1
|
Zeng H, Safratowich BD, Liu Z, Bukowski MR. Resistant starch inhibits high-fat diet-induced oncogenic responses in the colon of C57BL/6 mice. J Nutr Biochem 2025; 139:109838. [PMID: 39788163 DOI: 10.1016/j.jnutbio.2025.109838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
The beneficial effects of dietary fiber for colon health may be due to short chain fatty acids (SCFAs), such as butyrate, produced by colonic bacterial fermentation. In contrast, obesogenic diet induced obesity is linked to increased colon cancer incidence. We hypothesize that increasing fiber intake promotes healthy microbiome and reduces bacterial dysbiosis and oncogenic signaling in the colon of mice fed an obesogenic diet. About 5-week-old male C57BL/6 mice were assigned to 5 dietary groups (n=22/group) for 24 weeks:(1) AIN93G as a control diet (AIN); (2) a high fat diet (HFD, 45% energy fat); (3) HFD+5% resistant starch enriched dietary fiber (RSF) from maize; (4) HFD+10%RSF; or (5) HFD+20%RSF. Compared to the AIN group, mice receiving the HFD exhibited more than 15% increase in body mass and body fat composition irrespective of RSF dosage. However, the HFD+RSF groups exhibited an increase (>300%) of fecal butyrate but a decrease (>45%) of secondary bile acids in a RSF dose-dependent manner over the HFD group. Similarly, there were concomitant decreases (>25%) in pro-inflammatory plasma cytokines (TNFα, IL-6 and MCP-1), β-catenin and Ki67 protein staining in the colon of the HFD+20%RSF group relative to the HFD group. Furthermore, the abundance of colonic Proteobacteria, signatures of dysbiosis, was decreased (>63%) in a RSF dose-dependent manner compared to the HFD. Collectively, these data indicate that RSF not only increases butyrate but also reduces secondary bile acids, bacterial dysbiosis and β-catenin in the colon of mice fed a HFD.
Collapse
Affiliation(s)
- Huawei Zeng
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203.
| | - Bryan D Safratowich
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203
| | - Zhenhua Liu
- School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003
| | - Michael R Bukowski
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203
| |
Collapse
|
2
|
Zhang X, Liu R, Chen Y, Wang H, Su W, Song Y, Tan M. Dual-Targeted Nanoparticles Hitchhiking on Lactobacillus rhamnosus Bacterial Ghosts to Alleviate Nonalcoholic Steatohepatitis. ACS NANO 2025; 19:14010-14027. [PMID: 40179362 DOI: 10.1021/acsnano.4c18280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Oral nutritional interventions for nonalcoholic steatohepatitis (NASH) have garnered significant interest due to their potential benefits. Astaxanthin (AXT) has the potential to enhance liver function and act as an effective antioxidant for NASH intervention, but its application is limited by its stability and bioavailability. This study aims to develop dual-targeted AXT nanoparticles (AXT@TWG) for precise liver-targeted delivery by ″hitchhiking″ on Lactobacillus rhamnosus bacterial ghosts (LBGs) to effectively intervene in NASH. In vitro experiments demonstrated that AXT@TWG nanoparticles significantly reduced LPS-induced reactive oxygen species production and apoptosis while effectively alleviating lipid accumulation. In vivo experiments demonstrated that LBGs significantly enhanced the intestinal accumulation efficiency of AXT@TWG. Pharmacokinetic evaluations revealed that the efficiency of AXT@TWG@LBGs entering the bloodstream was approximately 2.7 times higher than that of AXT@TWG nanoparticles and their accumulation in the liver was about 1.3 times greater. AXT@TWG@LBGs effectively alleviated NASH by reducing triglycerides, free fatty acids, and malondialdehyde levels by 23.07, 65.32, and 21.42%, respectively, compared to the model group, thereby mitigating lipid accumulation and enhancing antioxidant capacity. Additionally, AXT@TWG@LBGs effectively reduced insulin resistance, lowered inflammatory cytokine levels, and corrected disturbances in lipid metabolism. Therefore, this study provides a potentially effective strategy for the treatment of NASH.
Collapse
Affiliation(s)
- Xiumin Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning 116034, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Ronggang Liu
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning 116034, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Yannan Chen
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Huihui Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning 116034, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Yukun Song
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning 116034, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning 116034, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| |
Collapse
|
3
|
Ruiz‐Malagón AJ, Rodríguez‐Sojo MJ, Redondo E, Rodríguez‐Cabezas ME, Gálvez J, Rodríguez‐Nogales A. Systematic review: The gut microbiota as a link between colorectal cancer and obesity. Obes Rev 2025; 26:e13872. [PMID: 39614602 PMCID: PMC11884970 DOI: 10.1111/obr.13872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 10/11/2024] [Accepted: 10/25/2024] [Indexed: 12/01/2024]
Abstract
Microbiome modulation is one of the novel strategies in medicine with the greatest future to improve the health of individuals and reduce the risk of different conditions, including metabolic, immune, inflammatory, and degenerative diseases, as well as cancer. Regarding the latter, many studies have reported the role of the gut microbiome in carcinogenesis, formation and progression of colorectal cancer (CRC), as well as its response to different systemic therapies. Likewise, obesity, one of the most important risk factors for CRC, is also well known for its association with gut dysbiosis. Moreover, obesity and CRC display, apart from microbial dysbiosis, chronic inflammation, which participates in their pathogenesis. Although human and murine studies demonstrate the significant impact of the microbiome in regulating energy metabolism and CRC development, little is understood about the contribution of the microbiome to the development of obesity-associated CRC. Therefore, this systematic review explores the evidence for microbiome changes associated with these conditions and hypothesizes that this may contribute to the pathogenesis of obesity-related CRC. Two databases were searched, and different studies on the relationship among obesity, intestinal microbiota and CRC in clinical and preclinical models were selected. Data extraction was carried out by two reviewers independently, and 101 studies were finally considered. Findings indicate the existence of a risk association between obesity and CRC derived from metabolic, immune, and microbial disorders.
Collapse
Affiliation(s)
- Antonio Jesús Ruiz‐Malagón
- Department of Pharmacology, Center for Biomedical Research (CIBM)University of GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
- Instituto de Investigación Biomédica de Málaga (IBIMA)MalgaSpain
| | - María Jesús Rodríguez‐Sojo
- Department of Pharmacology, Center for Biomedical Research (CIBM)University of GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
| | - Eduardo Redondo
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
- Servicio de DigestivoHospital Universitario Virgen de las NievesGranadaSpain
| | - María Elena Rodríguez‐Cabezas
- Department of Pharmacology, Center for Biomedical Research (CIBM)University of GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
| | - Julio Gálvez
- Department of Pharmacology, Center for Biomedical Research (CIBM)University of GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
| | - Alba Rodríguez‐Nogales
- Department of Pharmacology, Center for Biomedical Research (CIBM)University of GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
| |
Collapse
|
4
|
Mohammadi F, Rudkowska I. Dietary Lipids, Gut Microbiota, and Their Metabolites: Insights from Recent Studies. Nutrients 2025; 17:639. [PMID: 40004966 PMCID: PMC11858126 DOI: 10.3390/nu17040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 01/30/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Dietary lipid intake can influence the gut microbiota (GM) and their metabolites, such as short-chain fatty acids (SCFA) and bile acids, which are key mediators of health. The objective is to examine how dietary lipids' quantity and quality influence the GM and metabolite profiles. A literature review of 33 studies in animals and humans was performed on the effects of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs), trans-fatty acids (TFAs), and sterols on GM composition and gut-derived metabolites. The results show that diets rich in MUFAs, n-3 PUFAs, and short-chain FAs have the potential to enhance beneficial bacteria and metabolites. In addition, trans-palmitoleic acid, conjugated linoleic acid, and phytosterols may also have potentially beneficial effects on GM, but more research is needed. Medium-chain FAs and n-6 PUFAs have variable effects on the GM. Conversely, intakes of high-fat diets, long-chain SFAs, industrial TFAs, and cholesterol disrupt GM balance. In conclusion, animal studies clearly demonstrate that dietary fats influence the GM and related metabolites. Yet, human studies are limited. Therefore, well-designed human studies that consider the whole diet and baseline health status are needed to better understand the effects of dietary lipids on GM.
Collapse
Affiliation(s)
- Farzad Mohammadi
- Endocrinology and Nephrology Unit, CHU de Québec—Université Laval Research Center, 2705 Laurier Blvd, Québec, QC G1V 4G2, Canada;
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Iwona Rudkowska
- Endocrinology and Nephrology Unit, CHU de Québec—Université Laval Research Center, 2705 Laurier Blvd, Québec, QC G1V 4G2, Canada;
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
5
|
Su Y, Cai X, Fan X, Ning J, Shen M. Effect of Trace Element Selenium on the Intestinal Microbial Community in Nude Mice with Colorectal Cancer. Microorganisms 2024; 12:1336. [PMID: 39065104 PMCID: PMC11279152 DOI: 10.3390/microorganisms12071336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/31/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. The role of intestinal microbiota in carcinogenesis has also become an important research topic, and CRC is closely related to the intestinal microbiota. Selenium-containing compounds have attracted more attention as anticancer drugs as they can have minimal side effects. The purpose of this study was to determine and compare the effect of sodium selenite and selenomethionine on the microbial communities of nude mice with CRC. A CRC ectopic tumorigenesis model was established by subcutaneously injecting HCT116 cells into nude mice. The mice were then intraperitoneally injected with sodium selenite and selenomethionine for 24 days to regulate their intestinal microbiota. Compared with sodium selenite, selenomethionine resulted in a greater reduction in the richness and diversity of intestinal microbiota in nude mice with CRC, and the richness and diversity were closer to healthy levels. Selenomethionine also regulated a wider variety of flora. Additionally, sodium selenite and selenomethionine produced different microorganisms, changed function and metabolic pathways in the intestinal microbiota. Both sodium selenite and selenomethionine have certain effects on restoring the intestinal microbial diversity in nude mice with CRC, and the effect of selenomethionine is better than that of sodium selenite.
Collapse
Affiliation(s)
| | | | | | | | - Mei Shen
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Y.S.); (X.C.); (X.F.); (J.N.)
| |
Collapse
|
6
|
Zhou S, Quan C, Zhang Z, Gong S, Nawaz S, Zhang Y, Kulyar MFEA, Mo Q, Li J. Leucine improves thiram-induced tibial dyschondroplasia and gut microbiota dysbiosis in broilers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116260. [PMID: 38564867 DOI: 10.1016/j.ecoenv.2024.116260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Thiram, a commonly used agricultural insecticide and fungicide, has been found to cause tibial dyschondroplasia (TD) in broilers, leading to substantial economic losses in the poultry industry. In this study, we aimed to investigate the mechanism of action of leucine in mitigating thiram-induced TD and leucine effects on gut microbial diversity. Broiler chickens were randomly divided into five equal groups: control group (standard diet), thiram-induced group (thiram 80 mg/kg from day 3 to day 7), and different concentrations of leucine groups (0.3%, 0.6%, 0.9% leucine from day 8 to day 18). Performance indicator analysis and tibial parameter analysis showed that leucine positively affected thiram-induced TD broilers. Additionally, mRNA expressions and protein levels of HIF-1α/VEGFA and Ihh/PTHrP genes were determined via quantitative real-time polymerase chain reaction and western blot. The results showed that leucine recovered lameness disorder by downregulating the expression of HIF-1α, VEGFA, and PTHrP while upregulating the expression of Ihh. Moreover, the 16 S rRNA sequencing revealed that the leucine group demonstrated a decrease in the abundance of harmful bacteria compared to the TD group, with an enrichment of beneficial bacteria responsible for producing short-chain fatty acids, including Alistipes, Paludicola, CHKCI002, Lactobacillus, and Erysipelatoclostridium. In summary, the current study suggests that leucine could improve the symptoms of thiram-induced TD and maintain gut microbiota homeostasis.
Collapse
Affiliation(s)
- Shimeng Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Chuxian Quan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhao Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Saisai Gong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yan Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | | | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
7
|
Li H, Li H, Stanton C, Ross RP, Zhao J, Chen W, Yang B. Alleviative effects of exopolysaccharides from Limosilactobacillus mucosae CCFM1273 against ulcerative colitis via modulation of gut microbiota and inhibition of Fas/Fasl and TLR4/NF-κB pathways. Int J Biol Macromol 2024; 260:129346. [PMID: 38242402 DOI: 10.1016/j.ijbiomac.2024.129346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/28/2023] [Accepted: 01/07/2024] [Indexed: 01/21/2024]
Abstract
Ulcerative colitis (UC) has become a public health challenge as its global prevalence increases annually. The use of prebiotics in healthcare has grown in recent years. Thus, the present study was designed to explore the alleviating effects and mechanisms of exopolysaccharides (EPS) produced by Limosilactobacillus mucosae CCFM1273 on UC. The results indicated that CCFM1273 EPS mitigated the disease symptoms and colonic pathologic damage in DSS-induced colitis mice. Moreover, CCFM1273 EPS improved the intestinal barrier by restoring goblet cell numbers and MUC2 production, enhancing intercellular junctions, and inhibiting epithelial cell apoptosis. In addition, CCFM1273 EPS inhibited colonic inflammation and oxidative stress. Importantly, CCFM1273 EPS augmented short-chain fatty acid (SCFA) producers, leading to increased levels of SCFAs (especially propionic acid), which inhibited the Fas/Fasl pathway and consequently inhibited epithelial apoptosis, and diminished Gram-negative bacteria, further decreasing lipopolysaccharides (LPS), which suppressed the TLR4/NF-κB pathway and consequently suppressed colonic inflammation, eventually relieving UC in mice. This study provides theoretical support for the use of prebiotics in clinical practice for UC.
Collapse
Affiliation(s)
- Huizhen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Haitao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| | - Catherine Stanton
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China; APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - R Paul Ross
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
8
|
Chang YM, Kang YR, Lee YG, Sung MK. Sex differences in colonic gene expression and fecal microbiota composition in a mouse model of obesity-associated colorectal cancer. Sci Rep 2024; 14:3576. [PMID: 38347027 PMCID: PMC10861586 DOI: 10.1038/s41598-024-53861-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/06/2024] [Indexed: 02/15/2024] Open
Abstract
This study investigated the sex-specific correlation between obesity and colorectal cancer emphasizing a more pronounced association in males. Estrogen, chromosomal genes, and gut bacteria were assessed in C57BL6/J male, female and ovariectomized (OVX) female mice, subjected to either a low-fat diet (LFD) or high-fat diet (HFD) for 14 weeks. Induction of colon tumor involved azoxymethane (10 mg/kg) administration, followed by three cycles of dextran sulfate sodium. Male mice on HFD exhibited higher final body weight and increased colon tumors compared to females. Colonic mucin 2 expression was significantly higher in females. HFD-modulated differentially expressed genes numbered 290 for males, 64 for females, and 137 for OVX females. Only one up-regulated gene (Gfra3) overlapped between females and OVX females, while two down-regulated genes (Thrsp and Gbp11) overlapped between males and OVX females. Genes up-regulated by HFD in males were linked to cytokine-cytokine interaction, HIF-1 signaling pathway, central carbon metabolism in cancer. Sex-specific changes in gut microbial composition in response to HFD were observed. These findings suggest a male-specific vulnerability to HFD-induced colon tumor formation, implicating key genes and colonic bacteria in colon tumorigenesis.
Collapse
Affiliation(s)
- Yoo-Mee Chang
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Yoo-Ree Kang
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Yu-Gyeong Lee
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Mi-Kyung Sung
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea.
| |
Collapse
|
9
|
Tang Q, Huang H, Xu H, Xia H, Zhang C, Ye D, Bi F. Endogenous Coriobacteriaceae enriched by a high-fat diet promotes colorectal tumorigenesis through the CPT1A-ERK axis. NPJ Biofilms Microbiomes 2024; 10:5. [PMID: 38245554 PMCID: PMC10799938 DOI: 10.1038/s41522-023-00472-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/30/2023] [Indexed: 01/22/2024] Open
Abstract
A high-fat diet (HFD) may be linked to an increased colorectal cancer (CRC) risk. Stem cell proliferation and adipokine release under inflammatory and obese conditions are the main factors regulating CRC progression. Furthermore, alterations in intestinal flora have been linked to tumorigenesis and tumour progression. However, whether a HFD can promote CRC occurrence by altering intestinal flora remains unclear. The objective of this study was to identify bacterial strains enriched by a HFD and investigate the association and mechanism by which a HFD and bacterial enrichment promote CRC occurrence and development. In this study, the intestinal microbiota of mice was assessed using 16S rRNA and metagenomic sequencing. Serum metabolites of HFD-fed mice were assessed using tandem liquid chromatography-mass spectrometry. CRC cell lines and organoids were co-cultured with Coriobacteriaceae to evaluate the effect of these bacteria on the CPT1A-ERK signalling pathway. We found that Coriobacteriaceae were enriched in the colons of HFD-fed mice. An endogenous Coriobacteriaceae strain, designated as Cori.ST1911, was successfully isolated and cultured from the stools of HFD-fed mice, and the tumorigenic potential of Cori.ST1911 in CRC was validated in several CRC mouse models. Furthermore, Cori.ST1911 increased acylcarnitine levels by activating CPT1A, demonstrating the involvement of the CPT1A-ERK axis. We also found that the endogenous Lactobacillus strain La.mu730 can interfere with Cori.ST1911 colonisation and restore gut barrier function. In conclusion, we identified a novel endogenous intestinal Coriobacteriaceae, Cori.ST1911, which might lead to a new gut microbiota intervention strategy for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Qiulin Tang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Huixi Huang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Huanji Xu
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Hongwei Xia
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Chenliang Zhang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Di Ye
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Feng Bi
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
10
|
Zeb F, Mehreen A, Naqeeb H, Ullah M, Waleed A, Awan UA, Haider A, Naeem M. Nutrition and Dietary Intervention in Cancer: Gaps, Challenges, and Future Perspectives. Cancer Treat Res 2024; 191:281-307. [PMID: 39133412 DOI: 10.1007/978-3-031-55622-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The term "cancer" refers to the state in which cells in the body develop mutations and lose control over their replication. Malignant cancerous cells invade in various other tissue sites of the body. Chemotherapy, radiation, and surgery are the first-line modalities for the majority of solid cancers. These treatments work by mitigating the DNA damage of cancerous cells, but they can also cause harm to healthy cells. These side effects might be immediate or delayed, and they can cause a high rate of morbidity and mortality. Dietary interventions have a profound impact on whole-body metabolism, including immunometabolism and oncometabolism which have been shown to reduce cancer growth, progression, and metastasis in many different solid tumor models with promising outcomes in early phase clinical studies. Dietary interventions can improve oncologic or quality-of-life outcomes for patients that are undergoing chemotherapy or radiotherapy. In this chapter, we will focus on the impact of nutritional deficiencies, several dietary interventions and their proposed mechanisms which are used as a novel therapy in controlling and managing cancers.
Collapse
Affiliation(s)
- Falak Zeb
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Aqsa Mehreen
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Huma Naqeeb
- Department of Clinical Nutrition, Shaukat Khanum Memorial Cancer Hospital, and Research Center, Peshawar, Pakistan
| | - Muneeb Ullah
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Afraa Waleed
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Uzma Azeem Awan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Adnan Haider
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan.
| |
Collapse
|
11
|
Tao R, Guo W, Li T, Wang Y, Wang P. Intestinal microbiota dysbiosis and liver metabolomic changes during brain death. JOURNAL OF INTENSIVE MEDICINE 2023; 3:345-351. [PMID: 38028643 PMCID: PMC10658038 DOI: 10.1016/j.jointm.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/17/2023] [Accepted: 02/25/2023] [Indexed: 12/01/2023]
Abstract
Background Whether a causative link exists between brain death (BD) and intestinal microbiota dysbiosis is unclear, and the distortion in liver metabolism associated with BD requires further exploration. Methods A rat model of BD was constructed and sustained for 9 h (BD group, n=6). The sham group (n=6) underwent the same procedures, but the catheter was inserted into the epidural space without ballooning. Intestinal contents and portal vein plasma were collected for microbiota sequencing and microbial metabolite detection. Liver tissue was resected to investigate metabolic alterations, and the results were compared with those of a sham group. Results α-diversity indexes showed that BD did not alter bacterial diversity. Microbiota dysbiosis occurred after 9 h of BD. At the family level, Peptostreptococcaceae and Bacteroidaceae were both decreased in the BD group. At the genus level, Romboutsia, Bacteroides, Erysipelotrichaceae_UCG_004, Faecalibacterium, and Barnesiella were enriched in the sham group, whereas Ruminococcaceae_UCG_007, Lachnospiraceae_ND3007_group, and Papillibacter were enriched in the BD group. Short-chain fatty acids, bile acids, and 132 other microbial metabolites remained unchanged in both the intestinal contents and portal vein plasma of the BD group. BD caused alterations in 65 metabolites in the liver, of which, carbohydrates, amino acids, and organic acids accounted for 64.6%. Additionally, 80.0% of the differential metabolites were decreased in the BD group livers. Galactose metabolism was the most significant metabolic pathway in the BD group. Conclusions BD resulted in microbiota dysbiosis in rats; however, this dysbiosis did not alter microbial metabolites. Deterioration in liver metabolic function during extended periods of BD may reflect a continuous worsening in energy deficiency.
Collapse
Affiliation(s)
- Ruolin Tao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Henan Key Laboratory for Digestive Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Henan Key Laboratory for Digestive Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Tao Li
- Department of Biliary Surgery, Nanyang Central Hospital, Nanyang 473009, Henan, China
| | - Yong Wang
- Henan Key Laboratory for Digestive Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Panliang Wang
- Henan Key Laboratory for Digestive Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
12
|
Lan LY, Hong QX, Gao SM, Li Q, You YY, Chen W, Fan PF. Gut microbiota of skywalker hoolock gibbons (Hoolock tianxing) from different habitats and in captivity: Implications for gibbon health. Am J Primatol 2023; 85:e23468. [PMID: 36691713 DOI: 10.1002/ajp.23468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/25/2023]
Abstract
The gut microbiota plays an integral role in the metabolism and immunity of animal hosts, and provides insights into the health and habitat assessment of threatened animals. The skywalker hoolock gibbon (Hoolock tianxing) is a newly described gibbon species, and is considered an endangered species. Here, we used 16S rRNA amplicon sequencing to describe the fecal bacterial community of skywalker hoolock gibbons from different habitats and in captivity. Fecal samples (n = 5) from two captive gibbons were compared with wild populations (N = 6 gibbons, n = 33 samples). At the phylum level, Spirochetes, Proteobacteria, Firmicutes, Bacteroidetes dominated in captive gibbons, while Firmicutes, Bacteroidetes, and Tenericutes dominated in wild gibbons. At the genus level, captive gibbons were dominated by Treponema-2, followed by Succinivibrio and Cerasicoccus, while wild gibbons were dominated by Anaeroplasma, Prevotellaceae UCG-001, and Erysipelotrichaceae UCG-004. Captive rearing was significantly associated with lower taxonomic alpha-diversity, and different relative abundance of some dominant bacteria compared to wild gibbons. Predicted Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that captive gibbons have significantly lower total pathway diversity and higher relative abundance of bacterial functions involved in "drug resistance: antimicrobial" and "carbohydrate metabolism" than wild gibbons. This study reveals the potential influence of captivity and habitat on the gut bacterial community of gibbons and provides a basis for guiding the conservation management of captive populations.
Collapse
Affiliation(s)
- Li-Ying Lan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi-Xuan Hong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shao-Ming Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu-Yan You
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Wu Chen
- Guangzhou Zoo, Guangzhou, China
| | - Peng-Fei Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Redondo-Castillejo R, Garcimartín A, Hernández-Martín M, López-Oliva ME, Bocanegra A, Macho-González A, Bastida S, Benedí J, Sánchez-Muniz FJ. Proanthocyanidins: Impact on Gut Microbiota and Intestinal Action Mechanisms in the Prevention and Treatment of Metabolic Syndrome. Int J Mol Sci 2023; 24:ijms24065369. [PMID: 36982444 PMCID: PMC10049473 DOI: 10.3390/ijms24065369] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The metabolic syndrome (MS) is a cluster of risk factors, such as central obesity, hyperglycemia, dyslipidemia, and arterial hypertension, which increase the probability of causing premature mortality. The consumption of high-fat diets (HFD) is a major driver of the rising incidence of MS. In fact, the altered interplay between HFD, microbiome, and the intestinal barrier is being considered as a possible origin of MS. Consumption of proanthocyanidins (PAs) has a beneficial effect against the metabolic disturbances in MS. However, there are no conclusive results in the literature about the efficacy of PAs in improving MS. This review allows a comprehensive validation of the diverse effects of the PAs on the intestinal dysfunction in HFD-induced MS, differentiating between preventive and therapeutic actions. Special emphasis is placed on the impact of PAs on the gut microbiota, providing a system to facilitate comparison between the studies. PAs can modulate the microbiome toward a healthy profile and strength barrier integrity. Nevertheless, to date, published clinical trials to verify preclinical findings are scarce. Finally, the preventive consumption of PAs in MS-associated dysbiosis and intestinal dysfunction induced by HFD seems more successful than the treatment strategy.
Collapse
Affiliation(s)
- Rocío Redondo-Castillejo
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Alba Garcimartín
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Marina Hernández-Martín
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - María Elvira López-Oliva
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Aránzazu Bocanegra
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (A.B.); (F.J.S.-M.); Tel.: +34-394-1700 (A.B.); +34-913-941-828 (F.J.S.-M.)
| | - Adrián Macho-González
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sara Bastida
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Juana Benedí
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco J. Sánchez-Muniz
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (A.B.); (F.J.S.-M.); Tel.: +34-394-1700 (A.B.); +34-913-941-828 (F.J.S.-M.)
| |
Collapse
|
14
|
Zhou R, He D, Zhang H, Xie J, Zhang S, Tian X, Zeng H, Qin Y, Huang L. Ginsenoside Rb1 protects against diabetes-associated metabolic disorders in Kkay mice by reshaping gut microbiota and fecal metabolic profiles. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115997. [PMID: 36509256 DOI: 10.1016/j.jep.2022.115997] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/14/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax quinquefolius Linn. is one of the most valuable herbal medicine in the world for its broad health benefits, including anti-diabetes. Ginsenoside Rb1, the principal active constituent of Panax quinquefolius Linn., could attenuate insulin resistance and metabolic disorders. The dysfunction of gut microbiota and fecal metabolites plays an important role in the pathogenesis of Type 2 Diabetes mellitus (T2DM). However, whether ginsenoside Rb1's hypoglycemic effect is related to gut microbiota remains elusive. AIM OF THE STUDY Our study aimed to explore the insulin-sensitizing and anti-diabetic effects of ginsenoside Rb1 as well as the underlying mechanisms. MATERIALS AND METHODS The T2DM model were established by high fat diet (HFD)-induced Kkay mice. The anti-diabetic effect of ginsenoside Rb1 (200 mg/kg/day) was evaluated by random blood glucose (RBG), fasting blood glucose (FBG), glucose tolerance test (OGTT), serum insulin level, insulin resistance index (HOMA-IR), pancreatic histology analysis, liver indexes, total triglyceride (TG) and total cholesterol (TC). Subsequently, 16S rRNA sequencing and LC-MS-based untargeted metabolomics were applied to characterize the microbiome and metabolites profile in HFD-induced Kkay mice, respectively. Finally, antibiotic treatment was used to validate the potential mechanism of ginsenoside Rb1 by modulating gut microbiota. RESULTS Our results showed that ginsenoside Rb1 reduced blood glucose, OGTT, serum insulin level, HOMA-IR, liver indexes as well as pancreatic injury. In addition, the ginsenoside Rb1 reversed the gut microbiota dysbiosis in diabetic Kkay mice, as indicated by the elevated abundance of Parasutterella, decreased population of Alistipes, f_Prevotellaceae_unclassified, Odoribacter, Anaeroplasma. Moreover, ginsenoside Rb1 altered free fatty acid (FFA) levels in fecal metabolites, such as decreased the level of α-linolenic acid, 13-OxoODE, oleic acid, 13-HODE, arachidonic acid, palmitic acid, stearic acid, while increased the level of PC (14:0/22:1(13Z)) and PC (16:0/16:0). Notably, ginsenoside Rb1 failed to improve HFD-induced diabetes in Kkay mice with antibiotics intervention. CONCLUSION These findings suggested that ginsenoside Rb1 may serve as a potential prebiotic agent to modulate specific gut microbes and related metabolites, which play essential roles in diabetes-associated metabolic disorders and insulin resistance.
Collapse
Affiliation(s)
- Rongrong Zhou
- The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
| | - Dan He
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China; Hunan University of Chinese Medicine, Changsha, PR China
| | - Haichao Zhang
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China; Hunan University of Chinese Medicine, Changsha, PR China
| | - Jing Xie
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China; Hunan University of Chinese Medicine, Changsha, PR China
| | - Shuihan Zhang
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China
| | - Xuefei Tian
- Hunan University of Chinese Medicine, Changsha, PR China
| | - Hongliang Zeng
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China.
| | - Yuhui Qin
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China; Hunan University of Chinese Medicine, Changsha, PR China.
| | - Luqi Huang
- China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
15
|
Keane JM, Walsh CJ, Cronin P, Baker K, Melgar S, Cotter PD, Joyce SA, Gahan CGM, Houston A, Hyland NP. Investigation of the gut microbiome, bile acid composition and host immunoinflammatory response in a model of azoxymethane-induced colon cancer at discrete timepoints. Br J Cancer 2023; 128:528-536. [PMID: 36418894 PMCID: PMC9938136 DOI: 10.1038/s41416-022-02062-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Distinct sets of microbes contribute to colorectal cancer (CRC) initiation and progression. Some occur due to the evolving intestinal environment but may not contribute to disease. In contrast, others may play an important role at particular times during the tumorigenic process. Here, we describe changes in the microbiota and host over the course of azoxymethane (AOM)-induced tumorigenesis. METHODS Mice were administered AOM or PBS and were euthanised 8, 12, 24 and 48 weeks later. Samples were analysed using 16S rRNA gene sequencing, UPLC-MS and qRT-PCR. RESULTS The microbiota and bile acid profile showed distinct changes at each timepoint. The inflammatory response became apparent at weeks 12 and 24. Moreover, significant correlations between individual taxa, cytokines and bile acids were detected. One co-abundance group (CAG) differed significantly between PBS- and AOM-treated mice at week 24. Correlation analysis also revealed significant associations between CAGs, bile acids and the bile acid transporter, ASBT. Aberrant crypt foci and adenomas were first detectable at weeks 24 and 48, respectively. CONCLUSION The observed changes precede host hyperplastic transformation and may represent early therapeutic targets for the prevention or management of CRC at specific timepoints in the tumorigenic process.
Collapse
Affiliation(s)
- J M Keane
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - C J Walsh
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - P Cronin
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - K Baker
- Department of Medicine, University College Cork, Cork, Ireland
- Department of Pathology, University College Cork, Cork, Ireland
| | - S Melgar
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - P D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - S A Joyce
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - C G M Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| | - A Houston
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Medicine, University College Cork, Cork, Ireland.
| | - N P Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
16
|
Zeng H, Safratowich BD, Cheng WH, Bukowski MR. Identification of oncogenic signatures in the inflammatory colon of C57BL/6 mice fed a high-fat diet. J Nutr Biochem 2023; 111:109188. [PMID: 36272693 DOI: 10.1016/j.jnutbio.2022.109188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/21/2022] [Accepted: 09/15/2022] [Indexed: 11/07/2022]
Abstract
Adoption of an obesogenic diet such as a high-fat diet (HFD) results in obesity, bacterial dysbiosis, chronic inflammation, and cancer. Gut bacteria and their metabolites are recognized by interleukin-1 (IL-1R)/toll-like receptors (TLRs) which are essential to maintain intestinal homeostasis. Moreover, host extracellular microRNAs (miRNAs) can alter bacterial growth in the colon. Characterization of the underlying mechanisms may lead to identifying fecal oncogenic signatures reflecting colonic health. We hypothesize that an HFD accelerates the inflammatory process and modulates IL-1R/TLR pathways, gut microbiome, and disease-related miRNA in the colon. In this study, 4-week-old C57BL/6 mice were fed a modified AIN93G diet (AIN, 16% energy fat) or an HFD (45% energy fat) for 15 weeks. In addition to increased body weight and body fat composition, the concentrations of plasma interleukin 6 (IL-6), inflammatory cell infiltration, β-catenin, and cell proliferation marker (Ki67) in the colon were elevated > 68% in the HFD group compared to the AIN group. Using a PCR array analysis, we identified 14 out of 84 genes with a ≥ 24% decrease in mRNA content related to IL-1R and TLR pathways in colonic epithelial cells in mice fed an HFD compared to the AIN. Furthermore, the content of Alistipes bacteria, the Firmicutes/Bacteroidetes ratio, microRNA-29a, and deoxycholic and lithocholic acids (secondary bile acids with oncogenic potential) were 55% greater in the feces of the HFD group compared to the AIN group. Collectively, this composite, a multimodal profile may represent a unique HFD-induced fecal signature for colonic inflammation and cancer in C57BL/6 mice.
Collapse
Affiliation(s)
- Huawei Zeng
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, USA.
| | - Bryan D Safratowich
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, USA
| | - Wen-Hsing Cheng
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, USA
| | - Michael R Bukowski
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, USA
| |
Collapse
|
17
|
Zeng H, Safratowich BD, Cheng WH, Magnuson AD, Picklo MJ. Changes in the Fecal Metabolome Accompany an Increase in Aberrant Crypt Foci in the Colon of C57BL/6 Mice Fed with a High-Fat Diet. Biomedicines 2022; 10:biomedicines10112891. [PMID: 36428460 PMCID: PMC9687353 DOI: 10.3390/biomedicines10112891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 11/16/2022] Open
Abstract
High-fat diet (HFD)-induced obesity is a risk factor for colon cancer. Our previous data show that compared to an AIN-93 diet (AIN), a HFD promotes azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) formation and microbial dysbiosis in C57BL/6 mice. To explore the underlying metabolic basis, we hypothesize that AOM treatment triggers a different fecal metabolomic profile in C57BL/6 mice fed the HFD or the AIN. We found that 65 of 196 identified metabolites were significantly different among the four groups of mice (AIN, AIN + AOM, HFD, and HFD + AOM). A sparse partial least squares discriminant analysis (sPLSDA) showed that concentrations of nine fecal lipid metabolites were increased in the HFD + AOM compared to the HFD, which played a key role in overall metabolome group separation. These nine fecal lipid metabolite concentrations were positively associated with the number of colonic ACF, the cell proliferation of Ki67 proteins, and the abundance of dysbiotic bacteria. These data suggest that the process of AOM-induced ACF formation may increase selective fecal lipid concentrations in mice fed with a HFD but not an AIN. Collectively, the accumulation of these critical fecal lipid species may alter the overall metabolome during tumorigenesis in the colon.
Collapse
Affiliation(s)
- Huawei Zeng
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA
- Correspondence: ; Tel.: +1-701-795-8465
| | - Bryan D. Safratowich
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA
| | - Wen-Hsing Cheng
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Starkville, MS 39762, USA
| | - Andrew D. Magnuson
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA
| | - Matthew J. Picklo
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA
| |
Collapse
|
18
|
Ilyés T, Silaghi CN, Crăciun AM. Diet-Related Changes of Short-Chain Fatty Acids in Blood and Feces in Obesity and Metabolic Syndrome. BIOLOGY 2022; 11:1556. [PMID: 36358258 PMCID: PMC9687917 DOI: 10.3390/biology11111556] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 09/13/2023]
Abstract
Obesity-related illnesses are one of the leading causes of death worldwide. Metabolic syndrome has been associated with numerous health issues. Short-chain fatty acids (SCFAs) have been shown to have multiple effects throughout the body, both directly as well as through specific G protein-coupled receptors. The main SCFAs produced by the gut microbiota are acetate, propionate, and butyrate, which are absorbed in varying degrees from the large intestine, with some acting mainly locally and others systemically. Diet has the potential to influence the gut microbial composition, as well as the type and amount of SCFAs produced. High fiber-containing foods and supplements increase the production of SCFAs and SCFA-producing bacteria in the gut and have been shown to have bodyweight-lowering effects. Dietary supplements, which increase SCFA production, could open the way for novel approaches to weight loss interventions. The aim of this review is to analyze the variations of fecal and blood SCFAs in obesity and metabolic syndrome through a systematic search and analysis of existing literature.
Collapse
Affiliation(s)
| | - Ciprian N. Silaghi
- Department of Molecular Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400012 Cluj-Napoca, Romania
| | | |
Collapse
|
19
|
Chatelaine HA, Ramazani CA, Spencer K, Olivo‐Marston S, Bailey MT, McElroy J, Hatzakis E, Mathé EA, Kopec RE. Dietary Energy Intake and Presence of Aberrant Crypt Foci Are Associated with Phospholipid, Purine, and Taurine Metabolite Abundances in C57BL/6N Mouse Colon. Mol Nutr Food Res 2022; 66:e2200180. [PMID: 35969485 PMCID: PMC9787839 DOI: 10.1002/mnfr.202200180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/12/2022] [Indexed: 12/31/2022]
Abstract
SCOPE Colon metabolomes associated with high-fat (H) versus energy-restricted (E) diets in early colorectal cancer (CRC) models have never been directly compared. The objectives of this study are to elucidate metabolites associated with diet, aberrant crypt foci (ACF), and diet:ACF interaction, using a lifetime murine model. METHODS AND RESULTS Three-week-old mice consumed control (C), E, or H initiation diets for 18 weeks. ACF formation is initiated weeks 16-21 with azoxymethane injections, followed by progression diet crossover (to C, E, or H) through week 60. Colon extracts are analyzed using ultra-high-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS). Metabolites associated with diet, ACF, or diet:ACF are determined using regression models (FDR-adjusted p-value <0.05). No metabolites are significantly associated with initiation diets, but concentrations of acylcarnitines and phospholipids are associated with C, E, and H progression diets. Purines, taurine, and phospholipids are associated with ACF presence. No significant associations between metabolites and diet:ACF interaction are observed. CONCLUSIONS These results suggest that recent, rather than early-life, diet is more closely associated with the colon metabolome, particularly lipid metabolism. Results from this study also provide candidate biomarkers of early CRC development and provide support for the importance of early diet on influencing pre-CRC risk.
Collapse
Affiliation(s)
- Haley A. Chatelaine
- OSU Interdisciplinary Nutrition PhD Program (OSUN)Department of Human SciencesThe Ohio State University1787 Neil AveColumbusOH43210United States
- Division of Preclinical Innovation Informatics CoreNational Center for Advancing Translational Sciences9800 Medical Center DriveRockvilleMD20850USA
| | - Cynthia A. Ramazani
- Department of Biomedical InformaticsThe Ohio State UniversityColumbusOH43210USA
- Big Data for Indiana State UniversityIndiana State UniversityTerre HauteIN47807USA
| | - Kyle Spencer
- Division of Preclinical Innovation Informatics CoreNational Center for Advancing Translational Sciences9800 Medical Center DriveRockvilleMD20850USA
- Department of Biomedical InformaticsThe Ohio State UniversityColumbusOH43210USA
- Nationwide Children's HospitalColumbusOH43205USA
| | - Susan Olivo‐Marston
- Division of EpidemiologyCollege of Public HealthThe Ohio State UniversityColumbusOH43210USA
- Southern Illinois University School of MedicineSpringfieldIL62794USA
| | - Michael T. Bailey
- Nationwide Children's HospitalColumbusOH43205USA
- Department of PediatricsThe Ohio State University College of MedicineColumbusOH43210USA
- Center for Microbial PathogenesisNationwide Children's HospitalColumbusOH43205USA
- Oral and GI Research Affinity GroupNationwide Children's HospitalColumbusOH43205USA
| | - Joseph McElroy
- Department of Biomedical InformaticsThe Ohio State UniversityColumbusOH43210USA
| | - Emmanuel Hatzakis
- Department of Food Science and TechnologyThe Ohio State UniversityColumbusOH43210USA
- Foods for Health Discovery ThemeThe Ohio State UniversityColumbusOH43210USA
| | - Ewy A. Mathé
- Division of Preclinical Innovation Informatics CoreNational Center for Advancing Translational Sciences9800 Medical Center DriveRockvilleMD20850USA
- Department of Biomedical InformaticsThe Ohio State UniversityColumbusOH43210USA
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOH43210USA
- Translational Data Analytics InstituteThe Ohio State UniversityColumbusOH43210USA
| | - Rachel E. Kopec
- OSU Interdisciplinary Nutrition PhD Program (OSUN)Department of Human SciencesThe Ohio State University1787 Neil AveColumbusOH43210United States
- Foods for Health Discovery ThemeThe Ohio State UniversityColumbusOH43210USA
| |
Collapse
|
20
|
Mao B, Guo W, Tang X, Zhang Q, Yang B, Zhao J, Cui S, Zhang H. Inosine Pretreatment Attenuates LPS-Induced Lung Injury through Regulating the TLR4/MyD88/NF-κB Signaling Pathway In Vivo. Nutrients 2022; 14:2830. [PMID: 35889786 PMCID: PMC9318366 DOI: 10.3390/nu14142830] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 12/10/2022] Open
Abstract
Inosine is a type of purine nucleoside, which is considered to a physiological energy source, and exerts a widely range of anti-inflammatory efficacy. The TLR4/MyD88/NF-κB signaling pathway is essential for preventing host oxidative stresses and inflammation, and represents a promising target for host-directed strategies to improve some forms of disease-related inflammation. In the present study, the results showed that inosine pre-intervention significantly suppressed the pulmonary elevation of pro-inflammatory cytokines (including tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β)), malondialdehyde (MDA), nitric oxide (NO), and reactive oxygen species (ROS) levels, and restored the pulmonary catalase (CAT), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and myeloperoxidase (MPO) activities (p < 0.05) in lipopolysaccharide (LPS)-treated mice. Simultaneously, inosine pre-intervention shifted the composition of the intestinal microbiota by decreasing the ratio of Firmicutes/Bacteroidetes, elevating the relative abundance of Tenericutes and Deferribacteres. Moreover, inosine pretreatment affected the TLR4/MyD88/NF-κB signaling pathway in the pulmonary inflammatory response, and then regulated the expression of pulmonary iNOS, COX2, Nrf2, HO-1, TNF-α, IL-1β, and IL-6 levels. These findings suggest that oral administration of inosine pretreatment attenuates LPS-induced pulmonary inflammatory response by regulating the TLR4/MyD88/NF-κB signaling pathway, and ameliorates intestinal microbiota disorder.
Collapse
Affiliation(s)
- Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (W.G.); (X.T.); (Q.Z.); (B.Y.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weiling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (W.G.); (X.T.); (Q.Z.); (B.Y.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (W.G.); (X.T.); (Q.Z.); (B.Y.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (W.G.); (X.T.); (Q.Z.); (B.Y.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (W.G.); (X.T.); (Q.Z.); (B.Y.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (W.G.); (X.T.); (Q.Z.); (B.Y.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (W.G.); (X.T.); (Q.Z.); (B.Y.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (W.G.); (X.T.); (Q.Z.); (B.Y.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
21
|
Thinned peach polyphenols alleviate obesity in high fat mice by affecting gut microbiota. Food Res Int 2022; 157:111255. [DOI: 10.1016/j.foodres.2022.111255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 01/06/2023]
|
22
|
Dietary γ-Aminobutyric Acid Supplementation Inhibits High-Fat Diet-Induced Hepatic Steatosis via Modulating Gut Microbiota in Broilers. Microorganisms 2022; 10:microorganisms10071281. [PMID: 35889001 PMCID: PMC9323641 DOI: 10.3390/microorganisms10071281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
The present study aims to investigate the effect of γ-aminobutyric acid (GABA) on liver lipid metabolism and on AA broilers. Broilers were divided into three groups and fed with low-fat diets, high-fat diets, and high-fat diets supplemented with GABA. Results showed that GABA supplementation decreased the level of triglyceride (TG) in the serum and liver of broilers fed high-fat diets, accompanied by up-regulated mRNA expression of genes related to lipolysis and β-oxidation in the liver (p < 0.05). Furthermore, GABA supplementation increased liver antioxidant capacity, accompanied by up-regulated mRNA expression of antioxidant genes (p < 0.05). 16S rRNA gene sequencing showed that GABA improved high-fat diet-induced dysbiosis of gut microbiota, increased the relative abundance of Bacteroidetes phylum and Barnesiella genus, and decreased the relative abundance of Firmicutes phylum and Ruminococcus_torques_group and Romboutsia genus (p < 0.05). Moreover, GABA supplementation promoted the production of propionic acid and butyric acid in cecal contents. Correlation analysis further suggested the ratio of Firmicutes/Bacteroidetes negatively correlated with hepatic TG content, and positively correlated with cecal short chain fatty acids content (r > 0.6, p < 0.01). Together, these data suggest that GABA supplementation can inhibit hepatic TG deposition and steatosis via regulating gut microbiota in broilers.
Collapse
|
23
|
Gut Microbial Shifts Indicate Melanoma Presence and Bacterial Interactions in a Murine Model. Diagnostics (Basel) 2022; 12:diagnostics12040958. [PMID: 35454006 PMCID: PMC9029337 DOI: 10.3390/diagnostics12040958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
Through a multitude of studies, the gut microbiota has been recognized as a significant influencer of both homeostasis and pathophysiology. Certain microbial taxa can even affect treatments such as cancer immunotherapies, including the immune checkpoint blockade. These taxa can impact such processes both individually as well as collectively through mechanisms from quorum sensing to metabolite production. Due to this overarching presence of the gut microbiota in many physiological processes distal to the GI tract, we hypothesized that mice bearing tumors at extraintestinal sites would display a distinct intestinal microbial signature from non-tumor-bearing mice, and that such a signature would involve taxa that collectively shift with tumor presence. Microbial OTUs were determined from 16S rRNA genes isolated from the fecal samples of C57BL/6 mice challenged with either B16-F10 melanoma cells or PBS control and analyzed using QIIME. Relative proportions of bacteria were determined for each mouse and, using machine-learning approaches, significantly altered taxa and co-occurrence patterns between tumor- and non-tumor-bearing mice were found. Mice with a tumor had elevated proportions of Ruminococcaceae, Peptococcaceae.g_rc4.4, and Christensenellaceae, as well as significant information gains and ReliefF weights for Bacteroidales.f__S24.7, Ruminococcaceae, Clostridiales, and Erysipelotrichaceae. Bacteroidales.f__S24.7, Ruminococcaceae, and Clostridiales were also implicated through shifting co-occurrences and PCA values. Using these seven taxa as a melanoma signature, a neural network reached an 80% tumor detection accuracy in a 10-fold stratified random sampling validation. These results indicated gut microbial proportions as a biosensor for tumor detection, and that shifting co-occurrences could be used to reveal relevant taxa.
Collapse
|
24
|
Gomes MJC, da Silva JS, Alves NEG, de Assis A, de Mejía EG, Mantovani HC, Martino HSD. Cooked common bean flour, but not its protein hydrolysate, has the potential to improve gut microbiota composition and function in BALB/c mice fed a high-fat diet added with 6-propyl-2-thiouracil. J Nutr Biochem 2022; 106:109022. [DOI: 10.1016/j.jnutbio.2022.109022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 10/29/2021] [Accepted: 03/18/2022] [Indexed: 12/28/2022]
|
25
|
Wang M, Ma H, Guan S, Luo T, Zhao C, Cai G, Zheng Y, Jia X, Di J, Li R, Cui H. Astaxanthin from Haematococcus pluvialis alleviates obesity by modulating lipid metabolism and gut microbiota in mice fed a high-fat diet. Food Funct 2021; 12:9719-9738. [PMID: 34664590 DOI: 10.1039/d1fo01495a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Obesity is a global chronic disease epidemic that is attributed to the abnormal accumulation of lipids in adipose tissue. Astaxanthin (AST) from Haematococcus pluvialis, a natural carotenoid, exhibits antioxidant, anti-lipogenic, anti-diabetic and other potent effects. Herein, we evaluated the effect of AST to illuminate its efficacy and mechanisms in high-fat diet-fed mice. AST supplementation not only significantly decreased body weight and lipid droplet accumulation in the liver but also modulated liver function and serum lipid levels. Lipidomic analysis revealed that 13 lipids might be potential biomarkers responsible for the effects of AST in lipid reduction, such as total free fatty acids (FFAs), triacylglycerols (TGs) and cholesterol esters (CEs). The gut microbiota sequencing results indicated that AST alleviated HFD-induced gut microbiota dysbiosis by optimizing the ratio of Firmicutes to Bacteroides and inhibiting the abundance of obesity-related pathogenic microbiota while promoting the abundance of probiotics related to glucose and lipid metabolism. In addition, qRT-PCR demonstrated that AST could regulate the gene expressions of the AMPK/SREBP1c pathway by downregulating lipogenesis correlated-genes and upregulating the lipid oxidant related-gene. The present study revealed the new function of AST in regulating lipid metabolism, which provided a theoretical basis for the development of high-quality AST functional food and the application of diet active substances in obesity, as demonstrated in mice.
Collapse
Affiliation(s)
- Meng Wang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Haotian Ma
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Siyu Guan
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Tao Luo
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Chunchao Zhao
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Guiping Cai
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Yubin Zheng
- Shandong Jinjing Biotechnology Co., Ltd, Weifang 261000, China.
| | - Xiaoyun Jia
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Jianbing Di
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Hongli Cui
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| |
Collapse
|
26
|
Wan J, Wu Y, Pham Q, Li RW, Yu L, Chen MH, Boue SM, Yokoyama W, Li B, Wang TTY. Effects of Differences in Resistant Starch Content of Rice on Intestinal Microbial Composition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8017-8027. [PMID: 34236836 DOI: 10.1021/acs.jafc.0c07887] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The aim of this study was to evaluate the effects of resistant starch (RS) and fat levels on the gut microbiome in C57BL/6 mice. Three levels of RS from three varieties of rice were the major source of carbohydrates and fat levels were low (10%) and high (39%). We confirmed that RS decreased the Firmicutes to Bacteroidetes ratio, increased SCFA production by higher Bacteroidaceae and S24-7 abundance, and enriched predicted gene families of glycosidases and functional pathways associated with carbohydrate and glycan metabolism. We also found correlations between microbial taxa and tissue gene expression related to carbohydrate and lipid metabolism. Moreover, increasing RS levels resulted in a molecular ecological network with enhanced modularity and interspecific synergy, which is less sensitive to high fat intervention. Overall, RS as low as 0.44% from cooked rice can modulate gut microbiome in mice, which correlated to a protective effect against deleterious effects of an obesogenic diet.
Collapse
Affiliation(s)
- Jiawei Wan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
- Diet Genomics and Immunology Laboratory, BHNRC, ARS, USDA, Beltsville, Maryland 20705, United States
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yanbei Wu
- Diet Genomics and Immunology Laboratory, BHNRC, ARS, USDA, Beltsville, Maryland 20705, United States
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology &Business University, Beijing 100084, PR China
| | - Quynhchi Pham
- Diet Genomics and Immunology Laboratory, BHNRC, ARS, USDA, Beltsville, Maryland 20705, United States
| | - Robert W Li
- Animal Parasitic Diseases Laboratory, ARS, USDA, Beltsville, Maryland 20705, United States
| | - Liangli Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| | - Ming-Hsuan Chen
- Dale Bumpers National Rice Research Center, ARS, USDA, Stuttgart, Arkansas 72160, United States
| | - Stephen M Boue
- Southern Regional Research Center, ARS, USDA, New Orleans, Louisiana 70124, United States
| | - Wallace Yokoyama
- Healthy Processed Foods Research Unit, WRRC, ARS, USDA, Albany, California 94710, United States
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Thomas T Y Wang
- Diet Genomics and Immunology Laboratory, BHNRC, ARS, USDA, Beltsville, Maryland 20705, United States
| |
Collapse
|
27
|
Azoxymethane Alters the Plasma Metabolome to a Greater Extent in Mice Fed a High-Fat Diet Compared to an AIN-93 Diet. Metabolites 2021; 11:metabo11070448. [PMID: 34357342 PMCID: PMC8307161 DOI: 10.3390/metabo11070448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/17/2022] Open
Abstract
Consumption of a high-fat diet (HFD) links obesity to colon cancer in humans. Our data show that a HFD (45% energy fat versus 16% energy fat in an AIN-93 diet (AIN)) promotes azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) formation in a mouse cancer model. However, the underlying metabolic basis remains to be determined. In the present study, we hypothesize that AOM treatment results in different plasma metabolomic responses in diet-induced obese mice. An untargeted metabolomic analysis was performed on the plasma samples by gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). We found that 53 of 144 identified metabolites were different between the 4 groups of mice (AIN, AIN + AOM, HFD, HFD + AOM), and sparse partial least-squares discriminant analysis showed a separation between the HFD and HFD + AOM groups but not the AIN and AIN + AOM groups. Moreover, the concentrations of dihydrocholesterol and cholesterol were inversely associated with AOM-induced colonic ACF formation. Functional pathway analyses indicated that diets and AOM-induced colonic ACF modulated five metabolic pathways. Collectively, in addition to differential plasma metabolomic responses, AOM treatment decreases dihydrocholesterol and cholesterol levels and alters the composition of plasma metabolome to a greater extent in mice fed a HFD compared to the AIN.
Collapse
|
28
|
Rodríguez-Daza MC, Pulido-Mateos EC, Lupien-Meilleur J, Guyonnet D, Desjardins Y, Roy D. Polyphenol-Mediated Gut Microbiota Modulation: Toward Prebiotics and Further. Front Nutr 2021; 8:689456. [PMID: 34268328 PMCID: PMC8276758 DOI: 10.3389/fnut.2021.689456] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
The genome of gut microbes encodes a collection of enzymes whose metabolic functions contribute to the bioavailability and bioactivity of unabsorbed (poly)phenols. Datasets from high throughput sequencing, metabolome measurements, and other omics have expanded the understanding of the different modes of actions by which (poly)phenols modulate the microbiome conferring health benefits to the host. Progress have been made to identify direct prebiotic effects of (poly)phenols; albeit up to date, these compounds are not recognized as prebiotics sensu stricto. Interestingly, certain probiotics strains have an enzymatic repertoire, such as tannase, α-L-rhamnosidase, and phenolic acid reductase, involved in the transformation of different (poly)phenols into bioactive phenolic metabolites. In vivo studies have demonstrated that these (poly)phenol-transforming bacteria thrive when provided with phenolic substrates. However, other taxonomically distinct gut symbionts of which a phenolic-metabolizing activity has not been demonstrated are still significantly promoted by (poly)phenols. This is the case of Akkermansia muciniphila, a so-called antiobesity bacterium, which responds positively to (poly)phenols and may be partially responsible for the health benefits formerly attributed to these molecules. We surmise that (poly)phenols broad antimicrobial action free ecological niches occupied by competing bacteria, thereby allowing the bloom of beneficial gut bacteria. This review explores the capacity of (poly)phenols to promote beneficial gut bacteria through their direct and collaborative bacterial utilization and their inhibitory action on potential pathogenic species. We propose the term duplibiotic, to describe an unabsorbed substrate modulating the gut microbiota by both antimicrobial and prebiotic modes of action. (Poly)phenol duplibiotic effect could participate in blunting metabolic disturbance and gut dysbiosis, positioning these compounds as dietary strategies with therapeutic potential.
Collapse
Affiliation(s)
- Maria Carolina Rodríguez-Daza
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Elena C Pulido-Mateos
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Joseph Lupien-Meilleur
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Denis Guyonnet
- Diana Nova, Symrise Nutrition, Clichy-la-Garenne, France
| | - Yves Desjardins
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Denis Roy
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| |
Collapse
|
29
|
Li B, Qiu H, Zheng N, Wu G, Gu Y, Zhong J, Hong Y, Ma J, Zhou W, Sheng L, Li H. Integrated Metagenomic and Transcriptomic Analyses Reveal the Dietary Dependent Recovery of Host Metabolism From Antibiotic Exposure. Front Cell Dev Biol 2021; 9:680174. [PMID: 34222250 PMCID: PMC8250461 DOI: 10.3389/fcell.2021.680174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/20/2021] [Indexed: 01/10/2023] Open
Abstract
The balance of gut microbiome is essential for maintaining host metabolism homeostasis. Despite widespread antibiotic use, the potential long-term detrimental consequences of antibiotics for host health are getting more and more attention. However, it remains unclear whether diet affects the post-antibiotic recovery of gut microbiome and host metabolism. In this study, through metagenomic sequencing and hepatic transcriptome analysis, we investigated the divergent impacts of short-term vancomycin (Vac), or combination of ciprofloxacin and metronidazole (CM) treatment on gut microbiome and host metabolism, as well as their recovery extent from antibiotic exposure on chow diet (CD) and high-fat diet (HFD). Our results showed that short-term Vac intervention affected insulin signaling, while CM induced more functional changes in the microbiome. However, Vac-induced long-term (45 days) changes of species were more apparent when recovered on CD than HFD. The effects of antibiotic intervention on host metabolism were long-lasting, antibiotic-specific, and diet-dependent. The number of differentially expressed gene was doubled by Vac than CM, but was comparable after recovery on CD as revealed by the hepatic transcriptomic analysis. In contrast, HFD intake during recovery could worsen the extent of post-antibiotic recovery by altering infection, immunity, and cancer-related pathways in short-term Vac-exposed rats and by shifting endocrine system-associated pathways in CM-exposed rats. Together, the presented data demonstrated the long-term recovery extent after different antibiotic exposure was diet-related, highlighting the importance of dietary management during post-antibiotic recovery.
Collapse
Affiliation(s)
- Bingbing Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huihui Qiu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ningning Zheng
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gaosong Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Gu
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Jing Zhong
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou, China
| | - Ying Hong
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junli Ma
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lili Sheng
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Houkai Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
30
|
Zeng H, Safratowich BD, Liu Z, Bukowski MR, Ishaq SL. Adequacy of calcium and vitamin D reduces inflammation, β-catenin signaling, and dysbiotic Parasutterela bacteria in the colon of C57BL/6 mice fed a western-style diet. J Nutr Biochem 2021; 92:108613. [PMID: 33705950 DOI: 10.1016/j.jnutbio.2021.108613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/30/2020] [Accepted: 02/02/2021] [Indexed: 12/31/2022]
Abstract
Adoption of an obesogenic diet low in calcium and vitamin D (CaD) leads to increased obesity, colonic inflammation, and cancer. However, the underlying mechanisms remain to be elucidated. We tested the hypothesis that CaD supplementation (from inadequacy to adequacy) may reduce colonic inflammation, oncogenic signaling, and dysbiosis in the colon of C57BL/6 mice fed a Western diet. Male C57/BL6 mice (4-weeks old) were assigned to 3 dietary groups for 36 weeks: (1) AIN76A as a control diet (AIN); (2) a defined rodent "new Western diet" (NWD); or (3) NWD with CaD supplementation (NWD/CaD). Compared to the AIN, mice receiving the NWD or NWD/CaD exhibited more than 0.2-fold increase in the levels of plasma leptin, tumor necrosis factor α (TNF-α) and body weight. The levels of plasma interleukin 6 (IL-6), inflammatory cell infiltration, and β-catenin/Ki67 protein (oncogenic signaling) were increased more than 0.8-fold in the NWD (but not NWD/CaD) group compared to the AIN group. Consistent with the inflammatory phenotype, colonic secondary bile acid (inflammatory bacterial metabolite) levels increased more than 0.4-fold in the NWD group compared to the NWD/CaD and AIN groups. Furthermore, the abundance of colonic Proteobacteria (e.g., Parasutterela), considered signatures of dysbiosis, was increased more than four-fold; and the α diversity of colonic bacterial species, indicative of health, was decreased by 30% in the NWD group compared to the AIN and NWD/CaD groups. Collectively, CaD adequacy reduces colonic inflammation, β-catenin oncogenic signaling, secondary bile acids, and bacterial dysbiosis in mice fed with a Western diet.
Collapse
Affiliation(s)
- Huawei Zeng
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota.
| | - Bryan D Safratowich
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota
| | - Zhenhua Liu
- School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Michael R Bukowski
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota
| | - Suzanne L Ishaq
- School of Food and Agriculture, University of Maine, Orono, Maine
| |
Collapse
|
31
|
Shen J, Li P, Liu S, Liu Q, Li Y, Zhang Z, Yang C, Hu M, Sun Y, He C, Xiao P. The chemopreventive effects of Huangqin-tea against AOM-induced preneoplastic colonic aberrant crypt foci in rats and omics analysis. Food Funct 2021; 11:9634-9650. [PMID: 33048099 DOI: 10.1039/d0fo01731k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite that colorectal cancer (CRC) is a severe global health problem, effective chemopreventive strategies against CRC are still lacking. Huang-qin tea (HQT), a healthy herbal tea, is prepared from the aerial parts of Scutellaria baicalensis Georgi and has been consumed in China for thousands of years. HQT contains abundant flavonoids, which display potent anticancer effects, but no research studies have investigated the cancer-preventive effects of HQT on CRC in vivo. Here, we found that HQT inhibits azoxymethane-induced aberrant crypt foci (ACF) formation in a preneoplastic colonic ACF rat model. The essential role of the gut microbiota in the chemopreventive effect of HQT on CRC in a pseudo-germ-free rat model was confirmed. Besides, HQT modulates inflammatory cytokine expression by significantly decreasing IL-1β, IL-6, IL-10, and TNF-α expression, and elevating IFN-γ production. 16S rDNA sequencing analysis indicated that HQT regulated the gut microbiota by increasing the abundance of beneficial bacteria (Lachnoclostridium, Alistipes, Roseburia, and Lactococcus) and reducing the levels of Bacteroides, Parasutterella, and unidentified_Clostridiales. Fecal metabolomics showed that HQT modulated the AOM-induced metabolomic disorder, and these altered metabolites were almost involved in the lipid metabolic pathways. The Spearman correlation analysis revealed a correlation between the gut microbiota and fecal metabolites. Collectively, these results suggested that HQT exerted beneficial effects on host health by inhibiting inflammation, and by regulating the gut microbiota profile and certain metabolic pathways. In conclusion, HQT inhibits AOM-induced ACF formation by modulating the gut microbiota composition and improving metabolomic disorders, indicating the potential of HQT as a functional beverage candidate for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Jie Shen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100193, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Animals live in symbiosis with numerous microbe species. While some can protect hosts from infection and benefit host health, components of the microbiota or changes to the microbial landscape have the potential to facilitate infections and worsen disease severity. Pathogens and pathobionts can exploit microbiota metabolites, or can take advantage of a depletion in host defences and changing conditions within a host, to cause opportunistic infection. The microbiota might also favour a more virulent evolutionary trajectory for invading pathogens. In this review, we consider the ways in which a host microbiota contributes to infectious disease throughout the host's life and potentially across evolutionary time. We further discuss the implications of these negative outcomes for microbiota manipulation and engineering in disease management.
Collapse
Affiliation(s)
- Emily J. Stevens
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Kieran A. Bates
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Kayla C. King
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
33
|
Chen Q, He Z, Zhuo Y, Li S, Yang W, Hu L, Zhong H. Rubidium chloride modulated the fecal microbiota community in mice. BMC Microbiol 2021; 21:46. [PMID: 33588762 PMCID: PMC7885239 DOI: 10.1186/s12866-021-02095-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
Background The microbiota plays an important role in host health. Although rubidium (Rb) has been used to study its effects on depression and cancers, the interaction between microbial commensals and Rb is still unexplored. To gain the knowledge of the relationship between Rb and microbes, 51 mice receiving RbCl-based treatment and 13 untreated mice were evaluated for their characteristics and bacterial microbiome changes. Results The 16S ribosomal RNA gene sequencing of fecal microbiota showed that RbCl generally maintained fecal microbial community diversity, while the shifts in fecal microbial composition were apparent after RbCl exposure. RbCl significantly enhanced the abundances of Rikenellaceae, Alistipes, Clostridium XlVa and sulfate-reducing bacteria including Deltaproteobacteria, Desulfovibrionales, Desulfovibrionaceae and Desulfovibrio, but significantly inhibited the abundances of Tenericutes, Mollicutes, Anaeroplasmatales, Anaeroplasmataceae and Anaeroplasma lineages. With regarding to the archaea, we only observed two less richness archaea Sulfolobus and Acidiplasma at the genus level. Conclusions Changes of fecal microbes may in part contribute to the anticancer or anti-depressant effects of RbCl. These findings further validate that the microbiome could be a target for therapeutic intervention. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02095-4.
Collapse
Affiliation(s)
- Qian Chen
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Zhiguo He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Yuting Zhuo
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Shuzhen Li
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Wenjing Yang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Liang Hu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Hui Zhong
- School of Life Sciences, Central South University, Changsha, 410013, China.
| |
Collapse
|
34
|
Yang F, DeLuca JAA, Menon R, Garcia-Vilarato E, Callaway E, Landrock KK, Lee K, Safe SH, Chapkin RS, Allred CD, Jayaraman A. Effect of diet and intestinal AhR expression on fecal microbiome and metabolomic profiles. Microb Cell Fact 2020; 19:219. [PMID: 33256731 PMCID: PMC7708923 DOI: 10.1186/s12934-020-01463-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Diet, loss of aryl hydrocarbon receptor (AhR) expression and their modification of the gut microbiota community composition and its metabolites affect the development of colorectal cancer (CRC). However, the concordance between fecal microbiota composition and the fecal metabolome is poorly understood. Mice with specific AhR deletion (AhRKO) in intestinal epithelial cell and their wild-type littermates were fed a low-fat diet or a high-fat diet. Shifts in the fecal microbiome and metabolome associated with diet and loss of AhR expression were assessed. Microbiome and metabolome data were integrated to identify specific microbial taxa that contributed to the observed metabolite shifts. RESULTS Our analysis shows that diet has a more pronounced effect on mouse fecal microbiota composition than the impact of the loss of AhR. In contrast, metabolomic analysis showed that the loss of AhR in intestinal epithelial cells had a more pronounced effect on metabolite profile compared to diet. Integration analysis of microbiome and metabolome identified unclassified Clostridiales, unclassified Desulfovibrionaceae, and Akkermansia as key contributors to the synthesis and/or utilization of tryptophan metabolites. CONCLUSIONS Akkermansia are likely to contribute to the synthesis and/or degradation of tryptophan metabolites. Our study highlights the use of multi-omic analysis to investigate the relationship between the microbiome and metabolome and identifies possible taxa that can be targeted to manipulate the microbiome for CRC treatment.
Collapse
Affiliation(s)
- Fang Yang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | | | - Rani Menon
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | | | - Evelyn Callaway
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | | | - Kyongbum Lee
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, USA
| | - Stephen H Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Robert S Chapkin
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Clinton D Allred
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Arul Jayaraman
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
35
|
Yu X, Chu M, Chu C, Du Y, Shi J, Liu X, Liu Y, Zhang H, Zhang Z, Yan N. Wild rice (Zizania spp.): A review of its nutritional constituents, phytochemicals, antioxidant activities, and health-promoting effects. Food Chem 2020; 331:127293. [DOI: 10.1016/j.foodchem.2020.127293] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/01/2020] [Accepted: 06/08/2020] [Indexed: 02/08/2023]
|
36
|
Basson AR, LaSalla A, Lam G, Kulpins D, Moen EL, Sundrud MS, Miyoshi J, Ilic S, Theriault BR, Cominelli F, Rodriguez-Palacios A. Artificial microbiome heterogeneity spurs six practical action themes and examples to increase study power-driven reproducibility. Sci Rep 2020; 10:5039. [PMID: 32193395 PMCID: PMC7081340 DOI: 10.1038/s41598-020-60900-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/17/2020] [Indexed: 12/25/2022] Open
Abstract
With >70,000 yearly publications using mouse data, mouse models represent the best engrained research system to address numerous biological questions across all fields of science. Concerns of poor study and microbiome reproducibility also abound in the literature. Despite the well-known, negative-effects of data clustering on interpretation and study power, it is unclear why scientists often house >4 mice/cage during experiments, instead of ≤2. We hypothesized that this high animal-cage-density practice abounds in published literature because more mice/cage could be perceived as a strategy to reduce housing costs. Among other sources of 'artificial' confounding, including cyclical oscillations of the 'dirty-cage/excrement microbiome', we ranked by priority the heterogeneity of modern husbandry practices/perceptions across three professional organizations that we surveyed in the USA. Data integration (scoping-reviews, professional-surveys, expert-opinion, and 'implementability-score-statistics') identified Six-Actionable Recommendation Themes (SART) as a framework to re-launch emerging protocols and intuitive statistical strategies to use/increase study power. 'Cost-vs-science' discordance was a major aspect explaining heterogeneity, and scientists' reluctance to change. With a 'housing-density cost-calculator-simulator' and fully-annotated statistical examples/code, this themed-framework streamlines the rapid analysis of cage-clustered-data and promotes the use of 'study-power-statistics' to self-monitor the success/reproducibility of basic and translational research. Examples are provided to help scientists document analysis for study power-based sample size estimations using preclinical mouse data to support translational clinical trials, as requested in NIH/similar grants or publications.
Collapse
Affiliation(s)
- Abigail R Basson
- Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Alexandria LaSalla
- Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Gretchen Lam
- Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Danielle Kulpins
- Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Erika L Moen
- Department of Biomedical Data Science, Geisel School of Medicine, The Dartmouth Institute for Health Policy and Clinical Practice, Lebanon, NH, USA
| | - Mark S Sundrud
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Jun Miyoshi
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Tokyo, Japan
| | - Sanja Ilic
- Department of Human Sciences and Nutrition, The Ohio State University, Columbus, OH, USA
| | | | - Fabio Cominelli
- Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Mouse Models Core, Silvio O'Conte Cleveland Digestive Diseases Research Core Center, Cleveland, OH, USA
- Germ-free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Alexander Rodriguez-Palacios
- Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
- Mouse Models Core, Silvio O'Conte Cleveland Digestive Diseases Research Core Center, Cleveland, OH, USA.
- Germ-free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
37
|
Abstract
Over the past decade, the search for dietary factors on which to base cancer prevention guidelines has led to the rapid expansion of the field of dietary patterns and cancer. Multiple systematic reviews and meta-analyses have reported epidemiological associations between specific cancer types and both data-driven dietary patterns determined by empirical analyses and investigator-defined dietary indexes based on a predetermined set of dietary components. New developments, such as the use of metabolomics to identify objective biomarkers of dietary patterns and novel statistical techniques, could provide further insights into the links between diet and cancer risk. Although animal models of dietary patterns are limited, progress in this area could identify the potential mechanisms underlying the disease-specific associations observed in epidemiological studies. In this Review, we summarize the current state of the field, provide a critical appraisal of new developments and identify priority areas for future research. An underlying theme that emerges is that the effectiveness of different dietary pattern recommendations in reducing risk could depend on the type of cancer or on other risk factors such as family history, sex, age and other lifestyle factors or comorbidities as well as on metabolomic signatures or gut microbiota profiles.
Collapse
Affiliation(s)
- Susan E Steck
- Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA.
| | - E Angela Murphy
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
38
|
Song Y, Gyarmati P. Microbiota changes in a pediatric acute lymphocytic leukemia mouse model. Microbiologyopen 2019; 9:e982. [PMID: 31884727 PMCID: PMC7066458 DOI: 10.1002/mbo3.982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 01/01/2023] Open
Abstract
Hematological malignancies are the most common type of pediatric cancers, and acute lymphocytic leukemia (ALL) is the most frequently occurring hematological malignancy during childhood. A major cause of mortality in leukemia is bloodstream infection (BSI). The aim of the current study was to explore the gut microbiota in ALL and its potential functional alterations. High-throughput sequencing was used to characterize the bacterial and fungal microbiota in feces and their predicted functional characteristics in a xenotransplant pediatric ALL mouse model. Our work shows that gut microbiota significantly changes in leukemia, which may result in functional alterations. This study may provide potential therapeutic or preventive strategies of BSI in ALL.
Collapse
Affiliation(s)
- Yajing Song
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Peter Gyarmati
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| |
Collapse
|
39
|
Anti-Atherosclerotic Properties of Wild Rice in Low-Density Lipoprotein Receptor Knockout Mice: The Gut Microbiome, Cytokines, and Metabolomics Study. Nutrients 2019; 11:nu11122894. [PMID: 31795092 PMCID: PMC6950250 DOI: 10.3390/nu11122894] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 01/06/2023] Open
Abstract
Background and aim: We previously reported the anti-atherogenic properties of wild rice in low-density lipoprotein receptor knockout (LDL-r-KO) mice. The present study aimed to discover the mechanism of action for such effects. Materials: Fecal and plasma samples from the wild rice treated and control mice were used. Fecal bacterial population was estimated while using 16S rDNA technology. The plasma samples were used to estimate the levels of 35 inflammatory markers and metabolomics, while using Meso Scale multiplex assay and liquid chromatography-mass spectrometry (LC-MS/MS) techniques. Results: Many bacteria, particularly Anaeroplasma sp., Acetatifactor sp., and Prophyromonadaceae sp., were found in higher quantities in the feces of wild rice fed mice as compared to the controls. Cytokine profiles were significantly different between the plasma of treated and control mice. Among them, an increase in the level of IL-10 and erythropoietin (EPO) could explain the anti-atherogenic properties of wild rice. Among many metabolites tested in plasma of these animals, surprisingly, we found an approximately 60% increase in the levels of glucose in the wild rice fed mice as compared to that in the control mice. Conclusion: Additional studies warrant further investigation of the interplay among gut microbiome, inflammatory status, and macronutrient metabolism.
Collapse
|
40
|
Yadav M, Mandeep, Shukla P. Probiotics of Diverse Origin and Their Therapeutic Applications: A Review. J Am Coll Nutr 2019; 39:469-479. [PMID: 31765283 DOI: 10.1080/07315724.2019.1691957] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The increased awareness about the harmful effects of excessive use of antibiotics has created an interest in probiotics due to its beneficial effects on gut microbiota. These advantages of probiotics have attracted researchers to find out effects on human metabolism and their role in the treatment of diverse types of diseases or disorders. Additionally, they are clinically used as biocontrol agents in the treatment of mental disorders, anticancer agents and in decreasing the threat of necrotizing enterocolitis in premature infants. In this review, we have focused on various kinds of probiotics and various nondairy substrates for their production. We have also included the importance of probiotics in the treatment of metabolic disorders, type II diabetes and infectious diseases. Furthermore, this review emphasizes applications of probiotics originated from different organisms. Their future health perspectives are discussed to gain insight into their applications.KEY TEACHING POINTSThe global market of probiotics is enormously rising day by day due to its highly beneficial effect on human microbiota.Additionally, these are used as biocontrol agents; mental disorders prevent cancer and decrease the threat of necrotizing enterocolitis (NEC) in premature infants.This review focuses on various kinds of sources of probiotics and various non-dairy substrates for the production of probiotics.The importance of probiotics in the treatment of metabolic disorders, type II diabetes control, cancer and treatment of infectious diseases are also described.It emphasizes diversified probiotics and their applications in various human health aspects and future perspectives.
Collapse
Affiliation(s)
- Monika Yadav
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Mandeep
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
41
|
Hu TG, Wen P, Liu J, Long XS, Liao ST, Wu H, Zou YX. Combination of mulberry leaf and oat bran possessed greater hypoglycemic effect on diabetic mice than mulberry leaf or oat bran alone. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
42
|
Shuwen H, Miao D, Quan Q, Wei W, Zhongshan Z, Chun Z, Xi Y. Protective effect of the "food-microorganism-SCFAs" axis on colorectal cancer: from basic research to practical application. J Cancer Res Clin Oncol 2019; 145:2169-2197. [PMID: 31401674 DOI: 10.1007/s00432-019-02997-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Recent studies have shown that the short-chain fatty acids (SCFAs) produced by the gut microbiota play a positive role in the development of colorectal cancer (CRC). AIMS This study aims to elucidate the "food-microorganism-SCFAs" axis and to provide guidance for prevention and intervention in CRC. METHODS The PubMed, Embase and Cochrane databases were searched from their inceptions to August 2018, and 75 articles and 25 conference abstracts were included and analysed after identification and screening. RESULTS The concentrations of SCFAs in CRC patients and individuals with a high risk of CRC were higher than those in healthy individuals. The protective mechanism of SCFAs against CRC has been described in three aspects: epigenetics, immunology and molecular signalling pathways. Many food and plant extracts that were fermented by microorganisms produced SCFAs that play positive roles with preventive and therapeutic effects on CRC. The "food-microorganism-SCFAs" axis was constructed by summarizing the pertinent literature. CONCLUSIONS This study provides insight into the basic research and practical application of SCFAs by assessing the protective effect of SCFAs on CRC.
Collapse
Affiliation(s)
- Han Shuwen
- Department of Medical Oncology, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No.198 Hongqi Road, Huzhou, 313000, Zhejiang Province, China
| | - Da Miao
- Medical College of Nursing, Huzhou University, No. 759, Erhuan East Road, Huzhou, 313000, Zhejiang Province, China
| | - Qi Quan
- Department of Medical Oncology, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No.198 Hongqi Road, Huzhou, 313000, Zhejiang Province, China
| | - Wu Wei
- Department of Digestive System, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No. 198 Hongqi Road, Huzhou, 313000, Zhejiang Province, China
| | - Zhang Zhongshan
- Department of Medicine, Huzhou University, No. 759, Erhuan East Road, Huzhou, 313000, Zhejiang Province, China
| | - Zhang Chun
- Department of Infectious Disease, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No. 198 Hongqi Road, Huzhou, 313000, Zhejiang Province, China
| | - Yang Xi
- Department of Intervention and Radiotherapy, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No. 198 Hongqi Road, Huzhou, Zhejiang Province, 313000, China.
| |
Collapse
|
43
|
Peng X, Wang R, Hu L, Zhou Q, Liu Y, Yang M, Fang Z, Lin Y, Xu S, Feng B, Li J, Jiang X, Zhuo Y, Li H, Wu D, Che L. Enterococcus faecium NCIMB 10415 administration improves the intestinal health and immunity in neonatal piglets infected by enterotoxigenic Escherichia coli K88. J Anim Sci Biotechnol 2019; 10:72. [PMID: 31452881 PMCID: PMC6702752 DOI: 10.1186/s40104-019-0376-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/09/2019] [Indexed: 12/11/2022] Open
Abstract
Background This study aimed to investigate the effects of oral administration of Enterococcus faecium NCIMB 10415 (E. faecium) on intestinal development, immunological parameters and gut microbiota of neonatal piglets challenged with enterotoxigenic Escherichia coli K88 (ETEC). A total of 96 1-day-old sow-reared piglets were randomly assigned to 2 groups, with 48 piglets in each group. The piglets were from 16 litters (6 piglets each litter), and 3 piglets each litter were allocated to the E. faecium-supplemented (PRO) group, while the other 3 piglets were allocated to the control (CON) group. After colostrum intake, piglets in the PRO group were orally administrated with 3 × 109 CFU E. faecium per day for a period of one week. On day 8, one piglet per litter from each group was challenged (CON+ETEC, PRO+ETEC) or not (CON-ETEC, PRO-ETEC) with ETEC in a 2 × 2 factorial arrangement of treatments. On day 10 (2 days after challenge), blood and tissue samples were obtained from piglets. Results Before ETEC challenge, there were no significant differences for the average daily gain (ADG) and fecal score between the two groups of piglets. After ETEC challenge, the challenged piglets had greater fecal score compared to the non-challenged piglets, whereas E. faecium administration was able to decrease the fecal score. Piglets challenged with ETEC had shorter villous height, deeper crypt depth, and reduced number of goblet cells in the jejunum and decreased mRNA abundance of claudin-1 in the ileum, whereas increased the percentage of lymphocytes, concentrations of IL-1β in the plasma and TNF-α in the ileal mucosa, as well as increased the mRNA abundances of innate immunity-related genes in the ileum tissue. These deleterious effects caused by ETEC were partly alleviated by feeding E. faecium. In addition, piglets in PRO-ETEC group had decreased the percentage of CD8+ T cells of the peripheral blood when compared to those in CON-ETEC group. Moreover, E. faecium administration increased Verrucomicrobia at phylum level and decreased Bilophila at genus level. Conclusions These results suggest that oral administration of E. faecium alleviated the intestinal injury and diarrhea severity of neonatal piglets challenged by ETEC, partly through improving the intestinal microbiota and immune response. This offers a potential strategy of dietary intervention against intestinal impairment by ETEC in neonatal piglets. Electronic supplementary material The online version of this article (10.1186/s40104-019-0376-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xie Peng
- 1Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People's Republic of China
| | - Ru Wang
- 1Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People's Republic of China
| | - Liang Hu
- 1Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People's Republic of China
| | - Qiang Zhou
- 1Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People's Republic of China
| | - Yang Liu
- 1Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People's Republic of China
| | - Min Yang
- 1Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People's Republic of China.,Animal Husbandry and Veterinary Department, Chengdu Agricultural College, Chengdu, Sichuan 611130 People's Republic of China
| | - Zhengfeng Fang
- 1Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People's Republic of China
| | - Yan Lin
- 1Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People's Republic of China
| | - Shengyu Xu
- 1Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People's Republic of China
| | - Bin Feng
- 1Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People's Republic of China
| | - Jian Li
- 1Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People's Republic of China
| | - Xuemei Jiang
- 1Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People's Republic of China
| | - Yong Zhuo
- 1Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People's Republic of China
| | - Hua Li
- 1Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People's Republic of China
| | - De Wu
- 1Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People's Republic of China
| | - Lianqiang Che
- 1Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People's Republic of China
| |
Collapse
|
44
|
Lv XC, Guo WL, Li L, Yu XD, Liu B. Polysaccharide peptides from Ganoderma lucidum ameliorate lipid metabolic disorders and gut microbiota dysbiosis in high-fat diet-fed rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.043] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
45
|
Zeng H, Umar S, Rust B, Lazarova D, Bordonaro M. Secondary Bile Acids and Short Chain Fatty Acids in the Colon: A Focus on Colonic Microbiome, Cell Proliferation, Inflammation, and Cancer. Int J Mol Sci 2019; 20:ijms20051214. [PMID: 30862015 PMCID: PMC6429521 DOI: 10.3390/ijms20051214] [Citation(s) in RCA: 305] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 02/07/2023] Open
Abstract
Secondary bile acids (BAs) and short chain fatty acids (SCFAs), two major types of bacterial metabolites in the colon, cause opposing effects on colonic inflammation at chronically high physiological levels. Primary BAs play critical roles in cholesterol metabolism, lipid digestion, and host–microbe interaction. Although BAs are reabsorbed via enterohepatic circulation, primary BAs serve as substrates for bacterial biotransformation to secondary BAs in the colon. High-fat diets increase secondary BAs, such as deoxycholic acid (DCA) and lithocholic acid (LCA), which are risk factors for colonic inflammation and cancer. In contrast, increased dietary fiber intake is associated with anti-inflammatory and anticancer effects. These effects may be due to the increased production of the SCFAs acetate, propionate, and butyrate during dietary fiber fermentation in the colon. Elucidation of the molecular events by which secondary BAs and SCFAs regulate colonic cell proliferation and inflammation will lead to a better understanding of the anticancer potential of dietary fiber in the context of high-fat diet-related colon cancer. This article reviews the current knowledge concerning the effects of secondary BAs and SCFAs on the proliferation of colon epithelial cells, inflammation, cancer, and the associated microbiome.
Collapse
Affiliation(s)
- Huawei Zeng
- U. S. Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA.
| | - Shahid Umar
- Department of Surgery and University of Kansas Cancer Center, Kansas City, KS 66160, USA.
| | - Bret Rust
- U. S. Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA.
| | - Darina Lazarova
- Department of Medical Education, Geisinger Commonwealth School of Medicine, Scranton, PA 18509, USA.
| | - Michael Bordonaro
- Department of Medical Education, Geisinger Commonwealth School of Medicine, Scranton, PA 18509, USA.
| |
Collapse
|
46
|
Lee SM, Kim N, Yoon H, Nam RH, Lee DH. Microbial Changes and Host Response in F344 Rat Colon Depending on Sex and Age Following a High-Fat Diet. Front Microbiol 2018; 9:2236. [PMID: 30298061 PMCID: PMC6160749 DOI: 10.3389/fmicb.2018.02236] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/03/2018] [Indexed: 12/14/2022] Open
Abstract
Gut microbiota, an important component that affects host health, change rapidly and directly in response to altered diet composition. Recently, the role of diet–microbiome interaction on the development of colon cancer has been the focus of interest. Colon cancer occurs more frequently in an aged population, and in males. However, the effect of dietary changes on the gut microbiome has been studied mainly in young males, even though it may vary with age and sex. The aim of this study was to investigate microbial changes and host response in the colons of male and female 6-week-old (young) and 2-year-old (old) Fisher-344 rats exposed to a high-fat diet (HFD). Our results showed that exposure to HFD for 8 weeks decreased the species richness of microbiota (Chao1) and increased Firmicutes/Bacteroidetes ratio only in aged rats, and not in young rats. Sex differences underlying the alteration by HFD in the gut microbiome were observed in the microbiome of aged rats. For instance, the abundance ratio of Akkermansia muciniphila and Desulfovibrio spp. increased in response to HFD in young rats and female aged rats, but not in male aged rats. Histological inflammation and cell proliferation of colon mucosa (indexed by Ki67) were significantly increased by HFD even in young rats; aged rats showed significantly higher cell proliferation in the HFD group than in the control. The HFD-induced decrease of species richness and the increase in specific species (Desulfovibrio spp. and Clostridium lavalense), which produce carcinogenic compounds such as H2S and N-nitroso compounds, were significantly correlated with Ki67 index. In colon mucosa, the concentration of myeloperoxidase was increased by HFD only in males, and not in females. In conclusion, the results suggest a link between HFD-induced gut dysbiosis (particularly the low species richness and high abundance ratios of Desulfovibrio spp. and C. lavalense) and cell proliferation of colon mucosa (indicated by Ki67 IHC). In addition, sex differences influence the response of gut microbiome to HFD particularly in old age. Such sex differences in the gut microbiota might be related to sex differences in inflammation in the colon mucosa.
Collapse
Affiliation(s)
- Sun Min Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hyuk Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Ryoung Hee Nam
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| |
Collapse
|