1
|
Li G, Liu B, Yang H, Zhang D, Wang S, Zhang Z, Zhao Z, Zhang Y, Zhou H, Wang Y. Omega-3 polyunsaturated fatty acids alleviate renal fibrosis in chronic kidney disease by reducing macrophage activation and infiltration through the JAG1-NOTCH1/2 pathway. Int Immunopharmacol 2025; 152:114454. [PMID: 40090087 DOI: 10.1016/j.intimp.2025.114454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/18/2025]
Abstract
In recent years, the global incidence of chronic kidney disease (CKD) has been rising. As CKD progresses, it frequently involves inflammatory cell infiltration, contributing to renal fibrosis. Current research indicates that abnormalities in lipid metabolism play a role in this fibrotic process. However, the specific effects of various dietary fatty acids on renal inflammation and fibrosis remains largely unexplored. Our study demonstrates that dietary intake of omega-3 polyunsaturated fatty acids can inhibit macrophage activation and infiltration in a mouse model of unilateral ureteral obstruction (UUO), thus reducing the severity of renal fibrosis. Omega-3 polyunsaturated fatty acids, particularly α-linolenic acid (α-LA), mitigate damage to HK-2 cells and macrophages by targeting the JAG1-NOTCH1/2 pathway and by downregulating the expression of the chemokine MCP-1 and its receptor CCR2. This modulation attenuates macrophage activation and infiltration, reducing the inflammatory response. Furthermore, these fatty acids inhibit fibroblast chemotaxis, reduce fibroblast activation, and mitigate the deposition of extracellular matrix (ECM), thus slowing the progression of renal fibrosis. Our findings underscore the protective effects of omega-3 polyunsaturated fatty acids, such as α-LA, in preventing injury, inhibiting macrophage activation, and alleviating fibrosis. These results suggests that adjusting the dietary balance of fatty acids may offer a promising strategy to enhance the efficacy of CKD treatment.
Collapse
MESH Headings
- Animals
- Fibrosis
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/metabolism
- Jagged-1 Protein/metabolism
- Macrophage Activation/drug effects
- Humans
- Mice
- Male
- Signal Transduction/drug effects
- Mice, Inbred C57BL
- Receptor, Notch1/metabolism
- Kidney/pathology
- Kidney/drug effects
- Kidney/metabolism
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Cell Line
- Fatty Acids, Omega-3/pharmacology
- Fatty Acids, Omega-3/therapeutic use
- Ureteral Obstruction/drug therapy
- Ureteral Obstruction/pathology
- Ureteral Obstruction/complications
- Receptor, Notch2/metabolism
- Receptors, CCR2/metabolism
- Disease Models, Animal
Collapse
Affiliation(s)
- Guangtao Li
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Hongxia Yang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Shangguo Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Zehua Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Zijian Zhao
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yanghe Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
2
|
Hu WH, Sun JA, Liu C. Causal associations between dietary habits and liver cancer risk: a two-sample Mendelian randomization study. Discov Oncol 2025; 16:120. [PMID: 39909996 PMCID: PMC11799489 DOI: 10.1007/s12672-025-01885-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/03/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Liver cancer is among the most prevalent cancers worldwide and is the second leading cause of cancer-related death. Epidemiological evidence suggests a potential correlation between dietary habits and the incidence of liver cancer. However, establishing a definitive causal relationship remains uncertain. Mendelian randomization (MR) is frequently employed to investigate the causal link between exposure and results. AIM This research focuses primarily on exploring and confirming whether there is a causal connection between dietary choices and the risk of liver cancer. METHODS Exposure data, encompassing various dietary habits such as the consumption of dried and fresh fruits, both cooked and raw vegetables, types of fish (oily and nonoily), and beverages such as tea and coffee, as well as different meats (poultry, beef, pork, and processed), were obtained from the UK Biobank. Conversely, outcome data were derived from the FinnGen study. Inverse variance weighting (IVW) was predominantly employed to assess the causal relationship. To ensure the validity of our findings, rigorous tests for heterogeneity and horizontal pleiotropy were conducted. RESULTS Our MR study findings revealed a significant association, indicating that genetically influenced oily fish intake is linked to a lower risk of liver cancer (OR = 0.160, 95% CI 0.026-0.968; P = 0.046). However, no substantial causal connections between liver cancer and the intake of other dietary habits were observed. Importantly, our two-sample MR investigations indicated no considerable pleiotropy effects in the instrumental variables (IVs). CONCLUSION In summary, our findings suggest a potential protective effect of oily fish intake against liver cancer, emphasizing the need for further studies to validate these results.
Collapse
Affiliation(s)
- Wen-Hao Hu
- Department of Emergency, Zhengzhou Central Hospital Affiliated With Zhengzhou University, Henan, Zhengzhou, 450007, China
| | - Jia-An Sun
- Department of Emergency, Zhengzhou Central Hospital Affiliated With Zhengzhou University, Henan, Zhengzhou, 450007, China
| | - Chang Liu
- Department of Emergency, Zhengzhou Central Hospital Affiliated With Zhengzhou University, Henan, Zhengzhou, 450007, China.
| |
Collapse
|
3
|
Lv S, Luo C. Ferroptosis in schizophrenia: Mechanisms and therapeutic potentials (Review). Mol Med Rep 2025; 31:37. [PMID: 39611491 PMCID: PMC11613623 DOI: 10.3892/mmr.2024.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Schizophrenia, a complex psychiatric disorder, presents with multifaceted symptoms and important challenges in treatment, primarily due to its pathophysiological complexity, which involves oxidative stress and aberrant iron metabolism. Recent insights into ferroptosis, a unique form of iron‑dependent cell death characterized by lipid peroxidation and antioxidant system failures, open new avenues for understanding the neurobiological foundation of schizophrenia. The present review explores the interplay between ferroptosis and schizophrenia, emphasizing the potential contributions of disrupted iron homeostasis and oxidative mechanisms to the pathology and progression of this disease. The emerging evidence linking ferroptosis with the oxidative stress observed in schizophrenia provides a compelling narrative for re‑evaluating current therapeutic strategies and exploring novel interventions targeting these molecular pathways, such as the glutathione peroxidase 4 pathway and the ferroptosis suppressor protein 1 pathway. By integrating recent advances in ferroptosis research, the current review highlights innovative therapeutic potentials, including N‑acetylcysteine, selenium, omega‑3 fatty acids and iron chelation therapy, which could address the limitations of existing treatments and improve clinical outcomes for individuals with schizophrenia.
Collapse
Affiliation(s)
- Shuang Lv
- Department of Psychiatry, Guangzhou Kangning Hospital (The Psychiatric Hospital of Guangzhou Civil Administration Bureau), Guangzhou, Guangdong 510430, P.R. China
| | - Chunxia Luo
- Department of Psychiatry, Guangzhou Kangning Hospital (The Psychiatric Hospital of Guangzhou Civil Administration Bureau), Guangzhou, Guangdong 510430, P.R. China
| |
Collapse
|
4
|
Luo J, Peng S, Jiang Z, Wang Q, Zhang M, Zeng Y, Yuan Y, Xia M, Hong Z, Yan Y, Tan Y, Tang J, Xie C, Gong Y. Roles and therapeutic opportunities of ω-3 long-chain polyunsaturated fatty acids in lung cancer. iScience 2025; 28:111601. [PMID: 39834867 PMCID: PMC11742864 DOI: 10.1016/j.isci.2024.111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Over the past decades, researchers have continuously investigated the potential functions of long-chain polyunsaturated fatty acids (LCPUFAs) in cancers, including lung cancer. The ω-3 LCPUFAs, primarily consisting of eicosapentaenoic acid and docosahexaenoic acid, were found to modify inflammatory tumor microenvironment, induce cancer cell apoptosis and autophagy, and suppress tumor development when administered alone or with other therapeutical strategies. Although the precise anti-tumor mechanism has not been elucidated yet, ω-3 LCPUFAs are often used in the nutritional treatment of patients with cancer due to their ability to significantly improve patient's nutritional status, increase the sensitivity of tumor cells to treatments, and alleviate cancer-related complications. Here we present the key roles of ω-3 LCPUFAs as dietary supplementations in lung cancer, comprehensively review the recent progress on the underlying mechanisms of cancer cell regulation by ω-3 LCPUFAs, and introduce the application of ω-3 LCPUFAs in the clinical management of lung cancer and its malignant complications.
Collapse
Affiliation(s)
- Jiang Luo
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shu Peng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyu Jiang
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qingwei Wang
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mini Zhang
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuxin Zeng
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Yuan
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Min Xia
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zixi Hong
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yufei Yan
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yushuang Tan
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiawen Tang
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Schön C, Micka A, Gourineni V, Bosi R. Superior bioavailability of EPA and DHA from a L-lysine salt formulation: a randomized, three-way crossover study. Food Nutr Res 2024; 68:11028. [PMID: 39781273 PMCID: PMC11708499 DOI: 10.29219/fnr.v68.11028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/31/2024] [Accepted: 11/19/2024] [Indexed: 01/12/2025] Open
Abstract
Background Omega-3 fatty acids, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are polyunsaturated fatty acids (PUFAs) with notable health benefits. Due to limited physiological production and insufficient dietary supply, external supplementation is important. Objective This study aimed to compare the pharmacokinetics and bioavailability of EPA and DHA in AvailOm® omega-3-lysine salt (Lys-FFA) versus standard ethyl ester (EE) and triglyceride (TG) formulations after a single oral dose in healthy subjects. Design A randomized, three-way crossover study was conducted with 21 healthy subjects. Results Twenty-one subjects (10 men, 11 women) completed the study. The average age was 41.7 years, and the mean body mass index was 23.0 kg/m2. The Lys-FFA formulation showed significantly higher uptake of omega-3 fatty acids (EPA+DHA combined and each individually) compared to EE. Specifically, Lys-FFA had a 9.33-fold (0-12 h) and 8.09-fold (0-24 h) higher bioavailability of EPA+DHA than EE and a 1.57-fold (0-12 h) and 1.44-fold (0-24 h) higher bioavailability than TG. ΔCmax and Tmax also favored Lys-FFA over EE. Discussion Under fasting conditions, the absorption of EPA and DHA from EE is limited due to the need for enzymatic cleavage before absorption. This requirement is bypassed with Lys-FFA, which does not need cleavage. Conclusions The study demonstrates that EPA and DHA lysine salt (Lys-FFA) offers superior bioavailability compared to EE and triglyceride forms, presenting a more effective supplementation option.German Clinical Trials Register, DRKS-ID: DRKS00029183.
Collapse
|
6
|
Lin HL, Lin QY, Feng JN, Zheng WE, Yang C, Yuan SF. Plasma fatty acid levels and risk of non-small cell lung cancer: a large-scale prospective cohort study. Front Nutr 2024; 11:1462300. [PMID: 39376792 PMCID: PMC11457710 DOI: 10.3389/fnut.2024.1462300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/02/2024] [Indexed: 10/09/2024] Open
Abstract
Background Non-small cell lung cancer (NSCLC) ranks among the most prevalent and lethal malignancies globally. Fatty acids (FAs) play a significant role in diverse physiological and pathological mechanisms, yet their precise involvement in NSCLC remains poorly understood. Methods This study utilized a large-scale prospective cohort of 249,132 participants, observed over an average of 12 years, to investigate the relationship between different FAs and NSCLC risk. Analytical approaches included Cox proportional hazards regression, Kaplan-Meier survival analysis, accelerated failure time (AFT) modeling, and restricted cubic spline (RCS) analysis. Results During the follow-up period, 1,460 participants were diagnosed with NSCLC. Cox regression analysis demonstrated that elevated levels of docosahexaenoic acid (DHA), linoleic acid (LA), and omega-3 were inversely associated with NSCLC risk. Kaplan-Meier curves, along with AFT models, corroborated that elevated concentrations of DHA and LA significantly delayed NSCLC onset. Additionally, RCS analysis uncovered nuanced dose-response relationships between these FAs and NSCLC. Stratified analyses highlighted variability based on smoking status, gender, and body mass index subgroups. Conclusion The concentration of specific FAs exhibits a significant association with NSCLC risk. These results offer a foundation for devising dietary FA composition adjustments aimed at reducing NSCLC risk.
Collapse
Affiliation(s)
- Hua-Long Lin
- Department of Medical Oncology, Rui'an People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiu-Yan Lin
- Department of Medical Oncology, Rui'an People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie-Ni Feng
- Department of Medical Oncology, Rui'an People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei-E Zheng
- Department of Chemoradiation and Oncology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chuang Yang
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Shao-Fei Yuan
- Department of Medical Oncology, Rui'an People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Wang D, Peng L, Zhu Y, Xu S, Xiao Z, Shen Y, Jin T, Shao Y, Tang H. Exploration of potential biomarkers for prurigo nodularis based on plasma-metabolome analysis. Exp Dermatol 2024; 33:e15170. [PMID: 39207113 DOI: 10.1111/exd.15170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Prurigo nodularis (PN) is a chronic and debilitating skin disease with severe itching that negatively impacts patients' quality of life and mental state. However, the treatment options for PN remain limited. Global metabolomics analysis can offer effective information on energy metabolism, pathogenesis and potential diagnostic biomarkers. No study on metabolomic analysis of PN has been reported. To further understand the mechanisms of PN and analyse the plasma metabolite profiles in patients with PN. Targeted-metabolome analysis of 306 metabolites in plasma from 18 patients with PN and 19 healthy controls was performed using Liquid Chromatography-tandem Mass Spectrometer analysis. We identified 31 differential metabolites. Most acylcarnitines, long-chain fatty acids, alpha-aminobutyric acid, hydroxybutyric acid and lactic acid among these metabolites were up-regulated in patients with PN; in contrast, glucaric acid, suberic acid, bile acid derivatives and most amino acids were down-regulated. Positive correlations exist between glucaric acid and itching severity and acylcarnitines and insomnia. Suberic acid and the Investigator's Global Assessment (IGA) scores correlate negatively. Metabolite variation reflects the dysregulation of energy metabolism and chronic systematic inflammation in PN. Several metabolites, such as glucaric acid, suberic acid and acylcarnitines, merit further study as potential biomarkers of disease severity in PN.
Collapse
Affiliation(s)
- Duoqin Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lisi Peng
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiqi Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuwen Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zijing Xiao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanyun Shen
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Taiyu Jin
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yixin Shao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hui Tang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
López-Plaza B, Álvarez-Mercado AI, Arcos-Castellanos L, Plaza-Diaz J, Ruiz-Ojeda FJ, Brandimonte-Hernández M, Feliú-Batlle J, Hummel T, Gil Á, Palma-Milla S. Efficacy and Safety of Habitual Consumption of a Food Supplement Containing Miraculin in Malnourished Cancer Patients: The CLINMIR Pilot Study. Nutrients 2024; 16:1905. [PMID: 38931260 PMCID: PMC11207068 DOI: 10.3390/nu16121905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Taste disorders (TDs) are common among systemically treated cancer patients and negatively impact their nutritional status and quality of life. The novel food approved by the European Commission (EFSA), dried miracle berries (DMB), contains the natural taste-modifying protein miraculin. DMB, also available as a supplement, has emerged as a possible alternative treatment for TDs. The present study aimed to evaluate the efficacy and safety of habitual DMB consumption in malnourished cancer patients undergoing active treatment. An exploratory clinical trial was carried out in which 31 cancer patients were randomized into three arms [standard dose of DMB (150 mg DMB/tablet), high dose of DMB (300 mg DMB/tablet) or placebo (300 mg freeze-dried strawberry)] for three months. Patients consumed a DMB tablet or placebo daily before each main meal (breakfast, lunch, and dinner). Throughout the five main visits, electrochemical taste perception, nutritional status, dietary intake, quality of life and the fatty acid profile of erythrocytes were evaluated. Patients consuming a standard dose of DMB exhibited improved taste acuity over time (% change right/left side: -52.8 ± 38.5/-58.7 ± 69.2%) and salty taste perception (2.29 ± 1.25 vs. high dose: 2.17 ± 1.84 vs. placebo: 1.57 ± 1.51 points, p < 0.05). They also had higher energy intake (p = 0.075) and covered better energy expenditure (107 ± 19%). The quality of life evaluated by symptom scales improved in patients receiving the standard dose of DMB (constipation, p = 0.048). The levels of arachidonic (13.1 ± 1.8; 14.0 ± 2.8, 12.0 ± 2.0%; p = 0.004) and docosahexaenoic (4.4 ± 1.7; 4.1 ± 1.0; 3.9 ± 1.6%; p = 0.014) acids in erythrocytes increased over time after DMB intake. The standard dose of DMB increased fat-free mass vs. placebo (47.4 ± 9.3 vs. 44.1 ± 4.7 kg, p = 0.007). Importantly, habitual patients with DMB did not experience any adverse events, and metabolic parameters remained stable and within normal ranges. In conclusion, habitual consumption of a standard 150 mg dose of DMB improves electrochemical food perception, nutritional status (energy intake, fat quantity and quality, fat-free mass), and quality of life in malnourished cancer patients receiving antineoplastic treatment. Additionally, DMB consumption appears to be safe, with no changes in major biochemical parameters associated with health status. Clinical trial registered (NCT05486260).
Collapse
Affiliation(s)
- Bricia López-Plaza
- Food, Nutrition and Health Platform, Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain; (L.A.-C.); (S.P.-M.)
- Medicine Department, Faculty of Medicine, Complutense University of Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
| | - Ana Isabel Álvarez-Mercado
- Department of Pharmacology, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain; (J.P.-D.); (F.J.R.-O.); (Á.G.)
- Institute of Nutrition and Food Technology “José Mataix”, Centre of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, Armilla, 18016 Granada, Spain;
| | - Lucía Arcos-Castellanos
- Food, Nutrition and Health Platform, Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain; (L.A.-C.); (S.P.-M.)
| | - Julio Plaza-Diaz
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain; (J.P.-D.); (F.J.R.-O.); (Á.G.)
- Department of Biochemistry and Molecular Biology II, University of Granada, 18071 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Francisco Javier Ruiz-Ojeda
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain; (J.P.-D.); (F.J.R.-O.); (Á.G.)
- Institute of Nutrition and Food Technology “José Mataix”, Centre of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, Armilla, 18016 Granada, Spain;
- Department of Biochemistry and Molecular Biology II, University of Granada, 18071 Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marco Brandimonte-Hernández
- Institute of Nutrition and Food Technology “José Mataix”, Centre of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, Armilla, 18016 Granada, Spain;
- Department of Biochemistry and Molecular Biology II, University of Granada, 18071 Granada, Spain
| | - Jaime Feliú-Batlle
- Oncology Department, Hospital La Paz Institute for Health Research—IdiPAZ, Hospital Universitario La Paz, 28029 Madrid, Spain;
- CIBERONC (CIBER Cancer), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Medicine Department, Faculty of Medicine, Autonomous University of Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany;
| | - Ángel Gil
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain; (J.P.-D.); (F.J.R.-O.); (Á.G.)
- Institute of Nutrition and Food Technology “José Mataix”, Centre of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, Armilla, 18016 Granada, Spain;
- Department of Biochemistry and Molecular Biology II, University of Granada, 18071 Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Samara Palma-Milla
- Food, Nutrition and Health Platform, Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain; (L.A.-C.); (S.P.-M.)
- Medicine Department, Faculty of Medicine, Autonomous University of Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain
- Nutrition Department, Hospital University La Paz, 28046 Madrid, Spain
| |
Collapse
|
9
|
Li L, Ma SR, Yu ZL. Targeting the lipid metabolic reprogramming of tumor-associated macrophages: A novel insight into cancer immunotherapy. Cell Oncol (Dordr) 2024; 47:415-428. [PMID: 37776422 DOI: 10.1007/s13402-023-00881-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Tumor-associated macrophages, as the major immunocytes in solid tumors, show divided loyalty and remarkable plasticity in tumorigenesis. Once the M2-to-M1 repolarization is achieved, they could be switched from the supporters for tumor development into the guardians for host immunity. Meanwhile, Lipid metabolic reprogramming is demonstrated to be one of the most important hallmarks of tumor-associated macrophages, which plays a decisive role in regulating their phenotypes and functions to promote tumorigenesis and immunotherapy resistance. Therefore, targeting the lipid metabolism of TAMs may provide a new direction for anti-tumor strategies. CONCLUSION In this review, we first summarized the origins, classifications and general lipid metabolic process of TAMs. Then we discussed the currently available drugs and interventions that target lipid metabolic disorders of TAMs, including those targeting lipid uptake, efflux, lipolysis, FAO and lipid peroxidation. Besides, based on the recent research status, we summarized the present challenges for this cancer immunotherapy, including the precise drug delivery system, the lipid metabolic heterogeneity, and the intricate lipid metabolic interactions in the TME, and we also proposed corresponding possible solutions. Collectively, we hope this review will give researchers a better understanding of the lipid metabolism of TAMs and lead to the development of corresponding anti-tumor therapies in the future.
Collapse
Affiliation(s)
- Liang Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China
| | - Si-Rui Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Zi-Li Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
10
|
Erazo-Oliveras A, Muñoz-Vega M, Salinas ML, Wang X, Chapkin RS. Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk. FEBS J 2024; 291:1299-1352. [PMID: 36282100 PMCID: PMC10126207 DOI: 10.1111/febs.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Cellular membranes serve as an epicentre combining extracellular and cytosolic components with membranous effectors, which together support numerous fundamental cellular signalling pathways that mediate biological responses. To execute their functions, membrane proteins, lipids and carbohydrates arrange, in a highly coordinated manner, into well-defined assemblies displaying diverse biological and biophysical characteristics that modulate several signalling events. The loss of membrane homeostasis can trigger oncogenic signalling. More recently, it has been documented that select membrane active dietaries (MADs) can reshape biological membranes and subsequently decrease cancer risk. In this review, we emphasize the significance of membrane domain structure, organization and their signalling functionalities as well as how loss of membrane homeostasis can steer aberrant signalling. Moreover, we describe in detail the complexities associated with the examination of these membrane domains and their association with cancer. Finally, we summarize the current literature on MADs and their effects on cellular membranes, including various mechanisms of dietary chemoprevention/interception and the functional links between nutritional bioactives, membrane homeostasis and cancer biology.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
- Center for Environmental Health Research; Texas A&M University; College Station, Texas, 77843; USA
| |
Collapse
|
11
|
Xiao Q, Xia M, Tang W, Zhao H, Chen Y, Zhong J. The lipid metabolism remodeling: A hurdle in breast cancer therapy. Cancer Lett 2024; 582:216512. [PMID: 38036043 DOI: 10.1016/j.canlet.2023.216512] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
Lipids, as one of the three primary energy sources, provide energy for all cellular life activities. Lipids are also known to be involved in the formation of cell membranes and play an important role as signaling molecules in the intracellular and microenvironment. Tumor cells actively or passively remodel lipid metabolism, using the function of lipids in various important cellular life activities to evade therapeutic attack. Breast cancer has become the leading cause of cancer-related deaths in women, which is partly due to therapeutic resistance. It is necessary to fully elucidate the formation and mechanisms of chemoresistance to improve breast cancer patient survival rates. Altered lipid metabolism has been observed in breast cancer with therapeutic resistance, indicating that targeting lipid reprogramming is a promising anticancer strategy.
Collapse
Affiliation(s)
- Qian Xiao
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Min Xia
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Weijian Tang
- Queen Mary School of Nanchang University, Nanchang University, Nanchang, 330031, PR China
| | - Hu Zhao
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Yajun Chen
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| | - Jing Zhong
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| |
Collapse
|
12
|
Akbar S, Rahman A, Ahmad N, Imran M, Hafeez Z. Understanding the Role of Polyunsaturated Fatty Acids in the Development and Prevention of Cancer. Cancer Treat Res 2024; 191:57-93. [PMID: 39133404 DOI: 10.1007/978-3-031-55622-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Polyunsaturated fatty acids (PUFAs), notably omega-3 (n-3) and omega-6 (n-6), have received much attention owing to their multifaceted effects not only in the management of diverse pathological conditions but also in the maintenance of overall health of an individual. A disproportionately high n-6 to n-3 ratio contributes to the development of various disorders including cancer, which ranks as a leading cause of death worldwide with profound social and economic burden. Epidemiological studies and clinical trials combined with the animal and cell culture models have demonstrated the beneficial effects of n-3 PUFAs in reducing the risk of various cancer types including breast, prostate and colon cancer. The anti-cancer actions of n-3 PUFAs are mainly attributed to their role in the modulation of a wide array of cellular processes including membrane dynamics, apoptosis, inflammation, angiogenesis, oxidative stress, gene expression and signal transduction pathways. On the contrary, n-6 PUFAs have been shown to exert pro-tumor actions; however, the inconsistent findings and controversial data emphasize upon the need to further investigation. Nevertheless, one of the biggest challenges in future is to optimize the n-6 to n-3 ratio despite the genetic predisposition, age, gender and disease severity. Moreover, a better understanding of the potential risks and benefits as well as the cellular and molecular mechanisms of the basic actions of these PUFAs is required to explore their role as adjuvants in cancer therapy. All these aspects will be reviewed in this chapter.
Collapse
Affiliation(s)
- Samina Akbar
- CALBINOTOX, Université de Lorraine, 54000, Nancy, France.
| | - Abdur Rahman
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Nazir Ahmad
- Faculty of Life Sciences, Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- Department of Biosciences, Faculty of Sciences, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
| | - Zeeshan Hafeez
- CALBINOTOX, Université de Lorraine, 54000, Nancy, France
| |
Collapse
|
13
|
Özdemir E, Bayır M. Molecular cloning and characterization of Cu-Zn superoxide dismutase ( sod1) gene in brown trout and its expression in response to acute aquaculture stressors. Anim Biotechnol 2023; 34:1968-1978. [PMID: 35438608 DOI: 10.1080/10495398.2022.2061505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Aquaculture species are often exposed to acute stressors such as low water levels and handling during routine aquaculture procedures. This might result in oxidative stress by the increased reactive oxygen species (ROS)' production (e.g., superoxide anion). The harmful effects of ROS are eliminated by a defense system, referred antioxidant defense system (ADS). sod1 is the first gene involved in the ADS. Therefore, we cloned and characterized the open reading frame of the sod1 in brown trout. Then, we determined the effects of low water level and handling stress on sod1 mRNA expression in the liver and gills at 0 min, 1 and 2 h. The total RNA isolated was used to synthesize cDNA for RT-qPCR analysis. Phylogenetic tree, identity/similarity percentages, genomic organization, and conserved gene synteny analyses were applied to characterize Sod1/sod1. While low water level stress upregulated sod1 expression in the liver compared to the control group, no significant differences were observed in the gills between experimental groups. However, brown trout differently responded to handling stress at different time intervals in both tissues. Transcriptional differences were also noted between the sexes. This study contributes to the current understanding of the molecular mechanism between oxidative stress and ADS.
Collapse
Affiliation(s)
- Erdal Özdemir
- Department of Agricultural Biotechnology, Faculty of Agriculture, Atatürk University, Erzurum, Turkey
| | - Mehtap Bayır
- Department of Agricultural Biotechnology, Faculty of Agriculture, Atatürk University, Erzurum, Turkey
| |
Collapse
|
14
|
Shu L, Zheng X, Qi S, Lin S, Lu Y, Yao C, Ling X. Transesterification of phosphatidylcholine with DHA-rich algal oil using immobilized Candida antarctica lipase B to produce DHA-phosphatidylcholine. Enzyme Microb Technol 2023; 169:110266. [PMID: 37311283 DOI: 10.1016/j.enzmictec.2023.110266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Docosahexaenoic acid (DHA) enriched with phospholipids (PLs) (DHA-PLs) is a type of structured PL with good physicochemical and nutritional properties. Compared to PLs and DHA, DHA-PLs has higher bioavailability and structural stability and many nutritional benefits. To improve the enzymatic synthesis of DHA-PLs, this study investigated the preparation of phosphatidylcholine (PC) enriched with DHA (DHA-PC) via enzymatic transesterification of algal oil, which is rich in DHA-triglycerides, using immobilized Candida antarctica lipase B (CALB). The optimized reaction system incorporated 31.2% DHA into the acyl chain of PC and converted 43.6% PC to DHA-PC within 72 h at 50 °C, 1:8 PC: algal oil mass ratio, 25% enzyme load (based on total substrate mass), and 0.02 g/mL molecular sieve concentration. Consequently, the side reactions of PC hydrolysis were effectively suppressed and products with high PC content (74.8%) were produced. Molecular structure analysis showed that exogenous DHA was specifically incorporated into the sn-1 site of the PC by immobilized CALB. Furthermore, the evaluation of reusability with eight cycles showed that the immobilized CALB had good operational stability in the present reaction system. Collectively, this study demonstrated the applicability of immobilized CALB as a biocatalyst for synthesizing DHA-PC and provided an improved enzyme-catalyzed method for future DHA-PL synthesis.
Collapse
Affiliation(s)
- Liwen Shu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China
| | - Xin Zheng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China
| | - Shuhua Qi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China
| | - Shuizhi Lin
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China; Xiamen Key Laboratory of Synthetic Biotechnology, Xiamen University, Xiamen, PR China; The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, PR China.
| | - Chuanyi Yao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China; Xiamen Key Laboratory of Synthetic Biotechnology, Xiamen University, Xiamen, PR China
| | - Xueping Ling
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China; Xiamen Key Laboratory of Synthetic Biotechnology, Xiamen University, Xiamen, PR China.
| |
Collapse
|
15
|
Yang K, Wang X, Song C, He Z, Wang R, Xu Y, Jiang G, Wan Y, Mei J, Mao W. The role of lipid metabolic reprogramming in tumor microenvironment. Theranostics 2023; 13:1774-1808. [PMID: 37064872 PMCID: PMC10091885 DOI: 10.7150/thno.82920] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/07/2023] [Indexed: 04/18/2023] Open
Abstract
Metabolic reprogramming is one of the most important hallmarks of malignant tumors. Specifically, lipid metabolic reprogramming has marked impacts on cancer progression and therapeutic response by remodeling the tumor microenvironment (TME). In the past few decades, immunotherapy has revolutionized the treatment landscape for advanced cancers. Lipid metabolic reprogramming plays pivotal role in regulating the immune microenvironment and response to cancer immunotherapy. Here, we systematically reviewed the characteristics, mechanism, and role of lipid metabolic reprogramming in tumor and immune cells in the TME, appraised the effects of various cell death modes (specifically ferroptosis) on lipid metabolism, and summarized the antitumor therapies targeting lipid metabolism. Overall, lipid metabolic reprogramming has profound effects on cancer immunotherapy by regulating the immune microenvironment; therefore, targeting lipid metabolic reprogramming may lead to the development of innovative clinical applications including sensitizing immunotherapy.
Collapse
Affiliation(s)
- Kai Yang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaokun Wang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Chenghu Song
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Zhao He
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Ruixin Wang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Yongrui Xu
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Guanyu Jiang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton 13850, USA
| | - Jie Mei
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wenjun Mao
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| |
Collapse
|
16
|
Yan L, Sundaram S, Rust BM, Palmer DG, Johnson LK, Zeng H. Consumption of a high-fat diet alters transcriptional rhythmicity in liver from pubertal mice. Front Nutr 2023; 9:1068350. [PMID: 36687679 PMCID: PMC9845732 DOI: 10.3389/fnut.2022.1068350] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/01/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Childhood obesity is associated with adult obesity, which is a risk factor for chronic diseases. Obesity, as an environmental cue, alters circadian rhythms. The hypothesis of this study was that consumption of a high-fat diet alters metabolic rhythms in pubertal mice. Methods Weanling female C57BL/6NHsd mice were fed a standard AIN93G diet or a high-fat diet (HFD) for 3 weeks. Livers were collected from six-week-old mice every 4 h over a period of 48 h for transcriptome analysis. Results and discussion The HFD altered rhythmicity of differentially rhythmic transcripts in liver. Specifically, the HFD elevated expression of circadian genes Clock, Per1, and Cry1 and genes encoding lipid metabolism Fads1 and Fads2, while decreased expression of circadian genes Bmal1 and Per2 and lipid metabolism genes Acaca, Fasn, and Scd1. Hierarchical clustering analysis of differential expression genes showed that the HFD-mediated metabolic disturbance was most active in the dark phase, ranging from Zeitgeber time 16 to 20. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis of differentially expressed genes showed that the HFD up-regulated signaling pathways related to fatty acid and lipid metabolism, steroid and steroid hormone biosynthesis, amino acid metabolism and protein processing in the endoplasmic reticulum, glutathione metabolism, and ascorbate and aldarate metabolism in the dark phase. Down-regulations included MAPK pathway, lipolysis in adipocytes, Ras and Rap1 pathways, and pathways related to focal adhesion, cell adhesion molecules, and extracellular matrix-receptor interaction. In summary, the HFD altered metabolic rhythms in pubertal mice with the greatest alterations in the dark phase. These alterations may disrupt metabolic homeostasis in puberty and lead to metabolic disorders.
Collapse
|
17
|
Zhang X, Lin L, Chen Z, Zhang J, Wang X, Tao N. Characterization of refined fish oil from small fish in Mauritania. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
18
|
Li H, Yu Y, Liu Y, Luo Z, Law BYK, Zheng Y, Huang X, Li W. Ursolic acid enhances the antitumor effects of sorafenib associated with Mcl-1-related apoptosis and SLC7A11-dependent ferroptosis in human cancer. Pharmacol Res 2022; 182:106306. [PMID: 35714823 DOI: 10.1016/j.phrs.2022.106306] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 02/09/2023]
Abstract
As a broad-spectrum oral small molecule inhibitor targeting multikinase, sorafenib is currently approved for the clinical treatment of several types of cancer as a single agent. A considerable number of clinical trial results have indicated that combination therapies involving sorafenib have been shown to improve treatment efficacy and may lead to novel therapeutic applications. Ursolic acid (UA), a natural pentacyclic triterpene compound extracted from a great variety of traditional medicinal plants and most fruits and vegetables, exhibits a wide range of therapeutic potential, including against cancer, diabetes, brain disease, liver disease, cardiovascular diseases, and sarcopenia. In the present study, we investigated the antitumor effects of sorafenib in combination with ursolic acid and found that the two agents displayed significant synergistic antitumor activity in in vitro and in vivo tumor xenograft models. Sorafenib/UA induced selective apoptotic death and ferroptosis in various cancer cells by evoking a dramatic accumulation of intracellular lipid reactive oxygen species (ROS). Mechanistically, the combination treatment promoted Mcl-1 degradation, which regulates apoptosis. However, decreasing the protein level of SLC7A11 plays a critical role in sorafenib/UA-induced cell ferroptosis. Therefore, these results suggest that the synergistic antitumor effects of sorafenib combined with ursolic acid may involve the induction of Mcl-1-related apoptosis and SLC7A11-dependent ferroptosis. Our findings may offer a novel effective therapeutic strategy for tumor treatment.
Collapse
Affiliation(s)
- Han Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - You Yu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yi Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhihong Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Betty Yuen Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Yi Zheng
- Central Laboratory, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
| | - Xing Huang
- Center for Evidence-Based and Translational Medicine, Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenhua Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
19
|
de Santis A, Scoppola E, Ottaviani MF, Koutsioubas A, Barnsley LC, Paduano L, D’Errico G, Russo Krauss I. Order vs. Disorder: Cholesterol and Omega-3 Phospholipids Determine Biomembrane Organization. Int J Mol Sci 2022; 23:5322. [PMID: 35628128 PMCID: PMC9140907 DOI: 10.3390/ijms23105322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
Lipid structural diversity strongly affects biomembrane chemico-physical and structural properties in addition to membrane-associated events. At high concentrations, cholesterol increases membrane order and rigidity, while polyunsaturated lipids are reported to increase disorder and flexibility. How these different tendencies balance in composite bilayers is still controversial. In this study, electron paramagnetic resonance spectroscopy, small angle neutron scattering, and neutron reflectivity were used to investigate the structural properties of cholesterol-containing lipid bilayers in the fluid state with increasing amounts of polyunsaturated omega-3 lipids. Either the hybrid 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine or the symmetric 1,2-docosahexaenoyl-sn-glycero-3-phosphocholine were added to the mixture of the naturally abundant 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine and cholesterol. Our results indicate that the hybrid and the symmetric omega-3 phospholipids affect the microscopic organization of lipid bilayers differently. Cholesterol does not segregate from polyunsaturated phospholipids and, through interactions with them, is able to suppress the formation of non-lamellar structures induced by the symmetric polyunsaturated lipid. However, this order/disorder balance leads to a bilayer whose structural organization cannot be ascribed to either a liquid ordered or to a canonical liquid disordered phase, in that it displays a very loose packing of the intermediate segments of lipid chains.
Collapse
Affiliation(s)
- Augusta de Santis
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (A.d.S.); (L.P.)
- CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), I-50019 Florence, Italy
| | - Ernesto Scoppola
- Max Planck Institut für Kolloid und Grenzflächenforschung, 14476 Potsdam, Germany;
| | | | - Alexandros Koutsioubas
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), 85748 Garching, Germany; (A.K.); (L.C.B.)
| | - Lester C. Barnsley
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), 85748 Garching, Germany; (A.K.); (L.C.B.)
- Australian Synchrotron, ANSTO, Clayton 3168, Australia
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (A.d.S.); (L.P.)
- CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), I-50019 Florence, Italy
| | - Gerardino D’Errico
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (A.d.S.); (L.P.)
- CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), I-50019 Florence, Italy
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (A.d.S.); (L.P.)
- CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), I-50019 Florence, Italy
| |
Collapse
|
20
|
Effect of Postoperative ω-3 Fatty Acid Immunonutritional Therapy on NK Cell Gene Methylation in Elderly Patients with Gastric Cancer. Curr Med Sci 2022; 42:373-378. [PMID: 35467300 DOI: 10.1007/s11596-022-2567-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/20/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This study aims to investigate the effect of ω-3 fatty acid immunonutritional therapy on natural killer (NK) cell gene methylation and function in elderly patients with gastric cancer. METHODS A total of 70 cases of elderly patients with gastric cancer were randomized into the ω-3 fatty acid group and placebo group, according to the type of nutritional support administered. The methylation status of the tumor necrosis factor (TNF)-α gene promoter in peripheral NK cells was detected by methylation specific polymerase chain reaction, and the TNF-α level in peripheral NK cells was detected by enzyme-linked immunosorbent assay. RESULTS After 14 days of immunonutritional therapy with ω-3 fatty acid or placebo, patients in the ω-3 group had significantly higher average NK cell activity (0.27 vs. 0.24, P=0.013) and lower percentages of TNF-α gene promoter methylation (25.7% vs. 60%, P<0.05) than the placebo group. However, there were no significant differences in the concentration of albumin, prealbumin and TNF-α in serum, and the NK cell count between the ω-3 group and placebo group. CONCLUSION The postoperative application of ω-3 fatty acid may improve the activity of NK cells, which is correlated to the methylation status of the TNF-α gene promoter.
Collapse
|
21
|
Lima Maciel D, Castillo Vargas JA, Mezzomo R, Sundfeld da Gama MA, Leite LC, Rodrigues de Castro ÍR, Sampaio Oliveira LR, Costa Farias ML, dos Santos Luz WB, Alves KS. Physicochemical, nutritional, and sensory attributes of Minas frescal cheese from grazing cows fed a supplement containing different levels of babassu coconut (Orbignya speciosa). Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Protein Lipidation Types: Current Strategies for Enrichment and Characterization. Int J Mol Sci 2022; 23:ijms23042365. [PMID: 35216483 PMCID: PMC8880637 DOI: 10.3390/ijms23042365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/04/2022] Open
Abstract
Post-translational modifications regulate diverse activities of a colossal number of proteins. For example, various types of lipids can be covalently linked to proteins enzymatically or non-enzymatically. Protein lipidation is perhaps not as extensively studied as protein phosphorylation, ubiquitination, or glycosylation although it is no less significant than these modifications. Evidence suggests that proteins can be attached by at least seven types of lipids, including fatty acids, lipoic acids, isoprenoids, sterols, phospholipids, glycosylphosphatidylinositol anchors, and lipid-derived electrophiles. In this review, we summarize types of protein lipidation and methods used for their detection, with an emphasis on the conjugation of proteins with polyunsaturated fatty acids (PUFAs). We discuss possible reasons for the scarcity of reports on PUFA-modified proteins, limitations in current methodology, and potential approaches in detecting PUFA modifications.
Collapse
|
23
|
Li T, Guo Q, Qu Y, Li Y, Liu H, Liu L, Zhang Y, Jiang Y, Wang Q. Solubility and physicochemical properties of resveratrol in peanut oil. Food Chem 2022; 368:130687. [PMID: 34416486 DOI: 10.1016/j.foodchem.2021.130687] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/10/2021] [Accepted: 07/21/2021] [Indexed: 01/01/2023]
Abstract
The solubility and physicochemical properties of resveratrol in peanut oil were systematically studied following ultrasonic and magnetic stirring-assisted dissolution. The highest resveratrol solubility in peanut oil observed was 95.91%. The optimal dissolution process was determined to be the addition of 183.00 mg/kg resveratrol, a magnetic temperature of 40.00℃, and a magnetic duration of 3.50 h, which yielded a resveratrol content of 175.51 mg/kg oil. Under this standardized process, the oil composition remained unchanged. Resveratrol promoted the conversion of saturated triglycerides into unsaturated triglycerides, increased the linolenic acid content, and did not facilitate the formation of trans fatty acids. In addition, resveratrol preservedthe lightcolor, decreased the peroxide and acid values by 30%, prolonged the shelf life by more than 2 folds, and improved the thermal stability. In this sense, peanut oil with resveratrol can serve as anti-isomerism and antioxidant additive.
Collapse
Affiliation(s)
- Tian Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China
| | - Qin Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China
| | - Yang Qu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China
| | - Yujie Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China
| | - Hongzhi Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China
| | - Li Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China
| | - Yu Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, PR China.
| | - Yuanrong Jiang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd, Pudong New District, Shanghai, 200137, PR China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China.
| |
Collapse
|
24
|
Jiang W, Li FR, Yang HH, Chen GC, Hua YF. Relationship Between Fish Oil Use and Incidence of Primary Liver Cancer: Findings From a Population-Based Prospective Cohort Study. Front Nutr 2022; 8:771984. [PMID: 35036409 PMCID: PMC8759152 DOI: 10.3389/fnut.2021.771984] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Background: N-3 long-chain polyunsaturated fatty acids (LCPUFAs) prevented non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) in studies of mouse models. We examined prospective relationships between fish oil use and risk of primary liver cancer and the major histological subtypes, such as HCC and intrahepatic cholangiocarcinoma (ICC). Methods: We included 434,584 middle-aged and older men and women who were free of cancer at recruitment of the UK Biobank (2006–2010). Information on fish oil use and other dietary habits was collected via questionnaires. Cox proportional hazards models were used to compute the hazard ratio (HR) and 95% CI of liver cancer associated with fish oil use, with adjustment for socio-demographic, lifestyle, dietary, and other clinical risk factors. Results: At baseline, 31.4% of participants reported regular use of fish oil supplements. During a median of 7.8 years of follow-up, 262 incident liver cancer cases were identified, among which 127 were HCC and 110 were ICC cases. As compared with non-users, fish oil users had a significantly 44% (95% CI: 25–59%) lower risk of total liver cancer, and 52% (95% CI: 24–70%) and 40% (95% CI: 7–61%) lower risk of HCC and ICC, respectively. Higher intake of oily fish also was associated with a lower risk of HCC (≥2 vs. <1 serving/week: HR = 0.46; 95% CI: 0.23–0.96; P-trend = 0.027) but not ICC (P-trend = 0.96). Conclusion: Habitual use of fish oil supplements was associated lower risk of primary liver cancer regardless of cancer histological subtypes, potentially supporting a beneficial role of dietary n-3 LCPUFAs in liver cancer prevention.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Fu-Rong Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, China.,Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Huan-Huan Yang
- Wanke School of Public Health, Tsinghua University, Beijing, China
| | - Guo-Chong Chen
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Yong-Fei Hua
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| |
Collapse
|
25
|
Desale SE, Chinnathambi S. α- Linolenic acid modulates phagocytosis and endosomal pathways of extracellular Tau in microglia. Cell Adh Migr 2021; 15:84-100. [PMID: 33724164 PMCID: PMC7971307 DOI: 10.1080/19336918.2021.1898727] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/19/2020] [Accepted: 02/19/2021] [Indexed: 12/17/2022] Open
Abstract
Microglia, the resident immune cells, were found to be activated to inflammatory phenotype in Alzheimer's disease (AD). The extracellular burden of amyloid-β plaques and Tau seed fabricate the activation of microglia. The seeding effect of extracellular Tau species is an emerging aspect to study about Tauopathies in AD. Tau seeds enhance the propagation of disease along with its contribution to microglia-mediated inflammation. The excessive neuroinflammation cumulatively hampers phagocytic function of microglia reducing the clearance of extracellular protein aggregates. Omega-3 fatty acids, especially docosahexaenoic acid and eicosapentaenoic acid, are recognized to induce anti-inflammatory phenotype of microglia. In addition to increased cytokine production, omega-3 fatty acids enhance phagocytic receptors expression in microglia. In this study, we have observed the phagocytosis of extracellular Tau in the presence of α-linolenic acid (ALA). The increased phagocytosis of extracellular Tau monomer and aggregates have been observed upon ALA exposure to microglia cells. After internalization, the degradation status of Tau has been studied with early and late endosomal markers Rab5 and Rab7. Further, the lysosome-mediated degradation of internalized Tau was studied with LAMP-2A, a lysosome marker. The enhanced migratory ability in the presence of ALA could be beneficial for microglia to access the target and clear it. The increased migration of microglia was found to induce the microtubule-organizing center repolarization. The data indicate that the dietary fatty acids ALA could significantly enhance phagocytosis and intracellular degradation of internalized Tau. Our results suggest that microglia could be influenced to reduce extracellular Tau seed with dietary fatty acids.
Collapse
Affiliation(s)
- Smita Eknath Desale
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical LaboratoryPune, India
- Academy of Scientific and Innovative Research (Acsir), Ghaziabad, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical LaboratoryPune, India
- Academy of Scientific and Innovative Research (Acsir), Ghaziabad, India
| |
Collapse
|
26
|
Borsini A, Nicolaou A, Camacho-Muñoz D, Kendall AC, Di Benedetto MG, Giacobbe J, Su KP, Pariante CM. Omega-3 polyunsaturated fatty acids protect against inflammation through production of LOX and CYP450 lipid mediators: relevance for major depression and for human hippocampal neurogenesis. Mol Psychiatry 2021; 26:6773-6788. [PMID: 34131267 PMCID: PMC8760043 DOI: 10.1038/s41380-021-01160-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 02/04/2023]
Abstract
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) can exert antidepressant, anti-inflammatory and neuroprotective properties, but the exact molecular mechanism underlying their effects is still not fully understood. We conducted both in vitro and clinical investigations to test which EPA or DHA metabolites are involved in these anti-inflammatory, neuroprotective and antidepressant effects. In vitro, we used the human hippocampal progenitor cell line HPC0A07/03C, and pre-treated cells with either EPA or DHA, followed by interleukin 1beta (IL1β), IL6 and interferon-alpha (IFN-α). Both EPA and DHA prevented the reduction in neurogenesis and the increase in apoptosis induced by these cytokines; moreover, these effects were mediated by the lipoxygenase (LOX) and cytochrome P450 (CYP450) EPA/DHA metabolites, 5-hydroxyeicosapentaenoic acid (HEPE), 4-hydroxydocosahexaenoic acid (HDHA), 18-HEPE, 20-HDHA, 17(18)-epoxyeicosatetraenoic acid (EpETE) and 19(20)-epoxydocosapentaenoic acid (EpDPA), detected here for the first time in human hippocampal neurones using mass spectrometry lipidomics of the supernatant. In fact, like EPA/DHA, co-treatment with these metabolites prevented cytokines-induced reduction in neurogenesis and apoptosis. Moreover, co-treatment with 17(18)-EpETE and 19(20)-EpDPA and the soluble epoxide hydroxylase (sEH) inhibitor, TPPU (which prevents their conversion into dihydroxyeicosatetraenoic acid (DiHETE)/ dihydroxydocosapentaenoic acid (DiHDPA) metabolites) further enhanced their neurogenic and anti-apoptotic effects. Interestingly, these findings were replicated in a sample of n = 22 patients with a DSM-IV Major Depressive Disorder, randomly assigned to treatment with either EPA (3.0 g/day) or DHA (1.4 g/day) for 12 weeks, with exactly the same LOX and CYP450 lipid metabolites increased in the plasma of these patients following treatment with their precursor, EPA or DHA, and some evidence that higher levels of these metabolites were correlated with less severe depressive symptoms. Overall, our study provides the first evidence for the relevance of LOX- and CYP450-derived EPA/DHA bioactive lipid metabolites as neuroprotective molecular targets for human hippocampal neurogenesis and depression, and highlights the importance of sEH inhibitors as potential therapeutic strategy for patients suffering from depressive symptoms.
Collapse
Affiliation(s)
- Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK.
| | - Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Dolores Camacho-Muñoz
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Alexandra C Kendall
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Maria Grazia Di Benedetto
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio, Fatebenefratelli, Brescia, Italy
| | - Juliette Giacobbe
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK
| | - Kuan-Pin Su
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK.
- College of Medicine, China Medical University, Taichung, Taiwan.
- Depression Center, An-Nan Hospital, China Medical University, Tainan, Taiwan.
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK
| |
Collapse
|
27
|
Giannattasio S, Dri M, Merra G, Caparello G, Rampello T, Di Renzo L. Effects of Fatty Acids on Hematological Neoplasms: A Mini Review. Nutr Cancer 2021; 74:1538-1548. [PMID: 34355630 DOI: 10.1080/01635581.2021.1960389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Hematological neoplasias are the fourth cause of death in the world. All of them are responsible of bad quality of life, due to heavy therapies administration and a lot of side effects correlated to. It arises a new concept of "multitherapy", in which fatty acids availment is used to contrast and reduce toxic effects and ameliorate chemotherapeutic agents asset. In Vitro studies have confirmed that fatty acids, in particular ω-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are able to help canonical therapies to contrast cancer cell expansion and proliferation. In clinical trials it is also almost clear that fatty acids are useful to build new personalized therapies for a better condition of life. In this review we have summarized most recent studies on cancer cell lines and clinical trials on patients with fatty acids supplementation in diet therapies. We have found that fatty acids could be useful to contrast side effects during chemotherapeutic drugs therapies; they are also able to block cancer cell metabolic pathways for proliferation and contrast adverse effects, even when they are used in combination with traditional therapies or innovative, like monoclonal antibodies or CAR-T therapy. These aspects are crucial for better health condition of patients.
Collapse
Affiliation(s)
- Silvia Giannattasio
- School of Specialization in Food Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Maria Dri
- Doctoral School of Applied Medical and Surgical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Merra
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Giovanna Caparello
- School of Specialization in Food Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Tiziana Rampello
- School of Specialization in Food Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
28
|
Choi WS, Xu X, Goruk S, Wang Y, Patel S, Chow M, Field CJ, Godbout R. FABP7 Facilitates Uptake of Docosahexaenoic Acid in Glioblastoma Neural Stem-like Cells. Nutrients 2021; 13:2664. [PMID: 34444824 PMCID: PMC8402214 DOI: 10.3390/nu13082664] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 01/14/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive tumor with a dismal prognosis. Neural stem-like cells contribute to GBM's poor prognosis by driving drug resistance and maintaining cellular heterogeneity. GBM neural stem-like cells express high levels of brain fatty acid-binding protein (FABP7), which binds to polyunsaturated fatty acids (PUFAs) ω-6 arachidonic acid (AA) and ω-3 docosahexaenoic acid (DHA). Similar to brain, GBM tissue is enriched in AA and DHA. However, DHA levels are considerably lower in GBM tissue compared to adult brain. Therefore, it is possible that increasing DHA content in GBM, particularly in neural stem-like cells, might have therapeutic value. Here, we examine the fatty acid composition of patient-derived GBM neural stem-like cells grown as neurosphere cultures. We also investigate the effect of AA and DHA treatment on the fatty acid profiles of GBM neural stem-like cells with or without FABP7 knockdown. We show that DHA treatment increases DHA levels and the DHA:AA ratio in GBM neural stem-like cells, with FABP7 facilitating the DHA uptake. We also found that an increased uptake of DHA inhibits the migration of GBM neural stem-like cells. Our results suggest that increasing DHA content in the GBM microenvironment may reduce the migration/infiltration of FABP7-expressing neural stem-like cancer cells.
Collapse
Affiliation(s)
- Won-Shik Choi
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (W.-S.C.); (X.X.); (Y.W.); (S.P.)
| | - Xia Xu
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (W.-S.C.); (X.X.); (Y.W.); (S.P.)
| | - Susan Goruk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; (S.G.); (C.J.F.)
| | - Yixiong Wang
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (W.-S.C.); (X.X.); (Y.W.); (S.P.)
| | - Samir Patel
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (W.-S.C.); (X.X.); (Y.W.); (S.P.)
| | - Michael Chow
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2B7, Canada;
| | - Catherine J. Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; (S.G.); (C.J.F.)
| | - Roseline Godbout
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (W.-S.C.); (X.X.); (Y.W.); (S.P.)
| |
Collapse
|
29
|
Mukerjee S, Saeedan AS, Ansari MN, Singh M. Polyunsaturated Fatty Acids Mediated Regulation of Membrane Biochemistry and Tumor Cell Membrane Integrity. MEMBRANES 2021; 11:479. [PMID: 34203433 PMCID: PMC8304949 DOI: 10.3390/membranes11070479] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/05/2021] [Accepted: 06/24/2021] [Indexed: 12/25/2022]
Abstract
Particular dramatic macromolecule proteins are responsible for various cellular events in our body system. Lipids have recently recognized a lot more attention of scientists for understanding the relationship between lipid and cellular function and human health However, a biological membrane is formed with a lipid bilayer, which is called a P-L-P design. Our body system is balanced through various communicative signaling pathways derived from biological membrane proteins and lipids. In the case of any fatal disease such as cancer, the biological membrane compositions are altered. To repair the biological membrane composition and prevent cancer, dietary fatty acids, such as omega-3 polyunsaturated fatty acids, are essential in human health but are not directly synthesized in our body system. In this review, we will discuss the alteration of the biological membrane composition in breast cancer. We will highlight the role of dietary fatty acids in altering cellular composition in the P-L-P bilayer. We will also address the importance of omega-3 polyunsaturated fatty acids to regulate the membrane fluidity of cancer cells.
Collapse
Affiliation(s)
- Souvik Mukerjee
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India;
| | - Abdulaziz S. Saeedan
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Mohd. Nazam Ansari
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Assam University, Silchar 788011, Assam, India
| |
Collapse
|
30
|
Fuentes NR, Salinas ML, Wang X, Fan YY, Chapkin RS. Assessment of Plasma Membrane Fatty Acid Composition and Fluidity Using Imaging Flow Cytometry. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2262:251-258. [PMID: 33977481 DOI: 10.1007/978-1-0716-1190-6_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Phospholipid fatty acid (FA) composition influences the biophysical properties of the plasma membrane and plays an important role in cellular signaling. Our previous work has demonstrated that plasma membrane fatty acid composition is an important determinant of oncogenic Ras signaling and that dietary (exogenous) modulation of membrane composition may underlie the chemoprotective benefits of long chain n-3 polyunsaturated fatty acids (PUFA). In this chapter, we describe in vitro methods to modulate membrane phospholipid fatty acid composition of cultured cells using fatty acids complexed to bovine serum albumin (BSA). Furthermore, we describe a method to quantify the biophysical properties of plasma membranes in live cells using Di-4-ANEPPDHQ (Di4) and image-based flow cytometry.
Collapse
Affiliation(s)
- Natividad R Fuentes
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA
- Department of Nutrition, Texas A&M University, College Station, TX, USA
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA
| | - Michael L Salinas
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Yang-Yi Fan
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA.
- Department of Nutrition, Texas A&M University, College Station, TX, USA.
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA.
- Center for Environmental Health Research, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
31
|
Xu X, Wang Y, Choi WS, Sun X, Godbout R. Super resolution microscopy reveals DHA-dependent alterations in glioblastoma membrane remodelling and cell migration. NANOSCALE 2021; 13:9706-9722. [PMID: 34018532 DOI: 10.1039/d1nr02128a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Brain fatty acid binding protein (FABP7; B-FABP) promotes glioblastoma (GBM) cell migration and is associated with tumor infiltration, properties associated with a poor prognosis in GBM patients. FABP7-expressing neural stem-like cells are known to drive tumor migration/infiltration and resistance to treatment. We have previously shown that FABP7's effects on cell migration can be reversed when GBM cells are cultured in medium supplemented with the omega-3 fatty acid, docosahexaenoic acid (DHA). Here, we use super-resolution imaging on patient-derived GBM stem-like cells to examine the importance of FABP7 and its fatty acid ligands in mitigating GBM cell migration. As FABPs are involved in fatty acid transport from membrane to cytosol, we focus on the effect of FABP7 and its ligand DHA on GBM membrane remodeling, as well as FABP7 nanoscale domain formation on GBM membrane. Using quantitative plasma membrane lipid order imaging, we show that FABP7 expression in GBM cells correlates with increased membrane lipid order, with DHA dramatically decreasing lipid order. Using super-resolution stimulated emission depletion (STED) microscopy, we observe non-uniform distribution of FABP7 on the surface of GBM cells, with FABP7 forming punctate nanoscale domains of ∼100 nm in diameter. These nanodomains are particularly enriched at the migrating front of GBM cells. Interestingly, FABP7 nanodomains are disrupted when GBM cells are cultured in DHA-supplemented medium. We demonstrate a tight link between cell migration, a higher membrane lipid order and increased FABP7 nanoscale domains. We propose that DHA-mediated disruption of membrane lipid order and FABP7 nanodomains forms the basis of FABP7/DHA-mediated inhibition of cell migration in GBM.
Collapse
Affiliation(s)
- Xia Xu
- Cross Cancer Institute, University of Alberta, Department of Oncology, 11560 University Avenue, Edmonton, Alberta, Canada.
| | | | | | | | | |
Collapse
|
32
|
Palmina NP, Misharina TA, Krikunova NI, Antipova AS, Martirosova EI, Semenova MG. Changes in the Free Fatty-Acid Profile in the Liver and Brain of Mice Receiving Nanolipid Complexes. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821020101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Desale SE, Chinnathambi S. α-Linolenic acid induces clearance of Tau seeds via Actin-remodeling in Microglia. MOLECULAR BIOMEDICINE 2021; 2:4. [PMID: 35006402 PMCID: PMC8607384 DOI: 10.1186/s43556-021-00028-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/14/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is known by characteristic features, extracellular burden of amyloid-β and intracellular neuronal Tau. Microglia, the innate immune cell of the brain has the ability to clear the burden of accumulated proteins via phagocytosis. But the excessive proinflammatory cytokine production, altered cellular signaling and actin remodeling hampers the process of migration and phagocytosis by microglia. Actin remodeling is necessary to initiate the chemotactic migration of microglia towards the target and engulf it. The formation of lamellipodia, filopodia, membrane ruffling and rapid turnover of F-actin is necessary to sense the extracellular target by the cells. Omega-3 fatty acids, are known to impose anti-inflammatory phenotype of microglia by enhancing its ability for migration and phagocytosis. But the role of omega-3 fatty acids in cellular actin remodeling, which is the basis of cellular functions such as migration and phagocytosis, is not well understood. Here, we have focused on the effect of dietary supplement of α-linolenic acid (ALA) on extracellular Tau internalization and assisted actin polymerization for the process. ALA is found to induce membrane ruffling and phagocytic cup formation along with cytoskeletal rearrangement. ALA also enhances the localization of Arp2/3 complex at the leading edge and its colocalization with F-actin to induce the actin polymerization. The excessive actin polymerization might help the cell to protrude forward and perform its migration. The results suggest that dietary supplement of ALA could play a neuroprotective role and slow down the AD pathology.
Collapse
Affiliation(s)
- Smita Eknath Desale
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
34
|
Fuentes NR, Mlih M, Wang X, Webster G, Cortes-Acosta S, Salinas ML, Corbin IR, Karpac J, Chapkin RS. Membrane therapy using DHA suppresses epidermal growth factor receptor signaling by disrupting nanocluster formation. J Lipid Res 2021; 62:100026. [PMID: 33515553 PMCID: PMC7933808 DOI: 10.1016/j.jlr.2021.100026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) signaling drives the formation of many types of cancer, including colon cancer. Docosahexaenoic acid (DHA, 22∶6Δ4,7,10,13,16,19), a chemoprotective long-chain n-3 polyunsaturated fatty acid suppresses EGFR signaling. However, the mechanism underlying this phenotype remains unclear. Therefore, we used super-resolution microscopy techniques to investigate the mechanistic link between EGFR function and DHA-induced alterations to plasma membrane nanodomains. Using isogenic in vitro (YAMC and IMCE mouse colonic cell lines) and in vivo (Drosophila, wild type and Fat-1 mice) models, cellular DHA enrichment via therapeutic nanoparticle delivery, endogenous synthesis, or dietary supplementation reduced EGFR-mediated cell proliferation and downstream Ras/ERK signaling. Phospholipid incorporation of DHA reduced membrane rigidity and the size of EGFR nanoclusters. Similarly, pharmacological reduction of plasma membrane phosphatidic acid (PA), phosphatidylinositol-4,5-bisphosphate (PIP2) or cholesterol was associated with a decrease in EGFR nanocluster size. Furthermore, in DHA-treated cells only the addition of cholesterol, unlike PA or PIP2, restored EGFR nanoscale clustering. These findings reveal that DHA reduces EGFR signaling in part by reshaping EGFR proteolipid nanodomains, supporting the feasibility of using membrane therapy, i.e., dietary/drug-related strategies to target plasma membrane organization, to reduce EGFR signaling and cancer risk.
Collapse
Affiliation(s)
- Natividad R Fuentes
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA; Department of Nutrition, Texas A&M University, College Station, TX, USA; Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA
| | - Mohamed Mlih
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, Bryan, TX, USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA; Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Gabriella Webster
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA; Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Sergio Cortes-Acosta
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA; Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Michael L Salinas
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA; Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Ian R Corbin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jason Karpac
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, Bryan, TX, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA; Department of Nutrition, Texas A&M University, College Station, TX, USA; Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA; Center for Translational Environmental Health Research, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
35
|
Altered Levels of Desaturation and ω-6 Fatty Acids in Breast Cancer Patients' Red Blood Cell Membranes. Metabolites 2020; 10:metabo10110469. [PMID: 33212920 PMCID: PMC7698438 DOI: 10.3390/metabo10110469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Red blood cell (RBC) membrane can reflect fatty acid (FA) contribution from diet and biosynthesis. In cancer, membrane FAs are involved in tumorigenesis and invasiveness, and are indicated as biomarkers to monitor the disease evolution as well as potential targets for therapies and nutritional strategies. The present study provides RBC membrane FA profiles in recently diagnosed breast cancer patients before starting chemotherapy treatment. Patients and controls were recruited, and their dietary habits were collected. FA lipidomic analysis of mature erythrocyte membrane phospholipids in blood samples was performed. Data were adjusted to correct for the effects of diet, body mass index (BMI), and age, revealing that patients showed lower levels of saturated fatty acids (SFA) and higher levels of monounsaturated fatty acid, cis-vaccenic (25%) than controls, with consequent differences in desaturase enzymatic index (∆9 desaturase, -13.1%). In the case of polyunsaturated fatty acids (PUFA), patients had higher values of ω-6 FA (C18:2 (+11.1%); C20:4 (+7.4%)). RBC membrane lipidomic analysis in breast cancer revealed that ω-6 pathways are favored. These results suggest new potential targets for treatments and better nutritional guidelines.
Collapse
|
36
|
Fattahi N, Shahbazi MA, Maleki A, Hamidi M, Ramazani A, Santos HA. Emerging insights on drug delivery by fatty acid mediated synthesis of lipophilic prodrugs as novel nanomedicines. J Control Release 2020; 326:556-598. [PMID: 32726650 DOI: 10.1016/j.jconrel.2020.07.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/25/2022]
Abstract
Many drug molecules that are currently in the market suffer from short half-life, poor absorption, low specificity, rapid degradation, and resistance development. The design and development of lipophilic prodrugs can provide numerous benefits to overcome these challenges. Fatty acids (FAs), which are lipophilic biomolecules constituted of essential components of the living cells, carry out many necessary functions required for the development of efficient prodrugs. Chemical conjugation of FAs to drug molecules may change their pharmacodynamics/pharmacokinetics in vivo and even their toxicity profile. Well-designed FA-based prodrugs can also present other benefits, such as improved oral bioavailability, promoted tumor targeting efficiency, controlled drug release, and enhanced cellular penetration, leading to improved therapeutic efficacy. In this review, we discuss diverse drug molecules conjugated to various unsaturated FAs. Furthermore, various drug-FA conjugates loaded into various nanostructure delivery systems, including liposomes, solid lipid nanoparticles, emulsions, nano-assemblies, micelles, and polymeric nanoparticles, are reviewed. The present review aims to inspire readers to explore new avenues in prodrug design based on the various FAs with or without nanostructured delivery systems.
Collapse
Affiliation(s)
- Nadia Fattahi
- Department of Chemistry, Faculty of Science, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran; Trita Nanomedicine Research Center (TNRC), Trita Third Millennium Pharmaceuticals, 45331-55681 Zanjan, Iran
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Aziz Maleki
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehrdad Hamidi
- Trita Nanomedicine Research Center (TNRC), Trita Third Millennium Pharmaceuticals, 45331-55681 Zanjan, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran; Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Helsinki Institute of Life Science (HiLIFE), Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland.
| |
Collapse
|
37
|
Jiao F, Sun H, Yang Q, Sun H, Wang Z, Liu M, Chen J. Identification of FADS1 Through Common Gene Expression Profiles for Predicting Survival in Patients with Bladder Cancer. Cancer Manag Res 2020; 12:8325-8339. [PMID: 32982427 PMCID: PMC7489952 DOI: 10.2147/cmar.s254316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/05/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose Aim of this study was to identify biomarkers between different grades of bladder cancer (BLCA) and its prognostic value. Methods mRNA expression data from GSE32549 and GSE71576 were extracted for further analysis. Differentially expressed genes (DEGs) were identified using GEO2R web tool. Gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and protein–protein interaction (PPI) network were conducted to explore the function and relationship of DEGs. The Cancer Genome Atlas (TCGA) database was used for external validation and Gene set enrichment analysis (GSEA) analysis was used to further identify FADS1 pathways. Bladder cancer cells and patient specimens were used to further demonstrate the function of FADS1. Results Datasets from GEO identified a panel of DEGs. Functional enrichment analysis highlighted that DEGs were associated with nuclear division, spindle, cell cycle and p53 signaling pathway. External validation from TCGA demonstrated that FADS1 was an independent prognostic marker in BLCA patients. In cell lines and tumor specimen analysis, FADS1 was overexpressed in the tumor specimen, compared with adjacent tissues, and positively correlated with tumor grade of BLCA. Moreover, FADS1 could enhance the proliferation ability and influence cell cycle of bladder cancer cells. Conclusion FADS1 was an independent prognostic biomarker for BLCA and could confer the bladder cancer cells increased proliferation ability.
Collapse
Affiliation(s)
- Fangdong Jiao
- Department of Urology, Shandong University Qilu Hospital (Qingdao), Qingdao, People's Republic of China
| | - Hao Sun
- Department of Urology, Shandong University Qilu Hospital (Qingdao), Qingdao, People's Republic of China
| | - Qingya Yang
- Department of Urology, Shandong University Qilu Hospital (Qingdao), Qingdao, People's Republic of China
| | - Hui Sun
- Department of Urology, Shandong University Qilu Hospital (Qingdao), Qingdao, People's Republic of China
| | - Zehua Wang
- Department of Urology, Shandong University Qilu Hospital (Qingdao), Qingdao, People's Republic of China
| | - Ming Liu
- Department of Urology, Shandong University Qilu Hospital (Qingdao), Qingdao, People's Republic of China
| | - Jun Chen
- Department of Urology, Shandong University Qilu Hospital (Qingdao), Qingdao, People's Republic of China
| |
Collapse
|
38
|
Haider T, Pandey V, Banjare N, Gupta PN, Soni V. Drug resistance in cancer: mechanisms and tackling strategies. Pharmacol Rep 2020; 72:1125-1151. [PMID: 32700248 DOI: 10.1007/s43440-020-00138-7] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/24/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
Drug resistance developed towards conventional therapy is one of the important reasons for chemotherapy failure in cancer. The various underlying mechanism for drug resistance development in tumor includes tumor heterogeneity, some cellular levels changes, genetic factors, and others novel mechanisms which have been highlighted in the past few years. In the present scenario, researchers have to focus on these novel mechanisms and their tackling strategies. The small molecules, peptides, and nanotherapeutics have emerged to overcome the drug resistance in cancer. The drug delivery systems with targeting moiety enhance the site-specificity, receptor-mediated endocytosis, and increase the drug concentration inside the cells, thus minimizing drug resistance and improve their therapeutic efficacy. These therapeutic approaches work by modulating the different pathways responsible for drug resistance. This review focuses on the different mechanisms of drug resistance and the recent advancements in therapeutic approaches to improve the sensitivity and effectiveness of chemotherapeutics.
Collapse
Affiliation(s)
- Tanweer Haider
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, 470003, Madhya Pradesh, India
| | - Vikas Pandey
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, 470003, Madhya Pradesh, India
| | - Nagma Banjare
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, 470003, Madhya Pradesh, India.,Formulation and Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, J&K, India
| | - Prem N Gupta
- Formulation and Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, J&K, India.
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, 470003, Madhya Pradesh, India.
| |
Collapse
|
39
|
Sazhina NN, Semenova MG, Antipova AS, Martirosova EI, Palmina NP. The Effect of the Composition of a Liposomal Nanocomplex on the Antioxidant Activity of Murine Blood Plasma and Lipids of the Liver and Brain. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920040193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
40
|
Cavazos AT, Kinnun JJ, Williams JA, Wassall SR. Vitamin E - phosphatidylethanolamine interactions in mixed membranes with sphingomyelin: Studies by 2H NMR. Chem Phys Lipids 2020; 231:104910. [PMID: 32492380 DOI: 10.1016/j.chemphyslip.2020.104910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/14/2020] [Accepted: 03/21/2020] [Indexed: 01/13/2023]
Abstract
Among the structurally diverse collection of lipids that comprise the membrane lipidome, polyunsaturated phospholipids are particularly vulnerable to oxidation. The role of α-tocopherol (vitamin E) is to protect this influential class of membrane phospholipid from oxidative damage. Whether lipid-lipid interactions play a role in supporting this function is an unanswered question. Here, we compare the molecular organization of polyunsaturated 1-[2H31]palmitoyl-2-docosahexaenoylphosphatidylethanolamine (PDPE-d31) and, as a control, monounsaturated 1-[2H31]palmitoyl-2-oleoylphosphatidylethanolamine (POPE-d31) mixed with sphingomyelin (SM) and α-tocopherol (α-toc) (2:2:1 mol) by solid-state 2H NMR spectroscopy. In both cases the effect of α-toc appears similar. Spectral moments reveal that the main chain melting transition of POPE-d31 and PDPE-d31 is broadened beyond detection. A spectral component attributed to the formation of inverted hexagonal HII phase in coexistence with lamellar Lα phase by POPE-d31 (20 %) and PDPE-d31 (18 %) is resolved following the addition of α-toc. Order parameters in the remaining Lα phase are increased slightly more for POPE-d31 (7%) than PDPE-d31 (4%). Preferential interaction with polyunsaturated phospholipid is not apparent in these results. The propensity for α-toc to form phase structure with negative curvature that is more tightly packed at the membrane surface, nevertheless, may restrict the contact of free radicals with lipid chains on phosphatidylethanolamine molecules that accumulate polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Andres T Cavazos
- Department of Physics, Indiana University-Purdue University, Indianapolis, IN, 46202, United States
| | - Jacob J Kinnun
- Department of Physics, Indiana University-Purdue University, Indianapolis, IN, 46202, United States
| | - Justin A Williams
- Department of Physics, Indiana University-Purdue University, Indianapolis, IN, 46202, United States
| | - Stephen R Wassall
- Department of Physics, Indiana University-Purdue University, Indianapolis, IN, 46202, United States.
| |
Collapse
|
41
|
FADS1 promotes the progression of laryngeal squamous cell carcinoma through activating AKT/mTOR signaling. Cell Death Dis 2020; 11:272. [PMID: 32332698 PMCID: PMC7181692 DOI: 10.1038/s41419-020-2457-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Metabolic abnormality is the major feature of laryngeal squamous cell carcinoma (LSCC), however, the underlying mechanism remain largely elusive. Fatty acid desaturase 1 (FADS1), as the key rate-limiting enzyme of polyunsaturated fatty acids (PUFAs), catalyzes dihomo-gamma-linolenic acid (DGLA) to arachidonic acid (AA). In this study, we reported that the expression of FADS1 was upregulated in LSCC, high FADS1 expression was closely associated with the advanced clinical features and poor prognosis of the recurrent LSCC patients after chemotherapy. Liquid chromatograph-mass spectrometry (LC-MS) analysis revealed that FADS1 overexpression induced greater conversion of DGLA to AA, suggesting an increased activity of FADS1. Similarly, the level of prostaglandin E2 (PGE2), a downstream metabolite of AA, was also elevated in cancerous laryngeal tissues. Functional assays showed that FADS1 knockdown suppressed the proliferation, migration and invasion of LSCC cells, while FADS1 overexpression had the opposite effects. Bioinformatic analysis based on microarray data found that FADS1 could activate AKT/mTOR signaling. This hypothesis was further validated by both in vivo and in vitro assays. Hence, our data has supported the viewpoint that FADS1 is a potential promoter in LSCC progression, and has laid the foundation for further functional research on the PUFA dietary supplementation interventions targeting FADS1/AKT/mTOR pathway for LSCC prevention and treatment.
Collapse
|
42
|
Šunderić M, Robajac D, Gligorijević N, Miljuš G, Nedić O, Smilkov K, Ackova DG, Rudić-Grujić V, Penezić A. Is There Something Fishy About Fish Oil? Curr Pharm Des 2020; 25:1747-1759. [PMID: 31298156 DOI: 10.2174/1381612825666190705185800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/27/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Fish is consumed as food worldwide and is considered as a rich source of essential nutrients required for a healthy life. Supplementation with fish oil has been adopted as a solution to prevent or cure many pathophysiological states and diseases by both the professionals and the civil population. The beneficial effects are, however, being questioned, as some controversial results were obtained in clinical and population studies. METHODS Critical evaluation of studies regarding known effects of fish oil, both in favour of its consumption and related controversies. RESULTS From the literature review, contradictory allegations about the positive action of the fish oil on human health emerged, so that a clear line about its beneficial effect cannot be withdrawn. CONCLUSION Scientific results on the application of fish oil should be taken with caution as there is still no standardised approach in testing its effects and there are significantly different baselines in respect to nutritional and other lifestyle habits of different populations.
Collapse
Affiliation(s)
- Miloš Šunderić
- Department of Metabolism, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, Serbia
| | - Dragana Robajac
- Department of Metabolism, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, Serbia
| | - Nikola Gligorijević
- Department of Metabolism, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, Serbia
| | - Goran Miljuš
- Department of Metabolism, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, Serbia
| | - Olgica Nedić
- Department of Metabolism, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, Serbia
| | - Katarina Smilkov
- Department of Pharmacy, Faculty of Medical Sciences, University Goce Delcev, Stip, R, North Macedonia
| | - Darinka Gjorgieva Ackova
- Department of Pharmacy, Faculty of Medical Sciences, University Goce Delcev, Stip, R, North Macedonia
| | - Vesna Rudić-Grujić
- Department of Hygiene and Human Health, Public Health Institute Republic of Srpska, Medical Faculty, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Ana Penezić
- Department of Metabolism, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, Serbia
| |
Collapse
|
43
|
Salinas ML, Fuentes NR, Choate R, Wright RC, McMurray DN, Chapkin RS. AdipoRon Attenuates Wnt Signaling by Reducing Cholesterol-Dependent Plasma Membrane Rigidity. Biophys J 2020; 118:885-897. [PMID: 31630812 PMCID: PMC7036725 DOI: 10.1016/j.bpj.2019.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/28/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
The increasing prevalence of adult and adolescent obesity and its associated risk of colorectal cancer reinforces the urgent need to elucidate the underlying mechanisms contributing to the promotion of colon cancer in obese individuals. Adiponectin is an adipose tissue-derived adipokine, whose levels are reduced during obesity. Both epidemiological and preclinical data indicate that adiponectin suppresses colon tumorigenesis. We have previously demonstrated that both adiponectin and AdipoRon, a small-molecule adiponectin receptor agonist, suppress colon cancer risk in part by reducing the number of Lgr5+ stem cells in mouse colonic organoids. However, the mechanism by which the adiponectin signaling pathway attenuates colon cancer risk remains to be addressed. Here, we have hypothesized that adiponectin signaling supports colonic stem cell maintenance through modulation of the biophysical properties of the plasma membrane (PM). Specifically, we investigated the effects of adiponectin receptor activation by AdipoRon on the biophysical perturbations linked to the attenuation of Wnt-driven signaling and cell proliferation as determined by LEF luciferase reporter assay and colonic organoid proliferation, respectively. Using physicochemical sensitive dyes, Di-4-ANEPPDHQ and C-laurdan, we demonstrated that AdipoRon decreased the rigidity of the colonic cell PM. The decrease in membrane rigidity was associated with a reduction in PM free cholesterol levels and the intracellular accumulation of free cholesterol in lysosomes. These results suggest that adiponectin signaling plays a role in modulating cellular cholesterol homeostasis, PM biophysical properties, and Wnt-driven signaling. These findings are noteworthy because they may in part explain how obesity drives colon cancer progression.
Collapse
Affiliation(s)
- Michael L Salinas
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas; Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| | - Natividad R Fuentes
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas; Department of Nutrition and Food Science, Texas A&M University, College Station, Texas; Interdisciplinary Faculty of Toxicology Program, Texas A&M University, College Station, Texas
| | - Rachel Choate
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Rachel C Wright
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas; Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| | - David N McMurray
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas; Department of Nutrition and Food Science, Texas A&M University, College Station, Texas; Interdisciplinary Faculty of Toxicology Program, Texas A&M University, College Station, Texas; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas; Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas; Center for Environmental Health Research, Texas A&M University, College Station, Texas.
| |
Collapse
|
44
|
Bai X, Shao J, Zhou S, Zhao Z, Li F, Xiang R, Zhao AZ, Pan J. Inhibition of lung cancer growth and metastasis by DHA and its metabolite, RvD1, through miR-138-5p/FOXC1 pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:479. [PMID: 31783879 PMCID: PMC6884860 DOI: 10.1186/s13046-019-1478-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/11/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Non small cell lung cancer (NSCLC) is one of the most common cancers in the world. DHA is known to be capable of suppressing NSCLC cell proliferation and metastasis. However, the mechanisms by which DHA exhibits its antitumor effects are unknown. Here we aimed to identify the effects and mechanisms of DHA and its metabolites on lung cancer cell growth and invasion. METHODS As measures of cell proliferation and invasion ability, the cell viability and transwell assays were used in vitro. Transgenic mfat-1 mice, which convert ω-6 PUFAs to ω-3 PUFAs, were used to detect the effect of endogenous DHA on tumor transplantation. An LC - MS/MS analysis identified the elevation of several eicosanoid metabolites of DHA. By using qPCR miRNA microarray, online prediction software, luciferase reporter assays and Western blot analysis, we further elucidated the mechanisms. RESULTS Addition of exogenous DHA inhibited the growth and invasion in NSCLC cells in vitro. Endogenously produced DHA attenuated LLC-derived tumor growth and metastasis in the transgenic mfat-1 mice. Among the elevation of DHA metabolites, resolvin D1 (RvD1) significantly contributed to the inhibition in cell growth and invasion. MiRNA microarray revealed that the level of miR-138-5p was significantly increased after RvD1 treatment. MiR-138-5p mimics decreased cell viability and invasion; while miR-138-5p inhibitor abolished RvD1-mediated suppression of cell viability and invasion. The expression of FOXC1 was significantly reduced upon overexpression of miR-138-5p while luciferase reporter assay showed that FOXC1 was a direct target of miR-138-5p. In vivo, endogenous DHA by the mfat-1 transgene enhanced miR-138-5p expression and decreased FOXC1 expression. Furthermore, overexpression of FOXC1 reversed the inhibition in cell viability and invasion induced by RvD1 treatment. CONCLUSIONS These data identified the RvD1/miR-138-5p/FOXC1 pathway as a novel mechanism by DHA and its metabolite, RvD1, and the potential of targeting such pathway as a therapeutic strategy in treating NSCLC.
Collapse
Affiliation(s)
- Xiaoming Bai
- Department of Pathology, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Jiaofang Shao
- Department of Bioinformatics, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Sujin Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Zhenggang Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Fanghong Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Rong Xiang
- Department of Pathology, The Second People's Hospital of Nantong, Nantong, 226000, People's Republic of China
| | - Allan Z Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Jinshun Pan
- Department of Biotherapy, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, People's Republic of China.
| |
Collapse
|
45
|
Safi-Stibler S, Gabory A. Epigenetics and the Developmental Origins of Health and Disease: Parental environment signalling to the epigenome, critical time windows and sculpting the adult phenotype. Semin Cell Dev Biol 2019; 97:172-180. [PMID: 31587964 DOI: 10.1016/j.semcdb.2019.09.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/19/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023]
Abstract
The literature about Developmental Origins of Health and Disease (DOHaD) studies is considerably growing. Maternal and paternal environment, during all the development of the individual from gametogenesis to weaning and beyond, as well as the psychosocial environment in childhood and teenage, can shape the adult and the elderly person's susceptibility to her/his own environment and diseases. This non-conventional, non-genetic, inheritance is underlain by several mechanisms among which epigenetics is obviously central, due to the notion of memory of early decisional events during development even when this stimulus is gone, that is implied in Waddington's developmental concept. This review first summarizes the different mechanisms by which the environment can model the epigenome: receptor signalling, energy metabolism and signal mechanotransduction from extracellular matrix to chromatin. Then an overview of the epigenetic changes in response to maternal environment during the vulnerability time windows, gametogenesis, early development, placentation and foetal growth, and postnatal period, is described, with the specific example of overnutrition and food deprivation. The implication of epigenetics in DOHaD is obvious, however the precise causal chain from early environment to the epigenome modifications to the phenotype still needs to be deciphered.
Collapse
Affiliation(s)
- Sofiane Safi-Stibler
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy-en-Josas, France; Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - Anne Gabory
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
46
|
El-Bayoumy K, Manni A. Customized Prevention Trials Could Resolve the Controversy of the Effects of Omega-3 Fatty Acids on Cancer. Nutr Cancer 2019; 72:183-186. [PMID: 31407927 DOI: 10.1080/01635581.2019.1651348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Literature data revealed that the benefits of consuming omega-3 fatty acid (n-3FA) supplements such as fish oil with the goal of reducing the incidence of chronic diseases such as cardiovascular disease and cancer remain controversial. The purpose of this commentary is to discuss factors that may account for the inconsistency of results across different studies. Critical review of the published data, including our own preclinical and clinical studies, strongly suggests that customized clinical prevention trials are needed to resolve the above-mentioned controversy. Specifically, in order to develop a personalized cancer prevention strategy, more attention should be given to multiple factors including the dose of the n-3FA, the specific placebo used as a comparator, duration of administration, type of intervention (primary vs secondary prevention trial), specific compound (DHA vs EPA vs their metabolites), the ratio of n-3FA:n-6FA and the target population tested (high vs average risk).
Collapse
Affiliation(s)
- Karam El-Bayoumy
- Department of Biochemistry & Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Andrea Manni
- Department of Medicine, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| |
Collapse
|
47
|
de Bus I, Witkamp R, Zuilhof H, Albada B, Balvers M. The role of n-3 PUFA-derived fatty acid derivatives and their oxygenated metabolites in the modulation of inflammation. Prostaglandins Other Lipid Mediat 2019; 144:106351. [PMID: 31260750 DOI: 10.1016/j.prostaglandins.2019.106351] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022]
Abstract
Notwithstanding the ongoing debate on their full potential in health and disease, there is general consensus that n-3 PUFAs play important physiological roles. Increasing dietary n-3 PUFA intake results in increased DHA and EPA content in cell membranes as well as an increase in n-3 derived oxylipin and -endocannabinoid concentrations, like fatty acid amides and glycerol-esters. These shifts are believed to (partly) explain the pharmacological and anti-inflammatory effects of n-3 PUFAs. Recent studies discovered that n-3 PUFA-derived endocannabinoids can be further metabolized by the oxidative enzymes CYP-450, LOX and COX, similar to the n-6 derived endocannabinoids. Interestingly, these oxidized n-3 PUFA derived endocannabinoids of eicosapentaenoyl ethanolamide (EPEA) and docosahexaenoyl ethanolamide (DHEA) have higher anti-inflammatory and anti-proliferative potential than their precursors. In this review, an overview of recently discovered n-3 PUFA derived endocannabinoids and their metabolites is provided. In addition, the use of chemical probes will be presented as a promising technique to study the n-3 PUFA and n-3 PUFA metabolism within the field of lipid biochemistry.
Collapse
Affiliation(s)
- Ian de Bus
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands; Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Renger Witkamp
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands; School of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, Tianjin, PR China; Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| | - Michiel Balvers
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| |
Collapse
|
48
|
Freitas RDS, Campos MM. Protective Effects of Omega-3 Fatty Acids in Cancer-Related Complications. Nutrients 2019; 11:nu11050945. [PMID: 31035457 PMCID: PMC6566772 DOI: 10.3390/nu11050945] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/24/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs) are considered immunonutrients and are commonly used in the nutritional therapy of cancer patients due to their ample biological effects. Omega-3 PUFAs play essential roles in cell signaling and in the cell structure and fluidity of membranes. They participate in the resolution of inflammation and have anti-inflammatory and antinociceptive effects. Additionally, they can act as agonists of G protein-coupled receptors, namely, GPR40/FFA1 and GPR120/FFA4. Cancer patients undergo complications, such as anorexia-cachexia syndrome, pain, depression, and paraneoplastic syndromes. Interestingly, the 2017 European Society for Clinical Nutrition and Metabolism (ESPEN) guidelines for cancer patients only discuss the use of omega-3 PUFAs for cancer-cachexia treatment, leaving aside other cancer-related complications that could potentially be managed by omega-3 PUFA supplementation. This critical review aimed to discuss the effects and the possible underlying mechanisms of omega-3 PUFA supplementation in cancer-related complications. Data compilation in this critical review indicates that further investigation is still required to assess the factual benefits of omega-3 PUFA supplementation in cancer-associated illnesses. Nevertheless, preclinical evidence reveals that omega-3 PUFAs and their metabolites might modulate pivotal pathways underlying complications secondary to cancer, indicating that this is a promising field of knowledge to be explored.
Collapse
Affiliation(s)
- Raquel D S Freitas
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde, PUCRS, Porto Alegre 90619-900, RS, Brazil.
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, PUCRS, Porto Alegre 90619-900, RS, Brazil.
| | - Maria M Campos
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde, PUCRS, Porto Alegre 90619-900, RS, Brazil.
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, PUCRS, Porto Alegre 90619-900, RS, Brazil.
- Programa de Pós-graduação em Odontologia, Escola de Ciências da Saúde, PUCRS, Porto Alegre 90619-900, RS, Brazil.
| |
Collapse
|
49
|
Functional link between plasma membrane spatiotemporal dynamics, cancer biology, and dietary membrane-altering agents. Cancer Metastasis Rev 2019; 37:519-544. [PMID: 29860560 DOI: 10.1007/s10555-018-9733-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cell plasma membrane serves as a nexus integrating extra- and intracellular components, which together enable many of the fundamental cellular signaling processes that sustain life. In order to perform this key function, plasma membrane components assemble into well-defined domains exhibiting distinct biochemical and biophysical properties that modulate various signaling events. Dysregulation of these highly dynamic membrane domains can promote oncogenic signaling. Recently, it has been demonstrated that select membrane-targeted dietary bioactives (MTDBs) have the ability to remodel plasma membrane domains and subsequently reduce cancer risk. In this review, we focus on the importance of plasma membrane domain structural and signaling functionalities as well as how loss of membrane homeostasis can drive aberrant signaling. Additionally, we discuss the intricacies associated with the investigation of these membrane domain features and their associations with cancer biology. Lastly, we describe the current literature focusing on MTDBs, including mechanisms of chemoprevention and therapeutics in order to establish a functional link between these membrane-altering biomolecules, tuning of plasma membrane hierarchal organization, and their implications in cancer prevention.
Collapse
|
50
|
Cam A, Oyirifi AB, Liu Y, Haschek WM, Iwaniec UT, Turner RT, Engeseth NJ, Helferich WG. Thermally Abused Frying Oil Potentiates Metastasis to Lung in a Murine Model of Late-Stage Breast Cancer. Cancer Prev Res (Phila) 2019; 12:201-210. [PMID: 30885926 DOI: 10.1158/1940-6207.capr-18-0220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/07/2018] [Accepted: 02/15/2019] [Indexed: 12/14/2022]
Abstract
Deep-frying is a popular form of food preparation used globally and throughout in the United States. Each time dietary oils are heated to deep-frying temperatures, they undergo chemical alterations that result in a new matrix of lipid structures. These lipid products include triglyceride dimers, polymers, oxidized triglycerides, and cyclic monomers, which raises nutritional concerns about associations between these lipid products and heightened health risks. Reports of associations between thermally abused frying oil and deleterious health outcomes currently exist, yet there is little information concerning the effects of thermally abused frying oil consumption and the progression of breast cancer. This study used a late-stage breast cancer murine model and in vivo bioluminescent imaging to monitor progression of metastasis of 4T1 tumor cells in animals consuming fresh soybean oil (SBO) and a thermally abused frying oil (TAFO). Bioluminescent and histologic examinations demonstrated that TAFO consumption resulted in a marked increase of metastatic lung tumor formation compared to SBO consumption. Further, in animals consuming the TAFO treatment diet, metastatic tumors in the lung displayed a 1.4-fold increase in the Ki-67 marker of cellular proliferation and RNA-sequencing analysis of the hepatic tissue revealed a dietary-induced modulation of gene expression in the liver.
Collapse
Affiliation(s)
- Anthony Cam
- Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Illinois
| | - Ashley B Oyirifi
- Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Illinois
| | - Yunxian Liu
- Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Illinois
| | - Wanda M Haschek
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Illinois
| | - Urszula T Iwaniec
- Skeletal Biology Laboratory, Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon
| | - Russell T Turner
- Skeletal Biology Laboratory, Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon
| | - Nicki J Engeseth
- Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Illinois
| | - William G Helferich
- Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Illinois.
| |
Collapse
|