1
|
Begh MZA, Zehravi M, Reza F, Sweilam SH, Shanmugarajan TS, Arjun UVNV, Devi K, Ethiraj S, Kumar VS, Thilagam E, Fahaid Al Fahaid AA, Rab SO, Khan SL, Emran TB. Therapeutic potential of phytocompounds in rheumatoid arthritis: Molecular insights and clinical applications. Pathol Res Pract 2025; 269:155945. [PMID: 40174276 DOI: 10.1016/j.prp.2025.155945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/16/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by systemic involvement, inflammation, and the destruction of synovial joints. RA can be categorized as anti-citrullinated protein antibodies-positive or negative based on genetic risk factors and autoantibodies. This review systematically sourced articles related to RA, phytocompounds, signaling pathways, and clinical insights from primary medical databases, including Scopus, PubMed, and Web of Science. This review explores the therapeutic potential of phytocompounds in treating RA by targeting key inflammation and immunological response signaling pathways. Phytocompounds such as curcumin, resveratrol, and flavonoids alter essential molecular pathways in RA pathophysiology, including nuclear factor kappa-light-chain-enhancer of activated B cells, mitogen-activated protein kinases, janus kinase-signal transducer and activator of transcription, and the inflammasome. These substances possess pro-resolving, anti-apoptotic, and antioxidant properties, which enhance their therapeutic efficacy. Alternative medicine, including dietary, herbal, and nutritional supplements, may help reduce RA symptoms. In vitro, in vivo, and clinical studies have demonstrated the effectiveness of these treatments. Phytocompounds have potential as a treatment for RA by altering signaling pathways, reducing oxidative stress, and protecting cartilage and bone. However, few clinical trials confirm its long-term safety, bioavailability, and effectiveness. Further clinical trials and translational research are needed to validate the effectiveness, safety, and pharmacokinetics of phytocompounds, while identifying novel plant-derived bioactive chemicals could improve patient outcomes.
Collapse
Affiliation(s)
- Md Zamshed Alam Begh
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1216, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia.
| | - Faruk Reza
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1216, Bangladesh
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo 11829, Egypt
| | - Thukani Sathanantham Shanmugarajan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, Tamil Nadu 600117, India
| | - Uppuluri Varuna Naga Venkata Arjun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, Tamil Nadu 600117, India
| | - Kadirivel Devi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, Tamil Nadu 600117, India
| | - Susithra Ethiraj
- College of Pharmacy, Sri Venkateswara University, SV University, Prakasam Rd, Sri Padmavati Mahila Visvavidyalayam, Tirupati , Andhra Pradesh, 517502, India
| | - V Santhosh Kumar
- Department of Pharmacology, Faculty of Pharmacy, ACS Medical College Campus, Dr. MGR. Educational and Research Institute, Poonamallee High Rd, Velappanchavadi, Chennai, Tamil Nadu 600077, India
| | - E Thilagam
- Department of Pharmacognosy, JKKMMRF'S-ANNAI JKK Sampooorani Ammal College of Pharmacy, Ethirmedu, Komarapalayam (Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Chennai), India
| | | | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, Maharashtra 413520, India
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1216, Bangladesh; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, USA.
| |
Collapse
|
2
|
Nasb M, Li F, Dayoub L, Wu T, Wei M, Chen N. Bridging the gap: Integrating exercise mimicry into chronic disease management through suppressing chronic inflammation. J Adv Res 2025; 70:307-322. [PMID: 38704088 PMCID: PMC11976426 DOI: 10.1016/j.jare.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/25/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Chronic inflammation is a common hallmark of many chronic diseases. Although exercise holds paramount importance in preventing and managing chronic diseases, adherence to exercise programs can be challenging for some patients. Consequently, there is a pressing need to explore alternative strategies to emulate the anti-inflammatory effects of exercise for chronic diseases. AIM OF REVIEW This review explores the emerging role of green tea bioactive components as potential mitigators of chronic inflammation, offering insights into their capacity to mimic the beneficial effects of exercise. We propose that bioactive components in green tea are promising agents for suppressing chronic inflammation, suggesting their unique capability to replicate the health benefits of exercise. KEY SCIENTIFIC CONCEPTS OF REVIEW This review focuses on several key concepts, including chronic inflammation and its role in chronic diseases, the anti-inflammatory effects of regular exercise, and bioactive components in green tea responsible for its health benefits. It elaborates on scientific evidence supporting the anti-inflammatory properties of green tea bioactive components, such as epigallocatechin gallate (EGCG), and theorizes how these bioactive components might replicate the effects of exercise at a molecular level. Through a comprehensive analysis of current research, this review proposes a novel perspective on the application of green tea as a potential intervention strategy to suppress chronic inflammation, thereby extending the benefits akin to those achieved through exercise.
Collapse
Affiliation(s)
- Mohammad Nasb
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Fengxing Li
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Lamis Dayoub
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tong Wu
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Minhui Wei
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
3
|
Zhang J, Yan H, Wang Y, Yue X, Wang M, Liu L, Qiao P, Zhu Y, Li Z. Emerging insights into pulmonary hypertension: the potential role of mitochondrial dysfunction and redox homeostasis. Mol Cell Biochem 2025; 480:1407-1429. [PMID: 39254871 DOI: 10.1007/s11010-024-05096-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
Pulmonary hypertension (PH) is heterogeneous diseases that can lead to death due to progressive right heart failure. Emerging evidence suggests that, in addition to its role in ATP production, changes in mitochondrial play a central role in their pathogenesis, regulating integrated metabolic and signal transduction pathways. This review focuses on the basic principles of mitochondrial redox status in pulmonary vascular and right ventricular disorders, a series of dysfunctional processes including mitochondrial quality control (mitochondrial biogenesis, mitophagy, mitochondrial dynamics, mitochondrial unfolded protein response) and mitochondrial redox homeostasis. In addition, we will summarize how mitochondrial renewal and dynamic changes provide innovative insights for studying and evaluating PH. This will provide us with a clearer understanding of the initial signal transmission of mitochondria in PH, which would further improve our understanding of the pathogenesis of PH.
Collapse
Affiliation(s)
- Junming Zhang
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Huimin Yan
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Yan Wang
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Xian Yue
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Meng Wang
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Limin Liu
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Pengfei Qiao
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Yixuan Zhu
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Zhichao Li
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China.
| |
Collapse
|
4
|
Yin Y, Xu J, Ilyas I, Xu S. Bioactive Flavonoids in Protecting Against Endothelial Dysfunction and Atherosclerosis. Handb Exp Pharmacol 2025; 287:1-31. [PMID: 38755351 DOI: 10.1007/164_2024_715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Atherosclerosis is a common cardiovascular disease closely associated with factors such as hyperlipidaemia and chronic inflammation. Among them, endothelial dysfunction serves as a major predisposing factor. Vascular endothelial dysfunction is manifested by impaired endothelium-dependent vasodilation, enhanced oxidative stress, chronic inflammation, leukocyte adhesion and hyperpermeability, endothelial senescence, and endothelial-mesenchymal transition (EndoMT). Flavonoids are known for their antioxidant activity, eliminating oxidative stress induced by reactive oxygen species (ROS), thereby preventing the oxidation of low-density lipoprotein (LDL) cholesterol, reducing platelet aggregation, alleviating ischemic damage, and improving vascular function. Flavonoids have also been shown to possess anti-inflammatory activity and to protect the cardiovascular system. This review focuses on the protective effects of these naturally-occuring bioactive flavonoids against the initiation and progression of atherosclerosis through their effects on endothelial cells including, but not limited to, their antioxidant, anti-inflammatory, anti-thrombotic, and lipid-lowering properties. However, more clinical evidences are still needed to determine the exact role and optimal dosage of these compounds in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yanjun Yin
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Jingjing Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
5
|
Lee PH, An M, Hwang D, Jang AS. The Effect of Green Tea Extract on Pulmonary Inflammation in Nanoparticles-Exposed Mice. Mol Nutr Food Res 2024; 68:e2300792. [PMID: 39254278 DOI: 10.1002/mnfr.202300792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/27/2024] [Indexed: 09/11/2024]
Abstract
SCOPE Titanium dioxide nanoparticles (TiO2 NPs) are air pollutants that exacerbate chronic respiratory diseases such as asthma and Chronic Obstructive Pulmonary Disease (COPD) However, little is known about the mechanism underlying the antipollutant effects of green tea extract (GTE). This study evaluates the efficacy and mechanism of GTE on lung inflammation and fibrosis in mice exposed to TiO2 NPs. METHODS AND RESULTS The TiO2 NPs model is induced by having mice inhale TiO2 NPs, while controls receive an equivalent volume of saline. Treatment with oral GTE is initiated after TiO2 NPs inhalation and is given once daily for 4 weeks. Airway resistance and pulmonary inflammation are increased in mice exposed to TiO2 NPs. GTE treatment reduces the airway inflammation and airway resistance, and attenuates the pathological changes including lung fibrosis compared to the mice exposed to TiO2 NPs. With GTE, there are no significant increases in cytokines and immunoglobulin E (IgE) in mice exposed to TiO2 NPs. GTE inhibits matrix metalloproteinases (MMPs) and apoptotic factors induced by TiO2 NPs exposure, and these protective effects of GTE are closely related to the mitogen-activated protein kinase (MAPK) signaling pathway. CONCLUSION GTE modulates pulmonary inflammation in mice exposed to air pollutants, suggesting that GTE may be beneficial in respiratory diseases exacerbated by such pollutants.
Collapse
Affiliation(s)
- Pureun-Haneul Lee
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, Republic of Korea
| | - MinHyeok An
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, Republic of Korea
| | - DaYeon Hwang
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, Republic of Korea
| | - An-Soo Jang
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, Republic of Korea
| |
Collapse
|
6
|
Su Q, Yang SP, Guo JP, Rong YR, Sun Y, Chai YR. Epigallocatechin-3-gallate ameliorates lipopolysaccharide-induced acute thymus involution in mice via AMPK/Sirt1 pathway. Microbiol Immunol 2024; 68:281-293. [PMID: 38886542 DOI: 10.1111/1348-0421.13159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/08/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
The thymus, a site to culture the naïve T lymphocytes, is susceptible to atrophy or involution due to aging, inflammation, and oxidation. Epigallocatechin-3-gallate (EGCG) has been proven to possess anti-inflammatory, antioxidant, and antitumor activity. Here, we investigate the effects of EGCG on thymic involution induced by lipopolysaccharide (LPS), an endotoxin derived from Gram-negative bacteria. The methodology included an in vivo experiment on female Kunming mice exposed to LPS and EGCG. Morphological assessment of thymic involution, immunohistochemical detection, and thymocyte subsets analysis by flow cytometry were further carried out to evaluate the potential role of EGCG on the thymus. As a result, we found that EGCG alleviated LPS-induced thymic atrophy, increased mitochondrial membrane potential and superoxide dismutase levels, and decreased malondialdehyde and reactive oxygen species levels. In addition, EGCG pre-supplement restored the ratio of thymocyte subsets, the expression of autoimmune regulator, sex-determining region Y-box 2, and Nanog homebox, and reduced the number of senescent cells and collagen fiber deposition. Western blotting results indicated that EGCG treatment elevated LPS-induced decrease in pAMPK, Sirt1 protein expression. Collectively, EGCG relieved thymus architecture and function damaged by LPS via regulation of AMPK/Sirt1 signaling pathway. Our findings may provide a new strategy on protection of thymus from involution caused by LPS by using EGCG. And EGCG might be considered as a potential agent for the prevention and treatment of thymic involution.
Collapse
Affiliation(s)
- Qing Su
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Shu-Ping Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
- School of Medical Technology, Sanquan College of Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Jun-Ping Guo
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yi-Ren Rong
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yun Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yu-Rong Chai
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| |
Collapse
|
7
|
Kciuk M, Garg A, Rohilla M, Chaudhary R, Dhankhar S, Dhiman S, Bansal S, Saini M, Singh TG, Chauhan S, Mujwar S, Gielecińska A, Kontek R. Therapeutic Potential of Plant-Derived Compounds and Plant Extracts in Rheumatoid Arthritis-Comprehensive Review. Antioxidants (Basel) 2024; 13:775. [PMID: 39061843 PMCID: PMC11274232 DOI: 10.3390/antiox13070775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Rheumatoid arthritis (RA) is a persistent autoimmune disorder that is characterized by joint inflammation, discomfort, and impairment. Despite the existence of several therapeutic approaches, their effectiveness is often restricted and may be linked to unfavorable side effects. Consequently, there has been growing interest in investigating naturally derived compounds as plausible therapeutic agents for RA disease. The objective of this review is to summarize the existing preclinical and clinical evidence regarding the efficacy of naturally extracted compounds and plant extracts in the treatment of RA, focusing on their anti-inflammatory, anti-oxidative, and immunomodulatory properties. Some of the problems with using natural chemicals are the uneven quality of commercially available preparations and the poor bioavailability of these compounds. Future investigations should focus on improving the formulations, conducting thorough clinical trials, and exploring different techniques to fully utilize the intrinsic potential of naturally derived chemicals in treating RA.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha St. 12/16, 90-237 Lodz, Poland
| | - Anjali Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
- Swami Devi Dyal College of Pharmacy, Golpura Barwala, Panchkula 134118, Haryana, India
| | - Manni Rohilla
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
- Swami Vivekanand College of Pharmacy, Ram Nagar, Banur 140601, Punjab, India
| | - Rishabh Chaudhary
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133206, Haryana, India
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Sachin Dhiman
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Seema Bansal
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133206, Haryana, India
| | - Monika Saini
- Swami Vivekanand College of Pharmacy, Ram Nagar, Banur 140601, Punjab, India
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133206, Haryana, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha St. 12/16, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha St. 12/16, 90-237 Lodz, Poland
| |
Collapse
|
8
|
Yoshitomi R, Kumazoe M, Lee KW, Marugame Y, Fujimura Y, Tachibana H. Regulatory effect of Epigallocatechin-3-O-gallate on circular RNA expression in mouse liver. J Nutr Biochem 2024; 124:109506. [PMID: 37890708 DOI: 10.1016/j.jnutbio.2023.109506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
There are few studies on the connection between food components and circular RNA (circRNA), a type of noncoding RNA that is significant for living organisms. (-)-Epigallocatechin-3-O-gallate (EGCG) has been reported to have various biological effects, and elucidation of the molecular mechanism is important for clarifying the functionality of EGCG. In the current study, we looked at how EGCG regulates the expression of circRNA in the liver, which expresses a lot of circRNAs. Mice were given EGCG (10 mg/kg b.w.) orally for one week before circRNA microarray testing was done on their livers. The microarray analysis revealed that mice treated with EGCG had altered expression of 35 circRNAs in their livers. To clarify the function of mmu_circRNA_011775, one of the circRNAs upregulated by EGCG, mouse liver cells after the mmu_circRNA_011775 expression vector was transfected into NMuLi cells, next-generation sequencing (NGS) was used to analyze the gene expression. NGS analysis shows that the expression of the genes responsible for liver fibrosis and inflammation. Gene ontology (GO) analysis showed that mmu_circRNA_011775 changed the meaning of GO terms associated with the cardiovascular system. In the microarray, EGCG altered 35 genes expression. Among them, pre-ribosomal RNA-derived circRNA mmu_circRNA_011775 regulated the expression of various genes related to liver fibrosis and cardiovascular system.
Collapse
Affiliation(s)
- Ren Yoshitomi
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Kwan-Woo Lee
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yuki Marugame
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yoshinori Fujimura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
9
|
Harwansh RK, Bhati H, Deshmukh R. Recent Updates on the Therapeutics Benefits, Clinical Trials, and Novel Delivery Systems of Chlorogenic Acid for the Management of Diseases with a Special Emphasis on Ulcerative Colitis. Curr Pharm Des 2024; 30:420-439. [PMID: 38299405 DOI: 10.2174/0113816128295753240129074035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
Ulcerative colitis (UC) is a multifactorial disorder of the large intestine, especially the colon, and has become a challenge globally. Allopathic medicines are primarily available for the treatment and prevention of UC. However, their uses are limited due to several side effects. Hence, an alternative therapy is of utmost importance in this regard. Herbal medicines are considered safe and effective for managing human health problems. Chlorogenic acid (CGA), the herbal-derived bioactive, has been reported for pharmacological effects like antiinflammatory, immunomodulatory, antimicrobial, hepatoprotective, antioxidant, anticancer, etc. This review aims to understand the antiinflammatory and chemopreventive potential of CGA against UC. Apart from its excellent therapeutic potential, it has been associated with low absorption and poor oral bioavailability. In this context, colon-specific novel drug delivery systems (NDDS)are pioneering to overcome these problems. The pertinent literature was compiled from a thorough search on various databases such as ScienceDirect, PubMed, Google Scholar, etc., utilizing numerous keywords, including ulcerative colitis, herbal drugs, CGA, pharmacological activities, mechanism of actions, nanoformulations, clinical updates, and many others. Relevant publications accessed till now were chosen, whereas non-relevant papers, unpublished data, and non-original articles were excluded. The present review comprises recent studies on pharmacological activities and novel drug delivery systems of CGA for managing UC. In addition, the clinical trials of CGA against UC have been discussed.
Collapse
Affiliation(s)
- Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Hemant Bhati
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| |
Collapse
|
10
|
Shibata S, Kon S. Functional Ingredients Associated with the Prevention and Suppression of Locomotive Syndrome: A Review. Biol Pharm Bull 2024; 47:1978-1991. [PMID: 39617444 DOI: 10.1248/bpb.b24-00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
In 2007, the Japanese Orthopaedic Association proposed the concept of locomotive syndrome, a comprehensive description of conditions involving the functional decline of the locomotor system. Locomotive syndrome includes bone-related diseases such as osteoporosis, joint cartilage and disc-related diseases such as osteoarthritis and lumbar spondylosis, and sarcopenia and locomotive syndrome-related diseases. If left untreated, these diseases are likely to reduce mobility, necessitating nursing care. To prevent the progression of locomotive syndrome, a daily exercise routine and well-balanced diet are important, in addition to recognizing one's own decline in mobility. Therefore, research on the effectiveness of functional ingredients in the prevention and suppression of locomotive syndrome progression is ongoing. In this review, we summarize the latest reports on the effectiveness of five functional ingredients, namely, epigallocatechin gallate, resveratrol, curcumin, ellagic acid, and carnosic acid, in the treatment of osteoarthritis, osteoporosis, and rheumatoid arthritis, which are considered representative diseases of the locomotive syndrome.
Collapse
Affiliation(s)
- Sachi Shibata
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University
| | - Shigeyuki Kon
- Department of Molecular Immunology, Faculty of Pharmaceutical Sciences, Fukuyama University
| |
Collapse
|
11
|
Gupta P, Neupane YR, Aqil M, Kohli K, Sultana Y. Lipid-based nanoparticle-mediated combination therapy for breast cancer management: a comprehensive review. Drug Deliv Transl Res 2023; 13:2739-2766. [PMID: 37261602 DOI: 10.1007/s13346-023-01366-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
Breast cancer due to the unpredictable and complex etiopathology combined with the non-availability of any effective drug treatment has become the major root of concern for oncologists globally. The number of women affected by the said disease state is increasing at an alarming rate attributed to environmental and lifestyle changes indicating at the exploration of a novel treatment strategy that can eradicate this aggressive disease. So far, it is treated by promising nanomedicine monotherapy; however, according to the numerous studies conducted, the inadequacy of these nano monotherapies in terms of elevated toxicity and resistance has been reported. This review, therefore, puts forth a new multimodal strategic approach to lipid-based nanoparticle-mediated combination drug delivery in breast cancer, emphasizing the recent advancements. A basic overview about the combination therapy and its index is firstly given. Then, the various nano-based combinations of chemotherapeutics involving the combination delivery of synthetic and herbal agents are discussed along with their examples. Further, the recent exploration of chemotherapeutics co-delivery with small interfering RNA (siRNA) agents has also been explained herein. Finally, a section providing a brief description of the delivery of chemotherapeutic agents with monoclonal antibodies (mAbs) has been presented. From this review, we aim to provide the researchers with deep insight into the novel and much more effective combinational lipid-based nanoparticle-mediated nanomedicines tailored specifically for breast cancer treatment resulting in synergism, enhanced antitumor efficacy, and low toxic effects, subsequently overcoming the hurdles associated with conventional chemotherapy.
Collapse
Affiliation(s)
- Priya Gupta
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Yub Raj Neupane
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA, 52242, USA
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India.
- Lloyd Institute of Management & Technology (Pharm.), Plot No. 11, Knowledge Park-II, Greater Noida, Uttar Pradesh, 201308, India.
| | - Yasmin Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
12
|
Suo X, Yan X, Tan B, Pan S, Li T, Liu H, Huang W, Zhang S, Yang Y, Dong X. Effect of Tea Polyphenols, α-Lipoic Acid and Their Joint Use on the Antioxidant and Lipid Metabolism Performance of Hybrid Grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatu) Fed with High-Lipid Diets. AQUACULTURE NUTRITION 2023; 2023:1393994. [PMID: 37936718 PMCID: PMC10627718 DOI: 10.1155/2023/1393994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/07/2023] [Accepted: 09/15/2023] [Indexed: 11/09/2023]
Abstract
This study investigated tea polyphenols (TP), α-lipoic acid (ALA) and their joint use on the antioxidant and lipid metabolic performance of hybrid grouper (♀Epinephelus fuscoguttatus × ♂E. lanceolatu) took food with high-fat diets. Six high-lipid diets with isonitrogen (50% of dry matter) and isolipid (17% of dry value) were designed, in which a total content of 1,000 mg/kg additives were added to each group except for the control group (FL). The additives addition ratios in each group were ALA (AL), TP (PL), ALA : TP = 1 : 1 (EL), ALA : TP = 1 : 2 (OL), ALA : TP = 2 : 1 (TL). Each diet was divided into three repeat groups with 30 tails (6.84 ± 0.01 g) in each group and fed for 8 weeks. The consequences were as follows: (1) the highest weight gain rate, specific growth rate, as well as the lowest feed conversion ratio and ingestion rate were discovered in the OL team, which were opposite to the TL group. (2) The body fat content and muscle fat content in the fish oil group were the lowest (P < 0.05), while those of the TL group were the highest. (3) Serum catalase, glutathione peroxidase, total antioxidant capacity, and superoxide dismutase activities were the highest, and the content of reactive oxygen species was the lowest in the OL group. (4) The OL group has the highest hepatic lipase activity and the lowest very low-density lipoprotein content of the liver. In contrast, the TL group had the highest fatty acid synthetase (FAS) activity (P < 0.05). (5) The oil-red aspects of liver tissue displayed lipid particles in other groups were reduced to different degrees compared with FL group, and the OL group showed the best lipid-lowering effect. (6) Compared with the FL group, the relative expressions of FAS, acetyl-CoA carboxylase (acc), and apolipoprotein b-100 (apoB100) genes in the liver were decreased. The relative expressions of lipoprotein lipase (lpl) and peroxisome proliferators-activated receptors-α (pparα) genes related to lipid catabolism were increased, among which the OL group had the most significant change (P < 0.05). (7) According to the 7-day challenge test of Vibrio alginolyticus, the OL group had the highest survival rate. To sum up, both ALA and TP have positive effects on relieving the lipid metabolism disorder of hybrid grouper. If they are jointly used, adding ALA : TP in a ratio of 1 : 2 (OL) may have the best effect, and an addition ratio of 2 : 1 (TL) may inhibit the hybrid grouper growth and increase the feeding cost.
Collapse
Affiliation(s)
- Xiangxiang Suo
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Guangdong Engineering Technology, Zhanjiang 524088, China
| | - Xiaobo Yan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Guangdong Engineering Technology, Zhanjiang 524088, China
| | - Beiping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Guangdong Engineering Technology, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong 524000, China
| | - Simiao Pan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Guangdong Engineering Technology, Zhanjiang 524088, China
| | - Tao Li
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Guangdong Engineering Technology, Zhanjiang 524088, China
| | - Hao Liu
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Guangdong Engineering Technology, Zhanjiang 524088, China
| | - Weibin Huang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Guangdong Engineering Technology, Zhanjiang 524088, China
| | - Shuang Zhang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Guangdong Engineering Technology, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong 524000, China
| | - Yuanzhi Yang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaohui Dong
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Guangdong Engineering Technology, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong 524000, China
| |
Collapse
|
13
|
Gou M, Zou C, Jiang Y, Xie H, Wang H, Song H. Antibacterial efficacy of epigallocatechin-3-gallate cross-linked small intestinal submucosa guided bone regeneration membrane. Dent Mater J 2023; 42:624-632. [PMID: 37612096 DOI: 10.4012/dmj.2022-167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The leading cause of guided bone regeneration (GBR) failure is infection. Herein, we developed a new GBR membrane with good mechanical and osteogenic properties by crosslinking the small intestinal submucosa (SIS) with epigallocatechin-3-gallate (EGCG). Meanwhile, EGCG is also a natural antibacterial agent. This study aimed to investigate the antibacterial efficacy of EGCG-crosslinked SIS (E-SIS) against Staphylococcus aureus and Escherichia coli through EGCG release, bacterial count, live/dead staining, scanning electron microscopy, growth curve, and biofilm formation tests. The results showed that E-SIS effectively inhibited bacteria's growth and adhesion, and its antibacterial activity against Staphylococcus aureus was stronger than that against Escherichia coli. 0.5% E-SIS had the most potent antibacterial activity. The antibacterial mechanism of E-SIS might be related to the release of EGCG and the surface properties of E-SIS. In conclusion, 0.5% E-SIS is a promising GBR membrane with good osteogenic and antibacterial properties.
Collapse
Affiliation(s)
- Min Gou
- Chengdu Second People's Hospital, Department of Stomatology
| | - Chenyu Zou
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy
| | - Yanlin Jiang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy
| | - Huiqi Xie
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy
| | - Hang Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University
| | - Hongjie Song
- Chengdu Second People's Hospital, Department of Stomatology
| |
Collapse
|
14
|
Ye S, Weng H, Xiang L, Jia L, Xu J. Synchronously Predicting Tea Polyphenol and Epigallocatechin Gallate in Tea Leaves Using Fourier Transform-Near-Infrared Spectroscopy and Machine Learning. Molecules 2023; 28:5379. [PMID: 37513250 PMCID: PMC10384235 DOI: 10.3390/molecules28145379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Tea polyphenol and epigallocatechin gallate (EGCG) were considered as key components of tea. The rapid prediction of these two components can be beneficial for tea quality control and product development for tea producers, breeders and consumers. This study aimed to develop reliable models for tea polyphenols and EGCG content prediction during the breeding process using Fourier Transform-near infrared (FT-NIR) spectroscopy combined with machine learning algorithms. Various spectral preprocessing methods including Savitzky-Golay smoothing (SG), standard normal variate (SNV), vector normalization (VN), multiplicative scatter correction (MSC) and first derivative (FD) were applied to improve the quality of the collected spectra. Partial least squares regression (PLSR) and least squares support vector regression (LS-SVR) were introduced to establish models for tea polyphenol and EGCG content prediction based on different preprocessed spectral data. Variable selection algorithms, including competitive adaptive reweighted sampling (CARS) and random forest (RF), were further utilized to identify key spectral bands to improve the efficiency of the models. The results demonstrate that the optimal model for tea polyphenols calibration was the LS-SVR with Rp = 0.975 and RPD = 4.540 based on SG-smoothed full spectra. For EGCG detection, the best model was the LS-SVR with Rp = 0.936 and RPD = 2.841 using full original spectra as model inputs. The application of variable selection algorithms further improved the predictive performance of the models. The LS-SVR model for tea polyphenols prediction with Rp = 0.978 and RPD = 4.833 used 30 CARS-selected variables, while the LS-SVR model build on 27 RF-selected variables achieved the best predictive ability with Rp = 0.944 and RPD = 3.049, respectively, for EGCG prediction. The results demonstrate a potential of FT-NIR spectroscopy combined with machine learning for the rapid screening of genotypes with high tea polyphenol and EGCG content in tea leaves.
Collapse
Affiliation(s)
- Sitan Ye
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Haiyong Weng
- Fujian Key Laboratory of Agricultural Information Sensoring Technology, College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lirong Xiang
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27606, USA
| | - Liangquan Jia
- School of Information Engineering, Huzhou University, Huzhou 313000, China
| | - Jinchai Xu
- Fujian Key Laboratory of Agricultural Information Sensoring Technology, College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
15
|
Long Z, Xiang W, He Q, Xiao W, Wei H, Li H, Guo H, Chen Y, Yuan M, Yuan X, Zeng L, Yang K, Deng Y, Huang Z. Efficacy and safety of dietary polyphenols in rheumatoid arthritis: A systematic review and meta-analysis of 47 randomized controlled trials. Front Immunol 2023; 14:1024120. [PMID: 37033930 PMCID: PMC10073448 DOI: 10.3389/fimmu.2023.1024120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/27/2023] [Indexed: 04/11/2023] Open
Abstract
Objective To evaluate safety and efficacy of dietary polyphenols in the treatment of rheumatoid arthritis (RA). Methods CNKI, Pubmed, Cochrane library, Embase were searched to collect randomized controlled trials (RCTs) of dietary polyphenols in the treatment of RA. The databases were searched from the time of their establishment to November 8nd, 2022. After 2 reviewers independently screened the literature, extracted data, and assessed the risk of bias of the included studies, Meta-analysis was performed using RevMan5.4 software. Results A total of 49 records (47 RCTs) were finally included, involving 3852 participants and 15 types of dietary polyphenols (Cinnamon extract, Cranberry extract, Crocus sativus L. extract, Curcumin, Garlic extract, Ginger extract, Hesperidin, Olive oil, Pomegranate extract, Puerarin, Quercetin, Resveratrol, Sesamin, Tea polyphenols, Total glucosides of paeony). Pomegranate extract, Resveratrol, Garlic extract, Puerarin, Hesperidin, Ginger extract, Cinnamon extract, Sesamin only involve in 1 RCT. Cranberry extract, Crocus sativus L. extract, Olive oil, Quercetin, Tea polyphenols involve in 2 RCTs. Total glucosides of paeony and Curcumin involve in more than 3 RCTs. These RCTs showed that these dietary polyphenols could improve disease activity score for 28 joints (DAS28), inflammation levels or oxidative stress levels in RA. The addition of dietary polyphenols did not increase adverse events. Conclusion Dietary polyphenols may improve DAS28, reduce C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR), and improve oxidative stress, etc. However, more RCTs are needed to verify or modify the efficacy and safety of dietary polyphenols. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022315645.
Collapse
Affiliation(s)
- Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Wang Xiang
- The First People's Hospital of Changde City, Changde, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Wei Xiao
- The First People's Hospital of Changde City, Changde, China
| | - Huagen Wei
- Dental Materials Science, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hao Li
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hua Guo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuling Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengxia Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, Shantou, China
| | - Xiao Yuan
- Hunan University of Chinese Medicine, Changsha, China
| | - Liuting Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kailin Yang
- Hunan University of Chinese Medicine, Changsha, China
| | | | - Zhen Huang
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
16
|
Karimi-Shahri M, Alalikhan A, Hashemian P, Hashemzadeh A, Javid H. The applications of epigallocatechin gallate (EGCG)-nanogold conjugate in cancer therapy. NANOTECHNOLOGY 2023; 34:212001. [PMID: 36535007 DOI: 10.1088/1361-6528/acaca3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Cancer has recently increased the death toll worldwide owing to inadequate therapy and decreased drug bioavailability. Long-term and untargeted chemotherapeutic exposure causes toxicity to healthy cells and drug resistance. These challenges necessitate the development of new methods to increase drug efficacy. Nanotechnology is an emerging field in the engineering of new drug delivery platforms. The phytochemical epigallocatechin gallate (EGCG), the main component of green tea extract and its most bioactive component, offers novel approaches to cancer cell eradication. The current review focuses on the nanogold-based carriers containing EGCG, with an emphasis on the chemotherapeutic effects of EGCG in cancer treatment. The nanoscale vehicle may improve the EGCG solubility and bioavailability while overcoming constraints and cellular barriers. This article reviewed the phytochemical EGCG-based gold nanoplatforms and their major anticancer applications, both individually, and in combination therapy in a few cases.
Collapse
Affiliation(s)
- Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Abbas Alalikhan
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pedram Hashemian
- Jahad Daneshgahi Research Committee, Jahad Daneshgahi Institute, Mashhad, Iran
| | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Lu RB, Huang J. Testing relationship between tea intake and the risk of rheumatoid arthritis and systemic lupus erythematosus: a Mendelian randomization study. Adv Rheumatol 2023; 63:10. [PMID: 36899398 DOI: 10.1186/s42358-023-00290-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND We performed Mendelian randomization (MR) to assess the causal effect of tea intake on rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). METHODS Genetic instruments for tea intake were obtained from a large genome-wide association study (GWAS) dataset of the UK Biobank. Genetic association estimates for RA (6236 cases and 147,221 controls) and SLE (538 cases and 213,145 controls) were obtained from the FinnGen study through the IEU GWAS database. RESULTS MR analyses using the inverse-variance weighted method showed that tea intake was not associated with risk of RA [odds ratio (OR) per standard deviation increment in genetically predicted tea intake = 0.997, 95% confidence interval (CI) 0.658-1.511] and SLE (OR per standard deviation increment in genetically predicted tea intake = 0.961, 95% CI 0.299-3.092). Weighted median, weighted mode, MR-Egger, leave-one-out and multivariable MR controlling for several confounding factors including current tobacco smoking, coffee intake, and alcoholic drinks per week yielded completely consistent results. No evidence of heterogeneity and pleiotropy was found. CONCLUSION Our MR study did not suggest a causal effect of genetically predicted tea intake on RA and SLE.
Collapse
Affiliation(s)
- Rong-Bin Lu
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jian Huang
- Clinical Laboratory Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
18
|
Cuerda-Ballester M, Proaño B, Alarcón-Jimenez J, de Bernardo N, Villaron-Casales C, Lajara Romance JM, de la Rubia Ortí JE. Improvements in gait and balance in patients with multiple sclerosis after treatment with coconut oil and epigallocatechin gallate. A pilot study. Food Funct 2023; 14:1062-1071. [PMID: 36594273 DOI: 10.1039/d2fo02207a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease that progressively decreases the muscular and functional capacity. Thus, there is an alteration in the ability to walk that affects balance, speed and resistance. Since MS pathology involves neuroinflammation, cellular oxidation and mitochondrial alterations, the objective of the study was to assess the impact of a nutritional intervention with coconut oil and epigallocatechin gallate (EGCG) on gait and balance. In order to do this, 51 patients with MS were enrolled and randomly distributed into an intervention group and a control group, which received either a daily dose of 800 mg of EGCG and 60 ml of coconut oil, or a placebo, all during a period of 4 months and which followed a Mediterranean isocaloric diet. Initial and final assessments consisted of the evaluation of quantitative balance (Berg scale), perceived balance (ABC scale), gait speed (10MWT) and resistance (2MWT). Besides, muscle strength was measured using a dynamometer and levels of β-hydroxybutyrate (BHB) were measured in serum samples. In the intervention group, there was a significant improvement in the gait speed, quantitative balance and muscle strength of the right quadriceps; an improvement in gait resistance was observed in both groups. There were also significant and positive correlations between balance and gait scales. In conclusion, the administration of EGCG and coconut oil seems to improve gait speed and balance in MS patients, although the latter was not perceived by them. Furthermore, these variables appear to be related and contribute to functionality.
Collapse
Affiliation(s)
- María Cuerda-Ballester
- Doctoral Degree School, Catholic University of Valencia San Vicente Mártir, C/Quevedo, 2, 46001 Valencia, Spain.
| | - Belén Proaño
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, C/Espartero, 7, 46007 Valencia, Spain.
| | - Jorge Alarcón-Jimenez
- Department of Physiotherapy, Catholic University of Valencia San Vicente Mártir, C/Quevedo, 2, 46001 Valencia, Spain.
| | - Nieves de Bernardo
- Department of Physiotherapy, Catholic University of Valencia San Vicente Mártir, C/Quevedo, 2, 46001 Valencia, Spain.
| | - Carlos Villaron-Casales
- Department of Physiotherapy, European University of Valencia, Avda/Alameda, 7, 46010, Valencia, Spain.
| | - José María Lajara Romance
- Department of Law, Economical and Social Sciences, Multimedia Area, Catholic University of Valencia San Vicente Mártir, C/Guillem de Castro, 94, 46001 Valencia, Spain.
| | | |
Collapse
|
19
|
Sheng Y, Sun Y, Tang Y, Yu Y, Wang J, Zheng F, Li Y, Sun Y. Catechins: Protective mechanism of antioxidant stress in atherosclerosis. Front Pharmacol 2023; 14:1144878. [PMID: 37033663 PMCID: PMC10080012 DOI: 10.3389/fphar.2023.1144878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/15/2023] [Indexed: 04/11/2023] Open
Abstract
Tea has long been valued for its health benefits, especially its potential to prevent and treat atherosclerosis (AS). Abnormal lipid metabolism and oxidative stress are major factors that contribute to the development of AS. Tea, which originated in China, is believed to help prevent AS. Research has shown that tea is rich in catechins, which is considered a potential source of natural antioxidants. Catechins are the most abundant antioxidants in green tea, and are considered to be the main compound responsible for tea's antioxidant activity. The antioxidant properties of catechins are largely dependent on the structure of molecules, and the number and location of hydroxyl groups or their substituents. As an exogenous antioxidant, catechins can effectively eliminate lipid peroxidation products. They can also play an antioxidant role indirectly by activating the endogenous antioxidant system by regulating enzyme activity and signaling pathways. In this review, we summarized the preventive effect of catechin in AS, and emphasized that improving the antioxidant effect and lipid metabolism disorders of catechins is the key to managing AS.
Collapse
Affiliation(s)
| | - Yizhuo Sun
- *Correspondence: Fengjie Zheng, ; Yuhang Li, ; Yan Sun,
| | | | | | | | - Fengjie Zheng
- *Correspondence: Fengjie Zheng, ; Yuhang Li, ; Yan Sun,
| | - Yuhang Li
- *Correspondence: Fengjie Zheng, ; Yuhang Li, ; Yan Sun,
| | - Yan Sun
- *Correspondence: Fengjie Zheng, ; Yuhang Li, ; Yan Sun,
| |
Collapse
|
20
|
Moudgil KD, Venkatesha SH. The Anti-Inflammatory and Immunomodulatory Activities of Natural Products to Control Autoimmune Inflammation. Int J Mol Sci 2022; 24:95. [PMID: 36613560 PMCID: PMC9820125 DOI: 10.3390/ijms24010095] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Inflammation is an integral part of autoimmune diseases, which are caused by dysregulation of the immune system. This dysregulation involves an imbalance between pro-inflammatory versus anti-inflammatory mediators. These mediators include various cytokines and chemokines; defined subsets of T helper/T regulatory cells, M1/M2 macrophages, activating/tolerogenic dendritic cells, and antibody-producing/regulatory B cells. Despite the availability of many anti-inflammatory/immunomodulatory drugs, the severe adverse reactions associated with their long-term use and often their high costs are impediments in effectively controlling the disease process. Accordingly, suitable alternatives are being sought for these conventional drugs. Natural products offer promising adjuncts/alternatives in this regard. The availability of specific compounds isolated from dietary/medicinal plant extracts have permitted rigorous studies on their disease-modulating activities and the mechanisms involved therein. Here, we describe the basic characteristics, mechanisms of action, and preventive/therapeutic applications of 5 well-characterized natural product compounds (Resveratrol, Curcumin, Boswellic acids, Epigallocatechin-3-gallate, and Triptolide). These compounds have been tested extensively in animal models of autoimmunity as well as in limited clinical trials in patients having the corresponding diseases. We have focused our description on predominantly T cell-mediated diseases, such as rheumatoid arthritis, multiple sclerosis, Type 1 diabetes, ulcerative colitis, and psoriasis.
Collapse
Affiliation(s)
- Kamal D. Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Baltimore VA Medical Center, Baltimore, MD 21201, USA
| | - Shivaprasad H. Venkatesha
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Vita Therapeutics, Baltimore, MD 21201, USA
| |
Collapse
|
21
|
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J 2022; 479:1653-1708. [PMID: 36043493 PMCID: PMC9484810 DOI: 10.1042/bcj20220154] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| |
Collapse
|
22
|
Talib WH, Daoud S, Mahmod AI, Hamed RA, Awajan D, Abuarab SF, Odeh LH, Khater S, Al Kury LT. Plants as a Source of Anticancer Agents: From Bench to Bedside. Molecules 2022; 27:molecules27154818. [PMID: 35956766 PMCID: PMC9369847 DOI: 10.3390/molecules27154818] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is the second leading cause of death after cardiovascular diseases. Conventional anticancer therapies are associated with lack of selectivity and serious side effects. Cancer hallmarks are biological capabilities acquired by cancer cells during neoplastic transformation. Targeting multiple cancer hallmarks is a promising strategy to treat cancer. The diversity in chemical structure and the relatively low toxicity make plant-derived natural products a promising source for the development of new and more effective anticancer therapies that have the capacity to target multiple hallmarks in cancer. In this review, we discussed the anticancer activities of ten natural products extracted from plants. The majority of these products inhibit cancer by targeting multiple cancer hallmarks, and many of these chemicals have reached clinical applications. Studies discussed in this review provide a solid ground for researchers and physicians to design more effective combination anticancer therapies using plant-derived natural products.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
- Correspondence:
| | - Safa Daoud
- Department Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan;
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Reem Ali Hamed
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Dima Awajan
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Sara Feras Abuarab
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lena Hisham Odeh
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Samar Khater
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates;
| |
Collapse
|
23
|
Chen F, Liu Q. Demystifying phytoconstituent-derived nanomedicines in their immunoregulatory and therapeutic roles in inflammatory diseases. Adv Drug Deliv Rev 2022; 186:114317. [PMID: 35533788 DOI: 10.1016/j.addr.2022.114317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/15/2022] [Accepted: 04/30/2022] [Indexed: 11/28/2022]
Abstract
In the past decades, phytoconstituents have appeared as critical mediators for immune regulations among various diseases, both in eukaryotes and prokaryotes. These bioactive molecules, showing a broad range of biological functions, would hold tremendous promise for developing new therapeutics. The discovery of phytoconstituents' capability of functionally regulating immune cells and associating cytokines, suppressing systemic inflammation, and remodeling immunity have rapidly promoted the idea of their employment as anti-inflammatory agents. In this review, we discuss various roles of phyto-derived medicines in the field of inflammatory diseases, including chronic inflammation, autoimmune diseases, and acute inflammatory disease such as COVID-19. Nevertheless, traditional phyto-derived medicines often concurred with their clinical administration limitations, such as their lack of cell specificity, inefficient cytoplasmic delivery, and rapid clearance by the immune system. As alternatives, phyto-derived nano-approaches may provide significant benefits. Both unmodified and engineered nanocarriers present the potential to serve as phytoconstituent delivery systems to improve therapeutic physio-chemical properties and pharmacokinetic profiles. Thus, the development of phytoconstituents' nano-delivery designs, their new and perspective approaches for therapeutical applications are elaborated herein.
Collapse
Affiliation(s)
- Fengqian Chen
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 216, 1550 Orleans Street, Baltimore, MD 21231, United States.
| |
Collapse
|
24
|
Sahadevan R, Singh S, Binoy A, Sadhukhan S. Chemico-biological aspects of (-)-epigallocatechin- 3-gallate (EGCG) to improve its stability, bioavailability and membrane permeability: Current status and future prospects. Crit Rev Food Sci Nutr 2022; 63:10382-10411. [PMID: 35491671 DOI: 10.1080/10408398.2022.2068500] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Natural products have been a bedrock for drug discovery for decades. (-)-Epigallocatechin-3-gallate (EGCG) is one of the widely studied natural polyphenolic compounds derived from green tea. It is the key component believed to be responsible for the medicinal value of green tea. Significant studies implemented in in vitro, in cellulo, and in vivo models have suggested its anti-oxidant, anti-cancer, anti-diabetic, anti-inflammatory, anti-microbial, neuroprotective activities etc. Despite having such a wide array of therapeutic potential and promising results in preclinical studies, its applicability to humans has encountered with rather limited success largely due to the poor bioavailability, poor membrane permeability, rapid metabolic clearance and lack of stability of EGCG. Therefore, novel techniques are warranted to address those limitations so that EGCG or its modified analogs can be used in the clinical setup. This review comprehensively covers different strategies such as structural modifications, nano-carriers as efficient drug delivery systems, synergistic studies with other bioactivities to improve the chemico-biological aspects (e.g., stability, bioavailability, permeability, etc.) of EGCG for its enhanced pharmacokinetics and pharmacological properties, eventually enhancing its therapeutic potentials. We think this review article will serve as a strong platform with comprehensive literature on the development of novel techniques to improve the bioavailability of EGCG so that it can be translated to the clinical applications.
Collapse
Affiliation(s)
- Revathy Sahadevan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
| | - Satyam Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh, India
| | - Anupama Binoy
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Kerala, India
| |
Collapse
|
25
|
Aggarwal V, Tuli HS, Tania M, Srivastava S, Ritzer EE, Pandey A, Aggarwal D, Barwal TS, Jain A, Kaur G, Sak K, Varol M, Bishayee A. Molecular mechanisms of action of epigallocatechin gallate in cancer: Recent trends and advancement. Semin Cancer Biol 2022; 80:256-275. [PMID: 32461153 DOI: 10.1016/j.semcancer.2020.05.011] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/08/2020] [Accepted: 05/17/2020] [Indexed: 12/22/2022]
Abstract
Epigallocatechin gallate (EGCG), also known as epigallocatechin-3-gallate, is an ester of epigallocatechin and gallic acid. EGCG, abundantly found in tea, is a polyphenolic flavonoid that has the potential to affect human health and disease. EGCG interacts with various recognized cellular targets and inhibits cancer cell proliferation by inducing apoptosis and cell cycle arrest. In addition, scientific evidence has illustrated the promising role of EGCG in inhibiting tumor cell metastasis and angiogenesis. It has also been found that EGCG may reverse drug resistance of cancer cells and could be a promising candidate for synergism studies. The prospective importance of EGCG in cancer treatment is owed to its natural origin, safety, and low cost which presents it as an attractive target for further development of novel cancer therapeutics. A major challenge with EGCG is its low bioavailability which is being targeted for improvement by encapsulating EGCG in nano-sized vehicles for further delivery. However, there are major limitations of the studies on EGCG, including study design, experimental bias, and inconsistent results and reproducibility among different study cohorts. Additionally, it is important to identify specific EGCG pharmacological targets in the tumor-specific signaling pathways for development of novel combined therapeutic treatments with EGCG. The present review highlights the ongoing development to identify cellular and molecular targets of EGCG in cancer. Furthermore, the role of nanotechnology-mediated EGCG combinations and delivery systems will also be discussed.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh 160 012, Punjab, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India.
| | - Mousumi Tania
- Division of Molecular Cancer, Red Green Research Center, Dhaka 1205, Bangladesh
| | - Saumya Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211 004, Uttar Pradesh, India
| | - Erin E Ritzer
- Lake Erie College of Osteopathic Medicine, Bradenton 34211, FL, USA
| | - Anjana Pandey
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211 004, Uttar Pradesh, India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India
| | - Tushar Singh Barwal
- Department of Zoology, Central University of Punjab, Bathinda 151 001, Punjab, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda 151 001, Punjab, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Mumbai 400 056, Maharastra, India
| | | | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Muğla TR48000, Turkey
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton 34211, FL, USA.
| |
Collapse
|
26
|
Payne A, Nahashon S, Taka E, Adinew GM, Soliman KFA. Epigallocatechin-3-Gallate (EGCG): New Therapeutic Perspectives for Neuroprotection, Aging, and Neuroinflammation for the Modern Age. Biomolecules 2022; 12:biom12030371. [PMID: 35327563 PMCID: PMC8945730 DOI: 10.3390/biom12030371] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/28/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s and Parkinson’s diseases are the two most common forms of neurodegenerative diseases. The exact etiology of these disorders is not well known; however, environmental, molecular, and genetic influences play a major role in the pathogenesis of these diseases. Using Alzheimer’s disease (AD) as the archetype, the pathological findings include the aggregation of Amyloid Beta (Aβ) peptides, mitochondrial dysfunction, synaptic degradation caused by inflammation, elevated reactive oxygen species (ROS), and cerebrovascular dysregulation. This review highlights the neuroinflammatory and neuroprotective role of epigallocatechin-3-gallate (EGCG): the medicinal component of green tea, a known nutraceutical that has shown promise in modulating AD progression due to its antioxidant, anti-inflammatory, and anti-aging abilities. This report also re-examines the current literature and provides innovative approaches for EGCG to be used as a preventive measure to alleviate AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Ashley Payne
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (A.P.); (E.T.); (G.M.A.)
| | - Samuel Nahashon
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN 37209, USA;
| | - Equar Taka
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (A.P.); (E.T.); (G.M.A.)
| | - Getinet M. Adinew
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (A.P.); (E.T.); (G.M.A.)
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (A.P.); (E.T.); (G.M.A.)
- Correspondence: ; Tel.: +1850-322-8788
| |
Collapse
|
27
|
Gao X, Wang J, Shi J, Sun Q, Jia N, Li H. The Efficacy Mechanism of Epigallocatechin Gallate against Pre-Eclampsia based on Network Pharmacology and Molecular Docking. Reprod Sci 2022; 29:1859-1873. [PMID: 35211881 DOI: 10.1007/s43032-022-00894-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/16/2022] [Indexed: 12/19/2022]
Abstract
Pre-eclampsia (PE), a pregnancy complication, affects 3-5% of all pregnancies worldwide and is the main cause of maternal and perinatal morbidity. However, there is no drug which can clearly slow this disease progression. Epigallocatechin gallate (EGCG), a natural compound extracted from green tea, has been found to enhance the treatment efficacy of oral nifedipine against pregnancy-induced severe PE. This study aims to clarify the potential targets and pharmacological mechanisms of EGCG in treatment of PE. We used Traditional Chinese Medicine Systems Pharmacology database and Gene Cards database to obtain 179 putative target proteins of EGCG, 550 PE-related hub genes and 39 intersecting targets between EGCG and PE. By using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses, we got the gene entries and enrichment pathways closely related to the intersecting targets. The top 10 enrichment pathways were pathway in cancer, proteoglycans in cancer, HIF-1 signaling pathway, AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, bladder cancer, hepatitis B, IL-17 signaling pathway, toxoplasmosis, PI3K-Akt signaling pathway. Furthermore, compound-target-pathway (CTP) and protein-protein interaction (PPI) network analysis were employed to explore the interaction of the top twelve targets for EGCG in treating PE. Molecular docking analysis showed combinations between these targets and EGCG, and the interaction between EGCG and the targets IL-6 and EGFR was confirmed by using molecular dynamic simulation. In conclusion, these findings hint the underlying mechanism of EGCG in the treatment of PE and point out directions in further studies on PE.
Collapse
Affiliation(s)
- Xinru Gao
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China.,Northwest Women's and Children's Hospital, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jiahao Wang
- Health Science Center of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jiamiao Shi
- Health Science Center of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Qinru Sun
- Institute of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Ning Jia
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Hui Li
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
28
|
Rudrapal M, Khairnar SJ, Khan J, Dukhyil AB, Ansari MA, Alomary MN, Alshabrmi FM, Palai S, Deb PK, Devi R. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights Into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Front Pharmacol 2022; 13:806470. [PMID: 35237163 PMCID: PMC8882865 DOI: 10.3389/fphar.2022.806470] [Citation(s) in RCA: 316] [Impact Index Per Article: 105.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/21/2022] [Indexed: 12/13/2022] Open
Abstract
Dietary polyphenols including phenolic acids, flavonoids, catechins, tannins, lignans, stilbenes, and anthocyanidins are widely found in grains, cereals, pulses, vegetables, spices, fruits, chocolates, and beverages like fruit juices, tea, coffee and wine. In recent years, dietary polyphenols have gained significant interest among researchers due to their potential chemopreventive/protective functions in the maintenance of human health and diseases. It is believed that dietary polyphenols/flavonoids exert powerful antioxidant action for protection against reactive oxygen species (ROS)/cellular oxidative stress (OS) towards the prevention of OS-related pathological conditions or diseases. Pre-clinical and clinical evidence strongly suggest that long term consumption of diets rich in polyphenols offer protection against the development of various chronic diseases such as neurodegenerative diseases, cardiovascular diseases (CVDs), cancer, diabetes, inflammatory disorders and infectious illness. Increased intake of foods containing polyphenols (for example, quercetin, epigallocatechin-3-gallate, resveratrol, cyanidin etc.) has been claimed to reduce the extent of a majority of chronic oxidative cellular damage, DNA damage, tissue inflammations, viral/bacterial infections, and neurodegenerative diseases. It has been suggested that the antioxidant activity of dietary polyphenols plays a pivotal role in the prevention of OS-induced human diseases. In this narrative review, the biological/pharmacological significance of dietary polyphenols in the prevention of and/or protection against OS-induced major human diseases such as cancers, neurodegenerative diseases, CVDs, diabetes mellitus, cancer, inflammatory disorders and infectious diseases have been delineated. This review specifically focuses a current understanding on the dietary sources of polyphenols and their protective effects including mechanisms of action against various major human diseases.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education and Research, Pune, India
- *Correspondence: Mithun Rudrapal,
| | | | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah, Saudi Arabia
| | - Abdulaziz Bin Dukhyil
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Fahad M. Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Santwana Palai
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, OUAT, Bhubaneswar, India
| | - Prashanta Kumar Deb
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
| | - Rajlakshmi Devi
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
| |
Collapse
|
29
|
Mahmoud AM, Sayed AM, Ahmed OS, Abdel-Daim MM, Hassanein EHM. The role of flavonoids in inhibiting IL-6 and inflammatory arthritis. Curr Top Med Chem 2022; 22:746-768. [PMID: 34994311 DOI: 10.2174/1568026622666220107105233] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that primarily affects the synovial joints. RA has well-known clinical manifestations and can cause progressive disability and premature death along with socioeconomic burdens. Interleukin-6 (IL-6) has been implicated in the pathology of RA where it can stimulate pannus formation, osteoclastogenesis, and oxidative stress. Flavonoids are plant metabolites with beneficial pharmacological effects, including anti-inflammatory, antioxidant, antidiabetic, anticancer, and others. Flavonoids are polyphenolic compounds found in a variety of plants, vegetables, and fruits. Many flavonoids have demonstrated anti-arthritic activity mediated mainly through the suppression of pro-inflammatory cytokines. This review thoroughly discusses the accumulate data on the role of flavonoids on IL-6 in RA.
Collapse
Affiliation(s)
- Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt
| | - Osama S Ahmed
- Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt
| |
Collapse
|
30
|
Shah MA, Rasul A, Yousaf R, Haris M, Faheem HI, Hamid A, Khan H, Khan AH, Aschner M, Batiha GE. Combination of natural antivirals and potent immune invigorators: A natural remedy to combat COVID-19. Phytother Res 2021; 35:6530-6551. [PMID: 34396612 PMCID: PMC8441799 DOI: 10.1002/ptr.7228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/14/2021] [Accepted: 04/10/2021] [Indexed: 12/23/2022]
Abstract
The flare-up in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that emerged in December 2019 in Wuhan, China, and spread expeditiously worldwide has become a health challenge globally. The rapid transmission, absence of anti-SARS-CoV-2 drugs, and inexistence of vaccine are further exacerbating the situation. Several drugs, including chloroquine, remdesivir, and favipiravir, are presently undergoing clinical investigation to further scrutinize their effectiveness and validity in the management of COVID-19. Natural products (NPs) in general, and plants constituents specifically, are unique sources for various effective and novel drugs. Immunostimulants, including vitamins, iron, zinc, chrysin, caffeic acid, and gallic acid, act as potent weapons against COVID-19 by reinvigorating the defensive mechanisms of the immune system. Immunity boosters prevent COVID-19 by stimulating the proliferation of T-cells, B-cells, and neutrophils, neutralizing the free radicals, inhibiting the immunosuppressive agents, and promoting cytokine production. Presently, antiviral therapy includes several lead compounds, such as baicalin, glycyrrhizin, theaflavin, and herbacetin, all of which seem to act against SARS-CoV-2 via particular targets, such as blocking virus entry, attachment to host cell receptor, inhibiting viral replication, and assembly and release.
Collapse
Affiliation(s)
- Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical SciencesGovernment College UniversityFaisalabadPakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Rimsha Yousaf
- Department of Pharmacognosy, Faculty of Pharmaceutical SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Haris
- Department of Pharmacognosy, Faculty of Pharmaceutical SciencesGovernment College UniversityFaisalabadPakistan
| | - Hafiza Ishmal Faheem
- Department of Pharmacognosy, Faculty of Pharmaceutical SciencesGovernment College UniversityFaisalabadPakistan
| | - Ayesha Hamid
- Department of Pharmacognosy, Faculty of Pharmaceutical SciencesGovernment College UniversityFaisalabadPakistan
| | - Haroon Khan
- Department of PharmacyAbdul Wali Khan UniversityMardanPakistan
| | - Abdul Haleem Khan
- Department of PharmacyForman Christian College (A Chartered University)LahorePakistan
| | - Michael Aschner
- Department of Molecular PharmacologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourAl‐BeheiraEgypt
| |
Collapse
|
31
|
Winiarska-Mieczan A, Tomaszewska E, Jachimowicz K. Antioxidant, Anti-Inflammatory, and Immunomodulatory Properties of Tea-The Positive Impact of Tea Consumption on Patients with Autoimmune Diabetes. Nutrients 2021; 13:nu13113972. [PMID: 34836227 PMCID: PMC8625657 DOI: 10.3390/nu13113972] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/08/2023] Open
Abstract
The physiological markers of autoimmune diabetes include functional disorders of the antioxidative system as well as progressing inflammation and the presence of autoantibodies. Even though people with type 1 diabetes show genetic predispositions facilitating the onset of the disease, it is believed that dietary factors can stimulate the initiation and progression of the disease. This paper analyses the possibility of using tea as an element of diet therapy in the treatment of type 1 diabetes. Based on information available in literature covering the last 10 years, the impact of regular tea consumption or diet supplements containing tea polyphenols on the oxidative status as well as inflammatory and autoimmune response of the organism was analyzed. Studies conducted on laboratory animals, human patients, and in vitro revealed positive effects of the consumption of tea or polyphenols isolated therefrom on the diabetic body. Few reports available in the literature pertain to the impact of tea on organisms affected by type 1 diabetes as most (over 85%) have focused on cases of type 2 diabetes. It has been concluded that by introducing tea into the diet, it is possible to alleviate some of the consequences of oxidative stress and inflammation, thus limiting their destructive impact on the patients' organisms, consequently improving their quality of life, regardless of the type of diabetes. Furthermore, elimination of inflammation should reduce the incidence of immune response. One should consider more widespread promotion of tea consumption by individuals genetically predisposed to diabetes, especially considering the drink's low price, easy availability, overall benefits to human health, and above all, the fact that it can be safely used over extended periods of time, regardless of the patient's age.
Collapse
Affiliation(s)
- Anna Winiarska-Mieczan
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
- Correspondence: (A.W.-M.); (E.T.); Tel.: +48-81-445-67-44 (A.W.-M.); +48-81-445-69-63 (E.T.)
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland
- Correspondence: (A.W.-M.); (E.T.); Tel.: +48-81-445-67-44 (A.W.-M.); +48-81-445-69-63 (E.T.)
| | - Karolina Jachimowicz
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
| |
Collapse
|
32
|
Macrophages in heterotopic ossification: from mechanisms to therapy. NPJ Regen Med 2021; 6:70. [PMID: 34702860 PMCID: PMC8548514 DOI: 10.1038/s41536-021-00178-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 09/30/2021] [Indexed: 01/04/2023] Open
Abstract
Heterotopic ossification (HO) is the formation of extraskeletal bone in non-osseous tissues. It is caused by an injury that stimulates abnormal tissue healing and regeneration, and inflammation is involved in this process. It is worth noting that macrophages are crucial mediators of inflammation. In this regard, abundant macrophages are recruited to the HO site and contribute to HO progression. Macrophages can acquire different functional phenotypes and promote mesenchymal stem cell (MSC) osteogenic differentiation, chondrogenic differentiation, and angiogenesis by expressing cytokines and other factors such as the transforming growth factor-β1 (TGF-β1), bone morphogenetic protein (BMP), activin A (Act A), oncostatin M (OSM), substance P (SP), neurotrophin-3 (NT-3), and vascular endothelial growth factor (VEGF). In addition, macrophages significantly contribute to the hypoxic microenvironment, which primarily drives HO progression. Thus, these have led to an interest in the role of macrophages in HO by exploring whether HO is a "butterfly effect" event. Heterogeneous macrophages are regarded as the "butterflies" that drive a sequence of events and ultimately promote HO. In this review, we discuss how the recruitment of macrophages contributes to HO progression. In particular, we review the molecular mechanisms through which macrophages participate in MSC osteogenic differentiation, angiogenesis, and the hypoxic microenvironment. Understanding the diverse role of macrophages may unveil potential targets for the prevention and treatment of HO.
Collapse
|
33
|
Flavonoids against non-physiologic inflammation attributed to cancer initiation, development, and progression—3PM pathways. EPMA J 2021; 12:559-587. [PMID: 34950252 PMCID: PMC8648878 DOI: 10.1007/s13167-021-00257-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022]
Abstract
AbstractInflammation is an essential pillar of the immune defense. On the other hand, chronic inflammation is considered a hallmark of cancer initiation and progression. Chronic inflammation demonstrates a potential to induce complex changes at molecular, cellular, and organ levels including but not restricted to the stagnation and impairment of healing processes, uncontrolled production of aggressive ROS/RNS, triggered DNA mutations and damage, compromised efficacy of the DNA repair machinery, significantly upregulated cytokine/chemokine release and associated patho-physiologic protein synthesis, activated signaling pathways involved in carcinogenesis and tumor progression, abnormal tissue remodeling, and created pre-metastatic niches, among others. The anti-inflammatory activities of flavonoids demonstrate clinically relevant potential as preventive and therapeutic agents to improve individual outcomes in diseases linked to the low-grade systemic and chronic inflammation, including cancers. To this end, flavonoids are potent modulators of pro-inflammatory gene expression being, therefore, of great interest as agents selectively suppressing molecular targets within pro-inflammatory pathways. This paper provides in-depth analysis of anti-inflammatory properties of flavonoids, highlights corresponding mechanisms and targeted molecular pathways, and proposes potential treatment models for multi-level cancer prevention in the framework of predictive, preventive, and personalized medicine (PPPM / 3PM). To this end, individualized profiling and patient stratification are essential for implementing targeted anti-inflammatory approaches. Most prominent examples are presented for the proposed application of flavonoid-conducted anti-inflammatory treatments in overall cancer management.
Collapse
|
34
|
Liu J, Bodnar BH, Meng F, Khan AI, Wang X, Saribas S, Wang T, Lohani SC, Wang P, Wei Z, Luo J, Zhou L, Wu J, Luo G, Li Q, Hu W, Ho W. Epigallocatechin gallate from green tea effectively blocks infection of SARS-CoV-2 and new variants by inhibiting spike binding to ACE2 receptor. Cell Biosci 2021; 11:168. [PMID: 34461999 PMCID: PMC8404181 DOI: 10.1186/s13578-021-00680-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/17/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND As the COVID-19 pandemic rages on, the new SARS-CoV-2 variants have emerged in the different regions of the world. These newly emerged variants have mutations in their spike (S) protein that may confer resistance to vaccine-elicited immunity and existing neutralizing antibody therapeutics. Therefore, there is still an urgent need of safe, effective, and affordable agents for prevention/treatment of SARS-CoV-2 and its variant infection. RESULTS We demonstrated that green tea beverage (GTB) or its major ingredient, epigallocatechin gallate (EGCG), were highly effective in inhibiting infection of live SARS-CoV-2 and human coronavirus (HCoV OC43). In addition, infection of the pseudoviruses with spikes of the new variants (UK-B.1.1.7, SA-B.1.351, and CA-B.1.429) was efficiently blocked by GTB or EGCG. Among the 4 active green tea catechins at noncytotoxic doses, EGCG was the most potent in the action against the viruses. The highest inhibitory activity was observed when the viruses or the cells were pre-incubated with EGCG prior to the infection. Mechanistic studies revealed that EGCG blocked infection at the entry step through interfering with the engagement of the receptor binding domain (RBD) of the viral spikes to angiotensin-converting enzyme 2 (ACE2) receptor of the host cells. CONCLUSIONS These data support further clinical evaluation and development of EGCG as a novel, safe, and cost-effective natural product for prevention/treatment of SARS-CoV-2 transmission and infection.
Collapse
Affiliation(s)
- Jinbiao Liu
- Department of Pathology and Laboratory Medicine, Center for Metabolic Disease Research, and Department of Neurology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China
| | - Brittany H Bodnar
- Department of Pathology and Laboratory Medicine, Center for Metabolic Disease Research, and Department of Neurology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Fengzhen Meng
- Department of Pathology and Laboratory Medicine, Center for Metabolic Disease Research, and Department of Neurology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Adil I Khan
- Department of Pathology and Laboratory Medicine, Center for Metabolic Disease Research, and Department of Neurology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Center for Metabolic Disease Research, and Department of Neurology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Sami Saribas
- Department of Pathology and Laboratory Medicine, Center for Metabolic Disease Research, and Department of Neurology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Tao Wang
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583-0900, USA
| | - Saroj Chandra Lohani
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583-0900, USA
| | - Peng Wang
- Department of Pathology and Laboratory Medicine, Center for Metabolic Disease Research, and Department of Neurology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Zhengyu Wei
- Department of Pathology and Laboratory Medicine, Center for Metabolic Disease Research, and Department of Neurology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Jinjun Luo
- Department of Pathology and Laboratory Medicine, Center for Metabolic Disease Research, and Department of Neurology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Lina Zhou
- Department of Pathology and Laboratory Medicine, Center for Metabolic Disease Research, and Department of Neurology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Jianguo Wu
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China
| | - Guangxiang Luo
- Department of Microbiology, University of Alabama At Birmingham School of Medicine, Birmingham, AL, 35294, USA.
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583-0900, USA.
| | - Wenhui Hu
- Department of Pathology and Laboratory Medicine, Center for Metabolic Disease Research, and Department of Neurology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| | - Wenzhe Ho
- Department of Pathology and Laboratory Medicine, Center for Metabolic Disease Research, and Department of Neurology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
35
|
PARK DJ, KANG JB, KOH PO. Identification of regulated proteins by epigallocatechin gallate treatment in an ischemic cerebral cortex animal model: a proteomics approach. J Vet Med Sci 2021; 83:916-926. [PMID: 33883340 PMCID: PMC8267205 DOI: 10.1292/jvms.21-0089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/07/2021] [Indexed: 11/22/2022] Open
Abstract
Ischemic stroke is a fatal disease that has long-term disability. It induces excessive oxidative stress generation and cellular metabolic disorders, result in tissue damage. Epigallocatechin gallate (EGCG) is a naturally derived flavonoid with strong antioxidant property. We previously reported the neuroprotective effect of EGCG in ischemic stroke. The defensive mechanisms of stroke are very diverse and complex. This study investigated specific proteins that are regulated by EGCG treatment in the ischemic brain damage. Middle cerebral artery occlusion (MCAO) was performed to induce focal cerebral ischemia. EGCG (50 mg/kg) or vehicle was intraperitoneally administered just prior to MCAO. MCAO induced severe neurological deficits and disorders. EGCG treatment alleviated these neurological disorder and damage. Cerebral cortex was used for this study. Two-dimensional gel electrophoresis and mass spectrometry were performed to detect the proteins altered by EGCG. We identified various proteins that were changed between vehicle- and EGCG-treated animals. Among these proteins, isocitrate dehydrogenase, dynamin-like protein 1, and γ-enolase were decreased in vehicle-treated animals, while EGCG treatment prevented these decreases. However, pyridoxal-5'-phosphate phosphatase and 60 kDa heat shock protein were increased in vehicle-treated animals with MCAO injury. EGCG treatment attenuated these increases. The changes in these proteins were confirmed by Western blot and reverse transcription-PCR analyses. These proteins were associated with cellular metabolism and neuronal regeneration. Thus, these findings can suggest that EGCG performs a defensive mechanism in ischemic damage by regulating specific proteins related to energy metabolism and neuronal protection.
Collapse
Affiliation(s)
- Dong-Ju PARK
- Department of Anatomy, College of Veterinary Medicine,
Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju
52828, South Korea
| | - Ju-Bin KANG
- Department of Anatomy, College of Veterinary Medicine,
Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju
52828, South Korea
| | - Phil-Ok KOH
- Department of Anatomy, College of Veterinary Medicine,
Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju
52828, South Korea
| |
Collapse
|
36
|
Wang M, Zhong H, Zhang X, Huang X, Wang J, Li Z, Chen M, Xiao Z. EGCG promotes PRKCA expression to alleviate LPS-induced acute lung injury and inflammatory response. Sci Rep 2021; 11:11014. [PMID: 34040072 PMCID: PMC8154949 DOI: 10.1038/s41598-021-90398-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Acute lung injury (ALI), which could be induced by multiple factors such as lipopolysaccharide (LPS), refer to clinical symptoms of acute respiratory failure, commonly with high morbidity and mortality. Reportedly, active ingredients from green tea have anti-inflammatory and anticancer properties, including epigallocatechin-3-gallate (EGCG). In the present study, protein kinase C alpha (PRKCA) is involved in EGCG protection against LPS-induced inflammation and ALI. EGCG treatment attenuated LPS-stimulated ALI in mice as manifested as improved lung injury scores, decreased total cell amounts, neutrophil amounts and macrophage amounts, inhibited the activity of MPO, decreased wet-to-dry weight ratio of lung tissues, and inhibited release of inflammatory cytokines TNF-α, IL-1β, and IL-6. PRKCA mRNA and protein expression showed to be dramatically decreased by LPS treatment while reversed by EGCG treatment. Within LPS-stimulated ALI mice, PRKCA silencing further aggravated, while PRKCA overexpression attenuated LPS-stimulated inflammation and ALI through MAPK signaling pathway. PRKCA silencing attenuated EGCG protection. Within LPS-induced RAW 264.7 macrophages, EGCG could induce PRKCA expression. Single EGCG treatment or Lv-PRKCA infection attenuated LPS-induced increases in inflammatory factors; PRKCA silencing could reverse the suppressive effects of EGCG upon LPS-stimulated inflammatory factor release. In conclusion, EGCG pretreatment inhibits LPS-induced ALI in mice. The protective mechanism might be associated with the inhibitory effects of PRKCA on proinflammatory cytokine release via macrophages and MAPK signaling pathway.
Collapse
Affiliation(s)
- Mian Wang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya RD 110, Changsha, 410078, China
- Department of Epidemiology and Health Statistics, School of Public Health, University of South China, Hengyang, 421001, China
| | - Hua Zhong
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xian Zhang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya RD 110, Changsha, 410078, China
| | - Xin Huang
- Department of Epidemiology and Health Statistics, Hunan Normal University, Changsha, 410006, China
| | - Jing Wang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya RD 110, Changsha, 410078, China
| | - Zihao Li
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya RD 110, Changsha, 410078, China
| | - Mengshi Chen
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya RD 110, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Central South University, Changsha, 410078, China.
| | - Zhenghui Xiao
- Hunan Provincial Key Laboratory of Pediatric Emergency, Hunan Children's Hospital, Changsha, 410006, China
| |
Collapse
|
37
|
Saleh HA, Yousef MH, Abdelnaser A. The Anti-Inflammatory Properties of Phytochemicals and Their Effects on Epigenetic Mechanisms Involved in TLR4/NF-κB-Mediated Inflammation. Front Immunol 2021; 12:606069. [PMID: 33868227 PMCID: PMC8044831 DOI: 10.3389/fimmu.2021.606069] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Innate immune response induces positive inflammatory transducers and regulators in order to attack pathogens, while simultaneously negative signaling regulators are transcribed to maintain innate immune homeostasis and to avoid persistent inflammatory immune responses. The gene expression of many of these regulators is controlled by different epigenetic modifications. The remarkable impact of epigenetic changes in inducing or suppressing inflammatory signaling is being increasingly recognized. Several studies have highlighted the interplay of histone modification, DNA methylation, and post-transcriptional miRNA-mediated modifications in inflammatory diseases, and inflammation-mediated tumorigenesis. Targeting these epigenetic alterations affords the opportunity of attenuating different inflammatory dysregulations. In this regard, many studies have identified the significant anti-inflammatory properties of distinct naturally-derived phytochemicals, and revealed their regulatory capacity. In the current review, we demonstrate the signaling cascade during the immune response and the epigenetic modifications that take place during inflammation. Moreover, we also provide an updated overview of phytochemicals that target these mechanisms in macrophages and other experimental models, and go on to illustrate the effects of these phytochemicals in regulating epigenetic mechanisms and attenuating aberrant inflammation.
Collapse
Affiliation(s)
- Haidy A. Saleh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed H. Yousef
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
| | - Anwar Abdelnaser
- Institute of Global Public Health, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
| |
Collapse
|
38
|
Akbarialiabad H, Dahroud MD, Khazaei MM, Razmeh S, Zarshenas MM. Green Tea, A Medicinal Food with Promising Neurological Benefits. Curr Neuropharmacol 2021; 19:349-359. [PMID: 32469701 PMCID: PMC8033961 DOI: 10.2174/1570159x18666200529152625] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/05/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023] Open
Abstract
Neurological disorders and their sequelae, as of the widespread and critical humans’ complications, affect the body's nervous systems, organ functions, and behaviors. According to WHO, neurological disorders are currently predicted to affect more than one billion people globally. It is well-established that complementary medicine is one of the high accepted interventions that could have been considered for the management of neurological ailments. The current review aimed to compile all the crucial data reporting the investigation on the conspicuous intervention of green tea (made of Camellia sinensis) and related lead compounds (especially l-theanine, epigallocatechin-3-gallate, epicatechin-3-gallate, epicatechin, and epigallocatechin) for their neurological activities, mechanisms of action, and clinical properties. According to the documents, green tea exhibits antidepressant, anti-neurodegenerative (e.g., anti-Parkinson and anti-Alzheimer), as well as neuroprotective effects.Chief among them, for offering novel work, it is worth focusing on several related assessments with great attention to more extensive standardized clinical trials, and subsequently more in-depth pharmacokinetic studies to safely introduce this beneficial medicinal food as a neuro-effective agent.
Collapse
Affiliation(s)
- Hossein Akbarialiabad
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Dahri Dahroud
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad M Khazaei
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Razmeh
- Neurology Research center, Department of Neurology, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohammad M Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
39
|
Sharma D, Chaubey P, Suvarna V. Role of natural products in alleviation of rheumatoid arthritis-A review. J Food Biochem 2021; 45:e13673. [PMID: 33624882 DOI: 10.1111/jfbc.13673] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 12/15/2022]
Abstract
Rheumatoid arthritis (RHA) is one of the most prevalent complex, chronic, inflammatory diseases, manifested by elevated oxidative stress and inflammatory biomarkers. Prolonged administration of NSAIDs, steroids, and DMARDs, used in the treatment of RHA, is associated with deleterious side effects. This necessitates the urge of new and safe approaches for RHA management, based on the complementary and alternative system of medicine. Documented evidences have suggested that supplementation with nutritional, dietary, and herbal components; can play a crucial role as an adjuvant, in the alleviation of the RHA symptoms, through their influence on the pathological inflammatory processes. Dietary phenolic compounds, flavonoids, carotenoids, and alkaloids with their ability to modulate prooxidant and pro-inflammatory pathways, have been effective in delaying the arthritic disease progression. Moreover, in scientific explorations, herbs containing phenolic compounds, alkaloids, carotenoids flavonoids, spices such as ginger, turmeric, Ayurvedic formulations, different diets such as Mediterranean diet, vegan diet, beverages, and oils such as sesame oil, rice bran oil, vitamins, and probiotics are proven to modulate the action of inflammatory molecules, involved in RHA pathology. Subsequently, the purpose of this review article is to summarize various in vitro, in vivo, and clinical studies in RHA, which have documented remarkable insights into the anti-inflammatory, antioxidant, analgesic, and immunomodulatory, bone erosion preventing properties of dietary, nutritional, and herbal components with the focus on their molecular level mechanisms involved in RHA. Even though major findings were derived from in vitro studies, several in vivo and clinical studies have established the use of diet, herbal, and nutritional management in RHA treatment. PRACTICAL APPLICATIONS: Thickening of the synovial membrane, bone erosion, and cartilage destruction is known to trigger rheumatoid arthritis causing inflammation and pain in bone joints. Continuous intake of NSAIDs, steroids, and DMARD therapy are associated with detrimental side effects. These side effects can be overcome by the use of dietary, nutritional, and herbal interventions based on the complementary and alternative therapy. This concept portrays the food components and other natural components having the potential to promote health, improve general well-being, and reduce the risk of RHA.
Collapse
Affiliation(s)
- Dhvani Sharma
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Pramila Chaubey
- College of Pharmacy, Shaqra University, Kingdom of Saudi Arabia, Saudi Arabia
| | - Vasanti Suvarna
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
40
|
Rysz J, Franczyk B, Kujawski K, Sacewicz-Hofman I, Ciałkowska-Rysz A, Gluba-Brzózka A. Are Nutraceuticals Beneficial in Chronic Kidney Disease? Pharmaceutics 2021; 13:231. [PMID: 33562154 PMCID: PMC7915977 DOI: 10.3390/pharmaceutics13020231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic kidney disease (CKD) is a worldwide health problem in which prevalence is constantly rising. The pathophysiology of CKD is complicated and has not been fully resolved. However, elevated oxidative stress is considered to play a vital role in the development of this disease. CKD is also thought to be an inflammatory disorder in which uremic toxins participate in the development of the inflammatory milieu. A healthy, balanced diet supports the maintenance of a good health status as it helps to reduce the risk of the development of chronic diseases, including chronic kidney disease, diabetes mellitus, and hypertension. Numerous studies have demonstrated that functional molecules and nutrients, including fatty acids and fiber as well as nutraceuticals such as curcumin, steviol glycosides, and resveratrol not only exert beneficial effects on pro-inflammatory and anti-inflammatory pathways but also on gut mucosa. Nutraceuticals have attracted great interest recently due to their potential favorable physiological effects on the human body and their safety. This review presents some nutraceuticals in which consumption could exert a beneficial impact on the development and progression of renal disease as well cardiovascular disease.
Collapse
Affiliation(s)
- Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (J.R.); (B.F.); (K.K.)
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (J.R.); (B.F.); (K.K.)
| | - Krzysztof Kujawski
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (J.R.); (B.F.); (K.K.)
| | | | | | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (J.R.); (B.F.); (K.K.)
| |
Collapse
|
41
|
Sekiguchi F, Kawabata A. Role of HMGB1 in Chemotherapy-Induced Peripheral Neuropathy. Int J Mol Sci 2020; 22:ijms22010367. [PMID: 33396481 PMCID: PMC7796379 DOI: 10.3390/ijms22010367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN), one of major dose-limiting side effects of first-line chemotherapeutic agents such as paclitaxel, oxaliplatin, vincristine, and bortezomib is resistant to most of existing medicines. The molecular mechanisms of CIPN have not been fully understood. High mobility group box 1 (HMGB1), a nuclear protein, is a damage-associated molecular pattern protein now considered to function as a pro-nociceptive mediator once released to the extracellular space. Most interestingly, HMGB1 plays a key role in the development of CIPN. Soluble thrombomodulin (TMα), known to degrade HMGB1 in a thrombin-dependent manner, prevents CIPN in rodents treated with paclitaxel, oxaliplatin, or vincristine and in patients with colorectal cancer undergoing oxaliplatin-based chemotherapy. In this review, we describe the role of HMGB1 and its upstream/downstream mechanisms in the development of CIPN and show drug candidates that inhibit the HMGB1 pathway, possibly useful for prevention of CIPN.
Collapse
|
42
|
Benlloch M, Cuerda-Ballester M, Drehmer E, Platero JL, Carrera-Juliá S, López-Rodríguez MM, Ceron JJ, Tvarijonaviciute A, Navarro MÁ, Moreno ML, de la Rubia Ortí JE. Possible Reduction of Cardiac Risk after Supplementation with Epigallocatechin Gallate and Increase of Ketone Bodies in the Blood in Patients with Multiple Sclerosis. A Pilot Study. Nutrients 2020; 12:nu12123792. [PMID: 33322022 PMCID: PMC7763038 DOI: 10.3390/nu12123792] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease that causes anthropometric changes characterised by functional disability, increase in fat mass, and decrease in lean mass. All these variables are related to a greater cardiac risk. The polyphenol epigallocatechin gallate (EGCG) and an increase in ketone bodies in the blood have been shown to have beneficial effects on anthropometric and biochemical variables related to cardiovascular activity. The aim of this study was to analyse the impact of the intervention with EGCG and ketone bodies on cardiac risk in MS patients. A population of 51 MS patients were randomly assigned to a control group and an intervention group (daily dose of 800 mg of EGCG and 60 mL of coconut oil). Both groups followed an isocaloric diet for 4 months. Levels of beta-hydroxybutyrate (BHB), albumin, paraoxonase 1 (PON1) and C-reactive protein (CRP) were measured in serum before and after the intervention, as well as determining functional ability, waist circumference, waist-to-hip ratio (WHR), waist-to-height ratio (WHtR), fat percentage and muscle percentage. After 4 months, in the intervention group there was a significant increase in BHB, PON1 and albumin, while CRP did not vary; a significant decrease in cardiac risk associated with a significant decline in WHR; as well as a significant increase in muscle percentage. By contrast, these changes were not observed in the control group. Finally, results from analysis of variance (ANOVA) revealed a significant time–condition interaction effect, observing that WHtR and fat mass decreased in the intervention group, while they increased in the control group.
Collapse
Affiliation(s)
- María Benlloch
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, C/Espartero, 7, 46007 Valencia, Spain;
| | - María Cuerda-Ballester
- Doctoral Degree School, Catholic University of Valencia San Vicente Mártir, C/Quevedo, 2, 46001 Valencia, Spain; (M.C.-B.); (J.L.P.)
| | - Eraci Drehmer
- Department of Basic Sciences, Catholic University of Valencia San Vicente Mártir, C/Ramiro de Maeztu, 14, 46900 Torrente, Valencia, Spain; (E.D.); (M.Á.N.)
| | - Jose Luis Platero
- Doctoral Degree School, Catholic University of Valencia San Vicente Mártir, C/Quevedo, 2, 46001 Valencia, Spain; (M.C.-B.); (J.L.P.)
| | - Sandra Carrera-Juliá
- Department of Nutrition and Dietetics, Catholic University of Valencia San Vicente Mártir, C/Quevedo, 2, 46001 Valencia, Spain;
| | - María Mar López-Rodríguez
- Department of Nursing, Physiotherapy and Medicine, University of Almería, Carretera Sacramento, C/San Urbano, s/n, La Cañada, 04120 Almería, Spain;
| | - Jose Joaquin Ceron
- Interdisciplinary Laboratory of Clinical Analysis, Campus of Excellence Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (J.J.C.); (A.T.)
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis, Campus of Excellence Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (J.J.C.); (A.T.)
| | - Marí Ángeles Navarro
- Department of Basic Sciences, Catholic University of Valencia San Vicente Mártir, C/Ramiro de Maeztu, 14, 46900 Torrente, Valencia, Spain; (E.D.); (M.Á.N.)
| | - Mari Luz Moreno
- Department of Basic Sciences, Catholic University of Valencia San Vicente Mártir, C/Ramiro de Maeztu, 14, 46900 Torrente, Valencia, Spain; (E.D.); (M.Á.N.)
- Correspondence: (M.L.M.); (J.E.d.l.R.O.); Tel.: +34-96-363-74-12 (ext. 5538) (M.L.M.); +34-96-363-74-12 (ext. 44014) (J.E.d.l.R.O.)
| | - Jose Enrique de la Rubia Ortí
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, C/Espartero, 7, 46007 Valencia, Spain;
- Correspondence: (M.L.M.); (J.E.d.l.R.O.); Tel.: +34-96-363-74-12 (ext. 5538) (M.L.M.); +34-96-363-74-12 (ext. 44014) (J.E.d.l.R.O.)
| |
Collapse
|
43
|
Ponist S, Gardi C, Paskova L, Svik K, Slovak L, Bilka F, Tedesco I, Bauerova K, Russo GL. Modulation of methotrexate efficacy by green tea polyphenols in rat adjuvant arthritis. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
44
|
H. Shariare M, Afnan K, Iqbal F, A. Altamimi M, Ahamad SR, S. Aldughaim M, K. Alanazi F, Kazi M. Development and Optimization of Epigallocatechin-3-Gallate (EGCG) Nano Phytosome Using Design of Experiment (DoE) and Their In Vivo Anti-Inflammatory Studies. Molecules 2020; 25:molecules25225453. [PMID: 33233756 PMCID: PMC7699940 DOI: 10.3390/molecules25225453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Inflammation is responsible for the development of many diseases that make up a significant cause of death. The purpose of the study was to develop a novel nanophytosomal preparation of epigallocatechin-3-gallate (EGCG) and egg phospholipid complex that has a lower particle size with higher drug loading capability, physical stability and anti-inflammatory activities. The impact of different factors and material characteristics on the average particle size was studied along with the drug loading of phytosome using design of experiment (DoE). The in vivo anti-inflammatory study was evaluated using a rat model to investigate the performance of EGCG nanophytosome. UHPLC results showed that 500 µg of EGCG were present in 1 mL of green tea extract. SEM data exhibited that phytosome (phospholipid-drug complex) was in the nanosize range, which was further evident from TEM data. Malvern Zetasizer data showed that the average particle size of the EGCG nanophytosome was in the range of 100–250 nm. High drug loading (up to 90%) was achieved with optimum addition rate, stirring temperature and phospholipid concentration. Stability study data suggest that no significant changes were observed in average particle size and drug loading of nanophytome. The in vivo anti-inflammatory study indicated a significant anti-inflammatory activity of green tea extract, pure EGCG and its phytosomal preparations (p ≤ 0.001) against acute paw edema.
Collapse
Affiliation(s)
- Mohammad H. Shariare
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh; (M.H.S.); (K.A.); (F.I.)
| | - Kazi Afnan
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh; (M.H.S.); (K.A.); (F.I.)
| | - Faria Iqbal
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh; (M.H.S.); (K.A.); (F.I.)
| | - Mohammad A. Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.A.); (F.K.A.)
| | - Syed Rizwan Ahamad
- Central Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohammed S. Aldughaim
- Research Center, King Fahad Medical City, P.O. Box. 59046, Riyadh 11525, Saudi Arabia;
| | - Fars K. Alanazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.A.); (F.K.A.)
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.A.); (F.K.A.)
- Correspondence: ; Tel.: +966-(0)-114677372; Fax: +966-(0)-114676295
| |
Collapse
|
45
|
El-Sayed Mostafa H, Ahmed Allithy AN, Abdellatif NA, Anani M, Fareed SA, El-Shafei DA, Alaa El-Din EA. Amelioration of pulmonary aflatoxicosis by green tea extract: An in vivo study. Toxicon 2020; 189:48-55. [PMID: 33212099 DOI: 10.1016/j.toxicon.2020.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 12/23/2022]
Abstract
Aflatoxins (AFB1) are mycotoxins known to be associated with human and animal diseases. The lung is a at risk from AFB1exposure either via inhalation or circulation. Green tea consumption is increasing over time due to widespread popularity as antioxidants, anti-inflammatory, and cytoprotective agents. Therefore, we attempted to study the lung toxicity caused by AFB1 and the possible ameliorating effect of green tea extract. Forty adult male albino rats were divided into five groups; Group I: Untreated control group, Group II (vehicle): Each rat received 1 ml of olive oil, Group III (GTE): Each rat received Camellia sinensis, green tea extract (30 mg/kg/day), Group IV(AFB1): Each rat received (50 μg/kg/day of AFB1). Group V (AFB1+ GTE): Each rat received the same previously mentioned doses of AFB1 in addition to GTE concomitantly. All treatments were orally gavaged for 8 weeks then rats were sacrificed. Serum levels of pro-inflammatory (IL-1β, TNF-α, IL-6) and anti-inflammatory (IL-10) cytokines were measured, lung tissues' oxidative stress indices were also measured in addition to the histopathological study which was performed by using hematoxylin & eosin and Masson trichrome stains. Morphometric and statistical analyses were also performed. Oral gavage of AFB1 resulted in significant histopathological changes in the lung tissues, in the form of variable degrees of congestion, hemorrhage, interstitial inflammation with infiltration by chronic inflammatory cells, interstitial fibrosis, bronchitis, vasculitis and fibrous thickening of arterial walls. Inflammation was evident by elevated levels of pro-inflammatory cytokines and a declined level of anti-inflammatory cytokines. Also, oxidative stress was evident by increased levels of Malondialdehyde (MDA), Myeloperoxidase (MPO), and decreased levels of total glutathione (tGSH) and Catalase (CAT). The histopathological changes, inflammatory cytokines, and oxidative stress markers were significantly decreased during concomitant administration of green tea extract in (AFB1+ GTE) group. Aflatoxin B1 has deleterious effects on the lung tissue that could be minimized by concomitant administration of Green tea extract owing to its anti-inflammatory, antioxidant, and protective properties.
Collapse
Affiliation(s)
- Heba El-Sayed Mostafa
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | | | | | - Maha Anani
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Shimaa Antar Fareed
- Department of Anatomy, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Dalia Abdallah El-Shafei
- Departments of Community, Environmental & Occupational Medicine, Faculty of Medicine, Zagazig University, Egypt.
| | - Eman Ahmed Alaa El-Din
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
46
|
Affiliation(s)
- Sairaman Saikrithika
- Nano and Bioelectrochemistry Research Laboratory, Department of Chemistry, School of Advanced Sciences Vellore Institute of Technology Vellore 632 014, Tamil Nadu India
| | - Annamalai Senthil Kumar
- Nano and Bioelectrochemistry Research Laboratory, Department of Chemistry, School of Advanced Sciences Vellore Institute of Technology Vellore 632 014, Tamil Nadu India
- Carbon dioxide and Green Technology Research Centre Vellore Institute of Technology University Vellore 632 014, Tamil Nadu India
| |
Collapse
|
47
|
Aprile P, Letourneur D, Simon‐Yarza T. Membranes for Guided Bone Regeneration: A Road from Bench to Bedside. Adv Healthc Mater 2020; 9:e2000707. [PMID: 32864879 DOI: 10.1002/adhm.202000707] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/28/2020] [Indexed: 12/14/2022]
Abstract
Bone resorption can negatively influence the osseointegration of dental implants. Barrier membranes for guided bone regeneration (GBR) are used to exclude nonosteogenic tissues from influencing the bone healing process. In addition to the existing barrier membranes available on the market, a growing variety of membranes for GBR with tailorable physicochemical properties are under preclinical evaluation. Hence, the aim of this review is to provide a comprehensive description of materials used for GBR and to report the main industrial and regulatory aspects allowing the commercialization of these medical devices (MDs). In particular, a summary of the main attributes defining a GBR membrane is reported along with a description of commercially available and under development membranes. Finally, strategies for the scaling-up of the manufacturing process and the regulatory framework of the main MD producers (USA, EU, Japan, China, and India) are presented. The description of the regulatory approval process of GBR membranes is representative of the typical path that medium- to high-risk MDs have to follow for an effective medical translation, which is of fundamental importance to increase the impact of biomedical research on public health.
Collapse
Affiliation(s)
- Paola Aprile
- LVTS INSERM U1148 X. Bichat Hospital Université de Paris Université Sorbonne Paris Nord Paris F‐75018 France
| | - Didier Letourneur
- LVTS INSERM U1148 X. Bichat Hospital Université de Paris Université Sorbonne Paris Nord Paris F‐75018 France
| | - Teresa Simon‐Yarza
- LVTS INSERM U1148 X. Bichat Hospital Université de Paris Université Sorbonne Paris Nord Paris F‐75018 France
| |
Collapse
|
48
|
Wang W, Zhang Q, Xiong X, Zheng Y, Yang W, Du L. Investigation on the influence of galloyl moiety to the peptidyl prolyl cis/trans isomerase Pin1: A spectral and computational analysis. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Tang H, Hao S, Chen X, Li Y, Yin Z, Zou Y, Song X, Li L, Ye G, Zhao L, Guo H, He R, Lv C, Lin J, Shi F. Epigallocatechin-3-gallate protects immunity and liver drug-metabolism function in mice loaded with restraint stress. Biomed Pharmacother 2020; 129:110418. [PMID: 32570121 DOI: 10.1016/j.biopha.2020.110418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/07/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenolic compound present in green tea and has been shown to possess bio-activities. In this study, we investigated the protective effects of EGCG against restraint stress (RS)-induced liver injury and immunosuppression. EGCG (10, 20 and 40 mg/kg) was orally administered to mice daily for 7 days before modeling the restraint stress. lood, liver and broncho-alveolar lavage fluid (BALF) samples were collected and tested. We found that EGCG significantly reduced the release of stress hormones to weak restraint stress response. EGCG effectively improved hepatic damage by decreas the serum levels of alanine aminotransaminase (ALT) and aspartate transaminase (AST) in restraint-challenged mice. Furthermore, EGCG also significantly prevented the release of H2O2, NOS and 8-isoprostane, and reduced the levels of interleukin (IL)-1β, IL-2,and IL-6 restrained mice. EGCG can normal the level of cytochrome P450 (CYP450) 1A2, 2D22, 2E1 and 3A11 that induced by restraint stress., the inhibition status of T cells subsets in serum and gA in BALF were significantly relieved EGCG pretreatment. Taken together, our data suggest that EGCG possesse hepatic- and immune-protective properties against restraint stress through its anti-oxidant, anti-inflammatory and immunomodulatory activities.
Collapse
Affiliation(s)
- Huaqiao Tang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Suqi Hao
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Xingying Chen
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Yinglun Li
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Zhongqiong Yin
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Yuanfeng Zou
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Xu Song
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Lixia Li
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Gang Ye
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Ling Zhao
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Hongrui Guo
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Ran He
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Cheng Lv
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Juchun Lin
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Fei Shi
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China.
| |
Collapse
|
50
|
Tauchen J, Huml L, Rimpelova S, Jurášek M. Flavonoids and Related Members of the Aromatic Polyketide Group in Human Health and Disease: Do They Really Work? Molecules 2020; 25:E3846. [PMID: 32847100 PMCID: PMC7504053 DOI: 10.3390/molecules25173846] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
Some aromatic polyketides such as dietary flavonoids have gained reputation as miraculous molecules with preeminent beneficial effects on human health, for example, as antioxidants. However, there is little conclusive evidence that dietary flavonoids provide significant leads for developing more effective drugs, as the majority appears to be of negligible medicinal importance. Some aromatic polyketides of limited distribution have shown more interesting medicinal properties and additional research should be focused on them. Combretastatins, analogues of phenoxodiol, hepatoactive kavalactones, and silymarin are showing a considerable promise in the advanced phases of clinical trials for the treatment of various pathologies. If their limitations such as adverse side effects, poor water solubility, and oral inactivity are successfully eliminated, they might be prime candidates for the development of more effective and in some case safer drugs. This review highlights some of the newer compounds, where they are in the new drug pipeline and how researchers are searching for additional likely candidates.
Collapse
Affiliation(s)
- Jan Tauchen
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6, 165 00 Praha, Czech Republic
| | - Lukáš Huml
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28 Prague, Czech Republic; (L.H.); (M.J.)
| | - Silvie Rimpelova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 3, Prague 6, 166 28 Prague, Czech Republic;
| | - Michal Jurášek
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28 Prague, Czech Republic; (L.H.); (M.J.)
| |
Collapse
|