1
|
Duan F, Li L, Liu S, Tao J, Gu Y, Li H, Yi X, Gong J, You D, Feng Z, Yu T, Tan H. Cortistatin protects against septic cardiomyopathy by inhibiting cardiomyocyte pyroptosis through the SSTR2-AMPK-NLRP3 pathway. Int Immunopharmacol 2024; 134:112186. [PMID: 38733824 DOI: 10.1016/j.intimp.2024.112186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Although the pathophysiological mechanism of septic cardiomyopathy has been continuously discovered, it is still a lack of effective treatment method. Cortistatin (CST), a neuroendocrine polypeptide of the somatostatin family, has emerged as a novel cardiovascular-protective peptide, but the specific mechanism has not been elucidated. PURPOSE The aim of our study is to explore the role of CST in cardiomyocytes pyroptosis and myocardial injury in sepsis and whether CST inhibits cardiomyocytes pyroptosis through specific binding with somastatin receptor 2 (SSTR2) and activating AMPK/Drp1 signaling pathway. METHODS AND RESULTS In this study, plasma CST levels were significantly high and were negatively correlated with N-terminal pro-B type natriuretic peptide (NT-proBNP), a biomarker for cardiac dysfunction, in patients with sepsis. Exogenous administration of CST significantly improved survival rate and cardiac function in mouse models of sepsis by inhibiting the activation of the NLRP3 inflammasome and pyroptosis of cardiomyocytes (decreased cleavage of caspase-1, IL-1β and gasdermin D). Pharmacological inhibition and genetic ablation revealed that CST exerted anti-pyroptosis effects by specifically binding to somatostatin receptor subtype 2 (SSTR2), thus activating AMPK and inactivating Drp1 to inhibit mitochondrial fission in cardiomyocytes. CONCLUSIONS This study is the first to report that CST attenuates septic cardiomyopathy by inhibiting cardiomyocyte pyroptosis through the SSTR2-AMPK-Drp1-NLRP3 pathway. Importantly, CST specifically binds to SSTR2, which promotes AMPK phosphorylation, inhibits Drp1-mediated mitochondrial fission, and reduces ROS levels, thereby inhibiting NLRP3 inflammasome activation-mediated pyroptosis and alleviating sepsis-induced myocardial injury.
Collapse
Affiliation(s)
- Fengqi Duan
- Department of Pathophysiology, School of Medicine, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Li Li
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510012, Guangdong, China
| | - Sijun Liu
- Department of Pathophysiology, School of Medicine, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Jun Tao
- Department of Pathophysiology, School of Medicine, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Yang Gu
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510012, Guangdong, China
| | - Huangjing Li
- Department of Pathophysiology, School of Medicine, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Xiaoling Yi
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510012, Guangdong, China
| | - Jianfeng Gong
- Department of Pathophysiology, School of Medicine, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Daiting You
- Department of Pathophysiology, School of Medicine, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Zejiang Feng
- Department of Pathophysiology, School of Medicine, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Tao Yu
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510012, Guangdong, China
| | - Hongmei Tan
- Department of Pathophysiology, School of Medicine, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Laboratory Animal Center, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
2
|
Zhang X, Zhang J, Huang T, Wang X, Su J, He J, Shi N, Wang Y, Li J. SSTR2 Mediates the Inhibitory Effect of SST/CST on Lipolysis in Chicken Adipose Tissue. Animals (Basel) 2024; 14:1034. [PMID: 38612272 PMCID: PMC11010918 DOI: 10.3390/ani14071034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Somatostatin shows an anti-lipolytic effect in both chickens and ducks. However, its molecular mediator remains to be identified. Here, we report that somatostatin type 2 receptor (SSTR2) is expressed at a high level in chicken adipose tissue. In cultured chicken adipose tissue, the inhibition of glucagon-stimulated lipolysis by somatostatin was blocked by an SSTR2 antagonist (CYN-154086), supporting an SSTR2-mediated anti-lipolytic effect. Furthermore, a significant pro-proliferative effect was detected in SST28-treated immortalized chicken preadipocytes (ICP-1), and this cell proliferative effect may be mediated through the MAPK/ERK signaling pathway activated by SSTR2. In summary, our results demonstrate that SSTR2 may regulate adipose tissue development by affecting the number and volume of adipocytes in chickens.
Collapse
Affiliation(s)
- Xiao Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610017, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610017, China
| | - Jiannan Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610017, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610017, China
| | - Tianjiao Huang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610017, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610017, China
| | - Xinglong Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610017, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610017, China
| | - Jiancheng Su
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610017, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610017, China
| | - Jiliang He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610017, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610017, China
| | - Ningkun Shi
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610017, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610017, China
| | - Yajun Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610017, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610017, China
| | - Juan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610017, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610017, China
| |
Collapse
|
3
|
Sáez-Martínez P, Porcel-Pastrana F, Pérez-Gómez JM, Pedraza-Arévalo S, Gómez-Gómez E, Jiménez-Vacas JM, Gahete MD, Luque RM. Somatostatin, Cortistatin and Their Receptors Exert Antitumor Actions in Androgen-Independent Prostate Cancer Cells: Critical Role of Endogenous Cortistatin. Int J Mol Sci 2022; 23:ijms232113003. [PMID: 36361790 PMCID: PMC9654089 DOI: 10.3390/ijms232113003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 11/25/2022] Open
Abstract
Somatostatin (SST), cortistatin (CORT), and their receptors (SSTR1-5/sst5TMD4-TMD5) comprise a multifactorial hormonal system involved in the regulation of numerous pathophysiological processes. Certain components of this system are dysregulated and play critical roles in the development/progression of different endocrine-related cancers. However, the presence and therapeutic role of this regulatory system in prostate cancer (PCa) remain poorly explored. Accordingly, we performed functional (proliferation/migration/colonies-formation) and mechanistic (Western-blot/qPCR/microfluidic-based qPCR-array) assays in response to SST and CORT treatments and CORT-silencing (using specific siRNA) in different PCa cell models [androgen-dependent (AD): LNCaP; androgen-independent (AI)/castration-resistant PCa (CRPC): 22Rv1 and PC-3], and/or in the normal-like prostate cell-line RWPE-1. Moreover, the expression of SST/CORT system components was analyzed in PCa samples from two different patient cohorts [internal (n = 69); external (Grasso, n = 88)]. SST and CORT treatment inhibited key functional/aggressiveness parameters only in AI-PCa cells. Mechanistically, antitumor capacity of SST/CORT was associated with the modulation of oncogenic signaling pathways (AKT/JNK), and with the significant down-regulation of critical genes involved in proliferation/migration and PCa-aggressiveness (e.g., MKI67/MMP9/EGF). Interestingly, CORT was highly expressed, while SST was not detected, in all prostate cell-lines analyzed. Consistently, endogenous CORT was overexpressed in PCa samples (compared with benign-prostatic-hyperplasia) and correlated with key clinical (i.e., metastasis) and molecular (i.e., SSTR2/SSTR5 expression) parameters. Remarkably, CORT-silencing drastically enhanced proliferation rate and blunted the antitumor activity of SST-analogues (octreotide/pasireotide) in AI-PCa cells. Altogether, we provide evidence that SST/CORT system and SST-analogues could represent a potential therapeutic option for PCa, especially for CRPC, and that endogenous CORT could act as an autocrine/paracrine regulator of PCa progression.
Collapse
Affiliation(s)
- Prudencio Sáez-Martínez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Francisco Porcel-Pastrana
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Jesús M. Pérez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Sergio Pedraza-Arévalo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Enrique Gómez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Urology Service, Reina Sofia University Hospital, 14004 Cordoba, Spain
| | - Juan M. Jiménez-Vacas
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Manuel D. Gahete
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Raúl M. Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
- Correspondence:
| |
Collapse
|
4
|
Gahete MD, Herman-Sanchez N, Fuentes-Fayos AC, Lopez-Canovas JL, Luque RM. Dysregulation of splicing variants and spliceosome components in breast cancer. Endocr Relat Cancer 2022; 29:R123-R142. [PMID: 35728261 DOI: 10.1530/erc-22-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/16/2022] [Indexed: 12/26/2022]
Abstract
The dysregulation of the splicing process has emerged as a novel hallmark of metabolic and tumor pathologies. In breast cancer (BCa), which represents the most diagnosed cancer type among women worldwide, the generation and/or dysregulation of several oncogenic splicing variants have been described. This is the case of the splicing variants of HER2, ER, BRCA1, or the recently identified by our group, In1-ghrelin and SST5TMD4, which exhibit oncogenic roles, increasing the malignancy, poor prognosis, and resistance to treatment of BCa. This altered expression of oncogenic splicing variants has been closely linked with the dysregulation of the elements belonging to the macromolecular machinery that controls the splicing process (spliceosome components and the associated splicing factors). In this review, we compile the current knowledge demonstrating the altered expression of splicing variants and spliceosomal components in BCa, showing the existence of a growing body of evidence supporting the close implication of the alteration in the splicing process in mammary tumorigenesis.
Collapse
Affiliation(s)
- Manuel D Gahete
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofía University Hospital, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, Spain
| | - Natalia Herman-Sanchez
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofía University Hospital, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, Spain
| | - Antonio C Fuentes-Fayos
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofía University Hospital, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, Spain
| | - Juan L Lopez-Canovas
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofía University Hospital, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, Spain
| | - Raúl M Luque
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofía University Hospital, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, Spain
| |
Collapse
|
5
|
Luo X, Zu Z, Riaz H, Dan X, Yu X, Liu S, Guo A, Wen Y, Liang A, Yang L. Evaluation of a Novel DNA Vaccine Double Encoding Somatostatin and Cortistatin for Promoting the Growth of Mice. Animals (Basel) 2022; 12:ani12121490. [PMID: 35739827 PMCID: PMC9219454 DOI: 10.3390/ani12121490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 11/22/2022] Open
Abstract
Animal growth traits are directly linked with the economics of livestock species. A somatostatin DNA vaccine has been developed to improve the growth of animals. However, the growth-promoting effect is still unsatisfying. The current study aimed to evaluate the effect of a novel eukaryotic dual expression vaccine known as pIRES-S/CST14-S/2SS, which encodes the genes obtained by fusing somatostatin (SS) and cortistatin (CST) into hepatitis B surface antigen (HBsAg). After transfection into GH3 cells with pIRES-S/CST14-S/2SS, green fluorescence signals were observed by fluorescence microscopy, suggesting the effective expression of CST and SS in GH3 cells using the IRES elements. Subsequently, both GH and PRL levels were found to be significantly lower in pIRES-S/CST14-S/2SS-treated cells as compared to the control group (p < 0.05). Furthermore, the antibody level, hormone secretion, and weight gain in the mice injected with novel recombinant plasmids were also evaluated. The anti-SS antibodies were detectable in all vaccine treated groups, resulting in significantly higher levels of GH secretion (p < 0.05). It is worth mentioning that pIRES-S/CST14-S/2SS (10 μg/100 μL) vaccinated mice exhibited a higher body weight gain in the second immunization period. This study increases the understanding of the relationship between somatostatin and cortistatin, and may help to develop an effective growth-promoting DNA vaccine in animals.
Collapse
Affiliation(s)
- Xuan Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (Z.Z.); (X.D.); (S.L.)
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China
| | - Zhuoxin Zu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (Z.Z.); (X.D.); (S.L.)
| | - Hasan Riaz
- Department of Biosciences, COMSATS University, Sahiwal Campus, Islamabad 57000, Pakistan;
| | - Xingang Dan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (Z.Z.); (X.D.); (S.L.)
| | - Xue Yu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China;
| | - Shuanghang Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (Z.Z.); (X.D.); (S.L.)
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yilin Wen
- Yongzhou Vocational Technical College, Yongzhou 425100, China;
| | - Aixin Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (Z.Z.); (X.D.); (S.L.)
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Wuhan 430070, China
- Correspondence: (A.L.); (L.Y.)
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (Z.Z.); (X.D.); (S.L.)
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Wuhan 430070, China
- Correspondence: (A.L.); (L.Y.)
| |
Collapse
|
6
|
Somatostatin and Somatostatin-Containing Interneurons—From Plasticity to Pathology. Biomolecules 2022; 12:biom12020312. [PMID: 35204812 PMCID: PMC8869243 DOI: 10.3390/biom12020312] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Despite the obvious differences in the pathophysiology of distinct neuropsychiatric diseases or neurodegenerative disorders, some of them share some general but pivotal mechanisms, one of which is the disruption of excitation/inhibition balance. Such an imbalance can be generated by changes in the inhibitory system, very often mediated by somatostatin-containing interneurons (SOM-INs). In physiology, this group of inhibitory interneurons, as well as somatostatin itself, profoundly shapes the brain activity, thus influencing the behavior and plasticity; however, the changes in the number, density and activity of SOM-INs or levels of somatostatin are found throughout many neuropsychiatric and neurological conditions, both in patients and animal models. Here, we (1) briefly describe the brain somatostatinergic system, characterizing the neuropeptide somatostatin itself, its receptors and functions, as well the physiology and circuitry of SOM-INs; and (2) summarize the effects of the activity of somatostatin and SOM-INs in both physiological brain processes and pathological brain conditions, focusing primarily on learning-induced plasticity and encompassing selected neuropsychological and neurodegenerative disorders, respectively. The presented data indicate the somatostatinergic-system-mediated inhibition as a substantial factor in the mechanisms of neuroplasticity, often disrupted in a plethora of brain pathologies.
Collapse
|
7
|
Falo CP, Benitez R, Caro M, Morell M, Forte-Lago I, Hernandez-Cortes P, Sanchez-Gonzalez C, O’Valle F, Delgado M, Gonzalez-Rey E. The Neuropeptide Cortistatin Alleviates Neuropathic Pain in Experimental Models of Peripheral Nerve Injury. Pharmaceutics 2021; 13:pharmaceutics13070947. [PMID: 34202793 PMCID: PMC8309056 DOI: 10.3390/pharmaceutics13070947] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/25/2022] Open
Abstract
Neuropathic pain is one of the most severe forms of chronic pain caused by the direct injury of the somatosensory system. The current drugs for treating neuropathies have limited efficacies or show important side effects, and the development of analgesics with novel modes of action is critical. The identification of endogenous anti-nociceptive factors has emerged as an attractive strategy for designing new pharmacological approaches to treat neuropathic pain. Cortistatin is a neuropeptide with potent anti-inflammatory activity, recently identified as a natural analgesic peptide in several models of pain evoked by inflammatory conditions. Here, we investigated the potential analgesic effect of cortistatin in neuropathic pain using a variety of experimental models of peripheral nerve injury caused by chronic constriction or partial transection of the sciatic nerve or by diabetic neuropathy. We found that the peripheral and central injection of cortistatin ameliorated hyperalgesia and allodynia, two of the dominant clinical manifestations of chronic neuropathic pain. Cortistatin-induced analgesia was multitargeted, as it regulated the nerve damage-induced hypersensitization of primary nociceptors, inhibited neuroinflammatory responses, and enhanced the production of neurotrophic factors both at the peripheral and central levels. We also demonstrated the neuroregenerative/protective capacity of cortistatin in a model of severe peripheral nerve transection. Interestingly, the nociceptive system responded to nerve injury by secreting cortistatin, and a deficiency in cortistatin exacerbated the neuropathic pain responses and peripheral nerve dysfunction. Therefore, cortistatin-based therapies emerge as attractive alternatives for treating chronic neuropathic pain of different etiologies.
Collapse
Affiliation(s)
- Clara P. Falo
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
| | - Raquel Benitez
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
| | - Marta Caro
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
| | - Maria Morell
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
- Genyo Center for Genomics and Oncological Research, Parque Tecnologico de la Salud, 18016 Granada, Spain
| | - Irene Forte-Lago
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
| | - Pedro Hernandez-Cortes
- Department of Orthopedic Surgery, San Cecilio University Hospital, 18071 Granada, Spain;
| | - Clara Sanchez-Gonzalez
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
| | - Francisco O’Valle
- Department of Pathology, School of Medicine, IBIMER and IBS-Granada, Granada University, 18016 Granada, Spain;
| | - Mario Delgado
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
- Correspondence: (M.D.); (E.G.-R.)
| | - Elena Gonzalez-Rey
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
- Correspondence: (M.D.); (E.G.-R.)
| |
Collapse
|
8
|
Vitali E, Piccini S, Trivellin G, Smiroldo V, Lavezzi E, Zerbi A, Pepe G, Lania AG. The impact of SST2 trafficking and signaling in the treatment of pancreatic neuroendocrine tumors. Mol Cell Endocrinol 2021; 527:111226. [PMID: 33675866 DOI: 10.1016/j.mce.2021.111226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 01/01/2023]
Abstract
Pancreatic neuroendocrine tumors (Pan-NETs), are heterogeneous neoplasms, whose incidence and prevalence are increasing worldwide. Pan-NETs are characterized by the expression of somatostatin receptors (SSTs). In particular, SST2 is the most widely distributed SST in NETs, thus representing the main molecular target for somatostatin analogs (SSAs). SSAs are currently approved for the treatment of well-differentiated NETs, and radionuclide-labeled SSAs are used for diagnostic and treatment purposes. SSAs, by binding to SSTs, have been shown to inhibit hormone secretion and thus provide control of hypersecretion symptoms, when present, and inhibit tumor proliferation. After SSA binding to SST2, the fate of the receptor is determined by trafficking mechanisms, crucial for the response to endogenous or pharmacological ligands. Although SST2 acts mostly through G protein-dependent mechanism, receptor-ligand complex endocytosis and receptor trafficking further regulate its function. SST2 mediates the decrease of hormone secretion via a G protein-dependent mechanism, culminating with the inhibition of adenylyl cyclase and calcium channels; it also inhibits cell proliferation and increases apoptosis through the modulation of protein tyrosine phosphatases. Moreover, SST2 inhibits angiogenesis and cell migration. In this respect, the cross-talk between SST2 and its interacting proteins, including Filamin A (FLNA) and aryl hydrocarbon receptor-interacting protein (AIP), plays a crucial role for SST2 signaling and responsiveness to SSAs. This review will focus on recent studies from our and other groups that have investigated the trafficking and signaling of SST2 in Pan-NETs, in order to provide insights into the mechanisms underlying tumor responsiveness to pharmacological treatments.
Collapse
Affiliation(s)
- E Vitali
- Laboratory of Cellular and Molecular Endocrinology, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Italy.
| | - S Piccini
- Laboratory of Cellular and Molecular Endocrinology, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| | - G Trivellin
- Laboratory of Cellular and Molecular Endocrinology, Italy; Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - V Smiroldo
- Oncology Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - E Lavezzi
- Endocrinology and Diabetology Unit Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - A Zerbi
- Department of Biomedical Sciences, Humanitas University, Rozzano, Italy; Pancreas Surgery Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - G Pepe
- Nuclear Medicine Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - A G Lania
- Laboratory of Cellular and Molecular Endocrinology, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Italy; Endocrinology and Diabetology Unit Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| |
Collapse
|
9
|
Gao R, Yang T, Zhang Q. δ-Cells: The Neighborhood Watch in the Islet Community. BIOLOGY 2021; 10:biology10020074. [PMID: 33494193 PMCID: PMC7909827 DOI: 10.3390/biology10020074] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/29/2022]
Abstract
Somatostatin-secreting δ-cells have aroused great attention due to their powerful roles in coordination of islet insulin and glucagon secretion and maintenance of glucose homeostasis. δ-cells exhibit neuron-like morphology with projections which enable pan-islet somatostatin paracrine regulation despite their scarcity in the islets. The expression of a range of hormone and neurotransmitter receptors allows δ-cells to integrate paracrine, endocrine, neural and nutritional inputs, and provide rapid and precise feedback modulations on glucagon and insulin secretion from α- and β-cells, respectively. Interestingly, the paracrine tone of δ-cells can be effectively modified in response to factors released by neighboring cells in this interactive communication, such as insulin, urocortin 3 and γ-aminobutyric acid from β-cells, glucagon, glutamate and glucagon-like peptide-1 from α-cells. In the setting of diabetes, defects in δ-cell function lead to suboptimal insulin and glucagon outputs and lift the glycemic set-point. The interaction of δ-cells and non-δ-cells also becomes defective in diabetes, with reduces paracrine feedback to β-cells to exacerbate hyperglycemia or enhanced inhibition of α-cells, disabling counter-regulation, to cause hypoglycemia. Thus, it is possible to restore/optimize islet function in diabetes targeting somatostatin signaling, which could open novel avenues for the development of effective diabetic treatments.
Collapse
Affiliation(s)
- Rui Gao
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK;
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China;
| | - Tao Yang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China;
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK;
- Correspondence:
| |
Collapse
|
10
|
Stueven AK, Kayser A, Wetz C, Amthauer H, Wree A, Tacke F, Wiedenmann B, Roderburg C, Jann H. Somatostatin Analogues in the Treatment of Neuroendocrine Tumors: Past, Present and Future. Int J Mol Sci 2019; 20:ijms20123049. [PMID: 31234481 PMCID: PMC6627451 DOI: 10.3390/ijms20123049] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/06/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022] Open
Abstract
In recent decades, the incidence of neuroendocrine tumors (NETs) has steadily increased. Due to the slow-growing nature of these tumors and the lack of early symptoms, most cases are diagnosed at advanced stages, when curative treatment options are no longer available. Prognosis and survival of patients with NETs are determined by the location of the primary lesion, biochemical functional status, differentiation, initial staging, and response to treatment. Somatostatin analogue (SSA) therapy has been a mainstay of antisecretory therapy in functioning neuroendocrine tumors, which cause various clinical symptoms depending on hormonal hypersecretion. Beyond symptomatic management, recent research demonstrates that SSAs exert antiproliferative effects and inhibit tumor growth via the somatostatin receptor 2 (SSTR2). Both the PROMID (placebo-controlled, prospective, randomized study in patients with metastatic neuroendocrine midgut tumors) and the CLARINET (controlled study of lanreotide antiproliferative response in neuroendocrine tumors) trial showed a statistically significant prolongation of time to progression/progression-free survival (TTP/PFS) upon SSA treatment, compared to placebo. Moreover, the combination of SSA with peptide receptor radionuclide therapy (PRRT) in small intestinal NETs has proven efficacy in the phase 3 neuroendocrine tumours therapy (NETTER 1) trial. PRRT is currently being tested for enteropancreatic NETs versus everolimus in the COMPETE trial, and the potential of SSTR-antagonists in PRRT is now being evaluated in early phase I/II clinical trials. This review provides a synopsis on the pharmacological development of SSAs and their use as antisecretory drugs. Moreover, this review highlights the clinical evidence of SSAs in monotherapy, and in combination with other treatment modalities, as applied to the antiproliferative management of neuroendocrine tumors with special attention to recent high-quality phase III trials.
Collapse
Affiliation(s)
- Anna Kathrin Stueven
- Charité, Campus Virchow Klinikum and Charité, Campus Mitte, Department of Hepatology and Gastroenterology, Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Antonin Kayser
- Charité, Campus Virchow Klinikum and Charité, Campus Mitte, Department of Hepatology and Gastroenterology, Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Christoph Wetz
- Charité, Campus Virchow Klinikum and Charité, Campus Mitte, Department of Nuclear Medicine, Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Holger Amthauer
- Charité, Campus Virchow Klinikum and Charité, Campus Mitte, Department of Nuclear Medicine, Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Alexander Wree
- Charité, Campus Virchow Klinikum and Charité, Campus Mitte, Department of Hepatology and Gastroenterology, Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Frank Tacke
- Charité, Campus Virchow Klinikum and Charité, Campus Mitte, Department of Hepatology and Gastroenterology, Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Bertram Wiedenmann
- Charité, Campus Virchow Klinikum and Charité, Campus Mitte, Department of Hepatology and Gastroenterology, Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Christoph Roderburg
- Charité, Campus Virchow Klinikum and Charité, Campus Mitte, Department of Hepatology and Gastroenterology, Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Henning Jann
- Charité, Campus Virchow Klinikum and Charité, Campus Mitte, Department of Hepatology and Gastroenterology, Universitätsmedizin Berlin, 10117 Berlin, Germany.
| |
Collapse
|
11
|
Akbas M, Koltan SO, Koyuncu FM, Artunc Ulkumen B, Taneli F, Ozdemir H. Decreased maternal serum cortistatin levels in pregnancies with gestational diabetes mellitus. J Matern Fetal Neonatal Med 2019; 33:1239-1244. [PMID: 31154879 DOI: 10.1080/14767058.2019.1627321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: To investigate serum cortistatin levels in women with gestational diabetes mellitus (GDM) and women with uncomplicated pregnancies.Material and methods: This case-control study consisted of 40 pregnancies with GDM and 41 healthy singleton pregnancies matched for maternal and gestational age. The maternal serum levels of cortistatin were measured with enzyme-linked immunosorbent assay and compared between groups.Results: Cortistatin levels were significantly lower in GDM group (48.85 ± 20.18 versus 65.84 ± 33.98 ng/ml, p = .008). There was a statistically significant difference in cortistatin levels between different treatment modalities and control group (χ2(2) = 8.828, p = .012). Pairwise comparisons showed that diet group had significantly lower CST levels than control group (p = .012). Serum cortistatin levels were negatively correlated with serum insulin and glucose levels and HOMA-IR (r = -0.358, p = .001; r = -0.303, p = .006; r = -0.444, p < .001, respectively).Conclusion: Cortistatin levels were significantly lower in GDM pregnancies and related to serum insulin and glucose levels and HOMA-IR in pregnancy. This may help to better clarify the mechanism of GDM pathogenesis.
Collapse
Affiliation(s)
- Murat Akbas
- Department of Obstetrics and Gynecology, Perinatology Division, Manisa Celal Bayar University, Manisa, Turkey
| | - Semra Oruc Koltan
- Department of Obstetrics and Gynecology, Manisa Celal Bayar University, Manisa, Turkey
| | - Faik Mumtaz Koyuncu
- Department of Obstetrics and Gynecology, Perinatology Division, Manisa Celal Bayar University, Manisa, Turkey
| | - Burcu Artunc Ulkumen
- Department of Obstetrics and Gynecology, Perinatology Division, Manisa Celal Bayar University, Manisa, Turkey
| | - Fatma Taneli
- Department of Medical Biochemistry, Manisa Celal Bayar University, Manisa, Turkey
| | - Habib Ozdemir
- Department of Medical Biochemistry, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
12
|
Szalai K, Tempfli K, Lencsés-Varga E, Bali Papp Á. Genotyping of four loci in Hungarian Yellow and broiler chickens. Acta Vet Hung 2019; 67:1-10. [PMID: 30922096 DOI: 10.1556/004.2019.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Traditional selection has led to remarkable differences in allele frequencies among various chicken breeds. Indigenous and broiler-type chicken populations were genotyped for polymorphisms in thyroid hormone responsive Spot14α, prolactin (PRL), IGF-binding protein 2 (IGFBP2), and somatostatin (SST) genes in order to determine potential utilisation type-associated allele frequencies. Significant (P < 0.05) differences were detected between Hungarian Yellow and broiler populations for Spot14α, PRL, and IGFBP2 allele frequencies, whereas the same SST allele (A) was fixed in both groups. In this study, the most significant associations (P < 0.05) were found between the IGFBP2 genotypes and the measured traits (body weight, carcass weight, breast muscle weight with or without skin, breast muscle weight as a percentage of carcass weight) in the broiler population. The results can be applied for the evaluation of polymorphism effects in the analysed populations; however, contradictory allele effects in different breeds and hybrids indicate the need for cautious marker utilisation in selection programmes.
Collapse
Affiliation(s)
- Klaudia Szalai
- Széchenyi István University, Faculty of Agricultural and Food Sciences, Vár 4, H-9200 Mosonmagyaróvár, Hungary
| | - Károly Tempfli
- Széchenyi István University, Faculty of Agricultural and Food Sciences, Vár 4, H-9200 Mosonmagyaróvár, Hungary
| | - Erika Lencsés-Varga
- Széchenyi István University, Faculty of Agricultural and Food Sciences, Vár 4, H-9200 Mosonmagyaróvár, Hungary
| | - Ágnes Bali Papp
- Széchenyi István University, Faculty of Agricultural and Food Sciences, Vár 4, H-9200 Mosonmagyaróvár, Hungary
| |
Collapse
|
13
|
Soriano S, Castellano-Muñoz M, Rafacho A, Alonso-Magdalena P, Marroquí L, Ruiz-Pino A, Bru-Tarí E, Merino B, Irles E, Bello-Pérez M, Iborra P, Villar-Pazos S, Vettorazzi JF, Montanya E, Luque RM, Nadal Á, Quesada I. Cortistatin regulates glucose-induced electrical activity and insulin secretion in mouse pancreatic beta-cells. Mol Cell Endocrinol 2019; 479:123-132. [PMID: 30261212 DOI: 10.1016/j.mce.2018.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 09/05/2018] [Accepted: 09/22/2018] [Indexed: 12/17/2022]
Abstract
Although there is growing evidence that cortistatin regulates several functions in different tissues, its role in the endocrine pancreas is not totally known. Here, we aim to study the effect of cortistatin on pancreatic beta-cells and glucose-stimulated insulin secretion (GSIS). Exposure of isolated mouse islets to cortistatin inhibited GSIS. This effect was prevented using a somatostatin receptor antagonist. Additionally, cortistatin hyperpolarized the membrane potential and reduced glucose-induced action potentials in isolated pancreatic beta-cells. Cortistatin did not modify ATP-dependent K+ (KATP) channel activity. In contrast, cortistatin increased the activity of a small conductance channel with characteristics of G protein-coupled inwardly rectifying K+ (GIRK) channels. The cortistatin effects on membrane potential and GSIS were largely reduced in the presence of a GIRK channel antagonist and by down-regulation of GIRK2 with small interfering RNA. Thus, cortistatin acts as an inhibitory signal for glucose-induced electrical activity and insulin secretion in the mouse pancreatic beta-cell.
Collapse
Affiliation(s)
- Sergi Soriano
- Departament of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain.
| | - Manuel Castellano-Muñoz
- Institut of Bioengineering, Miguel Hernández University, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Alex Rafacho
- Department of Physiological Sciences, And Multicenter Graduate Program in Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Paloma Alonso-Magdalena
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain; Departamento de Biología Aplicada, Universidad Miguel Hernández, Elche, Spain
| | - Laura Marroquí
- Institut of Bioengineering, Miguel Hernández University, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Antonia Ruiz-Pino
- Institut of Bioengineering, Miguel Hernández University, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Eva Bru-Tarí
- Institut of Bioengineering, Miguel Hernández University, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Beatriz Merino
- Institut of Bioengineering, Miguel Hernández University, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Esperanza Irles
- Institut of Bioengineering, Miguel Hernández University, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | | | - Pau Iborra
- Institut of Bioengineering, Miguel Hernández University, Elche, Spain
| | - Sabrina Villar-Pazos
- Institut of Bioengineering, Miguel Hernández University, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Jean F Vettorazzi
- Department of Structural and Functional Biology, Institute of Biology, Campinas State University, Campinas, Brazil
| | - Eduard Montanya
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain; Bellvitge Hospital-IDIBELL, Barcelona, Spain; Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Raúl M Luque
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain; Reina Sofía University Hospital (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Ángel Nadal
- Institut of Bioengineering, Miguel Hernández University, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Iván Quesada
- Institut of Bioengineering, Miguel Hernández University, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain.
| |
Collapse
|
14
|
Günther T, Tulipano G, Dournaud P, Bousquet C, Csaba Z, Kreienkamp HJ, Lupp A, Korbonits M, Castaño JP, Wester HJ, Culler M, Melmed S, Schulz S. International Union of Basic and Clinical Pharmacology. CV. Somatostatin Receptors: Structure, Function, Ligands, and New Nomenclature. Pharmacol Rev 2018; 70:763-835. [PMID: 30232095 PMCID: PMC6148080 DOI: 10.1124/pr.117.015388] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Somatostatin, also known as somatotropin-release inhibitory factor, is a cyclopeptide that exerts potent inhibitory actions on hormone secretion and neuronal excitability. Its physiologic functions are mediated by five G protein-coupled receptors (GPCRs) called somatostatin receptor (SST)1-5. These five receptors share common structural features and signaling mechanisms but differ in their cellular and subcellular localization and mode of regulation. SST2 and SST5 receptors have evolved as primary targets for pharmacological treatment of pituitary adenomas and neuroendocrine tumors. In addition, SST2 is a prototypical GPCR for the development of peptide-based radiopharmaceuticals for diagnostic and therapeutic interventions. This review article summarizes findings published in the last 25 years on the physiology, pharmacology, and clinical applications related to SSTs. We also discuss potential future developments and propose a new nomenclature.
Collapse
Affiliation(s)
- Thomas Günther
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Giovanni Tulipano
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Pascal Dournaud
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Corinne Bousquet
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Zsolt Csaba
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Hans-Jürgen Kreienkamp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Márta Korbonits
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Justo P Castaño
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Hans-Jürgen Wester
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Michael Culler
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Shlomo Melmed
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| |
Collapse
|
15
|
Vázquez-Borrego MC, Gahete MD, Martínez-Fuentes AJ, Fuentes-Fayos AC, Castaño JP, Kineman RD, Luque RM. Multiple signaling pathways convey central and peripheral signals to regulate pituitary function: Lessons from human and non-human primate models. Mol Cell Endocrinol 2018; 463:4-22. [PMID: 29253530 DOI: 10.1016/j.mce.2017.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/14/2017] [Accepted: 12/14/2017] [Indexed: 12/12/2022]
Abstract
The anterior pituitary gland is a key organ involved in the control of multiple physiological functions including growth, reproduction, metabolism and stress. These functions are controlled by five distinct hormone-producing pituitary cell types that produce growth hormone (somatotropes), prolactin (lactotropes), adrenocorticotropin (corticotropes), thyrotropin (thyrotropes) and follicle stimulating hormone/luteinizing hormone (gonadotropes). Classically, the synthesis and release of pituitary hormones was thought to be primarily regulated by central (neuroendocrine) signals. However, it is now becoming apparent that factors produced by pituitary hormone targets (endocrine and non-endocrine organs) can feedback directly to the pituitary to adjust pituitary hormone synthesis and release. Therefore, pituitary cells serve as sensors to integrate central and peripheral signals in order to fine-tune whole-body homeostasis, although it is clear that pituitary cell regulation is species-, age- and sex-dependent. The purpose of this review is to provide a comprehensive, general overview of our current knowledge of both central and peripheral regulators of pituitary cell function and associated intracellular mechanisms, focusing on human and non-human primates.
Collapse
Affiliation(s)
- M C Vázquez-Borrego
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain; Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain
| | - M D Gahete
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain; Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain
| | - A J Martínez-Fuentes
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain; Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain
| | - A C Fuentes-Fayos
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain; Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain
| | - J P Castaño
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain; Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain
| | - R D Kineman
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown Veterans Affairs Medical Center, Research and Development Division, Chicago, IL, USA
| | - R M Luque
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain; Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain.
| |
Collapse
|
16
|
Ibáñez-Costa A, Korbonits M. AIP and the somatostatin system in pituitary tumours. J Endocrinol 2017; 235:R101-R116. [PMID: 28835453 DOI: 10.1530/joe-17-0254] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/22/2017] [Indexed: 12/22/2022]
Abstract
Classic somatostatin analogues aimed at somatostatin receptor type 2, such as octreotide and lanreotide, represent the mainstay of medical treatment for acromegaly. These agents have the potential to decrease hormone secretion and reduce tumour size. Patients with a germline mutation in the aryl hydrocarbon receptor-interacting protein gene, AIP, develop young-onset acromegaly, poorly responsive to pharmacological therapy. In this review, we summarise the most recent studies on AIP-related pituitary adenomas, paying special attention to the causes of somatostatin resistance; the somatostatin receptor profile including type 2, type 5 and truncated variants; the role of G proteins in this pathology; the use of first and second generation somatostatin analogues; and the role of ZAC1, a zinc-finger protein with expression linked to AIP in somatotrophinoma models and acting as a key mediator of octreotide response.
Collapse
Affiliation(s)
- Alejandro Ibáñez-Costa
- Centre for EndocrinologyWilliam Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Márta Korbonits
- Centre for EndocrinologyWilliam Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| |
Collapse
|
17
|
Pedraza-Arévalo S, Hormaechea-Agulla D, Gómez-Gómez E, Requena MJ, Selth LA, Gahete MD, Castaño JP, Luque RM. Somatostatin receptor subtype 1 as a potential diagnostic marker and therapeutic target in prostate cancer. Prostate 2017; 77:1499-1511. [PMID: 28905400 DOI: 10.1002/pros.23426] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/23/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is a highly prevalent neoplasia that is strongly influenced by the endocrine system. Somatostatin (SST) and its five receptors (sst1-5 encoded by SSTR1-5 genes) comprise a pleiotropic system present in most endocrine-related cancers, some of which are successfully treated with SST analogs. Interestingly, it has been reported that SSTR1 is overexpressed in PCa, but its regulation, functional role, and clinical implications are still poorly known. METHODS PCa specimens (n = 52) from biopsies and control prostates from cystoprostatectomies (n = 12), as well as in silico databases were used to evaluate SSTR1 and miRNAs expression. In vitro studies in 22Rv1 PCa cells were implemented to explore the regulation of SSTR1/sst1 by different miRNAs, and to evaluate the consequences of SSTR1/sst1 overexpression, silencing and/or activation [with the specific BIM-23926 sst1 agonist (IPSEN)] on cell-proliferation, migration, signaling-pathways, and androgen-signaling. RESULTS We found that SSTR1 is overexpressed in multiple cohorts of PCa samples, as compared with normal prostate tissues, wherein it correlates with androgen receptor (AR) expression, and appears to be associated with aggressiveness (metastasis). Furthermore, our data revealed that SSTR1/sst1 expression might be regulated by specific miRNAs in PCa, including miR-24, which is downregulated in PCa samples and correlates inversely with SSTR1 expression. In vitro studies indicated that treatment with the BIM-23926 sst1 agonist, as well as SSTR1 overexpression, decreased, whereas SSTR1 silencing increased, cell-proliferation in 22Rv1 cells, likely through the regulation of PI3K/AKT-CCND3 signaling-pathway. Importantly, sst1 action was also able to modulate androgen/AR activity, and reduced PSA secretion from PCa cell lines. CONCLUSIONS Altogether, our results indicate that SSTR1 is overexpressed in PCa, where it can exert a relevant pathophysiological role by decreasing cell-proliferation and PSA secretion. Therefore, sst1, possibly in combination with miR-24, could be used as a novel tool to explore therapeutic targets in PCa.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Cell Line, Tumor
- Humans
- Male
- Middle Aged
- Molecular Targeted Therapy
- Prostatic Neoplasms, Castration-Resistant/diagnosis
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/therapy
- Receptors, Somatostatin/biosynthesis
- Receptors, Somatostatin/genetics
Collapse
Affiliation(s)
- Sergio Pedraza-Arévalo
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, Universidad de Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Daniel Hormaechea-Agulla
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, Universidad de Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Enrique Gómez-Gómez
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, Universidad de Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- Urology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - María J Requena
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, Universidad de Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- Urology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, The University of Adelaide, SA, 5005, Australia
| | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, Universidad de Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, Universidad de Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Raul M Luque
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, Universidad de Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| |
Collapse
|
18
|
The components of somatostatin and ghrelin systems are altered in neuroendocrine lung carcinoids and associated to clinical-histological features. Lung Cancer 2017; 109:128-136. [PMID: 28577942 DOI: 10.1016/j.lungcan.2017.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/02/2017] [Accepted: 05/07/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Lung carcinoids (LCs) are rare tumors that comprise 1-5% of lung malignancies but represent 20-30% of neuroendocrine tumors. Their incidence is progressively increasing and a better characterization of these tumors is required. Alterations in somatostatin (SST)/cortistatin (CORT) and ghrelin systems have been associated to development/progression of various endocrine-related cancers, wherein they may become useful diagnostic, prognostic and therapeutic biomarkers. OBJECTIVES We aimed to evaluate the expression levels of ghrelin and SST/CORT system components in LCs, as well as to explore their putative relationship with histological/clinical characteristics. PATIENTS AND METHODS An observational retrospective study was performed; 75 LC patients with clinical/histological characteristics were included. Samples from 46 patients were processed to isolate mRNA from tumor and adjacent non-tumor region, and the expression levels of SST/CORT and ghrelin systems components, determined by quantitative-PCR, were compared to those of 7 normal lung tissues. RESULTS Patient cohort was characterized by mean age 53±15 years, 48% males, 34% with tobacco exposure; 71.4/28.6% typical/atypical carcinoids, 21.7% incidental tumors, 4.3% functioning tumors, 17.7% with metastasis. SST/CORT and ghrelin system components were expressed at variable levels in a high proportion of tumors, as well as in adjacent non-tumor tissues, while a lower proportion of normal lung samples also expressed these molecules. A gradation was observed from normal non-neoplastic lung tissues, non-tumor adjacent tissue and LCs, being SST, sst4, sst5, GHS-R1a and GHS-R1b overexpressed in tumor tissue compared to normal tissue. Importantly, several SST/CORT and ghrelin system components displayed significant correlations with relevant clinical parameters, such as necrosis, peritumoral and vascular invasion, or metastasis. CONCLUSION Altogether, these data reveal a prominent, widespread expression of key SST/CORT/ghrelin system components in LCs, where they display clinical-histological correlations, which could provide novel, valuable markers for NET patient management.
Collapse
|
19
|
Stengel A, Taché YF. Activation of Brain Somatostatin Signaling Suppresses CRF Receptor-Mediated Stress Response. Front Neurosci 2017; 11:231. [PMID: 28487631 PMCID: PMC5403923 DOI: 10.3389/fnins.2017.00231] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/06/2017] [Indexed: 12/30/2022] Open
Abstract
Corticotropin-releasing factor (CRF) is the hallmark brain peptide triggering the response to stress and mediates—in addition to the stimulation of the hypothalamus-pituitary-adrenal (HPA) axis—other hormonal, behavioral, autonomic and visceral components. Earlier reports indicate that somatostatin-28 injected intracerebroventricularly counteracts the acute stress-induced ACTH and catecholamine release. Mounting evidence now supports that activation of brain somatostatin signaling exerts a broader anti-stress effect by blunting the endocrine, autonomic, behavioral (with a focus on food intake) and visceral gastrointestinal motor responses through the involvement of distinct somatostatin receptor subtypes.
Collapse
Affiliation(s)
- Andreas Stengel
- Division of Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin BerlinBerlin, Germany
| | - Yvette F Taché
- Vatche and Tamar Manoukian Digestive Diseases Division, CURE Digestive Diseases Research Center, G Oppenheimer Center for Neurobiology of Stress and Resilience, Department of Medicine, University of California, Los AngelesLos Angeles, CA, USA.,VA Greater Los Angeles Health Care SystemLos Angeles, CA, USA
| |
Collapse
|
20
|
Delgado-Maroto V, Benitez R, Forte-Lago I, Morell M, Maganto-Garcia E, Souza-Moreira L, O’Valle F, Duran-Prado M, Lichtman AH, Gonzalez-Rey E, Delgado M. Cortistatin reduces atherosclerosis in hyperlipidemic ApoE-deficient mice and the formation of foam cells. Sci Rep 2017; 7:46444. [PMID: 28406244 PMCID: PMC5390288 DOI: 10.1038/srep46444] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/17/2017] [Indexed: 12/16/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory cardiovascular disease that is responsible of high mortality worldwide. Evidence indicates that maladaptive autoimmune responses in the arterial wall play critical roles in the process of atherosclerosis. Cortistatin is a neuropeptide expressed in the vascular system and atherosclerotic plaques that regulates vascular calcification and neointimal formation, and inhibits inflammation in different experimental models of autoimmune diseases. Its role in inflammatory cardiovascular disorders is largely unexplored. The aim of this study is to investigate the potential therapeutic effects of cortistatin in two well-established preclinical models of atherosclerosis, and the molecular and cellular mechanisms involved. Systemic treatment with cortistatin reduced the number and size of atherosclerotic plaques in carotid artery, heart, aortic arch and aorta in acute and chronic atherosclerosis induced in apolipoprotein E-deficient mice fed a high-lipid diet. This effect was exerted at multiple levels. Cortistatin reduced Th1/Th17-driven inflammatory responses and increased regulatory T cells in atherosclerotic arteries and lymphoid organs. Moreover, cortistatin reduced the capacity of endothelial cells to bind and recruit immune cells to the plaque and impaired the formation of foam cells by enhancing cholesterol efflux from macrophages. Cortistatin emerges as a new candidate for the treatment of the clinical manifestations of atherosclerosis.
Collapse
Affiliation(s)
| | - Raquel Benitez
- Institute of Parasitology and Biomedicine Lopez-Neyra, CSIC, Granada, Spain
| | - Irene Forte-Lago
- Institute of Parasitology and Biomedicine Lopez-Neyra, CSIC, Granada, Spain
| | - Maria Morell
- Institute of Parasitology and Biomedicine Lopez-Neyra, CSIC, Granada, Spain
| | - Elena Maganto-Garcia
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | | | - Francisco O’Valle
- Department of Pathology, School of Medicine, University of Granada, Granada, Spain
| | - Mario Duran-Prado
- Institute of Parasitology and Biomedicine Lopez-Neyra, CSIC, Granada, Spain
- Medical Sciences, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Andrew H. Lichtman
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - Elena Gonzalez-Rey
- Institute of Parasitology and Biomedicine Lopez-Neyra, CSIC, Granada, Spain
| | - Mario Delgado
- Institute of Parasitology and Biomedicine Lopez-Neyra, CSIC, Granada, Spain
| |
Collapse
|
21
|
Delgado-Maroto V, Falo CP, Forte-Lago I, Adan N, Morell M, Maganto-Garcia E, Robledo G, O'Valle F, Lichtman AH, Gonzalez-Rey E, Delgado M. The neuropeptide cortistatin attenuates experimental autoimmune myocarditis via inhibition of cardiomyogenic T cell-driven inflammatory responses. Br J Pharmacol 2017; 174:267-280. [PMID: 27922195 DOI: 10.1111/bph.13682] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Myocarditis is an inflammatory and autoimmune cardiovascular disease that causes dilated myocardiopathy and is responsible for high morbidity and mortality worldwide. Cortistatin is a neuropeptide produced by neurons and cells of the immune and vascular systems. Besides its action in locomotor activity and sleep, cortistatin inhibits inflammation in different experimental models of autoimmune diseases. However, its role in inflammatory cardiovascular disorders is unexplored. Here, we investigated the therapeutic effects of cortistatin in a well-established preclinical model of experimental autoimmune myocarditis (EAM). EXPERIMENTAL APPROACH We induced EAM by immunization with a fragment of cardiac myosin in susceptible Balb/c mice. Cortistatin was administered i.p. starting 7, 11 or 15 days after EAM induction. At day 21, we evaluated heart hypertrophy, myocardial injury, cardiac inflammatory infiltration and levels of serum and cardiac inflammatory cytokines, cortistatin and autoantibodies. We determined proliferation and cytokine production by heart draining lymph node cells in response to cardiac myosin restimulation. KEY RESULTS Systemic injection of cortistatin during the effector phase of the disease significantly reduced its prevalence and signs of heart hypertrophy and injury (decreased the levels of brain natriuretic peptide) and impaired myocardial inflammatory cell infiltration. This effect was accompanied by a reduction in self-antigen-specific T-cell responses in lymph nodes and in the levels of cardiomyogenic antibodies and inflammatory cytokines in serum and myocardium. Finally, we found a positive correlation between cardiac and systemic cortistatin levels and EAM severity. CONCLUSIONS AND IMPLICATIONS Cortistatin emerges as a new candidate to treat inflammatory dilated cardiomyopathy.
Collapse
Affiliation(s)
| | - Clara P Falo
- Institute of Parasitology and Biomedicine Lopez-Neyra, CSIC, Granada, Spain
| | - Irene Forte-Lago
- Institute of Parasitology and Biomedicine Lopez-Neyra, CSIC, Granada, Spain
| | - Norma Adan
- Institute of Parasitology and Biomedicine Lopez-Neyra, CSIC, Granada, Spain
| | - Maria Morell
- Institute of Parasitology and Biomedicine Lopez-Neyra, CSIC, Granada, Spain
| | - Elena Maganto-Garcia
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gema Robledo
- Institute of Parasitology and Biomedicine Lopez-Neyra, CSIC, Granada, Spain
| | - Francisco O'Valle
- Department of Pathology, School of Medicine, University of Granada, Granada, Spain
| | - Andrew H Lichtman
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elena Gonzalez-Rey
- Institute of Parasitology and Biomedicine Lopez-Neyra, CSIC, Granada, Spain
| | - Mario Delgado
- Institute of Parasitology and Biomedicine Lopez-Neyra, CSIC, Granada, Spain
| |
Collapse
|
22
|
Zhang B, Sun GZ, Zhu ML, Li Y, Sun DJ, Zhang B, Bai XP. The plasma levels of CST and BCKDK in patients with sepsis. Peptides 2016; 86:80-84. [PMID: 27773658 DOI: 10.1016/j.peptides.2016.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/09/2016] [Accepted: 10/18/2016] [Indexed: 12/28/2022]
Abstract
OBJECTIVES CST has been recently identified as a mediator of various beneficial effects in animal models of sepsis. At present, no data are available concerning the levels of CST in sepsis patients. In sepsis the plasma amino acid pattern is characterized by decreased branced chain amino acids (BCAAs). We investigated the levels of plasma CST or branched-chain α-ketoacid dehydrogenase kinase (BCKDK) and their relationship to component traits in patients with sepsis. DESIGN AND METHODS We studied 228 patients and divided them into two groups based on severity of infection. Blood samples were taken at study entry, and CST, BCKDK were measured. RESULTS CST and BCKDK levels were significantly higher in patients with sepsis than in controls: the median plasma CST concentration was 103.1ng/ml (range, <83.13-189.7ng/ml) in patients with sepsis and 49.69ng/ml (range, <19.38-100.8ng/ml) in controls (p=0.0022); the median plasma BCKDK concentration was 801.7ng/ml in sepsis group and 745ng/ml in controls (p=0.0292). Additionally, there was correlation between the plasma concentrations of CST and BCKDK in sepsis patients (r2=0.6357, p<0.01). CONCLUSIONS We conclude that the plasma levels of CST in sepsis patients were higher than in controls, and there is a relationship between CST and BCKDK in sepsis patients. Future experimental and clinical studies are needed to evaluate CST as a novel prognostic tool in sepsis patients and its potential therapeutic use in sepsis.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Cardiology, The fourth affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Gui-Zhi Sun
- Department of Cardiology, The fourth affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Min-Ling Zhu
- Department of Emergency, First affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yue Li
- Department of ICU, Second affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Dian-Jun Sun
- Center for Endemic Disease Control, Harbin Medical University, Harbin 150086, China
| | - Bo Zhang
- Department of Cardiology, The fourth affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Xiu-Ping Bai
- Department of Cardiology, The fourth affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
23
|
Obesity- and gender-dependent role of endogenous somatostatin and cortistatin in the regulation of endocrine and metabolic homeostasis in mice. Sci Rep 2016; 6:37992. [PMID: 27901064 PMCID: PMC5128804 DOI: 10.1038/srep37992] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/01/2016] [Indexed: 12/13/2022] Open
Abstract
Somatostatin (SST) and cortistatin (CORT) regulate numerous endocrine secretions and their absence [knockout (KO)-models] causes important endocrine-metabolic alterations, including pituitary dysregulations. We have demonstrated that the metabolic phenotype of single or combined SST/CORT KO-models is not drastically altered under normal conditions. However, the biological actions of SST/CORT are conditioned by the metabolic-status (e.g. obesity). Therefore, we used male/female SST- and CORT-KO mice fed low-fat (LF) or high-fat (HF) diet to explore the interplay between SST/CORT and obesity in the control of relevant pituitary-axes and whole-body metabolism. Our results showed that the SST/CORT role in the control of GH/prolactin secretions is maintained under LF- and HF-diet conditions as SST-KOs presented higher GH/prolactin-levels, while CORT-KOs displayed higher GH- and lower prolactin-levels than controls under both diets. Moreover, the impact of lack of SST/CORT on the metabolic-function was gender- and diet-dependent. Particularly, SST-KOs were more sensitive to HF-diet, exhibiting altered growth and body-composition (fat/lean percentage) and impaired glucose/insulin-metabolism, especially in males. Conversely, only males CORT-KO under LF-diet conditions exhibited significant alterations, displaying higher glucose-levels and insulin-resistance. Altogether, these data demonstrate a tight interplay between SST/CORT-axis and the metabolic status in the control of endocrine/metabolic functions and unveil a clear dissociation of SST/CORT roles.
Collapse
|
24
|
Cordoba-Chacón J, Gahete MD, Pozo-Salas AI, de Lecea L, Castaño JP, Luque RM. Cortistatin Is a Key Factor Regulating the Sex-Dependent Response of the GH and Stress Axes to Fasting in Mice. Endocrinology 2016; 157:2810-23. [PMID: 27175972 DOI: 10.1210/en.2016-1195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cortistatin (CORT) shares high structural and functional similarities with somatostatin (SST) but displays unique sex-dependent pituitary actions. Indeed, although female CORT-knockout (CORT-KO) mice exhibit enhanced GH expression/secretion, Proopiomelanocortin expression, and circulating ACTH/corticosterone/ghrelin levels, male CORT-KO mice only display increased plasma GH/corticosterone levels. Changes in peripheral ghrelin and SST (rather than hypothalamic levels) seem to regulate GH/ACTH axes in CORT-KOs under fed conditions. Because changes in GH/ACTH axes during fasting provide important adaptive mechanisms, we sought to determine whether CORT absence influences GH/ACTH axes during fasting. Accordingly, fed and fasted male/female CORT-KO were compared with littermate controls. Fasting increased circulating GH levels in male/female controls but not in CORT-KO, suggesting that CORT can be a relevant regulator of GH secretion during fasting. However, GH levels were already higher in CORT-KO than in controls in fed state, which might preclude a further elevation in GH levels. Interestingly, although fasting-induced pituitary GH expression was elevated in both male/female controls, GH expression only increased in fasted female CORT-KOs, likely owing to specific changes observed in key factors controlling somatotrope responsiveness (ie, circulating ghrelin and IGF-1, and pituitary GHRH and ghrelin receptor expression). Fasting increased corticosterone levels in control and, most prominently, in CORT-KO mice, which might be associated with a desensitization to SST signaling and to an augmentation in CRH and ghrelin-signaling regulating corticotrope function. Altogether, these results provide compelling evidence that CORT plays a key, sex-dependent role in the regulation of the GH/ACTH axes in response to fasting.
Collapse
Affiliation(s)
- José Cordoba-Chacón
- Maimonides Institute of Biomedical Research of Cordoba (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.); Department of Cell Biology, Physiology, and Immunology (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), University of Córdoba; Hospital Universitario Reina Sofía (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.); and Campus de Excelencia Internacional Agroalimentario (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), Córdoba 14004, Spain; Department of Medicine (J.C.-C.), Section of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago and Jesse Brown Veteran Affairs Medical Center, Research and Development Division, Chicago, Illinois 60612; and Department of Psychiatry and Behavioral Sciences (L.d.L.), Stanford University School of Medicine, Palo Alto, California 94305
| | - Manuel D Gahete
- Maimonides Institute of Biomedical Research of Cordoba (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.); Department of Cell Biology, Physiology, and Immunology (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), University of Córdoba; Hospital Universitario Reina Sofía (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.); and Campus de Excelencia Internacional Agroalimentario (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), Córdoba 14004, Spain; Department of Medicine (J.C.-C.), Section of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago and Jesse Brown Veteran Affairs Medical Center, Research and Development Division, Chicago, Illinois 60612; and Department of Psychiatry and Behavioral Sciences (L.d.L.), Stanford University School of Medicine, Palo Alto, California 94305
| | - Ana I Pozo-Salas
- Maimonides Institute of Biomedical Research of Cordoba (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.); Department of Cell Biology, Physiology, and Immunology (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), University of Córdoba; Hospital Universitario Reina Sofía (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.); and Campus de Excelencia Internacional Agroalimentario (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), Córdoba 14004, Spain; Department of Medicine (J.C.-C.), Section of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago and Jesse Brown Veteran Affairs Medical Center, Research and Development Division, Chicago, Illinois 60612; and Department of Psychiatry and Behavioral Sciences (L.d.L.), Stanford University School of Medicine, Palo Alto, California 94305
| | - Luis de Lecea
- Maimonides Institute of Biomedical Research of Cordoba (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.); Department of Cell Biology, Physiology, and Immunology (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), University of Córdoba; Hospital Universitario Reina Sofía (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.); and Campus de Excelencia Internacional Agroalimentario (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), Córdoba 14004, Spain; Department of Medicine (J.C.-C.), Section of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago and Jesse Brown Veteran Affairs Medical Center, Research and Development Division, Chicago, Illinois 60612; and Department of Psychiatry and Behavioral Sciences (L.d.L.), Stanford University School of Medicine, Palo Alto, California 94305
| | - Justo P Castaño
- Maimonides Institute of Biomedical Research of Cordoba (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.); Department of Cell Biology, Physiology, and Immunology (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), University of Córdoba; Hospital Universitario Reina Sofía (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.); and Campus de Excelencia Internacional Agroalimentario (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), Córdoba 14004, Spain; Department of Medicine (J.C.-C.), Section of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago and Jesse Brown Veteran Affairs Medical Center, Research and Development Division, Chicago, Illinois 60612; and Department of Psychiatry and Behavioral Sciences (L.d.L.), Stanford University School of Medicine, Palo Alto, California 94305
| | - Raúl M Luque
- Maimonides Institute of Biomedical Research of Cordoba (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.); Department of Cell Biology, Physiology, and Immunology (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), University of Córdoba; Hospital Universitario Reina Sofía (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.); and Campus de Excelencia Internacional Agroalimentario (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), Córdoba 14004, Spain; Department of Medicine (J.C.-C.), Section of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago and Jesse Brown Veteran Affairs Medical Center, Research and Development Division, Chicago, Illinois 60612; and Department of Psychiatry and Behavioral Sciences (L.d.L.), Stanford University School of Medicine, Palo Alto, California 94305
| |
Collapse
|
25
|
Lack of cortistatin or somatostatin differentially influences DMBA-induced mammary gland tumorigenesis in mice in an obesity-dependent mode. Breast Cancer Res 2016; 18:29. [PMID: 26956474 PMCID: PMC4782371 DOI: 10.1186/s13058-016-0689-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/19/2016] [Indexed: 01/08/2023] Open
Abstract
Background Somatostatin (SST) and cortistatin (CORT), two structurally and functionally related peptides, share a family of widespread receptors (sst1-5) to exert apparently similar biological actions, including endocrine/metabolic regulation and suppression of tumor cell proliferation. However, despite their therapeutic potential, attempts to apply SST-analogs to treat breast cancer have yielded unsatisfactory results. Actually, the specific roles of SST and CORT in mammary gland tumorigenesis (MGT), particularly in relation to metabolic dysregulation (i.e. obesity), remain unknown. Methods The role of endogenous SST and CORT in carcinogen-induced MGT was investigated under normal (lean) and obesity conditions. To that end, SST- and CORT-knockout (KO) mice and their respective littermate-controls, fed low-fat (LF) or high-fat (HF) diets, were treated with 7,12-dimethyl-benza-anthracene (DMBA) once a week (wk) for 3 wk, and MGT was monitored for 25 wk. Additionally, we examined the effect of SST or CORT removal in the development of the mammary gland. Results Lack of SST did not alter DMBA-induced MGT incidence under lean conditions; conversely, lack of endogenous CORT severely aggravated DMBA-induced MGT in LF-fed mice. These differences were not attributable to altered mammary gland development. HF-diet modestly increased the sensitivity to DMBA-induced carcinogenesis in control mice, whereas, as observed in LF-fed CORT-KO, HF-fed CORT-KO mice exhibited aggravated tumor incidence, discarding a major influence of obesity on these CORT actions. In marked contrast, HF-fed SST-KO mice exhibited much higher tumor incidence than LF-fed SST-KO mice, which could be associated with higher mammary complexity. Conclusions Endogenous SST and CORT distinctly impact on DMBA-induced MGT, in a manner that is strongly dependent on the metabolic/endocrine milieu (lean vs. obese status). Importantly, CORT, rather than SST, could represent a major inhibitor of MGT under normal/lean-conditions, whereas both neuropeptides would similarly influence MGT under obesity conditions. The mechanisms mediating these different effects likely involve mammary development and hormones, but the precise underlying factors are still to be fully elucidated. However, our findings comprise suggestive evidence that CORT-like molecules, rather than classic SST-analogs, may help to identify novel tools for the medical treatment of breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0689-1) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
The Origin, Expression, Function and Future Research Focus of a G Protein-coupled Receptor, Mas-related Gene X2 (MrgX2). ACTA ACUST UNITED AC 2015; 50:11-7. [DOI: 10.1016/j.proghi.2015.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 11/22/2022]
|
27
|
Pedraza-Arévalo S, Córdoba-Chacón J, Pozo-Salas AI, L-López F, de Lecea L, Gahete MD, Castaño JP, Luque RM. Not So Giants: Mice Lacking Both Somatostatin and Cortistatin Have High GH Levels but Show No Changes in Growth Rate or IGF-1 Levels. Endocrinology 2015; 156:1958-64. [PMID: 25830706 DOI: 10.1210/en.2015-1132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Somatostatin (SST) and cortistatin (CORT) are two highly related neuropeptides involved in the regulation of various endocrine secretions. In particular, SST and CORT are two primary negative regulators of GH secretion. Consequently, single SST or CORT knockout mice exhibit elevated GH levels; however, this does not lead to increased IGF-1 levels or somatic growth. This apparent lack of correspondence has been suggested to result from compensatory mechanisms between both peptides. To test this hypothesis, in this study we explored, for the first time, the consequences of simultaneously deleting endogenous SST and CORT by generating a double SST/CORT knockout mouse model and exploring its endocrine and metabolic phenotype. Our results demonstrate that simultaneous deletion of SST and CORT induced a drastic elevation of endogenous GH levels, which, surprisingly, did not lead to changes in growth rate or IGF-1 levels, suggesting the existence of additional factors/systems that, in the absence of endogenous SST and CORT, could counteract GH actions. Notably, elevation in circulating GH levels were not accompanied by changes in pituitary GH expression or by alterations in the expression of its main regulators (GHRH and ghrelin) or their receptors (GHRH receptor, GHS receptor, or SST/CORT receptors) at the hypothalamic or pituitary level. However, although double-SST/CORT knockout male mice exhibited normal glucose and insulin levels, they had improved insulin sensitivity compared with the control mice. Therefore, these results suggest the existence of an intricate interplay among the known (SST/CORT), and likely unknown, inhibitory components of the GH/IGF-1 axis to regulate somatic growth and glucose/insulin homeostasis.
Collapse
Affiliation(s)
- S Pedraza-Arévalo
- Department of Cell Biology, Physiology, and Immunology (S.P.-A., J.C.-C., A.I.P.-S., F.L.L., M.D.G., J.P.C., R.M.L.), University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, and Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERObn), E-14014 Córdoba, Spain; Section of Endocrinology, Diabetes, and Metabolism (J.C.-C.), Department of Medicine (J.C.-C.), University of Illinois at Chicago, Chicago, Illinois 60637; Department of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612; and Department of Psychiatry and Behavioral Sciences (L.d.L.), Stanford University, Stanford, California 94305
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Gonzalez-Rey E, Pedreño M, Delgado-Maroto V, Souza-Moreira L, Delgado M. Lulling immunity, pain, and stress to sleep with cortistatin. Ann N Y Acad Sci 2015; 1351:89-98. [PMID: 25951888 DOI: 10.1111/nyas.12789] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cortistatin is a neuropeptide isolated from cortical brain regions, showing high structural homology and sharing many functions with somatostatin. However, cortistatin exerts unique functions in the central nervous and immune systems, including decreasing locomotor activity, inducing sleep-promoting effects, and deactivating inflammatory and T helper (TH )1/TH 17-driven responses in preclinical models of sepsis, arthritis, multiple sclerosis, and colitis. Besides its release by cortical and hippocampal interneurons, cortistatin is produced by macrophages, lymphocytes, and peripheral nociceptive neurons in response to inflammatory stimuli, supporting a physiological role of cortistatin in the immune and nociceptive systems. Cortistatin-deficient mice have been shown to have exacerbated nociceptive responses to neuropathic and inflammatory pain sensitization. However, a paradoxical effect has been observed in studies of immune disorders, in which, despite showing competent inflammatory/autoreactive responses, cortistatin-deficient mice were partially resistant to systemic autoimmunity and inflammation. This unexpected phenotype was associated with elevated circulating glucocorticoids and anxiety-like behavior. These findings support cortistatin as a novel multimodal therapeutic approach to treat autoimmunity and clinical pain and identify it as a key endogenous component of the neuroimmune system related to stress responses.
Collapse
Affiliation(s)
- Elena Gonzalez-Rey
- Institute of Parasitology and Biomedicine Lopez-Neyra, Spanish National Research Council (CSIC), Granada, Spain
| | - Marta Pedreño
- Institute of Parasitology and Biomedicine Lopez-Neyra, Spanish National Research Council (CSIC), Granada, Spain
| | - Virginia Delgado-Maroto
- Institute of Parasitology and Biomedicine Lopez-Neyra, Spanish National Research Council (CSIC), Granada, Spain
| | | | - Mario Delgado
- Institute of Parasitology and Biomedicine Lopez-Neyra, Spanish National Research Council (CSIC), Granada, Spain
| |
Collapse
|
29
|
Villa-Osaba A, Gahete MD, Córdoba-Chacón J, de Lecea L, Pozo-Salas AI, Delgado-Lista FJ, Álvarez-Benito M, López-Miranda J, Luque RM, Castaño JP. Obesity alters gene expression for GH/IGF-I axis in mouse mammary fat pads: differential role of cortistatin and somatostatin. PLoS One 2015; 10:e0120955. [PMID: 25806796 PMCID: PMC4373840 DOI: 10.1371/journal.pone.0120955] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 02/10/2015] [Indexed: 12/03/2022] Open
Abstract
Locally produced growth hormone (GH) and IGF-I are key factors in the regulation of mammary gland (MG) development and may be important in breast cancer development/progression. Somatostatin (SST) and cortistatin (CORT) regulate GH/IGF-I axis at various levels, but their role in regulating GH/IGF-I in MGs remains unknown. Since obesity alters the expression of these systems in different tissues and is associated to MG (patho) physiology, we sought to investigate the role of SST/CORT in regulating GH/IGF-I system in the MGs of lean and obese mice. Therefore, we analyzed GH/IGF-I as well as SST/CORT and ghrelin systems expression in the mammary fat pads (MFPs) of SST- or CORT-knockout (KO) mice and their respective littermate-controls fed a low-fat (LF) or a high-fat (HF) diet for 16 wks. Our results demonstrate that the majority of the components of GH/IGF-I, SST/CORT and ghrelin systems are locally expressed in mouse MFP. Expression of elements of the GH/IGF-I axis was significantly increased in MFPs of HF-fed control mice while lack of endogenous SST partially suppressed, and lack of CORT completely blunted, the up-regulation observed in obese WT-controls. Since SST/CORT are known to exert an inhibitory role on the GH/IGFI axis, the increase in SST/CORT-receptor sst2 expression in MFPs of HF-fed CORT- and SST-KOs together with an elevation on circulating SST in CORT-KOs could explain the differences observed. These results offer new information on the factors (GH/IGF-I axis) involved in the endocrine/metabolic dysregulation of MFPs in obesity, and suggest that CORT is not a mere SST sibling in regulating MG physiology.
Collapse
Affiliation(s)
- Alicia Villa-Osaba
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Manuel D. Gahete
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - José Córdoba-Chacón
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Department of Medicine, University of Illinois at Chicago and Jesse Brown Veteran Affairs Medical Center, Research and Development Division, Chicago, Illinois, United States of America
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Ana I. Pozo-Salas
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain
| | - Francisco Javier Delgado-Lista
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain
- Lipids and Atherosclerosis Unit, Department of Medicine, Reina Sofía University Hospital, Córdoba, Spain
| | - Marina Álvarez-Benito
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain
- Mammary Gland Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - José López-Miranda
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Lipids and Atherosclerosis Unit, Department of Medicine, Reina Sofía University Hospital, Córdoba, Spain
| | - Raúl M. Luque
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Justo P. Castaño
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| |
Collapse
|
30
|
Gahete MD, Luque RM, Yubero-Serrano EM, Cruz-Teno C, Ibañez-Costa A, Delgado-Lista J, Gracia-Navarro F, Perez-Jimenez F, Castaño JP, Lopez-Miranda J. Dietary fat alters the expression of cortistatin and ghrelin systems in the PBMCs of elderly subjects: putative implications in the postprandial inflammatory response. Mol Nutr Food Res 2014; 58:1897-906. [PMID: 24995559 DOI: 10.1002/mnfr.201400059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/02/2014] [Accepted: 05/18/2014] [Indexed: 12/11/2022]
Abstract
SCOPE Dietary fat influences systemic inflammatory status, which determines the progression of age-associated diseases. Since somatostatin (SST), cortistatin (CORT), and ghrelin systems modulate inflammatory response, we aim to comprehensively characterize the presence and regulation of the components of these systems in the peripheral blood mononuclear cells (PMBCs), a subset of white blood cells placed at the crossroad between diet and inflammation, in response to diets with different fat composition, and during the postprandial phase in elderly subjects. METHODS AND RESULTS The applied nutrigenomic, inflammation-related PBMC-based approach revealed that the majority of components of SST/CORT and ghrelin systems are present in the human PBMCs. Particularly, CORT, SST/CORT receptors (sst2, sst3, sst5, and sst5TMD4), ghrelin, its acylating enzyme (GOAT), In1-ghrelin variant, and GHSR1b were detected in PBMCs. Their expression was altered in the long-term by diet composition, and in the short-term, during the postprandial phase. Of particular relevance is the postprandial elevation of CORT, sst2, and sst5 expression in PBMCs of subjects under n-3 PUFAs-enriched diet. CONCLUSION Our results suggest a potential relevant role of CORT/ssts and ghrelin systems in regulating PBMCs response to nutrient intake, which could help to explain the positive effects of n-3 PUFAs-enriched diets in reducing the inflammatory response.
Collapse
Affiliation(s)
- Manuel D Gahete
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Reina Sofia University Hospital, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Córdoba, Spain; Lipid and Atherosclerosis Research Unit, Reina Sofia University Hospital, University of Cordoba, IMIBIC and CIBERObn, Córdoba, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Meng F, Huang G, Gao S, Li J, Yan Z, Wang Y. Identification of the receptors for somatostatin (SST) and cortistatin (CST) in chickens and investigation of the roles of cSST28, cSST14, and cCST14 in inhibiting cGHRH1-27NH2-induced growth hormone secretion in cultured chicken pituitary cells. Mol Cell Endocrinol 2014; 384:83-95. [PMID: 24418361 DOI: 10.1016/j.mce.2014.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 12/15/2013] [Accepted: 01/06/2014] [Indexed: 01/13/2023]
Abstract
Somatostatin receptors (SSTRs) are proposed to mediate the actions of somatostatin (SST) and its related peptide, cortistatin (CST), in vertebrates. However, the identity, functionality, and tissue expression of these receptors remain largely unknown in most non-mammalian vertebrates including birds. In this study, five SSTRs (named cSSTR1, cSSTR2, cSSTR3, cSSTR4, cSSTR5) were cloned from chicken brain by RT-PCR. Using a pGL3-CRE-luciferase reporter system, we demonstrated that activation of each cSSTR expressed in CHO cells by cSST28, cSST14 and cCST14 treatment could inhibit forskolin-induced luciferase activity of CHO cells, indicating the functional coupling of all cSSTRs to Gi protein(s). Interestingly, cSSTR1-4 expressed in CHO cells could be activated by cSST28, cSST14 and cCST14 with high potencies, suggesting that they may function as the receptors common for these peptides. In contrast, cSSTR5 could be potently activated by cSST28 only, indicating that it is a cSST28-specific receptor. Using RT-PCR, wide expression of cSSTRs was detected in chicken tissues including pituitary. In accordance with their expression in pituitary, cSST28, cSST14, and cCST14 were demonstrated to inhibit basal and novel cGHRH1-27NH2-induced GH secretion in cultured chicken pituitary cells dose-dependently (0-10nM) by Western blot analysis, suggesting the involvement of cSSTR(s) common for these peptides in mediating their inhibitory actions. Collectively, our study establishes a molecular basis to elucidate the roles of SST/CST in birds and provide insights into the roles of SST/CST in vertebrates, such as their conserved actions on pituitary.
Collapse
Affiliation(s)
- Fengyan Meng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Guian Huang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Shunyu Gao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Juan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Zhenxin Yan
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Yajun Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
32
|
Morell M, Camprubí-Robles M, Culler MD, de Lecea L, Delgado M. Cortistatin attenuates inflammatory pain via spinal and peripheral actions. Neurobiol Dis 2013; 63:141-54. [PMID: 24333694 DOI: 10.1016/j.nbd.2013.11.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/20/2013] [Accepted: 11/26/2013] [Indexed: 12/01/2022] Open
Abstract
Clinical pain, as a consequence of inflammation or injury of peripheral organs (inflammatory pain) or nerve injury (neuropathic pain), represents a serious public health issue. Treatment of pain-related suffering requires knowledge of how pain signals are initially interpreted and subsequently transmitted and perpetuated. To limit duration and intensity of pain, inhibitory signals participate in pain perception. Cortistatin is a cyclic-neuropeptide that exerts potent inhibitory actions on cortical neurons and immune cells. Here, we found that cortistatin is a natural analgesic component of the peripheral nociceptive system produced by peptidergic nociceptive neurons of the dorsal root ganglia in response to inflammatory and noxious stimuli. Moreover, cortistatin is produced by GABAergic interneurons of deep layers of dorsal horn of spinal cord. By using cortistatin-deficient mice, we demonstrated that endogenous cortistatin critically tunes pain perception in physiological and pathological states. Furthermore, peripheral and spinal injection of cortistatin potently reduced nocifensive behavior, heat hyperalgesia and tactile allodynia in experimental models of clinical pain evoked by chronic inflammation, surgery and arthritis. The analgesic effects of cortistatin were independent of its anti-inflammatory activity and directly exerted on peripheral and central nociceptive terminals via Gαi-coupled somatostatin-receptors (mainly sstr2) and blocking intracellular signaling that drives neuronal plasticity including protein kinase A-, calcium- and Akt/ERK-mediated release of nociceptive peptides. Moreover, cortistatin could modulate, through its binding to ghrelin-receptor (GHSR1), pain-induced sensitization of secondary neurons in spinal cord. Therefore, cortistatin emerges as an anti-inflammatory factor with potent analgesic effects that offers a new approach to clinical pain therapy, especially in inflammatory states.
Collapse
Affiliation(s)
- María Morell
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, 18016 Granada, Spain
| | - María Camprubí-Robles
- Institute of Molecular and Cell Biology, Miguel Hernandez University, 03202 Alicante, Spain
| | | | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Mario Delgado
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, 18016 Granada, Spain.
| |
Collapse
|
33
|
Souza-Moreira L, Morell M, Delgado-Maroto V, Pedreño M, Martinez-Escudero L, Caro M, O'Valle F, Luque R, Gallo M, de Lecea L, Castaño JP, Gonzalez-Rey E. Paradoxical effect of cortistatin treatment and its deficiency on experimental autoimmune encephalomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:2144-54. [PMID: 23918980 DOI: 10.4049/jimmunol.1300384] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cortistatin is a cyclic-neuropeptide produced by brain cortex and immune cells that shows potent anti-inflammatory activity. In this article, we investigated the effect of cortistatin in two models of experimental autoimmune encephalomyelitis (EAE) that mirror chronic and relapsing-remitting multiple sclerosis. A short-term systemic treatment with cortistatin reduced clinical severity and incidence of EAE, the appearance of inflammatory infiltrates in spinal cord, and the subsequent demyelination and axonal damage. This effect was associated with a reduction of the two deleterious components of the disease, namely, the autoimmune and inflammatory response. Cortistatin decreased the presence/activation of encephalitogenic Th1 and Th17 cells in periphery and nervous system, and downregulated various inflammatory mediators, whereas it increased the number of regulatory T cells with suppressive effects on the encephalitogenic response. Moreover, cortistatin regulated glial activity and favored an active program of neuroprotection/regeneration. We further used cortistatin-deficient mice to investigate the role of endogenous cortistatin in the control of immune responses. Surprisingly, cortistatin-deficient mice were partially resistant to EAE and other inflammatory disorders, despite showing competent inflammatory/autoreactive responses. This unexpected phenotype was associated with elevated circulating glucocorticoids and an anxiety-like behavior. Our findings provide a powerful rationale for the assessment of the efficacy of cortistatin as a novel multimodal therapeutic approach to treat multiple sclerosis and identify cortistatin as a key endogenous component of neuroimmune system.
Collapse
Affiliation(s)
- Luciana Souza-Moreira
- Institute of Parasitology and Biomedicine "López-Neyra," Consejo Superior Investigaciones Cientificas, Granada 18016, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lleras-Forero L, Tambalo M, Christophorou N, Chambers D, Houart C, Streit A. Neuropeptides: developmental signals in placode progenitor formation. Dev Cell 2013; 26:195-203. [PMID: 23906067 PMCID: PMC3748341 DOI: 10.1016/j.devcel.2013.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 02/20/2013] [Accepted: 07/02/2013] [Indexed: 02/02/2023]
Abstract
Few families of signaling factors have been implicated in the control of development. Here, we identify the neuropeptides nociceptin and somatostatin, a neurotransmitter and neuroendocrine hormone, as a class of developmental signals in both chick and zebrafish. We show that signals from the anterior mesendoderm are required for the formation of anterior placode progenitors, with one of the signals being somatostatin. Somatostatin controls ectodermal expression of nociceptin, and both peptides regulate Pax6 in lens and olfactory progenitors. Consequently, loss of somatostatin and nociceptin signaling leads to severe reduction of lens formation. Our findings not only uncover these neuropeptides as developmental signals but also identify a long-sought-after mechanism that initiates Pax6 in placode progenitors and may explain the ancient evolutionary origin of neuropeptides, predating a complex nervous system.
Collapse
Affiliation(s)
- Laura Lleras-Forero
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, Guy’s Tower Wing, Floor 27, London SE1 9RT, UK
| | - Monica Tambalo
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, Guy’s Tower Wing, Floor 27, London SE1 9RT, UK
| | - Nicolas Christophorou
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, Guy’s Tower Wing, Floor 27, London SE1 9RT, UK
| | - David Chambers
- MRC Centre for Developmental Neurobiology, King’s College London, New Hunts House, London SE1 1UL, UK
| | - Corinne Houart
- MRC Centre for Developmental Neurobiology, King’s College London, New Hunts House, London SE1 1UL, UK
| | - Andrea Streit
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, Guy’s Tower Wing, Floor 27, London SE1 9RT, UK
| |
Collapse
|
35
|
Duran-Prado M, Morell M, Delgado-Maroto V, Castaño JP, Aneiros-Fernandez J, de Lecea L, Culler MD, Hernandez-Cortes P, O'Valle F, Delgado M. Cortistatin inhibits migration and proliferation of human vascular smooth muscle cells and decreases neointimal formation on carotid artery ligation. Circ Res 2013; 112:1444-55. [PMID: 23595952 DOI: 10.1161/circresaha.112.300695] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
RATIONALE Proliferation and migration of smooth muscle cells (SMCs) are key steps for the progression of atherosclerosis and restenosis. Cortistatin is a multifunctional neuropeptide belonging to the somatostatin family that exerts unique functions in the nervous and immune systems. Cortistatin is elevated in plasma of patients experiencing coronary heart disease and attenuates vascular calcification. OBJECTIVE To investigate the occurrence of vascular cortistatin and its effects on the proliferation and migration of SMCs in vitro and in vivo and to delimitate the receptors and signal transduction pathways governing its actions. METHODS AND RESULTS SMCs from mouse carotid and human aortic arteries and from human atherosclerotic plaques highly expressed cortistatin. Cortistatin expression positively correlated with the progression of arterial intima hyperplasia. Cortistatin inhibited platelet-derived growth factor-stimulated proliferation of human aortic SMCs via binding to somatostatin receptors (sst2 and sst5) and ghrelin receptor, induction of cAMP and p38-mitogen-activated protein kinase, and inhibition of Akt activity. Moreover, cortistatin impaired lamellipodia formation and migration of human aortic SMCs toward platelet-derived growth factor by inhibiting, in a ghrelin-receptor-dependent manner, Rac1 activation and cytosolic calcium increases. These effects on SMC proliferation and migration correlated with an inhibitory action of cortistatin on the neointimal formation in 2 models of carotid arterial ligation. Endogenous cortistatin seems to play a critical role in regulating SMC function because cortistatin-deficient mice developed higher neointimal hyperplasic lesions than wild-type mice. CONCLUSIONS Cortistatin emerges as a natural endogenous regulator of SMCs under pathological conditions and an attractive candidate for the pharmacological management of vascular diseases that course with neointimal lesion formation.
Collapse
Affiliation(s)
- Mario Duran-Prado
- Department of Immunology and Cell Biology, Institute of Parasitology and Biomedicine Lopez-Neyra, CSIC, Granada, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Morell M, Souza-Moreira L, Caro M, O'Valle F, Forte-Lago I, de Lecea L, Gonzalez-Rey E, Delgado M. Analgesic Effect of the Neuropeptide Cortistatin in Murine Models of Arthritic Inflammatory Pain. ACTA ACUST UNITED AC 2013; 65:1390-401. [DOI: 10.1002/art.37877] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 01/15/2013] [Indexed: 11/08/2022]
|
37
|
Durán-Prado M, Gahete MD, Delgado-Niebla E, Martínez-Fuentes AJ, Vázquez-Martínez R, García-Navarro S, Gracia-Navarro F, Malagon MM, Luque RM, Castaño JP. Truncated variants of pig somatostatin receptor subtype 5 (sst5) act as dominant-negative modulators for sst2-mediated signaling. Am J Physiol Endocrinol Metab 2012; 303:E1325-34. [PMID: 23032684 DOI: 10.1152/ajpendo.00445.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Somatostatin (SST) and its related peptide cortistatin (CORT) exert their multiple actions through binding to the SST receptor (sst) family, generally considered to comprise five G protein-coupled receptors with seven transmembrane domains (TMD), named sst1-sst5, plus a splice sst2B variant. However, we recently discovered that human and rodent sst5 gene expression also generates, through noncanonical alternative splicing, novel truncated albeit functional sst5 variants with less than seven TMD. Here, we cloned and characterized for the first time the porcine wild-type sst5 (psst5, full-length) and identified two novel truncated psst5 variants with six and three TMD, thus termed psst5TMD6 and psst5TMD3, respectively. In line with that observed in human and rodent truncated sst5 variants, psst5TMD6 and psst5TMD3 are functional (e.g., activate calcium signaling), selectively respond to SST and CORT, respectively, and exhibit specific tissue expression profiles that differ from full-length psst5 and often overlaps with psst2 expression. Moreover, fluorescence resonance energy transfer analysis shows that psst5 truncated variants physically interact with psst2, thereby altering their localization at the plasma membrane and specifically disrupting the cellular response to SST and/or CORT. These results represent the first characterization of a key porcine SST receptor, psst5, and, together with our previous results, provide strong evidence that alternative splicing-derived, truncated sst5 variants with distinct functional capacities exist in the mammalian lineage, where they can act as dominant-negative receptors, by interacting directly with long, seven TMD variants, potentially contributing to modulate normal and pathological SST and CORT signaling.
Collapse
Affiliation(s)
- Mario Durán-Prado
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Reina Sofía University Hospital, Instituto Maimónides de Investigación Biomédica de Córdoba, and CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Annunziata M, Luque RM, Durán-Prado M, Baragli A, Grande C, Volante M, Gahete MD, Deltetto F, Camanni M, Ghigo E, Castaño JP, Granata R. Somatostatin and somatostatin analogues reduce PDGF-induced endometrial cell proliferation and motility. Hum Reprod 2012; 27:2117-29. [PMID: 22588000 DOI: 10.1093/humrep/des144] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Endometriosis is characterized by ectopic implantation of endometrial cells, which show increased proliferation and migration. Somatostatin (SST) and its analogues inhibit normal and cancer cell growth and motility through the SST receptors, sst1-5. Cortistatin (CST), which displays high structural and functional homology with SST, binds all ssts, as well as MrgX2. Our objective was to investigate the gene expression of the SST/CST system and to determine the effect of SST and its analogues on platelet-derived growth factor (PDGF)-induced proliferation and motility in telomerase-immortalized human endometrial stromal cell (T HESC) line and in primary endometrial stromal cell (ESCs) isolated from human endometriotic tissues. METHODS Ectopic endometrial tissues were collected from women (n= 23) undergoing laparoscopic surgery for endometriosis (Stage III/IV). Gene expression was evaluated by real-time PCR, cell motility by wound healing assay, protein expression and β-actin rearrangement by immunofluorescence, cell proliferation by the Alamar blue assay and ERK1/2 and Akt phosphorylation by western blot. RESULTS Human endometriotic tissues, primary ESCs and T HESCs expressed SST, CST and ssts. SST, its analogues SOM230 and octreotide, as well as CST, counteracted PDGF-induced proliferation and migration in both ESCs and T HESCs. SST also inhibited vascular endothelial growth factor and metalloprotease-2 mRNA expression, and reduced basal and PDGF-induced ERK1/2 phosphorylation. CONCLUSION These results indicate that the SST/CST system is expressed in endometriotic tissues and cells. The inhibitory effects of SST and its analogues on PDGF-induced proliferation and motility suggest that these peptides may represent promising tools in the treatment of endometriosis.
Collapse
Affiliation(s)
- Marta Annunziata
- Laboratory of Molecular and Cellular Endocrinology, Department of Internal Medicine, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tringali G, Greco MC, Lisi L, Pozzoli G, Navarra P. Cortistatin modulates the expression and release of corticotrophin releasing hormone in rat brain. Comparison with somatostatin and octreotide. Peptides 2012; 34:353-9. [PMID: 22342595 DOI: 10.1016/j.peptides.2012.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 02/02/2012] [Accepted: 02/02/2012] [Indexed: 12/19/2022]
Abstract
Cortistatin (CST) is an endogenous neuropeptide characterized by remarkable structural and functional resemblance to somatostatin (SST), both peptides sharing the ability to bind and activate all five SST receptor subtypes. Evidence is also available showing that CST exerts biological activities independently from SST, perhaps via the activation of specific receptors that remain to be fully characterized at present. Here we have investigated the effects of CST on the gene expression and release of corticotrophin releasing hormone (CRH) from rat hypothalamic and hippocampal explants; moreover, we compared the effects of CST with those of SST and octreotide (OCT) in these models. We found that: (i) CST inhibits the expression and release of CRH from rat hypothalamic and hippocampal explants under basal conditions as well as after CRH stimulation by well known secretagogues; (ii) SST does not modify basal CRH secretion from the hypothalamus or the hippocampus, while it is able to reduce KCl-stimulated CRH release from both brain areas; (iii) OCT inhibits both basal and KCl-induced CRH secretion from rat hypothalamic explants, while it has no effect on CRH release from the hippocampus, either under basal conditions or after stimulation by high K(+) concentrations; (iv) at variance with CST; SST and OCT have not effect whatsoever on veratridine-induced CRH release from the hypothalamus. In conclusion the present findings provide in vitro evidence in support of the hypothesis that CST plays a role in the regulation of endocrine adaptive responses to stress.
Collapse
Affiliation(s)
- Giuseppe Tringali
- Institute of Pharmacology, Catholic University School of Medicine, Rome, Italy.
| | | | | | | | | |
Collapse
|
40
|
Anderson LL, Scanes CG. Nanobiology and physiology of growth hormone secretion. Exp Biol Med (Maywood) 2012; 237:126-42. [DOI: 10.1258/ebm.2011.011306] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Growth hormone (GH) secretion is controlled by hypothalamic releasing hormones from the median eminence together with hormones and neuropeptides produced by peripheral organs. Secretion of GH involves movement of secretory vesicles along microtubules, transient ‘docking’ with the porosome in the cell membrane and subsequent release of GH. Release of GH is stimulated by GH releasing hormone (GHRH) and inhibited by somatostatin (SRIF). Ghrelin may be functioning to stimulate GH release from somatotropes acting via the GH secretagogue (GHS) receptor (GHSR). However, recent physiological studies militate against this. In addition, ghrelin does influence GH release acting within the hypothalamus. Release of GH from the somatotropes involves the GH-containing secretory granules moving close to the cell surface followed by transitory fusion of the secretory granules with the porosomes located in multiple secretory pits in the cell membrane. Other peptides/proteins can influence GH secretion, particularly in species of non-mammalian vertebrates.
Collapse
Affiliation(s)
- Lloyd L Anderson
- Department of Animal Science
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011
| | - Colin G Scanes
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI 53211, USA
| |
Collapse
|
41
|
Beléen C, Martínez-Fuentes AJ, Gracia-Navarro F. Role of SST, CORT and ghrelin and its receptors at the endocrine pancreas. Front Endocrinol (Lausanne) 2012; 3:114. [PMID: 23162532 PMCID: PMC3444847 DOI: 10.3389/fendo.2012.00114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 09/03/2012] [Indexed: 12/21/2022] Open
Abstract
Somatostatin (SST), cortistatin (CORT), and its receptors (sst1-5), and ghrelin and its receptors (GHS-R) are two highly interrelated neuropeptide systems with a broad range of overlapping biological actions at central, cardiovascular, and immune levels among others. Besides their potent regulatory role on GH release, its endocrine actions are highlighted by SST/CORT and ghrelin influence on insulin secretion, glucose homeostasis, and insulin resistance. Interestingly, most components of these systems are expressed at the endocrine pancreas and are actively involved in the modulation of pancreatic islet function and, consequently influence glucose homeostasis. In addition, some of them also participate in islet survival and regeneration. Furthermore, under severe metabolic condition as well as in endocrine pathologies, their expression profile is severely deregulated. These findings suggest that SST/CORT and ghrelin systems could play a relevant role in pancreatic function under metabolic and endocrine pathologies. Accordingly, these systems have been therapeutically targeted for the prevention or amelioration of certain metabolic conditions (obesity) as well as for tumor growth inhibition and/or hormonal regulation in endocrine pathologies (neuroendocrine tumors). This review focuses on the interrelationship between SST/CORT and ghrelin systems and their role in severe metabolic conditions and some endocrine disorders.
Collapse
Affiliation(s)
- Chanclón Beléen
- Department of Cell Biology, Physiology and Immunology, University of CórdobaCórdoba, Spain
- Instituto Maimónides de Investigación Biomédica de CórdobaCórdoba, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y NutriciónCórdoba, Spain
| | - Antonio J. Martínez-Fuentes
- Department of Cell Biology, Physiology and Immunology, University of CórdobaCórdoba, Spain
- Instituto Maimónides de Investigación Biomédica de CórdobaCórdoba, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y NutriciónCórdoba, Spain
| | - Francisco Gracia-Navarro
- Department of Cell Biology, Physiology and Immunology, University of CórdobaCórdoba, Spain
- Instituto Maimónides de Investigación Biomédica de CórdobaCórdoba, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y NutriciónCórdoba, Spain
- *Correspondence: Francisco Gracia-Navarro, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Campus de Rabanales, Edificio Severo-Ochoa, Planta 3, E-14014 Córdoba, Spain. e-mail:
| |
Collapse
|
42
|
Córdoba-Chacón J, Gahete MD, Pozo-Salas AI, Martínez-Fuentes AJ, de Lecea L, Gracia-Navarro F, Kineman RD, Castaño JP, Luque RM. Cortistatin is not a somatostatin analogue but stimulates prolactin release and inhibits GH and ACTH in a gender-dependent fashion: potential role of ghrelin. Endocrinology 2011; 152:4800-12. [PMID: 21971153 PMCID: PMC3230064 DOI: 10.1210/en.2011-1542] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cortistatin (CST) and somatostatin (SST) evolve from a common ancestral gene and share remarkable structural, pharmacological, and functional homologies. Although CST has been considered as a natural SST-analogue acting through their shared receptors (SST receptors 1-5), emerging evidence indicates that these peptides might in fact exert unique roles via selective receptors [e.g. CST, not SST, binds ghrelin receptor growth hormone secretagogue receptor type 1a (GHS-R1a)]. To determine whether the role of endogenous CST is different from SST, we characterized the endocrine-metabolic phenotype of male/female CST null mice (cort-/-) at hypothalamic-pituitary-systemic (pancreas-stomach-adrenal-liver) levels. Also, CST effects on hormone expression/secretion were evaluated in primary pituitary cell cultures from male/female mice and female primates (baboons). Specifically, CST exerted an unexpected stimulatory role on prolactin (PRL) secretion, because both male/female cort-/- mice had reduced PRL levels, and CST treatment (in vivo and in vitro) increased PRL secretion, which could be blocked by a GHS-R1a antagonist in vitro and likely relates to the decreased success of female cort-/- in first-litter pup care at weaning. In contrast, CST inhibited GH and adrenocorticotropin-hormone axes in a gender-dependent fashion. In addition, a rise in acylated ghrelin levels was observed in female cort-/- mice, which were associated with an increase in stomach ghrelin/ghrelin O-acyl transferase expression. Finally, CST deficit uncovered a gender-dependent role of this peptide in the regulation of glucose-insulin homeostasis, because male, but not female, cort-/- mice developed insulin resistance. The fact that these actions are not mimicked by SST and are strongly gender dependent offers new grounds to investigate the hitherto underestimated physiological relevance of CST in the regulation of physiological/metabolic processes.
Collapse
|
43
|
Cakir M, Dworakowska D, Grossman A. Somatostatin receptor biology in neuroendocrine and pituitary tumours: part 1--molecular pathways. J Cell Mol Med 2011; 14:2570-84. [PMID: 20629989 PMCID: PMC4373477 DOI: 10.1111/j.1582-4934.2010.01125.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neuroendocrine tumours (NETs) may occur at many sites in the body although the majority occur within the gastroenteropancreatic axis. Non-gastroenteropancreatic NETs encompass phaeochromocytomas and paragangliomas, medullary thyroid carcinoma, anterior pituitary tumour, broncho-pulmonary NETs and parathyroid tumours. Like most endocrine tumours, NETs also express somatostatin (SST) receptors (subtypes 1–5) whose ligand SST is known to inhibit endocrine and exocrine secretions and have anti-tumour effects. In the light of this knowledge, the idea of using SST analogues in the treatment of NETs has become increasingly popular and new studies have centred upon the development of new SST analogues. We attempt to review SST receptor (SSTR) biology primarily in neuroendocrine tissues, focusing on pituitary tumours. A full data search was performed through PubMed over the years 2000–2009 with keywords ‘somatostatin, molecular biology, somatostatin receptors, somatostatin signalling, NET, pituitary’ and all relevant publications have been included, together with selected publications prior to that date. SSTR signalling in non-neuroendocrine solid tumours is beyond the scope of this review. SST is a potent anti-proliferative and anti-secretory agent for some NETs. The successful therapeutic use of SST analogues in the treatment of these tumours depends on a thorough understanding of the diverse effects of SSTR subtypes in different tissues and cell types. Further studies will focus on critical points of SSTR biology such as homo- and heterodimerization of SSTRs and the differences between post-receptor signalling pathways of SSTR subtypes.
Collapse
Affiliation(s)
- Mehtap Cakir
- Selcuk University, Meram School of Medicine, Division of Endocrinology and Metabolism, Konya, Turkey.
| | | | | |
Collapse
|
44
|
Córdoba-Chacón J, Gahete MD, Durán-Prado M, Luque RM, Castaño JP. Truncated somatostatin receptors as new players in somatostatin-cortistatin pathophysiology. Ann N Y Acad Sci 2011; 1220:6-15. [PMID: 21388399 DOI: 10.1111/j.1749-6632.2011.05985.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Somatostatin (SST) and cortistatin (CORT) act through a family of seven transmembrane domain (TMD) receptors (sst1-5) to govern multiple functions, from growth hormone (GH) secretion to neurotransmission, metabolic homeostasis, gastrointestinal and immune function, and tumor cell growth. Thus, SST analogs are used to treat endocrine/tumoral pathologies. Yet, some SST/CORT actions cannot be explained by their interaction with known ssts. We recently identified novel sst5 variants in human, pig, mouse, and rat that lack one or more TMDs and display unique molecular/functional features: they exhibit distinct tissue distribution, divergent responses to SST/CORT, and intracellular localization as opposed to the typical plasma-membrane distribution of full-length ssts. When coexpressed in the same cell, truncated sst5 variants colocalize and physically interact with full-length ssts, providing a molecular basis to disrupt normal sst2/sst5 functioning. This may explain the inverse correlation between hsst5TMD4 expression in pituitary tumors and octreotide responsiveness in acromegaly. Discovery of these new truncated sst5 variants provides novel insights on SST/CORT/sst pathophysiology and suggests new research avenues for the therapeutic potential of this system.
Collapse
Affiliation(s)
- José Córdoba-Chacón
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain
| | | | | | | | | |
Collapse
|
45
|
Capuano A, Currò D, Navarra P, Tringali G. Cortistatin modulates calcitonin gene-related peptide release from neuronal tissues of rat. Comparison with somatostatin. Peptides 2011; 32:138-43. [PMID: 20883741 DOI: 10.1016/j.peptides.2010.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/21/2010] [Accepted: 09/21/2010] [Indexed: 12/16/2022]
Abstract
Cortistatin (CST) is an endogenous neuropeptide bearing strong structural and functional analogies with somatostatin (SST). Gene expression of CST and its putative receptor MrgX2 in dorsal root ganglia (DRG) neurons in man suggests the involvement of CST in pain transmission. In this study we have investigated the effects of CST and SST on calcitonin gene-related peptide (CGRP, the main neuropeptide mediator of pain transmission) from primary cultures of rat trigeminal neurons. Moreover, here for the first time we used organotypic cultures of rat brainstem to investigate the release of CGRP form nucleus caudalis as a model of pre-synaptic peptide release. In both experimental paradigm CGRP release was evaluated in the presence of CST or SST, with or without the addition of known secretagogues (namely high KCl concentrations, veratridine and capsaicin). We found that CST and SST do not modify basal CGRP secretion from trigeminal neurons, but both peptides were able to inhibit in a concentration-dependent manner the release of CGRP stimulated by KCl, veratridine or capsaicin. Likewise, in brainstem organotypic cultures CST and SST did not modify baseline CGRP secretion. Of the secretagogues used, capsaicin proved to be most effective compared to KCl and veratridine (8-fold vs 2-fold increase, respectively). Thereafter, CST and SST were tested on capsaicin-stimulated CGPR release only. Under these conditions, CST but not SST was able to inhibit in a significant manner pre-synaptic CGRP release from the brainstem, providing further evidence in support of a role for CST in pain transmission.
Collapse
Affiliation(s)
- Alessandro Capuano
- Institute of Pharmacology, Catholic University School of Medicine, L.go F. Vito, 1, 00168 Rome, Italy.
| | | | | | | |
Collapse
|
46
|
Gahete MD, Cordoba-Chacón J, Duran-Prado M, Malagón MM, Martinez-Fuentes AJ, Gracia-Navarro F, Luque RM, Castaño JP. Somatostatin and its receptors from fish to mammals. Ann N Y Acad Sci 2010; 1200:43-52. [PMID: 20633132 DOI: 10.1111/j.1749-6632.2010.05511.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Somatostatin (SST) and its receptors (sst) make up a molecular family with unique functional complexity and versatility. Widespread distribution and frequent coexpression of sst subtypes underlies the multiplicity of (patho)physiological processes controlled by SST (central nervous system functions, endocrine and exocrine secretion, cell proliferation). This complexity is clearly reflected in the intricate evolutionary development of this molecular family. Recent studies postulate the existence of an ancestral somatostatin/urotensin II (SST/UII) gene, which originated two ancestral, SST and UII, genes by local duplication. Subsequently, segment duplication would have originated two diverging SST genes in both fish (SS1/SS2) and tetrapods [(SST/cortistatin(CST))]. SST/CST actions are mediated by a family of GPCRs (sst1-5) encoded by five different genes. sst1-4 sequences are highly conserved compared with sst5, suggesting unique evolutionary and functional relevance for the latter. Indeed, we recently identified novel truncated but functional sst5 variants in several species, which may help to explain part of the complexity of the SST/CST/sst family. Comparative and phylogenetic analysis of this molecular family would enhance our understanding of its paradigmatic evolutionary complexity and functional versatility.
Collapse
Affiliation(s)
- Manuel D Gahete
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Sheridan MA, Hagemeister AL. Somatostatin and somatostatin receptors in fish growth. Gen Comp Endocrinol 2010; 167:360-5. [PMID: 19735661 DOI: 10.1016/j.ygcen.2009.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 08/20/2009] [Accepted: 09/02/2009] [Indexed: 01/25/2023]
Abstract
Multiple forms of somatostatin (SS) and SS receptors (SSTR) are produced widely in the tissues of fish and interact to coordinate numerous physiological processes. Insight into their role in growth regulation emerged from studies of abnormal growth and of whole animals. The influence of SS on organismal growth operates at several levels of the growth hormone (GH)-insulin-like growth factor-1 (IGF-1) system. SS inhibits production and release of pituitary GH, but not all forms of SS are equipotent in this action. SS also influences the GH-IGF-1 system in an extrapituitary manner by reducing sensitivity to GH as well as by inhibiting IGF-1 production and secretion, and diminishing IGF-1 sensitivity. Peripheral actions of SS are important for the local control of growth and may help to coordinate growth with other processes such as metabolism, development, and reproduction by reprogramming cell responsiveness.
Collapse
Affiliation(s)
- Mark A Sheridan
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108-6050, USA.
| | | |
Collapse
|
48
|
Córdoba-Chacón J, Gahete MD, Duran-Prado M, Pozo-Salas AI, Malagón MM, Gracia-Navarro F, Kineman RD, Luque RM, Castaño JP. Identification and characterization of new functional truncated variants of somatostatin receptor subtype 5 in rodents. Cell Mol Life Sci 2010; 67:1147-63. [PMID: 20063038 PMCID: PMC11115927 DOI: 10.1007/s00018-009-0240-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/08/2009] [Accepted: 12/18/2009] [Indexed: 12/11/2022]
Abstract
Somatostatin and cortistatin exert multiple biological actions through five receptors (sst1-5); however, not all their effects can be explained by activation of sst1-5. Indeed, we recently identified novel truncated but functional human sst5-variants, present in normal and tumoral tissues. In this study, we identified and characterized three novel truncated sst5 variants in mice and one in rats displaying different numbers of transmembrane-domains [TMD; sst5TMD4, sst5TMD2, sst5TMD1 (mouse-variants) and sst5TMD1 (rat-variant)]. These sst5 variants: (1) are functional to mediate ligand-selective-induced variations in [Ca(2+)]i and cAMP despite being truncated; (2) display preferential intracellular distribution; (3) mostly share full-length sst5 tissue distribution, but exhibit unique differences; (4) are differentially regulated by changes in hormonal/metabolic environment in a tissue- (e.g., central vs. systemic) and ligand-dependent manner. Altogether, our results demonstrate the existence of new truncated sst5-variants with unique ligand-selective signaling properties, which could contribute to further understanding the complex, distinct pathophysiological roles of somatostatin and cortistatin.
Collapse
Affiliation(s)
- Jose Córdoba-Chacón
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Edificio Severo Ochoa. Planta 3. Campus de Rabanales, 14014 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn 06/03), Córdoba, Spain
| | - Manuel D. Gahete
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Edificio Severo Ochoa. Planta 3. Campus de Rabanales, 14014 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn 06/03), Córdoba, Spain
| | - Mario Duran-Prado
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Edificio Severo Ochoa. Planta 3. Campus de Rabanales, 14014 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn 06/03), Córdoba, Spain
| | - Ana I. Pozo-Salas
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Edificio Severo Ochoa. Planta 3. Campus de Rabanales, 14014 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn 06/03), Córdoba, Spain
| | - María M. Malagón
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Edificio Severo Ochoa. Planta 3. Campus de Rabanales, 14014 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn 06/03), Córdoba, Spain
| | - F. Gracia-Navarro
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Edificio Severo Ochoa. Planta 3. Campus de Rabanales, 14014 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn 06/03), Córdoba, Spain
| | - Rhonda D. Kineman
- Research and Development Division, Jesse Brown Veterans Affairs Medical Center, Chicago, IL USA
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL USA
| | - Raul M. Luque
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Edificio Severo Ochoa. Planta 3. Campus de Rabanales, 14014 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn 06/03), Córdoba, Spain
| | - Justo P. Castaño
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Edificio Severo Ochoa. Planta 3. Campus de Rabanales, 14014 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn 06/03), Córdoba, Spain
| |
Collapse
|
49
|
Liu Y, Zhou YB, Zhang GG, Cai Y, Duan XH, Teng X, Song JQ, Shi Y, Tang CS, Yin XH, Qi YF. Cortistatin attenuates vascular calcification in rats. ACTA ACUST UNITED AC 2010; 159:35-43. [PMID: 19766150 DOI: 10.1016/j.regpep.2009.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 08/22/2009] [Accepted: 09/08/2009] [Indexed: 01/06/2023]
Abstract
Cortistatin (CST) is a newly discovered polypeptide with multiple biological activities that plays a regulatory role in the nervous, endocrine and immune systems. However, the role of CST in the pathogenesis of cardiovascular diseases remains unclear. In this study, we investigated in rats whether CST inhibits vascular calcification induced by vitamin D3 and nicotine treatment in vivo and calcification of cultured rat vascular smooth muscular cells (VSMCs) induced by beta-glycerophosphate in vitro and the underlying mechanism. We measured rat hemodynamic variables, alkaline phosphatase (ALP) activity, calcium deposition and pathological changes in aortic tissues and cultured VSMCs. CST treatment significantly improved hemodynamic values and arterial compliance in rats with vascular calcification, by decreasing systolic blood pressure, pulse pressure, left ventricular end-systolic pressure and left ventricular end-diastolic pressure. CST also significantly decreased ALP activity and calcium deposition, alleviated pathological injury and down-regulated the mRNA expression of type III sodium-dependent phosphate co-transporter-1 (Pit-1) in aortic tissues. It dose-independently inhibited the calcification of VSMCs by decreasing ALP activity and calcium deposition, alleviating pathologic injury and down-regulating Pit-1 mRNA expression. As with CST treatment, ALP activation and calcium deposition were decreased significantly on treatment with ghrelin, the endogenous agonist of growth hormone secretagogue receptor 1a (GHSR1a), but not significantly with somatostatin-14 or proadrenomedullin N-terminal 20 peptide in VSMCs. Further, growth hormone-releasing peptide-6[D-lys], the endogenous antagonist of GHSR1a, markedly reversed the increased ALP activity and calcium deposition in VSMCs. CST could be a new target molecule for the prevention and therapy of vascular calcification, whose effects are mediated by GHSR1a rather than SSTRs or Mrg X2.
Collapse
Affiliation(s)
- Yue Liu
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Durán-Prado M, Gahete MD, Martínez-Fuentes AJ, Luque RM, Quintero A, Webb SM, Benito-López P, Leal A, Schulz S, Gracia-Navarro F, Malagón MM, Castaño JP. Identification and characterization of two novel truncated but functional isoforms of the somatostatin receptor subtype 5 differentially present in pituitary tumors. J Clin Endocrinol Metab 2009; 94:2634-43. [PMID: 19401364 DOI: 10.1210/jc.2008-2564] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CONTEXT Somatostatin and its related peptide cortistatin exert multiple actions on normal and tumoral tissue targets through a family of receptors termed somatostatin receptor (sst)1-5. Despite the considerable advances in the knowledge on these receptors and their (patho)physiological roles, there is still evidence that additional receptors for these peptides should exist to fully explain their actions. OBJECTIVE The growing number of spliced variants found in similar receptor families, often present in tumors, and results from our group obtained on sst5 from other species (pig) led us to explore the existence of new human sst5 isoforms. DESIGN AND RESULTS A rapid amplification of cDNA ends PCR approach on samples from a human pituitary tumor and a cell line enabled identification of two novel alternatively spliced sst5 receptor variants. The sequences obtained encode putative proteins that correspond to truncated isoforms of five and four transmembrane domains (TMDs), accordingly named sst5TMD5 and sst5TMD4, respectively. Both novel receptors show a differential expression pattern in normal tissues and are also present in pituitary tumors of diverse etiology including nonfunctioning adenomas, corticotropinomas, somatotropinomas, and a prolactinoma. In contrast to the predominant plasma membrane localization of full-length sst5, both sst5TMD5 and sst5TMD4 show a preferentially intracellular localization. Despite their truncated nature, both receptors are functional, as shown by their ability to mediate selective, ligand-induced rises in free cytosolic calcium concentration. Specifically, whereas sst5TMD5 is selectivity activated by somatostatin compared with cortistatin, cells transfected with sst5TMD4 almost exclusively respond to cortistatin and not to somatostatin. CONCLUSIONS Our results demonstrate the existence of two previously unidentified sst5 spliced variants with distinct distribution in normal tissues and pituitary tumors, unique ligand-selective signaling properties, and subcellular distribution, which could contribute to somatostatin and cortistatin signaling in normal and tumoral cells.
Collapse
Affiliation(s)
- Mario Durán-Prado
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, and Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, E-14014 Córdoba Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|