1
|
Hoseini SM, Montazeri F. Cell origin and microenvironment: The players of differentiation capacity in human mesenchymal stem cells. Tissue Cell 2025; 93:102709. [PMID: 39765135 DOI: 10.1016/j.tice.2024.102709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/12/2024] [Accepted: 12/26/2024] [Indexed: 03/05/2025]
Abstract
Mesenchymal stem cells (MSCs) have several important properties that make them desirable for regenerative medicine. These properties include immunomodulatory ability, growth factor production, and differentiation into various cell types. Despite extensive research and promising results in clinical trials, our understanding of MSC biology, their mechanism of action, and their targeted and routine use in clinics is limited. Differentiation of human MSCs (hMSCs) is a complex process influenced by various elements such as growth factors, pharmaceutical compounds, microRNAs, 3D scaffolds, and mechanical and electrical stimulation. Research has shown that different culture conditions can affect the differentiation potential of hMSCs obtained from multiple fetal and adult sources. Additionally, it seems that what affects the differentiation capacities of these cells is their secretory characteristics, which are influenced by the origin of the cells and the local microenvironment where the cells are located. The review can provide insights into the microenvironment-based mechanisms involved in MSC differentiation, which can be valuable for future therapeutic applications.
Collapse
Affiliation(s)
- Seyed Mehdi Hoseini
- Biotechnology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran; Hematology and Oncology Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Montazeri
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran.
| |
Collapse
|
2
|
Guillaumin S, Rossoni A, Zeugolis D. State-of the-art and future perspective in co-culture systems for tendon engineering. BIOMATERIALS AND BIOSYSTEMS 2025; 17:100110. [PMID: 40130022 PMCID: PMC11932666 DOI: 10.1016/j.bbiosy.2025.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/05/2024] [Accepted: 03/04/2025] [Indexed: 03/26/2025] Open
Abstract
Tendon is a connective tissue that links bone to muscle, allowing for maintenance of skeleton posture, joint movement, energy storage and transmission of muscle force to bone. Tendon is a hypocellular and hypovascular tissue of poor self-regeneration capacity. Current surgical treatments are of limited success, frequently resulting in reinjury. Upcoming cell therapies are primarily based on tenocytes, a cell population of limited self-renewal capacity in vitro or mesenchymal stromal cells, a cell population prone to ectopic bone formation in vivo. Over the years mono- or multi- factorial cell culture technologies have failed to effectively maintain tenocyte phenotype in culture during expansion or to prime mesenchymal stromal cells towards tenogenic lineage prior to implantation. Upon these limitations the concept of co-culture was conceived. Here, we comprehensively review and discuss tenogenic differentiation of mesenchymal stromal cells through direct or indirect culture with tenocytes in an attempt to generate a tenocyte or a tendon-like cell population for regenerative medicine purposes.
Collapse
Affiliation(s)
- Salomé Guillaumin
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Andrea Rossoni
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular and Biomedical Research and School of Mechanical and Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Dimitrios Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular and Biomedical Research and School of Mechanical and Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
3
|
Khodaei A, Nawaz Q, Zhu Z, Amin Yavari S, Weinans H, Boccaccini AR. Biomolecule and Ion Releasing Mesoporous Nanoparticles: Nonconvergent Osteogenic and Osteo-immunogenic Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67491-67503. [PMID: 39576881 DOI: 10.1021/acsami.4c17540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Immune-involved cell communications have recently been introduced as key role players in the fate of mesenchymal stem cells in making bone tissue. In this study, a drug delivery system for bone (re)generation based on copper-doped mesoporous bioactive glass nanoparticles (BGNPs) was developed to codeliver copper as a biologically active ion and icariin as an anti-inflammatory agent. This design was based on temporal inflammation fluctuations from proinflammatory to anti-inflammatory during bone generation. Three in vitro models were performed with human mesenchymal stem cells (hMSCs) to verify the osteo-immunomodulatory effects of released copper ions and icariin: nonstimulated, co-conditioned with macrophage medium and co-cultured with macrophages. Both icariin and copper showed increased levels of alkaline phosphatase activation, indicating a direct osteogenic effect. Copper-doped BGNPs showed the highest increase of osteo-immunogenic properties in a mineralization assay and also induced short-term inflammation. However, the mineralization dropped in copper doped BGNPs after loading with icariin due to copper-icariin chelate formation and inhibition of the early inflammatory phase in the immune-stimulated in vitro models. In the absence of copper, the direct osteogenic properties of icariin overtook its osteo-immunogenic inhibition and increased calcification. Overall, BGNPs doped with 5 mol % copper and no icariin showed the highest bone-forming capacity.
Collapse
Affiliation(s)
- Azin Khodaei
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
- Department of Orthopedics, University Medical Center Utrecht, 3508GA Utrecht, The Netherlands
| | - Qaisar Nawaz
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Zhengqing Zhu
- Department of Orthopedics, University Medical Center Utrecht, 3508GA Utrecht, The Netherlands
| | - Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, 3508GA Utrecht, The Netherlands
- Regenerative Medicine Centre Utrecht, Utrecht University, 3508GA Utrecht, The Netherlands
| | - Harrie Weinans
- Department of Orthopedics, University Medical Center Utrecht, 3508GA Utrecht, The Netherlands
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
4
|
Quan Y, Yu X. The Cytotoxic Effects of Human Mesenchymal Stem Cells Induced by Uranium. BIOLOGY 2024; 13:525. [PMID: 39056718 PMCID: PMC11274140 DOI: 10.3390/biology13070525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Bone is a major tissue for uranium deposition in human body. Considering mesenchymal stem cells (MSCs) play a vital role in bone formation and injury recovery, studying the mechanism of MSCs responding to uranium poisoning can benefit the understanding of bone damage and repair after uranium exposure. Cellular structural alterations were analyzed via transmission electron microscopy (TEM). Changes in cellular behaviors were assessed through cellular viability, apoptosis, and the production of DNA double-strand breaks (DSBs). In addition, the influence of gap junctional intercellular communication (GJIC) on uranium toxicity was assessed. The disruption of MSCs was elevated with the increase in uranyl nitrate concentration, as shown by TEM micrograph. This was verified by the results of cellular viability and DSB production. Interestingly, the results of apoptosis assay indicated significant apoptosis occurred, which was accompanied with an obvious disruption of cellular membranes. Furthermore, closely contacted cell confluence groups exhibited resistant to uranium poisoning in contrast to sparse growth groups, which can be eliminated with the pretreatment of a GJIC inhibitor in the close connection group. To verify the association between GJIC and cytotoxic effects of uranyl nitrate, GJIC function was evaluated by wound healing and cellular migration. The results showed an inhibition of the healing ratio and migration ability induced by the exposure of uranyl nitrate. The low transfer efficiency of the dye coupling experiment and depressed expression of gap functional protein connexins confirmed the impairment of GJIC function. These results suggest that uranium toxicity is involved with GJIC dysfunction.
Collapse
Affiliation(s)
- Yi Quan
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China;
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215000, China
| | - Xiaofang Yu
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China;
| |
Collapse
|
5
|
Hang K, Wang Y, Bai J, Wang Z, Wu W, Zhu W, Liu S, Pan Z, Chen J, Chen W. Chaperone-mediated autophagy protects the bone formation from excessive inflammation through PI3K/AKT/GSK3β/β-catenin pathway. FASEB J 2024; 38:e23646. [PMID: 38795328 DOI: 10.1096/fj.202302425r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/06/2024] [Accepted: 04/22/2024] [Indexed: 05/27/2024]
Abstract
Multiple regulatory mechanisms are in place to ensure the normal processes of bone metabolism, encompassing both bone formation and absorption. This study has identified chaperone-mediated autophagy (CMA) as a critical regulator that safeguards bone formation from the detrimental effects of excessive inflammation. By silencing LAMP2A or HSCA8, we observed a hindrance in the osteoblast differentiation of human bone marrow mesenchymal stem cells (hBMSCs) in vitro. To further elucidate the role of LAMP2A, we generated LAMP2A gene knockdown and overexpression of mouse BMSCs (mBMSCs) using adenovirus. Our results showed that LAMP2A knockdown led to a decrease in osteogenic-specific proteins, while LAMP2A overexpression favored the osteogenesis of mBMSCs. Notably, active-β-catenin levels were upregulated by LAMP2A overexpression. Furthermore, we found that LAMP2A overexpression effectively protected the osteogenesis of mBMSCs from TNF-α, through the PI3K/AKT/GSK3β/β-catenin pathway. Additionally, LAMP2A overexpression significantly inhibited osteoclast hyperactivity induced by TNF-α. Finally, in a murine bone defect model, we demonstrated that controlled release of LAMP2A overexpression adenovirus by alginate sodium capsule efficiently protected bone healing from inflammation, as confirmed by imaging and histological analyses. Collectively, our findings suggest that enhancing CMA has the potential to safeguard bone formation while mitigating hyperactivity in bone absorption.
Collapse
Affiliation(s)
- Kai Hang
- Department of Orthopaedics, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, Hangzhou, China
| | - YiBo Wang
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - JinWu Bai
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - ZhongXiang Wang
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - WeiLiang Wu
- Department of Orthopaedics, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, Hangzhou, China
| | - WeiWei Zhu
- Department of Orthopaedics, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, Hangzhou, China
| | - ShuangAi Liu
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - ZhiJun Pan
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - JianSong Chen
- Department of Orthopaedics, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, Hangzhou, China
| | - WenHao Chen
- Department of Orthopaedics, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, Hangzhou, China
| |
Collapse
|
6
|
Miceli G, Basso MG, Pintus C, Pennacchio AR, Cocciola E, Cuffaro M, Profita M, Rizzo G, Tuttolomondo A. Molecular Pathways of Vulnerable Carotid Plaques at Risk of Ischemic Stroke: A Narrative Review. Int J Mol Sci 2024; 25:4351. [PMID: 38673936 PMCID: PMC11050267 DOI: 10.3390/ijms25084351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The concept of vulnerable carotid plaques is pivotal in understanding the pathophysiology of ischemic stroke secondary to large-artery atherosclerosis. In macroscopic evaluation, vulnerable plaques are characterized by one or more of the following features: microcalcification; neovascularization; lipid-rich necrotic cores (LRNCs); intraplaque hemorrhage (IPH); thin fibrous caps; plaque surface ulceration; huge dimensions, suggesting stenosis; and plaque rupture. Recognizing these macroscopic characteristics is crucial for estimating the risk of cerebrovascular events, also in the case of non-significant (less than 50%) stenosis. Inflammatory biomarkers, such as cytokines and adhesion molecules, lipid-related markers like oxidized low-density lipoprotein (LDL), and proteolytic enzymes capable of degrading extracellular matrix components are among the key molecules that are scrutinized for their associative roles in plaque instability. Through their quantification and evaluation, these biomarkers reveal intricate molecular cross-talk governing plaque inflammation, rupture potential, and thrombogenicity. The current evidence demonstrates that plaque vulnerability phenotypes are multiple and heterogeneous and are associated with many highly complex molecular pathways that determine the activation of an immune-mediated cascade that culminates in thromboinflammation. This narrative review provides a comprehensive analysis of the current knowledge on molecular biomarkers expressed by symptomatic carotid plaques. It explores the association of these biomarkers with the structural and compositional attributes that characterize vulnerable plaques.
Collapse
Affiliation(s)
- Giuseppe Miceli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Maria Grazia Basso
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Chiara Pintus
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Andrea Roberta Pennacchio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Elena Cocciola
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Mariagiovanna Cuffaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Martina Profita
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Giuliana Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| |
Collapse
|
7
|
Hakki SS, Batoon L, Koh AJ, Kannan R, Mendoza‐Reinoso V, Rubin J, Mccauley LK, Roca H. The effects of preosteoblast-derived exosomes on macrophages and bone in mice. J Cell Mol Med 2024; 28:e18029. [PMID: 37929757 PMCID: PMC10805488 DOI: 10.1111/jcmm.18029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/25/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023] Open
Abstract
The effect of preosteoblast-derived exosomes on bone marrow macrophages (BMMΦ) and calvarial osteoblasts (cOB) was evaluated in vitro, and bone formation studies were performed in vivo in mice. Preosteoblastic MC3T3-E1 clone 4 (MC4) cell-derived exosomes (MC4exo) were characterized with particle tracking, transmission electron microscopy and western blot analysis to validate size, number, shape and phenotypic exosome markers. Exosomes pre-labelled with PKH67 were incubated with BMMΦ and phagocytosis of exosomes was confirmed. To examine the effect of MC4exo on macrophage polarization, BMMΦ were treated with MC4exo and the expression of pro- and anti-inflammatory cytokines was determined by qPCR. MC4exo treatment upregulated mRNA expression of Cd86, Il1β, Ccl2, Rankl and Nos, and downregulated Cd206, Il10 and Tnfα, suggesting a shift towards pro-inflammatory 'M1-like' macrophage polarization. Combination of RANKL and MC4exo increased osteoclast differentiation of BMMΦ in comparison to RANKL alone as analysed by TRAP staining. MC4exo treatment showed no significant effect on calvarial osteoblast mineralization. For in vivo studies, intratibial inoculation of MC4exo (2 × 109 particles in PBS, n = 12) and vehicle control (PBS only, n = 12) was performed in C57Bl/6 mice (8 weeks, male). Micro-CT analyses of the trabecular and cortical bone compartments were assessed at 4 weeks post-injection. Tibial sections were stained for TRAP activity to determine osteoclast presence and immunofluorescence staining was performed to detect osteocalcin (Ocn), osterix (Osx) and F4/80 expression. Intratibial inoculation of MC4exo increased the diaphyseal bone mineral density and trabecular bone volume fraction due to increased trabecular number. This increase in bone was accompanied by a reduction in bone marrow macrophages and osteoclasts at the experimental endpoint. Together, these findings suggest that preosteoblast-derived exosomes enhanced bone formation by influencing macrophage responses.
Collapse
Affiliation(s)
- Sema S. Hakki
- School of Dentistry, Periodontics and Oral MedicineUniversity of MichiganAnn ArborMichiganUSA
- Department of Periodontology, Faculty of DentistrySelcuk UniversityKonyaTurkey
| | - Lena Batoon
- School of Dentistry, Periodontics and Oral MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Amy J. Koh
- School of Dentistry, Periodontics and Oral MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Rahasudha Kannan
- School of Dentistry, Periodontics and Oral MedicineUniversity of MichiganAnn ArborMichiganUSA
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | | | - John Rubin
- School of Dentistry, Periodontics and Oral MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Laurie K. Mccauley
- School of Dentistry, Periodontics and Oral MedicineUniversity of MichiganAnn ArborMichiganUSA
- Department of Pathology, Medical SchoolUniversity of MichiganAnn ArborMichiganUSA
| | - Hernan Roca
- School of Dentistry, Periodontics and Oral MedicineUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
8
|
Thompson AL, Grenald SA, Ciccone HA, Mohty D, Smith AF, Coleman DL, Bahramnejad E, De Leon E, Kasper-Conella L, Uhrlab JL, Margolis DS, Salvemini D, Largent-Milnes TM, Vanderah TW. Morphine-induced osteolysis and hypersensitivity is mediated through toll-like receptor-4 in a murine model of metastatic breast cancer. Pain 2023; 164:2463-2476. [PMID: 37326644 PMCID: PMC10578422 DOI: 10.1097/j.pain.0000000000002953] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/28/2023] [Accepted: 04/18/2023] [Indexed: 06/17/2023]
Abstract
ABSTRACT The propensity for breast cancer to metastasize to bone is coupled to the most common complaint among breast cancer patients: bone pain. Classically, this type of pain is treated using escalating doses of opioids, which lack long-term efficacy due to analgesic tolerance, opioid-induced hypersensitivity, and have recently been linked to enhanced bone loss. To date, the molecular mechanisms underlying these adverse effects have not been fully explored. Using an immunocompetent murine model of metastatic breast cancer, we demonstrated that sustained morphine infusion induced a significant increase in osteolysis and hypersensitivity within the ipsilateral femur through the activation of toll-like receptor-4 (TLR4). Pharmacological blockade with TAK242 (resatorvid) as well as the use of a TLR4 genetic knockout ameliorated the chronic morphine-induced osteolysis and hypersensitivity. Genetic MOR knockout did not mitigate chronic morphine hypersensitivity or bone loss. In vitro studies using RAW264.7 murine macrophages precursor cells demonstrated morphine-enhanced osteoclastogenesis that was inhibited by the TLR4 antagonist. Together, these data indicate that morphine induces osteolysis and hypersensitivity that are mediated, in part, through a TLR4 receptor mechanism.
Collapse
Affiliation(s)
- Austen L. Thompson
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Shaness A. Grenald
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Haley A. Ciccone
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Dieter Mohty
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Angela F. Smith
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Deziree L. Coleman
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Erfan Bahramnejad
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Erick De Leon
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | - Logan Kasper-Conella
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | | | - David S. Margolis
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
- Orthopaedic Surgery, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Daniela Salvemini
- Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Tally M. Largent-Milnes
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
- Comprehensive Pain and Addiction Center, University of Arizona, Tucson, AZ, United States
| | - Todd W. Vanderah
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
- Comprehensive Pain and Addiction Center, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
9
|
Otçu S, Deveci E, Özgökçe Ç, Gürsoy GT, Tuncer MC. Protective effect of nebivolol on rat ovary exposed to deltamethrin toxicity. Acta Cir Bras 2023; 38:e385423. [PMID: 37878988 PMCID: PMC10629476 DOI: 10.1590/acb385423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/29/2023] [Indexed: 10/27/2023] Open
Abstract
PURPOSE We aimed to investigate the antioxidant activity of nebivolol against possible damage to the ovarian tissue due to the application of deltamethrin as a toxic agent, by evaluating histopathological proliferating cell nuclear antigen (PCNA) and tumor necrosis factor-alpha (TNF-α) signal molecules immunohistochemically. METHODS The animals were divided into three groups as control, deltamethrin and deltamethrin + nebivolol groups. Vaginal smears were taken after the animals were mated and detected on the first day of pregnancy. After the sixth day, deltamethrin (0.5 mL of 30 mg/kg BW undiluted ULV), and 2 mL of sterile nebivolol solution were administered intraperitoneally every day for 6-21 periods. After routine histopathological follow-up, the ovarian tissue was stained with hematoxylin and eosin stain. RESULTS Control group showed normal histology of ovarium. In deltamethrin group, hyperplasic cells, degenerative follicles, pyknotic nuclei, inflammation and hemorrhagic areas were observed. Nebivolol treatment restored these pathologies. Deltamethrin treatment increased TNF-α and PCNA reaction. However, nebivolol decreased the expression. CONCLUSIONS It was thought that deltamethrin toxicity adversely affected follicle development by inducing degeneration and apoptotic process in preantral and antra follicle cells, and nebivolol administration might reduce inflammation and slow down the apoptotic signal in the nuclear phase and regulate reorganization.
Collapse
Affiliation(s)
- Serap Otçu
- Health Sciences University – Diyarbakır Gazi Yaşargil, Training and Research Hospital – Department of Obstetrics and Gynecology – Diyarbakır – Turkey
| | - Engin Deveci
- Dicle University – Medical School – Department of Histology and Embryology – Diyarbakır – Turkey
| | - Çağdaş Özgökçe
- Zeynep Kamil Hospital – Department of Obstetrics and Gynecology – Perinatology Department – Istanbul – Turkey
| | - Görkem Tutal Gürsoy
- Healt Ministry of Türkiye Republic – Ankara Bilkent City Hospital – Department of Neurology – Ankara –Turkey
| | - Mehmet Cudi Tuncer
- Dicle University – Medical School – Department of Anatomy – Diyarbakır – Turkey
| |
Collapse
|
10
|
Zhang Q, Liu J, Yao D, Shi JX, Liu YJ, Wei YG, Guo S. Comprehensive Analysis to Identify Rh Family C Glycoprotein ( RHCG) as the Causative Gene for Psoriasis and Search for Alternative Treatment Modalities. Drug Des Devel Ther 2023; 17:2593-2611. [PMID: 37664450 PMCID: PMC10473404 DOI: 10.2147/dddt.s421300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Background Psoriasis is a complex autoimmune disease. Frequent interactions between epidermal and immune cells are likely to be responsible for the strong heterogeneity of psoriasis. Therefore, our work aims to build on current knowledge and further search for new molecular mechanisms related to psoriasis pathogenesis in order to develop new targeted drugs. Methods Data from psoriasis samples were obtained from the Gene Expression Omnibus (GEO) database, and batch effects were corrected using the "Combat" algorithm in the "SVA" package. Functional annotation of differential genes in psoriasis was performed by Gene set enrichment analysis (GSEA). Core functional modules were identified using the Multiscale Embedded Gene Co-Expression Network Analysis (MEGENA) algorithm for selection from the differential gene interaction network. The expression and potential function of Rh Family C Glycoprotein (RHCG) was predicted in single cell data by the "Seurat" package and validated in psoriasis samples by multiplex immunofluorescence. In addition, the regulatory function of HOP Homeobox (HOPX) on RHCG in keratinocytes was confirmed using RNA interference. Using immune infiltration analysis, RHCG and DC cells were analyzed for their association. Finally, the molecular mechanisms of treatment of psoriasis using Tripterygii Radix (TR) and Cinnamomi Ramulus (CR) were explored through network pharmacology and experimental validation. Results Immune response (represented by C1_2) and collagen matrix formation (represented by C1_3) were identified as two important pathogenic factors in psoriasis and helped to define new biological subtypes of psoriasis. One important psoriasis hub gene, RHCG, was obtained and found to be closely associated with keratinocyte differentiation as well as DC cell maturation. And RHCG was regulated by HOPX in keratinocytes. In addition, the mechanism of action of CR and TR in the treatment of psoriasis was tentatively confirmed to be related to TRPV3, NFKB2, and YAP1. Conclusions Our study identifies a new causal disease gene (RHCG) and offers potential alternatives for the treatment of psoriasis.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Jia Liu
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Dan Yao
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Jian-Xin Shi
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Yuan-Jie Liu
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
- Key Laboratory of Tumor System Biology of Traditional Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Yue-Gang Wei
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Shun Guo
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| |
Collapse
|
11
|
Kang H, Yang S, Lee J. Tauroursodeoxycholic Acid Enhances Osteogenic Differentiation through EGFR/p-Akt/CREB1 Pathway in Mesenchymal Stem Cells. Cells 2023; 12:1463. [PMID: 37296585 PMCID: PMC10252885 DOI: 10.3390/cells12111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are pluripotent stromal cells that are among the most appealing candidates for regenerative medicine and may aid in the repair and regeneration of skeletal disorders through multiple mechanisms, including angiogenesis, differentiation, and response to inflammatory conditions. Tauroursodeoxycholic acid (TUDCA) has recently been used in various cell types as one of these drugs. The mechanism of osteogenic differentiation by TUDCA in hMSCs remains unknown. METHODS Cell proliferation was performed by the WST-1 method, and alkaline phosphatase activity and alizarin red-sulfate staining were used to confirm the osteogenic differentiation indicator. Expression of genes related to bone differentiation and specific genes related to signaling pathways was confirmed by quantitative real-time polymerase chain reaction. RESULTS We found that cell proliferation was higher as the concentration increased, and showed that the induction of osteogenic differentiation was significantly enhanced. We also show that osteogenic differentiation genes were upregulated, with the expression of the epidermal growth factor receptor (EGFR) and cAMP responsive element binding protein 1 (CREB1) being specifically high. To confirm the participation of the EGFR signaling pathway, the osteogenic differentiation index and expression of osteogenic differentiation genes were determined after using an EGFR inhibitor. As a result, EGFR expression was remarkably low, and that of CREB1, cyclin D1, and cyclin E1 was also significantly low. CONCLUSIONS Therefore, we suggest that TUDCA-induced osteogenic differentiation of human MSCs is enhanced through the EGFR/p-Akt/CREB1 pathway.
Collapse
Affiliation(s)
- Hyojin Kang
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Wonkwang University, 77 Dunsan-ro, Seo-gu, Daejeon 35233, Republic of Korea;
| | - Sunsik Yang
- Bonecell Biotech Inc., 77 Dunsan-dong, Seo-gu, Daejeon 35233, Republic of Korea;
| | - Jun Lee
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Wonkwang University, 77 Dunsan-ro, Seo-gu, Daejeon 35233, Republic of Korea;
| |
Collapse
|
12
|
Tanboon J, Inoue M, Hirakawa S, Tachimori H, Hayashi S, Noguchi S, Okiyama N, Fujimoto M, Suzuki S, Nishino I. Muscle pathology of antisynthetase syndrome according to antibody subtypes. Brain Pathol 2023:e13155. [PMID: 36882048 DOI: 10.1111/bpa.13155] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
Identification of antisynthetase syndrome (ASS) could be challenging due to inaccessibility and technical difficulty of the serology test for the less common non-Jo-1 antibodies. This study aimed to describe ASS antibody-specific myopathology and evaluate the diagnostic utility of myofiber HLA-DR expression. We reviewed 212 ASS muscle biopsies and compared myopathologic features among subtypes. Additionally, we compared their HLA-DR staining pattern with 602 non-ASS myositis and 140 genetically confirmed myopathies known to have an inflammatory component. We used t-test and Fisher's exact for comparisons and used sensitivity, specificity, positive and negative predictive values to assess the utility of HLA-DR expression for ASS diagnosis. RNAseq performed from a subset of myositis cases and histologically normal muscle biopsies was used to evaluate interferon (IFN)-signaling pathway-related genes. Anti-OJ ASS showed prominent myopathology with higher scores in muscle fiber (4.6 ± 2.0 vs. 2.8 ± 1.8, p = 0.001) and inflammatory domains (6.8 ± 3.2 vs. 4.5 ± 2.9, p = 0.006) than non-OJ ASS. HLA-DR expression and IFN-γ-related genes upregulation were prominent in ASS and inclusion body myositis (IBM). When dermatomyositis and IBM were excluded, HLA-DR expression was 95.4% specific and 61.2% sensitive for ASS with a positive predictive value of 85.9% and a negative predictive value of 84.2%; perifascicular HLA-DR pattern is common in anti-Jo-1 ASS than non-Jo-1 ASS (63.1% vs. 5.1%, p < 0.0001). In the appropriate clinicopathological context, myofiber HLA-DR expression help support ASS diagnosis. The presence of HLA-DR expression suggests involvement of IFN-γ in the pathogenesis of ASS, though the detailed mechanisms have yet to be elucidated.
Collapse
Affiliation(s)
- Jantima Tanboon
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan.,Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | - Michio Inoue
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan.,Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | - Shinya Hirakawa
- Department of Clinical Data Science, Clinical Research & Education Promotion Division, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | - Hisateru Tachimori
- Department of Clinical Data Science, Clinical Research & Education Promotion Division, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | - Shinichiro Hayashi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan.,Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | - Satoru Noguchi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan.,Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | - Naoko Okiyama
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shigeaki Suzuki
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan.,Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan.,Department of Clinical Genome Analysis, Medical Genome Center, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| |
Collapse
|
13
|
Si Y, Liu H, Li M, Jiang X, Yu H, Sun D. An efficient metal-organic framework-based drug delivery platform for synergistic antibacterial activity and osteogenesis. J Colloid Interface Sci 2023; 640:521-539. [PMID: 36878070 DOI: 10.1016/j.jcis.2023.02.149] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/18/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Bone implants for clinical application should be endowed with antibacterial activity, biocompatibility, and even osteogenesis-promoting properties. In this work, metal-organic framework (MOF) based drug delivery platform was used to modify titanium implants for improved clinical applicability. Methyl Vanillate@Zeolitic Imidazolate Framework-8 (MV@ZIF-8) was immobilized on the polydopamine (PDA) modified titanium. The sustainable release of the Zn2+ and MV causes substantial oxidative damage to Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The increased reactive oxygen species (ROS) significantly up-regulates the expression of oxidative stress and DNA damage response genes. Meanwhile, the structural disruption of lipid membranes caused by the ROS, the damage caused by Zinc active sites and the damage accelerated by the MV are both involved in inhibiting bacterial proliferation. The up-regulated expression of the osteogenic-related genes and proteins indicated that the MV@ZIF-8 could effectively promote the osteogenic differentiation of the human bone mesenchymal stem cells (hBMSCs). RNA sequencing and Western blotting analysis revealed that the MV@ZIF-8 coating activates the canonical Wnt/β-catenin signaling pathway through the regulation of tumor necrosis factor (TNF) pathway, thereby promoting the osteogenic differentiation of the hBMSCs. This work demonstrates a promising application of the MOF-based drug delivery platform in bone tissue engineering.
Collapse
Affiliation(s)
- Yunhui Si
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Huanyao Liu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Mengsha Li
- School of Materials Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Xuzhou Jiang
- School of Materials Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, PR China; Nanotechnology Research Center, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Hongying Yu
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, PR China.
| | - Dongbai Sun
- School of Materials Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
14
|
Li W, Liu Q, Shi J, Xu X, Xu J. The role of TNF-α in the fate regulation and functional reprogramming of mesenchymal stem cells in an inflammatory microenvironment. Front Immunol 2023; 14:1074863. [PMID: 36814921 PMCID: PMC9940754 DOI: 10.3389/fimmu.2023.1074863] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are pluripotent stem cells with multidirectional differentiation potential and strong immunomodulatory capacity. MSCs have been widely used in the treatment of injured, inflammatory, and immune-related diseases. Resting MSCs lack differentiation and immunomodulatory ability. Instead, they rely on microenvironmental factors to: 1) stimulate and regulate their expression of specific cell growth factors, chemokines, immunomodulatory factors, or receptors; or 2) direct their differentiation into specific tissue cells, which ultimately perform tissue regeneration and repair and immunomodulatory functions. Tumor necrosis factor (TNF)-α is central to the creation of an inflammatory microenvironment. TNF-α regulates the fate and functional reprogramming of MSCs, either alone or in combination with a variety of other inflammatory factors. TNF-α can exert opposing effects on MSCs, from inducing MSC apoptosis to enhancing their anti-tumor capacity. In addition, the immunomodulation and osteogenic differentiation capacities of MSCs, as well as their exosome or microvesicle components vary significantly with TNF-α stimulating concentration, time of administration, or its use in combination with or without other factors. Therefore, this review discusses the impact of TNF-α on the fate and functional reprogramming of MSCs in the inflammatory microenvironment, to provide new directions for improving the immunomodulatory and tissue repair functions of MSCs and enhance their therapeutic potential.
Collapse
Affiliation(s)
- Weiqiang Li
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China.,Department of Research and Development, Ankerui (Shanxi) Biological Cell Co., Ltd., Shanxi, China
| | - Qianqian Liu
- Department of Research and Development, Ankerui (Shanxi) Biological Cell Co., Ltd., Shanxi, China
| | - Jinchao Shi
- Department of Research and Development, Ankerui (Shanxi) Biological Cell Co., Ltd., Shanxi, China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China.,Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Jinyi Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Scalzone A, Cerqueni G, Wang X, Ferreira‐Duarte A, Dalgarno K, Mattioli‐Belmonte M, Gentile P. An In Vitro Engineered Osteochondral Model as Tool to Study Osteoarthritis Environment. Adv Healthc Mater 2023; 12:e2202030. [PMID: 36300892 PMCID: PMC11481676 DOI: 10.1002/adhm.202202030] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/27/2022] [Indexed: 01/18/2023]
Abstract
Osteoarthritis (OA) is a joint degenerative pathology characterized by mechanical and inflammatory damages affecting synovium, articular cartilage (AC), and subchondral bone (SB). Several in vitro, in vivo, and ex vivo models are developed to study OA, but to date the identification of specific pharmacological targets seems to be hindered by the lack of models with predictive capabilities. This study reports the development of a biomimetic in vitro model of AC and SB interface. Gellan gum methacrylated and chondroitin sulfate/dopamine hydrogels are used for the AC portion, whereas polylactic acid functionalized with gelatin and nanohydroxyapatite for the SB. The physiological behavior of immortalized stem cells (Y201s) and Y201s differentiated in chondrocytes (Y201-Cs), respectively, for the SB and AC, is demonstrated over 21 days of culture in vitro in healthy and pathological conditions, whilst modeling the onset of cytokines-induced OA. The key metrics are: lower glycosaminoglycans production and increased calcification given by a higher Collagen X content, in the AC deep layer; higher expression of pro-angiogenic factor (vegf) and decreased expression of osteogenic markers (coll1, spp1, runx2) in the SB. This novel approach provides a new tool for studying the development and progression of OA.
Collapse
Affiliation(s)
| | - Giorgia Cerqueni
- Department of Clinical and Molecular Sciences (DISCLIMO)Università Politecnica delle MarcheAncona60126Italy
| | - Xiao‐Nong Wang
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | | | - Kenny Dalgarno
- School of EngineeringNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Monica Mattioli‐Belmonte
- Department of Clinical and Molecular Sciences (DISCLIMO)Università Politecnica delle MarcheAncona60126Italy
| | | |
Collapse
|
16
|
Singh YP, Moses JC, Bandyopadhyay A, Mandal BB. 3D Bioprinted Silk-Based In Vitro Osteochondral Model for Osteoarthritis Therapeutics. Adv Healthc Mater 2022; 11:e2200209. [PMID: 35670084 DOI: 10.1002/adhm.202200209] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/17/2022] [Indexed: 01/28/2023]
Abstract
3D bioprinting of osteochondral tissue offers unique opportunities for enabling precise pharmacological interventions in osteoarthritis (OA). The current study investigates the screening potential of anti-inflammatory drugs using bioprinted inflamed human osteochondral units. The biomimetic hierarchical geometry is bioprinted using silk-based bioinks encapsulating pre-differentiated stem cells, creating an in vitro model. Inflammation is stimulated in the model, using tumor necrosis factor-alpha and Interleukin-1 beta pro-inflammatory cytokines. The resultant degeneration, akin to OA, is flagged by key markers like sulfated glycosaminoglycan, collagen, alkaline phosphatase, and downregulation of osteochondral transcript levels. In the next step, the screening of anti-inflammatory drugs is validated using celecoxib and rhein. Consequently, in the inflamed constructs, the initial upregulation of the key inflammatory mediators (nitric oxide, Prostaglandin E2), is subsequently downregulated, post-drug treatment. In addition, catabolic markers (matrix metalloproteinases and aggrecanase-1), indicative of hypertrophic and apoptosing chondrocytes, are significantly downregulated in the treatment groups; while the transcript and protein levels required for osteochondral health are attenuated. Therefore, the in vitro model mimicks the inflammation in the early stages of OA, and corroborates a potential high-throughput platform for screening novel anti-inflammatory drugs in OA therapeutics.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Joseph Christakiran Moses
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Ashutosh Bandyopadhyay
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.,Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.,School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
17
|
Pingali U, Nutalapati C. Shilajit extract reduces oxidative stress, inflammation, and bone loss to dose-dependently preserve bone mineral density in postmenopausal women with osteopenia: A randomized, double-blind, placebo-controlled trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154334. [PMID: 35933897 DOI: 10.1016/j.phymed.2022.154334] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/27/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Accelerated bone loss associated with aging and estrogen withdrawal is mediated in part by increased oxidative stress and inflammation. OBJECTIVE Investigate dietary supplementation with a standardized aqueous extract of shilajit with clinically demonstrated antioxidant, anti-inflammatory, and collagen-promoting activity on attenuating bone loss in postmenopausal women with osteopenia. DESIGN Sixty postmenopausal women aged 45 - 65 years with osteopenia were randomized to receive 1 of 3 treatments daily for 48 weeks: (1) placebo, (2) 250 mg shilajit extract, or (3) 500 mg shilajit extract. Bone mineral density (BMD) of the lumbar spine (LS) and femoral neck (FN) were measured at weeks 0, 24, and 48, and circulating markers of bone turnover (CTX-1, BALP, RANKL, OPG), oxidative stress (MDA, GSH), and inflammation (hsCRP) at weeks 0, 12, 24, and 48. RESULTS BMD of both the LS and FN progressively decreased in women receiving placebo but was dose-dependently attenuated with shilajit extract supplementation, resulting in significantly increased percentage changes from baseline in BMD at 24- and 48-weeks in both supplemented groups compared to placebo (p < 0.001). CTX-1, BALP, and RANKL decreased, whereas OPG increased, in both groups supplemented with the shilajit extract, but not in the placebo group, resulting in significantly decreased or increased percentage changes from baseline, respectively. MDA was significantly decreased (p < 0.001) and GSH was significantly increased (p < 0.001) in both supplemented groups compared to placebo from week 12 for the duration of the study. Progressive reductions in hsCRP were observed in both supplemented groups, resulting in significantly decreased percentage changes from baseline in supplemented women compared to placebo (p < 0.001). CONCLUSION Daily supplementation with this shilajit extract supports BMD in postmenopausal women with osteopenia in part by attenuating the increased bone turnover, inflammation and oxidative stress that coincides with estrogen deficiency in this population at increased risk for osteoporosis and bone fractures.
Collapse
Affiliation(s)
- Usharani Pingali
- Nizam's Institute of Medical Sciences, Department of Pharmacology and Therapeutics, Telangana, India.
| | - Chandrasekhar Nutalapati
- Nizam's Institute of Medical Sciences, Department of Pharmacology and Therapeutics, Telangana, India
| |
Collapse
|
18
|
Nouri-Goushki M, Eijkel BIM, Minneboo M, Fratila-Apachitei LE, Zadpoor AA. Osteoimmunomodulatory potential of 3D printed submicron patterns assessed in a direct co-culture model. BIOMATERIALS ADVANCES 2022; 139:212993. [PMID: 35882142 DOI: 10.1016/j.bioadv.2022.212993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Modulation of the immune response following the implantation of biomaterials can have beneficial effects on bone regeneration. This involves complex interactions between the inflammatory and osteogenic cells. Therefore, the study of cell-cell interactions using direct co-culture models integrated with biomaterials is of great interest. This research aimed to study the viability, morphology, and osteogenic activity of preosteoblasts (OBs) co-cultured with pro-inflammatory macrophages (M1s) on the 3D printed (non)patterned surfaces. OBs and M1s remained alive and proliferated actively for 14 days in the mixture of Dulbecco's Modified Eagle's Medium (DMEM) and alpha Minimum Essential Medium (α-MEM) (1:1), regardless of the cell ratio in the co-cultures. The spatial organization of the two types of cells changed with the time of culture from an initially uniform cell distribution to the formation of a thick layer of OBs covered by clusters of M1s. On day 7, the expression of PGE2 and TNF-α were upregulated in the co-culture relative to the mono-culture of OBs and M1s. The inflammation decreased differentiation and matrix mineralization of OBs after 28 days of culture. Interestingly, the incorporation of 3D printed submicron pillars into the direct co-culture model enhanced the differentiation of preosteoblasts, as shown by relatively higher RUNX2 expression, thereby revealing the osteoimmunomodulatory potential of such surface patterns.
Collapse
Affiliation(s)
- M Nouri-Goushki
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, the Netherlands.
| | - B I M Eijkel
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, the Netherlands
| | - M Minneboo
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, the Netherlands
| | - L E Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, the Netherlands.
| | - A A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, the Netherlands
| |
Collapse
|
19
|
Mo Q, Zhang W, Zhu A, Backman LJ, Chen J. Regulation of osteogenic differentiation by the pro-inflammatory cytokines IL-1β and TNF-α: current conclusions and controversies. Hum Cell 2022; 35:957-971. [PMID: 35522425 DOI: 10.1007/s13577-022-00711-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/23/2022] [Indexed: 12/09/2022]
Abstract
Treatment of complex bone fracture diseases is still a complicated problem that is urged to be solved in orthopedics. In bone tissue engineering, the use of mesenchymal stromal/stem cells (MSCs) for tissue repair brings hope to the medical field of bone diseases. MSCs can differentiate into osteoblasts and promote bone regeneration. An increasing number of studies show that the inflammatory microenvironment affects the osteogenic differentiation of MSCs. It is shown that TNF-α and IL-1β play different roles in the osteogenic differentiation of MSCs via different signal pathways. The main factors that affect the role of TNF-α and IL-1β in osteogenic differentiation of MSCs include concentration and the source of stem cells (different species and different tissues). This review in-depth analyzes the roles of pro-inflammatory cytokines in the osteogenic differentiation of MSCs and reveals some current controversies to provide a reference of comprehensively understanding.
Collapse
Affiliation(s)
- Qingyun Mo
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210096, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Aijing Zhu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ludvig J Backman
- Department of Integrative Medical Biology, Anatomy, Umeå University, SE-901 87, Umeå, Sweden
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, SE-901 87, Umeå, Sweden
| | - Jialin Chen
- School of Medicine, Southeast University, Nanjing, 210009, China.
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210096, China.
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
20
|
Bartlett CL, Cave EM, Crowther NJ, Ferris WF. A new perspective on the function of Tissue Non-Specific Alkaline Phosphatase: from bone mineralization to intra-cellular lipid accumulation. Mol Cell Biochem 2022; 477:2093-2106. [PMID: 35471716 DOI: 10.1007/s11010-022-04429-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/31/2022] [Indexed: 11/29/2022]
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) is one of four isozymes, which include germ cell, placental and intestinal alkaline phosphatases. The TNAP isozyme has 3 isoforms (liver, bone and kidney) which differ by tissue expression and glycosylation pattern. Despite a long history of investigation, the exact function of TNAP in many tissues is largely unknown. Only the bone isoform has been well characterised during mineralization where the enzyme hydrolyses pyrophosphate to inorganic phosphate, which combines with calcium to form hydroxyapatite crystals deposited as new bone. The inorganic phosphate also increases gene expression of proteins that support tissue mineralization. Recent studies have shown that TNAP is expressed in preadipocytes from several species, and that inhibition of TNAP activity causes attenuation of intracellular lipid accumulation in these and other lipid-storing cells. The mechanism by which TNAP stimulates lipid accumulation is not known; however, proteins that are important for controlling phosphate levels in bone are also expressed in adipocytes. This review examines the evidence that inorganic phosphate generated by TNAP promotes transcription that enhances the expression of the regulators of lipid storage and consequently, that TNAP has a major function of lipid metabolism.
Collapse
Affiliation(s)
- Cara-Lesley Bartlett
- Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Eleanor Margaret Cave
- Department of Chemical Pathology, University of the Witwatersrand Faculty of Health Sciences, Johannesburg, South Africa
| | - Nigel John Crowther
- Department of Chemical Pathology, University of the Witwatersrand Faculty of Health Sciences, Johannesburg, South Africa.,Department of Chemical Pathology, National Health Laboratory Service, Johannesburg, South Africa
| | - William Frank Ferris
- Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
21
|
Wu Z, Bai J, Ge G, Wang T, Feng S, Ma Q, Liang X, Li W, Zhang W, Xu Y, Guo K, Cui W, Zha G, Geng D. Regulating Macrophage Polarization in High Glucose Microenvironment Using Lithium-Modified Bioglass-Hydrogel for Diabetic Bone Regeneration. Adv Healthc Mater 2022; 11:e2200298. [PMID: 35388979 DOI: 10.1002/adhm.202200298] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/02/2022] [Indexed: 01/05/2023]
Abstract
Diabetes mellitus is a chronic metabolic disease with a proinflammatory microenvironment, causing poor vascularization and bone regeneration. Due to the lack of effective therapy and one-sided focus on the direct angiogenic properties of biomaterials and osteogenesis stimulation, the treatment of diabetic bone defect remains challenging and complex. In this study, using gelatin methacryloyl (GelMA) as a template, a lithium (Li) -modified bioglass-hydrogel for diabetic bone regeneration is developed. It exhibits a sustained ion release for better bone regeneration under diabetic microenvironment. The hydrogel is shown to be mechanically adaptable to the complex shape of the defect. In vitro, Li-modified bioglass-hydrogel promoted cell proliferation, direct osteogenesis, and regulated macrophages in high glucose (HG) microenvironment, with the secretion of bone morphogenetic protein-2 and vascular endothelial growth factor to stimulate osteogenesis and neovascularization indirectly. In vivo, composite hydrogels containing GelMA and Li-MBG (GM/M-Li) release Li ions to relieve inflammation, providing an anti-inflammatory microenvironment for osteogenesis and angiogenesis. Applying Li-modified bioglass-hydrogel, significantly enhances bone regeneration in a diabetic rat bone defect. Together, both remarkable in vitro and in vivo outcomes in this study present an opportunity for diabetic bone regeneration on the basis of HG microenvironment.
Collapse
Affiliation(s)
- Zerui Wu
- Department of Orthopaedics The Affiliated Hospital of Xuzhou Medical University Xuzhou Jiangsu Province 221006 China
- Department of Orthopaedics The First Affiliated Hospital of Soochow University Suzhou Jiangsu Province 215006 China
| | - Jiaxiang Bai
- Department of Orthopaedics The First Affiliated Hospital of Soochow University Suzhou Jiangsu Province 215006 China
| | - Gaoran Ge
- Department of Orthopaedics The First Affiliated Hospital of Soochow University Suzhou Jiangsu Province 215006 China
| | - Tao Wang
- Department of Orthopaedics Shanghai General Hospital Shanghai Jiao Tong University School of Medicine 85 Wujin Road Shanghai 200080 P. R. China
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200025 P. R. China
| | - Shuo Feng
- Department of Orthopaedics The Affiliated Hospital of Xuzhou Medical University Xuzhou Jiangsu Province 221006 China
| | - Qiaoqiao Ma
- Department of Orthopaedics The Affiliated Hospital of Xuzhou Medical University Xuzhou Jiangsu Province 221006 China
| | - Xiaolong Liang
- Department of Orthopaedics The First Affiliated Hospital of Soochow University Suzhou Jiangsu Province 215006 China
| | - Wenming Li
- Department of Orthopaedics The First Affiliated Hospital of Soochow University Suzhou Jiangsu Province 215006 China
| | - Wei Zhang
- Department of Orthopaedics The First Affiliated Hospital of Soochow University Suzhou Jiangsu Province 215006 China
| | - Yaozeng Xu
- Department of Orthopaedics The First Affiliated Hospital of Soochow University Suzhou Jiangsu Province 215006 China
| | - Kaijin Guo
- Department of Orthopaedics The Affiliated Hospital of Xuzhou Medical University Xuzhou Jiangsu Province 221006 China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200025 P. R. China
| | - Guochun Zha
- Department of Orthopaedics The Affiliated Hospital of Xuzhou Medical University Xuzhou Jiangsu Province 221006 China
| | - Dechun Geng
- Department of Orthopaedics The First Affiliated Hospital of Soochow University Suzhou Jiangsu Province 215006 China
| |
Collapse
|
22
|
Yayama T, Mori K, Saito H, Fujikawa H, Kitagawa M, Okumura N, Nishizawa K, Nakamura A, Kumagai K, Mimura T, Imai S. Cytokine Profile From the Ligamentum Flavum in Patients with Ossification of the Posterior Longitudinal Ligament in the Cervical Spine. Spine (Phila Pa 1976) 2022; 47:277-285. [PMID: 34919077 DOI: 10.1097/brs.0000000000004302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Histological, immunohistochemical, and suspension array analyses of cytokine expression in human cervical ossification of the posterior longitudinal ligament (OPLL). OBJECTIVES The aim of this study was to determine whether changes in the cytokine profile reflect the maturation of chondrocytes and osteoblasts are associated with OPLL development. SUMMARY OF BACKGROUND DATA OPLL progresses gradually over a prolonged period and may lead to serious spinal cord complications. However, treatment methods only include conservative therapy for neurological symptoms or surgical decompression, whereas preventive therapy for OPLL remains nonexistent. METHODS Ligamentous samples were harvested from 24 patients with OPLL who underwent spinal surgery, and five control samples from cervical spondylotic myelo/radiculopathy patients without OPLL. Tissue sections were used for immunohistochemical studies and primary cells were cultured from the ligamentous samples for cytokine profiling. Using a suspension array system, concentrations of 27 inflammatory cytokines or growth factors were measured to generate the cytokine profiles. RESULTS Suspension array and immunoblot analysis revealed significant increments in the levels of interleukin (IL)-6, IL-1α, basic fibroblast growth factor, and RANTES in patients with OPLL. Immunohistochemical analysis further revealed that these factors were present in mesenchymal cells within the degenerative portion of the ligamentous matrix. CONCLUSION Our findings suggest that specific changes in the cytokine profile during ossification promote osteoblast differentiation, thereby providing new insights into OPLL pathogenesis. Moreover, this work supports the development of a new therapeutic method for preventing OPLL progression by regulating the cytokine profiles.Level of Evidence: 3.
Collapse
Affiliation(s)
- Takafumi Yayama
- Department of Orthopedic Surgery, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chen R, Hao Z, Wang Y, Zhu H, Hu Y, Chen T, Zhang P, Li J. Mesenchymal Stem Cell-Immune Cell Interaction and Related Modulations for Bone Tissue Engineering. Stem Cells Int 2022; 2022:7153584. [PMID: 35154331 PMCID: PMC8825274 DOI: 10.1155/2022/7153584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Critical bone defects and related delayed union and nonunion are still worldwide problems to be solved. Bone tissue engineering is mainly aimed at achieving satisfactory bone reconstruction. Mesenchymal stem cells (MSCs) are a kind of pluripotent stem cells that can differentiate into bone cells and can be used as one of the key pillars of bone tissue engineering. In recent decades, immune responses play an important role in bone regeneration. Innate immune responses provide a suitable inflammatory microenvironment for bone regeneration and initiate bone regeneration in the early stage of fracture repair. Adaptive immune responses maintain bone regeneration and bone remodeling. MSCs and immune cells regulate each other. All kinds of immune cells and secreted cytokines can regulate the migration, proliferation, and osteogenic differentiation of MSCs, which have a strong immunomodulatory ability to these immune cells. This review mainly introduces the interaction between MSCs and immune cells on bone regeneration and its potential mechanism, and discusses the practical application in bone tissue engineering by modulating this kind of cell-to-cell crosstalk. Thus, an in-depth understanding of these principles of bone immunology can provide a new way for bone tissue engineering.
Collapse
Affiliation(s)
- Renxin Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yi Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hongzhen Zhu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yingkun Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Tianhong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Peng Zhang
- Department of Orthopedics, Suzhou Science and Technology Town Hospital, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou 215153, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
24
|
Hanschkow M, Boulet N, Kempf E, Bouloumié A, Kiess W, Stein R, Körner A, Landgraf K. Expression of the Adipocyte Progenitor Markers MSCA1 and CD36 is Associated With Adipose Tissue Function in Children. J Clin Endocrinol Metab 2022; 107:e836-e851. [PMID: 34448000 PMCID: PMC8764220 DOI: 10.1210/clinem/dgab630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 12/05/2022]
Abstract
CONTEXT MSCA1 (mesenchymal stem cell antigen 1) and CD36 (cluster of differentiation 36) have been described as novel adipocyte progenitor markers in adults with a potential relevance for obesity and adipocyte progenitor function. OBJECTIVE With the early manifestation of obesity in children and formation of adipose tissue (AT) dysfunction, children provide the opportunity to characterize the function of MSCA1 and CD36 during physiological AT accumulation and with obesity and related disease. METHODS We investigated MSCA1 and CD36 expression in adipocytes and stroma vascular fraction (SVF) cells from 133 children of the Leipzig AT Childhood cohort with regard to AT accumulation and biology. In a subsample we analyzed how MSCA1 and CD36 expression is related to adipose progenitor capacities in vitro (ie, proliferation, differentiation and mitochondrial function). RESULTS Both MSCA1 and CD36 are differentially expressed in adipocytes and SVF cells of children. MSCA1 expression is positively correlated to obesity-associated AT dysfunction (ie, adipocyte hypertrophy and serum high-sensitivity C-reactive protein), and high SVF MSCA1 expression is associated with increased mitochondrial respiration in vitro. CD36 expression is not associated with AT dysfunction but SVF CD36 expression is downregulated in children with overweight and obesity and shows a positive association with the differentiation capacity of SVF cells ex vivo and in vitro. CONCLUSION Both MSCA1 and CD36 are associated with obesity-related alterations in AT of children. In particular, CD36 expression predicts adipogenic potential of SVF cells, indicating a potential role in the regulation of adipocyte hyperplasia and hypertrophy with obesity development in children.
Collapse
Affiliation(s)
- Martha Hanschkow
- University of Leipzig, Medical Faculty, University Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), Leipzig, Germany
| | - Nathalie Boulet
- University of Toulouse, Institute of Metabolic and Cardiovascular Diseases, Inserm, Toulouse, France
| | - Elena Kempf
- University of Leipzig, Medical Faculty, University Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), Leipzig, Germany
| | - Anne Bouloumié
- University of Toulouse, Institute of Metabolic and Cardiovascular Diseases, Inserm, Toulouse, France
| | - Wieland Kiess
- University of Leipzig, Medical Faculty, University Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), Leipzig, Germany
| | - Robert Stein
- University of Leipzig, Medical Faculty, University Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Antje Körner
- University of Leipzig, Medical Faculty, University Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), Leipzig, Germany
| | - Kathrin Landgraf
- University of Leipzig, Medical Faculty, University Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), Leipzig, Germany
- Correspondence: Kathrin Landgraf, PhD, Center for Pediatric Research Leipzig (CPL), Liebigstr. 19-21, 04103 Leipzig, Germany. E-mail:
| |
Collapse
|
25
|
Goettsch C, Strzelecka-Kiliszek A, Bessueille L, Quillard T, Mechtouff L, Pikula S, Canet-Soulas E, Luis MJ, Fonta C, Magne D. TNAP as a therapeutic target for cardiovascular calcification: a discussion of its pleiotropic functions in the body. Cardiovasc Res 2022; 118:84-96. [PMID: 33070177 PMCID: PMC8752354 DOI: 10.1093/cvr/cvaa299] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular calcification (CVC) is associated with increased morbidity and mortality. It develops in several diseases and locations, such as in the tunica intima in atherosclerosis plaques, in the tunica media in type 2 diabetes and chronic kidney disease, and in aortic valves. In spite of the wide occurrence of CVC and its detrimental effects on cardiovascular diseases (CVD), no treatment is yet available. Most of CVC involve mechanisms similar to those occurring during endochondral and/or intramembranous ossification. Logically, since tissue-nonspecific alkaline phosphatase (TNAP) is the key-enzyme responsible for skeletal/dental mineralization, it is a promising target to limit CVC. Tools have recently been developed to inhibit its activity and preclinical studies conducted in animal models of vascular calcification already provided promising results. Nevertheless, as its name indicates, TNAP is ubiquitous and recent data indicate that it dephosphorylates different substrates in vivo to participate in other important physiological functions besides mineralization. For instance, TNAP is involved in the metabolism of pyridoxal phosphate and the production of neurotransmitters. TNAP has also been described as an anti-inflammatory enzyme able to dephosphorylate adenosine nucleotides and lipopolysaccharide. A better understanding of the full spectrum of TNAP's functions is needed to better characterize the effects of TNAP inhibition in diseases associated with CVC. In this review, after a brief description of the different types of CVC, we describe the newly uncovered additional functions of TNAP and discuss the expected consequences of its systemic inhibition in vivo.
Collapse
Affiliation(s)
- Claudia Goettsch
- Department of Internal Medicine I, Cardiology, Medical Faculty, RWTH Aachen
University, Aachen, Germany
| | - Agnieszka Strzelecka-Kiliszek
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental
Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Laurence Bessueille
- Institute of Molecular and Supramolecular Chemistry and Biochemistry
(ICBMS), UMR CNRS 5246, Université Claude Bernard Lyon 1, Bâtiment
Raulin, 43 Bd du 11 novembre 1918, Lyon 69622 Villeurbanne Cedex, France
| | - Thibaut Quillard
- PHY-OS Laboratory, UMR 1238 INSERM, Université de Nantes, CHU
de Nantes, France
| | - Laura Mechtouff
- Stroke Department, Hospices Civils de Lyon, France
- CREATIS Laboratory, CNRS UMR 5220, Inserm U1044, Université Claude Bernard
Lyon 1, Lyon, France
| | - Slawomir Pikula
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental
Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Emmanuelle Canet-Soulas
- CarMeN Laboratory, Univ Lyon, INSERM, INRA, INSA Lyon, Université Claude
Bernard Lyon 1, Lyon, France
| | - Millan Jose Luis
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery
Institute, La Jolla, CA 92037, USA
| | - Caroline Fonta
- Brain and Cognition Research Center CerCo, CNRS UMR5549, Université de
Toulouse, France
| | - David Magne
- Institute of Molecular and Supramolecular Chemistry and Biochemistry
(ICBMS), UMR CNRS 5246, Université Claude Bernard Lyon 1, Bâtiment
Raulin, 43 Bd du 11 novembre 1918, Lyon 69622 Villeurbanne Cedex, France
| |
Collapse
|
26
|
Shen J, Zhao M, Zhang C, Sun X. IL-1β in atherosclerotic vascular calcification: From bench to bedside. Int J Biol Sci 2021; 17:4353-4364. [PMID: 34803503 PMCID: PMC8579452 DOI: 10.7150/ijbs.66537] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/11/2021] [Indexed: 01/19/2023] Open
Abstract
Atherosclerotic vascular calcification contributes to increased risk of death in patients with cardiovascular diseases. Assessing the type and severity of inflammation is crucial in the treatment of numerous cardiovascular conditions. IL-1β, a potent proinflammatory cytokine, plays diverse roles in the pathogenesis of atherosclerotic vascular calcification. Several large-scale, population cohort trials have shown that the incidence of cardiovascular events is clinically reduced by the administration of anti-IL-1β therapy. Anti-IL-1β therapy might reduce the incidence of cardiovascular events by affecting atherosclerotic vascular calcification, but the mechanism underlying this effect remains unclear. In this review, we summarize current knowledge on the role of IL-1β in atherosclerotic vascular calcification, and describe the latest results reported in clinical trials evaluating anti-IL-1β therapies for the treatment of cardiovascular diseases. This review will aid in improving current understanding of the pathophysiological roles of IL-1β and mechanisms underlying its activity.
Collapse
Affiliation(s)
- Jialing Shen
- Department of General Surgery (Vascular Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ming Zhao
- Department of Interventional Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Chunxiang Zhang
- Laboratory of Nucleic Acids in Medicine for National high-level talents, Southwest Medical University, Luzhou 646000, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Xiaolei Sun
- Department of General Surgery (Vascular Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Department of Interventional Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Laboratory of Nucleic Acids in Medicine for National high-level talents, Southwest Medical University, Luzhou 646000, China.,School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, Faculty of Life Science and Medicine, King's College London, London SE5 9NU, United Kingdom.,Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, 646000, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, China
| |
Collapse
|
27
|
Tintut Y, Honda HM, Demer LL. Biomolecules Orchestrating Cardiovascular Calcification. Biomolecules 2021; 11:biom11101482. [PMID: 34680115 PMCID: PMC8533507 DOI: 10.3390/biom11101482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 01/12/2023] Open
Abstract
Vascular calcification, once considered a degenerative, end-stage, and inevitable condition, is now recognized as a complex process regulated in a manner similar to skeletal bone at the molecular and cellular levels. Since the initial discovery of bone morphogenetic protein in calcified human atherosclerotic lesions, decades of research have now led to the recognition that the regulatory mechanisms and the biomolecules that control cardiovascular calcification overlap with those controlling skeletal mineralization. In this review, we focus on key biomolecules driving the ectopic calcification in the circulation and their regulation by metabolic, hormonal, and inflammatory stimuli. Although calcium deposits in the vessel wall introduce rupture stress at their edges facing applied tensile stress, they simultaneously reduce rupture stress at the orthogonal edges, leaving the net risk of plaque rupture and consequent cardiac events depending on local material strength. A clinically important consequence of the shared mechanisms between the vascular and bone tissues is that therapeutic agents designed to inhibit vascular calcification may adversely affect skeletal mineralization and vice versa. Thus, it is essential to consider both systems when developing therapeutic strategies.
Collapse
Affiliation(s)
- Yin Tintut
- Department of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA; (Y.T.); (H.M.H.)
- Department of Physiology, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Department of Orthopaedic Surgery, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Henry M. Honda
- Department of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA; (Y.T.); (H.M.H.)
| | - Linda L. Demer
- Department of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA; (Y.T.); (H.M.H.)
- Department of Physiology, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
- The David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
- Correspondence: ; Tel.: +1-(310)-206-2677
| |
Collapse
|
28
|
SPRY4 acts as an indicator of osteoarthritis severity and regulates chondrocyte hypertrophy and ECM protease expression. NPJ Regen Med 2021; 6:56. [PMID: 34535669 PMCID: PMC8448831 DOI: 10.1038/s41536-021-00165-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 08/11/2021] [Indexed: 11/09/2022] Open
Abstract
Osteoarthritis (OA) causes serious changes in the metabolic and signaling pathways of chondrocytes, including the mitogen-activated protein kinase (MAPK) pathway. However, the role of sprouty RTK signaling antagonist 4 (SPRY4), an inhibitor of MAPK, in the human cartilage tissues and chondrocytes remains to be understood. Here, using SPRY4 gene delivery into healthy and degenerated chondrocytes, we elucidated the role of SPRY4 in preventing chondrocyte hypertrophy. In addition to using the human cartilage tissues with the destabilization of the medial meniscus (DMM) model in Sprague-Dawley (SD) rats, the role of SPRY4 in cartilage tissues and chondrocytes was explored through their molecular and histological analyses. In order to determine the effects of SPRY4 on healthy human chondrocyte hypertrophy, small interfering RNA (siRNA) was used to knock down SPRY4. Lentiviral transduction of SPRY4 into degenerated human chondrocytes allowed us to investigate its ability to prevent hypertrophy. SPRY4 expression levels were higher in healthy human cartilage tissue and chondrocytes than in degenerated human cartilage tissues and hypertrophy-induced chondrocytes. The knockdown of SPRY4 in healthy chondrocytes caused an increase in hypertrophy, senescence, reactive oxygen species (ROS) production, and extracellular matrix (ECM) protease expression. However, all these factors decreased upon overexpression of SPRY4 in degenerated chondrocytes via regulation of the MAPK signaling pathway. We conclude that SPRY4 is a crucial indicator of osteoarthritis (OA) severity and could play an important role in preventing OA in the cartilage by inhibiting chondrocyte hypertrophy.
Collapse
|
29
|
Fischer DC, Smith C, De Zan F, Bacchetta J, Bakkaloglu SA, Agbas A, Anarat A, Aoun B, Askiti V, Azukaitis K, Bayazit A, Bulut IK, Canpolat N, Borzych-Dużałka D, Duzova A, Habbig S, Krid S, Licht C, Litwin M, Obrycki L, Paglialonga F, Rahn A, Ranchin B, Samaille C, Shenoy M, Sinha MD, Spasojevic B, Stefanidis CJ, Vidal E, Yilmaz A, Fischbach M, Schaefer F, Schmitt CP, Shroff R. Hemodiafiltration Is Associated With Reduced Inflammation and Increased Bone Formation Compared With Conventional Hemodialysis in Children: The HDF, Hearts and Heights (3H) Study. Kidney Int Rep 2021; 6:2358-2370. [PMID: 34514197 PMCID: PMC8418977 DOI: 10.1016/j.ekir.2021.06.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 06/21/2021] [Indexed: 01/02/2023] Open
Abstract
Background Patients on dialysis have a high burden of bone-related comorbidities, including fractures. We report a post hoc analysis of the prospective cohort study HDF, Hearts and Heights (3H) to determine the prevalence and risk factors for chronic kidney disease-related bone disease in children on hemodiafiltration (HDF) and conventional hemodialysis (HD). Methods The baseline cross-sectional analysis included 144 children, of which 103 (61 HD, 42 HDF) completed 12-month follow-up. Circulating biomarkers of bone formation and resorption, inflammatory markers, fibroblast growth factor-23, and klotho were measured. Results Inflammatory markers interleukin-6, tumor necrosis factor-α, and high-sensitivity C-reactive protein were lower in HDF than in HD cohorts at baseline and at 12 months (P < .001). Concentrations of bone formation (bone-specific alkaline phosphatase) and resorption (tartrate-resistant acid phosphatase 5b) markers were comparable between cohorts at baseline, but after 12-months the bone-specific alkaline phosphatase/tartrate-resistant acid phosphatase 5b ratio increased in HDF (P = .004) and was unchanged in HD (P = .44). On adjusted analysis, the bone-specific alkaline phosphatase/tartrate-resistant acid phosphatase 5b ratio was 2.66-fold lower (95% confidence interval, −3.91 to −1.41; P < .0001) in HD compared with HDF. Fibroblast growth factor-23 was comparable between groups at baseline (P = .52) but increased in HD (P < .0001) and remained unchanged in HDF (P = .34) at 12 months. Klotho levels were similar between groups and unchanged during follow-up. The fibroblast growth factor-23/klotho ratio was 3.86-fold higher (95% confidence interval, 2.15–6.93; P < .0001) after 12 months of HD compared with HDF. Conclusion Children on HDF have an attenuated inflammatory profile, increased bone formation, and lower fibroblast growth factor-23/klotho ratios compared with those on HD. Long-term studies are required to determine the effects of an improved bone biomarker profile on fracture risk and cardiovascular health.
Collapse
Affiliation(s)
| | - Colette Smith
- Pediatric Nephrology Unit, Institute of Global Health, University College London, London, UK
| | - Francesca De Zan
- Pediatric Nephrology Unit, University College London Great Ormond Street Hospital for Children and Institute of Child Health, London, UK
| | - Justine Bacchetta
- Pediatric Nephrology Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Université de Lyon, Bron, France
| | | | - Ayse Agbas
- Pediatric Nephrology Unit, Cerrahpasa School of Medicine, Istanbul, Turkey
| | - Ali Anarat
- Pediatric Nephrology Unit, Cukurova University, Adana, Turkey
| | - Bilal Aoun
- Pediatric Nephrology Unit, Armand Trousseau Hospital, Paris, France
| | - Varvara Askiti
- Pediatric Nephrology Unit, Panagiotis & Aglaia Kyriakou Children's Hospital, Athens, Greece
| | - Karolis Azukaitis
- Pediatric Nephrology Unit, Clinic of Pediatrics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Aysun Bayazit
- Pediatric Nephrology Unit, Cukurova University, Adana, Turkey
| | - Ipek Kaplan Bulut
- Pediatric Nephrology Unit, Ege University Faculty of Medicine, Izmir, Turkey
| | - Nur Canpolat
- Pediatric Nephrology Unit, Cerrahpasa School of Medicine, Istanbul, Turkey
| | | | - Ali Duzova
- Pediatric Nephrology Unit, Hacettepe University, Ankara, Turkey
| | - Sandra Habbig
- Pediatric Nephrology Unit, University Hospital Cologne, Cologne, Germany
| | - Saoussen Krid
- Pediatric Nephrology Unit, Hôpital Necker-Enfants Malades, Paris, France
| | - Christoph Licht
- Pediatric Nephrology Unit, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mieczyslaw Litwin
- Pediatric Nephrology Unit, Children's Memorial Health Institute, Warsaw, Poland
| | - Lukasz Obrycki
- Pediatric Nephrology Unit, Children's Memorial Health Institute, Warsaw, Poland
| | - Fabio Paglialonga
- Pediatric Nephrology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anja Rahn
- Department of Pediatrics, Rostock University Medical Centre, Rostock, Germany
| | - Bruno Ranchin
- Pediatric Nephrology Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Université de Lyon, Bron, France
| | - Charlotte Samaille
- Service de Néphrologie Pédiatrique, Centre Hospitalier Universitaire Lille, Lille, France
| | - Mohan Shenoy
- Pediatric Nephrology Unit, Royal Manchester Children's Hospital, Manchester, UK
| | - Manish D Sinha
- Pediatric Nephrology Unit, Kings College London Evelina London Children's Hospital, London, UK
| | | | | | - Enrico Vidal
- Division of Pediatrics, Department of Medicine, University of Udine, Udine, Italy
| | - Alev Yilmaz
- Pediatric Nephrology Unit, Istanbul University, Faculty of Medicine, Istanbul, Turkey
| | | | - Franz Schaefer
- Pediatric Nephrology Unit, Center for Pediatrics and Adolescent Medicine, Heidelberg, Germany
| | - Claus Peter Schmitt
- Pediatric Nephrology Unit, Center for Pediatrics and Adolescent Medicine, Heidelberg, Germany
| | - Rukshana Shroff
- Pediatric Nephrology Unit, University College London Great Ormond Street Hospital for Children and Institute of Child Health, London, UK
| |
Collapse
|
30
|
Zheng J, Gao Y, Lin H, Yuan C, Keqianzhi. Enhanced autophagy suppresses inflammation-mediated bone loss through ROCK1 signaling in bone marrow mesenchymal stem cells. Cells Dev 2021; 167:203687. [PMID: 34058434 DOI: 10.1016/j.cdev.2021.203687] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) have strong proliferative ability and multi-directional differentiation potential. Osteoarthritis is a degenerative joint disease that is closely related to the loss of osteogenic differentiation function of BMSCs. Autophagy, plays a crucial role in the maintenance of cellular functions, but its regulatory mechanism during the osteogenic differentiation of BMSCs remains unclear. In this study, we analyzed the differential gene networks and pathways during BMSC osteogenesis using bioinformatics, and further validated the regulatory roles of autophagy during the osteogenic differentiation of BMSCs in inflammatory condition in vitro. We found that Tumor necrosis factor alpha (TNF-α) treatment led to actin cytoskeleton rearrangements and inhibited osteogenic differentiation in BMSCs. In addition, TNF-α enhanced Rho-associated protein kinase 1 (ROCK1) expression and decreased autophagy activation. ROCK1 knockdown reduced Endoplasmic Reticulum stress (ER stress) and promoted autophagy, resulting reversion of osteogenic differentiation in BMSCs under inflammatory condition. Rapamycin reversed the TNF-α-induced decrease in osteogenesis of BMSCs, assessed by alkaline phosphatase (ALP) activity and Alizarin staining. Autophagy treated with inhibitor 3-Methyladenine (3-MA) further increased TNF-α-induced osteogenesis inhibition of BMSCs. Collectively, these results indicate that ER stress and dysfunction of autophagy promote inflammation-induced bone loss through the activation of ROCK1 signaling in BMSCs.
Collapse
Affiliation(s)
- Jingjing Zheng
- Department of Endodontics, Key Laboratory of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao District, 266555 Qingdao, Shandong, China
| | - Yuli Gao
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Haozhi Lin
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Changqing Yuan
- Department of Oral Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Keqianzhi
- Department of Oral and Maxillofacial Surgery, Key Laboratory of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao District, 266555 Qingdao, Shandong, China.
| |
Collapse
|
31
|
Romero-Márquez JM, Varela-López A, Navarro-Hortal MD, Badillo-Carrasco A, Forbes-Hernández TY, Giampieri F, Domínguez I, Madrigal L, Battino M, Quiles JL. Molecular Interactions between Dietary Lipids and Bone Tissue during Aging. Int J Mol Sci 2021; 22:ijms22126473. [PMID: 34204176 PMCID: PMC8233828 DOI: 10.3390/ijms22126473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 01/06/2023] Open
Abstract
Age-related bone disorders such as osteoporosis or osteoarthritis are a major public health problem due to the functional disability for millions of people worldwide. Furthermore, fractures are associated with a higher degree of morbidity and mortality in the long term, which generates greater financial and health costs. As the world population becomes older, the incidence of this type of disease increases and this effect seems notably greater in those countries that present a more westernized lifestyle. Thus, increased efforts are directed toward reducing risks that need to focus not only on the prevention of bone diseases, but also on the treatment of persons already afflicted. Evidence is accumulating that dietary lipids play an important role in bone health which results relevant to develop effective interventions for prevent bone diseases or alterations, especially in the elderly segment of the population. This review focuses on evidence about the effects of dietary lipids on bone health and describes possible mechanisms to explain how lipids act on bone metabolism during aging. Little work, however, has been accomplished in humans, so this is a challenge for future research.
Collapse
Affiliation(s)
- Jose M. Romero-Márquez
- Department of Physiology, Institute of Nutrition and Food Technology ‘‘José Mataix”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; (J.M.R.-M.); (A.V.-L.); (M.D.N.-H.); (A.B.-C.)
| | - Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology ‘‘José Mataix”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; (J.M.R.-M.); (A.V.-L.); (M.D.N.-H.); (A.B.-C.)
| | - María D. Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology ‘‘José Mataix”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; (J.M.R.-M.); (A.V.-L.); (M.D.N.-H.); (A.B.-C.)
| | - Alberto Badillo-Carrasco
- Department of Physiology, Institute of Nutrition and Food Technology ‘‘José Mataix”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; (J.M.R.-M.); (A.V.-L.); (M.D.N.-H.); (A.B.-C.)
| | - Tamara Y. Forbes-Hernández
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain;
| | - Francesca Giampieri
- Department of Clinical Sicences, Università Politecnica delle Marche, 60131 Ancona, Italy; (F.G.); (M.B.)
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Irma Domínguez
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain;
- Universidad Internacional Iberoamericana, Calle 15 Num. 36, Entre 10 y 12 IMI III, Campeche 24560, Mexico;
| | - Lorena Madrigal
- Universidad Internacional Iberoamericana, Calle 15 Num. 36, Entre 10 y 12 IMI III, Campeche 24560, Mexico;
| | - Maurizio Battino
- Department of Clinical Sicences, Università Politecnica delle Marche, 60131 Ancona, Italy; (F.G.); (M.B.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - José L. Quiles
- Department of Physiology, Institute of Nutrition and Food Technology ‘‘José Mataix”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; (J.M.R.-M.); (A.V.-L.); (M.D.N.-H.); (A.B.-C.)
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain;
- Correspondence:
| |
Collapse
|
32
|
Expression of angiogenesis-related proteins in bone marrow mesenchymal stem cells induced by osteoprotegerin during osteogenic differentiation in rats. Int Immunopharmacol 2021; 98:107821. [PMID: 34118644 DOI: 10.1016/j.intimp.2021.107821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/16/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022]
Abstract
This study aimed to discuss the expression of angiogenesis-related proteins in bone marrow mesenchymal stem cells (BMSCs) induced by osteoprotegerin (OGP) during osteogenic differentiation in rats, and to analyze the effect of fracture healing inflammatory factor TNF-ɑ on the osteogenic differentiation of BMSCs of rats. BMSCs isolated and cultured from the third generation rats were taken as the research object. According to the addition amount of OGP, BMSCs were divided into control group, OGP (10-7 mol/L) group, OGP (10-8 mol/L) group, and OGP (10-9 mol/L) group. The cell growth and morphological characteristics of each group were observed by inverted phase contrast microscope, the cell proliferation rate was measured by MTT method, angiogenesis-related markers (platelet growth factor (VEGF), cingulate protein 5 (Fbln5), and angiogenin-like protein 4 (Angptl4)) were quantitatively detected by Western blot, and the effect of TNF-ɑ on osteogenic differentiation was detected by CCK. Compared with the control group, MTT results showed that the value-added rate of cells in the OGP (10-8 mol/L) group reached the maximum at 9 days (P < 0.05). The ALP activity in osteoblasts in the OGP (10-8 mol/L) group reached the maximum at 9 days (P < 0.01). The OGP (10-8 mol/L) group had the highest expression of vascular regeneration proteins (VEGF, Fbln5, and Angptl4) (P < 0.05). CCK analysis showed that the TNF-ɑ (1.0 ng/mL) group showed a significant increase in absorbance compared with the control group on 6 days (P < 0.05), and the OD value of the TNF-ɑ (10 ng/mL) group decreased at all time points (P < 0.05). Overall, 10-8 mol/L OGP can induce the proliferation and osteogenic differentiation of MSCs, and promote the expression of angiogenesis-related proteins (VEGF, Fbln5, and Angptl4) during osteogenic differentiation. Besides, 1.0 ng/mL of TNF-ɑ can also promote osteogenesis differentiation of BMSCs in the short term.
Collapse
|
33
|
Meza K, Biswas S, Zhu YS, Gajjar A, Perelstein E, Kumar J, Akchurin O. Tumor necrosis factor-alpha is associated with mineral bone disorder and growth impairment in children with chronic kidney disease. Pediatr Nephrol 2021; 36:1579-1587. [PMID: 33387018 PMCID: PMC8087625 DOI: 10.1007/s00467-020-04846-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/09/2020] [Accepted: 10/27/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Mineral and bone disorder (MBD) and growth impairment are common complications of pediatric chronic kidney disease (CKD). Chronic inflammation detrimentally affects bone health and statural growth in non-CKD settings, but the impact of inflammation on CKD-MBD and growth in pediatric CKD remains poorly understood. This study assessed associations between inflammatory cytokines with biomarkers of CKD-MBD and statural growth in pediatric CKD. METHODS This is a cross-sectional study of children with predialysis CKD stages II-V. Cytokines (IL-1b, IL-4, IL-6, IL-8, IL-10, IL-12, IL-13, TNF-α, interferon-γ), bone alkaline phosphatase (BAP), and procollagen type 1 N-terminal propeptide (P1NP) were measured at the same time as standard CKD-MBD biomarkers. Associations between cytokines, CKD-MBD biomarkers, and height z-score were assessed using linear regression analysis. RESULTS Among 63 children, 52.4% had stage 3 CKD, 76.2% non-glomerular CKD etiology, and 21% short stature. TNF-α was the only cytokine associated with parathyroid hormone (PTH) independent of glomerular filtration rate. After stratification by low, medium, and high TNF-α tertiles, significant differences in PTH, serum phosphorus, alkaline phosphatase, BAP, P1NP, and height z-score were found. In a multivariate analysis, TNF-α positively associated with phosphorus, PTH, and alkaline phosphatase and inversely associated with height z-score, independent of kidney function, age, sex, and active vitamin D analogue use. CONCLUSIONS TNF-α is positively associated with biomarkers of CKD-MBD and inversely associated with height z-score, indicating that inflammation likely contributes to the development of CKD-MBD and growth impairment in pediatric CKD. Prospective studies to definitively assess causative effects of inflammation on bone health and growth in children with CKD are warranted.
Collapse
Affiliation(s)
- Kelly Meza
- Weill Cornell Medical College, Department of Pediatrics, New York, NY, USA
| | - Sharmi Biswas
- Weill Cornell Medical College, Department of Pediatrics, New York, NY, USA
| | - Yuan-Shan Zhu
- Weill Cornell Medical College, Department of Medicine, Clinical and Translational Science Center, New York, NY, USA
| | - Anuradha Gajjar
- Weill Cornell Medical College, Department of Pediatrics, New York, NY, USA
- Weill Cornell Medicine, New York-Presbyterian Phyllis and David Komansky Children's Hospital, 505 East 70th Street-HT 388, New York, NY, 10021, USA
| | - Eduardo Perelstein
- Weill Cornell Medical College, Department of Pediatrics, New York, NY, USA
- Weill Cornell Medicine, New York-Presbyterian Phyllis and David Komansky Children's Hospital, 505 East 70th Street-HT 388, New York, NY, 10021, USA
| | - Juhi Kumar
- Weill Cornell Medical College, Department of Pediatrics, New York, NY, USA
- Weill Cornell Medicine, New York-Presbyterian Phyllis and David Komansky Children's Hospital, 505 East 70th Street-HT 388, New York, NY, 10021, USA
| | - Oleh Akchurin
- Weill Cornell Medical College, Department of Pediatrics, New York, NY, USA.
- Weill Cornell Medicine, New York-Presbyterian Phyllis and David Komansky Children's Hospital, 505 East 70th Street-HT 388, New York, NY, 10021, USA.
| |
Collapse
|
34
|
Activation of nuclear factor-kappa B by TNF promotes nucleus pulposus mineralization through inhibition of ANKH and ENPP1. Sci Rep 2021; 11:8271. [PMID: 33859255 PMCID: PMC8050288 DOI: 10.1038/s41598-021-87665-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Spontaneous mineralization of the nucleus pulposus (NP) has been observed in cases of intervertebral disc degeneration (IDD). Inflammatory cytokines have been implicated in mineralization of multiple tissues through their modulation of expression of factors that enable or inhibit mineralization, including TNAP, ANKH or ENPP1. This study examines the underlying factors leading to NP mineralization, focusing on the contribution of the inflammatory cytokine, TNF, to this pathologic event. We show that human and bovine primary NP cells express high levels of ANKH and ENPP1, and low or undetectable levels of TNAP. Bovine NPs transduced to express TNAP were capable of matrix mineralization, which was further enhanced by ANKH knockdown. TNF treatment or overexpression promoted a greater increase in mineralization of TNAP-expressing cells by downregulating the expression of ANKH and ENPP1 via NF-κB activation. The increased mineralization was accompanied by phenotypic changes that resemble chondrocyte hypertrophy, including increased RUNX2 and COL10A1 mRNA; mirroring the cellular alterations typical of samples from IDD patients. Disc organ explants injected with TNAP/TNF- or TNAP/shANKH-overexpressing cells showed increased mineral content inside the NP. Together, our results confirm interactions between TNF and downstream regulators of matrix mineralization in NP cells, providing evidence to suggest their participation in NP calcification during IDD.
Collapse
|
35
|
Sadowska JM, Ginebra MP. Inflammation and biomaterials: role of the immune response in bone regeneration by inorganic scaffolds. J Mater Chem B 2021; 8:9404-9427. [PMID: 32970087 DOI: 10.1039/d0tb01379j] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The regulatory role of the immune system in maintaining bone homeostasis and restoring its functionality, when disturbed due to trauma or injury, has become evident in recent years. The polarization of macrophages, one of the main constituents of the immune system, into the pro-inflammatory or anti-inflammatory phenotype has great repercussions for cellular crosstalk and the subsequent processes needed for proper bone regeneration such as angiogenesis and osteogenesis. In certain scenarios, the damaged osseous tissue requires the placement of synthetic bone grafts to facilitate the healing process. Inorganic biomaterials such as bioceramics or bioactive glasses are the most widely used due to their resemblance to the mineral phase of bone and superior osteogenic properties. The immune response of the host to the inorganic biomaterial, which is of an exogenous nature, might determine its fate, leading either to active bone regeneration or its failure. Therefore, various strategies have been employed, like the modification of structural/chemical features or the incorporation of bioactive molecules, to tune the interplay with the immune cells. Understanding how these particular modifications impact the polarization of macrophages and further osteogenic and osteoclastogenic events is of great interest in view of designing a new generation of osteoimmunomodulatory materials that support the regeneration of osseous tissue during all stages of bone healing.
Collapse
Affiliation(s)
- Joanna M Sadowska
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Ireland
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Av. Eduard Maristany 16, 08019 Barcelona, Spain. and Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| |
Collapse
|
36
|
Bai X, Liu W, Xu L, Ye Q, Zhou H, Berg C, Yuan H, Li J, Xia W. Sequential macrophage transition facilitates endogenous bone regeneration induced by Zn-doped porous microcrystalline bioactive glass. J Mater Chem B 2021; 9:2885-2898. [PMID: 33721004 DOI: 10.1039/d0tb02884c] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Macrophages play an important role in the immune microenvironment during bone healing, and sequential macrophage phenotypic transition could achieve superior osteogenic outcomes. Microcrystalline bioactive glasses (MCBGs) with osteoimmunomodulatory effects show potential in bone tissue regeneration. Zinc (Zn) has been approved to coordinate innate and adaptive immunity. Therefore, in this study, different amounts of ZnO were incorporated into microcrystalline bioactive glass to improve its immunomodulatory ability. The effect of Zn-MCBG ionic extracts on macrophage transition was studied, and the 5Zn-MCBG extracts could orchestrate sequential M1-to-M2 macrophage transition and promote the expression of proinflammatory and anti-inflammatory genes and cytokine expression to induce human bone marrow stromal cells (hBMSCs) osteogenic differentiation in vitro. Macroporous Zn-MCBG scaffolds containing mesopores were fabricated and showed good cell adhesion and feasible apatite formation when immersed in SBF in vitro. Furthermore, a rat calvarial defect model was used to confirm that the Zn-MCBG scaffold could modulate macrophage phenotypic transition and create a desirable osteogenic microenvironment to promote osteogenesis in vivo.
Collapse
Affiliation(s)
- Xuan Bai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhang Y, Weng Q, Chen J, Li M, Han J. Oroxylin A attenuates IL-1β-induced inflammatory reaction via inhibiting the activation of the ERK and PI3K/AKT signaling pathways in osteoarthritis chondrocytes. Exp Ther Med 2021; 21:388. [PMID: 33680110 PMCID: PMC7918508 DOI: 10.3892/etm.2021.9819] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is characterized by degradation of the articular cartilage, synovium inflammation, subchondral bone sclerosis and osteophyte formation. OA is the most common degenerative joint disorder among the elderly population. In particular, currently available therapeutic strategies, such as non-steroidal anti-inflammatory drugs (NSAIDs) may cause severe side-effects. Therefore, novel candidate targets for OA therapy are urgently needed. Oroxylin A (OrA) is a natural mono-flavonoid that can be extracted from Scutellariae radix. The present study aimed to investigate the potential effects of OrA on interleukin (IL)-1β-induced chondrocytes inflammatory reactions. The current study performed quantitative PCR, western blotting and cell immunofluorescence to evaluate the effect of Oroxylin A in chondrocyte inflammation. The results demonstrated that OrA significantly attenuated the upregulation of inducible nitric oxide synthase and cyclooxygenase 2 by IL-1β at both protein and mRNA levels. IL-1β-stimulated upregulation of matrix metalloproteinase (MMP)-3 and MMP-13 expression, in addition to disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4 and ADAMTS-5 expression, were all inhibited by OrA. Treatment with OrA significantly reversed the degradation of type II collagen and aggrecan by IL-1β. Mechanistically, OrA suppressed the IL-1β induced activation of ERK1/2 and PI3K/AKT signaling pathways. In conclusion, these findings suggest that OrA can serve as a potential therapeutic agent for the treatment of OA.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Trauma Orthopedics, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Qiuyan Weng
- Department of Neurology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang 315000, P.R. China
| | - Jianming Chen
- Department of Trauma Orthopedics, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Ming Li
- Department of Trauma Orthopedics, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Jinming Han
- Department of Spine, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315000, P.R. China
| |
Collapse
|
38
|
Rozila I, Azari P, Munirah S, Safwani WKZW, Pingguan-Murphy B, Chua KH. Polycaprolactone-Based Scaffolds Facilitates Osteogenic Differentiation of Human Adipose-Derived Stem Cells in a Co-Culture System. Polymers (Basel) 2021; 13:polym13040597. [PMID: 33671175 PMCID: PMC7922582 DOI: 10.3390/polym13040597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Stem cells in combination with scaffolds and bioactive molecules have made significant contributions to the regeneration of damaged bone tissues. A co-culture system can be effective in enhancing the proliferation rate and osteogenic differentiation of the stem cells. Hence, the aim of this study was to investigate the osteogenic differentiation of human adipose derived stem cells when co-cultured with human osteoblasts and seeded on polycaprolactone (PCL):hydroxyapatite (HA) scaffold; (2) Methods: Human adipose-derived stem cells (ASC) and human osteoblasts (HOB) were seeded in three different ratios of 1:2, 1:2 and 2:1 in the PCL-HA scaffolds. The osteogenic differentiation ability was evaluated based on cell morphology, proliferation rate, alkaline phosphatase (ALP) activity, calcium deposition and osteogenic genes expression levels using quantitative RT-PCR; (3) Results: The co-cultured of ASC/HOB in ratio 2:1 seeded on the PCL-HA scaffolds showed the most positive osteogenic differentiation as compared to other groups, which resulted in higher ALP activity, calcium deposition and osteogenic genes expression, particularly Runx, ALP and BSP. These genes indicate that the co-cultured ASC/HOB seeded on PCL-HA was at the early stage of osteogenic development; (4) Conclusions: The combination of co-culture system (ASC/HOB) and PCL-HA scaffolds promote osteogenic differentiation and early bone formation.
Collapse
Affiliation(s)
- Ismail Rozila
- Department of Physiology, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Cyberjaya, Selangor 63000, Malaysia
| | - Pedram Azari
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Sha’ban Munirah
- Department of Rehabilitation and Physiotherapy, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan 25200, Malaysia;
| | - Wan Kamarul Zaman Wan Safwani
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (W.K.Z.W.S.); (B.P.-M.)
| | - Belinda Pingguan-Murphy
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (W.K.Z.W.S.); (B.P.-M.)
| | - Kien Hui Chua
- Department of Physiology, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
- Correspondence: ; Tel.: +60-391458613
| |
Collapse
|
39
|
Abstract
In chronic kidney disease (CKD), disturbance of several metabolic regulatory mechanisms cause premature ageing, accelerated cardiovascular disease (CVD), and mortality. Single-target interventions have repeatedly failed to improve the prognosis for CKD patients. Epigenetic interventions have the potential to modulate several pathogenetic processes simultaneously. Alkaline phosphatase (ALP) is a robust predictor of CVD and all-cause mortality and implicated in pathogenic processes associated with CVD in CKD.
Collapse
|
40
|
Liu L, Yuan Y, Zhang S, Xu J, Zou J. Osteoimmunological insights into the pathogenesis of ankylosing spondylitis. J Cell Physiol 2021; 236:6090-6100. [PMID: 33559242 DOI: 10.1002/jcp.30313] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 01/10/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
Ankylosing spondylitis (AS) is inflammatory arthritis predominantly affecting the spine, which is involved in the disorders of both immune and skeletal systems. The exact pathogenesis of AS is not fully understood. Osteoimmunology is a new subject of study in inflammatory arthritis, in particular the pathogenic events involved in the cross-regulation of both skeletal and immune systems. In this review, we discuss osteoimmunological and pathological changes of AS in the spine that are characterized by altered osteogenesis and osteolytic bone destruction, accompanied by the changes of the immune system. It was revealed that bone cells like mesenchymal stem cells, osteoblast, and osteoclast in crossing talking with immune cells such as T cells, B cells coregulate to the pathogenesis of AS. Further, an array of cytokines and molecules expressed by both skeletal and immune systems contribute to these complex interplays. Understanding the cellular and molecular mechanisms underlying the pathogenesis of AS will lay a foundation for the exploration of the potential new treatment to AS.
Collapse
Affiliation(s)
- Lifei Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation, The People's Hospital of Liaoning Province, Shenyang, China
| | - Yu Yuan
- School of Sport and Health, Guangzhou Sport University, Guangzhou, China
| | - Shihua Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
41
|
Russell T, Bridgewood C, Rowe H, Altaie A, Jones E, McGonagle D. Cytokine "fine tuning" of enthesis tissue homeostasis as a pointer to spondyloarthritis pathogenesis with a focus on relevant TNF and IL-17 targeted therapies. Semin Immunopathol 2021; 43:193-206. [PMID: 33544244 PMCID: PMC7990848 DOI: 10.1007/s00281-021-00836-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
A curious feature of axial disease in ankylosing spondylitis (AS) and related non-radiographic axial spondyloarthropathy (nrAxSpA) is that spinal inflammation may ultimately be associated with excessive entheseal tissue repair with new bone formation. Other SpA associated target tissues including the gut and the skin have well established paradigms on how local tissue immune responses and proven disease relevant cytokines including TNF and the IL-23/17 axis contribute to tissue repair. Normal skeletal homeostasis including the highly mechanically stressed entheseal sites is subject to tissue microdamage, micro-inflammation and ultimately repair. Like the skin and gut, healthy enthesis has resident immune cells including ILCs, γδ T cells, conventional CD4+ and CD8+ T cells and myeloid lineage cells capable of cytokine induction involving prostaglandins, growth factors and cytokines including TNF and IL-17 that regulate these responses. We discuss how human genetic studies, animal models and translational human immunology around TNF and IL-17 suggest a largely redundant role for these pathways in physiological tissue repair and homeostasis. However, disease associated immune system overactivity of these cytokines with loss of tissue repair “fine tuning” is eventually associated with exuberant tissue repair responses in AS. Conversely, excessive biomechanical stress at spinal enthesis or peripheral enthesis with mechanically related or degenerative conditions is associated with a normal immune system attempts at cytokine fine tuning, but in this setting, it is commensurate to sustained abnormal biomechanical stressing. Unlike SpA, where restoration of aberrant and excessive cytokine “fine tuning” is efficacious, antagonism of these pathways in biomechanically related disease may be of limited or even no value.
Collapse
Affiliation(s)
- Tobias Russell
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
| | - Charlie Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
| | - Hannah Rowe
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
| | - Ala Altaie
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK.
- Section of Musculoskeletal Disease, Leeds Institute of Molecular Medicine, University of Leeds, NIHR Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, Leeds, UK.
| |
Collapse
|
42
|
Lee SY, Moon JS, Yang DW, Yoo HI, Jung JY, Kim OS, Kim MS, Koh JT, Chung HJ, Kim SH. SLPI in periodontal Ligament is not sleepy during biophysical force-induced tooth movement. J Clin Periodontol 2021; 48:528-540. [PMID: 33370451 DOI: 10.1111/jcpe.13416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/09/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
AIM We aimed to identify a key molecule that maintains periodontal tissue homeostasis during biophysical force-induced tooth movement (BTM) by orchestrating alveolar bone (AB) remodelling. MATERIALS AND METHODS Differential display-PCR was performed to identify key molecules for BTM in rats. To investigate the localization and expression of the identified molecules, immunofluorescence, real-time RT-PCR and Western blotting were performed in rats and human periodontal ligament (PDL) cells. Functional test and micro-CT analysis were performed to examine the in vivo effects of the identified molecules on BTM. RESULTS Secretory leucocyte peptidase inhibitor (SLPI) in the PDL was revealed as a key molecule for BTM-induced AB remodelling. SLPI was enhanced in the PDL under both compression and tension, and downregulated by an adenyl cyclases inhibitor. SLPI induced osteoblastogenic genes including runt-related transcription factor 2 (Runx2) and synergistically augmented tension-induced Runx2 expression. SLPI augmented mineralization in PDL cells. SLPI induced osteoclastogenic genes including receptor activator of nuclear factor kappa-Β ligand (RANKL) and synergistically augmented the compression-induced RANKL and macrophage colony-stimulating factor (MCSF) expression. Finally, the in vivo SLPI application into the AB significantly augmented BTM. CONCLUSIONS SLPI or its inhibitors might serve as a biological target molecule for therapeutic interventions to modulate BTM.
Collapse
Affiliation(s)
- Su-Young Lee
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Jung-Sun Moon
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Dong-Wook Yang
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Hong-Il Yoo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, Korea
| | - Ji-Yeon Jung
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Ok-Su Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Min-Seok Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Jeong-Tae Koh
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Hyun-Ju Chung
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Sun-Hun Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| |
Collapse
|
43
|
Tanboon J, Inoue M, Hirakawa S, Tachimori H, Hayashi S, Noguchi S, Suzuki S, Okiyama N, Fujimoto M, Nishino I. Pathologic Features of Anti-Mi-2 Dermatomyositis. Neurology 2021; 96:e448-e459. [PMID: 33277422 DOI: 10.1212/wnl.0000000000011269] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 09/04/2020] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE To identify the characteristic pathologic features of dermatomyositis (DM) associated with anti-Mi-2 autoantibodies (anti-Mi-2 DM). METHODS We reviewed 188 muscle biopsies from patients (1) pathologically diagnosed with DM through the sarcoplasmic expression for the myxovirus-resistant protein A and (2) serologically positive for 1 of 5 DM-specific autoantibodies (DMSAs) (anti-Mi-2, n = 30; other DMSAs, n = 152) or negative for all 5 DMSAs (n = 6). We then compared the histopathologic and immunohistochemical features of patients with anti-Mi-2 DM to those with non-Mi-2 DM and patients with anti-synthetase syndrome (ASS) (n = 212) using the t test, Fisher exact test, and a logistic regression model. RESULTS Patients with anti-Mi-2 DM showed significantly higher severity scores in muscle fiber and inflammatory domains than non-Mi-2 DM patients. The presence of perifascicular necrosis, increased perimysial alkaline phosphatase activity, and sarcolemmal membrane attack complex deposition was more frequent in patients with anti-Mi-2 DM (p < 0.01). After Bonferroni correction, there were no significant differences in the percentages of the features mentioned above between the patients with anti-Mi-2 DM and those with ASS (p > 0.01). CONCLUSION Perifascicular necrosis and perimysial pathology, features previously reported in ASS, are common in patients with anti-Mi-2 DM. Our findings not only assist in differentiating anti-Mi-2 DM from other DM subtypes but also suggest the possibility of an overlapping mechanism between anti-Mi-2 DM and ASS. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that the muscle biopsies of DM patients with anti-Mi-2 autoantibodies are more likely to demonstrate higher severity scores in muscle fiber and inflammatory domains.
Collapse
Affiliation(s)
- Jantima Tanboon
- From Department of Neuromuscular Research (J.T., M.I., S. Hayashi, S.N., I.N.), National Institute of Neuroscience, Departments of Genome Medicine Development (J.T., M.I., S. Hayashi, S.N., I.N.) and Clinical Genome Analysis (I.N.), Medical Genome Center, and Department of Clinical Epidemiology (S. Hirakawa, H.T.), Translational Medical Center, National Center of Neurology and Psychiatry; Department of Neurology (S.S.), Keio University School of Medicine, Tokyo; Department of Dermatology (N.O., M.F.), Faculty of Medicine, University of Tsukuba, Ibaraki; and Department of Dermatology (M.F.), Graduate School of Medicine, Osaka University, Japan
| | - Michio Inoue
- From Department of Neuromuscular Research (J.T., M.I., S. Hayashi, S.N., I.N.), National Institute of Neuroscience, Departments of Genome Medicine Development (J.T., M.I., S. Hayashi, S.N., I.N.) and Clinical Genome Analysis (I.N.), Medical Genome Center, and Department of Clinical Epidemiology (S. Hirakawa, H.T.), Translational Medical Center, National Center of Neurology and Psychiatry; Department of Neurology (S.S.), Keio University School of Medicine, Tokyo; Department of Dermatology (N.O., M.F.), Faculty of Medicine, University of Tsukuba, Ibaraki; and Department of Dermatology (M.F.), Graduate School of Medicine, Osaka University, Japan
| | - Shinya Hirakawa
- From Department of Neuromuscular Research (J.T., M.I., S. Hayashi, S.N., I.N.), National Institute of Neuroscience, Departments of Genome Medicine Development (J.T., M.I., S. Hayashi, S.N., I.N.) and Clinical Genome Analysis (I.N.), Medical Genome Center, and Department of Clinical Epidemiology (S. Hirakawa, H.T.), Translational Medical Center, National Center of Neurology and Psychiatry; Department of Neurology (S.S.), Keio University School of Medicine, Tokyo; Department of Dermatology (N.O., M.F.), Faculty of Medicine, University of Tsukuba, Ibaraki; and Department of Dermatology (M.F.), Graduate School of Medicine, Osaka University, Japan
| | - Hisateru Tachimori
- From Department of Neuromuscular Research (J.T., M.I., S. Hayashi, S.N., I.N.), National Institute of Neuroscience, Departments of Genome Medicine Development (J.T., M.I., S. Hayashi, S.N., I.N.) and Clinical Genome Analysis (I.N.), Medical Genome Center, and Department of Clinical Epidemiology (S. Hirakawa, H.T.), Translational Medical Center, National Center of Neurology and Psychiatry; Department of Neurology (S.S.), Keio University School of Medicine, Tokyo; Department of Dermatology (N.O., M.F.), Faculty of Medicine, University of Tsukuba, Ibaraki; and Department of Dermatology (M.F.), Graduate School of Medicine, Osaka University, Japan
| | - Shinichiro Hayashi
- From Department of Neuromuscular Research (J.T., M.I., S. Hayashi, S.N., I.N.), National Institute of Neuroscience, Departments of Genome Medicine Development (J.T., M.I., S. Hayashi, S.N., I.N.) and Clinical Genome Analysis (I.N.), Medical Genome Center, and Department of Clinical Epidemiology (S. Hirakawa, H.T.), Translational Medical Center, National Center of Neurology and Psychiatry; Department of Neurology (S.S.), Keio University School of Medicine, Tokyo; Department of Dermatology (N.O., M.F.), Faculty of Medicine, University of Tsukuba, Ibaraki; and Department of Dermatology (M.F.), Graduate School of Medicine, Osaka University, Japan
| | - Satoru Noguchi
- From Department of Neuromuscular Research (J.T., M.I., S. Hayashi, S.N., I.N.), National Institute of Neuroscience, Departments of Genome Medicine Development (J.T., M.I., S. Hayashi, S.N., I.N.) and Clinical Genome Analysis (I.N.), Medical Genome Center, and Department of Clinical Epidemiology (S. Hirakawa, H.T.), Translational Medical Center, National Center of Neurology and Psychiatry; Department of Neurology (S.S.), Keio University School of Medicine, Tokyo; Department of Dermatology (N.O., M.F.), Faculty of Medicine, University of Tsukuba, Ibaraki; and Department of Dermatology (M.F.), Graduate School of Medicine, Osaka University, Japan
| | - Shigeaki Suzuki
- From Department of Neuromuscular Research (J.T., M.I., S. Hayashi, S.N., I.N.), National Institute of Neuroscience, Departments of Genome Medicine Development (J.T., M.I., S. Hayashi, S.N., I.N.) and Clinical Genome Analysis (I.N.), Medical Genome Center, and Department of Clinical Epidemiology (S. Hirakawa, H.T.), Translational Medical Center, National Center of Neurology and Psychiatry; Department of Neurology (S.S.), Keio University School of Medicine, Tokyo; Department of Dermatology (N.O., M.F.), Faculty of Medicine, University of Tsukuba, Ibaraki; and Department of Dermatology (M.F.), Graduate School of Medicine, Osaka University, Japan
| | - Naoko Okiyama
- From Department of Neuromuscular Research (J.T., M.I., S. Hayashi, S.N., I.N.), National Institute of Neuroscience, Departments of Genome Medicine Development (J.T., M.I., S. Hayashi, S.N., I.N.) and Clinical Genome Analysis (I.N.), Medical Genome Center, and Department of Clinical Epidemiology (S. Hirakawa, H.T.), Translational Medical Center, National Center of Neurology and Psychiatry; Department of Neurology (S.S.), Keio University School of Medicine, Tokyo; Department of Dermatology (N.O., M.F.), Faculty of Medicine, University of Tsukuba, Ibaraki; and Department of Dermatology (M.F.), Graduate School of Medicine, Osaka University, Japan
| | - Manabu Fujimoto
- From Department of Neuromuscular Research (J.T., M.I., S. Hayashi, S.N., I.N.), National Institute of Neuroscience, Departments of Genome Medicine Development (J.T., M.I., S. Hayashi, S.N., I.N.) and Clinical Genome Analysis (I.N.), Medical Genome Center, and Department of Clinical Epidemiology (S. Hirakawa, H.T.), Translational Medical Center, National Center of Neurology and Psychiatry; Department of Neurology (S.S.), Keio University School of Medicine, Tokyo; Department of Dermatology (N.O., M.F.), Faculty of Medicine, University of Tsukuba, Ibaraki; and Department of Dermatology (M.F.), Graduate School of Medicine, Osaka University, Japan
| | - Ichizo Nishino
- From Department of Neuromuscular Research (J.T., M.I., S. Hayashi, S.N., I.N.), National Institute of Neuroscience, Departments of Genome Medicine Development (J.T., M.I., S. Hayashi, S.N., I.N.) and Clinical Genome Analysis (I.N.), Medical Genome Center, and Department of Clinical Epidemiology (S. Hirakawa, H.T.), Translational Medical Center, National Center of Neurology and Psychiatry; Department of Neurology (S.S.), Keio University School of Medicine, Tokyo; Department of Dermatology (N.O., M.F.), Faculty of Medicine, University of Tsukuba, Ibaraki; and Department of Dermatology (M.F.), Graduate School of Medicine, Osaka University, Japan.
| |
Collapse
|
44
|
Zhang Y, Chen WG, Yang SZ, Qiu H, Hu X, Qiu YY, Wen X, Zhou Y, Chu TW. Up-regulation of TβRIII facilitates the osteogenesis of supraspinous ligament-derived fibroblasts from patients with ankylosing spondylitis. J Cell Mol Med 2021; 25:1613-1623. [PMID: 33410269 PMCID: PMC7875912 DOI: 10.1111/jcmm.16262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/22/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Spinal supraspinous ligament (SL) osteogenesis is the key risk of ankylosing spondylitis (AS), with an unclear pathogenesis. We previously found that transforming growth factor β1 (TGF‐β1), bone morphogenetic proteins (eg BMP2) and type III TGF‐β1 receptor (TβRIII) expression were markedly up‐regulated in AS‐SLs. However, the roles of these closely related molecules in AS are unknown. Here, we showed that BMP2, TGF‐β1, TβRIII and S100A4 (a fibroblast marker) were abundant in active osteogenic AS‐SL tissues. In vitro, AS‐SL fibroblasts (AS‐SLFs) showed high BMP2, TGF‐β1 and TβRIII expression and auto‐osteogenic capacity. We further evaluated the role of TβRIII in the osteogenesis of normal SLFs. BMP2 combined with TGF‐β1 induced the osteogenesis of TβRIII‐overexpressing SLFs, but the activity was lost in SLFs upon TβRIII knockdown. Moreover, our data suggested that BMP2 combined with TGF‐β1 significantly activated both TGF‐β1/Smad signalling and BMP2/Smad/RUNX2 signalling to induce osteogenesis of SLFs with TβRIII up‐regulation. Furthermore, our multi‐strategy molecular interaction analysis approach indicated that TGF‐β1 presented BMP2 to TβRIII, sequentially facilitating BMP2 recognition by BMPR1A and promoting the osteogenesis of TβRIII‐overexpressing SLFs. Collectively, our results indicate that TGF‐β1 combined with BMP2 may participate in the osteogenic differentiation of AS‐SLF by acting on up‐regulated TβRIII, resulting in excessive activation of both TGF‐β1/Smad and BMP2/BMPR1A/Smad/RUNX2 signalling.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Orthopaedics, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Wu-Gui Chen
- Department of Orthopaedics, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Si-Zhen Yang
- Department of Orthopaedics, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Hao Qiu
- Department of Orthopaedics, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Xu Hu
- Department of Orthopaedics, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Yi-Yun Qiu
- Department of Orthopaedics, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Xuan Wen
- Department of Orthopaedics, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Yue Zhou
- Department of Orthopaedics, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Tong-Wei Chu
- Department of Orthopaedics, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| |
Collapse
|
45
|
Litvinova L, Yurova K, Shupletsova V, Khaziakhmatova O, Malashchenko V, Shunkin E, Melashchenko E, Todosenko N, Khlusova M, Sharkeev Y, Komarova E, Sedelnikova M, Khlusov I. Gene Expression Regulation and Secretory Activity of Mesenchymal Stem Cells upon In Vitro Contact with Microarc Calcium Phosphate Coating. Int J Mol Sci 2020; 21:E7682. [PMID: 33081386 PMCID: PMC7589914 DOI: 10.3390/ijms21207682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/02/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
The manufacture of biomaterial surfaces with desired physical and chemical properties that can directly induce osteogenic differentiation without the need for biochemical additives is an excellent strategy for controlling the behavior of mesenchymal stem cells (MSCs) in vivo. We studied the cellular and molecular reactions of MSCs to samples with a double-sided calcium phosphate (CaP) coating and an average roughness index (Ra) of 2.4-4.6 µm. The study aimed to evaluate the effect of a three-dimensional matrix on the relative mRNA expression levels of genes associated with the differentiation and maturation of MSCs toward osteogenesis (RUNX2, BMP2, BMP6, BGLAP, and ALPL) under conditions of distant interaction in vitro. Correlations were revealed between the mRNA expression of some osteogenic and cytokine/chemokine genes and the secretion of cytokines and chemokines that may potentiate the differentiation of cells into osteoblasts, which indicates the formation of humoral components of the extracellular matrix and the creation of conditions supporting the establishment of hematopoietic niches.
Collapse
Affiliation(s)
- Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236000 Kaliningrad, Russia; (K.Y.); (V.S.); (O.K.); (V.M.); (E.S.); (E.M.); (N.T.); (I.K.)
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236000 Kaliningrad, Russia; (K.Y.); (V.S.); (O.K.); (V.M.); (E.S.); (E.M.); (N.T.); (I.K.)
| | - Valeria Shupletsova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236000 Kaliningrad, Russia; (K.Y.); (V.S.); (O.K.); (V.M.); (E.S.); (E.M.); (N.T.); (I.K.)
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236000 Kaliningrad, Russia; (K.Y.); (V.S.); (O.K.); (V.M.); (E.S.); (E.M.); (N.T.); (I.K.)
| | - Vladimir Malashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236000 Kaliningrad, Russia; (K.Y.); (V.S.); (O.K.); (V.M.); (E.S.); (E.M.); (N.T.); (I.K.)
| | - Egor Shunkin
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236000 Kaliningrad, Russia; (K.Y.); (V.S.); (O.K.); (V.M.); (E.S.); (E.M.); (N.T.); (I.K.)
| | - Elena Melashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236000 Kaliningrad, Russia; (K.Y.); (V.S.); (O.K.); (V.M.); (E.S.); (E.M.); (N.T.); (I.K.)
| | - Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236000 Kaliningrad, Russia; (K.Y.); (V.S.); (O.K.); (V.M.); (E.S.); (E.M.); (N.T.); (I.K.)
| | - Marina Khlusova
- Department of Pathophysiology, Siberian State Medical University, 634050 Tomsk, Russia;
| | - Yurii Sharkeev
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science, SB RAS, 634055 Tomsk, Russia; (Y.S.); (E.K.); (M.S.)
- Research School of High-Energy Physics, Tomsk Polytechnic University, 634055 Tomsk, Russia
| | - Ekaterina Komarova
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science, SB RAS, 634055 Tomsk, Russia; (Y.S.); (E.K.); (M.S.)
| | - Maria Sedelnikova
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science, SB RAS, 634055 Tomsk, Russia; (Y.S.); (E.K.); (M.S.)
| | - Igor Khlusov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236000 Kaliningrad, Russia; (K.Y.); (V.S.); (O.K.); (V.M.); (E.S.); (E.M.); (N.T.); (I.K.)
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Department of Morphology and General Pathology, Siberian State Medical University, 634050 Tomsk, Russia
| |
Collapse
|
46
|
Costimulatory Effect of Rough Calcium Phosphate Coating and Blood Mononuclear Cells on Adipose-Derived Mesenchymal Stem Cells In Vitro as a Model of In Vivo Tissue Repair. MATERIALS 2020; 13:ma13194398. [PMID: 33023124 PMCID: PMC7579197 DOI: 10.3390/ma13194398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
Calcium phosphate (CaP) materials do not always induce ectopic vascularization and bone formation; the reasons remain unclear, and there are active discussions of potential roles for post-implantation hematoma, circulating immune and stem cells, and pericytes, but studies on adipose-derived stem cells (AMSCs) in this context are lacking. The rough (average surface roughness Ra = 2-5 µm) scaffold-like CaP coating deposited on pure titanium plates by the microarc oxidation method was used to investigate its subcutaneous vascularization in CBA/CaLac mice and in vitro effect on cellular and molecular crosstalk between human blood mononuclear cells (hBMNCs) and AMSCs (hAMSCs). Postoperative hematoma development on the CaP surface lasting 1-3 weeks may play a key role in the microvessel elongation and invasion into the CaP relief at the end of the 3rd week of injury and BMNC migration required for enhanced wound healing in mice. Satisfactory osteogenic and chondrogenic differentiation but poor adipogenic differentiation of hAMSCs on the rough CaP surface were detected in vitro by differential cell staining. The fractions of CD73+ (62%), CD90+ (0.24%), and CD105+ (0.41%) BMNCs may be a source of autologous circulating stem/progenitor cells for the subcutis reparation, but allogenic hBMNC participation is mainly related to the effects of CD4+ T cells co-stimulated with CaP coating on the in vitro recruitment of hAMSCs, their secretion of angiogenic and osteomodulatory molecules, and the increase in osteogenic features within the period of in vivo vascularization. Cellular and molecular crosstalk between BMNCs and AMSCs is a model of effective subcutis repair. Rough CaP surface enhanced angio- and osteogenic signaling between cells. We believe that preconditioning and/or co-transplantation of hAMSCs with hBMNCs may broaden their potential in applications related to post-implantation tissue repair and bone bioengineering caused by microarc CaP coating.
Collapse
|
47
|
Bianchi ML, Bishop NJ, Guañabens N, Hofmann C, Jakob F, Roux C, Zillikens MC. Hypophosphatasia in adolescents and adults: overview of diagnosis and treatment. Osteoporos Int 2020; 31:1445-1460. [PMID: 32162014 DOI: 10.1007/s00198-020-05345-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 02/11/2020] [Indexed: 12/11/2022]
Abstract
This article provides an overview of the current knowledge on hypophosphatasia-a rare genetic disease of very variable presentation and severity-with a special focus on adolescents and adults. It summarizes the available information on the many known mutations of tissue-nonspecific alkaline phosphatase (TNSALP), the epidemiology and clinical presentation of the disease in adolescents and adults, and the essential diagnostic clues. The last section reviews the therapeutic approaches, including recent reports on enzyme replacement therapy (EnzRT).
Collapse
Affiliation(s)
- M L Bianchi
- Laboratorio sperimentale di ricerche sul metabolismo osseo infantile, Centro Malattie Metaboliche Ossee, Istituto Auxologico Italiano IRCCS, Milan, Italy.
| | - N J Bishop
- Department of Oncology and Metabolism, University of Sheffield, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - N Guañabens
- Servicio de Reumatología, Hospital Clínic, Universidad de Barcelona, IDIBAPS CIBERehd, Barcelona, Spain
| | - C Hofmann
- Children's Hospital, University of Würzburg, Würzburg, Germany
| | - F Jakob
- Orthopedic Centre for Musculoskeletal Research, University of Würzburg, Würzburg, Germany
| | - C Roux
- INSERM U1153 APHP Centre, Université de Paris, Department of Rheumatology, Paris, France
| | - M C Zillikens
- Department of Internal Medicine, Endocrinology Section, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | |
Collapse
|
48
|
Fitzgerald GE, O'Dwyer T, Mockler D, O'Shea FD, Wilson F. Pharmacological treatment for managing bone health in axial spondyloarthropathy: systematic review and meta-analysis. Rheumatol Int 2020; 40:1369-1384. [PMID: 32556472 DOI: 10.1007/s00296-020-04623-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022]
Abstract
Axial spondyloarthropathy (axSpA) is associated with an increased prevalence of osteoporosis, but no recommendations exist to guide management. This systematic review and meta-analysis aim to assess the efficacy of pharmacological and non-pharmacological interventions on bone mineral density (BMD) in axSpA. Electronic databases were searched from inception to June 2019 for randomised controlled trials (RCTs) and quasi (q)-RCTs with pharmacological and non-pharmacological interventions. Independent reviewers undertook screening, and risk of bias and quality assessments. Primary outcomes of interest were BMD at spine and hip. Eight studies (two RCTs and six qRCTs) were included (602 participants). Moderate level evidence favoured alendronate over placebo at femoral neck [mean difference (MD) 2.01, 95% CI 0.67 to 3.35], but there was low-level evidence showing no effect at the spine. There was moderate level evidence showing no effect of tumour necrosis factor inhibitors (TNFi) on BMD at total hip (MD - 0.01, 95% CI - 0.06 to 0.04). Very low-level evidence demonstrated no effect of TNFi on spine or femoral neck. Moderate level evidence favoured neridronate over infliximab at the spine (MD 3.26, 95% CI 1.14 to 5.38), but low-level evidence showed no effect at the total hip (MD 2.75, 95% CI - 0.21 to 5.71). There were no eligible studies investigating the efficacy of non-pharmacological interventions. We conditionally recommend alendronate for management of low BMD in axSpA. The balance of evidence does not recommend the use of TNF-inhibitors for treating low BMD. There is a lack of high-quality evidence guiding clinicians treating osteoporosis in axSpA.
Collapse
Affiliation(s)
- Gillian E Fitzgerald
- School of Medicine, Trinity College Dublin, Dublin, Ireland.
- Department of Rheumatology, St. James's Hospital, Dublin, Ireland.
| | | | - David Mockler
- John Stearne Library, Trinity Centre for Health Sciences, St. James's Hospital, Dublin, Ireland
| | - Finbar D O'Shea
- School of Medicine, Trinity College Dublin, Dublin, Ireland
- Department of Rheumatology, St. James's Hospital, Dublin, Ireland
| | - Fiona Wilson
- Discipline of Physiotherapy, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
49
|
Moorhead WJ, Chu CC, Cuevas RA, Callahan J, Wong R, Regan C, Boufford CK, Sur S, Liu M, Gomez D, MacTaggart JN, Kamenskiy A, Boehm M, St Hilaire C. Dysregulation of FOXO1 (Forkhead Box O1 Protein) Drives Calcification in Arterial Calcification due to Deficiency of CD73 and Is Present in Peripheral Artery Disease. Arterioscler Thromb Vasc Biol 2020; 40:1680-1694. [PMID: 32375544 PMCID: PMC7310306 DOI: 10.1161/atvbaha.119.313765] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Supplemental Digital Content is available in the text. Objective: The recessive disease arterial calcification due to deficiency of CD73 (ACDC) presents with extensive nonatherosclerotic medial layer calcification in lower extremity arteries. Lack of CD73 induces a concomitant increase in TNAP (tissue nonspecific alkaline phosphatase; ALPL), a key enzyme in ectopic mineralization. Our aim was to investigate how loss of CD73 activity leads to increased ALPL expression and calcification in CD73-deficient patients and assess whether this mechanism may apply to peripheral artery disease calcification. Approach and Results: We previously developed a patient-specific disease model using ACDC primary dermal fibroblasts that recapitulates the calcification phenotype in vitro. We found that lack of CD73-mediated adenosine signaling reduced cAMP production and resulted in increased activation of AKT. The AKT/mTOR (mammalian target of rapamycin) axis blocks autophagy and inducing autophagy prevented calcification; however, we did not observe autophagy defects in ACDC cells. In silico analysis identified a putative FOXO1 (forkhead box O1 protein) binding site in the human ALPL promoter. Exogenous AMP induced FOXO1 nuclear localization in ACDC but not in control cells, and this was prevented with a cAMP analogue or activation of A2a/2b adenosine receptors. Inhibiting FOXO1 reduced ALPL expression and TNAP activity and prevented calcification. Mutating the FOXO1 binding site reduced ALPL promoter activation. Importantly, we provide evidence that non-ACDC calcified femoropopliteal arteries exhibit decreased CD73 and increased FOXO1 levels compared with control arteries. Conclusions: These data show that lack of CD73-mediated cAMP signaling promotes expression of the human ALPL gene via a FOXO1-dependent mechanism. Decreased CD73 and increased FOXO1 was also observed in more common peripheral artery disease calcification.
Collapse
Affiliation(s)
- William J Moorhead
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Claire C Chu
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Rolando A Cuevas
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Jack Callahan
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Ryan Wong
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Cailyn Regan
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Camille K Boufford
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Swastika Sur
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Mingjun Liu
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Delphine Gomez
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Jason N MacTaggart
- Department of Surgery, University of Nebraska Medical Center, Omaha (J.N.M.)
| | | | - Manfred Boehm
- Laboratory of Cardiovascular Regenerative Medicine, National Heart, Lung, and Blood Institute, Bethesda, MD (M.B.)
| | - Cynthia St Hilaire
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA (C.S.H.)
| |
Collapse
|
50
|
Li X, Huang Q, Hu X, Wu D, Li N, Liu Y, Li Q, Wu H. Evaluating the osteoimmunomodulatory properties of micro-arc oxidized titanium surface at two different biological stages using an optimized in vitro cell culture strategy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110722. [DOI: 10.1016/j.msec.2020.110722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 12/31/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
|