1
|
Zhang Z, Liu Y, Yu T, Liu Z. Unraveling the Complex Nexus of Macrophage Metabolism, Periodontitis, and Associated Comorbidities. J Innate Immun 2025; 17:211-225. [PMID: 40058341 PMCID: PMC11968099 DOI: 10.1159/000542531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 11/07/2024] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Periodontitis is recognized as one of the most prevalent oral dysbiotic inflammatory diseases, ultimately leading to the irreversible destruction of periodontal tissues. Macrophages play a pivotal role in the development and progression of periodontitis, and the feasibility of targeting them therapeutically has been established. Since metabolic switching significantly contributes to macrophage regulation, conducting an in-depth review of macrophage metabolism in periodontitis may serve as the foundation for developing innovative treatments. SUMMARY This paper has been carefully reviewed to provide a comprehensive overview of the roles played by macrophages in periodontitis and associated comorbidities. Initially, detailed presentations on the metabolic reprogramming of macrophages, including glucose, lipid, and amino acid metabolism, were provided. Subsequently, dominating macrophage phenotype and metabolism under lipopolysaccharide (LPS) stimulation or during periodontitis were presented with emphasize on critical molecules involved. Furthermore, in recognition of the close association between periodontitis and several comorbidities, the interaction among macrophage metabolism, periodontitis, and related metabolic diseases, was thoroughly discussed. KEY MESSAGES Through the examination of current research on macrophage metabolic reprogramming induced by periodontitis, this review provides potential immunometabolic therapeutic targets for the future and raises many important, yet unstudied, subjects for follow-up. BACKGROUND Periodontitis is recognized as one of the most prevalent oral dysbiotic inflammatory diseases, ultimately leading to the irreversible destruction of periodontal tissues. Macrophages play a pivotal role in the development and progression of periodontitis, and the feasibility of targeting them therapeutically has been established. Since metabolic switching significantly contributes to macrophage regulation, conducting an in-depth review of macrophage metabolism in periodontitis may serve as the foundation for developing innovative treatments. SUMMARY This paper has been carefully reviewed to provide a comprehensive overview of the roles played by macrophages in periodontitis and associated comorbidities. Initially, detailed presentations on the metabolic reprogramming of macrophages, including glucose, lipid, and amino acid metabolism, were provided. Subsequently, dominating macrophage phenotype and metabolism under lipopolysaccharide (LPS) stimulation or during periodontitis were presented with emphasize on critical molecules involved. Furthermore, in recognition of the close association between periodontitis and several comorbidities, the interaction among macrophage metabolism, periodontitis, and related metabolic diseases, was thoroughly discussed. KEY MESSAGES Through the examination of current research on macrophage metabolic reprogramming induced by periodontitis, this review provides potential immunometabolic therapeutic targets for the future and raises many important, yet unstudied, subjects for follow-up.
Collapse
Affiliation(s)
- Zihan Zhang
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Liu
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China,
| | - Tian Yu
- Department of Stomatology, Nanbu Country People's Hospital, Nanchong, China
| | - Zhen Liu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
2
|
Raff H, Hainsworth KR, Woyach VL, Weihrauch D, Wang X, Dean C. Probiotic and high-fat diet: effects on pain assessment, body composition, and cytokines in male and female adolescent and adult rats. Am J Physiol Regul Integr Comp Physiol 2024; 327:R123-R132. [PMID: 38780441 PMCID: PMC11444502 DOI: 10.1152/ajpregu.00082.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Obesity in adolescence is increasing in frequency and is associated with elevated proinflammatory cytokines and chronic pain in a sex-dependent manner. Dietary probiotics may mitigate these detrimental effects of obesity. Using a Long-Evans adolescent and adult rat model of overweight (high-fat diet (HFD) - 45% kcal from fat from weaning), we determined the effect of a single-strain dietary probiotic [Lactiplantibacillus plantarum 299v (Lp299v) from weaning] on the theoretically increased neuropathic injury-induced pain phenotype and inflammatory cytokines. We found that although HFD increased fat mass, it did not markedly affect pain phenotype, particularly in adolescence, but there were subtle differences in pain in adult male versus female rats. The combination of HFD and Lp299v augmented the increase in leptin in adolescent females. There were many noninteracting main effects of age, diet, and probiotic on an array of cytokines and adipokines with adults being higher than adolescents, HFD higher than the control diet, and a decrease with probiotic compared with placebo. Of particular interest were the probiotic-induced increases in IL12p70 in female adolescents on an HFD. We conclude that a more striking pain phenotype could require a higher and longer duration caloric diet or a different etiology of pain. A major strength of our study was that a single-strain probiotic had a wide range of inhibiting effects on most proinflammatory cytokines. The positive effect of the probiotic on leptin in female adolescent rats is intriguing and worthy of exploration.NEW & NOTEWORTHY A single-strain probiotic (Lp299v) had a wide range of inhibiting effects on most proinflammatory cytokines (especially IL12p70) measured in this high-fat diet rat model of mild obesity. The positive effect of probiotic on leptin in female adolescent rats is intriguing and worthy of exploration.
Collapse
Affiliation(s)
- Hershel Raff
- Division of Endocrinology and Molecular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Keri R Hainsworth
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Jane B. Pettit Pain and Headache Center, Children's Wisconsin, Milwaukee, Wisconsin, United States
| | - Victoria L Woyach
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Research Division, Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, United States
| | - Dorothee Weihrauch
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Research Division, Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, United States
| | - Xuemeng Wang
- Center for Advancing Population Science, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Caron Dean
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Research Division, Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, United States
| |
Collapse
|
3
|
Zhang Q, Yue Y, Wang X, Cui H, Liu Y, Gao M, Liu T, Xiao L. Tandem Mass Tag-Labeled Quantitative Proteome Analyses Identify C1R and A2M as Novel Serum Biomarkers in Pregnant Women with Obstructive Sleep Apnea. J Proteome Res 2024; 23:1232-1248. [PMID: 38407963 DOI: 10.1021/acs.jproteome.3c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The aim of this study was to identify serum diagnostic biomarkers associated with the severity of obstructive sleep apnea (OSA) during pregnancy. Differentially expressed proteins (DEPs) were identified in the control (C), mild (O), and moderate (MO) OSA groups (n = 3 in each group). Bioinformatics analysis was conducted to identify the underlying functions, pathways, and networks of the proteins. Receiver operating characteristic curves were used to assess the diagnostic value of the identified DEPs. The enzyme-linked immunoassay was performed to detect serum levels of the complement C1r subcomponent (C1R) and alpha-2-macroglobulin (A2M) in 79 pregnant women with OSA (mild OSA [n = 32]; moderate OSA [n = 29], and severe OSA [n = 18]) and 65 healthy pregnant women without OSA. Pearson's correlation analysis was conducted to analyze the correlation between C1R and A2M levels and OSA clinicopathological factors. In total, 141 DEPs, 29 DEPs, and 103 DEPs were identified in the three groups (i.e., the mild OSA vs control group, the moderate OSA vs mild apnea group, and the moderate OSA vs control group, respectively). C1R and A2M were identified as continuously up-regulated proteins, and the levels of C1R and A2M were associated with OSA severity. C1R and A2M were found to be correlated with body mass index, systolic blood pressure, apnea-hypopnea index, oxygen desaturation index, time with saturation below 90%, and lowest SaO2. Adverse maternal and neonatal outcomes were observed in pregnant women with OSA. C1R and A2M have been identified as diagnostic biomarkers and are associated with the severity of OSA during pregnancy.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yuanyi Yue
- Department of Gastroenterology Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xueqing Wang
- Department of Gastroenterology Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Hong Cui
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yishu Liu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Sleep Medicine Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Man Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Tong Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Li Xiao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Sleep Medicine Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
4
|
Yamaguchi F, Suzuki A, Hashiguchi M, Kondo E, Maeda A, Yokoe T, Sasaki J, Shikama Y, Hayashi M, Kobayashi S, Suzuki H. Combination of rRT-PCR and Clinical Features to Predict Coronavirus Disease 2019 for Nosocomial Infection Control. Infect Drug Resist 2024; 17:161-170. [PMID: 38260181 PMCID: PMC10802122 DOI: 10.2147/idr.s432198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Background Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), immediately became a pandemic. Therefore, nosocomial infection control is necessary to screen for patients with possible COVID-19. Objective This study aimed to investigate commonly measured clinical variables to predict COVID-19. Methods This cross-sectional study enrolled 1087 patients in the isolation ward of a university hospital. Conferences were organized to differentiate COVID-19 from non-COVID-19 cases, and multiple nucleic acid tests were mandatory when COVID-19 could not be excluded. Multivariate logistic regression models were employed to determine the clinical factors associated with COVID-19 at the time of hospitalization. Results Overall, 352 (32.4%) patients were diagnosed with COVID-19. The majority of the non-COVID-19 cases were predominantly caused by bacterial infections. Multivariate analysis indicated that COVID-19 was significantly associated with age, sex, body mass index, lactate dehydrogenase, C-reactive protein, and malignancy. Conclusion Some clinical factors are useful to predict patients with COVID-19 among those with symptoms similar to COVID-19. This study suggests that at least two real-time reverse-transcription polymerase chain reactions of SARS-CoV-2 are recommended to exclude COVID-19.
Collapse
Affiliation(s)
- Fumihiro Yamaguchi
- Department of Respiratory Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Ayako Suzuki
- Department of Pharmacy, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Miyuki Hashiguchi
- Department of Infection Control, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Emiko Kondo
- Department of Infection Control, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Atsuo Maeda
- Department of Emergency and Critical Care Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Takuya Yokoe
- Department of Respiratory Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Jun Sasaki
- Department of Emergency and Critical Care Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Yusuke Shikama
- Department of Respiratory Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Munetaka Hayashi
- Department of Emergency and Critical Care Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Sei Kobayashi
- Department of Otolaryngology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Hiroshi Suzuki
- Department of Cardiology, Showa University Fujigaoka Hospital, Yokohama, Japan
| |
Collapse
|
5
|
Jiang Y, Gong F. Immune cells in adipose tissue microenvironment under physiological and obese conditions. Endocrine 2024; 83:10-25. [PMID: 37768512 DOI: 10.1007/s12020-023-03521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE This review will focus on the immune cells in adipose tissue microenvironment and their regulatory roles in metabolic homeostasis of adipose tissue and even the whole body under physiological and obese conditions. METHODS This review used PubMed searches of current literature to examine adipose tissue immune cells and cytokines, as well as the complex interactions between them. RESULTS Aside from serving as a passive energy depot, adipose tissue has shown specific immunological function. Adipose tissue microenvironment is enriched with a large number of immune cells and cytokines, whose physiological regulation plays a crucial role for metabolic homeostasis. However, obesity causes pro-inflammatory alterations in these adipose tissue immune cells, which have detrimental effects on metabolism and increase the susceptibility of individuals to the obesity related diseases. CONCLUSIONS Adipose tissue microenvironment is enriched with various immune cells and cytokines, which regulate metabolic homeostasis of adipose tissue and even the whole body, whether under physiological or obese conditions. Targeting key immune cells and cytokines in adipose tissue microenvironment for obesity treatment becomes an attractive research point.
Collapse
Affiliation(s)
- Yuchen Jiang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100730, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
6
|
Sidhu SK, Aleman JO, Heffron SP. Obesity Duration and Cardiometabolic Disease. Arterioscler Thromb Vasc Biol 2023; 43:1764-1774. [PMID: 37650325 PMCID: PMC10544713 DOI: 10.1161/atvbaha.123.319023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
Cardiovascular disease risk is known to be influenced by both the severity of a risk factor and the duration of exposure (eg, LDL [low-density lipoprotein] cholesterol, tobacco smoke). However, this concept has been largely neglected within the obesity literature. While obesity severity has been closely linked with cardiometabolic diseases, the risk of developing these conditions among those with obesity may be augmented by greater obesity duration over the life span. Few longitudinal or contemporary studies have investigated the influence of both factors in combination-cumulative obesity exposure-instead generally focusing on obesity severity, often at a single time point, given ease of use and lack of established methods to encapsulate duration. Our review focuses on what is known about the influence of the duration of exposure to excess adiposity within the obesity-associated cardiometabolic disease risk equation by means of summarizing the hypothesized mechanisms for and evidence surrounding the relationships of obesity duration with diverse cardiovascular and metabolic disease. Through the synthesis of the currently available data, we aim to highlight the importance of a better understanding of the influence of obesity duration in cardiovascular and metabolic disease pathogenesis. We underscore the clinical importance of aggressive early attention to obesity identification and intervention to prevent the development of chronic diseases that arise from exposure to excess body weight.
Collapse
Affiliation(s)
- Sharnendra K. Sidhu
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Jose O. Aleman
- Laboratory of Translational Obesity Research, Division of Endocrinology, Diabetes & Metabolism, New York University Grossman School of Medicine, New York, NY, USA
| | - Sean P. Heffron
- Center for the Prevention of Cardiovascular Disease, Leon H. Charney Division of Cardiology, NYU Langone Health, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
7
|
Kang JH, Kim HS, Park SH, Kim YS, Bae Y. WKYMVm ameliorates obesity by improving lipid metabolism and leptin signalling. J Cell Mol Med 2023; 27:2782-2791. [PMID: 37603580 PMCID: PMC10494292 DOI: 10.1111/jcmm.17910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023] Open
Abstract
Obesity is a metabolic disorder that results from an imbalance of energy intake and consumption. As low-grade chronic inflammation caused by obesity can lead to various complications, it is important to develop effective treatments against obesity. In this study, we investigate the effects of WKYMVm, a strong anti-inflammatory agent, against obesity. Administration of WKYMVm into high fat diet (HFD)-induced obese mice significantly attenuated body weight gain, food intake and increased insulin sensitivity. HFD-induced hepatic steatosis and adipose tissue hypertrophy were also markedly ameliorated by WKYMVm. During the maturation of adipocytes, WKYMVm improves lipid metabolism by increasing lipolysis, adipogenesis, mitochondrial biogenesis and fat browning. WKYMVm administration also elicited a decrease in leptin levels, but an increase in leptin sensitivity via regulation of hypothalamic endoplasmic reticulum stress and the leptin receptor cascade. Taken together, our results show that WKYMVm ameliorates obesity by improving lipid metabolism and leptin signalling, suggesting that WKYMVm can be a useful molecule for the development of anti-obesity agents.
Collapse
Affiliation(s)
- Ji Hyeon Kang
- Department of Biological SciencesSungkyunkwan UniversitySuwonKorea
| | - Hyung Sik Kim
- Department of Biological SciencesSungkyunkwan UniversitySuwonKorea
- Present address:
Department of Target DiscoveryLG Life ScienceSeoulKorea
| | - Seon Hyang Park
- Department of Biological SciencesSungkyunkwan UniversitySuwonKorea
| | - Ye Seon Kim
- Department of Biological SciencesSungkyunkwan UniversitySuwonKorea
- Convergence Research Center for Energy and Environmental SciencesSungkyunkwan UniversitySuwonKorea
| | - Yoe‐Sik Bae
- Department of Biological SciencesSungkyunkwan UniversitySuwonKorea
| |
Collapse
|
8
|
Resende ADS, de Oliveira YLM, de Franca MNF, Magalhães LS, Correa CB, Fukutani KF, Lipscomb MW, de Moura TR. Obesity in Severe COVID-19 Patients Has a Distinct Innate Immune Phenotype. Biomedicines 2023; 11:2116. [PMID: 37626613 PMCID: PMC10452870 DOI: 10.3390/biomedicines11082116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
Obesity alters the capacity of effective immune responses in infections. To further address this phenomenon in the context of COVID-19, this study investigated how the immunophenotype of leukocytes was altered in individuals with obesity in severe COVID-19. This cross-sectional study enrolled 27 ICU COVID-19 patients (67% women, 56.33 ± 19.55 years) that were assigned to obese (BMI ≥ 30 kg/m2, n = 9) or non-obese (BMI < 30kg/m2, n = 18) groups. Monocytes, NK, and both Low-Density (LD) and High-Density (HD) neutrophils were isolated from peripheral blood samples, and surface receptors' frequency and expression patterns were analyzed by flow cytometry. Clinical status and biochemical data were additionally evaluated. The frequency of monocytes was negatively correlated with BMI, while NK cells and HD neutrophils were positively associated (p < 0.05). Patients with obesity showed a significant reduction of monocytes, and these cells expressed high levels of PD-L1 (p < 0.05). A higher frequency of NK cells and increased expression of TREM-1+ on HD neutrophils were detected in obese patients (p < 0.05). The expression of receptors related to antigen-presentation, phagocytosis, chemotaxis, inflammation and suppression were strongly correlated with clinical markers only in obese patients (p < 0.05). Collectively, these outcomes revealed that obesity differentially affected, and largely depressed, innate immune response in severe COVID-19.
Collapse
Affiliation(s)
- Ayane de Sá Resende
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju 49060-100, Sergipe, Brazil; (Y.L.M.d.O.); (M.N.F.d.F.); (L.S.M.); (C.B.C.); (K.F.F.)
| | - Yrna Lorena Matos de Oliveira
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju 49060-100, Sergipe, Brazil; (Y.L.M.d.O.); (M.N.F.d.F.); (L.S.M.); (C.B.C.); (K.F.F.)
| | - Mariana Nobre Farias de Franca
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju 49060-100, Sergipe, Brazil; (Y.L.M.d.O.); (M.N.F.d.F.); (L.S.M.); (C.B.C.); (K.F.F.)
| | - Lucas Sousa Magalhães
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju 49060-100, Sergipe, Brazil; (Y.L.M.d.O.); (M.N.F.d.F.); (L.S.M.); (C.B.C.); (K.F.F.)
- Department of Parasitology and Pathology, ICBS, Federal University of Alagoas, Maceio 57072-900, Alagoas, Brazil
| | - Cristiane Bani Correa
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju 49060-100, Sergipe, Brazil; (Y.L.M.d.O.); (M.N.F.d.F.); (L.S.M.); (C.B.C.); (K.F.F.)
- Physiological Sciences Graduate Program, Federal University of Sergipe, São Cristovao 49100-000, Sergipe, Brazil
| | - Kiyoshi Ferreira Fukutani
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju 49060-100, Sergipe, Brazil; (Y.L.M.d.O.); (M.N.F.d.F.); (L.S.M.); (C.B.C.); (K.F.F.)
| | | | - Tatiana Rodrigues de Moura
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju 49060-100, Sergipe, Brazil; (Y.L.M.d.O.); (M.N.F.d.F.); (L.S.M.); (C.B.C.); (K.F.F.)
| |
Collapse
|
9
|
Nance SA, Muir L, Delproprosto J, Lumeng CN. MSR1 is not required for obesity-associated inflammation and insulin resistance in mice. Sci Rep 2023; 13:2651. [PMID: 36788340 PMCID: PMC9927046 DOI: 10.1038/s41598-023-29736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Obesity induces a chronic inflammatory state associated with changes in adipose tissue macrophages (ATMs). Macrophage scavenger receptor 1 (MSR1) has been implicated in the regulation of adipose tissue inflammation and diabetes pathogenesis; however, reports have been mixed on the contribution of MSR1 in obesity and glucose intolerance. We observed increased MSR1 expression in VAT of obese diabetic individuals compared to non-diabetic and single nuclear RNA sequencing identified macrophage-specific expression of MSR1 in human adipose tissue. We examined male Msr1-/- (Msr1KO) and WT controls and observed protection from obesity and AT inflammation in non-littermate Msr1KO mice. We then evaluated obese littermate Msr1+/- (Msr1HET) and Msr1KO mice. Both Msr1KO mice and Msr1HET mice became obese and insulin resistant when compared to their normal chow diet counterparts, but there was no Msr1-dependent difference in body weight, glucose metabolism, or insulin resistance. Flow cytometry revealed no significant differences between genotypes in ATM subtypes or proliferation in male and female mice. We observed increased frequency of proliferating ATMs in obese female compared to male mice. Overall, we conclude that while MSR1 is a biomarker of diabetes status in human adipose tissue, in mice Msr1 is not required for obesity-associated insulin resistance or ATM accumulation.
Collapse
Affiliation(s)
- Sierra A Nance
- Molecular and Integrative Physiology, University of Michigan Medical School, 109 Zina Pitcher Place, 2057 BSRB, Ann Arbor, MI, 48109, USA
- Department of Pediatrics, University of Michigan Medical School, 109 Zina Pitcher Place, 2057 BSRB, Ann Arbor, MI, 48109, USA
| | - Lindsey Muir
- Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jennifer Delproprosto
- Department of Pediatrics, University of Michigan Medical School, 109 Zina Pitcher Place, 2057 BSRB, Ann Arbor, MI, 48109, USA
| | - Carey N Lumeng
- Molecular and Integrative Physiology, University of Michigan Medical School, 109 Zina Pitcher Place, 2057 BSRB, Ann Arbor, MI, 48109, USA.
- Department of Pediatrics, University of Michigan Medical School, 109 Zina Pitcher Place, 2057 BSRB, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
10
|
Bubnov R, Spivak M. Pathophysiology-Based Individualized Use of Probiotics and Prebiotics for Metabolic Syndrome: Implementing Predictive, Preventive, and Personalized Medical Approach. ADVANCES IN PREDICTIVE, PREVENTIVE AND PERSONALISED MEDICINE 2023:133-196. [DOI: 10.1007/978-3-031-19564-8_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Nassar M, Misra A, Bloomgarden Z. COVID-19 Vaccination in Persons with Diabetes: How they Work. CONTEMPORARY ENDOCRINOLOGY 2023:195-206. [DOI: 10.1007/978-3-031-28536-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
|
12
|
Abe T, Yamaguchi F, Sakakura S, Yamazaki Y, Shikama Y. Effect of tocilizumab treatment in mildly-obese patients with coronavirus disease 2019: a case series. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1263. [PMID: 36618789 PMCID: PMC9816833 DOI: 10.21037/atm-2022-49] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/20/2022] [Indexed: 11/23/2022]
Abstract
Background The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an increasingly widespread international medical problem. Several randomized trials and observational studies in patients with COVID-19 have been performed. However, the standard treatment strategy has not yet been established. The purpose of this study is to report effect of tocilizumab treatment combined with remdesivir, dexamethasone, and heparin on obese Japanese patients with COVID-19. Tocilizumab is a monoclonal antibody against the interleukin-6 (IL-6) receptor. Obesity, characterized by systemic enlarged adipocytes, promotes proinflammatory cytokine expression in adipose tissue. More specifically, obesity induces detrimental adipocytokine production including tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and IL-6. In addition, its production in the adipose tissue is associated with body mass index (BMI) and adipocyte size. IL-6 can promote inflammation not only in the adipose tissues but also in endothelial cells and triggers systemic inflammation. Methods A cross-sectional observational study was conducted. The study sample consisted of 96 patients between August 2020 and January 2021 at Showa University Fujigaoka Hospital. Results Overall, 56.3% (54 of 96) were administered with remdesivir, 54.2% (52 of 96) with dexamethasone, 19.8% (19 of 96) with anticoagulant therapy with heparin. Of the patients, nine were administered tocilizumab with remdesivir, dexamethasone, and heparin. The current study indicated that single-dose treatment of tocilizumab in combination with remdesivir, dexamethasone, and heparin is beneficial for obese Japanese patients with COVID-19. Conclusions We believe that the severity of obesity is related to the anti-IL-6 treatment sensitivity in patients with COVID-19.
Collapse
|
13
|
Ndlovu SS, Ghazi T, Chuturgoon AA. The Potential of Moringa oleifera to Ameliorate HAART-Induced Pathophysiological Complications. Cells 2022; 11:2981. [PMID: 36230942 PMCID: PMC9563018 DOI: 10.3390/cells11192981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 12/06/2022] Open
Abstract
Highly active antiretroviral therapy (HAART) comprises a combination of two or three antiretroviral (ARV) drugs that are administered together in a single tablet. These drugs target different steps within the human immunodeficiency virus (HIV) life cycle, providing either a synergistic or additive antiviral effect; this enhances the efficiency in which viral replication is suppressed. HIV cannot be completely eliminated, making HAART a lifetime treatment. With long-term HAART usage, an increasing number of patients experience a broadening array of complications, and this significantly affects their quality of life, despite cautious use. The mechanism through which ARV drugs induce toxicity is associated with metabolic complications such as mitochondrial dysfunction, oxidative stress, and inflammation. To address this, it is necessary to improve ARV drug formulation without compromising its efficacy; alternatively, safe supplementary medicine may be a suitable solution. The medicinal plant Moringa oleifera (MO) is considered one of the most important sources of novel nutritionally and pharmacologically active compounds that have been shown to prevent and treat various diseases. MO leaves are rich in polyphenols, vitamins, minerals, and tannins; studies have confirmed the therapeutic properties of MO. MO leaves provide powerful antioxidants, scavenge free radicals, promote carbohydrate metabolism, and repair DNA. MO also induces anti-inflammatory, hepatoprotective, anti-proliferative, and anti-mutagenic effects. Therefore, MO can be a source of affordable and safe supplement therapy for HAART-induced toxicity. This review highlights the potential of MO leaves to protect against HAART-induced toxicity in HIV patients.
Collapse
Affiliation(s)
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Anil A. Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
14
|
Sinha A, Sitlani CM, Doyle MF, Fohner AE, Buzkova P, Floyd JS, Huber SA, Olson NC, Njoroge JN, Kizer JR, Delaney JA, Shah SS, Tracy RP, Psaty B, Feinstein M. Association of immune cell subsets with incident heart failure in two population-based cohorts. ESC Heart Fail 2022; 9:4177-4188. [PMID: 36097332 PMCID: PMC9773780 DOI: 10.1002/ehf2.14140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 01/19/2023] Open
Abstract
AIMS Circulating inflammatory markers are associated with incident heart failure (HF), but prospective data on associations of immune cell subsets with incident HF are lacking. We determined the associations of immune cell subsets with incident HF as well as HF subtypes [with reduced ejection fraction (HFrEF) and preserved ejection fraction (HFpEF)]. METHODS AND RESULTS Peripheral blood immune cell subsets were measured in adults from the Multi-Ethnic Study of Atherosclerosis (MESA) and Cardiovascular Health Study (CHS). Cox proportional hazard models adjusted for demographics, HF risk factors, and cytomegalovirus serostatus were used to evaluate the association of the immune cell subsets with incident HF. The average age of the MESA cohort at the time of immune cell measurements was 63.0 ± 10.4 years with 51% women, and in the CHS cohort, it was 79.6 ± 4.4 years with 62% women. In the meta-analysis of CHS and MESA, a higher proportion of CD4+ T helper (Th) 1 cells (per one standard deviation) was associated with a lower risk of incident HF [hazard ratio (HR) 0.91, (95% CI 0.83-0.99), P = 0.03]. Specifically, higher proportion of CD4+ Th1 cells was significantly associated with a lower risk of HFrEF [HR 0.73, (95% CI 0.62-0.85), <0.001] after correction for multiple testing. No association was observed with HFpEF. No other cell subsets were associated with incident HF. CONCLUSIONS We observed that higher proportions of CD4+ Th1 cells were associated with a lower risk of incident HFrEF in two distinct population-based cohorts, with similar effect sizes in both cohorts demonstrating replicability. Although unexpected, the consistency of this finding across cohorts merits further investigation.
Collapse
Affiliation(s)
- Arjun Sinha
- Department of Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA,Department of Preventive Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Colleen M. Sitlani
- Cardiovascular Health Research Unit, Department of MedicineUniversity of WashingtonSeattleWAUSA
| | - Margaret F. Doyle
- Department of Pathology and Laboratory MedicineUniversity of VermontBurlingtonVTUSA
| | | | - Petra Buzkova
- Department of BiostatisticsUniversity of WashingtonSeattleWAUSA
| | - James S. Floyd
- Cardiovascular Health Research Unit, Department of MedicineUniversity of WashingtonSeattleWAUSA,Department of EpidemiologyUniversity of WashingtonSeattleWAUSA
| | - Sally A. Huber
- Department of Pathology and Laboratory MedicineUniversity of VermontBurlingtonVTUSA
| | - Nels C. Olson
- Department of Pathology and Laboratory MedicineUniversity of VermontBurlingtonVTUSA
| | - Joyce N. Njoroge
- Department of MedicineUniversity of California at San FranciscoSan FranciscoCAUSA
| | - Jorge R. Kizer
- Cardiology Section, San Francisco Veterans Affairs Health Care System and Departments of Medicine, Epidemiology and BiostatisticsUniversity of California San FranciscoSan FranciscoCAUSA
| | - Joseph A. Delaney
- Department of EpidemiologyUniversity of WashingtonSeattleWAUSA,College of PharmacyUniversity of ManitobaWinnipegManitobaCanada
| | - Sanjiv S. Shah
- Department of Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Russell P. Tracy
- Department of Pathology and Laboratory MedicineUniversity of VermontBurlingtonVTUSA,Department of Biochemistry, Robert Larner M.D. College of MedicineUniversity of VermontBurlingtonVTUSA
| | - Bruce Psaty
- Cardiovascular Health Research Unit, Department of MedicineUniversity of WashingtonSeattleWAUSA,Department of EpidemiologyUniversity of WashingtonSeattleWAUSA,Department of Health Systems and Population HealthUniversity of WashingtonSeattleWAUSA
| | - Matthew Feinstein
- Department of Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA,Department of Preventive Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| |
Collapse
|
15
|
Differential persistence of neutralizing antibody against SARS-CoV-2 in post immunized Bangladeshi population. Sci Rep 2022; 12:14681. [PMID: 36038600 PMCID: PMC9421641 DOI: 10.1038/s41598-022-18302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
Development of effective vaccines have been immensely welcomed by the world to prevent the transmission of SARS-CoV-2. However, the duration and clinical implications of antibody-mediated natural immunity in SARS-CoV-2 have not been adequately elucidated alongside some other immune system transforming factors. In a cohort study, we measured NAb titer following the 2nd immunization dosage of the CoviShield (AZD1222) vaccine. The enzyme-linked immunoassay was used to look for SARS-CoV-2—specific NAb. We measured NAb at 30 days after the 2nd dosage of immunization and > 96% titer was detected in 42.9% of subjects, but only 5.1% of subjects retained the same level after 180 days. The median NAb titer dropped significantly, from 92% at 30 days to 58% at 180 days (p < 0.001). Besides, there were significant differences observed in NAb titer after 180 days by age, sex, COVID-19 infection, tobacco use, and asthma patients. However, SARS-CoV-2 infection along with two dosages of immunization upheld NAb titer (p < 0.001) even at the end of the study period.
Collapse
|
16
|
Boroumand AB, Forouhi M, Karimi F, Moghadam AS, Naeini LG, Kokabian P, Naderi D. Immunogenicity of COVID-19 vaccines in patients with diabetes mellitus: A systematic review. Front Immunol 2022; 13:940357. [PMID: 36105809 PMCID: PMC9465310 DOI: 10.3389/fimmu.2022.940357] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/12/2022] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To evaluate the immunogenicity of COVID-19 vaccines in patients with diabetes mellitus (DM) through a systematic approach. METHOD A comprehensive search was conducted in PubMed, Scopus, and Web of Science with no time restrictions. The search was based on the three main concepts: Covid-19, Vaccine immunogenicity and Diabetes Mellitus. RESULTS After excluding irrelevant studies, 16 studies remained for the quantitative assay. Among the sixteen studies, eleven had controls. Type of diabetes was specifically mentioned in six studies (T2DM; n=4, T1DM and T2DM; n=2). Twelve of the included studies were conducted on the immunogenicity of vaccines that included mRNA vaccines (i.e. BNT162b2 and mRNA-1273) in DM, five studies included vector-based vaccines (i.e. Ad5-nCoV and ChAdOx1-S), and five studies assessed the immunogenicity of vaccines in DM, including inactivated vaccines (i.e. BBV-152, CoronaVac, Sinopharm or SinoVac). Most of the current studies indicate lower antibody response in patients with DM compared to individuals without DM, after the second dose of vaccine and irrespective of vaccine type. Several studies have shown that higher age and higher BMI are associated with lower antibody response, while optimum glycemic control and higher GFR are associated with higher antibody response among patients with DM. CONCLUSION Immunogenicity of the vaccines has mostly been reported to be lower among patients with DM compared to healthy controls. There are also few studies assessing variables that significantly affect this association, including age, type of diabetes, BMI, glycemic control and eGFR. Investigating these associations could help us provide the most advantageous condition for patients with DM before, during and after vaccination for optimum antibody response. Many unresolved issues concerning potential factors affecting vaccine immunogenicity, including type of vaccine, numbers of administered doses, re-vaccination intervals and hyperglycemia in patients with DM need to be addressed through future research.
Collapse
Affiliation(s)
- Amir Bahador Boroumand
- Department of Emergency Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahtab Forouhi
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | - Pajman Kokabian
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Delaram Naderi
- Student Research Committee, Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Xuan X, Tan P, Zhang X, Huang H, Li Y, Jiang Y, Yu A, Zhao Y, Wang K, Tang B, Qu S, Jiang Y, Xu J, Gao X, Zhou L. Long-term low-dose alcohol intake promotes white adipose tissue browning and reduces obesity in mice. Food Funct 2022; 13:8524-8541. [PMID: 35880667 DOI: 10.1039/d2fo00743f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There are numerous pieces of evidence indicating that moderate alcohol intake has a protective effect on metabolic diseases. Our previous studies revealed that long-term low-dose alcohol intake resists high-fat diet (HFD) induced obesity. A process in which white adipose tissue can be stimulated and turned into heat-producing brown adipose tissue named white adipose browning is associated with energy expenditure and weight loss. In this study we aimed to investigate whether alcohol causes the browning of white adipose tissue and whether the browning of white adipose tissue is involved in the resistance to the occurrence of obesity caused by long-term low-dose alcohol intake. After eight months of alcohol feeding, the body weight of mice had no significant change, but the fat content and lipid deposition in the liver were reduced. Morphological observations revealed that the browning of white adipose tissue occurred. The white adipose tissue browning marker UCP1 gene and protein expression levels were increased and the expression of the PGC1-α/PPAR-α pathway protein and the P38 MAPK/CREB pathway protein was also elevated in the alcohol feeding group. Moderate alcohol drinking increased the secretion of the CXCL14 protein in inguinal subcutaneous adipose tissue, which drove the recruitment of M2 macrophages. Moderate alcohol drinking mice had faster lipid metabolism and slower lipid anabolism. In addition, we found that long-term low-dose alcohol intake prevented the increase of body weight, triglycerides, inflammation and energy expenditure decrease induced by HFD. Moderate alcohol consumption increased the expression of UCP1 and glucose uptake in the adipose tissue of the HFD group. In conclusion, our results show for the first time that alcohol can trigger the browning of white adipose tissue to counteract obesity.
Collapse
Affiliation(s)
- Xiuchen Xuan
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China. .,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Peizhu Tan
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China. .,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Ximei Zhang
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Hui Huang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China. .,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Yanze Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China. .,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Yu Jiang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China. .,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Aimiao Yu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China. .,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Yuanyuan Zhao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China. .,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Kuo Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China. .,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Baozhu Tang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China. .,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Shuye Qu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China. .,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Yunyan Jiang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China. .,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Jiaran Xu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China. .,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China. .,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Lingyun Zhou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China. .,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
18
|
Aghamiri SH, Komlakh K, Ghaffari M. The crosstalk among TLR2, TLR4 and pathogenic pathways; a treasure trove for treatment of diabetic neuropathy. Inflammopharmacology 2022; 30:51-60. [PMID: 35020096 DOI: 10.1007/s10787-021-00919-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/19/2021] [Indexed: 11/25/2022]
Abstract
Diabetes is correlated with organ failures as a consequence of microvascular diabetic complications, including neuropathy, nephropathy, and retinopathy. These difficulties come with serious clinical manifestations and high medical costs. Diabetic neuropathy (DN) is one of the most prevalent diabetes complications, affecting at least 50% of diabetic patients with long disease duration. DN has serious effects on patients' life since it interferes with their daily physical activities and causes psychological comorbidities. There are some potential risk factors for the development of neuropathic injuries. It has been shown that inflammatory mechanisms play a pivotal role in the progression of DN. Among inflammatory players, TLR2 and TLR4 have gained immense importance because of their ability in recognizing distinct molecular patterns of invading pathogens and also damage-associated molecular patterns (DAMPs) providing inflammatory context for the progression of a wide array of disorders. We, therefore, sought to explore the possible role of TLR2 and TLR4 in DN pathogenesis and if whether manipulating TLRs is likely to be successful in fighting off DN.
Collapse
Affiliation(s)
- Seyed Hossein Aghamiri
- Department of Neurology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khalil Komlakh
- Department of Neurosurgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehran Ghaffari
- Department of Neurology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Ali Kazem T, Zeylabi F, Filayih Hassan A, Paridar P, Pezeshki SP, Pezeshki SMS. Diabetes mellitus and COVID-19: review of a lethal interaction from the cellular and molecular level to the bedside. Expert Rev Endocrinol Metab 2022; 17:1-19. [PMID: 34781797 DOI: 10.1080/17446651.2022.2002145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/25/2021] [Indexed: 01/08/2023]
Abstract
INTRODUCTION While the main mode of transmission of coronavirus disease 2019 (COVID-19) is close contact with other individuals, the presence of chronic underlying diseases such as Diabetes Mellitus (DM) increases the chance of hospitalization and mortality rate due to infection. AREAS COVERED To investigate the effects of COVID-19 infection in DM patients, we reviewed literature from Google Scholar search engine and PubMed database from '2013 to 2020' using the terms "COVID-19; SARS-CoV-2; Diabetes mellitus; obesity; Angiotensin-converting enzyme 2; ACE2; Insulin and Metformin. Evidence suggests that COVID-19 exacerbates the course of diabetes. Presence of pro-inflammatory conditions, increased expression of receptors, and more difficult control of glucose levels in diabetics COVID-19 patients are some of the problems that diabetic patients may face. Also, psychological problems caused by the COVID-19 epidemic in diabetic patients is one of the most important problems in these patients, which is less covered. EXPERT OPINION DM is a strong and independent risk factor with a poor prognosis, which increases the risk of COVID-19 infection, the need for emergency services, the rate of hospitalization in the intensive care unit and also increases the mortality rate of COVID-19 patients.
Collapse
Affiliation(s)
| | - Fatemeh Zeylabi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Pouria Paridar
- Islamic Azad University, North-Tehran Branch, Tehran, Iran
| | - Seyedeh Pardis Pezeshki
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mohammad Sadegh Pezeshki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
20
|
Ali H, Alterki A, Sindhu S, Alahmad B, Hammad M, Al-Sabah S, Alghounaim M, Jamal MH, Aldei A, Mairza MJ, Husain M, Deverajan S, Ahmad R, Cherian P, Alkhairi I, Alkandari A, Abubaker J, Abu-Farha M, Al-Mulla F. Robust Antibody Levels in Both Diabetic and Non-Diabetic Individuals After BNT162b2 mRNA COVID-19 Vaccination. Front Immunol 2021; 12:752233. [PMID: 34899701 PMCID: PMC8652288 DOI: 10.3389/fimmu.2021.752233] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022] Open
Abstract
The emergence of effective vaccines for COVID-19 has been welcomed by the world with great optimism. Given their increased susceptibility to COVID-19, the question arises whether individuals with type-2 diabetes mellitus (T2DM) and other metabolic conditions can respond effectively to the mRNA-based vaccine. We aimed to evaluate the levels of anti-SARS-CoV-2 IgG and neutralizing antibodies in people with T2DM and/or other metabolic risk factors (hypertension and obesity) compared to those without. This study included 262 people (81 diabetic and 181 non-diabetic persons) that took two doses of BNT162b2 (Pfizer–BioNTech) mRNA vaccine. Both T2DM and non-diabetic individuals had a robust response to vaccination as demonstrated by their high antibody titers. However, both SARS-CoV-2 IgG and neutralizing antibodies titers were lower in people with T2DM. The mean ( ± 1 standard deviation) levels were 154 ± 49.1 vs. 138 ± 59.4 BAU/ml for IgG and 87.1 ± 11.6 vs. 79.7 ± 19.5% for neutralizing antibodies in individuals without diabetes compared to those with T2DM, respectively. In a multiple linear regression adjusted for individual characteristics, comorbidities, previous COVID-19 infection, and duration since second vaccine dose, diabetics had 13.86 BAU/ml (95% CI: 27.08 to 0.64 BAU/ml, p=0.041) less IgG antibodies and 4.42% (95% CI: 8.53 to 0.32%, p=0.036) fewer neutralizing antibodies than non-diabetics. Hypertension and obesity did not show significant changes in antibody titers. Taken together, both type-2 diabetic and non-diabetic individuals elicited strong immune responses to SARS-CoV-2 BNT162b2 mRNA vaccine; nonetheless, lower levels were seen in people with diabetes. Continuous monitoring of the antibody levels might be a good indicator to guide personalized needs for further booster shots to maintain adaptive immunity. Nonetheless, it is important that people get their COVID-19 vaccination especially people with diabetes.
Collapse
Affiliation(s)
- Hamad Ali
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center (HSC), Kuwait University, Jabriya, Kuwait.,Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Abdulmohsen Alterki
- Department of Otolaryngology, Head, and Neck Surgery, Zain and Al-Sabah Hospitals, Ministry of Health, Kuwait City, Kuwait.,Medical Division, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Sardar Sindhu
- Department of Immunology and Microbiology, Dasman Diabetes Institute (DDI), Dasman, Kuwait.,Animal & Imaging Core Facility, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Barrak Alahmad
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Maha Hammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Salman Al-Sabah
- COVID-19 Research Group, Jaber Al-Ahmad Al-Sabah Hospital, Kuwait City, Kuwait
| | - Mohammad Alghounaim
- COVID-19 Research Group, Jaber Al-Ahmad Al-Sabah Hospital, Kuwait City, Kuwait
| | - Mohammad H Jamal
- COVID-19 Research Group, Jaber Al-Ahmad Al-Sabah Hospital, Kuwait City, Kuwait
| | - Ali Aldei
- Rheumatology Unit, Department of Medicine, Amiri Hospital, Kuwait City, Kuwait
| | - Mohammad J Mairza
- Department of Internal Medicine, Amiri Hospital, Kuwait City, Kuwait
| | - Maitham Husain
- Planning and Follow-Up Department, Ministry of Health, Kuwait City, Kuwait
| | - Sriraman Deverajan
- National Dasman Diabetes Biobank, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Rasheed Ahmad
- Department of Immunology and Microbiology, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Preethi Cherian
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Irina Alkhairi
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Abdullah Alkandari
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| |
Collapse
|
21
|
Ye L, Chen X, Wang M, Jin L, Zhuang Z, Yang D, Guan X, Samorodov AV, Pavlov VN, Chattipakorn N, Feng J, Wang Y, Luo W, Liang G. Curcumin analogue C66 attenuates obesity-induced myocardial injury by inhibiting JNK-mediated inflammation. Biomed Pharmacother 2021; 143:112121. [PMID: 34474346 DOI: 10.1016/j.biopha.2021.112121] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 01/06/2023] Open
Abstract
Obesity has been recognized as a major risk factor for the development of chronic cardiomyopathy, which is associated with increased cardiac inflammation, fibrosis, and apoptosis. We previously developed an anti-inflammatory compound C66, which prevented inflammatory diabetic complications via targeting JNK. In the present study, we have tested the hypothesis that C66 could prevent obesity-induced cardiomyopathy by suppressing JNK-mediated inflammation. High-fat diet (HFD)-induced obesity mouse model and palmitic acid (PA)-challenged H9c2 cells were used to develop inflammatory cardiomyopathy and evaluate the protective effects of C66. Our data demonstrate a protective effect of C66 against obesity-induced cardiac inflammation, cardiac hypertrophy, fibrosis, and dysfunction, overall providing cardio-protection. C66 administration attenuates HFD-induced myocardial inflammation by inhibiting NF-κB and JNK activation in mouse hearts. In vitro, C66 prevents PA-induced myocardial injury and apoptosis in H9c2 cells, accompanied with inhibition against PA-induced JNK/NF-κB activation and inflammation. The protective effect of C66 is attributed to its potential to inhibit JNK activation, which led to reduced pro-inflammatory cytokine production and reduced apoptosis in cardiomyocytes both in vitro and in vivo. In summary, C66 provides significant protection against obesity-induced cardiac dysfunction, mainly by inhibiting JNK activation and JNK-mediated inflammation. Our data indicate that inhibition of JNK is able to provide significant protection against obesity-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Lin Ye
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaojun Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Minxiu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Leiming Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zaishou Zhuang
- The Affiliated Cangnan Hospital, Wenzhou Medical University, Cangnan, Zhejiang 325800, China
| | - Daona Yang
- The Affiliated Cangnan Hospital, Wenzhou Medical University, Cangnan, Zhejiang 325800, China
| | - Xinfu Guan
- The Affiliated Cangnan Hospital, Wenzhou Medical University, Cangnan, Zhejiang 325800, China
| | - Aleksandr V Samorodov
- Department of Pharmacology, Bashkir State Medical University, Ufa City 450005, Russia
| | - Valentin N Pavlov
- Department of Pharmacology, Bashkir State Medical University, Ufa City 450005, Russia
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jianpeng Feng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wu Luo
- Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China.
| |
Collapse
|
22
|
Saxena S, Kruys V, De Jongh R, Vamecq J, Maze M. High-Mobility Group Box-1 and Its Potential Role in Perioperative Neurocognitive Disorders. Cells 2021; 10:2582. [PMID: 34685561 PMCID: PMC8533835 DOI: 10.3390/cells10102582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Aseptic surgical trauma provokes the release of HMGB1, which engages the innate immune response after binding to pattern-recognition receptors on circulating bone marrow-derived monocytes (BM-DM). The initial systemic inflammation, together with HMGB1, disrupts the blood-brain barrier allowing penetration of CCR2-expressing BM-DMs into the hippocampus, attracted by the chemokine MCP-1 that is upregulated by HMGB1. Within the brain parenchyma quiescent microglia are activated and, together with the translocated BM-DMs, release proinflammatory cytokines that disrupt synaptic plasticity and hence memory formation and retention, resulting in postoperative cognitive decline (PCD). Neutralizing antibodies to HMGB1 prevents the inflammatory response to trauma and PCD.
Collapse
Affiliation(s)
- Sarah Saxena
- Department of Anesthesia, University Hospital Center (CHU de Charleroi), 6000 Charleroi, Belgium;
| | - Véronique Kruys
- ULB Immunology Research Center (UIRC), Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, Free University of Brussels (ULB), 6041 Gosselies, Belgium;
| | - Raf De Jongh
- Department of Anesthesia, Fondation Hopale, 62600 Berck-sur-Mer, France;
| | - Joseph Vamecq
- Inserm, CHU Lille, Université de Lille, CHRU Lille, Center of Biology and Pathology (CBP) Pierre-Marie Degand, EA 7364 RADEME, 59000 Lille, France;
- Laboratory of Hormonology, Metabolism-Nutrition & Oncology (HMNO), Department of Biochemistry and Molecular Biology, University of North France, 59000 Lille, France
| | - Mervyn Maze
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, UCSF, San Francisco, CA 94143, USA
| |
Collapse
|
23
|
Thomas AL, Alarcon PC, Divanovic S, Chougnet CA, Hildeman DA, Moreno-Fernandez ME. Implications of Inflammatory States on Dysfunctional Immune Responses in Aging and Obesity. FRONTIERS IN AGING 2021; 2:732414. [PMID: 35822048 PMCID: PMC9261339 DOI: 10.3389/fragi.2021.732414] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022]
Abstract
Aging and obesity are two conditions characterized by chronic, low-grade inflammation. While both conditions are also associated with dysfunctional immune responses, the shared and distinct underlying mechanisms are just starting to be uncovered. In fact, recent findings have suggested that the effects of obesity on the immune system can be thought of as a state of accelerated aging. Here we propose that chronic, low-grade inflammation seen in obesity and aging is complex, affects multiple cell types, and results in an altered basal immune state. In aging, part of this altered state is the emergence of regulatory immune populations that lead to further immune dysfunction in an attempt to reduce chronic inflammation. While in obesity, part of the altered state is the effect of expanding adipose tissue on immune cell function. Thus, in this review, we compare, and contrast altered immune states in aging and obesity and discuss their potential contribution to a shared clinical problem- decreased vaccine responsiveness.
Collapse
Affiliation(s)
- Alyssa L. Thomas
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program and Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Pablo C. Alarcon
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program and Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, Cincinnati Children’s Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program and Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, Cincinnati Children’s Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Claire A. Chougnet
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program and Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - David A. Hildeman
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program and Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, Cincinnati Children’s Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Center for Transplant Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Maria E. Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
24
|
Effect of Eicosapentaenoic Acid Supplementation on Murine Preadipocytes 3T3-L1 Cells Activated with Lipopolysaccharide and/or Tumor Necrosis Factor-α. Life (Basel) 2021; 11:life11090977. [PMID: 34575127 PMCID: PMC8472223 DOI: 10.3390/life11090977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
The beneficial effect of n-3 fatty acids can be related to anti-inflammatory properties. The aim of the study was to analyzed the effect of eicosapentaenoic acid (EPA) on 3T3-L1 cells (murine embryonic fibroblasts‒preadipocytes) activated with inflammatory factors (IF). Cells were incubated with 50 µmol of EPA for 48 h, and then activated with lipopolysaccharide (LPS) or tumor necrosis factor-α (TNF-α). The level of cycloxygenase-2 (Prostaglandin-Endoperoxide Synthase 2, PTGS2, COX-2), cytosolic prostaglandin synthase E2 (cPGES), fatty acid binding protein 4 (FABP4), toll-like receptor 4 (TLR4), glucose receptor type 4 (GLUT-4), and cannabinoid receptor 2 (CB2) was determined using Western blot analysis. The phospholipase A2 (Pla2g4a), and prostaglandin-Endoperoxide Synthase 2 (Ptgs2) gene expression was analyzed by real-time qPCR. After EPA and IF activation, a significant decrease in the COX-2, cPGES, and TRL4 protein levels was observed. Incubation of cells with EPA and IF resulted in a decrease in Ptgs2 and an increase in the Pla2g4a gene. A significant increase in the CB2 protein was observed in adipocytes co-treated with EPA and IF. The results indicated an anti-inflammatory properties of EPA. Interestingly, the activation of the GLUT4 receptor by EPA suggests an unique role of this FA in the regulation of the adipocyte metabolism and prevention of insulin resistance.
Collapse
|
25
|
Ganesan SM, Vazana S, Stuhr S. Waistline to the gumline: Relationship between obesity and periodontal disease-biological and management considerations. Periodontol 2000 2021; 87:299-314. [PMID: 34463987 DOI: 10.1111/prd.12390] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Obesity is a pandemic and periodontitis is the sixth most prevalent disease in the world. These two noncommunicable diseases share several risk determinants. Epidemiologic evidence from the last 2 decades has established an increase in periodontitis prevalence in obese and overweight individuals. Biologic mechanisms potentially linking obesity and periodontal disease are adiposity-associated hyperinflammation, microbial dysbiosis, altered immune response, specific genetic polymorphisms, and increased stress. However, because of the lack of longitudinal interventional studies and randomized clinical trials, there is insufficient evidence to determine the cause-effect relationship between these two diseases. Despite this, the negative impact of obesity on oral health is well established. Several logistic and physiologic complications are associated with treating obese patients in a dental setting, and it requires an interprofessional team approach. Oral health care professionals need to be aware of the specific management considerations while rendering for this cohort, including modified practice facility and equipment, tailored supportive periodontal therapy, and heightened precaution during conscious sedation and surgical procedures.
Collapse
Affiliation(s)
- Sukirth M Ganesan
- Department of Periodontics, The University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, USA
| | - Stephanie Vazana
- Department of Periodontics, The University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, USA
| | - Sandra Stuhr
- Department of Periodontics, The University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, USA
| |
Collapse
|
26
|
Olmos-Ortiz A, Flores-Espinosa P, Díaz L, Velázquez P, Ramírez-Isarraraz C, Zaga-Clavellina V. Immunoendocrine Dysregulation during Gestational Diabetes Mellitus: The Central Role of the Placenta. Int J Mol Sci 2021; 22:8087. [PMID: 34360849 PMCID: PMC8348825 DOI: 10.3390/ijms22158087] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Gestational Diabetes Mellitus (GDM) is a transitory metabolic condition caused by dysregulation triggered by intolerance to carbohydrates, dysfunction of beta-pancreatic and endothelial cells, and insulin resistance during pregnancy. However, this disease includes not only changes related to metabolic distress but also placental immunoendocrine adaptations, resulting in harmful effects to the mother and fetus. In this review, we focus on the placenta as an immuno-endocrine organ that can recognize and respond to the hyperglycemic environment. It synthesizes diverse chemicals that play a role in inflammation, innate defense, endocrine response, oxidative stress, and angiogenesis, all associated with different perinatal outcomes.
Collapse
Affiliation(s)
- Andrea Olmos-Ortiz
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico; (A.O.-O.); (P.F.-E.)
| | - Pilar Flores-Espinosa
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico; (A.O.-O.); (P.F.-E.)
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico;
| | - Pilar Velázquez
- Departamento de Ginecología y Obstetricia, Hospital Ángeles México, Ciudad de México 11800, Mexico;
| | - Carlos Ramírez-Isarraraz
- Clínica de Urología Ginecológica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico;
| | - Verónica Zaga-Clavellina
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico
| |
Collapse
|
27
|
Kuperberg SJ, Navetta-Modrov B. The Role of Obesity in the Immunopathogenesis of COVID-19 Respiratory Disease and Critical Illness. Am J Respir Cell Mol Biol 2021; 65:13-21. [PMID: 33797351 PMCID: PMC8320126 DOI: 10.1165/rcmb.2020-0236tr] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Coronavirus disease (COVID-19), the clinical syndrome caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently a global health pandemic with substantial morbidity and mortality. COVID-19 has cast a shadow on nearly every aspect of society, straining health systems and economies across the world. Although it is widely accepted that a close relationship exists between obesity, cardiovascular disease, and metabolic disorders on infection, we are only beginning to understand ways in which the immunological sequelae of obesity functions as a predisposing factor related to poor clinical outcomes in COVID-19. As both the innate and adaptive immune systems are each primed by obesity, the alteration of key pathways results in both an immunosuppressed and hyperinflammatory state. The present review will discuss the cellular and molecular immunology of obesity in the context of its role as a risk factor for severe COVID-19, discuss the role of cytokine storm, and draw parallels to prior viral epidemics such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and 2009 H1N1.
Collapse
Affiliation(s)
- Stephen J Kuperberg
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Brianne Navetta-Modrov
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Stony Brook University Hospital/Renaissance School of Medicine, Stony Brook, New York
| |
Collapse
|
28
|
Palma Albornoz SP, Fraga-Silva TFDC, Gembre AF, de Oliveira RS, de Souza FM, Rodrigues TS, Kettelhut IDC, Manca CS, Jordao AA, Ramalho LNZ, Ribolla PEM, Carlos D, Bonato VLD. Obesity-Induced Dysbiosis Exacerbates IFN-γ Production and Pulmonary Inflammation in the Mycobacterium tuberculosis Infection. Cells 2021; 10:1732. [PMID: 34359902 PMCID: PMC8303177 DOI: 10.3390/cells10071732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022] Open
Abstract
The microbiota of the gut-lung axis affects local and far-reaching immune responses and might also trigger chronic and inflammatory diseases. We hypothesized that gut dysbiosis induced by obesity, which coexists in countries with a high tuberculosis burden, aggravates the host susceptibility and the pulmonary damage tolerance. To assess our hypothesis, we used a model of high-fat diet (HFD)-induced obesity, followed by infection of C57BL/6 mice with Mycobacterium tuberculosis. We showed that obesity increased the susceptibility, the pulmonary inflammation and IFN-γ levels in M. tuberculosis-infected mice. During the comorbidity obesity and tuberculosis, there is an increase of Bacteroidetes and Firmicutes in the lungs, and an increase of Firmicutes and butyrate in the feces. Depletion of gut microbiota by antibiotic treatment in the obese infected mice reduced the frequencies of CD4+IFN-γ+IL-17- cells and IFN-γ levels in the lungs, associated with an increase of Lactobacillus. Our findings reinforce the role of the gut-lung axis in chronic infections and suggest that the gut microbiota modulation may be a potential host-directed therapy as an adjuvant to treat TB in the context of IFN-γ-mediated immunopathology.
Collapse
Affiliation(s)
- Sandra Patricia Palma Albornoz
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (S.P.P.A.); (T.F.d.C.F.-S.); (R.S.d.O.); (F.M.d.S.); (T.S.R.); (D.C.)
| | - Thais Fernanda de Campos Fraga-Silva
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (S.P.P.A.); (T.F.d.C.F.-S.); (R.S.d.O.); (F.M.d.S.); (T.S.R.); (D.C.)
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (A.F.G.); (I.d.C.K.)
| | - Ana Flávia Gembre
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (A.F.G.); (I.d.C.K.)
| | - Rômulo Silva de Oliveira
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (S.P.P.A.); (T.F.d.C.F.-S.); (R.S.d.O.); (F.M.d.S.); (T.S.R.); (D.C.)
| | - Fernanda Mesquita de Souza
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (S.P.P.A.); (T.F.d.C.F.-S.); (R.S.d.O.); (F.M.d.S.); (T.S.R.); (D.C.)
| | - Tamara Silva Rodrigues
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (S.P.P.A.); (T.F.d.C.F.-S.); (R.S.d.O.); (F.M.d.S.); (T.S.R.); (D.C.)
| | - Isis do Carmo Kettelhut
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (A.F.G.); (I.d.C.K.)
| | - Camila Sanches Manca
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil;
| | - Alceu Afonso Jordao
- Department of Health Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil;
| | - Leandra Naira Zambelli Ramalho
- Department of Pathology and Legal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil;
| | | | - Daniela Carlos
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (S.P.P.A.); (T.F.d.C.F.-S.); (R.S.d.O.); (F.M.d.S.); (T.S.R.); (D.C.)
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (A.F.G.); (I.d.C.K.)
| | - Vânia Luiza Deperon Bonato
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (S.P.P.A.); (T.F.d.C.F.-S.); (R.S.d.O.); (F.M.d.S.); (T.S.R.); (D.C.)
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (A.F.G.); (I.d.C.K.)
| |
Collapse
|
29
|
Gender Difference in the Relationships between Inflammatory Markers, Serum Uric Acid and Framingham Risk Score. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18137103. [PMID: 34281041 PMCID: PMC8297121 DOI: 10.3390/ijerph18137103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022]
Abstract
The purpose of the present study was to explore the role of gender in the relation of high-sensitivity C-reactive protein (hsCRP), white blood cell (WBC) count, and serum uric acid (UA) to the risk of future cardiovascular disease (CVD) events. In total, 404 workers were recruited to obtain the measurements of serum markers for CVD risk. Demographic data, nutrition, exercise, smoking, and alcohol consumption were assessed through a questionnaire. The Framingham Risk Score (FRS) was adopted to estimate the risk of future CVD events. Multiple linear regression models were used to determine CVD risk markers in relation to the FRS by gender. The hsCRP was not significantly correlated with the FRS for all workers after adjusting for covariates, including demographic data and health-related lifestyle. WBC count was positively correlated with FRS for all workers, but WBC count did not show an interaction with gender with respect to the FRS. Serum UA showed an interaction with gender on the FRS, and UA positively correlated with the FRS in males though not in females. With respect to CVD prevention, the WBC count can be used to monitor the risk for all workers. Due to a gender difference shown in the relationship between serum UA and the FRS, serum UA can be a monitor of the risk of future CVD events in male workers only.
Collapse
|
30
|
Tristetraprolin, Inflammation, and Metabolic Syndrome in Arab Adults: A Case Control Study. BIOLOGY 2021; 10:biology10060550. [PMID: 34207463 PMCID: PMC8235193 DOI: 10.3390/biology10060550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 01/06/2023]
Abstract
Simple Summary Metabolic syndrome (MetS) is a common disorder characterized as a low-grade chronic inflammatory state. The association of tristetraprolin (TTP), a novel anti-inflammatory protein, and MetS remains to be explored. We evaluated circulating TTP in a group of adult males and females with and without MetS. Serum levels of TTP were higher in the MetS group than in controls. In all subjects, serum TTP was also correlated with MetS components (e.g., glucose, lipids, and obesity indices). These findings suggest that TTP may be a promising biomarker for MetS. Abstract Tristetraprolin (TTP) is an mRNA binding protein suggested to have a substantial role in regulating the mRNA expression of numerous inflammatory factors, but data on TTP and its association with metabolic syndrome (MetS), a chronic low-grade inflammatory disorder, are scarce. We hypothesize that TTP may modulate MetS and its components. A total of 200 Saudi adults (aged 38.6 ± 8.3 years) were included in this cross-sectional study. Anthropometrics data were collected and fasting blood glucose taken for the assessment of glycemic, lipids and inflammatory markers using commercially available assays. The National Cholesterol Education Program Adult Treatment Panel (NCEP ATP III) criteria were used to define MetS. Results showed significantly higher levels of TTP in the MetS group than in controls [288.1 pg/mL vs. 150.9 pg/mL, p < 0.001]. Circulating TTP was significantly associated with tumor necrosis factor alpha [TNF-α, R = 0.30, p < 0.05], interleukin 1β [IL-1β, R = 0.41, p < 0.01] and C-reactive protein [CRP, R = 0.36, p < 0.01], adiponectin [R = 0.36, p < 0.05], insulin [R = 0.37, p < 0.05], and insulin resistance [HOMA-IR, R = 0.40, p < 0.05]. Receiver operating characteristics (ROC) suggest a potential use of TTP as diagnostic biomarker for MetS [AUC = 0.819, p < 0.001]. The findings suggest that TTP is associated with inflammation and glycemia, which may influence MetS. TTP is a promising diagnostic biomarker for MetS which can be confirmed in larger cohorts.
Collapse
|
31
|
Meliț LE, Mărginean CO, Mărginean CD, Săsăran MO. The Peculiar Trialogue between Pediatric Obesity, Systemic Inflammatory Status, and Immunity. BIOLOGY 2021; 10:biology10060512. [PMID: 34207683 PMCID: PMC8229553 DOI: 10.3390/biology10060512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022]
Abstract
Pediatric obesity is not only an energetic imbalance, but also a chronic complex multisystem disorder that might impair both the life length and quality. Its pandemic status should increase worldwide awareness regarding the long-term life-threatening associated complications. Obesity related complications, such as cardiovascular, metabolic, or hepatic ones, affect both short and long-term wellbeing, and they do not spare pediatric subjects, defined as life-threatening consequences of the systemic inflammatory status triggered by the adipose tissue. The energetic imbalance of obesity clearly results in adipocytes hypertrophy and hyperplasia expressing different degrees of chronic inflammation. Adipose tissue might be considered an immune organ due to its rich content in a complex array of immune cells, among which the formerly mentioned macrophages, neutrophils, mast cells, but also eosinophils along with T and B cells, acting together to maintain the tissue homeostasis in normal weight individuals. Adipokines belong to the class of innate immunity humoral effectors, and they play a crucial role in amplifying the immune responses with a subsequent trigger effect on leukocyte activation. The usefulness of complete cellular blood count parameters, such as leukocytes, lymphocytes, neutrophils, erythrocytes, and platelets as predictors of obesity-triggered inflammation, was also proved in pediatric patients with overweight or obesity. The dogma that adipose tissue is a simple energy storage tissue is no longer accepted since it has been proved that it also has an incontestable multifunctional role acting like a true standalone organ resembling to endocrine or immune organs.
Collapse
Affiliation(s)
- Lorena Elena Meliț
- Department of Pediatrics I, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Gheorghe Marinescu Street No 38, 540136 Târgu Mureș, Romania; (L.E.M.); (C.D.M.)
| | - Cristina Oana Mărginean
- Department of Pediatrics I, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Gheorghe Marinescu Street No 38, 540136 Târgu Mureș, Romania; (L.E.M.); (C.D.M.)
- Correspondence: ; Tel.: +40-723-278543
| | - Cristian Dan Mărginean
- Department of Pediatrics I, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Gheorghe Marinescu Street No 38, 540136 Târgu Mureș, Romania; (L.E.M.); (C.D.M.)
| | - Maria Oana Săsăran
- Department of Pediatrics III, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Gheorghe Marinescu Street No 38, 540136 Târgu Mureș, Romania;
| |
Collapse
|
32
|
Weighty choices: selecting optimal G-CSF doses for stem cell mobilization to optimize yield. Blood Adv 2021; 4:706-716. [PMID: 32092138 DOI: 10.1182/bloodadvances.2019000923] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/06/2020] [Indexed: 01/20/2023] Open
Abstract
There are limited data on the effect of donor body mass index (BMI) on peripheral blood stem cell (PBSC) mobilization response to granulocyte colony-stimulating factor (G-CSF), especially in unrelated donors. Obesity has been associated with persistent leukocytosis, elevated circulating progenitor cells, and enhanced stem cell mobilization. Therefore, we hypothesized that adequate collection of CD34+ cells may be achieved with lower doses (per kilogram of body weight) of G-CSF in donors with higher BMI compared with donors with lower BMI. Using the Center for International Blood and Marrow Transplant Research database, we evaluated the impact of donor BMI on G-CSF-mobilized PBSC yield in healthy unrelated donors. We examined 20 884 PBSC donations collected at National Marrow Donor Program centers between 2006 and 2016. We found significantly higher collection yields in obese and severely obese donors compared with normal and overweight donors. An increase in average daily G-CSF dose was associated with an increase in stem cell yield in donors with normal or overweight BMI. In contrast, an increase in average daily G-CSF dose beyond 780 μg per day in obese and 900 μg per day in severely obese donors did not increase cell yield. Pain and toxicities were assessed at baseline, during G-CSF administration, and postcollection. Obesity was associated with higher levels of self-reported donation-related pain and toxicities in the pericollection and early postdonation recovery periods. This study suggests a maximum effective G-CSF dose for PBSC mobilization in obese and severely obese donors, beyond which higher doses of G-CSF add no increased yield.
Collapse
|
33
|
Gora IM, Ciechanowska A, Ladyzynski P. NLRP3 Inflammasome at the Interface of Inflammation, Endothelial Dysfunction, and Type 2 Diabetes. Cells 2021; 10:314. [PMID: 33546399 PMCID: PMC7913585 DOI: 10.3390/cells10020314] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 01/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), accounting for 90-95% cases of diabetes, is characterized by chronic inflammation. The mechanisms that control inflammation activation in T2DM are largely unexplored. Inflammasomes represent significant sensors mediating innate immune responses. The aim of this work is to present a review of links between the NLRP3 inflammasome, endothelial dysfunction, and T2DM. The NLRP3 inflammasome activates caspase-1, which leads to the maturation of pro-inflammatory cytokines interleukin 1β and interleukin 18. In this review, we characterize the structure and functions of NLRP3 inflammasome as well as the most important mechanisms and molecules engaged in its activation. We present evidence of the importance of the endothelial dysfunction as the first key step to activating the inflammasome, which suggests that suppressing the NLRP3 inflammasome could be a new approach in depletion hyperglycemic toxicity and in averting the onset of vascular complications in T2DM. We also demonstrate reports showing that the expression of a few microRNAs that are also known to be involved in either NLRP3 inflammasome activation or endothelial dysfunction is deregulated in T2DM. Collectively, this evidence suggests that T2DM is an inflammatory disease stimulated by pro-inflammatory cytokines. Finally, studies revealing the role of glucose concentration in the activation of NLRP3 inflammasome are analyzed. The more that is known about inflammasomes, the higher the chances to create new, effective therapies for patients suffering from inflammatory diseases. This may offer potential novel therapeutic perspectives in T2DM prevention and treatment.
Collapse
Affiliation(s)
- Ilona M. Gora
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109 Warsaw, Poland; (A.C.); (P.L.)
| | | | | |
Collapse
|
34
|
Zhang D, Wu W, Huang X, Xu K, Zheng C, Zhang J. Comparative analysis of gene expression profiles in differentiated subcutaneous adipocytes between Jiaxing Black and Large White pigs. BMC Genomics 2021; 22:61. [PMID: 33468065 PMCID: PMC7814706 DOI: 10.1186/s12864-020-07361-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 12/30/2020] [Indexed: 12/25/2022] Open
Abstract
Background Chinese domestic pig breeds are reputed for pork quality, but their low ratio of lean-to-fat carcass weight decreases production efficiency. A better understanding of the genetic regulation network of subcutaneous fat tissue is necessary for the rational selection of Chinese domestic pig breeds. In the present study, subcutaneous adipocytes were isolated from Jiaxing Black pigs a Chinese indigenous pig breed with redundant subcutaneous fat deposition and Large White pigs a lean-type pig breed with relatively low subcutaneous fat deposition. The expression profiles of mRNAs and lncRNAs were compared by RNA-seq analysis to identify biomarkers correlated with the differences of subcutaneous fat deposition between the two breeds. Results A total of 1058 differentially expressed genes and 221 differentially expressed lncRNAs were identified in subcutaneous adipocytes between Jiaxing Black and Large White pigs, which included 275 up-regulated mRNAs, 783 down-regulated mRNAs, 118 up-regulated lncRNAs and 103 down-regulated lncRNAs. Gene Ontology and KEGG pathway enrichment analyses revealed that the differentially expressed genes and differentially expressed lncRNAs were mainly involved in the immune response, cell fate determination, PI3K-Akt signaling pathway and MAPK signaling pathway, which are known to be related to adipogenesis and lipid metabolism. The expression levels of differentially expressed genes and differentially expressed lncRNAs according to the RNA-seq data were verified by quantitative PCR, which showed 81.8% consistency. The differences in MAPK pathway activity between Jiaxing Black and Large White pigs was confirmed by western blot analysis, which revealed elevated p38 phosphorylation in Jiaxing Black pigs. Conclusions This study offers a detailed characterization of mRNAs and lncRNAs in fat- and lean-type pig breeds. The activity of the MAPK signaling pathway was found to be associated with subcutaneous adipogenesis. These results provide new targets for further investigation of the molecular mechanisms regulating subcutaneous fat deposition in pigs. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07361-9.
Collapse
Affiliation(s)
- Dawei Zhang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Wenjing Wu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Xin Huang
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qin Huangdao, 066000, Hebei, China
| | - Ke Xu
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qin Huangdao, 066000, Hebei, China
| | - Cheng Zheng
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qin Huangdao, 066000, Hebei, China
| | - Jin Zhang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China.
| |
Collapse
|
35
|
Martín-Cordero L, Gálvez I, Hinchado MD, Ortega E. Influence of Obesity and Exercise on β2-Adrenergic-Mediated Anti-Inflammatory Effects in Peritoneal Murine Macrophages. Biomedicines 2020; 8:biomedicines8120556. [PMID: 33266248 PMCID: PMC7761150 DOI: 10.3390/biomedicines8120556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/14/2022] Open
Abstract
Obesity is a chronic low-grade inflammatory condition, and β2-adrenergic agonists as well as exercise have been proposed as anti-inflammatory strategies in obesity, so it is critical to accurately determine the effects of β2-adrenergic stimulation, especially when combined with other non-pharmacological therapies. The aim of this investigation was to determine the effect of β2-adrenergic activation on the inflammatory profile and phenotype of macrophages, and whether these effects could be affected by obesity and exercise in this condition. High-fat diet-induced obese and lean C57BL/6J mice were allocated to sedentary or exercised groups. The inflammatory profiles and phenotypes of their peritoneal macrophages were assessed by flow cytometry in the presence or absence of the selective β2-adrenergic receptor agonist terbutaline. β2-adrenergic activation caused global phenotypic anti-inflammatory effects in lean and obese sedentary mice, which were more drastic (also including anti-inflammatory effects on the cytokine profile) in obese animals. In exercised lean and obese animals, this anti-inflammatory effect is weaker and only evident by decreased iNOS and IL-8 expression, without changes in the anti-inflammatory markers. Therefore, β2-adrenergic activation leads to anti-inflammatory effects, but these effects are modulated by obesity in sedentary conditions, as well as by regular exercise; but not by obesity in trained conditions.
Collapse
Affiliation(s)
- Leticia Martín-Cordero
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (L.M.-C.); (I.G.); (M.D.H.)
- Grupo de Investigación en Inmunofisiología, Departamento de Enfermería, Centro Universitario de Plasencia, Universidad de Extremadura, 10600 Plasencia, Spain
| | - Isabel Gálvez
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (L.M.-C.); (I.G.); (M.D.H.)
- Grupo de Investigación en Inmunofisiología, Departamento de Enfermería, Facultad de Medicina, Universidad de Extremadura, 06071 Badajoz, Spain
| | - María Dolores Hinchado
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (L.M.-C.); (I.G.); (M.D.H.)
- Grupo de Investigación en Inmunofisiología, Departamento de Fisiología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Eduardo Ortega
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (L.M.-C.); (I.G.); (M.D.H.)
- Grupo de Investigación en Inmunofisiología, Departamento de Fisiología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
- Correspondence: ; Tel.: +34-924-289-300 (ext. 86957); Fax: +34-924-289-388
| |
Collapse
|
36
|
Chen L, Zhu H, Su S, Harshfield G, Sullivan J, Webb C, Blumenthal JA, Wang X, Huang Y, Treiber FA, Kapuku G, Li W, Dong Y. High-Mobility Group Box-1 Is Associated With Obesity, Inflammation, and Subclinical Cardiovascular Risk Among Young Adults: A Longitudinal Cohort Study. Arterioscler Thromb Vasc Biol 2020; 40:2776-2784. [PMID: 32814439 PMCID: PMC7578115 DOI: 10.1161/atvbaha.120.314599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE We aimed to characterize circulating HMGB1 (high-mobility group box-1) levels, one of the better-characterized damage-associated molecular patterns, with respect to age, sex, and race in the general population, and investigate the longitudinal associations of HMGB1 with inflammatory markers, obesity, and preclinical markers of cardiovascular disease. Approach and Results: The analyses included 489 participants (50% Blacks, aged 24.6±3.3 years at the first visit) with up to 4 follow-up visits (1149 samples) over a maximum of 8.5 years. Systolic blood pressure, diastolic blood pressure, carotid-femoral pulse wave velocity, and carotid intima-media thickness together with plasma HMGB1, hs-CRP (high-sensitivity C-reactive protein), IFN-γ (interferon-γ), IL-6 (interleukin-6), IL-10 (interleukin-10), and TNF-α (tumor necrosis factor-α) were measured at each visit. At baseline, plasma HMGB1 concentrations were higher in Blacks compared with Whites (3.86 versus 3.20 ng/mL, P<0.001), and in females compared with males (3.75 versus 3.30 ng/mL, P=0.005). HMGB1 concentrations increased with age (P=0.007), and higher levels of obesity measures (P<0.001). Without adjustment for age, sex, race, and body mass index, HMGB1 concentrations were positively associated with hs-CRP, IL-6, TNF-α, systolic blood pressure, diastolic blood pressure, and carotid-femoral pulse wave velocity (P<0.05) but not IL-10, IFN-γ or carotid intima-media thickness. After covariate adjustments, the associations of HMGB1 with hs-CRP, and carotid-femoral pulse wave velocity remained statistically significant (P<0.05). CONCLUSIONS This study demonstrates the age, sex, and race differences in circulating HMGB1. The increasing circulating concentrations of HMGB1 with age suggest a potential role of HMGB1 in the pathogenesis of chronic low-grade inflammation, obesity, and subclinical cardiovascular disease risk.
Collapse
Affiliation(s)
- Li Chen
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Haidong Zhu
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Shaoyong Su
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Gregory Harshfield
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jennifer Sullivan
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Clinton Webb
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - James A. Blumenthal
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Xiaoling Wang
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ying Huang
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Frank A. Treiber
- College of Nursing, Medical University of South Carolina, Charleston, SC, USA
- College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Gaston Kapuku
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Wenjun Li
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yanbin Dong
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
37
|
Claycombe-Larson KJ, Alvine T, Wu D, Kalupahana NS, Moustaid-Moussa N, Roemmich JN. Nutrients and Immunometabolism: Role of Macrophage NLRP3. J Nutr 2020; 150:1693-1704. [PMID: 32271912 DOI: 10.1093/jn/nxaa085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/27/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022] Open
Abstract
Inflammation is largely mediated by immune cells responding to invading pathogens, whereas metabolism is oriented toward producing usable energy for vital cell functions. Immunometabolic alterations are considered key determinants of chronic inflammation, which leads to the development of chronic diseases. Studies have demonstrated that macrophages and the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome are activated in key metabolic tissues to contribute to increased risk for type 2 diabetes mellitus, Alzheimer disease, and liver diseases. Thus, understanding the tissue-/cell-type-specific regulation of the NLRP3 inflammasome is crucial for developing intervention strategies. Currently, most of the nutrients and bioactive compounds tested to determine their inflammation-reducing effects are limited to animal models. Future studies need to address how dietary compounds regulate immune and metabolic cell reprograming in humans.
Collapse
Affiliation(s)
- Kate J Claycombe-Larson
- Grand Forks Human Nutrition Research Center, USDA Agricultural Research Service, Grand Forks, ND, USA
| | - Travis Alvine
- Grand Forks Human Nutrition Research Center, USDA Agricultural Research Service, Grand Forks, ND, USA
| | - Dayong Wu
- The Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | | | - Naima Moustaid-Moussa
- Nutritional Science Department and Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - James N Roemmich
- Grand Forks Human Nutrition Research Center, USDA Agricultural Research Service, Grand Forks, ND, USA
| |
Collapse
|
38
|
St-Germain LE, Castellana B, Baltayeva J, Beristain AG. Maternal Obesity and the Uterine Immune Cell Landscape: The Shaping Role of Inflammation. Int J Mol Sci 2020; 21:E3776. [PMID: 32471078 PMCID: PMC7312391 DOI: 10.3390/ijms21113776] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammation is often equated to the physiological response to injury or infection. Inflammatory responses defined by cytokine storms control cellular mechanisms that can either resolve quickly (i.e., acute inflammation) or remain prolonged and unabated (i.e., chronic inflammation). Perhaps less well-appreciated is the importance of inflammatory processes central to healthy pregnancy, including implantation, early stages of placentation, and parturition. Pregnancy juxtaposed with disease can lead to the perpetuation of aberrant inflammation that likely contributes to or potentiates maternal morbidity and poor fetal outcome. Maternal obesity, a prevalent condition within women of reproductive age, associates with increased risk of developing multiple pregnancy disorders. Importantly, chronic low-grade inflammation is thought to underlie the development of obesity-related obstetric and perinatal complications. While diverse subsets of uterine immune cells play central roles in initiating and maintaining healthy pregnancy, uterine leukocyte dysfunction as a result of maternal obesity may underpin the development of pregnancy disorders. In this review we discuss the current knowledge related to the impact of maternal obesity and obesity-associated inflammation on uterine immune cell function, utero-placental establishment, and pregnancy health.
Collapse
Affiliation(s)
- Lauren E. St-Germain
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| | - Barbara Castellana
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| | - Jennet Baltayeva
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| | - Alexander G. Beristain
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| |
Collapse
|
39
|
Gálvez I, Martín-Cordero L, Hinchado MD, Ortega E. β2 Adrenergic Regulation of the Phagocytic and Microbicide Capacity of Circulating Monocytes: Influence of Obesity and Exercise. Nutrients 2020; 12:nu12051438. [PMID: 32429330 PMCID: PMC7284544 DOI: 10.3390/nu12051438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 01/14/2023] Open
Abstract
Obese individuals present anomalous immune/inflammatory responses with dysregulations in neuroendocrine responses and immune/stress feedback mechanisms. In this context, exercise and β2 adrenergic activation present monocyte-mediated anti-inflammatory effects that are modulated by obesity. However, these anti-inflammatory effects could immunocompromise the monocyte-mediated innate response against a pathogen challenge. Thus, the objective of this work was to evaluate the effect of obesity, and exercise in this condition, on the β2 adrenergic regulation of the phagocytic and microbicide capacity of circulating monocytes. C57BL/6J mice were allocated to different sedentary or exercised, lean or obese groups. Obese mice showed a lower monocyte-mediated innate response than that of lean mice. Globally, selective β2 adrenergic receptor agonist terbutaline decreased the innate response of monocytes from lean and obese sedentary animals, whereas exercise stimulated it. Exercise modulates β2 adrenergic regulation of the innate response in lean and obese animals, with a global stimulatory or neutral effect, thus abolishing the inhibitory effect of terbutaline occurring in sedentary animals. These effects cannot be explained only by changes in the surface expression of toll-like receptors. Therefore, in general, terbutaline does not hinder the effects of regular exercise, but regular exercise does abolish the effects of terbutaline in sedentary individuals.
Collapse
Affiliation(s)
- Isabel Gálvez
- Grupo de Investigación en Inmunofisiología, Departamento de Enfermería, Facultad de Medicina, Universidad de Extremadura, 06071 Badajoz, Spain;
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (L.M.-C.); (M.D.H.)
| | - Leticia Martín-Cordero
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (L.M.-C.); (M.D.H.)
- Grupo de Investigación en Inmunofisiología, Departamento de Enfermería, Centro Universitario de Plasencia, Universidad de Extremadura, 10600 Plasencia, Spain
| | - María Dolores Hinchado
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (L.M.-C.); (M.D.H.)
- Grupo de Investigación en Inmunofisiología, Departamento de Fisiología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Eduardo Ortega
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (L.M.-C.); (M.D.H.)
- Grupo de Investigación en Inmunofisiología, Departamento de Fisiología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
- Correspondence: ; Tel.: +34-924-289-300
| |
Collapse
|
40
|
Ortega E, Gálvez I, Martín-Cordero L. Adrenergic Regulation of Macrophage-Mediated Innate/Inflammatory Responses in Obesity and Exercise in this Condition: Role of β2 Adrenergic Receptors. Endocr Metab Immune Disord Drug Targets 2020; 19:1089-1099. [PMID: 30727934 PMCID: PMC7046986 DOI: 10.2174/1871530319666190206124520] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/27/2018] [Accepted: 01/10/2019] [Indexed: 02/07/2023]
Abstract
Background:
The effects of exercise on the innate/inflammatory immune responses are crucially mediated by catecholamines and adrenoreceptors; and mediations in both stimulatory and anti-inflammatory responses have been attributed to them. Obesity and metabolic syndrome are included among low-grade chronic inflammatory pathologies; particularly because patients have a dysregulation of the inflammatory and stress responses, which can lead to high levels of inflammatory cytokines that induce insulin resistance, contributing to the onset or exacerbation of type 2 diabetes. Macrophages play a crucial role in this obesity-induced inflammation. Although most of the anti-inflammatory effects of catecholamines are mediated by β adrenergic receptors (particularly β2), it is not known whether in altered homeostatic conditions, such as obesity and during exercise, innate/inflammatory responses of macrophages to β2 adrenergic stimulation are similar to those in cells of healthy organisms at baseline. Objective: This review aims to emphasize that there could be possible different responses to β2 adrenergic stimulation in obesity, and exercise in this condition. Methods: A revision of the literature based on the hypothesis that obesity affects β2 adrenergic regulation of macrophage-mediated innate/inflammatory responses, as well as the effect of exercise in this context. Conclusion: The inflammatory responses mediated by β2 adrenoreceptors are different in obese individuals with altered inflammatory states at baseline compared to healthy individuals, and exercise can also interfere with these responses. Nevertheless, it is clearly necessary to develop more studies that contribute to widening the knowledge of the neuroimmune regulation process in obesity, particularly in this context.
Collapse
Affiliation(s)
- Eduardo Ortega
- Department of Physiology (Immunophysiology Research Group), Faculty of Sciences, University of Extremadura, Badajoz, Spain
| | - Isabel Gálvez
- Department of Physiology (Immunophysiology Research Group), Faculty of Sciences, University of Extremadura, Badajoz, Spain
| | - Leticia Martín-Cordero
- Department of Nursing (Immunophysiology Research Group), University Center of Plasencia, University of Extremadura, Plasencia, Spain
| |
Collapse
|
41
|
Scudiero O, Pero R, Ranieri A, Terracciano D, Fimiani F, Cesaro A, Gentile L, Leggiero E, Laneri S, Moscarella E, Mazzaccara C, Frisso G, D'Alicandro G, Limongelli G, Pastore L, Calabrò P, Lombardo B. Childhood obesity: an overview of laboratory medicine, exercise and microbiome. Clin Chem Lab Med 2019; 58:1385-1406. [PMID: 31821163 DOI: 10.1515/cclm-2019-0789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022]
Abstract
In the last few years, a significant increase of childhood obesity incidence unequally distributed within countries and population groups has been observed, thus representing an important public health problem associated with several health and social consequences. Obese children have more than a 50% probability of becoming obese adults, and to develop pathologies typical of obese adults, that include type 2-diabetes, dyslipidemia and hypertension. Also environmental factors, such as reduced physical activity and increased sedentary activities, may also result in increased caloric intake and/or decreased caloric expenditure. In the present review, we aimed to identify and describe a specific panel of parameters in order to evaluate and characterize the childhood obesity status useful in setting up a preventive diagnostic approach directed at improving health-related behaviors and identifying predisposing risk factors. An early identification of risk factors for childhood obesity could definitely help in setting up adequate and specific clinical treatments.
Collapse
Affiliation(s)
- Olga Scudiero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Naples "Federico II", Napoli, Italy.,CEINGE-Biotecnologie Avanzate, Naples, Italy
| | - Raffaela Pero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Naples "Federico II", Napoli, Italy
| | - Annaluisa Ranieri
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Naples "Federico II", Napoli, Italy.,CEINGE-Biotecnologie Avanzate, Naples, Italy
| | - Daniela Terracciano
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Naples "Federico II", Napoli, Italy
| | - Fabio Fimiani
- Divisione di Cardiologia, Dipartimento di Scienze Cardiotoraciche e Respiratorie, Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Arturo Cesaro
- Divisione di Cardiologia, Dipartimento di Scienze Cardiotoraciche e Respiratorie, Università della Campania "Luigi Vanvitelli", Naples, Italy
| | | | | | - Sonia Laneri
- Dipartimento di Farmacia, Università degli Studi di Naples "Federico II", Napoli, Italy
| | - Elisabetta Moscarella
- Dipartimento di Scienze Mediche Traslazionali, Università della Campania "Luigi Vanvitelli", Caserta, Italy.,Unità di Cardiologia, Ospedale "Sant'Anna e San Sebastiano", Caserta, Italy
| | - Cristina Mazzaccara
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Naples "Federico II", Napoli, Italy.,CEINGE-Biotecnologie Avanzate, Naples, Italy
| | - Giulia Frisso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Naples "Federico II", Napoli, Italy.,CEINGE-Biotecnologie Avanzate, Naples, Italy
| | - Giovanni D'Alicandro
- Centro di Medicina dello Sport e delle Disabilità, Dipartimento di Neuroscienze e Riabilitazione, AORN, Santobono-Pausillipon, Naples, Italy
| | - Giuseppe Limongelli
- Dipartimento di Scienze Mediche Traslazionali, Università della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Lucio Pastore
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Naples "Federico II", Napoli, Italy.,CEINGE-Biotecnologie Avanzate, Naples, Italy
| | - Paolo Calabrò
- Dipartimento di Scienze Mediche Traslazionali, Università della Campania "Luigi Vanvitelli", Caserta, Italy.,Unità di Cardiologia, Ospedale "Sant'Anna e San Sebastiano", Caserta, Italy
| | - Barbara Lombardo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Naples "Federico II", Napoli, Italy.,CEINGE-Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|
42
|
Martín-Cordero L, Gálvez I, Hinchado MD, Ortega E. β2 Adrenergic Regulation of the Phagocytic and Microbicide Capacity of Macrophages from Obese and Lean Mice: Effects of Exercise. Nutrients 2019; 11:nu11112721. [PMID: 31717554 PMCID: PMC6893822 DOI: 10.3390/nu11112721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 12/17/2022] Open
Abstract
Macrophages are crucial in the inflammation associated with obesity. Exercise is the main non-pharmacological strategy against obesity, not only for improving metabolic impairment, but also because of its anti-inflammatory effects, particularly those mediated by β2 adrenergic receptors (β2-AR). Nevertheless, these anti-inflammatory effects could immunocompromise the innate response against pathogen challenge. Thus, the objective of this work was to evaluate the effect of obesity, and of exercise in this condition, on the β2 adrenergic regulation of the innate function of macrophages. High fat diet-induced obese C57BL/6J mice were used to evaluate the effects of acute and regular exercise on the phagocytic and microbicide capacities of peritoneal macrophages. Selective β2-AR agonist terbutaline (1 µM) decreased the phagocytic and microbicide activities of macrophages from control lean and obese sedentary animals. While acute exercise did not modify the inhibitory capacity of terbutaline, regular exercise abolished this inhibitory effect. These effects cannot be explained only by changes in the surface expression of β2-AR. In conclusion, (1) obesity does not alter the β2-AR-mediated decrease of the innate response of macrophages and (2) regular exercise can revert the inhibitory effect of terbutaline on the phagocytic activity of macrophages, although obesity seems to hinder this immunophysiological adaptation.
Collapse
Affiliation(s)
- Leticia Martín-Cordero
- Grupo de Investigación en Inmunofisiología, Departamento de Enfermería, Centro Universitario de Plasencia, Universidad de Extremadura, 10600 Plasencia, Spain;
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (I.G.); (M.D.H.)
| | - Isabel Gálvez
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (I.G.); (M.D.H.)
- Grupo de Investigación en Inmunofisiología, Departamento de Fisiología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | - María Dolores Hinchado
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (I.G.); (M.D.H.)
- Grupo de Investigación en Inmunofisiología, Departamento de Fisiología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Eduardo Ortega
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (I.G.); (M.D.H.)
- Grupo de Investigación en Inmunofisiología, Departamento de Fisiología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
- Correspondence: ; Tel.: +34-924-289-300
| |
Collapse
|
43
|
Gálvez I, Martín-Cordero L, Hinchado MD, Álvarez-Barrientos A, Ortega E. Obesity Affects β2 Adrenergic Regulation of the Inflammatory Profile and Phenotype of Circulating Monocytes from Exercised Animals. Nutrients 2019; 11:nu11112630. [PMID: 31684076 PMCID: PMC6893831 DOI: 10.3390/nu11112630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022] Open
Abstract
Anomalous immune/inflammatory responses in obesity take place along with alterations in the neuroendocrine responses and dysregulation in the immune/stress feedback mechanisms. Exercise is a potential anti-inflammatory strategy in this context, but the influence of exercise on the β2 adrenergic regulation of the monocyte-mediated inflammatory response in obesity remains completely unknown. The first objective of this study was to analyze the effect of exercise on the inflammatory profile and phenotype of monocytes from obese and lean animals, and the second aim was to determine whether obesity could affect monocytes' inflammatory response to β2 adrenergic activation in exercised animals. C57BL/6J mice were allocated to different lean or obese groups: sedentary, with acute exercise, or with regular exercise. The inflammatory profile and phenotype of their circulating monocytes were evaluated by flow cytometry in the presence or absence of the selective β2 adrenergic receptor agonist terbutaline. Exercise caused an anti-inflammatory effect in obese individuals and a pro-inflammatory effect in lean individuals. β2 adrenergic receptor stimulation exerted a global pro-inflammatory effect in monocytes from exercised obese animals and an anti-inflammatory effect in monocytes from exercised lean animals. Thus, β2 adrenergic regulation of inflammation in monocytes from exercised animals seems to depend on the inflammatory basal set-point.
Collapse
Affiliation(s)
- Isabel Gálvez
- Grupo de Investigación en Inmunofisiología, Departamento de Fisiología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain.
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain.
| | - Leticia Martín-Cordero
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain.
- Grupo de Investigación en Inmunofisiología, Departamento de Enfermería, Centro Universitario de Plasencia, Universidad de Extremadura, 10600 Plasencia, Spain.
| | - María Dolores Hinchado
- Grupo de Investigación en Inmunofisiología, Departamento de Fisiología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain.
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain.
| | - Alberto Álvarez-Barrientos
- Servicio de Técnicas Aplicadas a la Biociencia (STAB), Universidad de Extremadura, 06071 Badajoz, Spain.
| | - Eduardo Ortega
- Grupo de Investigación en Inmunofisiología, Departamento de Fisiología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain.
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain.
| |
Collapse
|
44
|
Surendar J, Frohberger SJ, Karunakaran I, Schmitt V, Stamminger W, Neumann AL, Wilhelm C, Hoerauf A, Hübner MP. Adiponectin Limits IFN-γ and IL-17 Producing CD4 T Cells in Obesity by Restraining Cell Intrinsic Glycolysis. Front Immunol 2019; 10:2555. [PMID: 31736971 PMCID: PMC6828851 DOI: 10.3389/fimmu.2019.02555] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
Compared to the innate immune system, the contribution of the adaptive immune response during obesity and insulin resistance is still not completely understood. Here we demonstrate that high fat diet (HFD) increases the frequencies of activated CD4+ and CD8+ T cells and frequencies of T cells positive for IFN-γ and IL-17 in the adipose tissue. The adipocyte-derived soluble factor adiponectin reduces IFN-γ and IL-17 positive CD4+ T cells from HFD mice and dampens the differentiation of naïve T cells into Th1 cells and Th17 cells. Adiponectin reduces Th17 cell differentiation and restrains glycolysis in an AMPK dependent fashion. Treatment with adult worm extracts of the rodent filarial nematode Litomosoides sigmodontis (LsAg) reduces adipose tissue Th1 and Th17 cell frequencies during HFD and increases adiponectin levels. Stimulation of T cells in the presence of adipocyte-conditioned media (ACM) from LsAg-treated mice reduces Th1 and Th17 frequencies and this effect was abolished when ACM was treated with an adiponectin neutralizing antibody. Collectively, these data reveal a novel role of adiponectin in controlling pro-inflammatory CD4+ T cells during obesity and suggest that the beneficial role of helminth infections and helminth-derived products on obesity and insulin resistance may be in part mediated by adiponectin.
Collapse
Affiliation(s)
- Jayagopi Surendar
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany.,Unit for Immunopathology, Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Stefan J Frohberger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Indulekha Karunakaran
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Vanessa Schmitt
- Unit for Immunopathology, Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Wiebke Stamminger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Anna-Lena Neumann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Christoph Wilhelm
- Unit for Immunopathology, Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
45
|
Anti-inflammatory effect of β2 adrenergic stimulation on circulating monocytes with a pro-inflammatory state in high-fat diet-induced obesity. Brain Behav Immun 2019; 80:564-572. [PMID: 31055173 DOI: 10.1016/j.bbi.2019.04.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/15/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022] Open
Abstract
Obesity is a chronic condition associated with low-grade inflammation, and it also involves alterations of the function of the hypothalamic-pituitaryadrenal axis and the sympathetic nervous system. Adrenergic agonists such as catecholamines are important immunoregulatory molecules that are involved in modulating both metabolism and most of the mechanisms of the immune response. The first objective of this study was to determine whether the systemic inflammatory state associated with obesity is also manifested in the inflammatory profile and phenotype of circulating monocytes; and the second objective was to evaluate the effects of β2 adrenergic stimulation on the inflammatory profile and phenotype of monocytes in obesity, and whether this response could be different from that in lean individuals. C57BL/6J mice were randomly allocated to one of two diets for 18 weeks: high-fat diet in order to obtain an experimental model of obesity, and standard diet in the control lean group. Circulating monocyte expression of inflammatory cytokines (MCP-1, TNF-α, IL-8, IL-6, IL-10, and TGF-β), surface membrane marker Ly6C, inducible nitric oxide synthase and arginase-1, and Toll-like receptor 4 were evaluated through flow cytometry in the presence or absence of selective β2 adrenergic receptor agonist terbutaline. Monocytes from high-fat diet-induced obese animals presented higher expression levels of all pro-inflammatory cytokines and a higher percentage of monocytes with a pro-inflammatory phenotype than those from lean animals. β2 adrenergic stimulation induced a shift towards an anti-inflammatory activity profile and phenotype in obese mice, whereas it induced a shift towards a pro-inflammatory activity profile and phenotype in lean mice. In conclusion, β2 adrenergic stimulation in monocytes was anti-inflammatory only in obese animals, which presented a pro-inflammatory state at baseline.
Collapse
|
46
|
Elzinga S, Murdock BJ, Guo K, Hayes JM, Tabbey MA, Hur J, Feldman EL. Toll-like receptors and inflammation in metabolic neuropathy; a role in early versus late disease? Exp Neurol 2019; 320:112967. [PMID: 31145897 DOI: 10.1016/j.expneurol.2019.112967] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 02/07/2023]
Abstract
Neuropathy is a common, morbid complication of the metabolic syndrome, prediabetes, and diabetes. Recent studies have indicated a potential role for the immune system in the development of neuropathy. In particular, toll-like receptors (TLR) 2 and 4 have been linked to metabolic dysfunction, and blocking TLR4 is proposed as a treatment for neuropathic pain. In the current study, we investigated the role of the immune system, particularly TLRs 2 and 4, in the pathogenesis and progression of neuropathy. Sural or sciatic nerve gene expression arrays from humans and murine neuropathy models of prediabetes and diabetes were first analyzed to identify differentially expressed TLR2- and TLR4-associated genes within the KEGG (Kyoto Encyclopedia of Genes and Genomes) database. We observed that genes associated with TLRs 2 and 4, particularly lipopolysaccharide binding protein (LPB) and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta (PIK3CB), were dysregulated across species and across multiple murine models of prediabetic and diabetic neuropathy. To further understand the role of these pathways in vivo, TLR 2 and 4 global knockout mice placed on a 60% high fat diet (HFD-TLR2/4-/-) were compared with wild type (WT) mice on a high fat diet (HFD-WT) and WT controls on a standard diet (CON). Mice then underwent metabolic, neuropathic, and immunological phenotyping at two time points to assess the impact of TLR signaling on neuropathy and immunity during metabolic dysfunction over time. We found that HFD-TLR2/4-/- and HFD-WT mice weighed more than CON mice but did not have increased fasting blood glucose levels. Despite normal blood glucose levels, HFD-TLR2/4-/- mice eventually developed neuropathy at the later time point (28 wks of age) but were somewhat protected from neuropathy at the early time point (16 wks of age) as measured by shorter hind paw withdraw latencies. This is in contrast to HFD-WT mice which developed neuropathy within 11 wks of being placed on a high fat diet and were neuropathic by all measures at both the early and late time points. Finally, we immunophenotyped all three mouse groups at the later time point and found differences in the number of peripheral blood Ly6C-myeloid cells as well as F4/80+ expression. These results indicate that TLR signaling influences early development of neuropathy in sensory neurons, potentially via immune modulation and recruitment.
Collapse
Affiliation(s)
- S Elzinga
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - B J Murdock
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - K Guo
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - J M Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - M A Tabbey
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - J Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - E L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
47
|
Honce R, Schultz-Cherry S. Impact of Obesity on Influenza A Virus Pathogenesis, Immune Response, and Evolution. Front Immunol 2019; 10:1071. [PMID: 31134099 PMCID: PMC6523028 DOI: 10.3389/fimmu.2019.01071] [Citation(s) in RCA: 297] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
With the rising prevalence of obesity has come an increasing awareness of its impact on communicable disease. As a consequence of the 2009 H1N1 influenza A virus pandemic, obesity was identified for the first time as a risk factor for increased disease severity and mortality in infected individuals. Over-nutrition that results in obesity causes a chronic state of meta-inflammation with systemic implications for immunity. Obese hosts exhibit delayed and blunted antiviral responses to influenza virus infection, and they experience poor recovery from the disease. Furthermore, the efficacy of antivirals and vaccines is reduced in this population and obesity may also play a role in altering the viral life cycle, thus complementing the already weakened immune response and leading to severe pathogenesis. Case studies and basic research in human cohorts and animal models have highlighted the prolonged viral shed in the obese host, as well as a microenvironment that permits the emergence of virulent minor variants. This review focuses on influenza A virus pathogenesis in the obese host, and on the impact of obesity on the antiviral response, viral shed, and viral evolution. We comprehensively analyze the recent literature on how and why viral pathogenesis is altered in the obese host along with the impact of the altered host and pathogenic state on viral evolutionary dynamics in multiple models. Finally, we summarized the effectiveness of current vaccines and antivirals in this populations and the questions that remain to be answered. If current trends continue, nearly 50% of the worldwide population is projected to be obese by 2050. This population will have a growing impact on both non-communicable and communicable diseases and may affect global evolutionary trends of influenza virus.
Collapse
Affiliation(s)
- Rebekah Honce
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
- Integrated Program in Biomedical Sciences, Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
48
|
Koo SJ, Garg NJ. Metabolic programming of macrophage functions and pathogens control. Redox Biol 2019; 24:101198. [PMID: 31048245 PMCID: PMC6488820 DOI: 10.1016/j.redox.2019.101198] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 04/09/2019] [Indexed: 12/15/2022] Open
Abstract
Macrophages (Mφ) are central players in mediating proinflammatory and immunomodulatory functions. Unchecked Mφ activities contribute to pathology across many diseases, including those caused by infectious pathogens and metabolic disorders. A fine balance of Mφ responses is crucial, which may be achieved by enforcing appropriate bioenergetics pathways. Metabolism serves as the provider of energy, substrates, and byproducts that support differential Mφ characteristics. The metabolic properties that control the polarization and response of Mφ remain to be fully uncovered for use in managing infectious diseases. Here, we review the various metabolic states in Mφ and how they influence the cell function.
Collapse
Affiliation(s)
- Sue-Jie Koo
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Nisha J Garg
- Department of Microbiology & Immunology, UTMB, Galveston, TX, USA; Institute for Human Infections and Immunity, UTMB, Galveston, TX, USA.
| |
Collapse
|
49
|
Le Jemtel TH, Samson R, Ayinapudi K, Singh T, Oparil S. Epicardial Adipose Tissue and Cardiovascular Disease. Curr Hypertens Rep 2019; 21:36. [PMID: 30953236 DOI: 10.1007/s11906-019-0939-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Epicardial adipose tissue has been associated with the development/progression of cardiovascular disease. We appraise the strength of the association between epicardial adipose tissue and development/progression of cardiovascular diseases like coronary artery disease, atrial fibrillation, and heart failure with preserved ejection fraction. RECENT FINDINGS Cross-sectional clinical and translational correlative studies have established an association between epicardial adipose tissue and progression of coronary artery disease. Recent studies question this association and underline the need for longitudinal studies. Epicardial adipose tissue also plays a definite role in the pathobiology of atrial fibrillation and its recurrence after ablation. In contrast to an early paradigm, epicardial adipose tissue does not appear to play a key role in the pathogenesis of heart failure with preserved ejection fraction in obese patients. The association of epicardial adipose tissue with atrial fibrillation is robust. In contrast, the association of epicardial adipose tissue with coronary artery disease and heart failure with preserved ejection fraction is tenuous. Additional research, including longitudinal studies, is needed to confirm or refute these proposed associations.
Collapse
Affiliation(s)
- Thierry H Le Jemtel
- Section of Cardiology, Department of Medicine, Tulane University School of Medicine; Tulane University Heart and Vascular Institute, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA.
| | - Rohan Samson
- Section of Cardiology, Department of Medicine, Tulane University School of Medicine; Tulane University Heart and Vascular Institute, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA
| | - Karnika Ayinapudi
- Section of Cardiology, Department of Medicine, Tulane University School of Medicine; Tulane University Heart and Vascular Institute, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA
| | - Twinkle Singh
- Section of Cardiology, Department of Medicine, Tulane University School of Medicine; Tulane University Heart and Vascular Institute, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA
| | - Suzanne Oparil
- Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
50
|
Silva HM, Báfica A, Rodrigues-Luiz GF, Chi J, Santos PDA, Reis BS, Hoytema van Konijnenburg DP, Crane A, Arifa RDN, Martin P, Mendes DAGB, Mansur DS, Torres VJ, Cadwell K, Cohen P, Mucida D, Lafaille JJ. Vasculature-associated fat macrophages readily adapt to inflammatory and metabolic challenges. J Exp Med 2019; 216:786-806. [PMID: 30862706 PMCID: PMC6446877 DOI: 10.1084/jem.20181049] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 12/10/2018] [Accepted: 02/19/2019] [Indexed: 01/08/2023] Open
Abstract
Silva et al. describe and characterize a population of adipose tissue macrophages (VAMs) that are in close contact with the vasculature and powerfully uptake blood-borne macromolecules. VAMs harbor a repair/detoxifying gene signature and adapt quickly to infections and fasting. Tissue-resident macrophages are the most abundant immune cell population in healthy adipose tissue. Adipose tissue macrophages (ATMs) change during metabolic stress and are thought to contribute to metabolic syndrome. Here, we studied ATM subpopulations in steady state and in response to nutritional and infectious challenges. We found that tissue-resident macrophages from healthy epididymal white adipose tissue (eWAT) tightly associate with blood vessels, displaying very high endocytic capacity. We refer to these cells as vasculature-associated ATMs (VAMs). Chronic high-fat diet (HFD) results in the accumulation of a monocyte-derived CD11c+CD64+ double-positive (DP) macrophage eWAT population with a predominant anti-inflammatory/detoxifying gene profile, but reduced endocytic function. In contrast, fasting rapidly and reversibly leads to VAM depletion, while acute inflammatory stress induced by pathogens transiently depletes VAMs and simultaneously boosts DP macrophage accumulation. Our results indicate that ATM populations dynamically adapt to metabolic stress and inflammation, suggesting an important role for these cells in maintaining tissue homeostasis.
Collapse
Affiliation(s)
- Hernandez Moura Silva
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY
| | - André Báfica
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY.,Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.,Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY
| | - Gabriela Flavia Rodrigues-Luiz
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Jingyi Chi
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY
| | - Patricia d'Emery Alves Santos
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY
| | - Bernardo S Reis
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY
| | | | - Audrey Crane
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY
| | - Raquel Duque Nascimento Arifa
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY
| | - Patricia Martin
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY
| | - Daniel Augusto G B Mendes
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Daniel Santos Mansur
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, NY
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY.,Department of Microbiology, New York University School of Medicine, New York, NY
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY
| | - Juan J Lafaille
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY .,Department of Pathology, New York University School of Medicine, New York, NY
| |
Collapse
|