1
|
Xiong M, You H, Liao W, Mai Y, Luo X, Liu Y, Jiang SN. The Association Between Brain Metabolic Biomarkers Using 18F-FDG and Cognition and Vascular Risk Factors, as well as Its Usefulness in the Diagnosis and Staging of Alzheimer's Disease. J Alzheimers Dis Rep 2024; 8:1229-1240. [PMID: 39247877 PMCID: PMC11380275 DOI: 10.3233/adr-240104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024] Open
Abstract
Background 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) is valuable in Alzheimer's disease (AD) workup. Objective To explore the effectiveness of 18F-FDG PET in differentiating and staging AD and associations between brain glucose metabolism and cognitive functions and vascular risk factors. Methods 107 participates including 19 mild cognitive impairment (MCI), 38 mild AD, 24 moderate AD, 15 moderate-severe AD, and 11 frontotemporal dementia (FTD) were enrolled. Visual and voxel-based analysis procedures were utilized. Cognitive conditions, including 6 cognitive function scores and 7 single-domain cognitive performances, and vascular risk factors linked to hypertension, hyperlipidemia, diabetes, and obesity were correlated with glucose metabolism in AD dementia using age as a covariate. Results 18F-FDG PET effectively differentiated AD from FTD and also differentiated MCI from AD subtypes with significantly different hypometabolism (except for mild AD) (height threshold p < 0.001, all puncorr < 0.05, the same below). The cognitive function scores, notably Mini-Mental State Examination and Montreal Cognitive Assessment, correlated significantly with regional glucose metabolism in AD participants (all p < 0.05), whereas the single-domain cognitive performance and vascular risk factors were significantly associated with regional glucose metabolism in MCI patients (all p < 0.05). Conclusions This study underlines the vital role of 18F-FDG PET in identifying and staging AD. Brain glucose metabolism is associated with cognitive status in AD dementia and vascular risk factors in MCI, indicating that 18F-FDG PET might be promising for predicting cognitive decline and serve as a visual framework for investigating underlying mechanism of vascular risk factors influencing the conversion from MCI to AD.
Collapse
Affiliation(s)
- Min Xiong
- Department of Nuclear Medicine, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hongji You
- Department of Nuclear Medicine, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wang Liao
- Department of Neurology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yingren Mai
- Department of Neurology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoming Luo
- Department of Nuclear Medicine, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yipei Liu
- Department of Nuclear Medicine, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Sheng-Nan Jiang
- Department of Nuclear Medicine, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Doroszkiewicz J, Mroczko J, Winkel I, Mroczko B. Metabolic and Immune System Dysregulation: Unraveling the Connections between Alzheimer's Disease, Diabetes, Inflammatory Bowel Diseases, and Rheumatoid Arthritis. J Clin Med 2024; 13:5057. [PMID: 39274269 PMCID: PMC11396443 DOI: 10.3390/jcm13175057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Alzheimer's disease (AD), diabetes mellitus (DM), inflammatory bowel diseases (IBD), and rheumatoid arthritis (RA) are chronic conditions affecting millions globally. Despite differing clinical symptoms, these diseases share pathophysiological mechanisms involving metabolic and immune system dysregulation. This paper examines the intricate connections between these disorders, focusing on shared pathways such as insulin resistance, lipid metabolism dysregulation, oxidative stress, and chronic inflammation. An important aspect is the role of amyloid-beta plaques and tau protein tangles, which are hallmark features of AD. These protein aggregates are influenced by metabolic dysfunction and inflammatory processes similar to those seen in DM, RA, and IBD. This manuscript explores how amyloid and tau pathologies may be exacerbated by shared metabolic and immune dysfunction. Additionally, this work discusses the gut-brain axis and the influence of gut microbiota in mediating disease interactions. Understanding these commonalities opens new avenues for multi-targeted therapeutic approaches that address the root causes rather than merely the symptoms of these conditions. This integrative perspective could lead to more effective interventions and improved patient outcomes, emphasizing the importance of a unified approach in managing these interconnected diseases.
Collapse
Affiliation(s)
- Julia Doroszkiewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Jan Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Izabela Winkel
- Dementia Disorders Centre, Medical University of Wroclaw, 50-425 Scinawa, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
3
|
Zhao F, Guo L, Huang T, Liu C, Wu D, Fang L, Min W. Interaction between the Neuroprotective and Hyperglycemia Mitigation Effects of Walnut-Derived Peptide LVRL via the Wnt3a/β-Catenin/GSK-3β Pathway in a Type 2 Diabetes Mellitus Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16204-16220. [PMID: 38984968 DOI: 10.1021/acs.jafc.4c01601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The term type 3 diabetes mellitus (T3DM) has been considered for Alzheimer's disease (AD) due to the common molecular and cellular characteristics found between type 2 diabetes mellitus (T2DM) and cognitive deficits. However, the specific mechanism of T3DM remains elusive, especially the neuroprotective effects of dietary components in hyperglycemic individuals. In this study, a peptide, Leu-Val-Arg-Leu (LVRL), found in walnuts significantly improved memory decline in streptozotocin (STZ)- and high-fat-diet (HFD)-stimulated T2DM mouse models (p < 0.05). The LVRL peptide also mitigated hyperglycemia, enhanced synaptic plasticity, and ameliorated mitochondrial dysfunction, as demonstrated by Morris water maze tests, immunoblotting, immunofluorescence, immunohistochemistry, transmission electron microscopy, and cellular staining. A Wnt3a inhibitor, DKK1, was subsequently used to verify the possible role of the Wnt3a/β-Catenin/GSK-3β pathway in glucose-induced insulin resistance in PC12 cells. In vitro LVRL treatment dramatically modulated the protein expression of p-Tau (Ser404), Synapsin-1, and PSD95, elevated the insulin level, increased glucose consumption, and relieved the mitochondrial membrane potential, and MitoSOX (p < 0.05). These data suggested that peptides like LVRL could modulate the relationship between brain insulin and altered cognition status via the Wnt3a/β-Catenin/GSK-3β pathway.
Collapse
Affiliation(s)
- Fanrui Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, PR China
- College of Food and Health, Zhejiang A & F University, Hangzhou 311300, PR China
| | - Linxin Guo
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Ting Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, PR China
- College of Food and Health, Zhejiang A & F University, Hangzhou 311300, PR China
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Weihong Min
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, PR China
- College of Food and Health, Zhejiang A & F University, Hangzhou 311300, PR China
| |
Collapse
|
4
|
Akbari M, Moardi S, Piri H, Amiri R, Aliaqabozorg F, Afraz ES. The identification of active compounds and therapeutic properties of fermented and non-fermented red sorghum for the treatment of Alzheimer's dementia. Exp Gerontol 2024; 192:112459. [PMID: 38740315 DOI: 10.1016/j.exger.2024.112459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Sorghum is a promising treatment for Alzheimer's disease (AD), due to its rich antioxidant and anti-inflammatory qualities. Fermentation may also affect nutritional values. Therefore, the purpose of this study was to discover the phenolic and flavonoid chemicals found in both fermented and non-fermented red sorghum, as well as their potential therapeutic uses for AD. L. fermentum, and L. reuteri, and/or L. plantarum and L. casei were used to ferment samples of sorghum. The rats were grouped into five groups, healthy animals, and rats with Alzheimer's receiving 200 mg/kg of saline, non-fermented sorghum, and fermented sorghum fermented with L. fermentum and L. reuteri, as well as L. plantarum and L. casei. Various assessments were conducted, including evaluations of behavioral responses, antioxidant responses, inflammatory responses, acetylcholine levels and acetylcholine esterase, and bacterial populations in stool. P-hydroxybenzoic acid, eriodictyo naringenin, and apigenin were significantly higher in fermented samples, while glycerols were higher in non-fermented samples. The induction of Alzheimer's led to decrease step-through latency, time in target zone, FRAP, acetylcholine levels, Bifidobacterium population and lactobacillus population, while increased escape latency, platform location latency, MDA levels, IL-6, TNF-α, acetylcholine esterase, and coliform population (P = 0.001). The administration of both non-fermented sorghum and fermented sorghum demonstrated the potential to reverse the effects of AD, with a notably higher efficacy observed in the fermented samples compared to the non-fermented ones. In conclusion, fermentation exerted significant effects on the bioactive compounds the administration of fermented sorghum resulted in improved behavioral responses, characterized by a reduction in oxidation, inflammation and microbial population.
Collapse
Affiliation(s)
- Mohsen Akbari
- Department of Animal Science, Faculty of Agriculture, Razi University, Kermanshah, Iran.
| | - Salar Moardi
- Department of Chemical Engineering, Faculty of Engineering, Razi University, Kermanshah, Iran
| | - Homeyra Piri
- Faculty of Engineering, Free University of Bozen-Bolzano, I-39100 Bolzano, Italy
| | - Roonak Amiri
- Department of Chemical Engineering, Faculty of Engineering, Razi University, Kermanshah, Iran
| | - Farzaneh Aliaqabozorg
- Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elham Sadat Afraz
- Department of Oral Medicine, Dental School, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
5
|
Jafari M, Ghasemi-Soloklui AA, Kordrostami M. Enhancing nutritional status, growth, and fruit quality of dried figs using organic fertilizers in rain-fed orchards: A case study in Estahban, Iran. PLoS One 2024; 19:e0300615. [PMID: 38568985 PMCID: PMC10990164 DOI: 10.1371/journal.pone.0300615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
The majority of Iranian fig production is exported, making it one of the world's most well-known healthy crops. Therefore, the main objective of the current experiment was to investigate the effects of various types of organic fertilizers, such as animal manure (cow and sheep), bird manure (partridge, turkey, quail, and chicken), and vermicompost, on the nutritional status of trees, vegetative and reproductive tree characteristics, fruit yield, and fruit quality traits in dried fig cultivar ("Sabz"). According to the findings, applying organic fertilizers, particularly turkey and quail, significantly improves vegetative and reproductive characteristics. However, other manures such as sheep, chicken, and vermicompost had a similar effect on the growth parameters of fig trees. Additionally, the findings indicated that except for potassium, use of all organic fertilizers had an impact on macro and microelements such as phosphorus, nitrogen, and sodium amount in fig tree leaves. Also, based on fruit color analysis in dried figs, the use of all organic fertilizers improved fruit color. Moreover, the analyses fruit biochemical showed that the use of some organic fertilizers improved that TSS and polyphenol compounds such as coumarin, vanillin, hesperidin gallic acid and trans frolic acid. In general, the results indicated that the addition of organic fertilizers, especially turkey manure, led to increased vegetative productivity and improvement in the fruit quality of the rain-fed fig orchard.
Collapse
Affiliation(s)
- Moslem Jafari
- Fig Research Station, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Estahban, Iran
| | - Ali Akbar Ghasemi-Soloklui
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran
| | - Mojtaba Kordrostami
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran
| |
Collapse
|
6
|
Canário N, Crisóstomo J, Duarte JV, Moreno C, Quental H, Gomes L, Oliveira F, Castelo-Branco M. Irreversible atrophy in memory brain regions over 7 years is predicted by glycemic control in type 2 diabetes without mild cognitive impairment. Front Aging Neurosci 2024; 16:1367563. [PMID: 38590757 PMCID: PMC10999637 DOI: 10.3389/fnagi.2024.1367563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
Memory-related impairments in type 2 diabetes may be mediated by insulin resistance and hyperglycemia. Previous cross-sectional studies have controversially suggested a relationship between metabolic control and a decrease in hippocampal volumes, but only longitudinal studies can test this hypothesis directly. We performed a longitudinal morphometric study to provide a direct test of a possible role of higher levels of glycated hemoglobin with long term brain structural integrity in key regions of the memory system - hippocampus, parahippocampal gyrus and fusiform gyrus. Grey matter volume was measured at two different times - baseline and after ~7 years. We found an association between higher initial levels of HbA1C and grey matter volume loss in all three core memory regions, even in the absence of mild cognitive impairment. Importantly, these neural effects persisted in spite of the fact that patients had significantly improved their glycemic control. This suggests that early high levels of HbA1c might be irreversibly associated with subsequent long-term atrophy in the medial temporal cortex and that early intensive management is critical.
Collapse
Affiliation(s)
- Nádia Canário
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Joana Crisóstomo
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - João Valente Duarte
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Carolina Moreno
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Department of Endocrinology, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Hugo Quental
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Leonor Gomes
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Department of Endocrinology, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | | | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
7
|
Xie H, Yu Y, Yang Y, Sun Q, Li ZY, Ni MH, Li SN, Dai P, Cui YY, Cao XY, Jiang N, Du LJ, Gao W, Bi JJ, Yan LF, Cui GB. Commonalities and distinctions between the type 2 diabetes mellitus and Alzheimer's disease: a systematic review and multimodal neuroimaging meta-analysis. Front Neurosci 2023; 17:1301778. [PMID: 38125399 PMCID: PMC10731270 DOI: 10.3389/fnins.2023.1301778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Background Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are aging related diseases with high incidence. Because of the correlation of incidence rate and some possible mechanisms of comorbidity, the two diseases have been studied in combination by many researchers, and even some scholars call AD type 3 diabetes. But the relationship between the two is still controversial. Methods This study used seed-based d mapping software to conduct a meta-analysis of the whole brain resting state functional magnetic resonance imaging (rs-fMRI) study, exploring the differences in amplitude low-frequency fluctuation (ALFF) and cerebral blood flow (CBF) between patients (AD or T2DM) and healthy controls (HCs), and searching for neuroimaging evidence that can explain the relationship between the two diseases. Results The final study included 22 datasets of ALFF and 22 datasets of CBF. The results of T2DM group showed that ALFF increased in both cerebellum and left inferior temporal gyrus regions, but decreased in left middle occipital gyrus, right inferior occipital gyrus, and left anterior central gyrus regions. In the T2DM group, CBF increased in the right supplementary motor area, while decreased in the middle occipital gyrus and inferior parietal gyrus. The results of the AD group showed that the ALFF increased in the right cerebellum, right hippocampus, and right striatum, while decreased in the precuneus gyrus and right superior temporal gyrus. In the AD group, CBF in the anterior precuneus gyrus and inferior parietal gyrus decreased. Multimodal analysis within a disease showed that ALFF and CBF both decreased in the occipital lobe of the T2DM group and in the precuneus and parietal lobe of the AD group. In addition, there was a common decrease of CBF in the right middle occipital gyrus in both groups. Conclusion Based on neuroimaging evidence, we believe that T2DM and AD are two diseases with their respective characteristics of central nervous activity and cerebral perfusion. The changes in CBF between the two diseases partially overlap, which is consistent with their respective clinical characteristics and also indicates a close relationship between them. Systematic review registration PROSPERO [CRD42022370014].
Collapse
Affiliation(s)
- Hao Xie
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Ying Yu
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Yang Yang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Qian Sun
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Ze-Yang Li
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Min-Hua Ni
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Si-Ning Li
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Xi’an Medical University, Xi’an, Shaanxi, China
| | - Pan Dai
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Xi’an Medical University, Xi’an, Shaanxi, China
| | - Yan-Yan Cui
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Xin-Yu Cao
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Medical School of Yan’an University, Yan’an, Shaanxi, China
| | - Nan Jiang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Li-Juan Du
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Wen Gao
- Student Brigade, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jia-Jun Bi
- Student Brigade, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lin-Feng Yan
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Guang-Bin Cui
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| |
Collapse
|
8
|
Fauzi A, Thoe ES, Quan TY, Yin ACY. Insights from insulin resistance pathways: Therapeutic approaches against Alzheimer associated diabetes mellitus. J Diabetes Complications 2023; 37:108629. [PMID: 37866274 DOI: 10.1016/j.jdiacomp.2023.108629] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/03/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
Alzheimer Associated Diabetes Mellitus, commonly known as Type 3 Diabetes Mellitus (T3DM) is a distinct subtype of diabetes with a pronounced association with Alzheimer's disease (AD). Insulin resistance serves as a pivotal link between these two conditions, leading to diminished insulin sensitivity, hyperglycemia, and impaired glucose uptake. The brain, a vital organ in AD context, is also significantly impacted by insulin resistance, resulting in energy deficits and neuronal damage, which are hallmark features of the neurodegenerative disorder. To pave the way for potential therapeutic interventions targeting the insulin resistance pathway, it is crucial to comprehend the intricate pathophysiology of T3DM and identify the overlapped features between diabetes and AD. This comprehensive review article aims to explore various pathway such as AMPK, PPARγ, cAMP and P13K/Akt pathway as potential target for management of T3DM. Through the analysis of these complex mechanisms, our goal is to reveal their interdependencies and support the discovery of innovative therapeutic strategies. The review extensively discusses several promising pharmaceutical candidates that have demonstrated dual drug action mechanisms, addressing both peripheral and cerebral insulin resistance observed in T3DM. These candidates hold significant promise for restoring insulin function and mitigating the detrimental effects of insulin resistance on the brain. The exploration of these therapeutic options contributes to the development of innovative interventions that alleviate the burden of T3DM and enhance patient care.
Collapse
Affiliation(s)
- Ayesha Fauzi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Ewen Se Thoe
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Tang Yin Quan
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia; Medical Advancement for Better Quality of Life Impact Lab, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Adeline Chia Yoke Yin
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia; Medical Advancement for Better Quality of Life Impact Lab, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
9
|
Liu H, He X, Tang L, Deng YX, Yan LJ. To investigate the association of serum osteocalcin with cognitive functional status in patients with type 2 diabetes: A systematic review with meta-analysis. Medicine (Baltimore) 2023; 102:e34440. [PMID: 37832077 PMCID: PMC10578707 DOI: 10.1097/md.0000000000034440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/30/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND To systematically evaluate the correlation between serum osteocalcin levels and cognitive function status in type 2 diabetes mellitus (T2D) patients. METHODS This review was conducted according to the PRISMA guidelines, and was developed and submitted to PROSPERO (CRD42022339295). We comprehensively searched PubMed, EMBASE, Web of Science, Scopus, ProQuest, and Chinese Databases (China National Knowledge Infrastructure, Wan Fang, Chinese Science and Technology Periodical Database, and China Biology Medicine) up to 1 June 2023. 3 investigators performed independent literature screening and data extraction of the included literature, and 2 investigators performed an independent quality assessment of case-control studies using the Newcastle-Ottawa-Scale tool. Data analysis was performed using Review Manager 5.4 software. For continuous various outcomes, mean difference (MD) or standardized MD with 95% confidence intervals (CIs) was applied for assessment by fixed-effect or random-effect model analysis. The heterogeneity test was performed by the Q statistic and quantified using I2, and publication bias was evaluated using a funnel plot. RESULTS 9 studies with T2D were included (a total of 1310 subjects). Meta-analysis results indicated that cognitive function was more impaired in patients with lower serum osteocalcin levels [MD = 9.91, 95% CI (8.93, -10.89), I2 = 0%]. Serum osteocalcin levels were also significantly different between the 2 groups of T2D patients based on the degree of cognitive impairment [MD = -0.93, 95% CI (-1.09, -0.78), I2 = 41%]. It summarized the statistical correlation between serum osteocalcin and cognitive function scores in patients with T2D at r = 0.43 [summary Fisher's Z = 0.46, 95% CI (0.39, -0.50), I2 = 41%). After sensitivity analysis, the heterogeneity I2 decreased to 0%, indicating that the results of the meta-analysis are more reliable. CONCLUSION SUBSECTIONS Based on a meta-analysis of included studies, we concluded that there is a moderately strong positive correlation between serum osteocalcin levels and patients' cognitive function in T2D. An intervention to increase serum osteocalcin levels can contribute to delaying and improving cognitive decline in patients with T2D.
Collapse
Affiliation(s)
- Hao Liu
- Department of School of Health Preservation and Rehabilitation, Chengdu University of TCM, Chengdu, China
| | - Xia He
- Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Tang
- The first people’s hospital of Neijiang, Neijiang, China
| | - Yan Xiao Deng
- Tianhui Town Community Health Center, Chengdu, China
| | - Lu Jing Yan
- Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of Traditional Chinese Medicine, China
| |
Collapse
|
10
|
Golovinskaia O, Wang CK. The hypoglycemic potential of phenolics from functional foods and their mechanisms. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Song M, Fan X. Systemic Metabolism and Mitochondria in the Mechanism of Alzheimer's Disease: Finding Potential Therapeutic Targets. Int J Mol Sci 2023; 24:ijms24098398. [PMID: 37176104 PMCID: PMC10179273 DOI: 10.3390/ijms24098398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Elderly people over the age of 65 are those most likely to experience Alzheimer's disease (AD), and aging and AD are associated with apparent metabolic alterations. Currently, there is no curative medication against AD and only several drugs have been approved by the FDA, but these drugs can only improve the symptoms of AD. Many preclinical and clinical trials have explored the impact of adjusting the whole-body and intracellular metabolism on the pathogenesis of AD. The most recent evidence suggests that mitochondria initiate an integrated stress response to environmental stress, which is beneficial for healthy aging and neuroprotection. There is also an increasing awareness of the differential risk and potential targeting strategies related to the metabolic level and microbiome. As the main participants in intracellular metabolism, mitochondrial bioenergetics, mitochondrial quality-control mechanisms, and mitochondria-linked inflammatory responses have been regarded as potential therapeutic targets for AD. This review summarizes and highlights these advances.
Collapse
Affiliation(s)
- Meiying Song
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
12
|
Li J, Xu S, Wang L, Wang X. PHPB Attenuated Cognitive Impairment in Type 2 Diabetic KK-Ay Mice by Modulating SIRT1/Insulin Signaling Pathway and Inhibiting Generation of AGEs. Pharmaceuticals (Basel) 2023; 16:305. [PMID: 37259448 PMCID: PMC9960127 DOI: 10.3390/ph16020305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 10/08/2024] Open
Abstract
Diabetes mellitus (DM) has been recognized as an increased risk factor for cognitive impairment, known as diabetic encephalopathy (DE). Hyperglycemia and insulin resistance are the main initiators of DE, which is related to the accumulation of advanced glycation end products (AGEs). Potassium 2-(1-hydroxypentyl)-benzoate (PHPB), a derivative of 3-n-butylphthalide (dl-NBP), has emerged various properties including improved mitochondrial function, antioxidant, anti-neuroinflammation, and neuroprotective effects. The present study aimed to investigate the neuroprotective effect of PHPB against AGEs accumulation in type 2 diabetic KK-Ay mice model with DE and further explore the underlying mechanisms. The results showed that PHPB markedly ameliorated the spatial learning ability of KK-Ay mice in the Morris water maze and decreased AD-like pathologic changes (Tau hyperphosphorylation) in the cortex. Furthermore, we found that PHPB treatment significantly reduced AGEs generation via up-regulation of glyoxalase-1 (GLO1) protein and enhancement of methylglyoxal (MG) trapping, while there was no obvious difference in levels of glucose in plasma or brain, contents of total cholesterol (TC), triglycerides (TG), and plasma insulin. Also, PHPB treatment improved the insulin signaling pathway by increasing sirtuin1 (SIRT1) deacetylase activity and attenuated oxidative stress evidenced by elevating glucose-6-phosphate dehydrogenase (G-6-PD) protein expression, promoting the production of reduced glutathione (GSH) and reduced nicotinamide adenine dinucleotide phosphate (NADPH), restoring mitochondrial membrane potential, increasing adenosine triphosphate (ATP) generation, and reducing malondialdehyde (MDA) levels in the brain. Taken together, PHPB exhibited a beneficial effect on DE, which involved modulating the SIRT1/insulin signaling pathway and reducing oxidative stress by inhibiting the generation of AGEs.
Collapse
Affiliation(s)
| | | | | | - Xiaoliang Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
13
|
Shen Z, Li ZY, Yu MT, Tan KL, Chen S. Metabolic perspective of astrocyte dysfunction in Alzheimer's disease and type 2 diabetes brains. Biomed Pharmacother 2023; 158:114206. [PMID: 36916433 DOI: 10.1016/j.biopha.2022.114206] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
The term type III diabetes (T3DM) has been proposed for Alzheimer's disease (AD) due to the shared molecular and cellular features between type 2 diabetes (T2DM) and insulin resistance-associated memory deficits and cognitive decline in elderly individuals. Astrocytes elicit neuroprotective or deleterious effects in AD progression and severity. Patients with T2DM are at a high risk of cognitive impairment, and targeting astrocytes might be promising in alleviating neurodegeneration in the diabetic brain. Recent studies focusing on cell-specific activities in the brain have revealed the important role of astrocytes in brain metabolism (e.g., glucose metabolism, lipid metabolism), neurovascular coupling, synapses, and synaptic plasticity. In this review, we discuss how astrocytes and their dysfunction result in multiple pathological and clinical features of AD and T2DM from a metabolic perspective and the potential comorbid mechanism in these two diseases from the perspective of astrocytes.
Collapse
Affiliation(s)
- Zheng Shen
- Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong 519041, China
| | - Zheng-Yang Li
- Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong 519041, China
| | - Meng-Ting Yu
- Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong 519041, China
| | - Kai-Leng Tan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China.
| | - Si Chen
- Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong 519041, China.
| |
Collapse
|
14
|
Grünblatt E, Homolak J, Babic Perhoc A, Davor V, Knezovic A, Osmanovic Barilar J, Riederer P, Walitza S, Tackenberg C, Salkovic-Petrisic M. From attention-deficit hyperactivity disorder to sporadic Alzheimer's disease-Wnt/mTOR pathways hypothesis. Front Neurosci 2023; 17:1104985. [PMID: 36875654 PMCID: PMC9978448 DOI: 10.3389/fnins.2023.1104985] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder with the majority of patients classified as sporadic AD (sAD), in which etiopathogenesis remains unresolved. Though sAD is argued to be a polygenic disorder, apolipoprotein E (APOE) ε4, was found three decades ago to pose the strongest genetic risk for sAD. Currently, the only clinically approved disease-modifying drugs for AD are aducanumab (Aduhelm) and lecanemab (Leqembi). All other AD treatment options are purely symptomatic with modest benefits. Similarly, attention-deficit hyperactivity disorder (ADHD), is one of the most common neurodevelopmental mental disorders in children and adolescents, acknowledged to persist in adulthood in over 60% of the patients. Moreover, for ADHD whose etiopathogenesis is not completely understood, a large proportion of patients respond well to treatment (first-line psychostimulants, e.g., methylphenidate/MPH), however, no disease-modifying therapy exists. Interestingly, cognitive impairments, executive, and memory deficits seem to be common in ADHD, but also in early stages of mild cognitive impairment (MCI), and dementia, including sAD. Therefore, one of many hypotheses is that ADHD and sAD might have similar origins or that they intercalate with one another, as shown recently that ADHD may be considered a risk factor for sAD. Intriguingly, several overlaps have been shown between the two disorders, e.g., inflammatory activation, oxidative stress, glucose and insulin pathways, wingless-INT/mammalian target of rapamycin (Wnt/mTOR) signaling, and altered lipid metabolism. Indeed, Wnt/mTOR activities were found to be modified by MPH in several ADHD studies. Wnt/mTOR was also found to play a role in sAD and in animal models of the disorder. Moreover, MPH treatment in the MCI phase was shown to be successful for apathy including some improvement in cognition, according to a recent meta-analysis. In several AD animal models, ADHD-like behavioral phenotypes have been observed indicating a possible interconnection between ADHD and AD. In this concept paper, we will discuss the various evidence in human and animal models supporting the hypothesis in which ADHD might increase the risk for sAD, with common involvement of the Wnt/mTOR-pathway leading to lifespan alteration at the neuronal levels.
Collapse
Affiliation(s)
- Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and the Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Jan Homolak
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Babic Perhoc
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Virag Davor
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Knezovic
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Peter Riederer
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany.,Department and Research Unit of Psychiatry, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and the Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Christian Tackenberg
- Neuroscience Center Zurich, University of Zurich and the Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland
| | - Melita Salkovic-Petrisic
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
15
|
van Arendonk J, Neitzel J, Steketee RME, van Assema DME, Vrooman HA, Segbers M, Ikram MA, Vernooij MW. Diabetes and hypertension are related to amyloid-beta burden in the population-based Rotterdam Study. Brain 2022; 146:337-348. [PMID: 36374264 PMCID: PMC9825526 DOI: 10.1093/brain/awac354] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/01/2022] [Accepted: 09/01/2022] [Indexed: 11/15/2022] Open
Abstract
Higher vascular disease burden increases the likelihood of developing dementia, including Alzheimer's disease. Better understanding the association between vascular risk factors and Alzheimer's disease pathology at the predementia stage is critical for developing effective strategies to delay cognitive decline. In this work, we estimated the impact of six vascular risk factors on the presence and severity of in vivo measured brain amyloid-beta (Aβ) plaques in participants from the population-based Rotterdam Study. Vascular risk factors (hypertension, hypercholesterolaemia, diabetes, obesity, physical inactivity and smoking) were assessed 13 (2004-2008) and 7 years (2009-2014) prior to 18F-florbetaben PET (2018-2021) in 635 dementia-free participants. Vascular risk factors were associated with binary amyloid PET status or continuous PET readouts (standard uptake value ratios, SUVrs) using logistic and linear regression models, respectively, adjusted for age, sex, education, APOE4 risk allele count and time between vascular risk and PET assessment. Participants' mean age at time of amyloid PET was 69 years (range: 60-90), 325 (51.2%) were women and 190 (29.9%) carried at least one APOE4 risk allele. The adjusted prevalence estimates of an amyloid-positive PET status markedly increased with age [12.8% (95% CI 11.6; 14) in 60-69 years versus 35% (36; 40.8) in 80-89 years age groups] and APOE4 allele count [9.7% (8.8; 10.6) in non-carriers versus 38.4% (36; 40.8) to 60.4% (54; 66.8) in carriers of one or two risk allele(s)]. Diabetes 7 years prior to PET assessment was associated with a higher risk of a positive amyloid status [odds ratio (95% CI) = 3.68 (1.76; 7.61), P < 0.001] and higher standard uptake value ratios, indicating more severe Aβ pathology [standardized beta = 0.40 (0.17; 0.64), P = 0.001]. Hypertension was associated with higher SUVr values in APOE4 carriers (mean SUVr difference of 0.09), but not in non-carriers (mean SUVr difference 0.02; P = 0.005). In contrast, hypercholesterolaemia was related to lower SUVr values in APOE4 carriers (mean SUVr difference -0.06), but not in non-carriers (mean SUVr difference 0.02). Obesity, physical inactivity and smoking were not related to amyloid PET measures. The current findings suggest a contribution of diabetes, hypertension and hypercholesterolaemia to the pathophysiology of Alzheimer's disease in a general population of older non-demented adults. As these conditions respond well to lifestyle modification and drug treatment, further research should focus on the preventative effect of early risk management on the development of Alzheimer's disease neuropathology.
Collapse
Affiliation(s)
| | | | | | - Daniëlle M E van Assema
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands,Department of Medical Imaging, Nuclear Medicine, Northwest Clinics, Alkmaar, The Netherlands
| | - Henri A Vrooman
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Marcel Segbers
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Meike W Vernooij
- Correspondence to: Prof. Dr Meike W. Vernooij Erasmus MC University Medical Center Office ND-544, Wytemaweg 80 3015 CN Rotterdam, The Netherlands E-mail:
| |
Collapse
|
16
|
LncRNA-MEG3 attenuates hyperglycemia-induced damage by enhancing mitochondrial translocation of HSP90A in the primary hippocampal neurons. Exp Cell Res 2022; 419:113320. [PMID: 35998683 DOI: 10.1016/j.yexcr.2022.113320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/20/2022]
Abstract
The diabetic cognitive impairments are associated with high-glucose (HG)-induced mitochondrial dysfunctions in the brain. Our previous studies demonstrated that long non-coding RNA (lncRNA)-MEG3 alleviates diabetic cognitive impairments. However, the underlying mechanism has still remained elusive. Therefore, this study was designed to investigate whether the mitochondrial translocation of HSP90A and its phosphorylation are involved in lncRNA-MEG3-mediated neuroprotective effects of mitochondrial functions in HG-treated primary hippocampal neurons and diabetic rats. The primary hippocampal neurons were exposed to 75 mM glucose for 72 h to establish a HG model in vitro. Firstly, the RNA pull-down and RNA immunoprecipitation (RIP) assays clearly indicated that lncRNA-MEG3-associated mitochondrial proteins were Annexin A2, HSP90A, and Plectin. Although HG promoted the mitochondrial translocation of HSP90A and Annexin A2, lncRNA-MEG3 over-expression only enhanced the mitochondrial translocation of HSP90A, rather than Annexin A2, in the primary hippocampal neurons treated with or without HG. Meanwhile, Plectin mediated the mitochondrial localization of lncRNA-MEG3 and HSP90A. Furthermore, HSP90A threonine phosphorylation participated in regulating mitochondrial translocation of HSP90A, and lncRNA-MEG3 also enhanced mitochondrial translocation of HSP90A through suppressing HSP90A threonine phosphorylation. Finally, the anti-apoptotic role of mitochondrial translocation of HSP90A was found to be associated with inhibiting death receptor 5 (DR5) in HG-treated primary hippocampal neurons and diabetic rats. Taken together, lncRNA-MEG3 could improve mitochondrial functions in HG-exposed primary hippocampal neurons, and the underlying mechanisms were involved in enhanced mitochondrial translocation of HSP90A via suppressing HSP90A threonine phosphorylation, which may reveal a potential therapeutic target for diabetic cognitive impairments.
Collapse
|
17
|
Li M, Cao X, Yan H, Wang M, Tashibolati A, Maiwulanjiang M. Integrating Zebrafish Model to Screen Active Ingredients and Network Pharmacology Methods to Explore the Mechanism of Lavandula angustifolia Therapy for Alzheimer's Disease. ChemistrySelect 2022. [DOI: 10.1002/slct.202201364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Muchun Li
- State Key Laboratory Basis of Xinjiang indigenous medicinal plants resource utilization Xinjiang Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing South Road 40–1 Urumqi 830011 Xinjiang China
- University of Chinese Academy of Sciences Beijing 100049 China
- Xinjiang Academic Institute of Analysis and Testing Plant Resources Green Processing Engineering Technology Research Center of Xinjiang North Science Road 374 Urumqi 830011 Xinjiang China
| | - Xueqin Cao
- State Key Laboratory Basis of Xinjiang indigenous medicinal plants resource utilization Xinjiang Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing South Road 40–1 Urumqi 830011 Xinjiang China
- University of Chinese Academy of Sciences Beijing 100049 China
- Xinjiang Academic Institute of Analysis and Testing Plant Resources Green Processing Engineering Technology Research Center of Xinjiang North Science Road 374 Urumqi 830011 Xinjiang China
| | - Huan Yan
- Xinjiang Academic Institute of Analysis and Testing Plant Resources Green Processing Engineering Technology Research Center of Xinjiang North Science Road 374 Urumqi 830011 Xinjiang China
- College of Public Health Xinjiang Medical University Urumqi 830011 Xinjiang China
| | - Miaomiao Wang
- State Key Laboratory Basis of Xinjiang indigenous medicinal plants resource utilization Xinjiang Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing South Road 40–1 Urumqi 830011 Xinjiang China
- University of Chinese Academy of Sciences Beijing 100049 China
- Xinjiang Academic Institute of Analysis and Testing Plant Resources Green Processing Engineering Technology Research Center of Xinjiang North Science Road 374 Urumqi 830011 Xinjiang China
| | - Ayiguli Tashibolati
- Xinjiang Academic Institute of Analysis and Testing Plant Resources Green Processing Engineering Technology Research Center of Xinjiang North Science Road 374 Urumqi 830011 Xinjiang China
| | - Maitinuer Maiwulanjiang
- State Key Laboratory Basis of Xinjiang indigenous medicinal plants resource utilization Xinjiang Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing South Road 40–1 Urumqi 830011 Xinjiang China
| |
Collapse
|
18
|
Wang G, Zhao Z, Ren B, Yu W, Zhang X, Liu J, Wang L, Si D, Yang M. Exenatide exerts a neuroprotective effect against diabetic cognitive impairment in rats by inhibiting apoptosis: Role of the JNK/c‑JUN signaling pathway. Mol Med Rep 2022; 25:111. [PMID: 35119079 PMCID: PMC8845025 DOI: 10.3892/mmr.2022.12627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/25/2021] [Indexed: 11/21/2022] Open
Abstract
Exenatide could reduce blood glucose and alleviate cognitive dysfunction induced by diabetes mellitus (DM). In the present study, a diabetic model was established in Sprague‑Dawley rats to further explore the mechanism of exenatide on diabetes‑induced cognitive impairment. Notably, the model rats performed poorly in the Morris water maze test and had more apoptotic neurons compared with the control rats. By contrast, exenatide attenuated cognitive impairment and inhibited neuronal apoptosis in the DM rat model. To explore the neuroprotective mechanisms of exenatide, western blotting was performed to detect the expression levels of markers of endoplasmic reticulum stress, including cytochrome c (Cyt‑c), Caspase‑3, JNK and c‑JUN, in hippocampal tissue. Reverse transcription‑quantitative PCR was also performed to measure the mRNA expression levels of Cyt‑c and Caspase‑3. After 16 weeks of treatment, exenatide treatment downregulated Cyt‑c, Caspase‑3, phosphorylated (p)‑JNK and p‑c‑JUN expression in the hippocampal tissue of diabetic rats. Moreover, Cyt‑c, Caspase‑3, JNK and JUN expression levels were detected following treatment with a specific inhibitor of JNK (SP600125). The results revealed that SP600125 had similar inhibitory effects on the JNK pathway and ERS‑related protein expression (Cyt‑t, Caspase‑3, p‑JNK and p‑c‑JUN). These results suggested that exenatide improved cognitive dysfunction in DM rats and that the underlying mechanism may be associated with inhibiting apoptosis by suppressing the activation of JNK/c‑JUN.
Collapse
Affiliation(s)
- Gengyin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Zongquan Zhao
- General Practice, Pingjiang Xincheng Community Health Service Center, Suzhou, Jiangsu 215101, P.R. China
| | - Bo Ren
- Medical Experimental Center, Jitang College of North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Wu Yu
- School Hospital, Hengshui University, Hengshui, Hebei 053010, P.R. China
| | - Xudong Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Jiang Liu
- Department of Human Anatomy, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Liping Wang
- Department of Human Anatomy, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Daowen Si
- Department of Human Anatomy, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Meiliu Yang
- Department of Life Sciences, Hengshui University, Hengshui, Hebei 053010, P.R. China
| |
Collapse
|
19
|
Sumali B, Yoshimoto J, Kobayashi H, Yamada M, Maeda T, Mitsukura Y. A Study on Legume-Based Noodles as Staple Food for Office Workers. Front Nutr 2022; 9:807350. [PMID: 35360683 PMCID: PMC8963342 DOI: 10.3389/fnut.2022.807350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
This study aims to verify the effects of “legume-based noodles” as a staple food for lunch, specifically: blood glucose, cognitive function tests, Kansei value, work questionnaires, typing, and body weight. The experiment is divided into two groups: the intervention group (legumes-based noodle) and the control group (regular lunch). Both groups have similar menu except the staple food. The intervention group resulted in a statistically significant lower blood glucose area under the curve (AUC) and lower maximum blood glucose levels during the afternoon work hours on weekdays. In addition, the Kansei value “concentration” decreased at the end of the workday in the control group compared to before and after lunch but did not decrease in the intervention group. Furthermore, the number of typing accuracy was higher in the intervention group than in the control group, and the questionnaire responses for “work efficiency” and “motivation” were more positive. These results suggest that eating legume-based noodles may lead to improved performance of office workers.
Collapse
Affiliation(s)
- Brian Sumali
- Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Joto Yoshimoto
- Central Research Institute, Mizkan Holdings Co., Ltd., Handa, Japan
| | - Hiroto Kobayashi
- Central Research Institute, Mizkan Holdings Co., Ltd., Handa, Japan
| | - Mei Yamada
- Central Research Institute, Mizkan Holdings Co., Ltd., Handa, Japan
| | - Tetsuya Maeda
- New Business Development, Mizkan Holdings Co., Ltd., Tokyo, Japan
| | - Yasue Mitsukura
- Faculty of Science and Technology, Keio University, Yokohama, Japan
- *Correspondence: Yasue Mitsukura
| |
Collapse
|
20
|
Austad SN, Ballinger S, Buford TW, Carter CS, Smith DL, Darley-Usmar V, Zhang J. Targeting whole body metabolism and mitochondrial bioenergetics in the drug development for Alzheimer's disease. Acta Pharm Sin B 2022; 12:511-531. [PMID: 35256932 PMCID: PMC8897048 DOI: 10.1016/j.apsb.2021.06.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/26/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Aging is by far the most prominent risk factor for Alzheimer's disease (AD), and both aging and AD are associated with apparent metabolic alterations. As developing effective therapeutic interventions to treat AD is clearly in urgent need, the impact of modulating whole-body and intracellular metabolism in preclinical models and in human patients, on disease pathogenesis, have been explored. There is also an increasing awareness of differential risk and potential targeting strategies related to biological sex, microbiome, and circadian regulation. As a major part of intracellular metabolism, mitochondrial bioenergetics, mitochondrial quality-control mechanisms, and mitochondria-linked inflammatory responses have been considered for AD therapeutic interventions. This review summarizes and highlights these efforts.
Collapse
Key Words
- ACE2, angiotensin I converting enzyme (peptidyl-dipeptidase A) 2
- AD, Alzheimer's disease
- ADP, adenosine diphosphate
- ADRD, AD-related dementias
- Aβ, amyloid β
- CSF, cerebrospinal fluid
- Circadian regulation
- DAMPs
- DAMPs, damage-associated molecular patterns
- Diabetes
- ER, estrogen receptor
- ETC, electron transport chain
- FCCP, trifluoromethoxy carbonylcyanide phenylhydrazone
- FPR-1, formyl peptide receptor 1
- GIP, glucose-dependent insulinotropic polypeptide
- GLP-1, glucagon-like peptide-1
- HBP, hexoamine biosynthesis pathway
- HTRA, high temperature requirement A
- Hexokinase biosynthesis pathway
- I3A, indole-3-carboxaldehyde
- IRF-3, interferon regulatory factor 3
- LC3, microtubule associated protein light chain 3
- LPS, lipopolysaccharide
- LRR, leucine-rich repeat
- MAVS, mitochondrial anti-viral signaling
- MCI, mild cognitive impairment
- MRI, magnetic resonance imaging
- MRS, magnetic resonance spectroscopy
- Mdivi-1, mitochondrial division inhibitor 1
- Microbiome
- Mitochondrial DNA
- Mitochondrial electron transport chain
- Mitochondrial quality control
- NLRP3, leucine-rich repeat (LRR)-containing protein (NLR)-like receptor family pyrin domain containing 3
- NOD, nucleotide-binding oligomerization domain
- NeuN, neuronal nuclear protein
- PET, fluorodeoxyglucose (FDG)-positron emission tomography
- PKA, protein kinase A
- POLβ, the base-excision repair enzyme DNA polymerase β
- ROS, reactive oxygen species
- Reactive species
- SAMP8, senescence-accelerated mice
- SCFAs, short-chain fatty acids
- SIRT3, NAD-dependent deacetylase sirtuin-3
- STING, stimulator of interferon genes
- STZ, streptozotocin
- SkQ1, plastoquinonyldecyltriphenylphosphonium
- T2D, type 2 diabetes
- TCA, Tricarboxylic acid
- TLR9, toll-like receptor 9
- TMAO, trimethylamine N-oxide
- TP, tricyclic pyrone
- TRF, time-restricted feeding
- cAMP, cyclic adenosine monophosphate
- cGAS, cyclic GMP/AMP synthase
- hAPP, human amyloid precursor protein
- hPREP, human presequence protease
- i.p., intraperitoneal
- mTOR, mechanistic target of rapamycin
- mtDNA, mitochondrial DNA
- αkG, alpha-ketoglutarate
Collapse
Affiliation(s)
- Steven N. Austad
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Scott Ballinger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Thomas W. Buford
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christy S. Carter
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Daniel L. Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
21
|
Cente M, Zorad S, Smolek T, Fialova L, Paulenka Ivanovova N, Krskova K, Balazova L, Skrabana R, Filipcik P. Plasma Leptin Reflects Progression of Neurofibrillary Pathology in Animal Model of Tauopathy. Cell Mol Neurobiol 2022; 42:125-136. [PMID: 32997211 PMCID: PMC11441179 DOI: 10.1007/s10571-020-00972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
The close relationship between Alzheimer's disease (AD) and obesity was recognized many years ago. However, complete understanding of the pathological mechanisms underlying the interactions between degeneration of CNS and fat metabolism is still missing. The leptin a key adipokine of white adipose tissue has been suggested as one of the major mediators linking the obesity and AD. Here we investigated the association between peripheral levels of leptin, general metabolic status and stage of the pathogenesis in rat transgenic model of AD. We demonstrate significantly decreased levels of plasma leptin in animals with experimentally induced progressive neurofibrillary pathology, which represents only 62.3% (P = 0.0015) of those observed in normal wild type control animals. More detailed analysis showed a strong and statistically significant inverse correlation between the load of neurofibrillary pathology and peripheral levels of leptin (r = - 0.7248, P = 0.0177). We also observed a loss of body weight during development of neurodegeneration (about 14% less than control animals, P = 0.0004) and decrease in several metabolic parameters such as glucose, insulin, triglycerides and VLDL in plasma of the transgenic animals. Our data suggest that plasma leptin could serve as a convenient peripheral biomarker for tauopathies and Alzheimer's disease. Decrease in gene expression of leptin in fat tissue and its plasma level was found as one of the consequences of experimentally induced neurodegeneration. Our data may help to design rational diagnostic and therapeutic strategies for patients suffering from Alzheimer's disease or other forms of tauopathy.
Collapse
Affiliation(s)
- Martin Cente
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10, Bratislava, Slovakia
- Axon Neuroscience R&D Services SE, Bratislava, Slovakia
| | - Stefan Zorad
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tomas Smolek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10, Bratislava, Slovakia
- Axon Neuroscience R&D Services SE, Bratislava, Slovakia
| | - Lubica Fialova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10, Bratislava, Slovakia
- Axon Neuroscience R&D Services SE, Bratislava, Slovakia
| | | | - Katarina Krskova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Balazova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Rostislav Skrabana
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10, Bratislava, Slovakia
- Axon Neuroscience R&D Services SE, Bratislava, Slovakia
| | - Peter Filipcik
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10, Bratislava, Slovakia.
- Axon Neuroscience R&D Services SE, Bratislava, Slovakia.
| |
Collapse
|
22
|
Wen H, Tian H, Liu C, Zhang X, Peng Y, Yang X, Chen F, Li J. Metformin and cyanidin 3- O-galactoside from Aronia melanocarpa synergistically alleviate cognitive impairment in SAMP8 mice. Food Funct 2021; 12:10994-11008. [PMID: 34657937 DOI: 10.1039/d1fo02122b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cyanidin 3-O-galactoside (Cy3Gal) from Aronia melanocarpa has been reported to alleviate cognitive impairment. Metformin for preventing the neurodegenerative disease is attracting increasing attention. However, the neuroprotective and metabolic health promoting both of their effects are not clear. We chose the senescence accelerated mouse prone 8 (SAMP8) as a model of spontaneous learning and memory impairment. This study aimed to investigate the synergistic neuroprotective effect of metformin and Cy3Gal by behavioral and histopathological assays and metabolite analysis in SAMP8 mice. The SAMR1 mice were the normal group, and the SAMP8 mice were divided into five groups, including the SAMP8 model group, the donepezil (1 mg kg-1, ig) group, the metformin (100 mg kg-1, ig) group, the Cy3Gal (25 mg kg-1, ig) group, and the combination of metformin plus Cy3Gal (Met + Cy3Gal, 100 mg kg-1, 25 mg kg-1, ig) group. The behavior experiments showed that the SAMP8 mice treated with metformin and Cy3Gal showed improved spatial learning and memory compared to the SAMP8 model group. The number of neurons in the Met + Cy3Gal group was significantly higher than that in the SAMP8 group and the Met + Cy3Gal group showed significantly reduced Aβ aggregation in the brain, which was elevated in SAMP8 mice. Compared with SAMP8 mice, the Met + Cy3Gal group showed decreased indole, methyl esters and ketones and increased short-chain fatty acids and alcohols in feces and urine by regulating the fatty acid biosynthesis and degradation. This study confirmed the neuroprotective effects of coadministration of metformin and cyanidin 3-O-galactoside in the SAMP8 mice, and suggested its positive effect on postponing the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Haichao Wen
- College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Tsinghua Dong Road, Beijing 100083, China. .,Institute of Nutrition and Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Hehe Tian
- College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Tsinghua Dong Road, Beijing 100083, China.
| | - Chang Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Tsinghua Dong Road, Beijing 100083, China.
| | - Xiaoxu Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Tsinghua Dong Road, Beijing 100083, China.
| | - Yao Peng
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xinquan Yang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Feng Chen
- Department of Food, Nutrition and Packaging Science, Clemson University, Clemson, SC 29634, USA.
| | - Jingming Li
- College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Tsinghua Dong Road, Beijing 100083, China.
| |
Collapse
|
23
|
Kubis-Kubiak A, Wiatrak B, Piwowar A. The Impact of High Glucose or Insulin Exposure on S100B Protein Levels, Oxidative and Nitrosative Stress and DNA Damage in Neuron-Like Cells. Int J Mol Sci 2021; 22:ijms22115526. [PMID: 34073816 PMCID: PMC8197274 DOI: 10.3390/ijms22115526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease (AD) is attracting considerable interest due to its increasing number of cases as a consequence of the aging of the global population. The mainstream concept of AD neuropathology based on pathological changes of amyloid β metabolism and the formation of neurofibrillary tangles is under criticism due to the failure of Aβ-targeting drug trials. Recent findings have shown that AD is a highly complex disease involving a broad range of clinical manifestations as well as cellular and biochemical disturbances. The past decade has seen a renewed importance of metabolic disturbances in disease-relevant early pathology with challenging areas in establishing the role of local micro-fluctuations in glucose concentrations and the impact of insulin on neuronal function. The role of the S100 protein family in this interplay remains unclear and is the aim of this research. Intracellularly the S100B protein has a protective effect on neurons against the toxic effects of glutamate and stimulates neurites outgrowth and neuronal survival. At high concentrations, it can induce apoptosis. The aim of our study was to extend current knowledge of the possible impact of hyper-glycemia and -insulinemia directly on neuronal S100B secretion and comparison to oxidative stress markers such as ROS, NO and DBSs levels. In this paper, we have shown that S100B secretion decreases in neurons cultured in a high-glucose or high-insulin medium, while levels in cell lysates are increased with statistical significance. Our findings demonstrate the strong toxic impact of energetic disturbances on neuronal metabolism and the potential neuroprotective role of S100B protein.
Collapse
Affiliation(s)
- Adriana Kubis-Kubiak
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
- Correspondence:
| | - Benita Wiatrak
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland;
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| |
Collapse
|
24
|
Liu L, Cao J, Huang C, Yuan E, Ren J. Analysis the alteration of systemic inflammation in old and young APP/PS1 mouse. Exp Gerontol 2021; 147:111274. [PMID: 33561502 DOI: 10.1016/j.exger.2021.111274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 11/24/2022]
Abstract
The impairment of cognitive function was considered as a major clinic feature in Alzheimer's disease (AD) patients. Thus, a number of researches related to AD were focused on the changes in brain. However, as a neurodegenerative disorder with systemic inflammation, the periphery organs may also play a key role in AD pathology. Here, we pose the hypothesis that histopathology and inflammatory response of periphery organs may alter with aging in APP/PS1 mouse model. Therefore, we performed immunohistochemical staining technology to double label Aβ plaques and microglia cells in brain. The H&E staining was performed in periphery tissues and the mRNA expression of inflammatory factors IL-6, IL-10 and TNF-α were also determined. Next, the index of oxidative stress was measured. Consequently, the level of inflammatory factors was significantly increased in 24 months APP/PS1 mice. Furthermore, the enzyme activity of SOD, CAT and GSH were significantly decreased in colon and other organs. Our results demonstrated the increased inflammation response and declined antioxidative capacity of periphery organs in aged APP/PS1 mice, which suggesting that a more comprehensive perspective to study AD were necessary.
Collapse
Affiliation(s)
- Liangyun Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| | - Jianing Cao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| | - Chujun Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Erdong Yuan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
25
|
Berlanga-Acosta J, Guillén-Nieto G, Rodríguez-Rodríguez N, Bringas-Vega ML, García-del-Barco-Herrera D, Berlanga-Saez JO, García-Ojalvo A, Valdés-Sosa MJ, Valdés-Sosa PA. Insulin Resistance at the Crossroad of Alzheimer Disease Pathology: A Review. Front Endocrinol (Lausanne) 2020; 11:560375. [PMID: 33224105 PMCID: PMC7674493 DOI: 10.3389/fendo.2020.560375] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022] Open
Abstract
Insulin plays a major neuroprotective and trophic function for cerebral cell population, thus countering apoptosis, beta-amyloid toxicity, and oxidative stress; favoring neuronal survival; and enhancing memory and learning processes. Insulin resistance and impaired cerebral glucose metabolism are invariantly reported in Alzheimer's disease (AD) and other neurodegenerative processes. AD is a fatal neurodegenerative disorder in which progressive glucose hypometabolism parallels to cognitive impairment. Although AD may appear and progress in virtue of multifactorial nosogenic ingredients, multiple interperpetuative and interconnected vicious circles appear to drive disease pathophysiology. The disease is primarily a metabolic/energetic disorder in which amyloid accumulation may appear as a by-product of more proximal events, especially in the late-onset form. As a bridge between AD and type 2 diabetes, activation of c-Jun N-terminal kinase (JNK) pathway with the ensued serine phosphorylation of the insulin response substrate (IRS)-1/2 may be at the crossroads of insulin resistance and its subsequent dysmetabolic consequences. Central insulin axis bankruptcy translates in neuronal vulnerability and demise. As a link in the chain of pathogenic vicious circles, mitochondrial dysfunction, oxidative stress, and peripheral/central immune-inflammation are increasingly advocated as major pathology drivers. Pharmacological interventions addressed to preserve insulin axis physiology, mitochondrial biogenesis-integral functionality, and mitophagy of diseased organelles may attenuate the adjacent spillover of free radicals that further perpetuate mitochondrial damages and catalyze inflammation. Central and/or peripheral inflammation may account for a local flood of proinflammatory cytokines that along with astrogliosis amplify insulin resistance, mitochondrial dysfunction, and oxidative stress. All these elements are endogenous stressor, pro-senescent factors that contribute to JNK activation. Taken together, these evidences incite to identify novel multi-mechanistic approaches to succeed in ameliorating this pandemic affliction.
Collapse
Affiliation(s)
- Jorge Berlanga-Acosta
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Tissue Repair and Cytoprotection Research Group, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Gerardo Guillén-Nieto
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Tissue Repair and Cytoprotection Research Group, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Nadia Rodríguez-Rodríguez
- Tissue Repair and Cytoprotection Research Group, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Maria Luisa Bringas-Vega
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Cuban Neurosciences Center, Cubanacan, Havana, Cuba
| | | | - Jorge O. Berlanga-Saez
- Applied Mathematics Department, Institute of Mathematics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ariana García-Ojalvo
- Tissue Repair and Cytoprotection Research Group, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Mitchell Joseph Valdés-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Cuban Neurosciences Center, Cubanacan, Havana, Cuba
| | - Pedro A. Valdés-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Cuban Neurosciences Center, Cubanacan, Havana, Cuba
| |
Collapse
|
26
|
Diniz Pereira J, Gomes Fraga V, Morais Santos AL, Carvalho MDG, Caramelli P, Braga Gomes K. Alzheimer's disease and type 2 diabetes mellitus: A systematic review of proteomic studies. J Neurochem 2020; 156:753-776. [PMID: 32909269 DOI: 10.1111/jnc.15166] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/15/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022]
Abstract
Similar to dementia, the risk for developing type 2 diabetes mellitus (T2DM) increases with age, and T2DM also increases the risk for dementia, particularly Alzheimer's disease (AD). Although T2DM is primarily a peripheral disorder and AD is a central nervous system disease, both share some common features as they are chronic and complex diseases, and both show involvement of oxidative stress and inflammation in their progression. These characteristics suggest that T2DM may be associated with AD, which gave rise to a new term, type 3 diabetes (T3DM). In this study, we searched for matching peripheral proteomic biomarkers of AD and T2DM based in a systematic review of the available literature. We identified 17 common biomarkers that were differentially expressed in both patients with AD or T2DM when compared with healthy controls. These biomarkers could provide a useful workflow for screening T2DM patients at risk to develop AD.
Collapse
Affiliation(s)
- Jessica Diniz Pereira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vanessa Gomes Fraga
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anna Luiza Morais Santos
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria das Graças Carvalho
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paulo Caramelli
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karina Braga Gomes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
27
|
Sinan KI, Etienne OK, Stefanucci A, Mollica A, Mahomoodally MF, Jugreet S, Rocchetti G, Lucini L, Aktumsek A, Montesano D, Ak G, Zengin G. Chemodiversity and biological activity of essential oils from three species from the
Euphorbia
genus. FLAVOUR FRAG J 2020. [DOI: 10.1002/ffj.3624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | - Ouattara Katinan Etienne
- Laboratoire de Botanique UFR Biosciences Universite Felix Houphouet‐Boigny Abidjan Côte d'Ivoire
| | - Azzurra Stefanucci
- Department of Pharmacy University 'G. d’Annunzio' of Chieti‐Pescara Chieti Italy
| | - Adriano Mollica
- Department of Pharmacy University 'G. d’Annunzio' of Chieti‐Pescara Chieti Italy
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences Faculty of Medicines and Health Sciences University of MauritiusRéduit Mauritius
| | - Sharmeen Jugreet
- Department of Health Sciences Faculty of Medicines and Health Sciences University of MauritiusRéduit Mauritius
| | - Gabriele Rocchetti
- Department for Sustainable Food Process Università Cattolica del Sacro Cuore Piacenza Italy
| | - Luigi Lucini
- Department for Sustainable Food Process Università Cattolica del Sacro Cuore Piacenza Italy
| | | | - Domenico Montesano
- Department of Pharmaceutical Sciences Food Science and Nutrition Section University of Perugia Perugia Italy
| | - Gunes Ak
- Department of Biology Science Faculty Selcuk Universtiy Konya Turkey
| | - Gokhan Zengin
- Department of Biology Science Faculty Selcuk Universtiy Konya Turkey
| |
Collapse
|
28
|
Ma WX, Tang J, Lei ZW, Li CY, Zhao LQ, Lin C, Sun T, Li ZY, Jiang YH, Jia JT, Liang CZ, Liu JH, Yan LJ. Potential Biochemical Mechanisms of Brain Injury in Diabetes Mellitus. Aging Dis 2020; 11:978-987. [PMID: 32765958 PMCID: PMC7390528 DOI: 10.14336/ad.2019.0910] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/10/2019] [Indexed: 01/07/2023] Open
Abstract
The goal of this review was to summarize current biochemical mechanisms of and risk factors for diabetic brain injury. We mainly summarized mechanisms published in the past three years and focused on diabetes induced cognitive impairment, diabetes-linked Alzheimer's disease, and diabetic stroke. We think there is a need to conduct further studies with increased sample sizes and prolonged period of follow-ups to clarify the effect of DM on brain dysfunction. Additionally, we also think that enhancing experimental reproducibility using animal models in conjunction with application of advanced devices should be considered when new experiments are designed. It is expected that further investigation of the underlying mechanisms of diabetic cognitive impairment will provide novel insights into therapeutic approaches for ameliorating diabetes-associated injury in the brain.
Collapse
Affiliation(s)
- Wei-Xing Ma
- Department of Pharmaceutical, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Chemical Engineering Institute, Qingdao University of Science and Technology, Qingdao, Shandong, China
- Technological Center, Qingdao Customs, Qingdao, Shandong, China
| | - Jing Tang
- Technological Center, Qingdao Customs, Qingdao, Shandong, China
| | - Zhi-Wen Lei
- Technological Center, Qingdao Customs, Qingdao, Shandong, China
| | - Chun-Yan Li
- Department of Pharmaceutical, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Shantou University Medical College, Shantou, Guangdong, China
| | - Li-Qing Zhao
- Technological Center, Qingdao Customs, Qingdao, Shandong, China
| | - Chao Lin
- Technological Center, Qingdao Customs, Qingdao, Shandong, China
| | - Tao Sun
- Technological Center, Qingdao Customs, Qingdao, Shandong, China
| | - Zheng-Yi Li
- Technological Center, Qingdao Customs, Qingdao, Shandong, China
| | - Ying-Hui Jiang
- Technological Center, Qingdao Customs, Qingdao, Shandong, China
| | - Jun-Tao Jia
- Technological Center, Qingdao Customs, Qingdao, Shandong, China
| | - Cheng-Zhu Liang
- Technological Center, Qingdao Customs, Qingdao, Shandong, China
| | - Jun-Hong Liu
- Chemical Engineering Institute, Qingdao University of Science and Technology, Qingdao, Shandong, China
| | - Liang-Jun Yan
- Department of Pharmaceutical, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
29
|
Barbaresko J, Lellmann AW, Schmidt A, Lehmann A, Amini AM, Egert S, Schlesinger S, Nöthlings U. Dietary Factors and Neurodegenerative Disorders: An Umbrella Review of Meta-Analyses of Prospective Studies. Adv Nutr 2020; 11:1161-1173. [PMID: 32427314 PMCID: PMC7490166 DOI: 10.1093/advances/nmaa053] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/13/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
Diet has been hypothesized to be associated with neurodegenerative disorders. The aim was to conduct an umbrella review to summarize and evaluate the current evidence of prospective associations between any dietary factors and the incidence of neurodegenerative disorders. We conducted a systematic search in PubMed, Embase, and the Cochrane library up to November 2019 to identify systematic reviews with meta-analyses of prospective studies investigating the association between dietary factors (dietary patterns, foods and beverages, nutrients, and phytochemicals) and neurodegenerative disorders (cognitive decline, cognitive impairment, Alzheimer disease, all-cause dementia, and Parkinson disease). Summary risk ratios (SRRs) and 95% CIs were recalculated using a random effects model. We evaluated the risk of bias of identified meta-analyses and the quality of evidence for all associations. In total, 20 meta-analyses including 98 SRRs were identified. All original meta-analyses were rated as being at high risk of bias. Methodological concerns related mainly to the inappropriate synthesis, assessment, and discussion of the risk of bias of primary studies. For the recalculated meta-analyses, quality of evidence was moderate for inverse associations between higher adherence to the Mediterranean diet (SRR: 0.63; 95% CI: 0.48, 0.82; n = 4 primary studies) and higher fish intake (SRR: 0.72; 95% CI: 0.59, 0.89; n = 6) and Alzheimer disease, as well as for tea consumption and all-cause dementia (SRR: 0.74; 95% CI: 0.63, 0.88; n = 2) and Parkinson disease (SRR per 2 cups/d: 0.69; 95% CI: 0.54, 0.87; n = 5). This umbrella review provides a comprehensive overview of the available evidence on dietary factors and neurodegenerative disorders. The results indicate that the Mediterranean diet, fish, and tea could be inversely associated with neurodegenerative disorders. However, the quality of evidence was generally low, suggesting that further studies are likely to change the overall estimates. Thus, more well-conducted research, also investigating other dietary factors in association with neurodegenerative disorders, is warranted.
Collapse
Affiliation(s)
- Janett Barbaresko
- German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany,Department of Nutrition and Food Sciences, Nutritional Epidemiology, University of Bonn, Bonn, Germany,Address correspondence to JB (e-mail: )
| | - Arno Werner Lellmann
- Department of Nutrition and Food Sciences, Nutritional Epidemiology, University of Bonn, Bonn, Germany,German Nutrition Society, Bonn, Germany
| | | | | | | | - Sarah Egert
- German Nutrition Society, Bonn, Germany,Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Sabrina Schlesinger
- German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ute Nöthlings
- Department of Nutrition and Food Sciences, Nutritional Epidemiology, University of Bonn, Bonn, Germany
| |
Collapse
|
30
|
Angeloni C, Gatti M, Prata C, Hrelia S, Maraldi T. Role of Mesenchymal Stem Cells in Counteracting Oxidative Stress-Related Neurodegeneration. Int J Mol Sci 2020; 21:ijms21093299. [PMID: 32392722 PMCID: PMC7246730 DOI: 10.3390/ijms21093299] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases include a variety of pathologies such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and so forth, which share many common characteristics such as oxidative stress, glycation, abnormal protein deposition, inflammation, and progressive neuronal loss. The last century has witnessed significant research to identify mechanisms and risk factors contributing to the complex etiopathogenesis of neurodegenerative diseases, such as genetic, vascular/metabolic, and lifestyle-related factors, which often co-occur and interact with each other. Apart from several environmental or genetic factors, in recent years, much evidence hints that impairment in redox homeostasis is a common mechanism in different neurological diseases. However, from a pharmacological perspective, oxidative stress is a difficult target, and antioxidants, the only strategy used so far, have been ineffective or even provoked side effects. In this review, we report an analysis of the recent literature on the role of oxidative stress in Alzheimer’s and Parkinson’s diseases as well as in amyotrophic lateral sclerosis, retinal ganglion cells, and ataxia. Moreover, the contribution of stem cells has been widely explored, looking at their potential in neuronal differentiation and reporting findings on their application in fighting oxidative stress in different neurodegenerative diseases. In particular, the exposure to mesenchymal stem cells or their secretome can be considered as a promising therapeutic strategy to enhance antioxidant capacity and neurotrophin expression while inhibiting pro-inflammatory cytokine secretion, which are common aspects of neurodegenerative pathologies. Further studies are needed to identify a tailored approach for each neurodegenerative disease in order to design more effective stem cell therapeutic strategies to prevent a broad range of neurodegenerative disorders.
Collapse
Affiliation(s)
- Cristina Angeloni
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy;
| | - Martina Gatti
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (M.G.); (T.M.)
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
- Correspondence:
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy;
| | - Tullia Maraldi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (M.G.); (T.M.)
| |
Collapse
|
31
|
Ton AMM, Campagnaro BP, Alves GA, Aires R, Côco LZ, Arpini CM, Guerra e Oliveira T, Campos-Toimil M, Meyrelles SS, Pereira TMC, Vasquez EC. Oxidative Stress and Dementia in Alzheimer's Patients: Effects of Synbiotic Supplementation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2638703. [PMID: 32411323 PMCID: PMC7201593 DOI: 10.1155/2020/2638703] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/08/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common cause of dementia in elderly patients. Recently, several studies have shown that inflammation and oxidative stress precede the cardinal neuropathological manifestations of AD. In view of the proven antioxidant effects of probiotics, we proposed that continuous dietary supplementation with milk fermented with kefir grains might improve cognitive and metabolic and/or cellular disorders in the AD patients. METHODS This study was designed as an uncontrolled clinical investigation to test the effects of probiotic-fermented milk supplementation (2 mL/kg/daily) for 90 days in AD patients exhibiting cognitive deficit. Cognitive assessment, cytokine expression, systemic oxidative stress levels, and blood cell damage biomarkers were evaluated before (T0) and after (T90) kefir synbiotic supplementation. RESULTS When the patients were challenged to solve 8 classical tests, the majority exhibit a marked improvement in memory, visual-spatial/abstraction abilities, and executive/language functions. At the end of the treatment, the cytometric analysis showed an absolute/relative decrease in several cytokine markers of inflammation and oxidative stress markers (·O2 -, H2O2, and ONOO-, ~30%) accompanied by an increase in NO bioavailability (100%). In agreement with the above findings by using the same technique, we observed in a similar magnitude an improvement of serum protein oxidation, mitochondrial dysfunction, DNA damage/repair, and apoptosis. CONCLUSION In conclusion, we demonstrated that kefir improves cognitive deficits, which seems to be linked with three important factors of the AD-systemic inflammation, oxidative stress, and blood cell damage-and may be a promising adjuvant therapy against the AD progression.
Collapse
Affiliation(s)
- Alyne Mendonça Marques Ton
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Espírito Santo, Brazil
| | - Bianca Prandi Campagnaro
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Espírito Santo, Brazil
| | - Gisela Aleixo Alves
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Espírito Santo, Brazil
| | - Rafaela Aires
- Laboratory of Translational Physiology, Physiological Sciences Graduate Program, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Larissa Zambom Côco
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Espírito Santo, Brazil
| | - Clarisse Maximo Arpini
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Espírito Santo, Brazil
| | - Trícia Guerra e Oliveira
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Espírito Santo, Brazil
| | - Manuel Campos-Toimil
- Pharmacology of Chronic Diseases (CDPHARMA), Molecular Medicine and Chronic Diseases Research Centre (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Silvana Santos Meyrelles
- Laboratory of Translational Physiology, Physiological Sciences Graduate Program, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Thiago Melo Costa Pereira
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Espírito Santo, Brazil
- Federal Institute of Education, Science and Technology (IFES), Vila Velha, Espírito Santo, Brazil
| | - Elisardo Corral Vasquez
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Espírito Santo, Brazil
- Laboratory of Translational Physiology, Physiological Sciences Graduate Program, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
32
|
Lee HJ, Yang SJ. Supplementation with Nicotinamide Riboside Reduces Brain Inflammation and Improves Cognitive Function in Diabetic Mice. Int J Mol Sci 2019; 20:ijms20174196. [PMID: 31461911 PMCID: PMC6747453 DOI: 10.3390/ijms20174196] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 12/18/2022] Open
Abstract
The purpose of this study is to investigate whether nicotinamide riboside (NR) can improve inflammation and cognitive function in diabetic mice. ICR male mice were fed for 14 weeks with either high-fat chow diet (HF, 60% kcal fat) or standard chow diet (CON, 10% kcal fat). HF, streptozotocin, and nicotinamide were used to induce hyperglycemia. NR or vehicle was delivered via stomach gavage for six weeks. Oral glucose tolerance test, Y-maze test, and nest construction test were conducted before and after the NR treatment period. NR treatment induced down-regulation of NLRP3, ASC, and caspase-1. NR reduced IL-1 expression significantly by 50% in whole brains of hyperglycemic mice. Other inflammatory markers including TNF-α and IL-6 were also attenuated by NR. Brain expression of amyloid-β precursor protein and presenilin 1 were reduced by NR. In addition, NR induced significant reduction of amyloid-β in whole brains of diabetic mice. NR treatment restored hyperglycemia-induced increases in brain karyopyknosis to the levels of controls. Nest construction test showed that NR improved hippocampus functions. Spatial recognition memory and locomotor activity were also improved by NR supplementation. These findings suggest that NR may be useful for treating cognitive impairment by inhibiting amyloidogenesis and neuroinflammation.
Collapse
Affiliation(s)
- Hee Jae Lee
- Department of Food and Nutrition, Seoul Women's University, Seoul 01797, Korea
| | - Soo Jin Yang
- Department of Food and Nutrition, Seoul Women's University, Seoul 01797, Korea.
| |
Collapse
|