1
|
Bhattacharjee S, Ghosh PK, Basu S, Mukherjee T, Mandal B, Sinha P, Mukherjee A. Microplastic contamination in threatened wild felids of India: Understanding environmental uptake, feeding implications, and associated risks. ENVIRONMENTAL RESEARCH 2025; 273:121218. [PMID: 40015425 DOI: 10.1016/j.envres.2025.121218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 03/01/2025]
Abstract
While the presence of microplastics (MPs, <5 mm) in various aquatic organisms is well-documented, studies on the accumulation of MPs in terrestrial predators remain limited worldwide, including in India. This study aims to evaluate, for the first time, the occurrence of MPs in the scat of mid-sized felids-fishing cat and jungle cat-from their overlapping habitat in the Gangetic Estuary of India. The risk assessment of MPs and management recommendation for MP mitigation was also discussed in this context. Notably, our study is the first to report the presence of MPs and mesoplastics in fishing cat from India and jungle cat globally. The abundance of MPs was found to be higher in jungle cat (12.6 ± 1.93 MP/g d.w) compared to fishing cat (10.5 ± 2.12 MP/g d.w) in the Gangetic estuary. Furthermore, fiber-shaped (70.37%) and 1-5 mm-sized (47.73%) MPs predominated in both felid species, while fiber bundles were observed only in jungle cat. Red-colored MPs (27.62%) were predominantly found in fishing cat, whereas transparent MPs (33.33%) were more common in jungle cat. Scanning electron microscopy revealed possible environmental and digestive degradation marks on the MPs. A total of seven synthetic and one natural polymer were identified, with Ethylene Vinyl Alcohol (55.56%) being predominant in fishing cat and Polyethylene (33.33%) more common in jungle cat. Polymer risk assessment indicated that the MPs in fishing cat fall into the danger category, Group IV (PHI 100-1000), while jungle cat possess high threat under extreme danger category, Group V (PHI >1000). The observed MPs and mesoplastics in felids probably come from adjacent environmental uptake and/or accumulate through trophic transfer from prey items. The evidence of MPs in felids may pose a threat to the big cat-Royal Bengal tigers in the Sundarbans. Therefore, various landscape-based policy implementations are recommended to mitigate MP pollution.
Collapse
Affiliation(s)
- Shrayan Bhattacharjee
- Ecosystem and Ecology Laboratory, Post Graduate Department of Zoology, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India
| | - Pradipta Kumar Ghosh
- Ecosystem and Ecology Laboratory, Post Graduate Department of Zoology, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India
| | - Shambadeb Basu
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Tanoy Mukherjee
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Kolkata, 700108, India.
| | - Banani Mandal
- Department of Zoology, Jogesh Chandra Chaudhuri College, Kolkata, 700033, India
| | - Pritam Sinha
- Department of Physical Science, Bose Institute, Kolkata, 700091, India
| | - Arunava Mukherjee
- Ecosystem and Ecology Laboratory, Post Graduate Department of Zoology, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India.
| |
Collapse
|
2
|
Shekhar S, Sarkar S. Microplastic aging and adsorption in the atmosphere, and their associated impacts on various spheres of the earth: A review. CHEMOSPHERE 2025; 376:144256. [PMID: 40054284 DOI: 10.1016/j.chemosphere.2025.144256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/07/2025] [Accepted: 02/23/2025] [Indexed: 03/23/2025]
Abstract
Microplastic (MPs, size <5 mm) is an emerging category of contaminants with detrimental effects on human health, climate, and ecology. The atmospheric pathway is a crucial transport route for the migration of MPs from source to receptor locations. This long-range transport leads to the ubiquitous presence of MPs across all environmental matrices and constrains the source-transport pathway-sink interaction. During atmospheric transport, MPs experience aging and adsorption as a result of interactions with winds, solar radiation, moisture, pH, and atmospheric pollutants, which alters their hydrophilicity, structure, surface area, size, color, and the capacity for adsorption, often resulting in elevated toxicity and associated risks. However, the multifaceted dynamics of atmospheric aging of MPs and consequent impacts are poorly understood. This review presents a critical assessment of three major factors that determine the nature and degree of MP aging and adsorption in the atmosphere, namely: intrinsic MP properties such as the degree of unsaturation, crystallinity, presence of functional groups, charge, specific surface area, and structural defects; environmental factors such as temperature, pH, moisture, and the presence of chemical species; and pollutant characteristics such as charge and hydrophilicity/hydrophobicity that influence adsorption, with an emphasis on potential mechanisms. Additionally, the review presents a comparative assessment of the critical factors and mechanisms responsible for aging and adsorption in atmosphere with those in other environmental media. Further, the potential impacts of atmospherically aged MPs on climate, the biosphere, cryosphere, pedosphere, and hydrosphere are summarized. The review finally identifies key knowledge gaps and outlines perspectives for future research.
Collapse
Affiliation(s)
- Sneha Shekhar
- School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh 175075, India
| | - Sayantan Sarkar
- School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh 175075, India.
| |
Collapse
|
3
|
Rindelaub JD, Salmond JA, Fan W, Miskelly GM, Dirks KN, Henning S, Conrath T, Stratmann F, Coulson G. Aerosol mass concentrations and dry/wet deposition of atmospheric microplastics at a remote coastal location in New Zealand. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126034. [PMID: 40090453 DOI: 10.1016/j.envpol.2025.126034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/18/2025]
Abstract
This study quantified airborne microplastic concentrations by mass and number counts using both active and passive sampling at a remote coastal location in Southern New Zealand. Seven polymers were quantified using pyrolysis gas chromatography mass spectrometry (Pyr-GC/MS) in atmospheric samples, finding that plastics comprised at least 0.14 % of total suspended particulate mass at the remote coastal site. Air parcel back trajectories suggest that airborne microplastics at the site, observed at an average concentration of 65 ± 6 ng m-3, have origins from the Southern Ocean. Additionally, the results demonstrate that reporting atmospheric deposition of microplastics by number counts may underestimate the true amount of plastics present in samples, as size limitations associated with microscopic imaging do not allow for quantification of the most abundant sizes and types of environmental microplastics. With current uncertainties related to aerosol formation in the Southern Ocean and the associated impacts on climate forcing, further research is urgently needed on the production of airborne microplastics originating from the Southern Ocean, a possible microplastic reservoir.
Collapse
Affiliation(s)
- Joel D Rindelaub
- University of Auckland, School of Chemical Sciences, Auckland, New Zealand.
| | | | - Wenxia Fan
- University of Auckland, School of Environment, Auckland, New Zealand
| | - Gordon M Miskelly
- University of Auckland, School of Chemical Sciences, Auckland, New Zealand
| | - Kim N Dirks
- University of Auckland, Civil & Environmental Engineering, Auckland, New Zealand
| | - Silvia Henning
- Leibniz-Institute for Tropospheric Research, Leipzig, Germany
| | - Thomas Conrath
- Leibniz-Institute for Tropospheric Research, Leipzig, Germany
| | - Frank Stratmann
- Leibniz-Institute for Tropospheric Research, Leipzig, Germany
| | - Guy Coulson
- The Air Quality Collective, Nelson, New Zealand
| |
Collapse
|
4
|
Bruce-Vanderpuije P, Agadzi YA, Norvimagbe IC, Asmah R, Hildebrandt L, Pröfrock D, Ebinghaus R, Asante KA. Microplastics in the lower Volta Basin, Ghana - Quantitation and fish dietary exposure assessment using advanced spectroscopic techniques. CHEMOSPHERE 2025; 375:144236. [PMID: 39985919 DOI: 10.1016/j.chemosphere.2025.144236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/08/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Despite recent surge in microplastics (MPs) research, there is a paucity of information on freshwaters in Ghana. For the first time, MPs in cage and wild sites of the lower Volta Basin were evaluated, and polymer type characterized using LDIR and ATR-FTIR. Seasonal variations and mode of fish production significantly influenced MPs abundance. In fish, MPs concentration of 387 ± 33.85 (wet season) contrasted with 288 ± 21.4 items individual-1 (dry season). Benthopelagics consumed 63% MPs; cage benthopelagics- Oreochromis niloticus consumed 58.5% MPs. Statistically significant differences in mean MPs were observed in fishes. MPs extracted from grower feed for cage fish was ≥24 items (kg feed)-1. The high metabolic rates of smaller-weighted fishes induced a higher consumption of MPs. From fish health assessment, a positive growth coefficient was observed for Oreochromis niloticus; negative allometric growth was observed for some wild fishes. Spatially, MPs decreased in fish along Basin sites- Asikuma (365 ± 36.58 items individual-1) > Kpong (209 ± 19.71 items individual-1) > Sogakope (71.3 ± 20.86 items individual-1). The Basin sediment was significantly polluted (1950 ± 80 MP items (kg dw)-1), contrary to the freshwater (111.0 ± 11 MP items (L water)-1). 12.3% of MPs polymers characterized had aged and 54% of particles were unknown. MP shapes detected were fibre (97.9%), fragment (2.1%) and film (0.06%). Dominant particle sizes (0.50-2.50 mm, 85%) were black- and blue-coloured. Major polymers were acrylates-polyurethane-varnish (45.7%) and PVC (39%). Lower contributions were obtained from PET, PA, PP, PE, and PE-Cl. An estimated freshwater-fish annual intake (cage: 2561; wild: 4785 MP items (person year)-1) exceeded the recommended EUMOFA/NOAA guidelines (518-3078 particles (year capita)-1). From this study, plastic aquaculture infrastructure from fish cages, effluents, and fishmeal contributed to MPs consumed by fish. This study provides baseline data on MPs distribution within the Volta Basin, Ghana.
Collapse
Affiliation(s)
| | - Yaa Asabea Agadzi
- CSIR Water Research Institute, P. O. Box AH 38, Achimota, Accra, Ghana; CSIR College of Science and Technology, 1 Second Food Research Rd, Accra, Ghana.
| | - Ishmael Cudjoe Norvimagbe
- CSIR Water Research Institute, P. O. Box AH 38, Achimota, Accra, Ghana; CSIR College of Science and Technology, 1 Second Food Research Rd, Accra, Ghana.
| | - Ruby Asmah
- CSIR Water Research Institute, P. O. Box AH 38, Achimota, Accra, Ghana.
| | - Lars Hildebrandt
- Helmholtz Zentrum Hereon, Institute of Coastal Environmental Chemistry, Geesthacht, Germany.
| | - Daniel Pröfrock
- Helmholtz Zentrum Hereon, Institute of Coastal Environmental Chemistry, Geesthacht, Germany.
| | - Ralf Ebinghaus
- Helmholtz Zentrum Hereon, Institute of Coastal Environmental Chemistry, Geesthacht, Germany.
| | | |
Collapse
|
5
|
Rivas-Iglesias L, Gutiérrez Á, Dopico E, Fernández S, Soto-López V, Garcia-Vazquez E. Endangered, exploited glass eels (Anguilla anguilla) with critical levels of heavy metals and microplastics reveal both shipping and plastic spill threats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125824. [PMID: 39923969 DOI: 10.1016/j.envpol.2025.125824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
In the life of the endangered but still fished Anguilla anguilla, glass eels are recruited through estuaries. These fragile ecosystems are among the most disturbed on the planet. Here, heavy metals and microplastics were measured in estuary water and European glass eels entering bay of Biscay rivers of different size and anthropogenic stress. Eels from all the estuaries exhibited cadmium exceeding legal European limits, as happened with lead in samples from the highly disturbed Avilés estuary. Several water samples from small rivers surpassed the estimated limit of microplastic for ecotoxicological safety. In multiple regression analysis, both eel lead and microplastic content were significantly explained from shipping activity in the estuaries. Eel cadmium content was not associated with estuary stressors, being probably acquired during the oceanic migration of eel larvae. The presence in eels of new white polyethylene particles that had not been found previously in the region could be explained from the marine plastic spill of "Toconao" cargo in December. The same spill could explain a significant increase of microplastic bioconcentration in the glass eels in comparison with previous surveys. These risks for critically endangered eels, and for the consumers, highlight the urgent need for reducing the impact of contaminants on both local and global scales.
Collapse
Affiliation(s)
| | | | | | | | - Verónica Soto-López
- Department of Nautical Science & Technology, University of Oviedo, 33071, Oviedo, Asturias, Spain
| | | |
Collapse
|
6
|
Yamamoto K, Lee S, Tobino T, Nakajima F. Efficient pretreatment method for analyzing microplastics in urban road dust containing composite materials. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70028. [PMID: 39940028 PMCID: PMC11822084 DOI: 10.1002/wer.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/24/2024] [Accepted: 01/17/2025] [Indexed: 02/14/2025]
Abstract
Tire wear particles (TWPs) and road marking paint (RMP) fragments are main sources of composite microplastics (MPs) in urban road dust and contribute significantly to the load of MPs in water environments. However, few studies have investigated the influence of organic decomposition such as cellulolytic enzyme decomposition (EZM) and Fenton (FT), on the abundance and characteristics of composite MPs in the environment. This study aimed to evaluate an organic matter decomposition method suitable for MP analysis using urban road dust containing composite materials, focusing on EZM and FT methods. The EZM has 1.1-4.5 times as high recovery of synthetic polymers as FT based on particle number. The difference in the number of orange particles was thought to be one of the factors behind this. Sodium citrate buffer used in EZM might degrade any components in the RMP-suspected orange particles and reduce the particle density to float in the NaI solution. For black tire-suspected particles, which were detected in large numbers, no significant difference was confirmed between EZM and FT in the number of these particles, but FT methods might affect the proportion of tire material in tire-suspected materials. The EZM method may be useful for quantification of composite MPs and is more suitable for analyzing samples in which there may be many RMP-suspected particles due to the characteristics of the surrounding environment or catchment area. PRACTITIONER POINTS: Tires and road marking paint (RMP) are main sources of composite microplastics (MPs) washed into stormwater from road dust. The cellulolytic enzyme decomposition is useful for analysis of composite MPs and comprehensive understanding of materials in the environment. It is necessary to select an organic matter decomposition method that suits the sample characteristics and research purpose.
Collapse
Affiliation(s)
- Kanako Yamamoto
- Department of Urban Engineering, Graduate School of EngineeringThe University of TokyoTokyoJapan
| | - Soyoung Lee
- Environmental Science CenterThe University of TokyoTokyoJapan
| | - Tomohiro Tobino
- Department of Urban Engineering, Graduate School of EngineeringThe University of TokyoTokyoJapan
- Environmental Science CenterThe University of TokyoTokyoJapan
- Collaborative Research Institute for Innovative MicrobiologyThe University of TokyoTokyoJapan
| | - Fumiyuki Nakajima
- Department of Urban Engineering, Graduate School of EngineeringThe University of TokyoTokyoJapan
- Environmental Science CenterThe University of TokyoTokyoJapan
| |
Collapse
|
7
|
Rezania S, Miri S, Cho J, Hur J, Kamyab H, Darajeh N, Mohammadi AA, Molani F, Taghavijeloudar M. Microplastic pollution in the marine environment: Distribution factors and mitigation strategies in different oceans. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 269:104496. [PMID: 39793407 DOI: 10.1016/j.jconhyd.2025.104496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/12/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025]
Abstract
As the COVID-19 pandemic began in 2020, plastic usage spiked, and microplastic (MP) generation has increased dramatically. It is documented that MP can transfer from the source to the ocean environment where they accumulate as the destination. Therefore, it is essential to understand their transferring pathways and effective environmental factors to determine the distribution of MPs in the marine environment. This article reviews the environmental factors that affect MP distribution in the oceans including abiotic such as ocean currents and wind direction, physical/chemical and biological reactions of MPs, natural sinking, particle size and settling velocity, and biotic including biofouling, and incorporation in fecal material. It was found that velocity and physical shearing are the most important parameters for MP accumulation in the deep ocean. Besides, this review proposes different research-based, national-level, and global-level strategies for the mitigation of MPs after the pandemic. Based on the findings, the level of MP pollution in the oceans is directly correlated to coastal areas with high populations, particularly in African and Asian countries. Future studies should focus on establishing predictive models based on the movement and distribution of MPs to mitigate the levels of pollution.
Collapse
Affiliation(s)
- Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea.
| | - Saba Miri
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Jinwoo Cho
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Hesam Kamyab
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India; The KU-KIST Graduate School of Energy and Environment, Korea University, 145 Anam-ro, Seongbuk-Gu, Seoul 02841, Republic of Korea
| | - Negisa Darajeh
- Aurecon Group, 110 Carlton Gore Road, Newmarket, Auckland 1023, New Zealand
| | - Ali Akbar Mohammadi
- Department of Environmental Health Engineering, School of Public Health, Neyshabur University of Medical Sciences, Neyshabur, Iran; Workplace Health Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Farzad Molani
- Department of Chemistry, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran
| | - Mohsen Taghavijeloudar
- Department of Civil and Environmental Engineering, Seoul National University, 151-744 Seoul, South Korea
| |
Collapse
|
8
|
Diana ZT, Chen Y, Rochman CM. Paint: a ubiquitous yet disregarded piece of the microplastics puzzle. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:26-44. [PMID: 39887286 PMCID: PMC11790211 DOI: 10.1093/etojnl/vgae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 02/01/2025]
Abstract
Microplastics are widespread pollutants. Microplastics generated from the wear and tear of paints and coatings have recently been modeled to be a large source of microplastics to the environment. Yet, studies focused on microplastics broadly frequently overlook paint microplastics. In this article, we systematically reviewed the primary literature (turning up 53 relevant articles) on paint microplastic sources, identification methods, environmental concentrations, and toxicity to model organisms. Examples of sources of paint microplastics include paints from buildings and murals, crafts and hobbies, cars and roads, marine boats and structures, and industrial systems like pipes, sewers, and other infrastructure. Paint microplastics have been quantified in several marine samples from Europe and, to a lesser extent, East Asia. Reported concentrations of paint microplastics are up to 290,000 particles per kilogram of sediments, with the greatest concentration reported near a graffiti wall. Out of the toxicity studies testing paint microplastics, there have been 68 tested effects in total across all endpoints and organisms and 17 quantified lethal concentration 50% doses (ranging from 0.001 to 20 g/L). Of the tested effects, 45 observed endpoint values in the paint treatment were significantly different from the control (66%)-most of which were tests using antifouling paints. Overall, the number of studies on paint microplastics is small, limiting a holistic understanding of microplastics. Based on our synthesis of the state of the science on paint microplastics, we suggest a research agenda moving forward informed by research gaps.
Collapse
Affiliation(s)
- Zoie T Diana
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Yuying Chen
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Chelsea M Rochman
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Fang C, Liu S, Gao F, Zheng Y, Zheng R, Feng Y, Roeroe KA, Du J, Bo J. Micro- and mesoplastic pollution in the surface water and nekton from the eastern Indian ocean: Spatiotemporal variation, correlation and risk assessment. ENVIRONMENTAL RESEARCH 2025; 264:120377. [PMID: 39549906 DOI: 10.1016/j.envres.2024.120377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024]
Abstract
The pollution of micro- and mesoplastic (MMP) in the Eastern Indian Ocean (EIO) remains poorly understood. The present study revealed that MMP abundance in nekton from EIO in 2022 (mean: 2.30 ± 0.39 items individual-1 and 1.81 ± 0.54 items g-1) was significantly higher than that in 2021 (mean: 1.60 ± 0.22 items individual-1 and 0.80 ± 0.13 items g-1). In contrast, MMP abundance in surface water varied insignificantly between 2021 (mean: 0.04 ± 0.01 items m-3) and 2022 (mean: 0.05 ± 0.02 items m-3). The rise in predominant polymers-polypropylene (PP), rayon (RA), and polyester (PES)-in nekton from 2021 to 2022 may suggest increased pollution from face masks and home textiles along coastal regions. Notable spatial variation in PP and RA between the northeastern and southeastern regions was observed only in nekton, suggesting they are better indicators of MMP spatiotemporal variation than surface water. Shadow driftfish ingested more MMPs than purpleback flying squid and mackerel scad, likely due to its deeper habitat. By simultaneously considering color, composition, and shape, integrated MMP analysis showed insignificant correlation between MMP pollution in surface water and nekton, suggesting that nekton may ingest MMPs through multiple pathways beyond surface water. Risk indices for surface water and nekton reached moderate to upper levels globally, emphasizing the need for continued monitoring in the EIO. Epoxy resin, rubber, and PP + acrylic were identified as the most hazardous polymers, providing a valuable basis for developing effective strategies to mitigate plastic pollution.
Collapse
Affiliation(s)
- Chao Fang
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Shigang Liu
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Fulong Gao
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Youchang Zheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology Chinese Academy of Sciences, Guangzhou, 510000, China
| | - Ronghui Zheng
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Yang Feng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology Chinese Academy of Sciences, Guangzhou, 510000, China
| | | | - Jianguo Du
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; APEC Marine Sustainable Development Center, Xiamen, 361005, China.
| | - Jun Bo
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| |
Collapse
|
10
|
Zhou M, Osaka I, Hashimoto K, Yap CK, Emmanouil C, Nakano T, Okamura H. Co-occurrence of microplastics and microparticles containing Cu and Zn and other heavy metals in sea-surface microlayer in Osaka Bay, Japan. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136085. [PMID: 39395392 DOI: 10.1016/j.jhazmat.2024.136085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/14/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Antifouling biocides such as Cu, Zn, and organic compounds not only inhibit adhesion of sessile organisms on ship hull but also possess toxicity to non-sessile organisms in marine environment. Thus, we firstly investigated the heavy metals and polymer types of anthropogenic microparticles (MPs) floating in the sea-surface microlayer (S-SML) in Osaka Bay. 7 types of MPs containing different metals (Cu, Cu-Zn, Zn, Ti, Sn, Ba and Fe-Mn-Ni) were found. The polymer type for 97.8 % of Cu and Cu-Zn MPs (41 samples) and 52.6 % of Zn MPs (19 samples) was acrylic resins which are widely used as binders in contemporary antifouling paints for ships; concentrations of 511-54,000 mg/kg for Cu and 95.1-13,200 mg/kg for Zn were found in these MPs. The high metal concentrations found the co-existence of acrylic polymers point towards an origin from antifouling paint particles (APPs). Furthermore, to quantify Cu and Zn concentrations in these MPs based on X-ray fluorescence spectroscopy (μ-XRF), calibration curves obtained from standard paint particles containing different Cu and Zn concentrations and different particle sizes made with similar matrix used in commercial antifouling paint were firstly established, according to which highly reliable Cu and Zn concentrations in MPs were obtained.
Collapse
Affiliation(s)
- Mi Zhou
- Graduate School of Maritime Sciences, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan.
| | - Issey Osaka
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Kotaro Hashimoto
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Chee Kong Yap
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Christina Emmanouil
- School of Spatial Planning and Development, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Takeshi Nakano
- Graduate School of Maritime Sciences, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan
| | - Hideo Okamura
- Research Center for Inland Seas, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe, 658-0022, Japan.
| |
Collapse
|
11
|
Boeing GANS, Provase M, Tsukada E, Salla RF, Waldman WR, Abdalla FC. Spray paint-derived microplastics and incorporated substances as ecotoxicological contaminants in the neotropical bumblebee Bombus atratus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 112:104586. [PMID: 39510216 DOI: 10.1016/j.etap.2024.104586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024]
Abstract
While bumblebees may be exposed to microplastics (MPs), the effects on them are not well studied. Therefore, in this research, we assessed the cytotoxicity of pristine and photodegraded spray paint-derived MPs on the midgut, Malpighian tubules, and hepato-nephrocitic system cells of Bombus atratus workers exposed to 50 mg.L-1 MPs for 96 hours. Histological and histochemical analyses revealed that pristine MPs caused subtle cellular changes, while the exposure to photodegraded MPs led to significant vacuolization, nuclear condensation, and pyknosis. These effects are possibly linked to the release of potentially toxic elements (PTEs) like Copper, Manganese, and Iron from photodegraded MPs, which exceeded Brazil's CONAMA safety limits. Photodegraded MPs also reduced body weight, disrupting homeostasis and potentially decreasing bumblebee's fitness. These findings highlight the importance of studying the toxicity of environmentally realistic MPs, as plastic composition and weathering significantly influence their harmful effects.
Collapse
Affiliation(s)
- Guilherme Andrade Neto Schmitz Boeing
- Federal University of São Carlos (UFSCar), Department of Biology (DBio-So), Laboratory of Structural and Functional Biology (LABEF), Brazil; Post-graduate Program in Biotechnology and Environmental Monitoring (PPGBMA), Center for Science and Technology for Sustainability (CCTS), UFSCar, Sorocaba, SP, Brazil.
| | - Michele Provase
- Federal University of São Carlos (UFSCar), Department of Biology (DBio-So), Laboratory of Structural and Functional Biology (LABEF), Brazil; Post-graduate Program in Biotechnology and Environmental Monitoring (PPGBMA), Center for Science and Technology for Sustainability (CCTS), UFSCar, Sorocaba, SP, Brazil
| | - Elisabete Tsukada
- Post-graduate Program in Animal Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Raquel F Salla
- Department of Biology & Biochemistry, University of Houston, Houston, TX, United States
| | - Walter Ruggeri Waldman
- Federal University of São Carlos (UFSCar), Department of Biology (DBio-So), Laboratory of Structural and Functional Biology (LABEF), Brazil; Post-graduate Program in Biotechnology and Environmental Monitoring (PPGBMA), Center for Science and Technology for Sustainability (CCTS), UFSCar, Sorocaba, SP, Brazil
| | - Fábio Camargo Abdalla
- Federal University of São Carlos (UFSCar), Department of Biology (DBio-So), Laboratory of Structural and Functional Biology (LABEF), Brazil; Post-graduate Program in Biotechnology and Environmental Monitoring (PPGBMA), Center for Science and Technology for Sustainability (CCTS), UFSCar, Sorocaba, SP, Brazil
| |
Collapse
|
12
|
Barboza LGA, Lourenço SC, Aleluia A, Senes GP, Otero XL, Guilhermino L. Are microplastics a new cardiac threat? A pilot study with wild fish from the North East Atlantic Ocean. ENVIRONMENTAL RESEARCH 2024; 261:119694. [PMID: 39068971 DOI: 10.1016/j.envres.2024.119694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Global environmental contamination by microplastics (MPs) is a growing problem with potential One Health impacts. The presence of MPs in vital organs, such as the heart, is of particular concern, but the knowledge is still limited. The goal of the present pilot study was to investigate the potential presence of MPs in the heart of wild specimens of three commercial fish species (Merluccius merluccius, Sardina pilchardus, and Trisopterus luscus) from the North East Atlantic Ocean. Heart samples from 154 fish were analysed for MP content (one heart sample per fish). A total of 44 MPs were recovered from heart samples from the three species. MPs had varied chemical composition (5 polymers), shapes (4) and colours (5). Differences in the profile of the MPs among species was observed (p ≤ 0.05). Thirty fish (19%) had MPs in their hearts, with a total mean (±SD) concentration of 0.286 ± 0.644 MPs/fish. S. pilchardus had the highest heart contamination (p ≤ 0.05). There were no significant (p > 0.05) differences between M. merluccius and T. luscus. These findings in fish with different biological and ecological traits together with literature data suggest that heart contamination likely is a disseminated phenomenon. Therefore, further research on the presence of MPs in the cardiovascular system and its potential health effects is very much needed.
Collapse
Affiliation(s)
- Luís Gabriel A Barboza
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Sara Couto Lourenço
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Alexandre Aleluia
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Giovanni Paolo Senes
- CRETUS, Department of Edaphology and Agricultural Chemistry - Faculty of Biology, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela 15782, Spain
| | - Xosé L Otero
- CRETUS, Department of Edaphology and Agricultural Chemistry - Faculty of Biology, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela 15782, Spain; REBUSC, Network of biological stations of the University of Santiago de Compostela, Marine Biology Station A Graña, Ferrol, Spain; RIAIDT, The Network of Infrastructures to Support Research and Technological Development of the University of Santiago de Compostela, Edificio Cactus, Campus Vida, Santiago de Compostela, 15782, Spain.
| | - Lúcia Guilhermino
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
13
|
Lotz T, Chen W, Su S. Microplastic Transport and Accumulation in Rural Waterbodies: Insights from a Small Catchment in East China. TOXICS 2024; 12:761. [PMID: 39453181 PMCID: PMC11510974 DOI: 10.3390/toxics12100761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
Microplastic (MP) pollution in agricultural ecosystems is an emerging environmental concern, with limited knowledge of its transport and accumulation in rural waterbodies. This study investigates the distribution and sources of MP in drainage ditches influenced by pond connectivity, land use, and soil properties within a small catchment in Nanjing, East China. Sediment was collected from ditches in 18 sites across forest, agricultural, horticultural, and urban areas. Using laser-directed infrared spectroscopy (LDIR), 922 MP particles were identified. Six materials were dominant: fluororubber (FR), polyethylene terephthalate (PET), polyurethane (PU), acrylonitrile (ACR), chlorinated polyethylene (CPE), and polyethylene (PE). MP concentrations varied by land use and pond connectivity, with ditches above ponds exhibiting higher counts (1700 particles/kg) than those below (1050 particles/kg), indicating that ponds act as MP sinks. The analysis revealed site-specific MP sources, with FR linked to road runoff and PET associated with agricultural practices. Correlations between MP shape and soil properties showed that more compact and filled shapes were more commonly associated with coarser soils. PE particle size was negatively correlated with organic matter. This study highlights the need for targeted strategies to reduce MP pollution in rural landscapes, such as reducing plastic use, ditch maintenance, and improved road runoff management.
Collapse
Affiliation(s)
- Tom Lotz
- School of Computer Engineering, Jinling Institute of Technology, Hongjing Avenue 99, Nanjing 211169, China;
- Jiangsu Key Laboratory of Data Science & Smart Software, Jinling Institute of Technology, Hongjing Avenue 99, Nanjing 211169, China
| | - Wenjun Chen
- School of Software Engineering, Jinling Institute of Technology, Hongjing Avenue 99, Nanjing 211169, China;
- Key Laboratory of Watershed Geographic Science, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shoubao Su
- School of Computer Engineering, Jinling Institute of Technology, Hongjing Avenue 99, Nanjing 211169, China;
- Jiangsu Key Laboratory of Data Science & Smart Software, Jinling Institute of Technology, Hongjing Avenue 99, Nanjing 211169, China
- School of Computer, Jiangsu University of Science and Technology, Changhui Road 666, Zhenjiang 212003, China
| |
Collapse
|
14
|
Bossa N, Delpivo C, Sipe JM, Gao L, Pomar V, Miralles GS, Fonseca AS, Jensen KA, Vazquez-Campos S. Indoor paint life cycle particle release: Safer-by-design products and the importance of choosing the right formula. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174155. [PMID: 38942309 DOI: 10.1016/j.scitotenv.2024.174155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
In 2020, the European Commission published a regulation that states all producers of white paints containing titanium dioxide (TiO2) must provide a warning label on their products. Exposure during the production and application of products containing TiO2 can be harmful, and therefore these products must be labeled as "may cause cancer." The paint industry is a major user of TiO2 pigment. This study focuses on pigment release from three TiO2-based paints and discusses the effect of paint formulation, more precisely the Pigment Volume Concentration (PVC), to predict TiO2 pigment release from the paints during a simulated use phase and at the end of life (EoL). The use phase considered mild abrasion of painted panels that simulated cleaning or touching. The EoL phase was studied using leaching tests simulating landfill disposal. TiO2 release during both activities was evident with a high discrepancy between the three paints. While dry rubbing was similar for all paints, activities involving water present a high release link to paint matrix degradation. The paint pigment volume concentration and the paint permeability determines the TiO2 release during wet rubbing and leaching. This work represents an attempt to identify the paint permeability as a matrix-related parameter to predict TiO2 release and a way to use of this parameter to develop safer products.
Collapse
Affiliation(s)
- Nathan Bossa
- LEITAT Technological Center, C/Pallars 179-185, 08005 Barcelona, Spain; Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA.
| | - Camila Delpivo
- LEITAT Technological Center, C/Pallars 179-185, 08005 Barcelona, Spain
| | - Joana Marie Sipe
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA
| | - Lijia Gao
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA
| | - Vicenç Pomar
- LEITAT Technological Center, C/Pallars 179-185, 08005 Barcelona, Spain
| | | | - Ana Sofia Fonseca
- National Research Centre for the Working Environment (NRCWE), Lerso Parkallé 105, DK-2100, Copenhagen, Denmark
| | - Keld Alstrup Jensen
- National Research Centre for the Working Environment (NRCWE), Lerso Parkallé 105, DK-2100, Copenhagen, Denmark
| | | |
Collapse
|
15
|
Kelly NE. Spatial distribution and risk assessment of microplastics in surface waters of the St. Lawrence Estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174324. [PMID: 38960195 DOI: 10.1016/j.scitotenv.2024.174324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Development of effective prevention and mitigation strategies for marine plastic pollution requires a better understanding of the pathways and transport mechanisms of plastic waste. Yet the role of estuaries as a key interface between riverine inputs of plastic pollution and delivery to receiving marine environments remains poorly understood. This study quantified the concentration and distribution of microplastics (MPs) (50-3200 μm) in surface waters of the St. Lawrence Estuary (SLE) in eastern Canada. Microplastics were identified and enumerated based on particle morphology, colour, and size class. Fourier Transform Infrared (FTIR) spectroscopy was used on a subset of particles to identify polymers. Generalized linear models (Gamma distribution with log-link) examined the relationship between MP concentrations and oceanographic variables and anthropogenic sources. Finally, a risk assessment model, using MP concentrations and chemical hazards based on polymer types, estimated the MP pollution risk to ecosystem health. Mean surface MP concentration in the SLE was 120 ± 42 SD particles m-3; MP concentrations were highest in the fluvial section and lowest in the Northwest Gulf of St. Lawrence. However, MP concentrations exhibited high heterogeneity along the length and width of the SLE. Microplastics were elevated at stations located closer to wastewater treatment plant outflows and downstream sites with more agricultural land. Black, blue, and transparent fibers and fragments ≤250 μm were most commonly encountered. Predominant polymer types included polyethylene terephthalate, regenerated cellulose, polyethylene, and alkyds. While the overall risk to ecosystem health in the entire estuary was considered low, several stations, particularly near urban centres were at high or very high risk. This study provides new insights into the quantification and distribution of MPs and first estimates of the risk of MP pollution to ecosystem health in one of the world's largest estuaries.
Collapse
Affiliation(s)
- Noreen E Kelly
- Fisheries and Oceans Canada, 1 Challenger Drive, Dartmouth, NS, Canada.
| |
Collapse
|
16
|
Xu S, Cui B, Zhang W, Liu R, Liu H, Zhu X, Huang X, Liu M. Microplastics in the atmospheric of the eastern coast of China: different function areas reflecting various sources and transport. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:461. [PMID: 39352598 DOI: 10.1007/s10653-024-02217-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/02/2024] [Indexed: 11/20/2024]
Abstract
Suspended atmospheric microplastics (SAMPs) display varying occurrence characteristics on different underlying surfaces in urban areas. This study investigated the occurrence characteristics, source apportionment, and transportation patterns of SAMPs in two typical underlying surfaces: the downtown area (Site T) and the industrial area (Site C) of a coastal city in China. In the spring of 2023, a total of 32 types comprising 1325 SAMPs were detected. The average MP abundances were found to be 3.74 ± 2.86 n/m3 in Site T and 2.67 ± 1.68 n/m3 in Site C. In Site T, SAMPs attributed to living source constituted 78.05%, while industry was the main source in Site C with a proportion reaching 42.89%, consistent with the functional zoning of the underlying surface. Furthermore, HYSPLIT analysis revealed that there was no significant difference between these two sites in long-distance horizontal transport affected by external airflow regardless of altitude; conversely, PCA indicated a notable correlation between vertical velocity and both abundance and species diversity. According to the hourly average wind speeds, the maximum transmission distance was computed as 350 km for updraft and the minimum transmission distances was as low as 32 m for downdraft. Subsequently, the coincidence between the source proportion of SAMPs on random day and meteorological parameters confirmed the synergistic impact on SAMPs transport influenced by functional zoning, geographic environment, and vertical velocity.
Collapse
Affiliation(s)
- Sheng Xu
- College of Ecology Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350108, China
| | - Bowen Cui
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, 361102, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Weixin Zhang
- College of Ecology Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350108, China
| | - Ruijing Liu
- College of Ecology Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350108, China
| | - Hao Liu
- College of Ecology Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350108, China
| | - Xiaowei Zhu
- College of Ecology Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350108, China
| | - Xuqing Huang
- College of Ecology Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350108, China
| | - Minyi Liu
- College of Ecology Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350108, China.
| |
Collapse
|
17
|
Hoemann C, Bauer CA, Fissore C. Assessing meso-, micro-, and nanoplastic pollution in Los Angeles County estuaries. MARINE POLLUTION BULLETIN 2024; 206:116822. [PMID: 39116758 DOI: 10.1016/j.marpolbul.2024.116822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/03/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
Estuaries can behave as plastic pollution hotspots, although the dynamics of accumulation in these unique habitats are not understood. We quantified the current levels of meso-, micro-, and nanoplastic pollution in four Los Angeles County estuaries for the first time, as a function of distance from the water outlet and local population density. Fourier-transform infrared spectroscopy (FTIR) and microscope imaging revealed the presence of six types of plastic; polyethylene or polypropylene dominated the meso- and microplastic, and nanoplastics were identified as mainly polyolefin fibers. The distribution was heterogeneous throughout, although the sand between the river mouth and ocean generally contained more plastic than inland control samples. Population density did not appear to affect the abundance of plastic estuarine pollution. Other factors, such as waste treatment effluent, recreation, and river geography, may contribute to plastic deposition. A positive correlation between meso- and microplastic abundance provides insight into such mechanisms for accumulation.
Collapse
Affiliation(s)
- Connor Hoemann
- Department of Environmental Science, Whittier College, Whittier, CA, United States of America
| | - Christina A Bauer
- Department of Environmental Science, Whittier College, Whittier, CA, United States of America.
| | - Cinzia Fissore
- Department of Environmental Science, Whittier College, Whittier, CA, United States of America
| |
Collapse
|
18
|
Ameen A, Stevenson ME, Kirschner AKT, Jakwerth S, Derx J, Blaschke AP. Fate and transport of fragmented and spherical microplastics in saturated gravel and quartz sand. JOURNAL OF ENVIRONMENTAL QUALITY 2024; 53:727-742. [PMID: 39162095 DOI: 10.1002/jeq2.20618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/15/2024] [Indexed: 08/21/2024]
Abstract
Microplastics in urban runoff undergo rapid fragmentation and accumulate in the soil, potentially endangering shallow groundwater. To improve the understanding of microplastic transport in groundwater, column experiments were performed to compare the transport behavior of fragmented microplastics (FMPs ∼1-µm diameter) and spherical microplastics (SMPs ∼1-, 10-, and 20-µm diameter) in natural gravel (medium and fine) and quartz sand (coarse and medium). Polystyrene microspheres were physically abraded with glass beads to mimic the rapid fragmentation process. The experiments were conducted at a constant flow rate of 1.50 m day-1 by injecting two pore volumes of SMPs and FMPs. Key findings indicate that SMPs showed higher breakthrough, compared to FMPs in natural gravel, possibly due to size exclusion of the larger SMPs. Interestingly, FMPs exhibited higher breakthrough in quartz sand, likely due to tumbling and their tendency to align with flow paths, while both sizes (larger and smaller relative to FMPs) of SMPs exhibited higher removal in quartz sand. Therefore, an effect due to shape and size was observed.
Collapse
Affiliation(s)
- Ahmad Ameen
- Institute of Hydraulic Engineering and Water Resources Management E222/2, TU Wien, Vienna, Austria
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
| | - Margaret E Stevenson
- Institute of Hydraulic Engineering and Water Resources Management E222/2, TU Wien, Vienna, Austria
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
| | - Alexander K T Kirschner
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
- Institute for Hygiene and Applied Immunology, Water Microbiology, Medical University of Vienna, Vienna, Austria
- Division Water Quality & Health, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Stefan Jakwerth
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
- Institute for Hygiene and Applied Immunology, Water Microbiology, Medical University of Vienna, Vienna, Austria
| | - Julia Derx
- Institute of Hydraulic Engineering and Water Resources Management E222/2, TU Wien, Vienna, Austria
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
| | - Alfred P Blaschke
- Institute of Hydraulic Engineering and Water Resources Management E222/2, TU Wien, Vienna, Austria
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
| |
Collapse
|
19
|
Ciocan C, Annels C, Fitzpatrick M, Couceiro F, Steyl I, Bray S. Glass reinforced plastic (GRP) boats and the impact on coastal environment - Evidence of fibreglass ingestion by marine bivalves from natural populations. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134619. [PMID: 38754228 DOI: 10.1016/j.jhazmat.2024.134619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Classified as marine debris, man made materials are polluting the world's oceans. Recently, glass reinforced plastic (GRP) has been shown to degrade and contaminate the coasts. In this pioneering study, fibreglass particles have been detected in the soft parts of oysters and mussels collected from natural populations, in front of an active boatyard. The presence of particulate glass, with concentrations up to 11,220 particles/kg ww in Ostrea edulis and 2740 particles/kg ww in Mytilus edulis, was confirmed by micro Raman spectroscopy. The results showed higher accumulation during the winter months, when boat maintenance activities are peaking and, through repair work, the release of glass fibres in the environment is more likely. Bivalves are considered high risk species due to their sessile nature and extensive filter feeding behaviour. The microparticle inclusion may contribute to adverse impacts on physiological processes and eventually to a decline in the overall health and subsequent death of the animal. The high costs involved in the proper GRP disposal and the lack of recycling facilities worldwide lead to boat abandonement and further contamination of the coasts. For the first time this study presents the extensive fibreglass contamination of natural bivalve populations, in a popular South England sailing harbour, designated a biological and geological site of specific scientific interest (SSRI).
Collapse
Affiliation(s)
- Corina Ciocan
- University of Brighton, School of Applied Sciences, Moulsecoomb Campus, Brighton BN1 4GJ, UK.
| | - Claude Annels
- University of Brighton, School of Applied Sciences, Moulsecoomb Campus, Brighton BN1 4GJ, UK
| | - Megan Fitzpatrick
- University of Brighton, School of Applied Sciences, Moulsecoomb Campus, Brighton BN1 4GJ, UK
| | - Fay Couceiro
- University of Portsmouth, School of Civil Engineering and Surveying, Portsmouth PO1 2UP, UK
| | - Ilse Steyl
- Aqass Limited, Netley Abbey, Southampton, UK, SO31 5QA
| | - Simon Bray
- School of Biological Sciences, University of Southampton, Life Sciences Building (Building 85), Highfield Campus, Southampton SO17 1BJ, UK
| |
Collapse
|
20
|
Hamilton BM, Harris LN, Maksagak B, Nero E, Gilbert MJH, Provencher JF, Rochman CM. Microplastic and other anthropogenic microparticles in Arctic char (Salvelinus alpinus) and their coastal habitat: A first-look at a central Canadian Arctic commercial fishery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172854. [PMID: 38685419 DOI: 10.1016/j.scitotenv.2024.172854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
In the recent monitoring guidelines released by the Arctic Monitoring and Assessment Program's Litter and Microplastic Expert Group, Arctic salmonids were recommended as an important species for monitoring plastics in Arctic ecosystems, with an emphasis on aligning microplastic sampling and analysis methods in Arctic fishes. This recommendation was based on the minimal documentation of microplastics in Northern fishes, especially Arctic salmonids. In response, we worked collaboratively with local partners to quantify and characterize microplastics in Arctic char, Salvelinus alpinus, and their habitats in a commercial fishery near Iqaluktuuttiaq (Cambridge Bay), Nunavut. We sampled Arctic char, surface water, and benthic sediments within their summer foraging habitat at Palik (Byron Bay). We found microplastics in 95 % of char with an average of 26 (SD ± 19) particles per individual. On average, surface water samples had 23 (SD ± 12) particles/L and benthic sediment <1 particles/gww. This is the first documentation of plastic pollution in Arctic char and their coastal habitats. Future work should evaluate seasonal, temporal and spatial trends for long-term monitoring of microplastics in Arctic fishes and their habitats.
Collapse
Affiliation(s)
- Bonnie M Hamilton
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.
| | - Les N Harris
- Arctic and Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB, Canada
| | - Beverly Maksagak
- Ekaluktutiak Hunters and Trappers Organization, Cambridge Bay, NU, Canada
| | - Emilie Nero
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Matthew J H Gilbert
- Department of Biological Sciences, University of New Brunswick, St. John, NB, Canada
| | - Jennifer F Provencher
- Science and Technology Branch, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - Chelsea M Rochman
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Fang C, Awoyemi OS, Naidu R. Is paper bag plastic-free, without plastic in colourful logo area? JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134403. [PMID: 38669922 DOI: 10.1016/j.jhazmat.2024.134403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
The concern over plastic contamination has led to bans on plastic shopping bags, often replaced by paper ones. However, logos painted or printed on paper bags may still contain plastics, as investigated herein. In some logos, for example, white pigment of titanium dioxide (TiO2) nanoparticles are bound with plastic binder onto the cellulose surface of the paper. This hybrid of plastic and nanoparticle is examined using scanning electron microscope (SEM) to characterise morphology physically, and Raman imaging to identify and visualise them chemically. Raman imaging scans the sample to separate images and identify not only plastic but also the co-formulated pigment. The scan generates a hyperspectral matrix containing hundreds to thousands of spectra, and subsequent analysis can enhance the signal-to-noise ratio. Decoding the hyperspectral matrix using chemometrics like principal component analysis (PCA) can effectively map plastic and pigment separately with increased certainty. The image can be further refined through 3-dimensional surface fitting for deconvolution, providing direct visualisation of the plastic-nanoparticle hybrid at a density of approximately 7.3 million particles per square millimetre. Overall, caution should be exercised when using paper bags, as they may not be entirely free of plastics. Raman imaging proves to be an effective method for identifying and visualising complex components, including plastics and nanoparticles. ENVIRONMENTAL IMPLICATION: The concern over plastic contamination has led to bans on plastic shopping bags, replaced by paper alternatives. However, some logos on paper bags may still contain plastics, which is investigated to confirm the presence of plastic-nanoparticle hybrid using SEM and Raman imaging. By employing decoding algorithms such as PCA to separately map plastic and pigment, and utilising 3D surface fitting to deconvolute the image, the hybrid plastic-nanoparticle is estimated at a density of approximately 7.3 million particles per square millimetre. It's important to exercise caution and not assume these items are plastic-free. This aspect of plastics may have been overlooked as another potential source of contamination.
Collapse
Affiliation(s)
- Cheng Fang
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Olalekan Simon Awoyemi
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
22
|
Sharma S, Bhardwaj A, Thakur M, Saini A. Understanding microplastic pollution of marine ecosystem: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41402-41445. [PMID: 37442935 DOI: 10.1007/s11356-023-28314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Microplastics are emerging as prominent pollutants across the globe. Oceans are becoming major sinks for these pollutants, and their presence is widespread in coastal regions, oceanic surface waters, water column, and sediments. Studies have revealed that microplastics cause serious threats to the marine ecosystem as well as human beings. In the past few years, many research efforts have focused on studying different aspects relating to microplastic pollution of the oceans. This review summarizes sources, migration routes, and ill effects of marine microplastic pollution along with various conventional as well as advanced methods for microplastics analysis and control. However, various knowledge gaps in detection and analysis require attention in order to understand the sources and transport of microplastics, which is critical to deploying mitigation strategies at appropriate locations. Advanced removal methods and an integrated approach are necessary, including government policies and stringent regulations to control the release of plastics.
Collapse
Affiliation(s)
- Swati Sharma
- Department of Biotechnology, Shoolini Institute of Life Sciences and Business Management, Solan, Himachal Pradesh, India
| | - Aprajita Bhardwaj
- Department of Biotechnology, Shoolini Institute of Life Sciences and Business Management, Solan, Himachal Pradesh, India
| | - Monika Thakur
- Department of Microbiology, Shoolini Institute of Life Sciences and Business Management, Solan, Himachal Pradesh, India
| | - Anita Saini
- Department of Microbiology, School of Basic and Applied Sciences, Maharaja Agrasen University, Baddi, Himachal Pradesh, India.
| |
Collapse
|
23
|
Tagg AS, Sperlea T, Hassenrück C, Kreikemeyer B, Fischer D, Labrenz M. Microplastic-antifouling paint particle contamination alters microbial communities in surrounding marine sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171863. [PMID: 38518817 DOI: 10.1016/j.scitotenv.2024.171863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/04/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Paint used to coat surfaces in aquatic environments often contain biocides to prevent biofouling, and as these coatings degrade, antifouling paint particles (APPs) end up in aquatic, and especially marine, sediments. However, it is currently unclear what further influence APPs in the sediment have on biotic communities or processes. This study investigates how a variety of commercially-available APPs effect the marine microbial community by spiking different laboratory-manufactured APPs to sediment. Following exposure for 30 and 60 days, APPs caused a clear and consistent effect on the bacterial community composition as determined by 16S metabarcoding. This effect was strongest between 0 and 30 days, but continues to a lesser extent between 30 and 60 days. APPs appear to inhibit the highly diverse, but in general rarer, fraction of the community and/or select for specific community members to become more dominant. 71 antifouling-presence and 454 antifouling-absence indicator taxa were identified by indicator analysis. The difference in the level of classification in these two indicator groups was highly significant, with the antifouling-presence indicators having much higher percentage sequence identity to cultured taxa, while the antifouling-absence indicators appear to be made up of undescribed taxa, which may indicate that APPs act as a proxy for general anthropogenic influence or that APP contamination selects for taxa capable of being cultured. Given the clear and consistent effect APPs have on the surrounding sediment microbial community, further research into how APPs affect sediment functional processes and how such effects scale with concentration is recommended to better assess the wider consequences of these pollutants for marine biogeochemical cycles in the future. SYNOPSIS: Microplastic-paint particles are commonly found in marine sediment but little is known about how these, especially antifouling, paint particles affect sediment microbial communities. This study demonstrates that antifouling paint particles fundamentally alter sediment microbial communities.
Collapse
Affiliation(s)
- A S Tagg
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock 18119, Germany.
| | - T Sperlea
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock 18119, Germany
| | - C Hassenrück
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock 18119, Germany
| | - B Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, 18057 Rostock, Germany
| | - D Fischer
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden 01069, Germany
| | - M Labrenz
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock 18119, Germany
| |
Collapse
|
24
|
Latwal M, Arora S, Murthy KSR. Data driven AI (artificial intelligence) detection furnish economic pathways for microplastics. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 264:104365. [PMID: 38776560 DOI: 10.1016/j.jconhyd.2024.104365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/18/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Microplastics pollution is killing human life, contaminating our oceans, and lasting for longer in the environment than it is used. Microplastics have contaminated the geochemistry and turned the water system into trash barrel. Its detection in water is easy in comparison to soil and air so the attention of researchers is focused on it for now. Being very small in size, microplastics can easily cross the water filtration system and end up in the ocean or lakes and become the prospective challenge to aquatic life. This review piece provides the hot research theme and current advances in the field of microplastics and their eradication through the virtual world of artificial intelligence (AI) because Microplastics have confrontation with clean water tactics.
Collapse
Affiliation(s)
- Mamta Latwal
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, UK, India
| | - Shefali Arora
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, UK, India.
| | - K S R Murthy
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, UK, India
| |
Collapse
|
25
|
Perera K, Ziajahromi S, Nash SB, Leusch FDL. Evaluating the retention of airborne microplastics on plant leaf: Influence of leaf morphology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123673. [PMID: 38423270 DOI: 10.1016/j.envpol.2024.123673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
Airborne microplastics (AMPs) have been identified in both indoor and outdoor environments and account for a large portion of an individual's daily exposure to microplastics. Thus, it is crucial to find effective methods to capture and control the levels of AMPs and ultimately reduce human exposure. While terrestrial plants have been recognized for their effectiveness in capturing airborne particles, little is known about their ability to capture AMPs. This study investigated the ability of 8 natural plant species and 2 artificial plants to capture AMPs, as well as the influence of leaf morphology on this retention. Plant leaves were exposed to AMPs for two weeks, and deposited AMPs were characterized using a Micro-Fourier Transform Infrared (μ-FTIR)spectroscopy. Selected cleaned leaves were further digested, and the presence of subsurface AMPs was confirmed using μ-Raman spectroscopy. Results revealed that AMPs were retained on the leaves of all selected plant species at concentrations ranging from 0.02 to 0.87 n/cm2. The highest average concentration was observed on an artificial plant with fenestrated leaves, followed by natural plant species with trichomes and leaflets. The lowest concentration was observed on a natural plant with smooth leaves. The majority (90%) of retained AMPs were fibres, and the remaining were fragments. Polyethylene terephthalate (PET) was the prominent polymer type. Additionally, AMP fragments were observed in the leaf subsurface in one selected species, likely retained within the leaf cuticles. The results suggest that plant leaves can indiscriminately retain AMPs on their surfaces and act as temporary sinks for AMPs. Additionally, indoor plants may provide a useful functional role in reducing indoor AMP concentrations, although longer-term studies are needed to ascertain their retention capacity more accurately over time and to evaluate the capability of indoor plants to act as a suitable, cost-effective candidate for reducing AMPs.
Collapse
Affiliation(s)
- Kushani Perera
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport Qld, 4222, Australia.
| | - Shima Ziajahromi
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport Qld, 4222, Australia
| | - Susan Bengtson Nash
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Southport Qld, 4222, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport Qld, 4222, Australia
| |
Collapse
|
26
|
Rey-Álvarez B, Silvestre J, García-Martínez A, Sánchez-Montañés B. A comparative approach to evaluate the toxicity of building materials through life cycle assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168897. [PMID: 38016559 DOI: 10.1016/j.scitotenv.2023.168897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND This paper addresses the lack of research that compares the toxicity of commonly used construction materials. The toxicity of construction materials has received less attention, despite its importance within the Life Cycle Assessment methodology. All aspects, including toxicity, need to be analysed throughout the life cycle of the material to understand its true behaviour. AIM The purpose of this study is to propose a methodology to compare the toxicity of different construction materials and highlight the need to consider toxicity criteria in the selection of materials during the design phase. The study seeks to fill the gap in the existing literature by providing information on the comparative toxicity of the most common building materials. METHODOLOGY The study follows Life Cycle Assessment methodology as established by the ISO 14040:2006 and ISO 14044:2006 standards. For this study, statistics were consulted to identify the most used materials in the construction sector; then, from this group of materials, those available in the Ecoinvent 3.7.1 database were selected. For comparison, these materials were categorised into material families and a functional unit was established to compare them. Finally, all materials were compared with each other, using 1 kg as the functional unit. RESULTS When we conduct a comparative analysis of various materials and categorise them into groups, it becomes readily apparent which materials demonstrate a less favourable performance with respect to their toxic properties. This approach allows us to discern and pinpoint those materials that present a more concerning level of toxicity relative to others, facilitating informed decision-making in terms of construction material selection and design. CONCLUSIONS By comparing all materials with each other using 1 kg as the functional unit, we can conclude that some materials have a greater impact than others, both in absolute and relative terms, for example, steel and polyurethane foam.
Collapse
Affiliation(s)
- Belén Rey-Álvarez
- HUM - 1008 Research Group, E.T.S. Arquitectura, Universidad de Sevilla, Spain.
| | - José Silvestre
- Universidade de Lisboa, Instituto Superior Técnico, Departamento de Engenharia Civil, Arquitectura e Georrecursos, Lisboa, Portugal
| | - Antonio García-Martínez
- TEP-130 Research Group, Instituto Universitario de Arquitectura y Ciencias de la Construcción, IUACC, Universidad de Sevilla, Spain
| | | |
Collapse
|
27
|
Kim SW, Song WY, Waldman WR, Rillig MC, Kim TY. Toxicity of Aged Paint Particles to Soil Ecosystems: Insights from Caenorhabditis elegans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:231-241. [PMID: 38128904 DOI: 10.1021/acs.est.3c07160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Despite the extensive global consumption of architectural paint, the toxicological effects of aged exterior paint particles on terrestrial biota remain largely uncharacterized. Herein, we assessed the toxic effect of aged paint particles on soil environments using the nematode Caenorhabditis elegans (C. elegans) as a test organism. Various types of paint particles were generated by fragmentation and sequential sieving (500-1000, 250-500, 100-250, 50-100, 20-50 μm) of paint coatings collected from two old residential areas. The paint particles exerted different levels of toxicity, as indicated by a reduction in the number of C. elegans offspring, depending on their size, color, and layer structure. These physical characteristics were found to be closely associated with the chemical heterogeneity of additives present in the paint particles. Since the paint particle sizes were larger than what C. elegans typically consume, we attributed the toxicity to leachable additives present in the paint particles. To assess the toxicity of these leachable additives, we performed sequential washings of the paint particles with distilled water and ethanol. Ethanol washing of the paint particles significantly reduced the soil toxicity of the hydrophobic additives, indicating their potential environmental risk. Liquid chromatography-mass spectrometry analysis of the ethanol leachate revealed the presence of alkyl amines, which exhibited a high correlation with the toxicity of the paint particles. Further toxicity testing using an alkyl amine standard demonstrated that a paint particle concentration of 1.2% in soil could significantly reduce the number of C. elegans offspring. Our findings provide insights into the potential hazards posed by aged paint particles and their leachable additives in the terrestrial environment.
Collapse
Affiliation(s)
- Shin Woong Kim
- Institute of Biology, Freie Universität Berlin, 14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195 Berlin, Germany
| | - Woo-Young Song
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Walter R Waldman
- Science and Technology Center for Sustainability, Federal University of São Carlos, 18052-780 Sorocaba, SP, Brazil
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, 14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195 Berlin, Germany
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
28
|
Firth LB, Farnworth M, Fraser KPP, McQuatters-Gollop A. Make a difference: Choose artificial reefs over natural reefs to compensate for the environmental impacts of dive tourism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165488. [PMID: 37524181 DOI: 10.1016/j.scitotenv.2023.165488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023]
Abstract
In the marine environment, natural reef habitats are amongst the most threatened by human activities. Although reef-based ecotourism can benefit local economies, dive tourism can damage sensitive habitats. One solution to managing conflicts between the economic value of diving and its ecological threats is the deployment of artificial reefs near popular dive sites. We surveyed recreational divers to assess divers' use, preference, and perceptions of diving artificial versus natural sites. We found that more divers prefer to dive in natural than artificial habitats, with associated biodiversity the most popular reason for preferring natural habitats, and appreciating shipwrecks the most popular reason for preferring artificial ones. Despite our sample population being highly educated and experienced, predominantly European divers, only 49 % of them perceived artificial reefs as important or somewhat important for diverting pressure from sensitive natural habitats. Similarly, only 13 % of respondents exhibited preference to avoid coral reefs to protect them. These results highlight the fact that more needs to be done to educate divers about the potential importance of artificial habitats in diverting divers from natural reefs. We suggest encouraging divers to switch out a proportion of their dives in vulnerable natural sites for artificial reefs. This is not only true for coral reefs, but should be applied to other natural reef habitats that are popular with divers such as kelp forests, sponge gardens and serpulid and coralligenous reefs. We hope that this study will provide a platform to stimulate a diver-led discussion and campaign for increased uptake of artificial reef use, resulting in reduced impacts on natural reefs.
Collapse
Affiliation(s)
- Louise B Firth
- School of Biolgogical and Marine Science, University of Plymouth, Drake Circus, Plymouth, UK.
| | - Mark Farnworth
- Department of Animal Health, Behaviour and Welfare, Harper Adams University, Newport TF10 8NB, UK
| | - Keiron P P Fraser
- School of Biolgogical and Marine Science, University of Plymouth, Drake Circus, Plymouth, UK
| | | |
Collapse
|
29
|
Rosso B, Bravo B, Gregoris E, Barbante C, Gambaro A, Corami F. Quantification and Chemical Characterization of Plastic Additives and Small Microplastics (<100 μm) in Highway Road Dust. TOXICS 2023; 11:936. [PMID: 37999588 PMCID: PMC10674966 DOI: 10.3390/toxics11110936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Road dust is one of the environment's most important microplastic and plastic additive sources. Traffic vehicles and the wear of tires can release these emerging contaminants, which can be resuspended in the air and washed off by stormwater runoff. In this study, a concurrent quantification and chemical characterization of additives, plasticizers, natural and non-plastic synthetic fibers (APFs), and small microplastics (SMPs, <100 µm) in samples of highway road dust (HWRD) was performed. The sampling procedure was optimized, as well as pretreatment (extraction, purification, and filtration) and analysis via micro-FTIR. The average length of the SMPs was 88 µm, while the average width was 50 µm. The highest abundance of SMPs was detected in HWRD 7 (802 ± 39 SMPs/g). Among the polymers characterized and quantified, vinyl ester and polytetrafluoroethylene were predominant. APFs' average particle length was 80 µm and their width was 45 µm, confirming that both of these emerging pollutants are less than 100 µm in size. Their maximum concentration was in RD7, with 1044 ± 45 APFs/g. Lubricants and plasticizers are the two most abundant categories, followed by vulcanizing agents, accelerators, and pre-vulcanizing retarders derived mainly from tires. A potential relationship between APFs and SMPs in the different seasons was observed, as their concentration was lower in summer for both and higher in winter 2022. These results will be significant in investigating the load of these pollutants from highways, which is urgently necessary for more accurate inclusion in emission inventories, receptor modeling, and health protection programs by policymakers, especially in air and water pollution policies, to prevent risks to human health.
Collapse
Affiliation(s)
- Beatrice Rosso
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Barbara Bravo
- Thermo Fisher Scientific, Str. Rivoltana, Km 4, 20090 Rodano, Italy
| | - Elena Gregoris
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
- Institute of Polar Sciences, CNR-ISP, Campus Scientifico, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Carlo Barbante
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
- Institute of Polar Sciences, CNR-ISP, Campus Scientifico, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Andrea Gambaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Fabiana Corami
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
- Institute of Polar Sciences, CNR-ISP, Campus Scientifico, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| |
Collapse
|
30
|
Díaz-Jaramillo M, Gonzalez M, Tomba JP, Silva LI, Islas MS. Occurrence and dynamics of microplastics and emerging concern microparticles in coastal sediments: Impact of stormwater upgrade and port-associated facilities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165724. [PMID: 37487895 DOI: 10.1016/j.scitotenv.2023.165724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
Urban runoff is a significant source of microplastic pollution in aquatic environments, especially in coastal areas. Despite urban stormwater runoff being considered a major pathway of anthropogenic particles there's no studies about the impact of stormwater upgrades on microparticle transport. Moreover, due to the influence of anthropogenic activities, including maritime traffic and maintenance, on coastal environments, it is crucial to identify plastic debris from both inland and in-shore sources. This study evaluates characteristics, abundance, and distribution of microplastics in subtidal sediments from the southwestern Atlantic region, influenced by a recently upgraded stormwater outfall and port facilities. Herein, we have analyzed temporal trends, including seasonal dynamics and their relation with the pre- and post-upgrade of the stormwater outfall. Three main types of anthropogenic microparticles were observed: common plastic (MPs), paints (Pps), and tire wear particles (TWPs). Microparticle groups varied in morphology, color, and size distribution, including uncommon microparticle debris. Analysis by FTIR and Raman spectroscopies allows the identification of polyethylene, polypropylene, polyethylene terephthalate, polyvinyl chloride, polystyrene, polyamide, and polyacrylonitrile polymers for MPs mainly. Pigments such as Naphthol AS, phthalocyanine, and quinacridone have been identified in Pps. SEM-EDS and FTIR analysis of collected TWPs revealed similar trace metals constituents and infrared signals to those observed in tire road samples. Spatial and temporal abundances of microparticle groups were significantly different (p < 0.05), mainly related to the distance from the stormwater outfall and seasons. TWPs showed the most significant seasonal increment rate among pre and post-upgrade periods. Furthermore, the upgrades made to the stormwater system have been observed to intensify the transport and increase the presence of specific anthropogenic microparticles in subtidal sediments. Based on these findings, the occurrence of TWPs emerges as a reliable urban runoff indicator to differentiate ex and in-situ sources in multipolluted coastal environments.
Collapse
Affiliation(s)
- M Díaz-Jaramillo
- IIMyC, Estresores Múltiples en el Ambiente (EMA), FCEyN, UNMDP, CONICET, Funes 3350 (B7602AYL), Mar del Plata, Buenos Aires, Argentina; Red de Investigación de los Estresores Marino Costeros de Latinoamérica y el Caribe-REMARCO, Mar del Plata 7600, Argentina.
| | - M Gonzalez
- IIMyC, Estresores Múltiples en el Ambiente (EMA), FCEyN, UNMDP, CONICET, Funes 3350 (B7602AYL), Mar del Plata, Buenos Aires, Argentina; Red de Investigación de los Estresores Marino Costeros de Latinoamérica y el Caribe-REMARCO, Mar del Plata 7600, Argentina
| | - J P Tomba
- Ciencia e Ingeniería de Polímeros, INTEMA (CONICET-UNMDP), Avda. Colón 10850, (B7606BWV), Mar del Plata, Buenos Aires, Argentina
| | - L I Silva
- Ciencia e Ingeniería de Polímeros, INTEMA (CONICET-UNMDP), Avda. Colón 10850, (B7606BWV), Mar del Plata, Buenos Aires, Argentina
| | - M S Islas
- IIMyC, Estresores Múltiples en el Ambiente (EMA), FCEyN, UNMDP, CONICET, Funes 3350 (B7602AYL), Mar del Plata, Buenos Aires, Argentina; Red de Investigación de los Estresores Marino Costeros de Latinoamérica y el Caribe-REMARCO, Mar del Plata 7600, Argentina; Departamento de Química y Bioquímica, FCEyN, UNMDP, Funes 3350 (B7602AYL), Mar del Plata 7600, Buenos Aires, Argentina
| |
Collapse
|
31
|
Zhang Y, Paul T, Brehm J, Völkl M, Jérôme V, Freitag R, Laforsch C, Greiner A. Role of Residual Monomers in the Manifestation of (Cyto)toxicity by Polystyrene Microplastic Model Particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:9925-9933. [PMID: 37364870 PMCID: PMC10340104 DOI: 10.1021/acs.est.3c01134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/25/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
Polystyrene (PS) is an important model polymer for the investigation of effects of microplastic (MP) and nanoplastic (NP) particles on living systems. Aqueous dispersions of PS MP or NP contain residual monomers of styrene. In consequence, it is not clear if the effects observed in standard (cyto)toxicity studies are evoked by the polymer (MP/NP) particle or by residual monomers. We addressed that question by comparing standard PS model particle dispersions with in-house synthesized PS particle dispersions. We proposed a rapid purification method of PS particle dispersions by dialysis against mixed solvents and developed a simple method of UV-vis spectrometry to detect residual styrene in the dispersions. We found that standard PS model particle dispersions, which contain residual monomers, exerted a low but significant cytotoxicity on mammalian cells, while the in-house synthesized PS, after rigorous purification to reduce the styrene content, did not. However, the PS particles per se but not the residual styrene in both PS particle dispersions resulted in immobilization of Daphnia. Only by using freshly monomer-depleted particles, will it be possible in the future to assess the (cyto)toxicities of PS particles, avoiding an otherwise not controllable bias effect of the monomer.
Collapse
Affiliation(s)
- Yuanhu Zhang
- Macromolecular
Chemistry and Bavarian Polymer Institute, University of Bayreuth, 95440 Bayreuth, Germany
| | - Tasmai Paul
- Macromolecular
Chemistry and Bavarian Polymer Institute, University of Bayreuth, 95440 Bayreuth, Germany
| | - Julian Brehm
- Animal
Ecology I and BayCEER, University of Bayreuth, 95440 Bayreuth, Germany
| | - Matthias Völkl
- Process
Biotechnology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Valérie Jérôme
- Process
Biotechnology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Ruth Freitag
- Process
Biotechnology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Christian Laforsch
- Animal
Ecology I and BayCEER, University of Bayreuth, 95440 Bayreuth, Germany
| | - Andreas Greiner
- Macromolecular
Chemistry and Bavarian Polymer Institute, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
32
|
Utami DA, Reuning L, Schwark L, Friedrichs G, Dittmer L, Nurhidayati AU, Al Fauzan A, Cahyarini SY. Plastiglomerates from uncontrolled burning of plastic waste on Indonesian beaches contain high contents of organic pollutants. Sci Rep 2023; 13:10383. [PMID: 37369801 DOI: 10.1038/s41598-023-37594-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023] Open
Abstract
This study reports on plastiglomerate and other new forms of plastic pollution in the tropical marine continent of Indonesia. Twenty-five samples were collected from an island beach in the Java Sea where plastiglomerate, plasticrusts, and pyroplastic were formed by the uncontrolled burning of plastic waste. The most common plastic types were polyethylene and polypropylene (PE/PP), as shown by ATR-FTIR spectroscopy. However, acrylates/polyurethane/varnish (PU) and a copolymer of styrene and acrylonitrile were found as well. This suggests that plastiglomerates can form from a wider variety of plastic polymers than previously reported. FTIR analysis also indicates thermo-oxidative weathering, making the charred plastic more brittle and susceptible to microplastic formation. A subset of the samples was analyzed for associated chemical contaminants. One plastiglomerate with a PU matrix showed high concentrations of phthalates. All samples had high concentrations of polycyclic aromatic hydrocarbons (PAHs), likely due to the burning of the plastic in open fires. The burning leads to a change in the physical and chemical properties of the plastics contained in the plastiglomerates. Plastiglomerate and plastic waste of similar origin are therefore often more weathered and contaminated with organic pollutants than their parent polymers. The highest PAH concentration was found in a plastitar sample. Plastitar is defined as an agglomerate of tar and plastics that adheres to coastal rocks. In contrast, our study documents a more mobile, clastic plastitar type. This clastic plastitar could pose an additional ecological risk because of its mobility. These new types of plastic pollution could be an important vector for chemical contamination of nearby coastal habitats such as coral reefs, seagrass meadows, and mangroves.
Collapse
Affiliation(s)
- Dwi Amanda Utami
- Research Center for Climate and Atmosphere, National Research and Innovation Agency Republic of Indonesia, Jl. Cisitu Sangkuriang, Bandung, 40135, Indonesia.
- Institute of Geosciences, Kiel University, Ludewig-Meyn-Str. 10, 24118, Kiel, Germany.
| | - Lars Reuning
- Institute of Geosciences, Kiel University, Ludewig-Meyn-Str. 10, 24118, Kiel, Germany
| | - Lorenz Schwark
- Institute of Geosciences, Kiel University, Ludewig-Meyn-Str. 10, 24118, Kiel, Germany
| | - Gernot Friedrichs
- Institute of Physical Chemistry, Kiel University, Max-Eyth-Str. 1, 24118, Kiel, Germany
| | - Ludwig Dittmer
- Institute of Physical Chemistry, Kiel University, Max-Eyth-Str. 1, 24118, Kiel, Germany
| | - Ayu Utami Nurhidayati
- Research Center for Climate and Atmosphere, National Research and Innovation Agency Republic of Indonesia, Jl. Cisitu Sangkuriang, Bandung, 40135, Indonesia
| | - Ahmad Al Fauzan
- Research Center for Climate and Atmosphere, National Research and Innovation Agency Republic of Indonesia, Jl. Cisitu Sangkuriang, Bandung, 40135, Indonesia
- Oceanography Study Program, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, Indonesia
| | - Sri Yudawati Cahyarini
- Research Center for Climate and Atmosphere, National Research and Innovation Agency Republic of Indonesia, Jl. Cisitu Sangkuriang, Bandung, 40135, Indonesia
| |
Collapse
|
33
|
Tse YT, Lo HS, Tsang CW, Han J, Fang JKH, Chan SMN, Sze ETP. Quantitative analysis and risk assessment to full-size microplastics pollution in the coastal marine waters of Hong Kong. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163006. [PMID: 36966838 DOI: 10.1016/j.scitotenv.2023.163006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 05/17/2023]
Abstract
Given the potential risk to the ecosystem, attention has increased in recent decades to the contamination of the aquatic environment by microplastics (MPs). Due to the limitations of conventional analysis methods of MPs, little is known about the size distribution and abundance of a full-size MPs from 1 μm to 5 mm. The present study quantified MPs with size ranges of 50 μm - 5 mm and 1-50 μm in the coastal marine waters from twelve locations in Hong Kong using fluorescence microscopy and flow cytometry respectively, during the end of wet (September 2021) and dry (March 2022) seasons. The average abundance of MPs with size ranges of 50 μm - 5 mm and 1-50 μm from twelve sampling locations marine surface waters were found ranging from 27 to 104 particles L-1 and 43,675-387,901 particles L-1 in the wet season respectively, and 13-36 particles L-1 and 23,178-338,604 particles L-1 in the dry season respectively. Significant temporal and spatial variations of small MPs abundance might be observed at the sampling locations, which were contributed by the influences of the estuary of Pearl River, sewage discharge points, land structure, and other anthropogenic activities. Based on the MPs abundance information, ecological risk assessment was conducted and revealed that the small MPs (< 10 μm) in coastal marine surface waters may pose potential health risks to aquatic organisms. Additional risk assessments are needed in order to determine whether or not the MPs exposure would cause health risks to the public.
Collapse
Affiliation(s)
- Yuet-Tung Tse
- School of Science and Technology, Hong Kong Metropolitan University, Homantin, Hong Kong
| | - Hoi-Shing Lo
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Chi-Wing Tsang
- Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong (THEi), Chai Wan, Hong Kong
| | - Jie Han
- School of Science and Technology, Hong Kong Metropolitan University, Homantin, Hong Kong
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Sidney Man-Ngai Chan
- School of Science and Technology, Hong Kong Metropolitan University, Homantin, Hong Kong
| | - Eric Tung-Po Sze
- School of Science and Technology, Hong Kong Metropolitan University, Homantin, Hong Kong.
| |
Collapse
|
34
|
Ellrich JA, Furukuma S, Ehlers SM. Plasticrust generation and degeneration in rocky intertidal habitats contribute to microplastic pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162787. [PMID: 36914124 DOI: 10.1016/j.scitotenv.2023.162787] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Plasticrusts are a plastic form that consists of plastic encrusting intertidal rocks. To date, plasticrusts have been reported on Madeira island (Atlantic Ocean), Giglio island (Mediterranean Sea) and in Peru (Pacific Ocean) but information on plasticrust sources, generation, degeneration and fate is largely missing. To address these knowledge gaps, we combined plasticrust field surveys, experiments and monitorings along the Yamaguchi Prefecture (Honshu, Japan) coastline (Sea of Japan) with macro-, micro- and spectroscopic analyses in Koblenz, Germany. Our surveys detected polyethylene (PE) plasticrusts that derived from very common PE containers and polyester (PEST) plasticrusts that resulted from PEST-based paint. We also confirmed that plasticrust abundance, cover and distribution were positively related to wave exposure and tidal amplitude. Our experiments showed that plasticrusts are generated by cobbles scratching across plastic containers, plastic containers being dragged across cobbles during beach clean-ups, and waves abrading plastic containers on intertidal rocks. Our monitorings found that plasticrust abundance and cover decreased over time and the macro- and microscopic examinations indicated that detached plasticrusts contribute to microplastic pollution. The monitorings also suggested that hydrodynamics (wave occurrence, tidal height) and precipitation drive plasticrust degeneration. Finally, floating tests revealed that low density (PE) plasticrusts float whereas high density (PEST) plasticrusts sink suggesting that polymer type floatability influences the fate of plasticrusts. By tracking the entire lifespan of plasticrusts for the first time, our study contributes fundamental knowledge of plasticrust generation and degeneration in the rocky intertidal zone and identified plasticrusts as novel microplastic sources.
Collapse
Affiliation(s)
- Julius A Ellrich
- Shelf Sea System Ecology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27498 Helgoland, Germany
| | | | - Sonja M Ehlers
- Department of Animal Ecology, Federal Institute of Hydrology, 56068 Koblenz, Germany.
| |
Collapse
|
35
|
Nikhil VG, Ranjeet K, Varghese GK. Spatio-temporal evaluation and risk assessment of microplastics in nearshore surface waters post-2018 Kerala deluge along the southwest coast of India. MARINE POLLUTION BULLETIN 2023; 192:115058. [PMID: 37210987 DOI: 10.1016/j.marpolbul.2023.115058] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/23/2023]
Abstract
Spatial and temporal distribution of microplastics along the nearshore surface waters of Kerala after the floods of 2018 was studied. Results indicated a seven-fold increase in its mean concentration (7.14 ± 3.03 items/m3) post deluge. The average abundance was highest during pre-monsoon (8.27 ± 3.09 items/m3). Fibres were the dominant group, with blue and black being the most prevalent colours. Polyethylene and polypropylene were the most commonly found polymers, possibly gaining entry through sewage waste or land-based plastic litter. Highest abundance of microplastic was recorded off Kochi categorising it at Hazard Level I under Pollution Load Index assessment. Similarly high levels of Pollution Hazard Index and Potential Ecological Risk Index were also reported due to the presence of hazardous polymers PVC and PU that can cause concern to marine life. The differential weathering pattern and surface morphology analysis suggested microplastics to be relatively old that had undergone substantial mechanical and oxidative weathering.
Collapse
Affiliation(s)
- V G Nikhil
- Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Kochi, India
| | - K Ranjeet
- Department of Aquatic Environment Management, Kerala University of Fisheries and Ocean Studies, Kochi, India.
| | - George K Varghese
- Department of Civil Engineering, National Institute of Technology, Kozhikode, India
| |
Collapse
|
36
|
Weber F, Esmaeili N. Marine biofouling and the role of biocidal coatings in balancing environmental impacts. BIOFOULING 2023; 39:661-681. [PMID: 37587856 DOI: 10.1080/08927014.2023.2246906] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
Marine biofouling is a global problem affecting various industries, particularly the shipping industry due to long-distance voyages across various ecosystems. Therein fouled hulls cause increased fuel consumption, greenhouse gas emissions, and the spread of invasive aquatic species. To counteract these issues, biofouling management plans are employed using manual cleaning protocols and protective coatings. This review provides a comprehensive overview of adhesion strategies of marine organisms, and currently available mitigation methods. Further, recent developments and open challenges of antifouling (AF) and fouling release (FR) coatings are discussed with regards to the future regulatory environment. Finally, an overview of the environmental and economic impact of fouling is provided to point out why and when the use of biocidal solutions is beneficial in the overall perspective.
Collapse
Affiliation(s)
- Florian Weber
- Department of Materials and Nanotechnology, SINTEF, Oslo, Norway
| | | |
Collapse
|
37
|
Cho Y, Shim WJ, Ha SY, Han GM, Jang M, Hong SH. Microplastic emission characteristics of stormwater runoff in an urban area: Intra-event variability and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161318. [PMID: 36603623 DOI: 10.1016/j.scitotenv.2022.161318] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Stormwater runoff is considered a major pathway for land-based microplastic transportation to aquatic environments. By applying time-weighted stormwater sampling at stormwater outlets from industrial and residential catchments, we investigated the emission characteristics and loads (number- and mass-based) of microplastics to aquatic environments through urban stormwater runoff during rainfall events. Microplastics were detected in stormwater runoff from industrial and residential areas in the concentration range of 68-568 n/L and 54-639 n/L, respectively. Polypropylene and polyethylene were found as major polymers accounting for around 60 % of total microplastics. The fragment was the dominant shape of microplastics, and the most common size class was 20-100 μm or 100-200 μm. The microplastic load emitted from industrial and residential areas were estimated to be 1.54-46.1 × 108 and 0.63-28.5 × 108 particles, respectively. The discharge characteristics of microplastics inter- and intra-event were affected by the land-use pattern and rainfall characteristics. The concentration of microplastics did not significantly differ between industrial and residential catchments, but the composition of polymer types reflected the land-use pattern. The microplastics in stormwater were more concentrated when the number of antecedent dry days (ADDs) was higher; the concentration of microplastics was generally peaked in the early stage of runoff and varied according to rainfall intensity during a rainfall event. The contamination level and load of microplastics were heavily affected by the total rainfall depth. Most microplastics were transported in the early stage of runoff (19-37 % of total runoff time), but the proportion of larger and heavier particles increased in the later period of runoff. The microplastic emission via stormwater runoff was significantly higher than that through the discharge of wastewater treatment plant effluent in the same area, implying that stormwater runoff is the dominant pathway for transporting microplastics to aquatic environments.
Collapse
Affiliation(s)
- Youna Cho
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology (KIOST), Geoje 53201, Republic of Korea; Department of Ocean Science, KIOST School, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Won Joon Shim
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology (KIOST), Geoje 53201, Republic of Korea; Department of Ocean Science, KIOST School, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sung Yong Ha
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology (KIOST), Geoje 53201, Republic of Korea
| | - Gi Myung Han
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology (KIOST), Geoje 53201, Republic of Korea
| | - Mi Jang
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology (KIOST), Geoje 53201, Republic of Korea
| | - Sang Hee Hong
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology (KIOST), Geoje 53201, Republic of Korea; Department of Ocean Science, KIOST School, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
38
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 119] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
39
|
Fang C, Zheng R, Hong F, Chen S, Chen G, Zhang M, Gao F, Chen J, Bo J. First evidence of meso- and microplastics on the mangrove leaves ingested by herbivorous snails and induced transcriptional responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161240. [PMID: 36587672 DOI: 10.1016/j.scitotenv.2022.161240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/30/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Although evidence suggests the ubiquity of meso- and microplastics (MMPs) in mangrove forests, our knowledge of their bioavailability and risk on mangrove leaves is scarce. Here, we investigated MMP contamination concerning submerged mangrove leaves and herbivorous snails that mainly feed on them from the four mangrove forests located in Beibu Gulf, Guangxi Province, China. Results showed that the MMP abundance on the mangrove leaves ranged from 0.01 ± 0.00 to 0.42 ± 0.15 items cm-2, while it ranged from 0.33 ± 0.21 to 6.20 ± 2.91 items individual-1 in the snails. There were significant positive correlations between snails and leaves regarding the abundance of total MMPs and the proportions of MMPs with the same characteristics. Expanded polystyrene (EPS) that mainly derived from aquaculture rafts, accounted for a major component both on the leaves and in the snails in Shi Jiao (SJ). Both the detection frequency and percentage of larger EPS (2.00-17.50 mm) on the leaves in SJ were higher than other sites. Meanwhile, the detection frequency, abundance and percentage of larger EPS on the leaves had significant positive correlations with those of micro-EPS in the snails. These findings suggested that mangrove leaves may represent a viable pathway for MMPs to enter the herbivorous snails. Larger EPS with higher frequency of occurrence on mangrove leaves were more likely to be encountered and ingested by snail considering its opportunistic feeding behavior. In addition, 11 sensitive genes involved in the processes of metabolism, intestinal mucosal immune systems, and cellular transduction in the snails were significantly suppressed by MMP exposure, which may be potentially used as early biomarkers to indicate the biological effects of MMPs under realistic environmental conditions. Overall, this study provides novel insights into the fate, sources, and biological effects of MMPs on mangrove leaves.
Collapse
Affiliation(s)
- Chao Fang
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai 536015, China
| | - Ronghui Zheng
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Fukun Hong
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Shunyang Chen
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai 536015, China
| | - Guangcheng Chen
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai 536015, China
| | - Min Zhang
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Fulong Gao
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jincan Chen
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Jun Bo
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| |
Collapse
|
40
|
Yu JT, Diamond ML, Helm PA. A fit-for-purpose categorization scheme for microplastic morphologies. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:422-435. [PMID: 35686603 DOI: 10.1002/ieam.4648] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/12/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Microplastic categorization schemes are diverse, thereby posing challenges for cross-study comparisons. Further, categorization schemes are not necessarily aligned with and, thus, useful for applications such as source reduction initiatives. To address these challenges, we propose a hierarchical categorization approach that is "fit for purpose" to enable the use of a scheme that is tailored to the study's purpose and contains categories, which, if adopted, would facilitate interstudy comparison. The hierarchical categorization scheme is flexible to support various study purposes (e.g., to support regulation and toxicity assessment) and it aims to improve the consistency and comparability of microplastics categorization. Categorization is primarily based on morphology, supplemented by other identification methods as needed (e.g., spectroscopy). The use of the scheme was illustrated through a literature review aimed at critically evaluating the categories used for reporting microplastic morphologies in North American freshwater environments. Categorization and grouping schemes for microplastic particles were highly variable, with up to 19 different categories used across 68 studies, and nomenclature was inconsistent across particle morphologies. Our review demonstrates the necessity for a "fit for purpose" categorization scheme to guide the information needs of scientists and decision-makers for various research and regulatory objectives across global, regional, and local scales. Integr Environ Assess Manag 2023;19:422-435. © 2022 SETAC.
Collapse
Affiliation(s)
- Jasmine T Yu
- Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Miriam L Diamond
- Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada
- School of the Environment, University of Toronto, Toronto, Ontario, Canada
| | - Paul A Helm
- School of the Environment, University of Toronto, Toronto, Ontario, Canada
- Ontario Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Curren E, Yew Leong SC. Spatiotemporal characterisation of microplastics in the coastal regions of Singapore. Heliyon 2023; 9:e12961. [PMID: 36711275 PMCID: PMC9876982 DOI: 10.1016/j.heliyon.2023.e12961] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/07/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
In the 21st century, plastic production continues to increase at an unprecedented rate, leading to the global issue of plastic pollution. In marine environments, a significant fraction of plastic litter are microplastics, which have a wide range of effects in marine ecosystems. Here, we examine the spatiotemporal distribution of microplastics along the Johor and Singapore Straits, at surface and at depth. Generally, more microplastics were recorded from the surface waters across both Straits. Fragments were the dominant microplastic type (70%), followed by film (25%) and fiber (5%). A total of seven colours of microplastics were identified, with clear microplastics as the most abundant (64.9%), followed by black (25.1%) and blue (5.5%). Microplastics under 500 μm in size accounted for 98.9%, followed by particles 500-1000 μm (1%) and 1-5 mm (0.1%). During the monsoon season, the abundance of microplastics across various sites were observed to be > 1.1 times when compared to the inter-monsoon period. Rainfall was a closely related to the increased microplastic abundance across various sites in the Singapore Strait. This suggests that weather variations during climate change can play critical roles in modulating microplastic availability. Beach sediments facing the Singapore Strait recorded an abundance of 13.1 particles/kg, with polypropylene fragments, polyethylene pellets and thermoplastic polyester foam identified via Fourier transform infrared spectroscopy. Hence, it is crucial to profile the spatiotemporal variation of microplastic abundance in both the surface and in the water column to gain a better understanding of the threat caused by microplastic pollution in the coastal regions of Singapore.
Collapse
|
42
|
Jaini M, Namboothri N. Boat paint and epoxy fragments - Leading contributors of microplastic pollution in surface waters of a protected Andaman bay. CHEMOSPHERE 2023; 312:137183. [PMID: 36356818 DOI: 10.1016/j.chemosphere.2022.137183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/01/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Plastic pollution is a growing concern even in India's remotest oceanic islands. To understand the extent of the problem in relatively undisturbed areas of the Andaman and Nicobar Islands, we nested a microplastic survey within a year-long meroplankton study in the protected bay of the Lohabarrack salt water crocodile sanctuary, that lies on the less populated west coast of South Andaman Island. Surveys recovered microplastics year-round, in 299 out of 300 samples. The average microplastic density in the protected bay was 0.45 ± 0.32 particles per m3. Densities were highest during the monsoon, peaking at 2.34 particles per m3. Marine coating fragments (boat paint and epoxy, 58%) dominated the plastic debris composition year-round, while fibre only amounted to 15%. Marine coating fragments were most frequently encountered during the pre-monsoon, while fibres and other miscellaneous debris grew in abundance during the monsoon and post-monsoon months. Marine coating fragments were eaten by arrow worms, gastropods, appendicularians and Lucifer shrimp, and constituted 7% of the arrow worm diet. Microplastic density and composition found in this west facing protected bay was in stark contrast to the previously published observations from the east facing, human dominated Port Blair bay, providing clear indication of sources and potential mitigation strategies. This is the first year-long record of ocean plastics from the Andaman Islands, India and it provides evidence of pollution by boat paint and epoxy particles, an often-overlooked component of microplastic pollution.
Collapse
Affiliation(s)
- Mahima Jaini
- Dakshin Foundation, #2203, D Block, 8th Main, 16th D Cross, Sahakar Nagar, Bangalore, Karnataka, 560092, India.
| | - Naveen Namboothri
- Dakshin Foundation, #2203, D Block, 8th Main, 16th D Cross, Sahakar Nagar, Bangalore, Karnataka, 560092, India
| |
Collapse
|
43
|
Rosso B, Corami F, Vezzaro L, Biondi S, Bravo B, Barbante C, Gambaro A. Quantification and characterization of additives, plasticizers, and small microplastics (5-100 μm) in highway stormwater runoff. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116348. [PMID: 36174466 DOI: 10.1016/j.jenvman.2022.116348] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Highway stormwater (HSW) runoff is a significant pathway for transferring microplastics from land-based sources to the other surrounding environmental compartments. Small microplastics (SMPs, 5-100 μm), additives, plasticizers, natural, and nonplastic synthetic fibers, together with other components of micro-litter (APFs), were assessed in HSW samples via Micro-FTIR; oleo-extraction and purification procedures previously developed were optimized to accomplish this goal. The distribution of SMPs and APFs observed in distinct HSW runoff varied significantly since rainfall events may play a crucial role in the concentration and distribution of these pollutants. The SMPs' abundance varied from 11932 ± 151 to 18966 ± 191 SMPs/L. The dominating polymers were vinyl ester (VE), polyamide 6 (PA6), fluorocarbon, and polyester (PES). The APFs' concentrations ranged from 12825 ± 157 to 96425 ± 430 APFs/L. Most APFs originated from vehicle and tire wear (e.g., Dioctyl adipate or 5-Methyl-1H-benzotriazole). Other sources of these pollutants might be pipes, highway signs, packaging from garbage debris, road marking paints, atmospheric deposition, and other inputs. Assessing SMPs in HSW runoff can help evaluating the potential threat they may represent to receiving water bodies and air compartments. Besides, APFs in HSW runoff may be efficient proxies of macro- and microplastic pollution.
Collapse
Affiliation(s)
- Beatrice Rosso
- Department of Environmental Sciences, Informatics, and Statistics; Ca' Foscari University of Venice, Via Torino, 155, 30172, Venezia-Mestre, Italy; Institute of Polar Sciences, CNR-ISP; Campus Scientifico - Ca' Foscari University of Venice, Via Torino, 155, 30172, Venezia-Mestre, Italy.
| | - Fabiana Corami
- Department of Environmental Sciences, Informatics, and Statistics; Ca' Foscari University of Venice, Via Torino, 155, 30172, Venezia-Mestre, Italy; Institute of Polar Sciences, CNR-ISP; Campus Scientifico - Ca' Foscari University of Venice, Via Torino, 155, 30172, Venezia-Mestre, Italy.
| | - Luca Vezzaro
- Department of Environmental Engineering Water Technology & Processes, Technical University of Denmark, Anker Engelunds Vej 1, Bygning 101A, 2800 Kgs., Lyngby, Denmark.
| | | | - Barbara Bravo
- Thermo Fisher Scientific, Str. Rivoltana, Km 4 - 20090 Rodano (MI), Italy.
| | - Carlo Barbante
- Department of Environmental Sciences, Informatics, and Statistics; Ca' Foscari University of Venice, Via Torino, 155, 30172, Venezia-Mestre, Italy; Institute of Polar Sciences, CNR-ISP; Campus Scientifico - Ca' Foscari University of Venice, Via Torino, 155, 30172, Venezia-Mestre, Italy.
| | - Andrea Gambaro
- Department of Environmental Sciences, Informatics, and Statistics; Ca' Foscari University of Venice, Via Torino, 155, 30172, Venezia-Mestre, Italy; Institute of Polar Sciences, CNR-ISP; Campus Scientifico - Ca' Foscari University of Venice, Via Torino, 155, 30172, Venezia-Mestre, Italy.
| |
Collapse
|
44
|
Kucharski D, Giebułtowicz J, Drobniewska A, Nałęcz-Jawecki G, Skowronek A, Strzelecka A, Mianowicz K, Drzewicz P. The study on contamination of bottom sediments from the Odra River estuary (SW Baltic Sea) by tributyltin using environmetric methods. CHEMOSPHERE 2022; 308:136133. [PMID: 36041528 DOI: 10.1016/j.chemosphere.2022.136133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
We present the first comprehensive study on the occurrence of tributyltin (TBT) in the Odra River estuary (SW Baltic Sea) that encompasses both densely populated and urbanized agglomeration Szczecin city, and sparsely populated biosphere reserves "Natura 2000". Relationship between TBT and physicochemical parameters of bottom sediments such as granulometry total organic carbon (TOC), total nitrogen (TN), acid volatile sulfide (AVS), As, and metals: Ba, Cd, Co, Cr, Cu, Fe, Hg, Ni, Mn, Mo, Pb, Sn, and Zn was investigated in 120 samples collected in 2017 and 2018. The highest TBT concentrations were over 3000 ng g-1 (dry weight). They were observed in samples collected in the vicinity of the ship maintenance zones of the Szczecin city. Despite the EU ban on its use since 2003, TBT is still present in the environment. Environmetrics analyses such as correlation, cluster, and principal component analysis of obtained results revealed that the main source of sediments contamination by TBT, metalloids, and metals is likely related to the maritime industry: shipyards, ship maintenance as well as ports and marines. TBT is still present in the bottom sediments because of its emission to the environment with dust and paint chips formed during sandblasting cleaning of ship surfaces. The pollutant is further transported with water current to remote localization in the Szczecin Lagoon. Slow water exchange between the Szczecin Lagoon and the Baltic Sea favors accumulation of pollutants in the lagoon sediments. Therefore, it is necessary to implement environmentally friendly methods into ship maintenance and management of the materials from dredged waterways, harbors, and marinas.
Collapse
Affiliation(s)
- Dawid Kucharski
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, Warszawa, 02-097, Poland
| | - Joanna Giebułtowicz
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, Warszawa, 02-097, Poland
| | - Agata Drobniewska
- Department of Environmental Health Sciences, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, Warszawa, 02-097, Poland
| | - Grzegorz Nałęcz-Jawecki
- Department of Environmental Health Sciences, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, Warszawa, 02-097, Poland
| | - Artur Skowronek
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16, Szczecin, 70-383, Poland
| | - Agnieszka Strzelecka
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16, Szczecin, 70-383, Poland
| | - Kamila Mianowicz
- Interoceanmetal Joint Organization, Cyryla I Metodego 9-9A, Szczecin, 71-541, Poland
| | - Przemysław Drzewicz
- Polish Geological Institute-Polish Research Institute, Rakowiecka 4, Warszawa, 00-975, Poland.
| |
Collapse
|
45
|
Wu M, Ma Y, Xie H, Ji R. Photodissolution of submillimeter-sized microplastics and its dependences on temperature and light composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157714. [PMID: 35914607 DOI: 10.1016/j.scitotenv.2022.157714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Photodissolution has the potential to efficiently remove microplastics from the surface ocean. Here, we examined the effects of temperature and incident sunlight composition on the photodissolution of submillimeter-sized microplastics of polypropylene (PP), polystyrene (PS), and thermoplastic polyurethane (TPU) in seawater. The photoproduction of dissolved organic carbon (DOC), chromophoric dissolved organic matter, and dissolved nitrogen (TPU only) was observed to increase exponentially within 7 days of full-spectrum irradiation. The temperature dependence of photodissolution increased with irradiation time for PP and PS but remained relatively constant for TPU. A 20 °C increase in temperature enhanced DOC photoproduction by 10 times for PP, three times for PS, and four times for TPU at 7-d irradiation, giving activation energies of 59.4-84.8 kJ mol-1. Photodissolution of all three polymers was exclusively driven by ultraviolet-B (UVB) radiation. PS-derived DOC was photomineralizable, while PP- and TPU-derived DOC appeared photo-resistant. Extrapolating the lab-based DOC photoproduction rates to warm surface oceans yields lifetimes of 6.5 years for PP, 3.6 years for PS, and 3.7 years for TPU. This study demonstrates that photodissolution of the tested microplastics is restricted to the thin UVB-penetrable surface ocean and that water temperature plays a critical role in controlling the photodissolution of these microplastics.
Collapse
Affiliation(s)
- Mengyue Wu
- Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski, Québec G5L 3A1, Canada
| | - Yini Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Huixiang Xie
- Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski, Québec G5L 3A1, Canada.
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
46
|
Xu Y, Rillig MC, Waldman WR. New separation protocol reveals spray painting as a neglected source of microplastics in soils. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:3363-3369. [PMID: 36467872 PMCID: PMC9712295 DOI: 10.1007/s10311-022-01500-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/03/2022] [Indexed: 06/05/2023]
Abstract
Microplastics are recently discovered contaminants, yet knowledge on their sources and analysis is limited. For instance, paint microplastics are poorly known because soil separation protocols using flotation solutions cannot separate paint microplastics due to the higher density of paint microplastic versus common microplastics. Here, we designed a new two-step density separation protocol for paint microplastics, allowing paint microplastics to be separated from the soil without digestion. Paint particles were separated from soil samples collected around the graffiti wall at the Mauerpark, Berlin, then quantified according to their shape and color characteristic. The presence of polymers as binders in the paint particles was verified by Fourier transform infrared spectroscopy. Results show concentrations from 1.1 × 105 to 2.9 × 105 microplastics per Kg of dry soil, representing the highest microplastic concentration ever reported in the literature. Particle concentrations decreased and the median size increased with soil depth. Our results provide first evidence that spray painting, a technique with a wide range of applications from industry to art, leaves a legacy of environmental microplastic in soils that has so far gone unnoticed. Supplementary Information The online version contains supplementary material available at 10.1007/s10311-022-01500-2.
Collapse
Affiliation(s)
- Yaqi Xu
- Institute of Biology, Freie Universität Berlin, Altensteinstrasse 6, 14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Königin-Luise-Strasse 4-6, 14195 Berlin, Germany
| | - Matthias C. Rillig
- Institute of Biology, Freie Universität Berlin, Altensteinstrasse 6, 14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Königin-Luise-Strasse 4-6, 14195 Berlin, Germany
| | - Walter R. Waldman
- Center of Science and Technology for the Sustainability, Federal University of São Carlos, Sorocaba, Brazil
| |
Collapse
|
47
|
Abelouah MR, Ben-Haddad M, Hajji S, De-la-Torre GE, Aziz T, Oualid JA, Banni M, Ait Alla A. Floating microplastics pollution in the Central Atlantic Ocean of Morocco: Insights into the occurrence, characterization, and fate. MARINE POLLUTION BULLETIN 2022; 182:113969. [PMID: 35905704 DOI: 10.1016/j.marpolbul.2022.113969] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 05/25/2023]
Abstract
This work presents preliminary results about abundance, distribution, characteristics, sources, and fate of microplastics (MPs) in the Central Atlantic Ocean (CAO) of Morocco. The investigation was conducted into three subsections, each characterized by different types of human activities and covering rural, village, and urban areas. MPs were detected in 100 % of the sampling sites. The abundances varied from 0.048 to 3.305 items/m3, with a mean abundance of 0.987 ± 1.081 items/m3. MPs abundance was higher in surface seawater linked to urban areas compared to village and rural areas. The dominant polymer type was polyester (PET-53.8 %) followed by polypropylene (PP-24.36 %), polyamide (PA-7.56 %), polystyrene (PS-6.88 %), polyvinyl chloride (PVC-2.64 %), ethylene vinyl acetate (EVA-2.60 %), polyetherurethane (PUR-1.36 %), and acrylic (AC-0.8 %). Fibers were the most dominant shapes accounting for over 50 %. MPs were mainly smaller than 2 mm in size (71 %) and characterized by colorful aspects. These findings suggested that wastewater treatment plant (WWTP) effluents and anthropogenic activities (industry, tourism, sanitation, and fishing) are the major pollution sources of MPs in the study area. SEM/EDX micrographs showed different weathering degrees and chemical elements adhered to the MPs surface.
Collapse
Affiliation(s)
- Mohamed Rida Abelouah
- Laboratory of Aquatic Systems: Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Mohamed Ben-Haddad
- Laboratory of Aquatic Systems: Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Sara Hajji
- Laboratory of Aquatic Systems: Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | | | - Taoufyq Aziz
- Laboratoire Matériaux et Environnement (LME), Faculté des Sciences d'Agadir, Maroc, Morocco
| | - Jaouad Abou Oualid
- Laboratory of Aquatic Systems: Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Mohamed Banni
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy, University of Sousse, Tunisia; University of Monastir, Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
| | - Aicha Ait Alla
- Laboratory of Aquatic Systems: Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| |
Collapse
|
48
|
Müller AK, Brehm J, Völkl M, Jérôme V, Laforsch C, Freitag R, Greiner A. Disentangling biological effects of primary nanoplastics from dispersion paints' additional compounds. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113877. [PMID: 35849903 DOI: 10.1016/j.ecoenv.2022.113877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Microplastic particles (MP) and nanoplastic particles (NP) as persistent anthropogenic pollutants may impact environmental and human health. A relevant potential source of primary MP and NP is water-based dispersion paint which are commonly used in any household. Given the worldwide high application volume of dispersion paint and their diverse material composition MP and NP may enter the environment with unforeseeable consequences. In order to understand the relevance of these MP and NP from paint dispersion we investigated the components of two representative wall paints and analyzed their composition in detail. The different paint components were then investigated for their impact on the model organism Daphnia magna and on a murine cell line. Plastic NP, dissolved polymers, titanium dioxide NPs, and calcium carbonate MPs demonstrated adverse effects in both biological test systems, indicating detrimental consequences of several typical components of wall paints upon release into the environment. The outcome of this study may form the basis for the evaluation of impact on other organisms, environmental transport and impact, other related technical materials and for the development of strategies for the prevention of potential detrimental effects on organisms.
Collapse
Affiliation(s)
- Ann-Kathrin Müller
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Julian Brehm
- Department of Animal Ecology I and BayCEER, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Matthias Völkl
- Department of Process Biotechnology, Faculty of Engineering Sciences, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Valérie Jérôme
- Department of Process Biotechnology, Faculty of Engineering Sciences, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Christian Laforsch
- Department of Animal Ecology I and BayCEER, University of Bayreuth, D-95440 Bayreuth, Germany.
| | - Ruth Freitag
- Department of Process Biotechnology, Faculty of Engineering Sciences, University of Bayreuth, D-95440 Bayreuth, Germany.
| | - Andreas Greiner
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, D-95440 Bayreuth, Germany.
| |
Collapse
|
49
|
Sparks C, Awe A. Concentrations and risk assessment of metals and microplastics from antifouling paint particles in the coastal sediment of a marina in Simon's Town, South Africa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59996-60011. [PMID: 35412184 DOI: 10.1007/s11356-022-18890-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Maintenance of maritime vessels includes the removal of paint from hulls that are sources of metals, antifouling paint particles (APPs) and microplastics (MPs) that end up in the coastal environment. Simon's Town is a small urban town in False Bay, Cape Town, South Africa, where maritime activities take place (there is a naval harbour, marina and shipyard). The aim of this study was to measure metals, APPs and MPs in Simon's Town, to assess the impact of maritime activities and a storm water pipe in a sheltered marina. Sediment samples were collected from six sites during winter 2018. Sediment and extracted APPs were analysed for metal concentrations (Al, As, B, Ba, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Se, Sb, Sn, Sr, V and Zn) and MPs characterised based on type (shape and polymer), colour and size. Highest average metal concentrations in sediment for all sites were Fe (32228 ± SEM 4024), Al (12271 ± 1062) and Cu (1129 ± 407). Metals in paint particles were highest for Fe (80873 ± 19341), Cu (66762 ± 13082) and Zn (44910 ± 1400 µg/g). Metal and MP fragment concentrations were highest at the slipway of the shipyard, decreasing with increased distance from the slipway. MP filaments were highest close to the storm water outfall pipe. Our results suggest that shipyards are potential sources of metals and MP fragments (mainly APPs), with storm water pipes potential sources of MP filaments. Various indices applied to assess the potential impacts of metals and MPs suggest that these contaminants have the potential to adversely impact the intertidal ecosystem investigated.
Collapse
Affiliation(s)
- Conrad Sparks
- Department of Conservation and Marine Sciences, Cape Peninsula University of Technology, Cape Town, South Africa.
| | - Adetunji Awe
- Department of Conservation and Marine Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| |
Collapse
|
50
|
Abstract
ConspectusMarine organisms such as barnacle larvae and spores of algae adhere to underwater surfaces leading to marine biofouling. This phenomenon has numerous adverse impacts on marine industries and maritime activities. Due to the diversity of fouling organisms and the complexity of the marine environment, it is a huge challenge to combat marine biofouling, which limits the development and utilization of marine resources. Since the International Marine Organization banned the use of tributyltin self-polishing copolymer (SPC) coatings in 2008, the development of an environmentally friendly and efficient anti-biofouling polymer has been the most important task in this field. Tin-free SPC is a well-established and widely used polymer binder for anti-biofouling coating today. Being a nondegradable vinyl polymer, SPC exhibits poor anti-biofouling performance in static conditions. Even more, such nondegradable polymers were considered to be a source of microplastics by the International Union for the Conservation of Nature in 2019. Recently, numerous degradable polymers, which can form dynamic surface through main chain scission, have been developed for preventing marine biofouling in static conditions. Nevertheless, the regulation of their degradation and mechanical properties is limited, and they are also difficult to functionalize. A new polymer combining the advantages of vinyl polymers and degradable polymers is needed. However, such a combination is a challenge since the former are synthesized via free radical polymerization whereas the latter are synthesized via ring-opening polymerization.In this Account, we review our recent progress toward degradable vinyl polymers for marine anti-biofouling in terms of polymerization methods and structures and properties of polymers. First, we introduce the strategies for preparing degradable vinyl polymers with an emphasis on hybrid copolymerization. Then, we present the synthesis and performance of degradable and hydrolyzable polyacrylates, degradable polyurethanes with hydrolyzable side groups, and surface-fragmenting hyperbranched polymers. Polymers with degradable main chains and hydrolyzable side groups combine the advantages of SPC and degradable polymers, so they are degradable and functional. They are becoming new-generation polymers with great potential for preparing high-efficiency, long-lasting, environmentally friendly and broad-spectrum coatings to inhibit marine biofouling. They can also find applications in wastewater treatment, biomedical materials, and other fields.
Collapse
Affiliation(s)
- Jiansen Pan
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaoqing Ai
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chunfeng Ma
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|