1
|
Reid RM, Turkmen S, Cleveland BM, Biga PR. Direct actions of growth hormone in rainbow trout, Oncorhynchus mykiss, skeletal muscle cells in vitro. Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111725. [PMID: 39122107 DOI: 10.1016/j.cbpa.2024.111725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The growth hormone (GH)-insulin-like growth factor-1 (IGF-1) system regulates skeletal muscle growth and function. GH has a major function of targeting the liver to regulate IGF-1 production and release, and IGF-1 mediates the primary anabolic action of GH on growth. However, skeletal muscle is a target tissue of GH as evidenced by dynamic GH receptor expression, but it is unclear if GH elicits any direct actions on extrahepatic tissues as it is difficult to distinguish the effects of IGF-1 from GH. Fish growth regulation is complex compared to mammals, as genome duplication events have resulted in multiple isoforms of GHs, GHRs, IGFs, and IGFRs expressed in most fish tissues. This study investigated the potential for GH direct actions on fish skeletal muscle using an in vitro system, where rainbow trout myogenic precursor cells (MPCs) were cultured in normal and serum-deprived media, to mimic in vivo fasting conditions. Fasting reduces IGF-1 signaling in the muscle, which is critical for disentangling the roles of GH from IGF-1. The direct effects of GH were analyzed by measuring changes in myogenic proliferation and differentiation genes, as well as genes regulating muscle growth and proteolysis. This study provides the first in-depth analysis of the direct actions of GH on serum-deprived fish muscle cells in vitro. Data suggest that GH induces the expression of markers for proliferation and muscle growth in the presence of serum, but all observed GH action was blocked in serum-deprived conditions. Additionally, serum deprivation alone reduced the expression of several proliferation and differentiation markers, while increasing growth and proteolysis markers. Results also demonstrate dynamic gene expression response in the presence of GH and a JAK inhibitor in serum-provided but not serum-deprived conditions. These data provide a better understanding of GH signaling in relation to serum in trout muscle cells in vitro.
Collapse
Affiliation(s)
- Ross M Reid
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Serhat Turkmen
- Department of Cell Development and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Beth M Cleveland
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service (ARS-USDA), Kearneysville, WV 25430, USA
| | - Peggy R Biga
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
2
|
Bersin TV, Cordova KL, Saenger EK, Journey ML, Beckman BR, Lema SC. Nutritional status affects Igf1 regulation of skeletal muscle myogenesis, myostatin, and myofibrillar protein degradation pathways in gopher rockfish (Sebastes carnatus). Mol Cell Endocrinol 2023; 573:111951. [PMID: 37169322 DOI: 10.1016/j.mce.2023.111951] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
Insulin-like growth factor-1 (Igf1) regulates skeletal muscle growth in fishes by increasing protein synthesis and promoting muscle hypertrophy. When fish experience periods of insufficient food intake, they undergo slower muscle growth or even muscle wasting, and those changes emerge in part from nutritional modulation of Igf1 signaling. Here, we examined how food deprivation (fasting) modulates Igf1 regulation of liver and skeletal muscle gene expression in gopher rockfish (Sebastes carnatus), a nearshore rockfish of importance for commercial and recreational fisheries in the northeastern Pacific Ocean, to understand how food limitation impacts Igf regulation of muscle growth pathways. Rockfish were either fed or fasted for 14 d, after which a subset of fish from each group was treated with recombinant Igf1 from sea bream (Sparus aurata). Fish that were fasted lost body mass and had lower body condition, reduced hepatosomatic index, and lower plasma Igf1 concentrations, as well as a decreased abundance of igf1 gene transcripts in the liver, increased hepatic mRNAs for Igf binding proteins igfbp1a, igfbp1b, and igfbp3a, and decreased mRNA abundances for igfbp2b and a putative Igf acid labile subunit (igfals) gene. In skeletal muscle, fasted fish showed a reduced abundance of intramuscular igf1 mRNAs but elevated gene transcripts encoding Igf1 receptors A (igf1ra) and B (igf1rb), which also showed downregulation by Igf1. Fasting increased skeletal muscle mRNAs for myogenin and myostatin1, as well as ubiquitin ligase F-box only protein 32 (fbxo32) and muscle RING-finger protein-1 (murf1) genes involved in muscle atrophy, while concurrently downregulating mRNAs for myoblast determination protein 2 (myod2), myostatin2, and myogenic factors 5 (myf5) and 6 (myf6 encoding Mrf4). Treatment with Igf1 downregulated muscle myostatin1 and fbxo32 under both feeding conditions, but showed feeding-dependent effects on murf1, myf5, and myf6/Mrf4 gene expression indicating that Igf1 effects on muscle growth and atrophy pathways is contingent on recent food consumption experience.
Collapse
Affiliation(s)
- Theresa V Bersin
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Kasey L Cordova
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - E Kate Saenger
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Meredith L Journey
- Lynker Technology, 202 Church St SE #536, Leesburg, VA, 20175, USA; Under Contract to Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA
| | - Brian R Beckman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA.
| |
Collapse
|
3
|
Bomkamp C, Musgrove L, Marques DMC, Fernando GF, Ferreira FC, Specht EA. Differentiation and Maturation of Muscle and Fat Cells in Cultivated Seafood: Lessons from Developmental Biology. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:1-29. [PMID: 36374393 PMCID: PMC9931865 DOI: 10.1007/s10126-022-10174-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Cultivated meat, also known as cultured or cell-based meat, is meat produced directly from cultured animal cells rather than from a whole animal. Cultivated meat and seafood have been proposed as a means of mitigating the substantial harms associated with current production methods, including damage to the environment, antibiotic resistance, food security challenges, poor animal welfare, and-in the case of seafood-overfishing and ecological damage associated with fishing and aquaculture. Because biomedical tissue engineering research, from which cultivated meat draws a great deal of inspiration, has thus far been conducted almost exclusively in mammals, cultivated seafood suffers from a lack of established protocols for producing complex tissues in vitro. At the same time, fish such as the zebrafish Danio rerio have been widely used as model organisms in developmental biology. Therefore, many of the mechanisms and signaling pathways involved in the formation of muscle, fat, and other relevant tissue are relatively well understood for this species. The same processes are understood to a lesser degree in aquatic invertebrates. This review discusses the differentiation and maturation of meat-relevant cell types in aquatic species and makes recommendations for future research aimed at recapitulating these processes to produce cultivated fish and shellfish.
Collapse
Affiliation(s)
- Claire Bomkamp
- Department of Science & Technology, The Good Food Institute, Washington, DC USA
| | - Lisa Musgrove
- University of the Sunshine Coast, Sippy Downs, Queensland Australia
| | - Diana M. C. Marques
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Gonçalo F. Fernando
- Department of Science & Technology, The Good Food Institute, Washington, DC USA
| | - Frederico C. Ferreira
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Elizabeth A. Specht
- Department of Science & Technology, The Good Food Institute, Washington, DC USA
| |
Collapse
|
4
|
Hue I, Capilla E, Rosell-Moll E, Balbuena-Pecino S, Goffette V, Gabillard JC, Navarro I. Recent advances in the crosstalk between adipose, muscle and bone tissues in fish. Front Endocrinol (Lausanne) 2023; 14:1155202. [PMID: 36998471 PMCID: PMC10043431 DOI: 10.3389/fendo.2023.1155202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Control of tissue metabolism and growth involves interactions between organs, tissues, and cell types, mediated by cytokines or direct communication through cellular exchanges. Indeed, over the past decades, many peptides produced by adipose tissue, skeletal muscle and bone named adipokines, myokines and osteokines respectively, have been identified in mammals playing key roles in organ/tissue development and function. Some of them are released into the circulation acting as classical hormones, but they can also act locally showing autocrine/paracrine effects. In recent years, some of these cytokines have been identified in fish models of biomedical or agronomic interest. In this review, we will present their state of the art focusing on local actions and inter-tissue effects. Adipokines reported in fish adipocytes include adiponectin and leptin among others. We will focus on their structure characteristics, gene expression, receptors, and effects, in the adipose tissue itself, mainly regulating cell differentiation and metabolism, but in muscle and bone as target tissues too. Moreover, lipid metabolites, named lipokines, can also act as signaling molecules regulating metabolic homeostasis. Regarding myokines, the best documented in fish are myostatin and the insulin-like growth factors. This review summarizes their characteristics at a molecular level, and describes both, autocrine effects and interactions with adipose tissue and bone. Nonetheless, our understanding of the functions and mechanisms of action of many of these cytokines is still largely incomplete in fish, especially concerning osteokines (i.e., osteocalcin), whose potential cross talking roles remain to be elucidated. Furthermore, by using selective breeding or genetic tools, the formation of a specific tissue can be altered, highlighting the consequences on other tissues, and allowing the identification of communication signals. The specific effects of identified cytokines validated through in vitro models or in vivo trials will be described. Moreover, future scientific fronts (i.e., exosomes) and tools (i.e., co-cultures, organoids) for a better understanding of inter-organ crosstalk in fish will also be presented. As a final consideration, further identification of molecules involved in inter-tissue communication will open new avenues of knowledge in the control of fish homeostasis, as well as possible strategies to be applied in aquaculture or biomedicine.
Collapse
Affiliation(s)
- Isabelle Hue
- Laboratory of Fish Physiology and Genomics, UR1037, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Rennes, France
| | - Encarnación Capilla
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Enrique Rosell-Moll
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Sara Balbuena-Pecino
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Valentine Goffette
- Laboratory of Fish Physiology and Genomics, UR1037, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Rennes, France
| | - Jean-Charles Gabillard
- Laboratory of Fish Physiology and Genomics, UR1037, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Rennes, France
| | - Isabel Navarro
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Yang F, Liu S, Qu J, Zhang Q. Identification and functional characterization of Pomstna in Japanese flounder (Paralichthys olivaceus). Gene 2022; 837:146675. [PMID: 35738447 DOI: 10.1016/j.gene.2022.146675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/13/2022] [Accepted: 06/10/2022] [Indexed: 11/04/2022]
Abstract
Myostatin (MSTN) as a negative regulator of muscle growth has been identified in Japanese flounder. Yet, most fish experienced the teleost specific genome duplication and possess at least two mstn genes. In current study, the second mstn gene named Pomstna is identified in Japanese flounder. Pomstna is clustered with other mstn2 of teleosts and owned highly conserved TGF-beta domain. In addition to muscle, Pomstna also highly expressed in brain and spleen. Using the primarily cultured muscle cells of Japanese flounder, we found that Pomstna could inhibit the proliferation and differentiation of muscle cells in vitro. As a ligand of TGF-beta signaling pathway, Pomstnb could regulate the expression of p21 and myod by activating the TGF-beta signaling pathway. Different from the function of Pomstnb, Pomstna could not activate the TGF-beta signaling pathway in vitro. During the differentiation of PoM cells, the expression of Pomstnb decreased significantly but the expression of Pomstna showed no change. Our study suggests that Pomstna could negatively regulate the growth and differentiation of muscle like Pomstnb yet through a different regulatory mechanism than Pomstnb. The present study suggests that muscle proliferation and differentiation were regulated by mstn not only through the TGF-beta signaling pathway but also other unknown mechanisms.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Saisai Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Jiangbo Qu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Process, Pilot National Laboratory for Marine Science and Technology (Qingdao), 266237 Qingdao, Shandong, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, 572000 Sanya, China.
| |
Collapse
|
6
|
Abouel Azm FR, Kong F, Wang X, Zhu W, Yu H, Long X, Tan Q. The Interaction of Dried Distillers Grains With Solubles (DDGS) Type and Level on Growth Performance, Health, Texture, and Muscle-Related Gene Expression in Grass Carp ( Ctenopharyngodon idellus). Front Nutr 2022; 9:832651. [PMID: 35571945 PMCID: PMC9097502 DOI: 10.3389/fnut.2022.832651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to estimate the possible synergetic effects of the two levels of dietary dried distillers grains with solubles (DDGS) from different sources (US-imported and native) on the growth, health status, muscle texture, and muscle growth-related gene expression of juvenile grass carp. Four treatments of fish were fed with 4 isonitrogenous diets, namely, native DDGS20, native DDGS30, US-imported DDGS20, and US-imported DDGS30 for 60 days. The US-imported DDGS30 group showed the better growth and feed efficiency. Additionally, we observed a significant increase in hepatopancreatic total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) in native DDGS groups. Moreover, raw muscle collagen increases considerably in the US-imported DDGS30 compared with the native DDGS30 group. In comparison with the native DDGS groups, the US-imported DDGS groups showed significantly decrease in all textural properties and fiber density, while increased fiber diameter. Dietary native DDGS inclusion significantly showed the upregulation of myog, myhc, and fgf6a expression in muscle, while the downregulation of the expression of myod and myf5. Overall, US-imported DDGS30 had a beneficial influence on growth via regulating genes involved in myogenesis and hypertrophy, the formation of collagen, but had negative impacts on antioxidant capacity and cooked muscle texture.
Collapse
Affiliation(s)
- Fatma Ragab Abouel Azm
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Wuhan, China.,College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Department of Animal Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Fanshuang Kong
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Wuhan, China.,College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xiaoyu Wang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Wuhan, China.,College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Wenhuan Zhu
- Fisheries Technology Extension and Guidance Center of Wuhan, Wuhan, China
| | - Haojie Yu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Wuhan, China.,College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xianmei Long
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Wuhan, China.,College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Qingsong Tan
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Wuhan, China.,College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| |
Collapse
|
7
|
Rodgers BD, Ward CW. Myostatin/Activin Receptor Ligands in Muscle and the Development Status of Attenuating Drugs. Endocr Rev 2022; 43:329-365. [PMID: 34520530 PMCID: PMC8905337 DOI: 10.1210/endrev/bnab030] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Muscle wasting disease indications are among the most debilitating and often deadly noncommunicable disease states. As a comorbidity, muscle wasting is associated with different neuromuscular diseases and myopathies, cancer, heart failure, chronic pulmonary and renal diseases, peripheral neuropathies, inflammatory disorders, and, of course, musculoskeletal injuries. Current treatment strategies are relatively ineffective and can at best only limit the rate of muscle degeneration. This includes nutritional supplementation and appetite stimulants as well as immunosuppressants capable of exacerbating muscle loss. Arguably, the most promising treatments in development attempt to disrupt myostatin and activin receptor signaling because these circulating factors are potent inhibitors of muscle growth and regulators of muscle progenitor cell differentiation. Indeed, several studies demonstrated the clinical potential of "inhibiting the inhibitors," increasing muscle cell protein synthesis, decreasing degradation, enhancing mitochondrial biogenesis, and preserving muscle function. Such changes can prevent muscle wasting in various disease animal models yet many drugs targeting this pathway failed during clinical trials, some from serious treatment-related adverse events and off-target interactions. More often, however, failures resulted from the inability to improve muscle function despite preserving muscle mass. Drugs still in development include antibodies and gene therapeutics, all with different targets and thus, safety, efficacy, and proposed use profiles. Each is unique in design and, if successful, could revolutionize the treatment of both acute and chronic muscle wasting. They could also be used in combination with other developing therapeutics for related muscle pathologies or even metabolic diseases.
Collapse
Affiliation(s)
| | - Christopher W Ward
- Department of Orthopedics and Center for Biomedical Engineering and Technology (BioMET), University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Amino Acids and IGF1 Regulation of Fish Muscle Growth Revealed by Transcriptome and microRNAome Integrative Analyses of Pacu ( Piaractus mesopotamicus) Myotubes. Int J Mol Sci 2022; 23:ijms23031180. [PMID: 35163102 PMCID: PMC8835699 DOI: 10.3390/ijms23031180] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/04/2022] Open
Abstract
Amino acids (AA) and IGF1 have been demonstrated to play essential roles in protein synthesis and fish muscle growth. The myoblast cell culture is useful for studying muscle regulation, and omics data have contributed enormously to understanding its molecular biology. However, to our knowledge, no study has performed the large-scale sequencing of fish-cultured muscle cells stimulated with pro-growth signals. In this work, we obtained the transcriptome and microRNAome of pacu (Piaractus mesopotamicus)-cultured myotubes treated with AA or IGF1. We identified 1228 and 534 genes differentially expressed by AA and IGF1. An enrichment analysis showed that AA treatment induced chromosomal changes, mitosis, and muscle differentiation, while IGF1 modulated IGF/PI3K signaling, metabolic alteration, and matrix structure. In addition, potential molecular markers were similarly modulated by both treatments. Muscle-miRNAs (miR-1, -133, -206 and -499) were up-regulated, especially in AA samples, and we identified molecular networks with omics integration. Two pairs of genes and miRNAs demonstrated a high-level relationship, and involvement in myogenesis and muscle growth: marcksb and miR-29b in AA, and mmp14b and miR-338-5p in IGF1. Our work helps to elucidate fish muscle physiology and metabolism, highlights potential molecular markers, and creates a perspective for improvements in aquaculture and in in vitro meat production.
Collapse
|
9
|
Kong X, Wang X, Li M, Song W, Huang K, Zhang F, Zhang Q, Qi J, He Y. Establishment of myoblast cell line and identification of key genes regulating myoblast differentiation in a marine teleost, Sebastes schlegelii. Gene 2021; 802:145869. [PMID: 34352298 DOI: 10.1016/j.gene.2021.145869] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/16/2021] [Accepted: 07/30/2021] [Indexed: 01/06/2023]
Abstract
Skeletal myoblasts are activated satellite cells capable of proliferation and differentiation. Studies on mammalian myoblast differentiation and myogenesis could be carried out in vitro thanks to the availability of mouse myoblast cell line C2C12. Lacking of muscle cell line hinders the studies of teleost fish myogenesis. Here, we established a continuous skeletal muscle cell line from juvenile rockfish (Sebastes schlegelii) muscle using explant method and subcultured more than 50 passages for over 150 days. Stable expression of myoblast-specific marker, MyoD (myoblast determination protein) and the potential of differentiation into multi-nucleated skeletal myotubes upon induction suggested the cell line were predominately composed of myoblasts. Transcriptome analysis revealed a total of 4375 genes differentially expressed at four time points after the switch to differentiation medium, which were mainly involved in proliferation and differentiation of myoblasts. KIF22 (kinesin family member 22) and POLA1 (DNA polymerase alpha 1) were identified as the key genes involved in fish myoblast proliferation whereas MYL3 (myosin light chain 3) and TNNT2 (troponin T2) were determined as the crucial genes responsible for differentiation. In all, the continuous myoblasts cultured in this study provided a cell platform for future studies on marine fish myoblast differentiation and myogenesis. The molecular process of myoblast differentiation revealed in this study will open a window into the understanding of indeterminate muscle growth of large teleost.
Collapse
Affiliation(s)
- Xiangfu Kong
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xuangang Wang
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Moli Li
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Weihao Song
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Kejia Huang
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Fengyan Zhang
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Quanqi Zhang
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Jie Qi
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Yan He
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, China.
| |
Collapse
|
10
|
Perelló-Amorós M, García-Pérez I, Sánchez-Moya A, Innamorati A, Vélez EJ, Achaerandio I, Pujolà M, Calduch-Giner J, Pérez-Sánchez J, Fernández-Borràs J, Blasco J, Gutiérrez J. Diet and Exercise Modulate GH-IGFs Axis, Proteolytic Markers and Myogenic Regulatory Factors in Juveniles of Gilthead Sea Bream ( Sparus aurata). Animals (Basel) 2021; 11:ani11082182. [PMID: 34438639 PMCID: PMC8388392 DOI: 10.3390/ani11082182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The effects of exercise and diet on growth markers were analyzed in gilthead sea bream juveniles. Under voluntary swimming, fish fed with a high-lipid diet showed lower growth, growth hormone (GH) plasma levels, flesh texture, and higher expression of main muscle proteolytic markers than those fed with a high-protein diet. However, under sustained exercise, most of the differences disappeared and fish growth was similar regardless of the diet, suggesting that exercise improves nutrients use allowing a reduction of the dietary protein, which results in an enhanced aquaculture production. Abstract The physiological and endocrine benefits of sustained exercise in fish were largely demonstrated, and this work examines how the swimming activity can modify the effects of two diets (high-protein, HP: 54% proteins, 15% lipids; high-energy, HE: 50% proteins, 20% lipids) on different growth performance markers in gilthead sea bream juveniles. After 6 weeks of experimentation, fish under voluntary swimming and fed with HP showed significantly higher circulating growth hormone (GH) levels and plasma GH/insulin-like growth-1 (IGF-1) ratio than fish fed with HE, but under exercise, differences disappeared. The transcriptional profile of the GH-IGFs axis molecules and myogenic regulatory factors in liver and muscle was barely affected by diet and swimming conditions. Under voluntary swimming, fish fed with HE showed significantly increased mRNA levels of capn1, capn2, capn3, capns1a, n3, and ub, decreased gene and protein expression of Ctsl and Mafbx and lower muscle texture than fish fed with HP. When fish were exposed to sustained exercise, diet-induced differences in proteases’ expression and muscle texture almost disappeared. Overall, these results suggest that exercise might be a useful tool to minimize nutrient imbalances and that proteolytic genes could be good markers of the culture conditions and dietary treatments in fish.
Collapse
Affiliation(s)
- Miquel Perelló-Amorós
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (M.P.-A.); (I.G.-P.); (A.S.-M.); (A.I.); (J.F.-B.); (J.B.)
| | - Isabel García-Pérez
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (M.P.-A.); (I.G.-P.); (A.S.-M.); (A.I.); (J.F.-B.); (J.B.)
| | - Albert Sánchez-Moya
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (M.P.-A.); (I.G.-P.); (A.S.-M.); (A.I.); (J.F.-B.); (J.B.)
| | - Arnau Innamorati
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (M.P.-A.); (I.G.-P.); (A.S.-M.); (A.I.); (J.F.-B.); (J.B.)
| | - Emilio J. Vélez
- Université de Pau et des Pays de l’Adour, E2S UPPA, INRAE, UMR1419 Nutrition Métabolisme et Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France;
| | - Isabel Achaerandio
- Department d’Enginyeria Agroalimentària i Biotecnologia, Escola Superior d’Agricultura de Barcelona, Universitat Politècnica de Catalunya BarcelonaTech, 08860 Barcelona, Spain; (I.A.); (M.P.)
| | - Montserrat Pujolà
- Department d’Enginyeria Agroalimentària i Biotecnologia, Escola Superior d’Agricultura de Barcelona, Universitat Politècnica de Catalunya BarcelonaTech, 08860 Barcelona, Spain; (I.A.); (M.P.)
| | - Josep Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (CSIC), Ribera de Cabanes, 12595 Castellón, Spain; (J.C.-G.); (J.P.-S.)
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (CSIC), Ribera de Cabanes, 12595 Castellón, Spain; (J.C.-G.); (J.P.-S.)
| | - Jaume Fernández-Borràs
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (M.P.-A.); (I.G.-P.); (A.S.-M.); (A.I.); (J.F.-B.); (J.B.)
| | - Josefina Blasco
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (M.P.-A.); (I.G.-P.); (A.S.-M.); (A.I.); (J.F.-B.); (J.B.)
| | - Joaquim Gutiérrez
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (M.P.-A.); (I.G.-P.); (A.S.-M.); (A.I.); (J.F.-B.); (J.B.)
- Correspondence: ; Tel.: +34-934-021-532
| |
Collapse
|
11
|
Duran BOS, Garcia de la serrana D, Zanella BTT, Perez ES, Mareco EA, Santos VB, Carvalho RF, Dal-Pai-Silva M. An insight on the impact of teleost whole genome duplication on the regulation of the molecular networks controlling skeletal muscle growth. PLoS One 2021; 16:e0255006. [PMID: 34293047 PMCID: PMC8297816 DOI: 10.1371/journal.pone.0255006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/07/2021] [Indexed: 01/20/2023] Open
Abstract
Fish muscle growth is a complex process regulated by multiple pathways, resulting on the net accumulation of proteins and the activation of myogenic progenitor cells. Around 350–320 million years ago, teleost fish went through a specific whole genome duplication (WGD) that expanded the existent gene repertoire. Duplicated genes can be retained by different molecular mechanisms such as subfunctionalization, neofunctionalization or redundancy, each one with different functional implications. While the great majority of ohnolog genes have been identified in the teleost genomes, the effect of gene duplication in the fish physiology is still not well characterized. In the present study we studied the effect of WGD on the transcription of the duplicated components controlling muscle growth. We compared the expression of lineage-specific ohnologs related to myogenesis and protein balance in the fast-skeletal muscle of pacus (Piaractus mesopotamicus—Ostariophysi) and Nile tilapias (Oreochromis niloticus—Acanthopterygii) fasted for 4 days and refed for 3 days. We studied the expression of 20 ohnologs and found that in the great majority of cases, duplicated genes had similar expression profiles in response to fasting and refeeding, indicating that their functions during growth have been conserved during the period after the WGD. Our results suggest that redundancy might play a more important role in the retention of ohnologs of regulatory pathways than initially thought. Also, comparison to non-duplicated orthologs showed that it might not be uncommon for the duplicated genes to gain or loss new regulatory elements simultaneously. Overall, several of duplicated ohnologs have similar transcription profiles in response to pro-growth signals suggesting that evolution tends to conserve ohnolog regulation during muscle development and that in the majority of ohnologs related to muscle growth their functions might be very similar.
Collapse
Affiliation(s)
- Bruno Oliveira Silva Duran
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Daniel Garcia de la serrana
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Bruna Tereza Thomazini Zanella
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Erika Stefani Perez
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | | | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
12
|
Jiang Q, Yan M, Zhao Y, Zhou X, Yin L, Feng L, Liu Y, Jiang W, Wu P, Wang Y, Chen D, Yang S, Huang X, Jiang J. Dietary isoleucine improved flesh quality, muscle antioxidant capacity, and muscle growth associated with AKT/TOR/S6K1 and AKT/FOXO3a signaling in hybrid bagrid catfish (Pelteobagrus vachelli♀ × Leiocassis longirostris♂). J Anim Sci Biotechnol 2021; 12:53. [PMID: 33866964 PMCID: PMC8054373 DOI: 10.1186/s40104-021-00572-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/21/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Muscle is the complex and heterogeneous tissue, which comprises the primary edible part of the trunk of fish and mammals. Previous studies have shown that dietary isoleucine (Ile) exerts beneficial effects on growth in aquatic animals. However, there were limited studies regarding the benefits of Ile on fish muscle and their effects on flesh quality and muscle growth. Thus, this study was conducted to explore whether dietary Ile had affected flesh quality and muscle growth in hybrid bagrid catfish (Pelteobagrus vachelli♀ × Leiocassis longirostris♂). METHODS A total of 630 hybrid fish, with an initial average body weight of 33.11 ± 0.09 g, were randomly allotted into seven experimental groups with three replicates each, and respectively fed seven diets with 5.0, 7.5, 10.0, 12.5, 15.0, 17.5, and 20.0 g Ile/kg diets for 8 weeks. RESULTS In the present study, we demonstrated that Ile significantly: (1) increased muscle protein and lipid contents and the frequency distribution of myofibers with ≤ 20 μm and ≥ 50 μm of diameter; (2) improved pH value, shear force, cathepsin B and L activities, hydroxyproline content, resilience, cohesiveness, and decreased cooking loss, lactate content, hardness, springiness, gumminess, and chewiness; (3) decreased reactive oxygen species (ROS), malondialdehyde (MDA), and protein carbonyl (PC) contents, GCLC and Keap1 mRNA levels, and up-regulated CuZnSOD, CAT, GPX1a, GST, and Nrf2 mRNA levels; (4) up-regulated the insulin-like growth factor 1, 2 (IGF-1, IGF-2), insulin-like growth factor 1 receptor (IGF-1R), proliferating cell nuclear antigen (PCNA), Myf5, Myod, Myog, Mrf4, and MyHC mRNA levels, and decreased MSTN mRNA level; (5) increased muscle protein deposition by activating AKT-TOR-S6K1 and AKT-FOXO3a signaling pathways. CONCLUSION These results revealed that dietary Ile improved flesh quality, which might be due to increasing nutritional content, physicochemical, texture parameters, and antioxidant ability; promoting muscle growth by affecting myocytes hyperplasia and hypertrophy, and muscle protein deposition associated with protein synthesis and degradation signaling pathways. Finally, the quadratic regression analysis of chewiness, ROS, and protein contents against dietary Ile levels suggested that the optimal dietary Ile levels for hybrid bagrid catfish was estimated to be 14.19, 12.36, and 12.78 g/kg diet, corresponding to 36.59, 31.87, and 32.96 g/kg dietary protein, respectively.
Collapse
Affiliation(s)
- Qin Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingyao Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Long Yin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yan Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Defang Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shiyong Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoli Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
13
|
The Effect of Continuous Light on Growth and Muscle-Specific Gene Expression in Atlantic Salmon ( Salmo salar L.) Yearlings. Life (Basel) 2021; 11:life11040328. [PMID: 33920077 PMCID: PMC8070488 DOI: 10.3390/life11040328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/27/2021] [Accepted: 04/07/2021] [Indexed: 11/30/2022] Open
Abstract
Photoperiod is associated to phenotypic plasticity of somatic growth in several teleost species, however, the molecular mechanisms underlying this phenomenon are currently unknown. The effect of a continuous lighting (LD 24:0), compared with the usual hatchery lighting (HL) regime, on the growth rate and gene expression of myogenic regulatory factors (MRFs: MyoD1 paralogs, Myf5, and MyoG) myosin heavy chain (MyHC), and MSTN paralogs in the white muscles of hatchery-reared Atlantic salmon yearlings was evaluated over a 6-month period (May–October). The levels of gene expression were determined using real-time PCR. Continuous lighting was shown to have a positive effect on weight gain. MyHC, MyoD1c, MyoD1b, and MSTN1a/b mRNA expression was influenced by the light regime applied. In all the studied groups, a significant positive correlation was observed between the expression levels of MRFs and MSTN paralogs throughout the experiment. The study demonstrated seasonal patterns regarding the simultaneous expression of several MRFs. MyoD1a, MyoG, and MyHC mRNA expression levels were elevated in the mid-October, but MyoD1b/c, and Myf5 mRNA levels decreased by the end of this month. In general, the findings showed that constant lighting affected the regulatory mechanisms of muscle growth processes in salmon.
Collapse
|
14
|
Liu J, Deng K, Pan M, Liu G, Wu J, Yang M, Huang D, Zhang W, Mai K. Dietary carbohydrates influence muscle texture of olive flounder Paralichthys olivaceus through impacting mitochondria function and metabolism of glycogen and protein. Sci Rep 2020; 10:21811. [PMID: 33311521 PMCID: PMC7732841 DOI: 10.1038/s41598-020-76255-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
The present study was conducted to estimate the effects of dietary carbohydrates on muscle quality and the underlying mechanisms. Six isonitrogenous and isolipidic diets were formulated to contain graded levels of carbohydrates (0%, 8%, 12%, 16%, 20% and 24%, respectively). These diets were named as C0, C8, C12, C16, C20 and C24, respectively. After a 10-week feeding trial, results showed that the muscle pH, liquid holding capacity (LHC) and hardness were significantly decreased by the increasing dietary carbohydrate levels. Dietary carbohydrates significantly decreased the muscle fibre diameter, and the highest value was found in the C0 group. Accumulated glycogen and degenerated mitochondrial cristae were observed in the C24 group. Significantly higher contents of protein carbonyls were observed in the C20 group and C24 group (P < 0.05). There was a significant decrease of mtDNA copy number in the C24 group compared with that in the C0 and C8 groups. The AMP/ATP ratio in muscle decreased first and then increased with the increasing dietary carbohydrate levels. The dietary incorporation of carbohydrate significantly reduced the expression of opa1, pygm and genes involved in myogenesis (myf5 and myog). Meanwhile, proteolysis-related genes (murf-1, mafbx, capn2 and ctsl), pro-inflammatory cytokines (il-6 and tnf-α) and mstn were significantly up-regulated. In the C24 group, significant increase of phosphorylation of AMPK (Thr172), up-regulation of PGC-1α and GLUT4 were observed, while the phosphorylation level of S6 (Ser235/236) was significantly decreased. It was concluded that excessive dietary carbohydrate level (24%) had negative impacts on mitochondria function and promoted glycogen accumulation, and thereafter influenced the muscle quality of olive flounder. The activation of AMPK as well as the upregulation of PGC-1α and GLUT4 was the key mechanism.
Collapse
Affiliation(s)
- Jiahuan Liu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Kangyu Deng
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
- Shenzhen Alpha Group Co., Ltd., Shenzhen, China
| | - Mingzhu Pan
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Guangxia Liu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Jing Wu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Mengxi Yang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Dong Huang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wen Hai Road, Qingdao, 266237, China.
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wen Hai Road, Qingdao, 266237, China
| |
Collapse
|
15
|
Muscle differentiation induced by p53 signaling pathway-related genes in myostatin-knockout quail myoblasts. Mol Biol Rep 2020; 47:9531-9540. [PMID: 33225386 DOI: 10.1007/s11033-020-05935-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/20/2020] [Indexed: 12/22/2022]
Abstract
The myostatin (MSTN) gene is of interest in the livestock industry because mutations in this gene are closely related to growth performance and muscle differentiation. Thus, in this study, we established MSTN knockout (KO) quail myoblasts (QM7) and investigated the regulatory pathway of the myogenic differentiation process. We used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 to generate MSTN KO QM7 cells and subsequently isolated a single cell-derived MSTN KO QM7 subline with 10- and 16-nucleotide deletions that induced translational frameshift mutations. The differentiation capacity and proliferation rate of MSTN KO QM7 cells were enhanced. We conducted next-generation-sequencing (NGS) analysis to compare the global gene expression profiles of wild-type (WT) QM7 and MSTN KO QM7 cells. Intriguingly, NGS expression profiles showed different expression patterns of p21 and p53 in MSTN KO QM7 cells. Moreover, we identified downregulated expression patterns of leukemia inhibitory factor and DNA Damage Inducible Transcript 4, which are genes in the p53 signaling pathway. Using quantitative RT-PCR (qRT-PCR) analysis and western blotting, we concluded that p53-related genes promote the cell cycle by upregulating p21 and enhancing muscle differentiation in MSTN KO QM7 cells. These results could be applied to improve economic traits in commercial poultry by regulating MSTN-related networks.
Collapse
|
16
|
Myostatin-1 Inhibits Cell Proliferation by Inhibiting the mTOR Signal Pathway and MRFs, and Activating the Ubiquitin-Proteasomal System in Skeletal Muscle Cells of Japanese Flounder Paralichthys olivaceus. Cells 2020; 9:cells9112376. [PMID: 33138208 PMCID: PMC7692286 DOI: 10.3390/cells9112376] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 11/17/2022] Open
Abstract
Myostatin (MSTN) is a negative regulator of skeletal muscle growth and development. The mechanisms of fish MSTN involved in muscle growth are not fully understood. In the present study, knockdown and overexpression of mstn-1 was performed in cultured Japanese flounder muscle cells to investigate the molecular function and the underlying mechanism of fish MSTN-1. Results showed that mstn-1 knockdown significantly induced cell proliferation and the mRNA expression of myogenic regulatory factors (MRFs), while overexpression of mstn-1 led to a significant decrease of cell proliferation and a suppression of the MRFs mRNA expression. The overexpression of mstn-1 also significantly increased the mRNA expression of ubiquitin–proteasomal pathway of proteolysis genes including muscle RING-finger protein 1 (murf-1) by 204.1% (p = 0.024) and muscle atrophy F-box protein (mafbx) by 165.7% (p = 0.011). However, mystn-1 overexpression inhibited the activation of mTOR signal pathway and the AKT/FoxO1 pathway through decreasing phosphorylation of AKT at Ser 473 by 56.0% (p = 0.001). Meanwhile, mystn-1 overexpression increased the dephosphorylation and nuclear localization of FoxO1 by 394.9% (p = 0.005). These results demonstrate that mstn-1 in Japanese flounder has the effects of inhibiting cell proliferation and growth, and the mTOR and AKT/FoxO1 pathways participated in these biological effects.
Collapse
|
17
|
Zhang S, Li Y, Shao J, Liu H, Wang J, Wang M, Chen X, Bian W. Functional identification and characterization of IpMSTNa, a novel orthologous myostatin (MSTN) gene in channel catfish Ictalurus punctatus. Int J Biol Macromol 2020; 152:1-10. [PMID: 32045608 DOI: 10.1016/j.ijbiomac.2020.02.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 12/28/2022]
Abstract
Channel catfish (Ictalurus punctatus) are one of the most important commercial freshwater fish in the world. China has been the major producer and consumer of channel catfish following the rapid development in the past three decades. In the present study, a novel orthologous myostatin gene, IpMSTNa, of channel catfish was identified based on homology cloning and genome locating. Multiple sequence alignments and gene structure analyses showed that the IpMSTNa gene and its deduced protein presented similar architectures to other known vertebrates. Phylogenetic and synteny analyses indicated that IpMSTNa belongs to MSTN1 orthologues. Pro-IpMSTNa protein is a typical disulphide-linked homodimer, with each chain containing an N-terminal pro-domain and a C-terminal unmatured GF domain, while pro-IpMSTNa present some significant differences in secondary structure and three-dimensional substances with pro-IpMSTNb. Relative expression level of the IpMSTNa gene upregulated rapidly and decreased dramatically during the embryonic and larval developmental stages, respectively. In addition, IpMSTNa displayed remarkably higher expression at most developmental stages compared to IpMSTNb. Tissue distribution analysis indicated that the IpMSTNa gene had a significantly higher level of expression than IpMSTNb in all selected tissues, with abundantly greater expression in the liver, muscle, gill and spleen, and moderately greater expression in the kidney, intestine, and head kidney. ISH analysis demonstrated that the expression signals of IpMSTNa and IpMSTNb at the selected developmental stages are consistent to qRT-PCR tests. Our study suggested that the IpMSTNa gene may have more biological functions, which have yet to be determined compared to the IpMSTNb gene.
Collapse
Affiliation(s)
- Shiyong Zhang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Yun Li
- Nanjing Brain Hospital affiliated to Nanjing Medical University, Nanjing 210029, China
| | - Junjie Shao
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Hongyan Liu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Jiang Wang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Minghua Wang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Xiaohui Chen
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China.
| | - Wenji Bian
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China.
| |
Collapse
|
18
|
Effect of dietary threonine on growth performance and muscle growth, protein synthesis and antioxidant-related signalling pathways of hybrid catfish Pelteobagrus vachelli♀ × Leiocassis longirostris♂. Br J Nutr 2019; 123:121-134. [PMID: 31637992 DOI: 10.1017/s0007114519002599] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The experiment was conducted to investigate the effects of dietary threonine (Thr) on growth performance and muscle growth, protein synthesis and antioxidant-related signalling pathways of hybrid catfish Pelteobagrus vachelli♀ × Leiocassis longirostris♂. A total of 1200 fish (14·19 (se 0·13) g) were randomly distributed into six groups with four replicates each, fed six diets with graded level of Thr (9·5, 11·5, 13·5, 15·4, 17·4 and 19·3 g/kg diets) for 56 d. Results showed (P < 0·05) that dietary Thr (1) increased percentage weight gain, specific growth rate, feed efficiency and protein efficiency ratio; (2) up-regulated growth hormone (GH), insulin-like growth factor 1 (IGF-1), proliferating cell nuclear antigen, myogenic regulation factors (MyoD, Myf5, MyoG and Mrf4) and myosin heavy chain (MyHC) mRNA levels; (3) increased muscle protein content via regulating the protein kinase B/target of rapamycin signalling pathway and (4) decreased malondialdehyde and protein carbonyl contents, increased catalase, glutathione-S-transferase, glutathione reductase and GSH activities, up-regulated mRNA levels of antioxidant enzymes related to NFE2-related factor 2 and γ-glutamylcysteine ligase catalytic subunit. These results suggest that Thr has a potential role to improve muscle growth and protein synthesis, which might be due to the regulation of GH-IGF system, muscle growth-related gene, antioxidative capacity and protein synthesis-related signalling pathways. Based on the quadratic regression analysis of specific growth rate, the Thr requirement of hybrid catfish (14·19-25·77 g) was estimated to be 13·77 g/kg of the diet (33·40 g/kg of dietary protein).
Collapse
|
19
|
The Dietary Lipid Content Affects the Tissue Gene Expression of Muscle Growth Biomarkers and the GH/IGF System of Pejerrey (Odontesthes bonariensis) Juveniles. FISHES 2019. [DOI: 10.3390/fishes4030037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gene expression of growth hormone receptors (GHRs), insulin-like growth factors (IGFs), myostatin (MSTN) and myogenin (MyoG) was analyzed in juveniles pejerrey fed with graded levels of lipids (L): 6% (L6), 10% (L10), 25% (L25). After 14 weeks, no changes were found in liver GHR-I GHR-II and IGF-II mRNA levels whereas IGF-I decreased in L10 and L25. Muscle GHR-I gene expression increased in L25 whereas GHR-II, IGF-II and MyoG were higher in L6. IGF-I and MSTN expression was not affected by the different diets. Adipose IGF-I mRNA levels decreased in L10. Correlations between body weight and members of GH/IGF system in liver and skeletal muscle were found only in L10 group. Correlations found in L10 group between both liver and skeletal muscle GHR-I and IGF-I were lost in either L6 or L25 groups. Thus, fish fed with apparently unbalanced dietary lipid contents (6% and 25%) exhibit a compensatory regulation of systemic and local components of the GH/IGF axis. Furthermore, the marked inhibition of muscle MyoG gene expression in L25 might limit excessive lipid deposition and fish growth. Our data suggest that a dietary lipid contents of 10% would promote a particular adjustment of the endocrine and autocrine/paracrine GH/IGF system, stimulating body growth and perhaps muscle hyperplasia. On the other hand, a higher dietary lipid content would uncouple the GH/IGF system, reducing hepatic IGF-I, while slightly increasing hepatic GHR-I, probably to prompt lipolysis.
Collapse
|
20
|
Latimer MN, Reid RM, Biga PR, Cleveland BM. Glucose regulates protein turnover and growth-related mechanisms in rainbow trout myogenic precursor cells. Comp Biochem Physiol A Mol Integr Physiol 2019; 232:91-97. [PMID: 30904682 PMCID: PMC9105748 DOI: 10.1016/j.cbpa.2019.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022]
Abstract
Rainbow trout are considered glucose intolerant because they are poor utilizers of glucose, despite having functional insulin receptors and glucose transporters. Following high carbohydrate meals, rainbow trout are persistently hyperglycemic, which is likely due to low glucose utilization in peripheral tissues including the muscle. Also, rainbow trout myogenic precursor cells (MPCs) treated in vitro with insulin and IGF1 increase glucose uptake and protein synthesis, whereas protein degradation is decreased. Given our understanding of glucose regulation in trout, we sought to understand how glucose concentrations affect protein synthesis, protein degradation; and expression of genes associated with muscle growth and proteolysis in MPCs. We found that following 24 h and 48 h of treatment with low glucose media (5.6 mM), myoblasts had significant decreases in protein synthesis. Also, low glucose treatments affected the expression of both mstn2a and igfbp5. These findings support that glucose is a direct regulator of protein synthesis and growth-related mechanisms in rainbow trout muscle.
Collapse
Affiliation(s)
- M N Latimer
- University of Alabama Birmingham, Department of Biology, 1300 University Blvd-Campbell Hall, 464, Birmingham, AL, USA
| | - R M Reid
- University of Alabama Birmingham, Department of Biology, 1300 University Blvd-Campbell Hall, 464, Birmingham, AL, USA
| | - P R Biga
- University of Alabama Birmingham, Department of Biology, 1300 University Blvd-Campbell Hall, 464, Birmingham, AL, USA.
| | - B M Cleveland
- United States Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, Kearneysville, WV, USA
| |
Collapse
|
21
|
Age- and stage-dependent variations of muscle-specific gene expression in brown trout Salmo trutta L. Comp Biochem Physiol B Biochem Mol Biol 2017; 211:16-21. [DOI: 10.1016/j.cbpb.2017.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/04/2017] [Accepted: 04/04/2017] [Indexed: 01/31/2023]
|
22
|
Latimer M, Sabin N, Le Cam A, Seiliez I, Biga P, Gabillard JC. miR-210 expression is associated with methionine-induced differentiation of trout satellite cells. J Exp Biol 2017; 220:2932-2938. [PMID: 28576820 PMCID: PMC6514451 DOI: 10.1242/jeb.154484] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/30/2017] [Indexed: 01/20/2023]
Abstract
In fish, data on microRNAs (miRNAs) involved in myogenesis are scarce. In order to identify miRNAs involved in satellite cell differentiation, we used a methionine depletion/replenishment protocol to synchronize myogenic cell differentiation. Our results validated that methionine removal (72 h) from the medium strongly decreased myoD1 and myogenin expression, indicating differentiation arrest. In contrast, methionine replenishment rescued expression of myoD1 and myogenin, showing a resumption of differentiation. We performed a miRNA array analysis of myogenic cells under three conditions: presence of methionine for 72 h (control), absence of methionine for 72 h (Meth-) and absence of methionine for 48 h followed by 24 h of methionine replenishment (Meth-/+). A clustering analysis identified three clusters: cluster I corresponds to miRNA upregulated only in Meth-/+ conditions; cluster II corresponds to miRNA downregulated only in Meth-/+ conditions; cluster III corresponds to miRNAs with high expression in control, low expression in Meth- conditions and intermediate expression after methionine replenishment (Meth-/+). Cluster III was very interesting because it fitted with the data obtained for myoD1 and myogenin (supporting an involvement in differentiation) and contained seven miRNAs with muscle-related function (e.g. miR-133a) and one (miR-210) with unknown function. Based on our previously published miRNA repertoire ( Juanchich et al., 2016), we confirmed miR-133a was expressed only in white muscle and showed that miR-210 had strong expression in white muscle. We also showed that miR-210 expression was upregulated during differentiation of satellite cells, suggesting that miR-210 was potentially involved in the differentiation of satellite cells.
Collapse
Affiliation(s)
- Mary Latimer
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nathalie Sabin
- INRA, UR1037 Laboratoire de Physiologie et Génomique des Poissons, 35000 Rennes, France
| | - Aurélie Le Cam
- INRA, UR1037 Laboratoire de Physiologie et Génomique des Poissons, 35000 Rennes, France
| | - Iban Seiliez
- INRA-UPPA, UMR1419 Nutrition Métabolisme Aquaculture, F-64310 St-Pée-sur-Nivelle, France
| | - Peggy Biga
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
23
|
Churova MV, Meshcheryakova OV, Veselov AE, Efremov DA, Nemova NN. Activity of metabolic enzymes and muscle-specific gene expression in parr and smolts Atlantic salmon Salmo salar L. of different age groups. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1117-1130. [PMID: 28315163 DOI: 10.1007/s10695-017-0357-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/23/2017] [Indexed: 06/06/2023]
Abstract
This study was conducted to characterize the energy metabolism level and the features of muscle growth regulation during the development of Atlantic salmon (Salmo salar) inhabiting the Indera River (Kola Peninsula, Russia). The activities of aerobic and anaerobic enzymes (cytochrome c oxidase and lactate dehydrogenase) and carbohydrate metabolism enzymes (glucose-6-phosphate dehydrogenase, glycerol-3-phosphate dehydrogenase, and aldolase) were measured in muscle and liver tissue. Gene expression levels of myosin heavy chain (MyHC), myostatin (MSTN-1a), and myogenic regulatory factors (MRFs-MyoD1a, MyoD1b, MyoD1c, Myf5, myogenin) were measured in the white muscles of salmon parr of ages 0+, 1+, 2+, and 3+ and smolts of ages 2+ and 3+. Multidirectional changes in the activity of enzymes involved in aerobic and anaerobic energy metabolism with age were shown in the white muscles of the parr. The cytochrome c oxidase activity was higher in muscles of underyearlings (0+) and yearlings (1+) and decreased in 2+ and 3+ age groups. The activity of lactate dehydrogenase, in contrast, increased with age. The patterns of changes in expression levels of MyoD1a, MyoD1b, myogenin, MyHC, and MSTN-1a at different ages of the parr were similar. Particularly, the expression of these genes peaked in the yearling parr (1+) and then decreased in elder groups. The differences were revealed in parameters studied between the parr and smolts. The level of aerobic and anaerobic metabolism enzyme activities was higher in the white muscles of smolts than in parr. The activity of carbohydrate metabolism enzymes was decreased in the smolts' livers. The expression levels of MyHC, MyoD1a, MyoD1b, and myogenin were lower in smolts at age 2+ compared to parr. These findings expand our knowledge of age-related and stage-related features of energy metabolism and muscle development regulation in young Atlantic salmon in their natural habitat. The results might be used for monitoring of the salmon population during restoration and rearing.
Collapse
Affiliation(s)
- Maria V Churova
- Institute of Biology, Karelian Research Center of the Russian Academy of Science, Pushkinskaya, 11, 185910, Petrozavodsk, Russia.
| | - Olga V Meshcheryakova
- Institute of Biology, Karelian Research Center of the Russian Academy of Science, Pushkinskaya, 11, 185910, Petrozavodsk, Russia
| | - Aleksey E Veselov
- Institute of Biology, Karelian Research Center of the Russian Academy of Science, Pushkinskaya, 11, 185910, Petrozavodsk, Russia
| | - Denis A Efremov
- Institute of Biology, Karelian Research Center of the Russian Academy of Science, Pushkinskaya, 11, 185910, Petrozavodsk, Russia
| | - Nina N Nemova
- Institute of Biology, Karelian Research Center of the Russian Academy of Science, Pushkinskaya, 11, 185910, Petrozavodsk, Russia
| |
Collapse
|
24
|
Vélez EJ, Azizi S, Lutfi E, Capilla E, Moya A, Navarro I, Fernández-Borràs J, Blasco J, Gutiérrez J. Moderate and sustained exercise modulates muscle proteolytic and myogenic markers in gilthead sea bream ( Sparus aurata). Am J Physiol Regul Integr Comp Physiol 2017; 312:R643-R653. [PMID: 28228414 DOI: 10.1152/ajpregu.00308.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 12/14/2022]
Abstract
Swimming activity primarily accelerates growth in fish by increasing protein synthesis and energy efficiency. The role of muscle in this process is remarkable and especially important in teleosts, where muscle represents a high percentage of body weight and because many fish species present continuous growth. The aim of this work was to characterize the effects of 5 wk of moderate and sustained swimming in gene and protein expression of myogenic regulatory factors, proliferation markers, and proteolytic molecules in two muscle regions (anterior and caudal) of gilthead sea bream fingerlings. Western blot results showed an increase in the proliferation marker proliferating cell nuclear antigen (PCNA), proteolytic system members calpain 1 and cathepsin D, as well as vascular endothelial growth factor protein expression. Moreover, quantitative real-time PCR data showed that exercise increased the gene expression of proteases (calpains, cathepsins, and members of the ubiquitin-proteasome system in the anterior muscle region) and the gene expression of the proliferation marker PCNA and the myogenic factor MyoD in the caudal area compared with control fish. Overall, these data suggest a differential response of the two muscle regions during swimming adaptation, with tissue remodeling and new vessel formation occurring in the anterior muscle and enhanced cell proliferation and differentiation occurring in the caudal area. In summary, the present study contributes to improving the knowledge of the role of proteolytic molecules and other myogenic factors in the adaptation of muscle to moderate sustained swimming in gilthead sea bream.
Collapse
Affiliation(s)
- Emilio J Vélez
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Sheida Azizi
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Esmail Lutfi
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Encarnación Capilla
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Alberto Moya
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Isabel Navarro
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Jaume Fernández-Borràs
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Josefina Blasco
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Joaquim Gutiérrez
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
25
|
MicroTrout: A comprehensive, genome-wide miRNA target prediction framework for rainbow trout, Oncorhynchus mykiss. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 20:19-26. [DOI: 10.1016/j.cbd.2016.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/27/2016] [Accepted: 07/22/2016] [Indexed: 11/17/2022]
|
26
|
Gonzalez-Pena D, Gao G, Baranski M, Moen T, Cleveland BM, Kenney PB, Vallejo RL, Palti Y, Leeds TD. Genome-Wide Association Study for Identifying Loci that Affect Fillet Yield, Carcass, and Body Weight Traits in Rainbow Trout ( Oncorhynchus mykiss). Front Genet 2016; 7:203. [PMID: 27920797 PMCID: PMC5118429 DOI: 10.3389/fgene.2016.00203] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/02/2016] [Indexed: 11/22/2022] Open
Abstract
Fillet yield (FY, %) is an economically-important trait in rainbow trout aquaculture that affects production efficiency. Despite that, FY has received little attention in breeding programs because it is difficult to measure on a large number of fish and cannot be directly measured on breeding candidates. The recent development of a high-density SNP array for rainbow trout has provided the needed tool for studying the underlying genetic architecture of this trait. A genome-wide association study (GWAS) was conducted for FY, body weight at 10 (BW10) and 13 (BW13) months post-hatching, head-off carcass weight (CAR), and fillet weight (FW) in a pedigreed rainbow trout population selectively bred for improved growth performance. The GWAS analysis was performed using the weighted single-step GBLUP method (wssGWAS). Phenotypic records of 1447 fish (1.5 kg at harvest) from 299 full-sib families in three successive generations, of which 875 fish from 196 full-sib families were genotyped, were used in the GWAS analysis. A total of 38,107 polymorphic SNPs were analyzed in a univariate model with hatch year and harvest group as fixed effects, harvest weight as a continuous covariate, and animal and common environment as random effects. A new linkage map was developed to create windows of 20 adjacent SNPs for use in the GWAS. The two windows with largest effect for FY and FW were located on chromosome Omy9 and explained only 1.0-1.5% of genetic variance, thus suggesting a polygenic architecture affected by multiple loci with small effects in this population. One window on Omy5 explained 1.4 and 1.0% of the genetic variance for BW10 and BW13, respectively. Three windows located on Omy27, Omy17, and Omy9 (same window detected for FY) explained 1.7, 1.7, and 1.0%, respectively, of genetic variance for CAR. Among the detected 100 SNPs, 55% were located directly in genes (intron and exons). Nucleotide sequences of intragenic SNPs were blasted to the Mus musculus genome to create a putative gene network. The network suggests that differences in the ability to maintain a proliferative and renewable population of myogenic precursor cells may affect variation in growth and fillet yield in rainbow trout.
Collapse
Affiliation(s)
- Dianelys Gonzalez-Pena
- United States Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Agricultural Research ServiceKearneysville, WV, USA
| | - Guangtu Gao
- United States Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Agricultural Research ServiceKearneysville, WV, USA
| | | | | | - Beth M. Cleveland
- United States Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Agricultural Research ServiceKearneysville, WV, USA
| | - P. Brett Kenney
- Division of Animal and Nutritional Sciences, West Virginia UniversityMorgantown, WV, USA
| | - Roger L. Vallejo
- United States Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Agricultural Research ServiceKearneysville, WV, USA
| | - Yniv Palti
- United States Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Agricultural Research ServiceKearneysville, WV, USA
| | - Timothy D. Leeds
- United States Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Agricultural Research ServiceKearneysville, WV, USA
| |
Collapse
|
27
|
Guru Vishnu PB, Bhattacharya TK, Kumar P, Chaterjee RN, Ravi Kumar GVPPS, Paswan C, Reddy DK, Rajendra Prasad A. Expression Profiling of Activin type IIB Receptor During Ontogeny in Broiler and Indigenous Chicken. Anim Biotechnol 2016; 28:26-36. [DOI: 10.1080/10495398.2016.1194287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Tarun K. Bhattacharya
- Molecular Genetics and Breeding, Directorate of Poultry Research, Rajendranagar, Hyderabad, India
| | - Pushpendra Kumar
- Division of Animal Genetics & Breeding, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - R. N. Chaterjee
- Poultry Research, Directorate of Poultry Research, Rajendranagar, Hyderabad, India
| | | | - Chandan Paswan
- Central Sheep Wool and Research Institute (CSWRI), Animal Genetics and Breeding (AGB), Avikangar, Malura, India
- Veterinary College Hebbal, Animal Genetics and Breeding Animal Genetics and Breeding (AGB), Bangalore, Hyderbad, India
| | | | - Athe Rajendra Prasad
- Animal Genetics and Breeding, Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
28
|
Peng LM, Zheng Y, You F, Wu ZH, Tan X, Jiao S, Zhang PJ. Comparison of growth characteristics between skeletal muscle satellite cell lines from diploid and triploid olive flounder Paralichthys olivaceus. PeerJ 2016; 4:e1519. [PMID: 26788421 PMCID: PMC4715439 DOI: 10.7717/peerj.1519] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/28/2015] [Indexed: 12/13/2022] Open
Abstract
Objectives. According to myosatellite cell lines (MSCs) established in vitro from diploid and triploid flounder, we compared the characters of growth and differentiation of their MSCs. The results would be useful for learning the muscle development mechanism in teleosts. Materials and Methods. The skeletal muscle cells from the diploid and triploid olive flounder Paralichthys olivaceus were isolated and cultured in vitro, respectively, and the cells were characterized at the morphology and molecular level; meanwhile, the performance of these cells’ proliferation and differentiation were analyzed. Results. Two new skeletal muscle cell lines (POMSCS(2n) and POMSCS(3n)) from diploid and triploid flounder have been respectively subcultured for 67 times and 66 times. The cultured cells were mostly spindle-like mononuclear cells. They have normal flounder diploid karyotype (2n=48t) and triploid karyotype (3n=72t), respectively. Muscle satellite cell gene marker (pax7b) and myogenic cell protein marker (Desmin) were all expressed in cells of two cell lines. Both of the cells could differentiate into the large polynucleated muscle fibre cells, and immunofluorescence reactions of myosin heavy chain (MyHC) were positive. There were more cells of POMSCS(3n) to differentiate into the muscle fibre cells than that of POMSCS(2n). However, POMSCS(2n) cells proliferated more rapidly than those of POMSCS(3n) (P < 0.05). The significant fluorescent signals were observed in both POMSCS(2n) and POMSCS(3n) cells after transfected with pEGFP-N3 reporter plasmid. Conclusions. The two cell lines have been established and characterized as MSCs. We suppose that it might be the differentiation capacity, rather than the proliferation activity of MSCs to play a key role in the better growth of triploid ones than diploid. Both cell lines will become the ideal tools to learn the mechanism of fish MSCs proliferation, differentiation and regeneration during muscle development in the future.
Collapse
Affiliation(s)
- Li-Min Peng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Zheng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhi-Hao Wu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xungang Tan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shuang Jiao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Pei-Jun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
29
|
|
30
|
Gao Y, Dai Z, Shi C, Zhai G, Jin X, He J, Lou Q, Yin Z. Depletion of Myostatin b Promotes Somatic Growth and Lipid Metabolism in Zebrafish. Front Endocrinol (Lausanne) 2016; 7:88. [PMID: 27458428 PMCID: PMC4930940 DOI: 10.3389/fendo.2016.00088] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 06/24/2016] [Indexed: 12/20/2022] Open
Abstract
Myostatin (MSTN) is a negative regulator of myogenesis in vertebrates. Depletion of mstn resulted in elevated muscle growth in several animal species. However, the report on the complete ablation of mstn in teleost fish has not yet become available. In this study, two independent mstnb-deficient mutant lines in zebrafish were generated with the TALENs technique. In the mstnb-deficient zebrafish, enhanced muscle growth with muscle fiber hyperplasia was achieved. Beginning at the adult stage (80 days postfertilization), the mstnb-deficient zebrafish exhibited increased circumferences and body weights compared with the wild-type sibling control fish. Although the overall total lipid/body weight ratios remained similar between the mstnb-deficient zebrafish and the control fish, the distribution of lipids was altered. The size of the visceral adipose tissues became smaller while more lipids accumulated in skeletal muscle in the mstnb-deficient zebrafish than in the wild-type control fish. Based on the transcriptional expression profiles, our results revealed that lipid metabolism, including lipolysis and lipogenesis processes, was highly activated in the mstnb-deficient zebrafish, which indicated the transition of energy metabolism from protein-dependent to lipid-dependent in mstnb-deficient zebrafish. Our mstnb-deficient model could be valuable in understanding not only the growth trait regulation in teleosts but also the mechanisms of teleost energy metabolism.
Collapse
Affiliation(s)
- Yanping Gao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziru Dai
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Development and High-Value Utilization of Beibu Gulf Seafood Resource, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Food Engineering, Qinzhou University, Qinzhou, China
| | - Chuang Shi
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gang Zhai
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xia Jin
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jiangyan He
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qiyong Lou
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Qiyong Lou, ; Zhan Yin,
| | - Zhan Yin
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Qiyong Lou, ; Zhan Yin,
| |
Collapse
|
31
|
Vélez EJ, Lutfi E, Azizi S, Montserrat N, Riera-Codina M, Capilla E, Navarro I, Gutiérrez J. Contribution of in vitro myocytes studies to understanding fish muscle physiology. Comp Biochem Physiol B Biochem Mol Biol 2015; 199:67-73. [PMID: 26688542 DOI: 10.1016/j.cbpb.2015.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/04/2015] [Accepted: 12/06/2015] [Indexed: 11/25/2022]
Abstract
Research on the regulation of fish muscle physiology and growth was addressed originally by classical in vivo approaches; however, systemic interactions resulted in many questions that could be better considered through in vitro myocyte studies. The first paper published by our group in this field was with Tom Moon on brown trout cardiomyocytes, where the insulin and IGF-I receptors were characterized and the down-regulatory effects of an excess of peptides demonstrated. We followed the research on cultured skeletal muscle cells through the collaboration with INRA focused on the characterization of IGF-I receptors and its signaling pathways through in vitro development. Later on, we showed the important metabolic role of IGFs, although these studies were only the first stage of a prolific area of work that has offered a useful tool to advance in our knowledge of the endocrine and nutritional regulation of fish growth and metabolism. Obviously, the findings obtained in vitro serve the purpose to propose the scenario that will need confirmation in vivo, but this technique has made possible many different, easy, fast and better controlled studies. In this review, we have summarized the main advances that the use of cultured muscle cells has permitted, focusing mainly in the role of IGFs regulating fish metabolism and growth. Although many articles have already appeared using this model system in salmonids, gilthead sea bream or zebrafish, it is reasonable to expect new studies with cultured cells using innovative approaches that will help to understand fish physiology and its regulation.
Collapse
Affiliation(s)
- Emilio J Vélez
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Esmail Lutfi
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Sheida Azizi
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Núria Montserrat
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Miquel Riera-Codina
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Encarnación Capilla
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Isabel Navarro
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Joaquim Gutiérrez
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
32
|
Feng R, Ma X, Ma J, Jia H, Ma B, Xu L, Liu A. Positive effect of IGF-1 injection on gastrocnemius of rat during distraction osteogenesis. J Orthop Res 2015; 33:1424-32. [PMID: 25452218 DOI: 10.1002/jor.22796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 01/27/2015] [Indexed: 02/04/2023]
Abstract
Distraction osteogenesis (DO) is used to form new bone between bone segments to lengthen the callus. Skeletal muscles frequently fail to adapt to distraction, which causes complications. Insulin-like growth factor-1 (IGF-1) has been implicated as a central regulator of muscle repair. We hypothesized that IGF-1 injection could reduce muscle complications in DO. A total of 102 Sprague-Dawley rats received DO or did not were randomly assigned into saline, IGF-1 and normal groups. On the day before the distraction, the rats in the IGF-1 group were injected with IGF-1. The gastrocnemius muscles of the rats were harvested at the 0, 1st, 4th, 7th, and 10th days of distraction. The weight of the muscles, cross-sectional area (CSA) of the muscle fibers, collagen volume fraction (CVF), maximum limit load (MLL), maximum contraction forces, and gene expression of Akt, MyoD, myogenin, myostatin, and collagen I were analyzed. The results indicated that IGF-1 injection had increased the weights, CSA of the muscle fibers, MLL and force generation of the gastrocnemius. Also, Akt, MyoD, and myogenin were upregulated, and myostatin was downregulated in the IGF-1 group. Injection of IGF-1 could attenuate the gastrocnemius atrophy, prevent fibrosis, increase MLL, and regulate the related mRNA.
Collapse
Affiliation(s)
- Rui Feng
- Biomechanics Labs of Orthopaedics Research Institute, Tianjin Hospital Heping Branch, 122 Munan Street, Heping District, Tianjin, 300050, China.,Tianjin Medical University, No. 22 Qixiangtai Street, Heping District, Tianjin, 300052, China
| | - Xinlong Ma
- Biomechanics Labs of Orthopaedics Research Institute, Tianjin Hospital Heping Branch, 122 Munan Street, Heping District, Tianjin, 300050, China
| | - Jianxiong Ma
- Biomechanics Labs of Orthopaedics Research Institute, Tianjin Hospital Heping Branch, 122 Munan Street, Heping District, Tianjin, 300050, China
| | - Haobo Jia
- Biomechanics Labs of Orthopaedics Research Institute, Tianjin Hospital Heping Branch, 122 Munan Street, Heping District, Tianjin, 300050, China.,Tianjin Medical University, No. 22 Qixiangtai Street, Heping District, Tianjin, 300052, China
| | - Baoyi Ma
- Biomechanics Labs of Orthopaedics Research Institute, Tianjin Hospital Heping Branch, 122 Munan Street, Heping District, Tianjin, 300050, China
| | - Liyan Xu
- Biomechanics Labs of Orthopaedics Research Institute, Tianjin Hospital Heping Branch, 122 Munan Street, Heping District, Tianjin, 300050, China.,Tianjin Medical University, No. 22 Qixiangtai Street, Heping District, Tianjin, 300052, China
| | - Aifeng Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No. 314, Anshan Road, Nankai District, Tianjin, 300193, China
| |
Collapse
|
33
|
Georgiou S, Alami-Durante H, Power DM, Sarropoulou E, Mamuris Z, Moutou KA. Transient up- and down-regulation of expression of myosin light chain 2 and myostatin mRNA mark the changes from stratified hyperplasia to muscle fiber hypertrophy in larvae of gilthead sea bream (Sparus aurata L.). Cell Tissue Res 2015; 363:541-54. [PMID: 26246399 DOI: 10.1007/s00441-015-2254-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/06/2015] [Indexed: 01/17/2023]
Abstract
Hyperplasia and hypertrophy are the two mechanisms by which muscle develops and grows. We study these two mechanisms, during the early development of white muscle in Sparus aurata, by means of histology and the expression of structural and regulatory genes. A clear stage of stratified hyperplasia was identified early in the development of gilthead sea bream but ceased by 35 dph when hypertrophy took over. Mosaic recruitment of new white fibers began as soon as 60 dph. The genes mlc2a and mlc2b were expressed at various levels during the main phases of hyperplasia and hypertrophy. The genes myog and mlc2a were significantly up-regulated during the intensive stratified formation of new fibers and their expression was significantly correlated. Expression of mstn1 and igf1 increased at 35 dph, appeared to regulate the hyperplasia-to-hypertrophy transition, and may have stimulated the expression of mlc2a, mlc2b and col1a1 at the onset of mosaic hyperplasia. The up-regulation of mstn1 at transitional phases in muscle development indicates a dual regulatory role of myostatin in fish larval muscle growth.
Collapse
Affiliation(s)
- Stella Georgiou
- Department of Biochemistry & Biotechnology, University of Thessaly, Ploutonos 26, Larissa, Greece
| | - Hélène Alami-Durante
- UR 1067 Nutrition Métabolisme Aquaculture, INRA, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Deborah M Power
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Faro, Portugal
| | - Elena Sarropoulou
- Institute of Marine Biology & Genetics, Hellenic Centre for Marine Research, Heraklion, Crete, Greece
| | - Zissis Mamuris
- Department of Biochemistry & Biotechnology, University of Thessaly, Ploutonos 26, Larissa, Greece
| | - Katerina A Moutou
- Department of Biochemistry & Biotechnology, University of Thessaly, Ploutonos 26, Larissa, Greece.
| |
Collapse
|
34
|
Cleveland BM, Weber GM. Effects of sex steroids on expression of genes regulating growth-related mechanisms in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 2015; 216:103-15. [PMID: 25482545 DOI: 10.1016/j.ygcen.2014.11.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 11/12/2014] [Accepted: 11/24/2014] [Indexed: 12/17/2022]
Abstract
Effects of a single injection of 17β-estradiol (E2), testosterone (T), or 5β-dihydrotestosterone (DHT) on expression of genes central to the growth hormone (GH)/insulin-like growth factor (IGF) axis, muscle-regulatory factors, transforming growth factor-beta (TGFβ) superfamily signaling cascade, and estrogen receptors were determined in rainbow trout (Oncorhynchus mykiss) liver and white muscle tissue. In liver in addition to regulating GH sensitivity and IGF production, sex steroids also affected expression of IGF binding proteins, as E2, T, and DHT increased expression of igfbp2b and E2 also increased expression of igfbp2 and igfbp4. Regulation of this system also occurred in white muscle in which E2 increased expression of igf1, igf2, and igfbp5b1, suggesting anabolic capacity may be maintained in white muscle in the presence of E2. In contrast, DHT decreased expression of igfbp5b1. DHT and T decreased expression of myogenin, while other muscle regulatory factors were either not affected or responded similarly for all steroid treatments. Genes within the TGFβ superfamily signaling cascade responded to steroid treatment in both liver and muscle, suggesting a regulatory role for sex steroids in the ability to transmit signals initiated by TGFβ superfamily ligands, with a greater number of genes responding in liver than in muscle. Estrogen receptors were also regulated by sex steroids, with era1 expression increasing for all treatments in muscle, but only E2- and T-treatment in liver. E2 reduced expression of erb2 in liver. Collectively, these data identify how physiological mechanisms are regulated by sex steroids in a manner that promotes the disparate effects of androgens and estrogens on growth in salmonids.
Collapse
Affiliation(s)
- Beth M Cleveland
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, 11861 Leetown Rd, Kearneysville, WV 25427, USA.
| | - Gregory M Weber
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, 11861 Leetown Rd, Kearneysville, WV 25427, USA
| |
Collapse
|
35
|
Galt NJ, Froehlich JM, Meyer BM, Barrows FT, Biga PR. High-fat diet reduces local myostatin-1 paralog expression and alters skeletal muscle lipid content in rainbow trout, Oncorhynchus mykiss. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:875-886. [PMID: 24264425 PMCID: PMC4016181 DOI: 10.1007/s10695-013-9893-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 11/15/2013] [Indexed: 06/02/2023]
Abstract
Muscle growth is an energetically demanding process that is reliant on intramuscular fatty acid depots in most fishes. The complex mechanisms regulating this growth and lipid metabolism are of great interest for human health and aquaculture applications. It is well established that the skeletal muscle chalone, myostatin, plays a role in lipid metabolism and adipogenesis in mammals; however, this function has not been fully assessed in fishes. We therefore examined the interaction between dietary lipid levels and myostatin expression in rainbow trout (Oncorhynchus mykiss). Five weeks of high-fat diet (HFD; 25 % lipid) intake increased white muscle lipid content and decreased circulating glucose levels and hepatosomatic index when compared to low-fat diet (LFD; 10 % lipid) intake. In addition, HFD intake reduced myostatin-1a and myostatin-1b expression in white muscle and myostatin-1b expression in brain tissue. Characterization of the myostatin-1a, myostatin-1b, and myostatin-2a promoters revealed putative binding sites for a subset of transcription factors associated with lipid metabolism. Taken together, these data suggest that HFD may regulate myostatin expression through cis-regulatory elements sensitive to increased lipid intake. Further, these findings provide a framework for future investigations of mechanisms describing the relationships between myostatin and lipid metabolism in fish.
Collapse
Affiliation(s)
- Nicholas J. Galt
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jacob Michael Froehlich
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ben M. Meyer
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108
| | - Frederic T. Barrows
- USDA, Agricultural Research Service, Fish Technology Center, Bozeman, MT 59715
| | - Peggy R. Biga
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
36
|
Froehlich JM, Seiliez I, Gabillard JC, Biga PR. Preparation of primary myogenic precursor cell/myoblast cultures from basal vertebrate lineages. J Vis Exp 2014. [PMID: 24835774 DOI: 10.3791/51354] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Due to the inherent difficulty and time involved with studying the myogenic program in vivo, primary culture systems derived from the resident adult stem cells of skeletal muscle, the myogenic precursor cells (MPCs), have proven indispensible to our understanding of mammalian skeletal muscle development and growth. Particularly among the basal taxa of Vertebrata, however, data are limited describing the molecular mechanisms controlling the self-renewal, proliferation, and differentiation of MPCs. Of particular interest are potential mechanisms that underlie the ability of basal vertebrates to undergo considerable postlarval skeletal myofiber hyperplasia (i.e. teleost fish) and full regeneration following appendage loss (i.e. urodele amphibians). Additionally, the use of cultured myoblasts could aid in the understanding of regeneration and the recapitulation of the myogenic program and the differences between them. To this end, we describe in detail a robust and efficient protocol (and variations therein) for isolating and maintaining MPCs and their progeny, myoblasts and immature myotubes, in cell culture as a platform for understanding the evolution of the myogenic program, beginning with the more basal vertebrates. Capitalizing on the model organism status of the zebrafish (Danio rerio), we report on the application of this protocol to small fishes of the cyprinid clade Danioninae. In tandem, this protocol can be utilized to realize a broader comparative approach by isolating MPCs from the Mexican axolotl (Ambystoma mexicanum) and even laboratory rodents. This protocol is now widely used in studying myogenesis in several fish species, including rainbow trout, salmon, and sea bream(1-4).
Collapse
Affiliation(s)
| | | | | | - Peggy R Biga
- Department of Biology, University of Alabama at Birmingham;
| |
Collapse
|
37
|
Cleveland BM, Weber GM. Ploidy effects on genes regulating growth mechanisms during fasting and refeeding in juvenile rainbow trout (Oncorhynchus mykiss). Mol Cell Endocrinol 2014; 382:139-149. [PMID: 24076188 DOI: 10.1016/j.mce.2013.09.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 11/19/2022]
Abstract
Diploid and triploid rainbow trout weighing approximately 3g were either fed for five weeks, or feed deprived for one week, followed by refeeding. During feed deprivation gastrointestinal somatic index decreased in diploids, but not triploids, and during refeeding, carcass growth rate recovered more quickly in triploids. Although not affected by ploidy, liver ghr2 and igfbp2b expression increased and igfbp1b decreased in fasted fish. Effects of ploidy on gene expression indicate potential mechanisms associated with improved recovery growth in triploids, which include decreased hepatic igfbp expression, which could influence IGF-I bioavailability, differences in tissue sensitivity to TGFbeta ligands due to altered tgfbr and smad expression, and differences in expression of muscle regulatory genes (myf5, mstn1a, and mstn1b). These data suggest that polyploidy influences the expression of genes critical to muscle development and general growth regulation, which may explain why triploid fish recover from nutritional insult better than diploid fish.
Collapse
Affiliation(s)
- Beth M Cleveland
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, 11861 Leetown Rd, Kearneysville, WV 25427, United States.
| | - Gregory M Weber
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, 11861 Leetown Rd, Kearneysville, WV 25427, United States
| |
Collapse
|
38
|
Rearing temperature induces changes in muscle growth and gene expression in juvenile pacu (Piaractus mesopotamicus). Comp Biochem Physiol B Biochem Mol Biol 2013; 169:31-7. [PMID: 24365169 DOI: 10.1016/j.cbpb.2013.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/12/2013] [Accepted: 12/14/2013] [Indexed: 01/27/2023]
Abstract
Pacu (Piaractus mesopotamicus) is a fast-growing fish that is extensively used in Brazilian aquaculture programs and shows a wide range of thermal tolerance. Because temperature is an environmental factor that influences the growth rate of fish and is directly related to muscle plasticity and growth, we hypothesized that different rearing temperatures in juvenile pacu, which exhibits intense muscle growth by hyperplasia, can potentially alter the muscle growth patterns of this species. The aim of this study was to analyze the muscle growth characteristics together with the expression of the myogenic regulatory factors MyoD and myogenin and the growth factor myostatin in juvenile pacu that were submitted to different rearing temperatures. Juvenile fish (1.5 g weight) were distributed in tanks containing water and maintained at 24°C (G24), 28 °C (G28) and 32 °C (G32) (three replicates for each group) for 60 days. At days 30 and 60, the fish were anesthetized and euthanized, and muscle samples (n=12) were collected for morphological, morphometric and gene expression analyses. At day 30, the body weight and standard length were lower for G24 than for G28 and G32. Muscle fiber frequency in the <25 μm class was significantly higher in G24, and the >50 μm class was lower in G24. MyoD gene expression was higher in G24 compared with that in G28 and G32, and myogenin and myostatin mRNA levels were higher in G24 than G28. At day 60, the body weight and the standard length were higher in G32 but lower in G24. The frequency distribution of the <25 μm diameter muscle fibers was higher in G24, and that of the >50 μm class was lower in G24. MyoD mRNA levels were higher in G24 and G32, and myogenin mRNA levels were similar between G24 and G28 and between G24 and G32 but were higher in G28 compared to G32. The myostatin mRNA levels were similar between the studied temperatures. In light of our results, we conclude that low rearing temperature altered the expression of muscle growth-related genes and induced a delay in muscle growth in juvenile pacu (P. mesopotamicus). Our study provides a clear example of thermally induced phenotypic plasticity in pacu fish and shows that changing the rearing temperature during the juvenile stage can have a considerable effect on gene expression and muscle growth in this species.
Collapse
|
39
|
Gabillard JC, Biga PR, Rescan PY, Seiliez I. Revisiting the paradigm of myostatin in vertebrates: insights from fishes. Gen Comp Endocrinol 2013; 194:45-54. [PMID: 24018114 DOI: 10.1016/j.ygcen.2013.08.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 08/09/2013] [Accepted: 08/15/2013] [Indexed: 11/21/2022]
Abstract
In the last decade, myostatin (MSTN), a member of the TGFβ superfamily, has emerged as a strong inhibitor of muscle growth in mammals. In fish many studies reveal a strong conservation of mstn gene organization, sequence, and protein structures. Because of ancient genome duplication, teleostei may have retained two copies of mstn genes and even up to four copies in salmonids due to additional genome duplication event. In sharp contrast to mammals, the different fish mstn orthologs are widely expressed with a tissue-specific expression pattern. Quantification of mstn mRNA in fish under different physiological conditions, demonstrates that endogenous expression of mstn paralogs is rarely related to fish muscle growth rate. In addition, attempts to inhibit MSTN activity did not consistently enhance muscle growth as in mammals. In vitro, MSTN stimulates myotube atrophy and inhibits proliferation but not differentiation of myogenic cells as in mammals. In conclusion, given the strong mstn expression non-muscle tissues of fish, we propose a new hypothesis stating that fish MSTN functions as a general inhibitors of cell proliferation and cell growth to control tissue mass but is not specialized into a strong muscle regulator.
Collapse
Affiliation(s)
- Jean-Charles Gabillard
- INRA, UR1037 Laboratoire de Physiologie et Génomique des Poissons, Equipe Croissance et Qualité de la Chair des Poissons, Campus de Beaulieu, 35000 Rennes, France.
| | | | | | | |
Collapse
|
40
|
Characterisation and expression of myogenesis regulatory factors during in vitro myoblast development and in vivo fasting in the gilthead sea bream (Sparus aurata). Comp Biochem Physiol A Mol Integr Physiol 2013; 167:90-9. [PMID: 24157945 DOI: 10.1016/j.cbpa.2013.10.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/11/2013] [Accepted: 10/11/2013] [Indexed: 12/20/2022]
Abstract
The aim of this study was to characterise a primary cell culture isolated from fast skeletal muscle of the gilthead sea bream. Gene expression profiles during culture maturation were compared with those obtained from a fasting-refeeding model which is widely used to modulate myogenesis in vivo. Myogenesis is controlled by numerous extracellular signals together with intracellular transcriptional factors whose coordinated expression is critical for the appropriate development of muscle fibres. Full-length cDNAs for the transcription factors Myf5, Mrf4, Pax7 and Sox8 were cloned and sequenced for gilthead sea bream. Pax7, sox8, myod2 and myf5 levels were up-regulated during the proliferating phase of the myogenic cultures coincident with the highest expression of proliferating cell nuclear antigen (PCNA). In contrast, myogenin and mrf4 transcript abundance was highest during the differentiation phase of the culture when myotubes were present, and was correlated with increased myosin heavy chain (mhc) and desmin expression. In vivo, 30days of fasting resulted in muscle fibre atrophy, a reduction in myod2, myf5 and igf1 expression, lower number of Myod-positive cells, and decreased PCNA protein expression, whereas myogenin expression was not significantly affected. Myostatin1 (mstn1) and pax7 expression were up-regulated in fasted relative to well-fed individuals, consistent with a role for Pax7 in the reduction of myogenic cell activity with fasting. The primary cell cultures and fasting-feeding experiments described provide a foundation for the future investigations on the regulation of muscle growth in gilthead sea bream.
Collapse
|
41
|
Fuentes EN, Valdés JA, Molina A, Björnsson BT. Regulation of skeletal muscle growth in fish by the growth hormone--insulin-like growth factor system. Gen Comp Endocrinol 2013; 192:136-48. [PMID: 23791761 DOI: 10.1016/j.ygcen.2013.06.009] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 12/17/2022]
Abstract
The growth hormone (GH)-insulin-like growth factor (IGF) system is the key promoter of growth in vertebrates; however, how this system modulates muscle mass in fish is just recently becoming elucidated. In fish, the GH induces muscle growth by modulating the expression of several genes belonging to the myostatin (MSTN), atrophy, GH, and IGF systems as well as myogenic regulatory factors (MRFs). The GH controls the expression of igf1 via Janus kinase 2 (JAK2)/signal transducers and activators of the transcription 5 (STAT5) signaling pathway, but it seems that it is not the major regulator. These mild effects of the GH on igf1 expression in fish muscle seem to be related with the presence of higher contents of truncated GH receptor1 (tGHR1) than full length GHR (flGHR1). IGFs in fish stimulate myogenic cell proliferation, differentiation, and protein synthesis through the MAPK/ERK and PI3K/AKT/TOR signaling pathways, concomitant with abolishing protein degradation and atrophy via the PI3K/AKT/FOXO signaling pathway. Besides these signaling pathways control the expression of several genes belonging to the atrophy and IGF systems. Particularly, IGFs and amino acid control the expression of igf1, thus, suggesting other of alternative signaling pathways regulating the transcription of this growth factor. The possible role of IGF binding proteins (IGFBPs) and the contribution of muscle-derived versus hepatic-produced IGF1 on fish muscle growth is also addressed. Thus, a comprehensive overview on the GH-IGF system regulating fish skeletal muscle growth is presented, as well as perspectives for future research in this field.
Collapse
Affiliation(s)
- Eduardo N Fuentes
- Laboratorio de Biotecnología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Av. Republica 217, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile.
| | | | | | | |
Collapse
|
42
|
Seiliez I, Taty Taty GC, Bugeon J, Dias K, Sabin N, Gabillard JC. Myostatin induces atrophy of trout myotubes through inhibiting the TORC1 signaling and promoting Ubiquitin-Proteasome and Autophagy-Lysosome degradative pathways. Gen Comp Endocrinol 2013; 186:9-15. [PMID: 23458288 DOI: 10.1016/j.ygcen.2013.02.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/04/2013] [Accepted: 02/14/2013] [Indexed: 10/27/2022]
Abstract
Myostatin (MSTN) is well known as a potent inhibitor of muscle growth in mammals and has been shown to both inhibit the growth promoting TORC1 signaling pathway and promote Ubiquitin-Proteasomal and Autophagy-Lysosomal degradative routes. In contrast, in non-mammalian species, despite high structural conservation of MSTN sequence, functional conservation is only assumed. Here, we show that treatment of cultured trout myotubes with human recombinant MSTN (huMSTN) resulted in a significant decrease of their diameter by up to 20%, validating the use of heterologous huMSTN in our in vitro model to monitor the processes by which this growth factor promotes muscle wasting in fish. Accordingly, huMSTN stimulation prevented the full activation by IGF1 of the TORC1 signaling pathway, as revealed by the analysis of the phosphorylation status of 4E-BP1. Moreover, the levels of the proteasome-dependent protein Atrogin1 exhibited an increase in huMSTN treated cells. Likewise, we observed a stimulatory effect of huMSTN treatment on the levels of LC3-II, the more reliable marker of the Autophagy-Lysosomal degradative system. Overall, these results show for the first time in a piscine species the effect of MSTN on several atrophic and hypertrophic pathways and support a functional conservation of this growth factor between lower and higher vertebrates.
Collapse
Affiliation(s)
- Iban Seiliez
- INRA, UMR1067 Nutrition Métabolisme et Aquaculture, Pôle d'hydrobiologie, CD918, F-64310 St-Pée-sur-Nivelle, France.
| | | | | | | | | | | |
Collapse
|
43
|
Garikipati DK, Rodgers BD. Myostatin inhibits myosatellite cell proliferation and consequently activates differentiation: evidence for endocrine-regulated transcript processing. J Endocrinol 2012; 215:177-87. [PMID: 22872758 DOI: 10.1530/joe-12-0260] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Myostatin is a potent negative regulator of muscle growth in mammals. Despite high structural conservation, functional conservation in nonmammalian species is only assumed. This is particularly true for fish due to the presence of several myostatin paralogs: two in most species and four in salmonids (MSTN-1a, -1b, -2a, and -2b). Rainbow trout are a rich source of primary myosatellite cells as hyperplastic muscle growth occurs even in adult fish. These cells were therefore used to determine myostatin's effects on proliferation whereas our earlier studies reported its effects on quiescent cells. As in mammals, recombinant myostatin suppressed proliferation with no changes in cell morphology. Expression of MSTN-1a was several fold higher than the other paralogs and was autoregulated by myostatin, which also upregulated the expression of key differentiation markers: Myf5, MyoD1, myogenin, and myosin light chain. Thus, myostatin-stimulated cellular growth inhibition activates rather than represses differentiation. IGF-1 stimulated proliferation but had minimal and delayed effects on differentiation and its actions were suppressed by myostatin. However, IGF-1 upregulated MSTN-2a expression and the processing of its transcript, which is normally unprocessed. Myostatin therefore appears to partly mediate IGF-stimulated myosatellite differentiation in rainbow trout. This also occurs in mammals, although the IGF-stimulated processing of MSTN-2a transcripts is highly unique and is indicative of subfunctionalization within the gene family. These studies also suggest that the myokine's actions, including its antagonistic relationship with IGF-1, are conserved and that the salmonid gene family is functionally diverging.
Collapse
Affiliation(s)
- Dilip K Garikipati
- Department of Animal Sciences, 124 ASLB, School of Molecular Biosciences, Washington Center for Muscle Biology, Washington State University, Pullman, Washington 99164, USA
| | | |
Collapse
|