paim TDP, Alves dos Santos C, Faria DAD, Paiva SR, McManus C. Genomic selection signatures in Brazilian sheep breeds reared in a tropical environment. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Ye L, Liu R, Lin P, Wang W. Krüppel-like transcription factor 16 transcriptional up-regulation of cellular retinoic acid-binding proteins-2 promotes the invasion and migration and inhibits apoptosis of retinoblastoma cells by regulating integrin-β1/focal adhesion kinase /extracellular signal-regulated kinase pathway. Bioengineered 2022; 13:3694-3706. [PMID: 35671035 PMCID: PMC8973949 DOI: 10.1080/21655979.2021.2024977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
As a common intraocular malignancy in pediatrics, retinoblastoma (RB) has high prevalence worldwide. We conducted this study, aiming to explore the molecular mechanism of Krüppel-like transcription factor 16 (KLF16)/cellular retinoic acid-binding proteins-2 (CRABP2) in regulating the invasion and migration and apoptosis of RB cells via integrin-β1/focal adhesion kinase (FAK)/extracellular signal-regulated kinase (ERK) pathway. With the adoption of real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot, the mRNA and protein expression of CRABP2 and KLF16 were measured. In addition, the proliferation, clone formation ability and migration were detected with methyl thiazolyl tetrazolium (MTT), clone formation and wound healing assays, respectively. Furthermore, the invasion and apoptosis of transfected WERI-RB1 cells were evaluated with transwell and Tunel assays. With the application of Western blot, the expressions of proliferation-, apoptosis- and pathway-related proteins were assayed. The combination of KLF16 and CRABP2 was confirmed by dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP). In this study, we found that CRABP2 gained a huge growth in RB cells and its silence promoted apoptosis but suppressed the proliferation, migration and invasiveness of WERI-RB1 cells. In addition, KLF16 could bind to CRABP2. It was also found that KLF16 overexpression reversed the effects of CRABP2 silence on the proliferation, migration and apoptosis of WERI-RB1 cells. What is more, CRABP2 silence blocked integrin-β1/FAK/ERK signaling pathway. In conclusion, KLF16 transcriptional up-regulation of CRABP2 promoted proliferation, invasion and migration but inhibited apoptosis of RB cells by activating integrin-β1/FAK/ERK pathway.
Collapse
Affiliation(s)
- Lu Ye
- Optometry Center, Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Ru Liu
- Department of Ophthalmology, The First People’s Hospital of Chenzhou, Chenzhou, Hunan Province, China
| | - Ping Lin
- Department of Ophthalmology, Xi’an Children’s Hospital, Xi’an, Shaanxi Province, China
| | - Wenjun Wang
- Optometry Center, Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| |
Collapse
|
11
|
Collins AE, Saleh TM, Kalisch BE. Naturally Occurring Antioxidant Therapy in Alzheimer's Disease. Antioxidants (Basel) 2022; 11:213. [PMID: 35204096 PMCID: PMC8868221 DOI: 10.3390/antiox11020213] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
It is estimated that the prevalence rate of Alzheimer's disease (AD) will double by the year 2040. Although currently available treatments help with symptom management, they do not prevent, delay the progression of, or cure the disease. Interestingly, a shared characteristic of AD and other neurodegenerative diseases and disorders is oxidative stress. Despite profound evidence supporting the role of oxidative stress in the pathogenesis and progression of AD, none of the currently available treatment options address oxidative stress. Recently, attention has been placed on the use of antioxidants to mitigate the effects of oxidative stress in the central nervous system. In preclinical studies utilizing cellular and animal models, natural antioxidants showed therapeutic promise when administered alone or in combination with other compounds. More recently, the concept of combination antioxidant therapy has been explored as a novel approach to preventing and treating neurodegenerative conditions that present with oxidative stress as a contributing factor. In this review, the relationship between oxidative stress and AD pathology and the neuroprotective role of natural antioxidants from natural sources are discussed. Additionally, the therapeutic potential of natural antioxidants as preventatives and/or treatment for AD is examined, with special attention paid to natural antioxidant combinations and conjugates that are currently being investigated in human clinical trials.
Collapse
Affiliation(s)
| | | | - Bettina E. Kalisch
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.E.C.); (T.M.S.)
| |
Collapse
|
12
|
Esteban J, Sánchez-Pérez I, Hamscher G, Miettinen HM, Korkalainen M, Viluksela M, Pohjanvirta R, Håkansson H. Role of aryl hydrocarbon receptor (AHR) in overall retinoid metabolism: Response comparisons to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure between wild-type and AHR knockout mice. Reprod Toxicol 2021; 101:33-49. [PMID: 33607186 DOI: 10.1016/j.reprotox.2021.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/20/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
Young adult wild-type and aryl hydrocarbon receptor knockout (AHRKO) mice of both sexes and the C57BL/6J background were exposed to 10 weekly oral doses of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; total dose of 200 μg/kg bw) to further characterize the observed impacts of AHR as well as TCDD on the retinoid system. Unexposed AHRKO mice harboured heavier kidneys, lighter livers and lower serum all-trans retinoic acid (ATRA) and retinol (REOH) concentrations than wild-type mice. Results from the present study also point to a role for the murine AHR in the control of circulating REOH and ATRA concentrations. In wild-type mice, TCDD elevated liver weight and reduced thymus weight, and drastically reduced the hepatic concentrations of 9-cis-4-oxo-13,14-dihydro-retinoic acid (CORA) and retinyl palmitate (REPA). In female wild-type mice, TCDD increased the hepatic concentration of ATRA as well as the renal and circulating REOH concentrations. Renal CORA concentrations were substantially diminished in wild-type male mice exclusively following TCDD-exposure, with a similar tendency in serum. In contrast, TCDD did not affect any of these toxicity or retinoid system parameters in AHRKO mice. Finally, a distinct sex difference occurred in kidney concentrations of all the analysed retinoid forms. Together, these results strengthen the evidence of a mandatory role of AHR in TCDD-induced retinoid disruption, and suggest that the previously reported accumulation of several retinoid forms in the liver of AHRKO mice is a line-specific phenomenon. Our data further support participation of AHR in the control of liver and kidney development in mice.
Collapse
Affiliation(s)
- Javier Esteban
- Instituto De Bioingeniería, Universidad Miguel Hernández De Elche, Elche, Alicante, Spain.
| | - Ismael Sánchez-Pérez
- Instituto De Bioingeniería, Universidad Miguel Hernández De Elche, Elche, Alicante, Spain.
| | - Gerd Hamscher
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany.
| | - Hanna M Miettinen
- School of Pharmacy (Toxicology) and Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Merja Korkalainen
- Environmental Health Unit, Finnish Insitute for Health and Welfare (THL), Kuopio, Finland.
| | - Matti Viluksela
- School of Pharmacy (Toxicology) and Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland; Environmental Health Unit, Finnish Insitute for Health and Welfare (THL), Kuopio, Finland.
| | - Raimo Pohjanvirta
- Department of Food Hygiene & Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Mustialankatu 1, FI-00790 Helsinki, Finland.
| | - Helen Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
13
|
Jovic TH, Ali SR, Ibrahim N, Jessop ZM, Tarassoli SP, Dobbs TD, Holford P, Thornton CA, Whitaker IS. Could Vitamins Help in the Fight Against COVID-19? Nutrients 2020; 12:E2550. [PMID: 32842513 PMCID: PMC7551685 DOI: 10.3390/nu12092550] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
There are limited proven therapeutic options for the prevention and treatment of COVID-19. The role of vitamin and mineral supplementation or "immunonutrition" has previously been explored in a number of clinical trials in intensive care settings, and there are several hypotheses to support their routine use. The aim of this narrative review was to investigate whether vitamin supplementation is beneficial in COVID-19. A systematic search strategy with a narrative literature summary was designed, using the Medline, EMBASE, Cochrane Trials Register, WHO International Clinical Trial Registry, and Nexis media databases. The immune-mediating, antioxidant and antimicrobial roles of vitamins A to E were explored and their potential role in the fight against COVID-19 was evaluated. The major topics extracted for narrative synthesis were physiological and immunological roles of each vitamin, their role in respiratory infections, acute respiratory distress syndrome (ARDS), and COVID-19. Vitamins A to E highlighted potentially beneficial roles in the fight against COVID-19 via antioxidant effects, immunomodulation, enhancing natural barriers, and local paracrine signaling. Level 1 and 2 evidence supports the use of thiamine, vitamin C, and vitamin D in COVID-like respiratory diseases, ARDS, and sepsis. Although there are currently no published clinical trials due to the novelty of SARS-CoV-2 infection, there is pathophysiologic rationale for exploring the use of vitamins in this global pandemic, supported by early anecdotal reports from international groups. The final outcomes of ongoing trials of vitamin supplementation are awaited with interest.
Collapse
Affiliation(s)
- Thomas H Jovic
- Reconstructive Surgery & Regenerative Medicine Research Group, Institute of Life Sciences, Swansea University Medical School, Swansea University, Swansea SA28PY, UK; (N.I.); (Z.M.J.); (S.P.T.); (T.D.D.)
- Welsh Centre for Burns & Plastic Surgery, Morriston Hospital, Swansea SA66NL, UK
| | - Stephen R Ali
- Reconstructive Surgery & Regenerative Medicine Research Group, Institute of Life Sciences, Swansea University Medical School, Swansea University, Swansea SA28PY, UK; (N.I.); (Z.M.J.); (S.P.T.); (T.D.D.)
- Welsh Centre for Burns & Plastic Surgery, Morriston Hospital, Swansea SA66NL, UK
| | - Nader Ibrahim
- Reconstructive Surgery & Regenerative Medicine Research Group, Institute of Life Sciences, Swansea University Medical School, Swansea University, Swansea SA28PY, UK; (N.I.); (Z.M.J.); (S.P.T.); (T.D.D.)
- Welsh Centre for Burns & Plastic Surgery, Morriston Hospital, Swansea SA66NL, UK
| | - Zita M Jessop
- Reconstructive Surgery & Regenerative Medicine Research Group, Institute of Life Sciences, Swansea University Medical School, Swansea University, Swansea SA28PY, UK; (N.I.); (Z.M.J.); (S.P.T.); (T.D.D.)
- Welsh Centre for Burns & Plastic Surgery, Morriston Hospital, Swansea SA66NL, UK
| | - Sam P Tarassoli
- Reconstructive Surgery & Regenerative Medicine Research Group, Institute of Life Sciences, Swansea University Medical School, Swansea University, Swansea SA28PY, UK; (N.I.); (Z.M.J.); (S.P.T.); (T.D.D.)
| | - Thomas D Dobbs
- Reconstructive Surgery & Regenerative Medicine Research Group, Institute of Life Sciences, Swansea University Medical School, Swansea University, Swansea SA28PY, UK; (N.I.); (Z.M.J.); (S.P.T.); (T.D.D.)
- Welsh Centre for Burns & Plastic Surgery, Morriston Hospital, Swansea SA66NL, UK
| | - Patrick Holford
- Institute for Optimum Nutrition, Ambassador House, Paradise Road, Richmond TW9 1SQ, UK;
| | - Catherine A Thornton
- Institute of Life Sciences 1, Swansea University Medical School, Swansea University, Swansea SA2 8PY, UK;
| | - Iain S Whitaker
- Reconstructive Surgery & Regenerative Medicine Research Group, Institute of Life Sciences, Swansea University Medical School, Swansea University, Swansea SA28PY, UK; (N.I.); (Z.M.J.); (S.P.T.); (T.D.D.)
- Welsh Centre for Burns & Plastic Surgery, Morriston Hospital, Swansea SA66NL, UK
| |
Collapse
|
14
|
Adetula AA, Liu X, Yang L, Fang C, Yu H, Li H, Li S. RAI14 in the blood feather regulates chicken pigmentation. Arch Anim Breed 2020; 63:231-239. [PMID: 34084896 PMCID: PMC8161265 DOI: 10.5194/aab-63-231-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 06/12/2020] [Indexed: 01/11/2023] Open
Abstract
A genome-wide association study (GWAS) was performed on a resource
family consisting of white and colored chickens for identification of genes
related to plumage coloration using the Fixed and random model Circulating
Probability Unification (FarmCPU) package. GWAS identified three chromosomal
single-nucleotide polymorphisms (SNPs), demonstrating the polygenic basis of
plumage phenotypes. Herein, retinoic acid-induced protein 14 (RAI14), a developmentally
regulated gene that encodes a protein containing many ankyrin repeats, was
identified as a candidate gene involved in plumage color. In this study,
mRNA expression profiles of chicken RAI14 were determined, indel (insertion–deletion) variants were
identified, and their association was analyzed in white and colored
chickens. RA114 mRNA was expressed in all tissues tested (brain, spleen, liver,
heart, oviduct, kidney, lung, pituitary gland, ovary, muscle, feather bulb,
and skin). A relatively high RAI14 expression in white feather bulb compared to
colored feather bulb (P<0.01) indicated a potential association with plumage
color. Additionally, statistical analysis revealed that a 4 bp indel genetic
variation in RAI14 was associated with plumage phenotypes (P<0.01).
Together, our analysis of the identification of the RAI14 gene will enable us to
understand the genetic mechanisms behind chicken pigmentation.
Collapse
Affiliation(s)
- Adeyinka Abiola Adetula
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomic Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Shenzhen, China
| | - Xiaolei Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liubin Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chengchi Fang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hui Yu
- College of Life Science, Foshan University, Foshan, Guangdong, China
| | - Hua Li
- College of Life Science, Foshan University, Foshan, Guangdong, China
| | - Shijun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
Two Opposing Faces of Retinoic Acid: Induction of Stemness or Induction of Differentiation Depending on Cell-Type. Biomolecules 2019; 9:biom9100567. [PMID: 31590252 PMCID: PMC6843238 DOI: 10.3390/biom9100567] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
Stem cells have the capacity of self-renewal and, through proliferation and differentiation, are responsible for the embryonic development, postnatal development, and the regeneration of tissues in the adult organism. Cancer stem cells, analogous to the physiological stem cells, have the capacity of self-renewal and may account for growth and recurrence of tumors. Development and regeneration of healthy tissues and tumors depend on the balance of different genomic and nongenomic signaling pathways that regulate stem cell quiescence, proliferation, and differentiation. During evolution, this balance became dependent on all-trans retinoic acid (RA), a molecule derived from the environmental factor vitamin A. Here we summarize some recent findings on the prominent role of RA on the proliferation of stem and progenitor cells, in addition to its well-known function as an inductor of cell differentiation. A better understanding of the regulatory mechanisms of stemness and cell differentiation by RA may improve the therapeutic options of this molecule in regenerative medicine and cancer.
Collapse
|
16
|
Song YC, Dohn TE, Rydeen AB, Nechiporuk AV, Waxman JS. HDAC1-mediated repression of the retinoic acid-responsive gene ripply3 promotes second heart field development. PLoS Genet 2019; 15:e1008165. [PMID: 31091225 PMCID: PMC6538190 DOI: 10.1371/journal.pgen.1008165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/28/2019] [Accepted: 04/28/2019] [Indexed: 12/25/2022] Open
Abstract
Coordinated transcriptional and epigenetic mechanisms that direct development of the later differentiating second heart field (SHF) progenitors remain largely unknown. Here, we show that a novel zebrafish histone deacetylase 1 (hdac1) mutant allele cardiac really gone (crg) has a deficit of ventricular cardiomyocytes (VCs) and smooth muscle within the outflow tract (OFT) due to both cell and non-cell autonomous loss in SHF progenitor proliferation. Cyp26-deficient embryos, which have increased retinoic acid (RA) levels, have similar defects in SHF-derived OFT development. We found that nkx2.5+ progenitors from Hdac1 and Cyp26-deficient embryos have ectopic expression of ripply3, a transcriptional co-repressor of T-box transcription factors that is normally restricted to the posterior pharyngeal endoderm. Furthermore, the ripply3 expression domain is expanded anteriorly into the posterior nkx2.5+ progenitor domain in crg mutants. Importantly, excess ripply3 is sufficient to repress VC development, while genetic depletion of Ripply3 and Tbx1 in crg mutants can partially restore VC number. We find that the epigenetic signature at RA response elements (RAREs) that can associate with Hdac1 and RA receptors (RARs) becomes indicative of transcriptional activation in crg mutants. Our study highlights that transcriptional repression via the epigenetic regulator Hdac1 facilitates OFT development through directly preventing expression of the RA-responsive gene ripply3 within SHF progenitors. Congenital heart defects are the most common malformations found in newborns, with many of these defects disrupting development of the outflow tract, the structure where blood is expelled from the heart. Despite their frequency, we do not have a grasp of the molecular and genetic mechanisms that underlie most congenital heart defects. Here, we show that zebrafish embryos containing a mutation in a gene called histone deacetylase 1 (hdac1) have smaller hearts with a reduction in the size of the ventricle and outflow tract. Hdac1 proteins limit accessibility to DNA and repress gene expression. We find that loss of Hdac1 in zebrafish embryos leads to increased expression of genes that are also induced by excess retinoic acid, a teratogen that induces similar outflow tract defects. Genetic loss-of-function studies support that ectopic expression of ripply3, a common target of both Hdac1 and retinoic acid signaling that is normally restricted to a subset of posterior pharyngeal cells, contributes to the smaller hearts found in zebrafish hdac1 mutants. Our study establishes a mechanism whereby the coordinated repression of genes downstream of Hdac1 and retinoic acid signaling is necessary for normal vertebrate outflow tract development.
Collapse
Affiliation(s)
- Yuntao Charlie Song
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, United States of America
| | - Tracy E Dohn
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, United States of America
| | - Ariel B Rydeen
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, United States of America
| | - Alex V Nechiporuk
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, OR, United States of America
| | - Joshua S Waxman
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| |
Collapse
|
17
|
Elmadfa I, Meyer AL. The Role of the Status of Selected Micronutrients in Shaping the Immune Function. Endocr Metab Immune Disord Drug Targets 2019; 19:1100-1115. [PMID: 31142256 PMCID: PMC7360912 DOI: 10.2174/1871530319666190529101816] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVE This narrative review gives an overview on the essential role of adequate nutrition to an optimally functioning immune defence. Micronutrients act as regulators of the immune response, with the focus of this review on the immunomodulatory effects of the trace elements iron, zinc and selenium, and the vitamins A, D, E, C, B6 and B12 and folic acid. RESULTS Iron deficiency especially impairs the Th1 cell-borne cellular immunity. T lymphocytes are also most affected by a deficiency of zinc, needed for their maturation and the balance between the different T cell subpopulations and acting as a redox signal in the regulation of many enzymes. Selenium is also involved in redox reactions as the glutathione peroxidases and other redox enzymes are selenoproteins. Selenium status has shown special effects on cellular immunity and resistance to viral infections. Vitamin A in the form of retinoic acid induces a humoral Th2 cell response via antigen-presenting cells and is involved in maintaining intestinal immune defence and tolerance through its nuclear receptor RAR and via kinase signalling cascades. Immune tolerance is particularly promoted by vitamin D acting through dendritic cells to stimulate the differentiation of regulatory T cells. Vitamin E has antiinflammatory effects and stimulates naïve T cells especially in the elderly. Besides its antioxidative properties, vitamin C has effects on cell signalling and epigenetic regulation. The B vitamins are required for cytotoxic cellular immunity and modulate T cell responses. CONCLUSION A diverse diet and regular exposure to sunlight are the best sources for a balanced nutrient supply to maintain an optimal immune defence.
Collapse
Affiliation(s)
- Ibrahim Elmadfa
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Alexa L. Meyer
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Wen YF, Zheng L, Niu H, Zhang GL, Zhang GM, Ma YL, Tian YR, Liu YR, Yang P, Yang DY, Lei CZ, Dang RH, Qi XL, Chen H, Huang BZ, Huang YZ. Exploring genotype-phenotype relationships of the CRABP2 gene on growth traits in beef cattle. Anim Biotechnol 2018; 31:42-51. [PMID: 30570383 DOI: 10.1080/10495398.2018.1531015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cellular retinoic acid binding protein 2 (CRABP2) is essential to myoblast differentiation. However, there was no report about the function of CRABP2 gene in cattle. This study explored the association of CRABP2 gene polymorphisms with growth traits in cattle breeds by several methods, such as DNA sequencing, PCR, PCR-RFLP and forced PCR-RFLP. Two sequence variants were determined. There were 621 individuals in six cattle breeds from China for the experiment, and three breeds were used to test validation of polymorphisms and extent of linkage disequilibrium (LD). The results showed that both SNPs (SNP1, g.2458 G > T, SNP2, g.3878 G > A) were in intron1. Two SNPs were in low linkage disequilibrium. Association analysis suggested that SNP1 had the significant difference on growth traits with body height, height at hip cross and body slanting length (P < .05), while SNP2 showed a significant difference in growth traits with body height, height at hip cross and body slanting length(P < .05). The results of this investigation displayed that the CRABP2 gene is an available candidate gene and may be used for breed selection and conservation.
Collapse
Affiliation(s)
- Yi-Fan Wen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, People's Republic of China
| | - Li Zheng
- Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, People's Republic of China
| | - Hui Niu
- Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, People's Republic of China
| | - Guo-Liang Zhang
- Branch of Animal Science, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin, People's Republic of China
| | - Gui-Min Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, People's Republic of China
| | - Yi-Lei Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, People's Republic of China
| | - Yi-Ran Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, People's Republic of China
| | - Yan-Rong Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, People's Republic of China
| | - Peng Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, People's Republic of China
| | - Di-Yi Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, People's Republic of China
| | - Chu-Zhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, People's Republic of China
| | - Rui-Hua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, People's Republic of China
| | - Xing-Lei Qi
- Bureau of Animal Husbandry of Biyang County, Biyang, Henan, People's Republic of China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, People's Republic of China
| | - Bi-Zhi Huang
- Yunnan Academy of grassland animal science, Kunming, People's Republic of China
| | - Yong-Zhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, People's Republic of China
| |
Collapse
|
19
|
Mazidi M, Kengne AP, Cheskin LJ, Banach M. Serum lipophilic antioxidants levels are associated with leucocyte telomere length among US adults. Lipids Health Dis 2018; 17:164. [PMID: 30029639 PMCID: PMC6054751 DOI: 10.1186/s12944-018-0781-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 05/15/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND To examine the association between serum concentrations of antioxidant and telomere length (TL) in U.S adults. METHODS Participants of the National Health and Nutrition Examination Survey (NHANES) with data available on TL measures from 2001 to 2002 were included. Serum lipophilic antioxidants level was measured using high performance liquid chromatography with photodiode array detection. We used analysis of co-variance and multivariable-adjusted linear regression models, accounting for the survey design and sample weights. RESULTS Of the 5992 eligible participants, 47.5% (n = 2844) were men. The mean age was 46.9 years overall, 47.2 years in men and 46.6 in women (p = 0.071). In age, sex, race, education, marital status, adiposity, smoking, C-reactive protein adjusted linear regressions, antioxidant, serum α-carotene, trans-β-carotene, cis- β-carotene, β-cryptoxanthin and combined Lutein/zeaxanthin were positively and significantly associated with TL (all p < 0.001). CONCLUSIONS Our findings support a possible positive association between serum concentrations of lipophylic antioxidant and TL. The implications of this association deserve further investigation.
Collapse
Affiliation(s)
- Mohsen Mazidi
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
| | - Andre Pascal Kengne
- Non-Communicable Disease Research Unit, South African Medical Research Council and University of Cape Town, Cape Town, South Africa
| | - L J Cheskin
- Department of Health, Johns Hopkins Weight Management Center Behavior and Society, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Global Obesity Prevention Center at Johns Hopkins University, International Health/Human Nutrition, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.,Cardiovascular Research Center, University of Zielona-Gora, Zielona Gora, Poland
| |
Collapse
|
20
|
Yan Y, Qi S, Gong SQ, Shang G, Zhao Y. Effect of CRABP2 on the proliferation and odontoblastic differentiation of hDPSCs. Braz Oral Res 2017; 31:e112. [PMID: 29267673 DOI: 10.1590/1807-3107bor-2017.vol31.0112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/23/2017] [Indexed: 11/21/2022] Open
Abstract
Cellular retinoic acid-binding protein 2 (CRABP2) has been detected in several organs during embryonic development. Recent studies have demonstrated that CRABP2 plays important roles in the retinoic acid, β-catenin and Notch signaling pathways, as well as in the interaction between epithelial and mesenchymal cells, which are important for human dental pulp stem cells (hDPSCs) and tooth development. In the present study, the expression of CRABP2 during mouse molar development and the role of CRABP2 in hDPSC odontoblastic differentiation were evaluated. CRABP2 was gradually decreased during the development of the first maxillary molar, which exhibited the same trend as the expression of CRABP2 during the odontoblastic induction of hDPSCs. CRABP2 knockdown inhibited the proliferative ability of hDPSCs, while it enhanced odontoblastic differentiation via promoting mineralization nodule formation and upregulating the activity of alkaline phosphatase and the expression of mineralization-related genes. The present study uncovered a novel function of CRABP2 in hDPSCs. Our data suggest that CRABP2 may act as a regulator during the proliferation and differentiation of hDPSCs.
Collapse
Affiliation(s)
- Yanhong Yan
- Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Department of Pediatric Dentistry, Shanghai, China
| | - Shengcai Qi
- Shanghai Tenth People's Hospital of Tongji University, Department of Stomatology, Shanghai, China
| | - Shi-Qiang Gong
- Huazhong University of Science and Technology, Tongji Hospital, Center of Stomatology, Wuhan, China
| | - Guangwei Shang
- Shanghai Tenth People's Hospital of Tongji University, Department of Stomatology, Shanghai, China
| | - Yumei Zhao
- Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Department of Pediatric Dentistry, Shanghai, China
| |
Collapse
|
21
|
Maliza R, Fujiwara K, Azuma M, Kikuchi M, Yashiro T. Effect of retinoic acid on midkine gene expression in rat anterior pituitary cells. Endocr J 2017; 64:633-638. [PMID: 28392548 DOI: 10.1507/endocrj.ej17-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Retinoic acid (RA) is converted from retinal by retinaldehyde dehydrogenases (RALDHs) and is an essential signaling molecule in embryonic and adult tissue. We previously reported that RALDH1 was produced in the rat anterior pituitary gland and hypothesized that RA was generated in the gland. Midkine (MK) is an RA-inducible growth factor, and MK production in the rat anterior pituitary gland was recently reported. However, the mechanism that regulates gene expression of MK in the pituitary gland has not been determined. To investigate regulation of MK production in the anterior pituitary gland, we analyzed changes in MK mRNA in cultured rat anterior pituitary cells. We identified MK-expressing cells by double-staining with in situ hybridization and immunohistochemical techniques for RALDH1. MK mRNA was expressed in RALDH1-producing cells in the anterior pituitary gland. Using isolated anterior pituitary cells of rats, we examined the effect of RA on gene expression of MK. Quantitative real-time PCR revealed that 72 h exposure to a concentration of 10-6 M of retinal and all-trans retinoic acid increased MK mRNA levels by about 2-fold. Moreover, the stimulatory effect of all-trans retinoic acid was mimicked by the RA receptor agonist Am80. This is the first report to show that RA is important in regulating MK expression in rat anterior pituitary gland.
Collapse
Affiliation(s)
- Rita Maliza
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Ken Fujiwara
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Morio Azuma
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Motoshi Kikuchi
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine, Tochigi, Japan
- Laboratory of Natural History, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Takashi Yashiro
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
22
|
Alterations in vitamin A/retinoic acid homeostasis in diet-induced obesity and insulin resistance. Proc Nutr Soc 2017; 76:597-602. [PMID: 28651670 DOI: 10.1017/s0029665117001069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Vitamin A is an essential micronutrient for life and the phytochemical β-carotene, also known as pro-vitamin A, is an important dietary source of this vitamin. Vitamin A (retinol) is the parent compound of all bioactive retinoids but it is retinoic acid (RA) that is the active metabolite of vitamin A. The plasma concentration of retinol is maintained in a narrow range and its normal biological activities strictly regulated since excessive intake can lead to toxicity and thus also be detrimental to life. The present review will give an overview of how vitamin A homeostasis is maintained and move on to focus on the link between circulating vitamin A and metabolic disease states. Finally, we will examine how pharmacological or genetic alterations in vitamin A homeostasis and RA-signalling can influence body fat and blood glucose levels including a novel link to the liver secreted hormone fibroblast growth factor 21, an important metabolic regulator.
Collapse
|
23
|
Li Y, Liu Y, Chen G. Vitamin A status affects the plasma parameters and regulation of hepatic genes in streptozotocin-induced diabetic rats. Biochimie 2017; 137:1-11. [PMID: 28238841 DOI: 10.1016/j.biochi.2017.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/22/2017] [Indexed: 02/07/2023]
Abstract
Vitamin A (VA) status regulates metabolism in rats. Whether VA status and availability of retinoic acid (RA) contribute to the insulin-regulated hepatic gene expression remains to be determined. Zucker lean rats with VA sufficient (VAS) or VA deficient (VAD) status were treated with streptozotocin (STZ) to induce insulin-dependent diabetes. They were treated with saline (STZ-VAS-C or STZ-VAD-C), RA (STZ-VAS-RA or STZ-VAD-RA), insulin (STZ-VAS-INS or STZ-VAD-INS), or insulin + RA (STZ-VAS-INS + RA or STZ-VAD-INS + RA) for 3 h. Insulin and insulin + RA treatments reduced tail tip blood glucose, raised plasma insulin and suppressed plasma β-hydroxybutyrate levels in both STZ-VAD and STZ-VAS rats. STZ-VAD-INS and STZ-VAD-INS + RA rats had lower plasma glucose levels than STZ-VAD-C rats had. STZ-VAD-INS and STZ-VAD-INS + RA rats had higher plasma leptin level and lower glucagon level than STZ-VAD-C rats did. Insulin treatment induced Gck, Srebp-1c and Fas and suppressed Pck1 expression levels in the liver of STZ-VAS and STZ-VAD rats. Interestingly, insulin treatment inhibited Cyp26a1 expression in STZ-VAD, but not STZ-VAS rats, whereas RA treatment induced it in both. RA treatment induced Gck expression only in STZ-VAD rats. Insulin + RA treatment further induced the Cyp26a1 and Gck expressions in STZ-VAD rats. The Srebp-1c expression levels of STZ-VAD-INS and STZ-VAD-INS + RA rats were higher than that of STZ-VAS-INS and STZ-VAS-INS + RA rats. The changes of Gck mRNA and glucokinase protein were consistent. In STZ-induced diabetic rats, VA is not required for insulin-regulated Gck, Srebp-1c, Fas and Pck1 expression. However, VA status altered responses of certain genes (Cyp26a1 and Srebp-1c) to insulin treatment.
Collapse
Affiliation(s)
- Yang Li
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Yang Liu
- Department of Pharmaceutical Engineering, School of Life Science, Wuchang University of Technology, Wuhan, Hubei Province, 430223, China
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN, USA.
| |
Collapse
|
24
|
Nomura SJO, Robien K, Zota AR. Serum Folate, Vitamin B-12, Vitamin A, γ-Tocopherol, α-Tocopherol, and Carotenoids Do Not Modify Associations between Cadmium Exposure and Leukocyte Telomere Length in the General US Adult Population. J Nutr 2017; 147:538-548. [PMID: 28275103 PMCID: PMC5368581 DOI: 10.3945/jn.116.243162] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/21/2016] [Accepted: 02/06/2017] [Indexed: 01/10/2023] Open
Abstract
Background: Leukocyte telomere length (LTL) is a biomarker of the aging process and is associated with the risk of chronic disease. Higher exposure to cadmium may be associated with shorter LTL, and adequate nutrient concentrations may be associated with longer LTL; however, the potential interaction between metals and nutrients on LTL has yet to be examined.Objectives: The objective of this study was to evaluate whether serum concentrations of vitamins and carotenoids were associated with LTL, and whether they modified the association between blood cadmium and LTL in the US NHANES (1999-2002).Methods: We evaluated cross-sectional associations between LTL and serum concentrations of vitamin A, γ-tocopherol, α-tocopherol, folate, and vitamin B-12 (1999-2002; n = 7458) and α-carotene, β-carotene, β-cryptoxanthin, lutein + zeaxanthin, and lycopene (2001-2002; n = 4018) in a nationally representative sample of US adults (≥20 y of age) with the use of multivariable linear regression. We further investigated whether vitamin and carotenoid concentrations modified associations between blood cadmium and LTL with models stratified by serum nutrient concentrations and the inclusion of an interaction term.Results: Blood cadmium was inversely associated with LTL (percentage of LTL difference per 1 μg/L = -3.74; 95% CI: -5.35, -2.10). Serum vitamin A was positively associated (percentage of LTL difference per 1 μg/L = 4.01; 95% CI: 0.26, 7.90) and γ-tocopherol was inversely associated (percentage of LTL difference per 1 μg/dL = -2.49; 95% CI: -4.21, -0.73) with LTL. Serum folate (P-trend = 0.06) and α-tocopherol (P-trend = 0.10) were marginally positively associated with LTL, whereas vitamin B-12 (P-trend = 0.78) was not associated with LTL. Serum carotenoids were generally positively associated with LTL. Serum vitamin and carotenoid concentrations did not modify blood cadmium and LTL associations (P-interaction > 0.10).Conclusions: Results from this cross-sectional study suggest that exposure to cadmium and certain nutrients may be associated with LTL in US adults, but the serum concentrations of the vitamins and carotenoids evaluated did not modify cross-sectional associations between cadmium exposure and LTL.
Collapse
Affiliation(s)
- Sarah JO Nomura
- Office of Minority Health and Health Disparities Research, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC; and,To whom correspondence should be addressed. E-mail:
| | - Kim Robien
- Department of Exercise and Nutrition Sciences and
| | - Ami R Zota
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC
| |
Collapse
|
25
|
Oyama K, Kanki K, Shimizu H, Kono Y, Azumi J, Toriguchi K, Hatano E, Shiota G. Impact of Preferentially Expressed Antigen of Melanoma on the Prognosis of Hepatocellular Carcinoma. Gastrointest Tumors 2016; 3:128-135. [PMID: 28611979 DOI: 10.1159/000448137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Retinoids, vitamin A and its derivatives, have an antitumor effect on hepatocellular carcinoma (HCC). The function of retinoids is exerted by the complex of retinoic acid (RA) with the heterodimer of retinoid X receptor and the RA receptor. The preferentially expressed antigen of melanoma (PRAME) acts as a dominant repressor of RA signaling by binding to the complex. The significance of PRAME on the prognosis of HCC remains to be clarified. METHODS PRAME mRNA expression was examined by quantitative real-time polymerase chain reaction in both tumor and non-tumor tissues of 100 HCC patients who received surgical resection. The effect of PRAME knockdown on DR5-mediated RA transcriptional activity was examined. RESULTS In tumor tissues, there were significant associations among PRAME expression, clinical stage, tumor markers, and tumor numbers. In non-tumor tissues, there were significant associations among PRAME expression, overall survival, and disease-free survival. The knockdown of PRAME caused no reduction in DR5-mediated transcriptional activity of RA, suggesting that PRAME acts via other mechanisms than the DR5 RA-responsive elements. CONCLUSION Our findings indicate that PRAME expression is a novel prognostic marker in HCC patients.
Collapse
Affiliation(s)
- Kenji Oyama
- Tottori University Hospital Cancer Center, Tottori University, Yonago, Japan.,Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Keita Kanki
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan.,Department of Biomedical Engineering, Faculty of Engineering, Okayama University of Science, Okayama, Japan
| | - Hiroki Shimizu
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Yohei Kono
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Junya Azumi
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Kan Toriguchi
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Goshi Shiota
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
26
|
Maliza R, Fujiwara K, Tsukada T, Azuma M, Kikuchi M, Yashiro T. Effects of retinoic acid on growth hormone-releasing hormone receptor, growth hormone secretagogue receptor gene expression and growth hormone secretion in rat anterior pituitary cells. Endocr J 2016; 63:555-61. [PMID: 27052215 DOI: 10.1507/endocrj.ej16-0086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Retinoic acid (RA) is an important signaling molecule in embryonic development and adult tissue. The actions of RA are mediated by the nuclear receptors retinoic acid receptor (RAR) and retinoid X receptor (RXR), which regulate gene expression. RAR and RXR are widely expressed in the anterior pituitary gland. RA was reported to stimulate growth hormone (GH) gene expression in the anterior pituitary cells. However, current evidence is unclear on the role of RA in gene expression of growth hormone-releasing hormone receptor (Ghrh-r), growth hormone secretagogue receptor (Ghs-r) and somatostatin receptors (Sst-rs). Using isolated anterior pituitary cells of rats, we examined the effects of RA on gene expression of these receptors and GH release. Quantitative real-time PCR revealed that treatment with all-trans retinoic acid (ATRA; 10(-6) M) for 24 h increased gene expression levels of Ghrh-r and Ghs-r; however, expressions of Sst-r2 and Sst-r5 were unchanged. Combination treatment with the RAR-agonist Am80 and RXR-agonist PA024 mimicked the effects of ATRA on Ghrh-r and Ghs-r gene expressions. Exposure of isolated pituitary cells to ATRA had no effect on basal GH release. In contrast, ATRA increased growth hormone-releasing hormone (GHRH)- and ghrelin-stimulated GH release from cultured anterior pituitary cells. Our results suggest that expressions of Ghrh-r and Ghs-r are regulated by RA through the RAR-RXR receptor complex and that RA enhances the effects of GHRH and ghrelin on GH release from the anterior pituitary gland.
Collapse
Affiliation(s)
- Rita Maliza
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Cervantes-Paz B, Victoria-Campos CI, Ornelas-Paz JDJ. Absorption of Carotenoids and Mechanisms Involved in Their Health-Related Properties. Subcell Biochem 2016; 79:415-454. [PMID: 27485232 DOI: 10.1007/978-3-319-39126-7_16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Carotenoids participate in the normal metabolism and function of the human body. They are involved in the prevention of several diseases, especially those related to the inflammation syndrome. Their main mechanisms of action are associated to their potent antioxidant activity and capacity to regulate the expression of specific genes and proteins. Recent findings suggest that carotenoid metabolites may explain several processes where the participation of their parent carotenoids was unclear. The health benefits of carotenoids strongly depend on their absorption and transformation during gastrointestinal digestion. The estimation of the 'bioaccessibility' of carotenoids through in vitro models have made possible the evaluation of the effect of a large number of factors on key stages of carotenoid digestion and intestinal absorption. The bioaccessibility of these compounds allows us to have a clear idea of their potential bioavailability, a term that implicitly involves the biological activity of these compounds.
Collapse
Affiliation(s)
- Braulio Cervantes-Paz
- Centro de Investigación en Alimentación y Desarrollo A. C.-Unidad Cuauhtémoc, Av. Río Conchos S/N, Parque Industrial, C.P. 31570, Cd. Cuauhtémoc, Chihuahua, Mexico
| | - Claudia I Victoria-Campos
- Centro de Investigación en Alimentación y Desarrollo A. C.-Unidad Cuauhtémoc, Av. Río Conchos S/N, Parque Industrial, C.P. 31570, Cd. Cuauhtémoc, Chihuahua, Mexico
| | - José de Jesús Ornelas-Paz
- Centro de Investigación en Alimentación y Desarrollo A. C.-Unidad Cuauhtémoc, Av. Río Conchos S/N, Parque Industrial, C.P. 31570, Cd. Cuauhtémoc, Chihuahua, Mexico.
| |
Collapse
|
28
|
Safinia N, Scotta C, Vaikunthanathan T, Lechler RI, Lombardi G. Regulatory T Cells: Serious Contenders in the Promise for Immunological Tolerance in Transplantation. Front Immunol 2015; 6:438. [PMID: 26379673 PMCID: PMC4553385 DOI: 10.3389/fimmu.2015.00438] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/12/2015] [Indexed: 01/12/2023] Open
Abstract
Regulatory T cells (Tregs) play an important role in immunoregulation and have been shown in animal models to promote transplantation tolerance and curb autoimmunity following their adoptive transfer. The safety and potential therapeutic efficacy of these cells has already been reported in Phase I trials of bone-marrow transplantation and type I diabetes, the success of which has motivated the broadened application of these cells in solid-organ transplantation. Despite major advances in the clinical translation of these cells, there are still key questions to be addressed to ensure that Tregs attest their reputation as ideal candidates for tolerance induction. In this review, we will discuss the unique traits of Tregs that have attracted such fame in the arena of tolerance induction. We will outline the protocols used for their ex vivo expansion and discuss the future directions of Treg cell therapy. In this regard, we will review the concept of Treg heterogeneity, the desire to isolate and expand a functionally superior Treg population and report on the effect of differing culture conditions. The relevance of Treg migratory capacity will also be discussed together with methods of in vivo visualization of the infused cells. Moreover, we will highlight key advances in the identification and expansion of antigen-specific Tregs and discuss their significance for cell therapy application. We will also summarize the clinical parameters that are of importance, alongside cell manufacture, from the choice of immunosuppression regimens to the number of injections in order to direct the success of future efficacy trials of Treg cell therapy. Years of research in the field of tolerance have seen an accumulation of knowledge and expertise in the field of Treg biology. This perpetual progression has been the driving force behind the many successes to date and has put us now within touching distance of our ultimate success, immunological tolerance.
Collapse
Affiliation(s)
- Niloufar Safinia
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London , London , UK
| | - Cristiano Scotta
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London , London , UK
| | - Trishan Vaikunthanathan
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London , London , UK
| | - Robert I Lechler
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London , London , UK
| | - Giovanna Lombardi
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London , London , UK
| |
Collapse
|
29
|
Shirakami Y, Sakai H, Shimizu M. Retinoid roles in blocking hepatocellular carcinoma. Hepatobiliary Surg Nutr 2015; 4:222-8. [PMID: 26311412 DOI: 10.3978/j.issn.2304-3881.2015.05.01] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/23/2015] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is a major health issue in many countries. The prognosis of HCC is still poor due to its high recurrence rate and its resistance to chemotherapy. Retinoids have long been known to have a connection with liver diseases, including HCC. Many experimental and clinical investigations have demonstrated associations between retinoids and hepatic disease, including the loss of retinoid activity in HCC cell lines and decreased hepatic retinoid stores and altered retinoid signaling in patients with cirrhosis and HCC. Based on these findings, preclinical and clinical investigations of retinoid effects on HCC have been undertaken. Recently, clinical trial results for the use of a synthetic retinoid, acyclic retinoid (ACR), to prevent HCC recurrence were published. In addition, extensive experimental studies on the action of retinoids in liver disease, including chronic viral hepatitis and non-alcoholic fatty liver disease (NAFLD), which lead to HCC have been performed. In the first section of this review, we will summarize the effectiveness and roles of retinoid for treating liver disease and blocking HCC. Subsequently, we will focus on ACR actions in blocking HCC.
Collapse
Affiliation(s)
- Yohei Shirakami
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyasu Sakai
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masahito Shimizu
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
30
|
Bimczok D, Kao JY, Zhang M, Cochrun S, Mannon P, Peter S, Wilcox CM, Mönkemüller KE, Harris PR, Grams JM, Stahl RD, Smith PD, Smythies LE. Human gastric epithelial cells contribute to gastric immune regulation by providing retinoic acid to dendritic cells. Mucosal Immunol 2015; 8:533-544. [PMID: 25249167 PMCID: PMC4372513 DOI: 10.1038/mi.2014.86] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 08/18/2014] [Indexed: 02/04/2023]
Abstract
Despite the high prevalence of chronic gastritis caused by Helicobacter pylori, the gastric mucosa has received little investigative attention as a unique immune environment. Here, we analyzed whether retinoic acid (RA), an important homeostatic factor in the small intestinal mucosa, also contributes to gastric immune regulation. We report that human gastric tissue contains high levels of the RA precursor molecule retinol (ROL), and that gastric epithelial cells express both RA biosynthesis genes and RA response genes, indicative of active RA biosynthesis. Moreover, primary gastric epithelial cells cultured in the presence of ROL synthesized RA in vitro and induced RA biosynthesis in co-cultured monocytes through an RA-dependent mechanism, suggesting that gastric epithelial cells may also confer the ability to generate RA on gastric dendritic cells (DCs). Indeed, DCs purified from gastric mucosa had similar levels of aldehyde dehydrogenase activity and RA biosynthesis gene expression as small intestinal DCs, although gastric DCs lacked CD103. In H. pylori-infected gastric mucosa, gastric RA biosynthesis gene expression was severely disrupted, which may lead to reduced RA signaling and thus contribute to disease progression. Collectively, our results support a critical role for RA in human gastric immune regulation.
Collapse
Affiliation(s)
- Diane Bimczok
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John Y. Kao
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | - Min Zhang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | - Steven Cochrun
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Peter Mannon
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shajan Peter
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Charles M. Wilcox
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Klaus E. Mönkemüller
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Paul R. Harris
- Division of Pediatrics, Unit of Gastroenterology and Nutrition, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jayleen M. Grams
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Richard D. Stahl
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Phillip D. Smith
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- VA Medical Center, Birmingham, AL, USA
| | - Lesley E. Smythies
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
31
|
Kochan K, Marzec KM, Maslak E, Chlopicki S, Baranska M. Raman spectroscopic studies of vitamin A content in the liver: a biomarker of healthy liver. Analyst 2015; 140:2074-9. [DOI: 10.1039/c4an01878h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Confocal Raman microspectroscopy was used in this study to identify hepatic stellate cells (HSCs) from healthy mice and mice with untreated and treated liver steatosis.
Collapse
Affiliation(s)
- K. Kochan
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- Jagiellonian University
- Krakow
- Poland
- Faculty of Chemistry
| | - K. M. Marzec
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- Jagiellonian University
- Krakow
- Poland
| | - E. Maslak
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- Jagiellonian University
- Krakow
- Poland
| | - S. Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- Jagiellonian University
- Krakow
- Poland
- Department of Experimental Pharmacology
| | - M. Baranska
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- Jagiellonian University
- Krakow
- Poland
- Faculty of Chemistry
| |
Collapse
|
32
|
García-de Blas E, Mateo R, Alonso-Alvarez C. Accumulation of dietary carotenoids, retinoids and tocopherol in the internal tissues of a bird: a hypothesis for the cost of producing colored ornaments. Oecologia 2014; 177:259-71. [DOI: 10.1007/s00442-014-3163-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 11/12/2014] [Indexed: 01/10/2023]
|
33
|
Ashor AW, Siervo M, Lara J, Oggioni C, Mathers JC. Antioxidant vitamin supplementation reduces arterial stiffness in adults: a systematic review and meta-analysis of randomized controlled trials. J Nutr 2014; 144:1594-602. [PMID: 25098780 DOI: 10.3945/jn.114.195826] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Several studies tested the effects of supplementation with antioxidant vitamins on arterial stiffness, but the results were contradictory. OBJECTIVES The aim of our study was to conduct a systematic review and meta-analysis investigating the effect of antioxidant vitamins on arterial stiffness and to determine whether the effects on arterial stiffness vary according to dose, duration of intervention, and health or nutritional status of the included participants. METHODS We searched 3 databases (Medline, Embase, and Scopus) for articles that potentially met the following eligibility criteria: 1) randomized controlled trials comparing antioxidant vitamins (vitamins C, E, and A and β-carotene) to either placebo or no active control in 2) adult participants aged ≥18 y; 3) antioxidant vitamins administered alone or in combination, irrespective of dose, duration, and route of administration; and 4) changes in arterial stiffness or arterial compliance. Data were pooled as standardized mean differences (SMDs) and analyzed using fixed- and random-effects models. RESULTS Data synthesis showed that antioxidant vitamins reduced arterial stiffness significantly (SMD: -0.17; 95% CI: -0.26, -0.08; P < 0.001). This effect was significant in experimental (SMD: -1.02; 95% CI: -1.54, -0.49; P < 0.001) and primary prevention (SMD: -0.14; 95% CI: -0.24, -0.04; P < 0.01) studies, whereas a trend for reduced arterial stiffness was observed in studies including participants with diseases (SMD: -0.19; 95% CI: -0.40, 0.02; P = 0.08). Vitamin supplementation improved arterial stiffness irrespective of age group and duration of intervention. Antioxidant vitamins were more effective in participants with low baseline plasma concentrations of vitamins C (SMD: -0.35; 95% CI: -0.62, -0.07; P < 0.016) and E (SMD: -0.79; 95% CI: -1.23, -0.33; P < 0.01). CONCLUSIONS Supplementation with antioxidant vitamins has a small, protective effect on arterial stiffness. The effect may be augmented in those with lower baseline plasma vitamin E and C concentrations. This trial was registered at PROSPERO as CRD42014007260.
Collapse
Affiliation(s)
- Ammar W Ashor
- Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK; and College of Medicine, University of Al-Mustansiriyah, Baghdad, Iraq
| | - Mario Siervo
- Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK; and
| | - Jose Lara
- Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK; and
| | - Clio Oggioni
- Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK; and
| | - John C Mathers
- Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK; and
| |
Collapse
|
34
|
Marcato P, Dean CA, Liu RZ, Coyle KM, Bydoun M, Wallace M, Clements D, Turner C, Mathenge EG, Gujar SA, Giacomantonio CA, Mackey JR, Godbout R, Lee PWK. Aldehyde dehydrogenase 1A3 influences breast cancer progression via differential retinoic acid signaling. Mol Oncol 2014; 9:17-31. [PMID: 25106087 DOI: 10.1016/j.molonc.2014.07.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/12/2014] [Accepted: 07/13/2014] [Indexed: 01/08/2023] Open
Abstract
Aldehyde dehydrogenase (ALDH) 1A enzymes produce retinoic acid (RA), a transcription induction molecule. To investigate if ALDH1A1 or ALDH1A3-mediated RA signaling has an active role in breast cancer tumorigenesis, we performed gene expression and tumor xenograft studies. Analysis of breast patient tumors revealed that high levels of ALDH1A3 correlated with expression of RA-inducible genes with retinoic acid response elements (RAREs), poorer patient survival and triple-negative breast cancers. This suggests a potential link between ALDH1A3 expression and RA signaling especially in aggressive and/or triple-negative breast cancers. In MDA-MB-231, MDA-MB-468 and MDA-MB-435 cells, ALDH1A3 and RA increased expression of RA-inducible genes. Interestingly, ALDH1A3 had opposing effects in tumor xenografts, increasing tumor growth and metastasis of MDA-MB-231 and MDA-MB-435 cells, but decreasing tumor growth of MDA-MB-468 cells. Exogenous RA replaced ALDH1A3 in inducing the same opposing tumor growth and metastasis effects, suggesting that ALDH1A3 mediates these effects by promoting RA signaling. Genome expression analysis revealed that ALDH1A3 induced largely divergent gene expression in MDA-MB-231 and MDA-MB-468 cells which likely resulted in the opposing tumor growth effects. Treatment with DNA methylation inhibitor 5-aza-2'deoxycytidine restored uniform RA-inducibility of RARE-containing HOXA1 and MUC4 in MDA-MB-231 and MDA-MB-468 cells, suggesting that differences in epigenetic modifications contribute to differential ALDH1A3/RA-induced gene expression in breast cancer. In summary, ALDH1A3 induces differential RA signaling in breast cancer cells which affects the rate of breast cancer progression.
Collapse
Affiliation(s)
- Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada.
| | - Cheryl A Dean
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Rong-Zong Liu
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Krysta M Coyle
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Moamen Bydoun
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Melissa Wallace
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Derek Clements
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Colin Turner
- Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | | | - Shashi A Gujar
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada; Strategy and Organizational Performance, IWK Health Centre, Halifax, NS, Canada
| | | | - John R Mackey
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Roseline Godbout
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Patrick W K Lee
- Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
35
|
Vitamin A deficiency modulates iron metabolism via ineffective erythropoiesis. J Nutr Biochem 2014; 25:1035-44. [PMID: 24998947 DOI: 10.1016/j.jnutbio.2014.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 01/25/2023]
Abstract
Vitamin A modulates inflammatory status, iron metabolism and erythropoiesis. Given that these factors modulate the expression of the hormone hepcidin (Hamp), we investigated the effect of vitamin A deficiency on molecular biomarkers of iron metabolism, the inflammatory response and the erythropoietic system. Five groups of male Wistar rats were treated: control (AIN-93G), the vitamin A-deficient (VAD) diet, the iron-deficient (FeD) diet, the vitamin A- and iron-deficient (VAFeD) diet or the diet with 12 mg atRA/kg diet replacing all-trans-retinyl palmitate by all-trans retinoic acid (atRA). Vitamin A deficiency reduced serum iron and transferrin saturation levels, increased spleen iron concentrations, reduced hepatic Hamp and kidney erythropoietin messenger RNA (mRNA) levels and up-regulated hepatic and spleen heme oxygenase-1 gene expression while reducing the liver HO-1 specific activity compared with the control. The FeD and VAFeD rats exhibited lower levels of serum iron and transferrin saturation, lower iron concentrations in tissues and lower hepatic Hamp mRNA levels compared with the control. The treatment with atRA resulted in lower serum iron and transferrin concentrations, an increased iron concentration in the liver, a decreased iron concentration in the spleen and in the gut, and decreased hepatic Hamp mRNA levels. In summary, these findings suggest that vitamin A deficiency leads to ineffective erythropoiesis by the down-regulation of renal erythropoietin expression in the kidney, resulting in erythrocyte malformation and the consequent accumulation of the heme group in the spleen. Vitamin A deficiency indirectly modulates systemic iron homeostasis by enhancing erythrophagocytosis of undifferentiated erythrocytes.
Collapse
|
36
|
Bleul T, Rühl R, Bulashevska S, Karakhanova S, Werner J, Bazhin AV. Reduced retinoids and retinoid receptors' expression in pancreatic cancer: A link to patient survival. Mol Carcinog 2014; 54:870-9. [PMID: 24729540 DOI: 10.1002/mc.22158] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 01/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents one of the deadliest cancers in the world. All-trans retinoic acid (ATRA) is the major physiologically active form of vitamin A, regulating expression of many genes. Disturbances of vitamin A metabolism are prevalent in some cancer cells. The main aim of this work was to investigate deeply the components of retinoid signaling in PDAC compared to in the normal pancreas and to prove the clinical importance of retinoid receptor expression. For the study, human tumor tissues obtained from PDAC patients and murine tumors from the orthotopic Panc02 model were used for the analysis of retinoids, using high performance liquid chromatography mass spectrometry and real-time RT-PCR gene expression analysis. Survival probabilities in univariate analysis were estimated using the Kaplan-Meier method and the Cox proportional hazards model was used for the multivariate analysis. In this work, we showed for the first time that the ATRA and all-trans retinol concentration is reduced in PDAC tissue compared to their normal counterparts. The expression of RARα and β as well as RXRα and β are down-regulated in PDAC tissue. This reduced expression of retinoid receptors correlates with the expression of some markers of differentiation and epithelial-to-mesenchymal transition as well as of cancer stem cell markers. Importantly, the expression of RARα and RXRβ is associated with better overall survival of PDAC patients. Thus, reduction of retinoids and their receptors is an important feature of PDAC and is associated with worse patient survival outcomes.
Collapse
Affiliation(s)
- Tim Bleul
- Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Ralph Rühl
- Department of Biochemistry and Molecular Biology, Medical and Health Science Center, Debrecen, Hungary.,Paprika Bioanalytics BT, Debrecen, Hungary
| | | | - Svetlana Karakhanova
- Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Alexandr V Bazhin
- Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany.,Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
37
|
Guan HP, Chen G. Factors affecting insulin-regulated hepatic gene expression. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 121:165-215. [PMID: 24373238 DOI: 10.1016/b978-0-12-800101-1.00006-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obesity has become a major concern of public health. A common feature of obesity and related metabolic disorders such as noninsulin-dependent diabetes mellitus is insulin resistance, wherein a given amount of insulin produces less than normal physiological responses. Insulin controls hepatic glucose and fatty acid metabolism, at least in part, via the regulation of gene expression. When the liver is insulin-sensitive, insulin can stimulate the expression of genes for fatty acid synthesis and suppress those for gluconeogenesis. When the liver becomes insulin-resistant, the insulin-mediated suppression of gluconeogenic gene expression is lost, whereas the induction of fatty acid synthetic gene expression remains intact. In the past two decades, the mechanisms of insulin-regulated hepatic gene expression have been studied extensively and many components of insulin signal transduction pathways have been identified. Factors that alter these pathways, and the insulin-regulated hepatic gene expression, have been revealed and the underlying mechanisms have been proposed. This chapter summarizes the recent progresses in our understanding of the effects of dietary factors, drugs, bioactive compounds, hormones, and cytokines on insulin-regulated hepatic gene expression. Given the large amount of information and progresses regarding the roles of insulin, this chapter focuses on findings in the liver and hepatocytes and not those described for other tissues and cells. Typical insulin-regulated hepatic genes, such as insulin-induced glucokinase and sterol regulatory element-binding protein-1c and insulin-suppressed cytosolic phosphoenolpyruvate carboxyl kinase and insulin-like growth factor-binding protein 1, are used as examples to discuss the mechanisms such as insulin regulatory element-mediated transcriptional regulation. We also propose the potential mechanisms by which these factors affect insulin-regulated hepatic gene expression and discuss potential future directions of the area of research.
Collapse
Affiliation(s)
- Hong-Ping Guan
- Department of Diabetes, Merck Research Laboratories, Kenilworth, New Jersey, USA
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|
38
|
Djeraba Z, Boumedine K, Arroul-Lammali A, Otmani F, Belguendouz H, Touil-Boukoffa C. Ex vivo immunomodulatory effect of all-trans-retinoic acid during Behçet's disease: a study in Algerian patients. Immunopharmacol Immunotoxicol 2013; 36:78-86. [PMID: 24369064 DOI: 10.3109/08923973.2013.873048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Uveitis, recurrent oral and genital ulcerations associated with skin lesions are the major symptoms of a chronic multisystemic inflammatory disorder known as Behçet's disease (BD). High prevalence of this dreaded disease has been observed in the Mediterranean basin, including Algeria and along the Silk Road. Although the etiologic agent of this disease remains uncertain, many hypotheses have been advanced in its pathogenesis. Our team has previously reported high levels of nitric oxide (NO) in sera of BD patients, suggesting its deleterious effect during chronic inflammation. In our current study, the aim is to investigate the ex vivo immunomodulatory effect of all-trans-retinoic acid (ATRA) on NO pathway in Algerian BD patients. First, peripheral blood mononuclear cells isolated from active and inactive BD patients and healthy controls were cultured with different concentrations of ATRA. NO production was estimated with the Griess method. To elucidate the underlying mechanisms of ATRA effect on NO production, we analyze inducible nitric oxide synthase expression and nuclear factor-κB (NF-κB) activity by immunofluorescence test. Our results revealed a higher production of NO in active BD compared with the inactive stage and healthy controls. We observed that ATRA inhibits NO production in BD both in active and inactive stages and inhibits NF-κB translocation. In conclusion, we report a relationship between NO production and the disease activity. ATRA down-regulates NO production in BD patients. This immunomodulatory effect seems to be mediated through NF-κB pathway. All these findings suggest that ATRA could be considered as a promising therapy for BD.
Collapse
Affiliation(s)
- Zineb Djeraba
- USTHB (University of Sciences and Technology), Laboratory of Cellular and Molecular Biology (LBCM), Cytokines and NO Synthases Team, Faculty of Biological Science , Algiers , Algeria and
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Oxidative stress is a condition in which oxidant metabolites exert their toxic effect because of an increased production or an altered cellular mechanism of protection; oxidative stress is rapidly gaining recognition as a key phenomenon in chronic diseases. Antioxidants terminate these chain reactions by removing free radical intermediates, and inhibit other oxidation reactions by being oxidized themselves. Endogenous defence mechanisms are inadequate for the complete prevention of oxidative damage, and different sources of dietary antioxidants may be especially important. This article calls attention to the dietary antioxidants, such as vitamins A, C, and E and polyphenols. Compelling evidence has led to the conclusion that diet is a key environmental factor and a potential tool for the control of chronic diseases. More specifically, fruits and vegetables have been shown to exert a protective effect. The high content of minerals and natural antioxidant as vitamins A, C, and E and polyphenols in fruits and vegetables may be a main factor responsible for these effects.
Collapse
Affiliation(s)
- J M Landete
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos-IATA, Consejo Superior de Investigaciones Científicas-CSIC, Avda. Agustín Escardino 7, 46980 Paterna-Valencia, España.
| |
Collapse
|
40
|
Tanaka H, Akita H, Ishiba R, Tange K, Arai M, Kubo K, Harashima H. Neutral biodegradable lipid-envelope-type nanoparticle using vitamin A-Scaffold for nuclear targeting of plasmid DNA. Biomaterials 2013; 35:1755-61. [PMID: 24290811 DOI: 10.1016/j.biomaterials.2013.11.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/07/2013] [Indexed: 10/26/2022]
Abstract
Biomembranes and cytoplasm, a diffusion-limited region for nanoparticles are critical barriers to be overcome for the successful gene delivery. We herein report on a neutral, and intracellularly degradable lipid nanoparticle (LNP), containing encapsulated plasmid DNA (pDNA) that can be effectively delivered to the nucleus. A key material component in this particle is a vitamin A-scaffold SS-cleavable Proton-Activated Lipid-like Material ((SS)PalmA), which contains tertiary amine groups as proton sponge units that can respond to the acidic pH in endosomes, disulfide bonding for programmed collapse in the cytoplasm, and retinoic acid (RA) as a hydrophobic unit for assembly into LNP. LNP prepared using (SS)PalmA (LNP(PalmA)) exhibited a 15-fold higher gene expression activity compared to particles prepared with a simple acyl chain (myristoyl group)-scaffold one (LNPPalmM). Intracellular imaging studies revealed that LNP(PalmA) unexpectedly showed excessive endosome-disruptive characteristics. Furthermore, the decapsulation of pDNA slowly, but successively occurred in parallel with peri-nuclear accumulation. Nuclear targeting was blocked in the presence of native RA. Collectively, LNP(PalmA) is an intelligent particle that passes through the cytoplasm in particle form with the aid of the intrinsic nuclear transport system of RA, and thereafter releases its encapsulated pDNA for effective gene expression.
Collapse
Affiliation(s)
- Hiroki Tanaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Sapporo City, Hokkaido 060-0812, Japan
| | - Hidetaka Akita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Sapporo City, Hokkaido 060-0812, Japan.
| | - Ryohei Ishiba
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Sapporo City, Hokkaido 060-0812, Japan
| | - Kota Tange
- NOF Corporation, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-0865, Japan
| | - Masaya Arai
- NOF Corporation, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-0865, Japan
| | - Kazuhiro Kubo
- NOF Corporation, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-0865, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Sapporo City, Hokkaido 060-0812, Japan.
| |
Collapse
|
41
|
Xia M, Liu Y, Guo H, Wang D, Wang Y, Ling W. Retinol binding protein 4 stimulates hepatic sterol regulatory element-binding protein 1 and increases lipogenesis through the peroxisome proliferator-activated receptor-γ coactivator 1β-dependent pathway. Hepatology 2013; 58:564-75. [PMID: 23300015 DOI: 10.1002/hep.26227] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 11/15/2012] [Indexed: 12/07/2022]
Abstract
UNLABELLED Recent studies have revealed the essential role of retinol binding protein 4 (RBP4) in insulin resistance. However, the impact of RBP4 on aberrant lipogenesis, the common hepatic manifestation in insulin resistance states, and the underlying mechanism remain elusive. The present study was designed to examine the effect of RBP4 on sterol regulatory element-binding protein (SREBP-1) and hepatic lipogenesis. Treatment with human retinol-bound RBP4 (holo-RBP4) significantly induced intracellular triglyceride (TAG) synthesis in HepG2 cells and this effect is retinol-independent. Furthermore, RBP4 treatment enhanced the levels of mature SREBP-1 and its nuclear translocation, thereby increasing the expression of lipogenic genes, including fatty acid synthase (FAS), acetyl coenzyme A carboxylase-1 (ACC-1), and diacylglycerol O-acyltransferase 2 (DGAT-2). Stimulation of HepG2 cells with RBP4 strongly up-regulated the expression of transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator 1β (PGC-1β) at both the messenger RNA (mRNA) and protein levels. The transcriptional activation of PGC-1β is necessary and sufficient for the transcriptional activation of SREBP-1 in response to RBP4. The cyclic adenosine monophosphate (cAMP)-response element binding protein (CREB) was identified as the target transcription factor involved in the RBP4-mediated up-regulation of PGC-1β transcription as a result of phosphorylation on Ser133. Furthermore, in vivo RBP4 infusion induced SREBP-1c activation and consequently accelerated hepatic lipogenesis and plasma TAG in C57BL/6J mice, a phenomenon not observed in Ppargc1b knockout mice. CONCLUSION These findings reveal a novel mechanism by which RBP4 achieves its effects on hepatic lipid metabolism.
Collapse
Affiliation(s)
- Min Xia
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, China
| | | | | | | | | | | |
Collapse
|
42
|
Shiota G, Kanki K. Retinoids and their target genes in liver functions and diseases. J Gastroenterol Hepatol 2013; 28 Suppl 1:33-7. [PMID: 23855293 DOI: 10.1111/jgh.12031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2012] [Indexed: 12/13/2022]
Abstract
Retinoids have been reported to prevent several kinds of cancers, including hepatocellular carcinoma (HCC). Retinoic acid (RA) coupled with retinoic acid receptor/retinoid X receptor heterodimer exerts its functions by regulating its target genes. We previously reported that transgenic mice, in which RA signaling is suppressed in a hepatocyte-specific manner, developed liver cancer at a high rate, and that disruption of RA functions led to the increased oxidative stress via aberrant metabolisms of lipid and iron, indicating that retinoids play an important role in liver pathophysiology. These data suggest that exploring the metabolism of retinoids in liver diseases and their target genes provides us with useful information to understand the liver functions and diseases. Consequently, the altered metabolism of retinoids was observed in liver diseases, including non-alcoholic fatty liver disease. In this review, we summarize the metabolism of retinoids in the liver, highlight the functions of retinoids in HCC, non-alcoholic fatty liver disease, and alcoholic liver disease, and discuss the target genes of RA. Investigation of retinoids in the liver will likely help us identify novel therapies and diagnostic modalities for HCC.
Collapse
Affiliation(s)
- Goshi Shiota
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan.
| | | |
Collapse
|
43
|
Yuan J, Tang Z, Yang S, Li K. CRABP2 promotes myoblast differentiation and is modulated by the transcription factors MyoD and Sp1 in C2C12 cells. PLoS One 2013; 8:e55479. [PMID: 23383201 PMCID: PMC3561243 DOI: 10.1371/journal.pone.0055479] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/23/2012] [Indexed: 11/19/2022] Open
Abstract
Cellular retinoic acid binding protein 2 (CRABP2), a member of a family of specific carrier proteins for Vitamin A, belongs to a family of small cytosolic lipid binding proteins. Our previous study suggested that CRABP2 was involved in skeletal muscle development; however, the molecular function and regulatory mechanism of CRABP2 in myogenesis remained unclear. In this study, we found that the expression of the CRABP2 gene was upregulated during C2C12 differentiation. An over-expression assay revealed that CRABP2 promotes myogenic transformation by regulating the cell cycle during C2C12 differentiation. The region from -459 to -4 bp was identified as the core promoter and contains a TATA box, a GC box and binding sites for the transcription factors MyoD and Sp1. Over-expression, site-directed mutagenesis and EMSA assays indicated that the transcription factors MyoD and Sp1 regulate CRABP2 expression and promote myoblast differentiation in C2C12 cells.
Collapse
Affiliation(s)
- Jing Yuan
- State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- College of Animal Science, Yangtze University, Jingzhou, People's Republic of China
| | - Zhonglin Tang
- State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Shulin Yang
- State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Kui Li
- State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
44
|
Scottà C, Esposito M, Fazekasova H, Fanelli G, Edozie FC, Ali N, Xiao F, Peakman M, Afzali B, Sagoo P, Lechler RI, Lombardi G. Differential effects of rapamycin and retinoic acid on expansion, stability and suppressive qualities of human CD4(+)CD25(+)FOXP3(+) T regulatory cell subpopulations. Haematologica 2012; 98:1291-9. [PMID: 23242600 DOI: 10.3324/haematol.2012.074088] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adoptive transfer of ex vivo expanded CD4(+)CD25(+)FOXP3(+) regulatory T cells is a successful therapy for autoimmune diseases and transplant rejection in experimental models. In man, equivalent manipulations in bone marrow transplant recipients appear safe, but questions regarding the stability of the transferred regulatory T cells during inflammation remain unresolved. In this study, protocols for the expansion of clinically useful numbers of functionally suppressive and stable human regulatory T cells were investigated. Regulatory T cells were expanded in vitro with rapamycin and/or all-trans retinoic acid and then characterized under inflammatory conditions in vitro and in vivo in a humanized mouse model of graft-versus-host disease. Addition of rapamycin to regulatory T-cell cultures confirms the generation of high numbers of suppressive regulatory T cells. Their stability was demonstrated in vitro and substantiated in vivo. In contrast, all-trans retinoic acid treatment generates regulatory T cells that retain the capacity to secrete IL-17. However, combined use of rapamycin and all-trans retinoic acid abolishes IL-17 production and confers a specific chemokine receptor homing profile upon regulatory T cells. The use of purified regulatory T-cell subpopulations provided direct evidence that rapamycin can confer an early selective advantage to CD45RA(+) regulatory T cells, while all-trans retinoic acid favors CD45RA(-) regulatory T-cell subset. Expansion of regulatory T cells using rapamycin and all-trans retinoic acid drug combinations provides a new and refined approach for large-scale generation of functionally potent and phenotypically stable human regulatory T cells, rendering them safe for clinical use in settings associated with inflammation.
Collapse
Affiliation(s)
- Cristiano Scottà
- Department of Nephrology and Transplantation, King's College London, Medical Research Council (MRC) Centre for Transplantation, Guy’s Hospital, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
A multidisciplinary reconstruction of Palaeolithic nutrition that holds promise for the prevention and treatment of diseases of civilisation. Nutr Res Rev 2012; 25:96-129. [PMID: 22894943 DOI: 10.1017/s0954422412000017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Evolutionary medicine acknowledges that many chronic degenerative diseases result from conflicts between our rapidly changing environment, our dietary habits included, and our genome, which has remained virtually unchanged since the Palaeolithic era. Reconstruction of the diet before the Agricultural and Industrial Revolutions is therefore indicated, but hampered by the ongoing debate on our ancestors' ecological niche. Arguments and their counterarguments regarding evolutionary medicine are updated and the evidence for the long-reigning hypothesis of human evolution on the arid savanna is weighed against the hypothesis that man evolved in the proximity of water. Evidence from various disciplines is discussed, including the study of palaeo-environments, comparative anatomy, biogeochemistry, archaeology, anthropology, (patho)physiology and epidemiology. Although our ancestors had much lower life expectancies, the current evidence does neither support the misconception that during the Palaeolithic there were no elderly nor that they had poor health. Rather than rejecting the possibility of 'healthy ageing', the default assumption should be that healthy ageing posed an evolutionary advantage for human survival. There is ample evidence that our ancestors lived in a land-water ecosystem and extracted a substantial part of their diets from both terrestrial and aquatic resources. Rather than rejecting this possibility by lack of evidence, the default assumption should be that hominins, living in coastal ecosystems with catchable aquatic resources, consumed these resources. Finally, the composition and merits of so-called 'Palaeolithic diets', based on different hominin niche-reconstructions, are evaluated. The benefits of these diets illustrate that it is time to incorporate this knowledge into dietary recommendations.
Collapse
|
46
|
Alapatt P, Guo F, Komanetsky SM, Wang S, Cai J, Sargsyan A, Rodríguez Díaz E, Bacon BT, Aryal P, Graham TE. Liver retinol transporter and receptor for serum retinol-binding protein (RBP4). J Biol Chem 2012; 288:1250-65. [PMID: 23105095 DOI: 10.1074/jbc.m112.369132] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vitamin A (retinol) is absorbed in the small intestine, stored in liver, and secreted into circulation bound to serum retinol-binding protein (RBP4). Circulating retinol may be taken up by extrahepatic tissues or recycled back to liver multiple times before it is finally metabolized or degraded. Liver exhibits high affinity binding sites for RBP4, but specific receptors have not been identified. The only known high affinity receptor for RBP4, Stra6, is not expressed in the liver. Here we report discovery of RBP4 receptor-2 (RBPR2), a novel retinol transporter expressed primarily in liver and intestine and induced in adipose tissue of obese mice. RBPR2 is structurally related to Stra6 and highly conserved in vertebrates, including humans. Expression of RBPR2 in cultured cells confers high affinity RBP4 binding and retinol transport, and RBPR2 knockdown reduces RBP4 binding/retinol transport. RBPR2 expression is suppressed by retinol and retinoic acid and correlates inversely with liver retinol stores in vivo. We conclude that RBPR2 is a novel retinol transporter that potentially regulates retinol homeostasis in liver and other tissues. In addition, expression of RBPR2 in liver and fat suggests a possible role in mediating established metabolic actions of RBP4 in those tissues.
Collapse
Affiliation(s)
- Philomena Alapatt
- Molecular Medicine Program and Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Mendelsohn C. Using mouse models to understand normal and abnormal urogenital tract development. Organogenesis 2012; 5:306-14. [PMID: 19568352 DOI: 10.4161/org.8173] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 04/02/2009] [Indexed: 02/02/2023] Open
Abstract
Removal of toxic substances from the blood depends on patent connections between the kidneys, ureters and bladder that are established when the ureter is transposed from its original insertion site in the Wolffian duct, to the bladder, its final insertion site. The Ureteral Bud Theory of Mackie and Stephens suggests that repositioning of the ureter orifice occurs as the trigone forms from the common nephric duct (CND), the caudal-most Wolffian duct segment. According to this model, insertion of the CND into the bladder and its expansion into the trigone both repositions the ureter in the bladder and enables it to separate from the Wolffian duct. The availability of new mouse models has enabled to re-examine this hypothesis using morphological analysis and lineage studies to follow the fate of the ureter and CND during the maturation process. We find that in contrast to what has been previously thought, the CND does not differentiate into the trigone but instead, undergoes apoptosis, a step that enables the ureter to separate from the Wolffian duct. Apoptosis occurs as the CND and ureter merge with the urogenital sinus positioning the ureter orifice at a site close to the Wolffian duct. Finally, expansion of the bladder moves the ureter orifice which is now fused with epithelium to its final position which is at the bladder neck. Interestingly, CND apoptosis appears to depend on close proximity to the bladder, suggesting that the bladder may be a source of signals that induce cell death. Together, these studies provide new insights into the normal process of ureter maturation, and shed light on possible causes of obstruction and reflux, ureteral abnormalities that affect 1-2% of the human population.
Collapse
Affiliation(s)
- Cathy Mendelsohn
- Departments of Urology; Genetics and Development and Pathology; Columbia University; New York, New York USA
| |
Collapse
|
48
|
Serafin-Higuera N, Hernandez-Sanchez J, Ocadiz-Delgado R, Vazquez-Hernandez J, Albino-Sanchez ME, Hernandez-Pando R, Gariglio P. Retinoic acid receptor β deficiency reduces splenic dendritic cell population in a conditional mouse line. Immunol Lett 2012; 146:15-24. [DOI: 10.1016/j.imlet.2012.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 03/27/2012] [Accepted: 04/13/2012] [Indexed: 12/11/2022]
|
49
|
del Bas JM, Laos S, Caimari A, Crescenti A, Arola L. Detection of bioavailable peroxisome proliferator-activated receptor gamma modulators by a cell-based luciferase reporter system. Anal Biochem 2012; 427:187-9. [DOI: 10.1016/j.ab.2012.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 11/25/2022]
|
50
|
|