1
|
Hamidi F, Taghipour N. miRNA, New Perspective to World of Intestinal Protozoa and Toxoplasma. Acta Parasitol 2024; 69:1690-1703. [PMID: 39158784 DOI: 10.1007/s11686-024-00888-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND miRNAs are known as non-coding RNAs that can regulate gene expression. They are reported in many microorganisms and their host cells. Parasite infection can change or shift host miRNAs expression, which can aim at both parasite eradication and infection. PURPOSE This study dealt with examination of miRNA expressed in intestinal protozoan, coccidia , as well as profile changes in host cell miRNA after parasitic infection and their role in protozoan clearance/ survival. METHODS The authors searched ISI Web of Sciences, Pubmed, Scholar, Scopus, another databases and articles published up to 2024 were included. The keywords of miRNA, intestinal protozoa, toxoplasma and some words associated with topics were used in this search. RESULTS Transfection of miRNA mimics or inhibitors can control parasitic diseases, and be introduced as a new therapeutic option in parasitology. CONCLUSION This review can be used to provide up-to date knowledge for future research on these issues.
Collapse
Affiliation(s)
- Faezeh Hamidi
- Department of Laboratory Sciences and Microbiology, Faculty of Medical Sciences, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Niloofar Taghipour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Wang SS, Wang X, He JJ, Zheng WB, Zhu XQ, Elsheikha HM, Zhou CX. Expression profiles of host miRNAs and circRNAs and ceRNA network during Toxoplasma gondii lytic cycle. Parasitol Res 2024; 123:145. [PMID: 38418741 PMCID: PMC10902104 DOI: 10.1007/s00436-024-08152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
Toxoplasma gondii is an opportunistic protozoan parasite that is highly prevalent in the human population and can lead to adverse health consequences in immunocompromised patients and pregnant women. Noncoding RNAs, such as microRNAs (miRNAs) and circular RNAs (circRNAs), play important regulatory roles in the pathogenesis of many infections. However, the differentially expressed (DE) miRNAs and circRNAs implicated in the host cell response during the lytic cycle of T. gondii are unknown. In this study, we profiled the expression of miRNAs and circRNAs in human foreskin fibroblasts (HFFs) at different time points after T. gondii infection using RNA sequencing (RNA-seq). We identified a total of 7, 7, 27, 45, 70, 148, 203, and 217 DEmiRNAs and 276, 355, 782, 1863, 1738, 6336, 1229, and 1680 DEcircRNAs at 1.5, 3, 6, 9, 12, 24, 36, and 48 h post infection (hpi), respectively. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses revealed that the DE transcripts were enriched in immune response, apoptosis, signal transduction, and metabolism-related pathways. These findings provide new insight into the involvement of miRNAs and circRNAs in the host response to T. gondii infection.
Collapse
Affiliation(s)
- Sha-Sha Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, Gansu Province, China
| | - Xiangwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, Gansu Province, China
| | - Jun-Jun He
- Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650500, Yunnan Province, China
| | - Wen-Bin Zheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Xing-Quan Zhu
- Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650500, Yunnan Province, China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - Chun-Xue Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250100, Shandong Province, China.
| |
Collapse
|
3
|
Doghish AS, Ali MA, Elrebehy MA, Mohamed HH, Mansour R, Ghanem A, Hassan A, Elballal MS, Elazazy O, Elesawy AE, Abdel Mageed SS, Nassar YA, Mohammed OA, Abulsoud AI. The interplay between toxoplasmosis and host miRNAs: Mechanisms and consequences. Pathol Res Pract 2023; 250:154790. [PMID: 37683390 DOI: 10.1016/j.prp.2023.154790] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Toxoplasmosis is one of the highly prevalent zoonotic diseases worldwide caused by the parasite Toxoplasma gondii (T. gondii). The infection with T. gondii could pass unidentified in immunocompetent individuals; however, latent cysts remain dormant in their digestive tract, but they could be shed and excreted with feces infesting the environment. However, active toxoplasmosis can create serious consequences, particularly in newborns and infected persons with compromised immunity. These complications include ocular toxoplasmosis, in which most cases cannot be treated. Additionally, it caused many stillbirths and miscarriages. Circulating miRNAs are important regulatory molecules ensuring that the normal physiological role of various organs is harmonious. Upon infection with T. gondii, the tightly regulated miRNA profile is disrupted to favor the parasite's survival and further participate in the disease pathogenesis. Interestingly, this dysregulated profile could be useful in acute and chronic disease discrimination and in providing insights into the pathomechanisms of the disease. Thus, this review sheds light on the various roles of miRNAs in signaling pathways regulation involved in the pathogenesis of T. gondii and provides insights into the application of miRNAs clinically for its diagnosis and prognosis.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Mohamed A Ali
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Hend H Mohamed
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Reda Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Aml Ghanem
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed Hassan
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yara A Nassar
- Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| |
Collapse
|
4
|
Brandão YDO, Molento MB. A Systematic Review of Apicomplexa Looking into Epigenetic Pathways and the Opportunity for Novel Therapies. Pathogens 2023; 12:pathogens12020299. [PMID: 36839571 PMCID: PMC9963874 DOI: 10.3390/pathogens12020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Interest in host epigenetic changes during apicomplexan infections increased in the last decade, mainly due to the emergence of new therapies directed to these alterations. This review aims to carry out a bibliometric analysis of the publications related to host epigenetic changes during apicomplexan infections and to summarize the main studied pathways in this context, pointing out those that represent putative drug targets. We used four databases for the article search. After screening, 116 studies were included. The bibliometric analysis revealed that the USA and China had the highest number of relevant publications. The evaluation of the selected studies revealed that Toxoplasma gondii was considered in most of the studies, non-coding RNA was the most frequently reported epigenetic event, and host defense was the most explored pathway. These findings were reinforced by an analysis of the co-occurrence of keywords. Even though we present putative targets for repurposing epidrugs and ncRNA-based drugs in apicomplexan infections, we understand that more detailed knowledge of the hosts' epigenetic pathways is still needed before establishing a definitive drug target.
Collapse
|
5
|
Chen JM, Zhao SS, Tao DL, Li JY, Yang X, Fan YY, Song JK, Liu Q, Zhao GH. Temporal transcriptomic changes in microRNAs involved in the host immune response and metabolism during Neospora caninum infection. Parasit Vectors 2023; 16:28. [PMID: 36694228 PMCID: PMC9872418 DOI: 10.1186/s13071-023-05665-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Neospora caninum infection is a major cause of abortion in cattle, which results in serious economic losses to the cattle industry. However, there are no effective drugs or vaccines for the control of N. caninum infections. There is increasing evidence that microRNAs (miRNAs) are involved in many physiological and pathological processes, and dysregulated expression of host miRNAs and the biological implications of this have been reported for infections by various protozoan parasites. However, to our knowledge, there is presently no published information on host miRNA expression during N. caninum infection. METHODS The expression profiles of miRNAs were investigated by RNA sequencing (RNA-seq) in caprine endometrial epithelial cells (EECs) infected with N. caninum at 24 h post infection (pi) and 48 hpi, and the functions of differentially expressed (DE) miRNAs were predicted by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The transcriptome data were validated by using quantitative real-time polymerase chain reaction. One of the upregulated DEmiRNAs, namely chi-miR-146a, was selected to study the effect of DEmiRNAs on the propagation of N. caninum tachyzoites in caprine EECs. RESULTS RNA-seq showed 18 (17 up- and one downregulated) and 79 (54 up- and 25 downregulated) DEmiRNAs at 24 hpi and 48 hpi, respectively. Quantitative real-time polymerase chain reaction analysis of 13 randomly selected DEmiRNAs (10 up- and three downregulated miRNAs) confirmed the validity of the RNA-seq data. A total of 7835 messenger RNAs were predicted to be potential targets for 66 DEmiRNAs, and GO and KEGG enrichment analysis of these predicted targets revealed that DEmiRNAs altered by N. caninum infection may be involved in host immune responses (e.g. Fc gamma R-mediated phagocytosis, Toll-like receptor signaling pathway, tumor necrosis factor signaling pathway, transforming growth factor-β signaling pathway, mitogen-activated protein kinase signaling pathway) and metabolic pathways (e.g. lysine degradation, insulin signaling pathway, AMP-activated protein kinase signaling pathway, Rap1 signaling pathway, calcium signaling pathway). Upregulated chi-miR-146a was found to promote N. caninum propagation in caprine EECs. CONCLUSIONS This is, to our knowledge, the first report on the expression profiles of host miRNAs during infection with N. caninum, and shows that chi-miR-146a may promote N. caninum propagation in host cells. The novel findings of the present study should help to elucidate the interactions between host cells and N. caninum.
Collapse
Affiliation(s)
- Jin-Ming Chen
- grid.144022.10000 0004 1760 4150Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 China
| | - Shan-Shan Zhao
- grid.144022.10000 0004 1760 4150Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 China
| | - De-Liang Tao
- grid.144022.10000 0004 1760 4150Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 China
| | - Jing-Yu Li
- grid.144022.10000 0004 1760 4150Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 China
| | - Xin Yang
- grid.144022.10000 0004 1760 4150Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 China
| | - Ying-Ying Fan
- grid.144022.10000 0004 1760 4150Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 China
| | - Jun-Ke Song
- grid.144022.10000 0004 1760 4150Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 China
| | - Qun Liu
- grid.22935.3f0000 0004 0530 8290National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Guang-Hui Zhao
- grid.144022.10000 0004 1760 4150Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 China
| |
Collapse
|
6
|
Xie SC, Zhou CX, Zhai BT, Zheng WB, Liu GH, Zhu XQ. A combined miRNA-piRNA signature in the serum and urine of rabbits infected with Toxoplasma gondii oocysts. Parasit Vectors 2022; 15:490. [PMID: 36572911 PMCID: PMC9793633 DOI: 10.1186/s13071-022-05620-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/15/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Increasing evidence has shown that non-coding RNA (ncRNA) molecules play fundamental roles in cells, and many are stable in body fluids as circulating RNAs. Study on these ncRNAs will provide insights into toxoplasmosis pathophysiology and/or help reveal diagnostic biomarkers. METHODS We performed a high-throughput RNA-Seq study to comprehensively profile the microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs) in rabbit serum and urine after infection with Toxoplasma gondii oocysts during the whole infection process. RESULTS Total RNA extracted from serum and urine samples of acutely infected [8 days post-infection (DPI)], chronically infected (70 DPI) and uninfected rabbits were subjected to genome-wide small RNA sequencing. We identified 2089 miRNAs and 2224 novel piRNAs from the rabbit sera associated with T. gondii infection. Meanwhile, a total of 518 miRNAs and 4182 novel piRNAs were identified in the rabbit urine associated with T. gondii infection. Of these identified small ncRNAs, 1178 and 1317 serum miRNAs and 311 and 294 urine miRNAs were identified as differentially expressed (DE) miRNAs in the acute and chronic stages of infections, respectively. A total of 1748 and 1814 serum piRNAs and 597 and 708 urine piRNAs were found in the acute and chronic infection stages, respectively. Of these dysregulated ncRNAs, a total of 88 common DE miRNAs and 120 DE novel piRNAs were found in both serum and urine samples of infected rabbits. CONCLUSIONS These findings provide valuable data for revealing the physiology of herbivore toxoplasmosis caused by oocyst infection. Circulating ncRNAs identified in this study are potential novel diagnostic biomarkers for the detection/diagnosis of toxoplasmosis in herbivorous animals.
Collapse
Affiliation(s)
- Shi-Chen Xie
- grid.257160.70000 0004 1761 0331Research Center for Parasites and Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan Province People’s Republic of China ,grid.412545.30000 0004 1798 1300Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Shanxi Province People’s Republic of China
| | - Chun-Xue Zhou
- grid.27255.370000 0004 1761 1174Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong Province People’s Republic of China
| | - Bin-Tao Zhai
- grid.410727.70000 0001 0526 1937Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Lanzhou, 730050 Gansu Province People’s Republic of China ,grid.410727.70000 0001 0526 1937State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 Gansu Province People’s Republic of China
| | - Wen-Bin Zheng
- grid.412545.30000 0004 1798 1300Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Shanxi Province People’s Republic of China
| | - Guo-Hua Liu
- grid.257160.70000 0004 1761 0331Research Center for Parasites and Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan Province People’s Republic of China
| | - Xing-Quan Zhu
- grid.257160.70000 0004 1761 0331Research Center for Parasites and Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan Province People’s Republic of China ,grid.412545.30000 0004 1798 1300Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Shanxi Province People’s Republic of China
| |
Collapse
|
7
|
Medina L, Guerrero-Muñoz J, Castillo C, Liempi A, Fernández-Moya A, Araneda S, Ortega Y, Rivas C, Maya JD, Kemmerling U. Differential microRNAs expression during ex vivo infection of canine and ovine placental explants with Trypanosoma cruzi and Toxoplasma gondii. Acta Trop 2022; 235:106651. [PMID: 35964709 DOI: 10.1016/j.actatropica.2022.106651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022]
Abstract
Trypanosoma cruzi and Toxoplasma gondii are two zoonotic parasites that constitute significant human and animal health threats, causing a significant economic burden worldwide. Both parasites can be transmitted congenitally, but transmission rates for T. gondii are high, contrary to what has been observed for T. cruzi. The probability of congenital transmission depends on complex interactions between the pathogen and the host, including the modulation of host cell gene expression by miRNAs. During ex vivo infection of canine and ovine placental explants, we evaluated the expression of 3 miRNAs (miR-30e-3p, miR-3074-5p, and miR-127-3p) previously associated with parasitic and placental diseases and modulated by both parasites. In addition, we identified the possible target genes of the miRNAs by using computational prediction tools and performed GO and KEGG enrichment analyses to identify the biological functions and associated pathologies. The three miRNAs are differentially expressed in the canine and ovine placenta in response to T. cruzi and T. gondii. We conclude that the observed differential expression and associated functions might explain, at least partially, the differences in transmission rates and susceptibility to parasite infection in different species.
Collapse
Affiliation(s)
- Lisvaneth Medina
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jesús Guerrero-Muñoz
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Christian Castillo
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Chile
| | - Ana Liempi
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alejandro Fernández-Moya
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sebastian Araneda
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Departamento de Patología y Medicina Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Yessica Ortega
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Cristian Rivas
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan Diego Maya
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ulrike Kemmerling
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
8
|
Antil N, Arefian M, Kandiyil MK, Awasthi K, Prasad TSK, Raju R. The Core Human MicroRNAs Regulated by Toxoplasma gondii. Microrna 2022; 11:163-174. [PMID: 35507793 DOI: 10.2174/2211536611666220428130250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/14/2022] [Accepted: 03/10/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Toxoplasma gondii (T. gondii) is an intracellular zoonotic protozoan parasite known to effectively modulate the host system for its survival. A large number of microRNAs (miRNAs) regulated by different strains of T. gondii in diverse types of host cells/tissues/organs have been reported across multiple studies. OBJECTIVE We aimed to decipher the complexity of T. gondii regulated spectrum of miRNAs to derive a set of core miRNAs central to different strains of T. gondii infection in diverse human cell lines. METHODS We first assembled miRNAs hat are regulated by T. gondii altered across the various assortment of infections and time points of T. gondii infection in multiple cell types. For these assembled datasets, we employed specific criteria to filter the core miRNAs regulated by T. gondii. Subsequently, accounting for the spectrum of miRNA-mRNA target combinations, we applied a novel confidence criterion to extract their core experimentally-validated mRNA targets in human cell systems. RESULTS This analysis resulted in the extraction of 74 core differentially regulated miRNAs and their 319 high-confidence mRNA targets. Based on these core miRNA-mRNA pairs, we derived the central biological processes perturbed by T. gondii in diverse human cell systems. Further, our analysis also resulted in the identification of novel autocrine/paracrine signalling factors that could be associated with host response modulated by T. gondii. CONCLUSION The current analysis derived a set of core miRNAs, their targets, and associated biological processes fine-tuned by T. gondii for its survival within the invaded cells.
Collapse
Affiliation(s)
- Neelam Antil
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.,Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India
| | - Mohammad Arefian
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Mrudula Kinarulla Kandiyil
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Kriti Awasthi
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | | | - Rajesh Raju
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.,Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore 575018, India
| |
Collapse
|
9
|
Rojas-Pirela M, Andrade-Alviárez D, Medina L, Castillo C, Liempi A, Guerrero-Muñoz J, Ortega Y, Maya JD, Rojas V, Quiñones W, Michels PA, Kemmerling U. MicroRNAs: master regulators in host-parasitic protist interactions. Open Biol 2022; 12:210395. [PMID: 35702995 PMCID: PMC9198802 DOI: 10.1098/rsob.210395] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs present in a wide diversity of organisms. MiRNAs regulate gene expression at a post-transcriptional level through their interaction with the 3' untranslated regions of target mRNAs, inducing translational inhibition or mRNA destabilization and degradation. Thus, miRNAs regulate key biological processes, such as cell death, signal transduction, development, cellular proliferation and differentiation. The dysregulation of miRNAs biogenesis and function is related to the pathogenesis of diseases, including parasite infection. Moreover, during host-parasite interactions, parasites and host miRNAs determine the probability of infection and progression of the disease. The present review is focused on the possible role of miRNAs in the pathogenesis of diseases of clinical interest caused by parasitic protists. In addition, the potential role of miRNAs as targets for the design of drugs and diagnostic and prognostic markers of parasitic diseases is also discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile,Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Lisvaneth Medina
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Christian Castillo
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Chile
| | - Ana Liempi
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Jesús Guerrero-Muñoz
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Yessica Ortega
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Juan Diego Maya
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Verónica Rojas
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Paul A. Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| |
Collapse
|
10
|
Hou Z, Zhang H, Xu K, Zhu S, Wang L, Su D, Liu J, Su S, Liu D, Huang S, Xu J, Pan Z, Tao J. Cluster analysis of splenocyte microRNAs in the pig reveals key signal regulators of immunomodulation in the host during acute and chronic Toxoplasma gondii infection. Parasit Vectors 2022; 15:58. [PMID: 35177094 PMCID: PMC8851844 DOI: 10.1186/s13071-022-05164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Toxoplasma gondii is an obligate intracellular protozoan parasite that can cause a geographically widespread zoonosis. Our previous splenocyte microRNA profile analyses of pig infected with T. gondii revealed that the coordination of a large number of miRNAs regulates the host immune response during infection. However, the functions of other miRNAs involved in the immune regulation during T. gondii infection are not yet known. METHODS Clustering analysis was performed by K-means, self-organizing map (SOM), and hierarchical clustering to obtain miRNA groups with the similar expression patterns. Then, the target genes of the miRNA group in each subcluster were further analyzed for functional enrichment by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathway to recognize the key signaling molecules and the regulatory signatures of the innate and adaptive immune responses of the host during T. gondii infection. RESULTS A total of 252 miRNAs were successfully divided into 22 subclusters by K-means clustering (designated as K1-K22), 29 subclusters by SOM clustering (designated as SOM1-SOM29), and six subclusters by hierarchical clustering (designated as H1-H6) based on their dynamic expression levels in the different infection stages. A total of 634, 660, and 477 GO terms, 15, 26, and 14 KEGG pathways, and 16, 15, and 7 Reactome pathways were significantly enriched by K-means, SOM, and hierarchical clustering, respectively. Of note, up to 22 miRNAs mainly showing downregulated expression at 50 days post-infection (dpi) were grouped into one subcluster (namely subcluster H3-K17-SOM1) through the three algorithms. Functional analysis revealed that a large group of immunomodulatory signaling molecules were controlled by the different miRNA groups to regulate multiple immune processes, for instance, IL-1-mediated cellular response and Th1/Th2 cell differentiation partly depending on Notch signaling transduction for subclusters K1 and K2, innate immune response involved in neutrophil degranulation and TLR4 cascade signaling for subcluster K15, B cell activation for subclusters SOM17, SOM1, and SOM25, leukocyte migration, and chemokine activity for subcluster SOM9, cytokine-cytokine receptor interaction for subcluster H2, and interleukin production, chemotaxis of immune cells, chemokine signaling pathway, and C-type lectin receptor signaling pathway for subcluster H3-K17-SOM1. CONCLUSIONS Cluster analysis of splenocyte microRNAs in the pig revealed key regulatory properties of subcluster miRNA molecules and important features in the immune regulation induced by acute and chronic T. gondii infection. These results contribute new insight into the identification of physiological immune responses and maintenance of tolerance in pig spleen tissues during T. gondii infection.
Collapse
Affiliation(s)
- Zhaofeng Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Hui Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Kangzhi Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Shifan Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Lele Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Dingzeyang Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Jiantao Liu
- YEBIO Bioengineering Co., Ltd. of QINGDAO, Qingdao, 266109, People's Republic of China
| | - Shijie Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Siyang Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Zhiming Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
11
|
Chakraborty S, Woldemariam NT, Visnovska T, Rise ML, Boyce D, Santander J, Andreassen R. Characterization of miRNAs in Embryonic, Larval, and Adult Lumpfish Provides a Reference miRNAome for Cyclopterus lumpus. BIOLOGY 2022; 11:biology11010130. [PMID: 35053128 PMCID: PMC8773022 DOI: 10.3390/biology11010130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/28/2022]
Abstract
Simple Summary Lumpfish (Cyclopterus lumpus) is an emergent aquaculture species, and its miRNA repertoire is still unknown. miRNAs are critical post-transcriptional modulators of teleost gene expression. Therefore, a lumpfish reference miRNAome was characterized by small RNA sequencing and miRDeep analysis of samples from different organs and developmental stages. The resulting miRNAome, an essential reference for future expression analyses, consists of 443 unique mature miRNAs from 391 conserved and eight novel miRNA genes. Enrichment of specific miRNAs in particular organs and developmental stages indicates that some conserved lumpfish miRNAs regulate organ and developmental stage-specific functions reported in other teleosts. Abstract MicroRNAs (miRNAs) are endogenous small RNA molecules involved in the post-transcriptional regulation of protein expression by binding to the mRNA of target genes. They are key regulators in teleost development, maintenance of tissue-specific functions, and immune responses. Lumpfish (Cyclopterus lumpus) is becoming an emergent aquaculture species as it has been utilized as a cleaner fish to biocontrol sea lice (e.g., Lepeophtheirus salmonis) infestation in the Atlantic Salmon (Salmo salar) aquaculture. The lumpfish miRNAs repertoire is unknown. This study identified and characterized miRNA encoding genes in lumpfish from three developmental stages (adult, embryos, and larvae). A total of 16 samples from six different adult lumpfish organs (spleen, liver, head kidney, brain, muscle, and gill), embryos, and larvae were individually small RNA sequenced. Altogether, 391 conserved miRNA precursor sequences (discovered in the majority of teleost fish species reported in miRbase), eight novel miRNA precursor sequences (so far only discovered in lumpfish), and 443 unique mature miRNAs were identified. Transcriptomics analysis suggested organ-specific and age-specific expression of miRNAs (e.g., miR-122-1-5p specific of the liver). Most of the miRNAs found in lumpfish are conserved in teleost and higher vertebrates, suggesting an essential and common role across teleost and higher vertebrates. This study is the first miRNA characterization of lumpfish that provides the reference miRNAome for future functional studies.
Collapse
Affiliation(s)
- Setu Chakraborty
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Rd, St. John’s, NL A1C 5S7, Canada;
| | - Nardos T. Woldemariam
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet–Oslo Metropolitan University, Pilestredet 50, N-0130 Oslo, Norway;
| | - Tina Visnovska
- Bioinformatics Core Facility, Oslo University Hospital, 0372 Oslo, Norway;
| | - Matthew L. Rise
- Department of Ocean Sciences, Faculty of Sciences, Memorial University of Newfoundland, 0 Marine Lab Rd, St. John’s, NL A1C 5S7, Canada;
| | - Danny Boyce
- Dr. Joe Brown Aquatic Research Building (JBARB), Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Rd, St. John’s, NL A1C 5S7, Canada;
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Rd, St. John’s, NL A1C 5S7, Canada;
- Correspondence: (J.S.); (R.A.)
| | - Rune Andreassen
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet–Oslo Metropolitan University, Pilestredet 50, N-0130 Oslo, Norway;
- Correspondence: (J.S.); (R.A.)
| |
Collapse
|
12
|
Yan Q, Wang K, Han X, Tan Z. The Regulatory Mechanism of Feeding a Diet High in Rice Grain on the Growth and microRNA Expression Profiles of the Spleen, Taking Goats as an Artiodactyl Model. BIOLOGY 2021; 10:biology10090832. [PMID: 34571708 PMCID: PMC8467863 DOI: 10.3390/biology10090832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/28/2022]
Abstract
Several researchers have testified that feeding with diets high in rice grain induces subacute ruminal acidosis and increases the risk of gastrointestinal inflammation. However, whether diets high in rice grain affect spleen growth and related molecular events remains unknown. Therefore, the present study was conducted to investigate the effects of feeding a high-concentrate (HC) diet based on rice on the growth and microRNA expression profiles in goat spleen. Sixteen Liuyang black goats were used as an artiodactyl model and fed an HC diet for five weeks. Visceral organ weight, LPS (lipopolysaccharide) concentration in the liver and spleen, and microRNA expression were analyzed. The results showed that feeding an HC diet increased the heart and spleen indexes and decreased the liver LPS concentration (p < 0.05). In total, 596 microRNAs were identified, and twenty-one of them were differentially expressed in the spleens of goats fed with the HC diet. Specifically, several microRNAs (miR-107, miR-512, miR-51b, miR-191, miR-296, miR-326, miR-6123 and miR-433) were upregulated. Meanwhile, miR-30b, miR-30d, miR-1468, miR-502a, miR-145, miR-139, miR-2284f, miR-101 and miR-92a were downregulated. Additionally, their target gene CPPED1, CDK6, CCNT1 and CASP7 expressions were inhibited (p < 0.05). These results indicated that the HC diet promoted the growth of the heart and spleen. The HC diet also regulated the expression of miR-326, miR-512-3p, miR-30b, miR-30d, miR-502a and their target genes (CPPED1, CDK6 and CCNT1) related to the enhancement of splenocyte proliferation. The HC diet also modulated the expression of miR-15b-5p, miR-1468 and miR-92a, related to the suppression of splenocyte apoptosis.
Collapse
Affiliation(s)
- Qiongxian Yan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.Y.); (K.W.); (X.H.)
| | - Kaijun Wang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.Y.); (K.W.); (X.H.)
| | - Xuefeng Han
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.Y.); (K.W.); (X.H.)
| | - Zhiliang Tan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.Y.); (K.W.); (X.H.)
- Hunan Co-Innovation Center of Animal Production Safety—CICAPS, Changsha 410128, China
- Correspondence:
| |
Collapse
|
13
|
Hosseini SA, Sharif M, Sarvi S, Janbabai G, Keihanian S, Abediankenari S, Gholami S, Amouei A, Javidnia J, Saberi R, Shekarriz R, Daryani A. Toxoplasmosis among cancer patients undergoing chemotherapy: a population study based on the serological, molecular and epidemiological aspects. Trans R Soc Trop Med Hyg 2021; 115:677-686. [PMID: 33130887 DOI: 10.1093/trstmh/traa112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/25/2020] [Accepted: 10/17/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Toxoplasmosis is highly prevalent in northern Iran and immunocompromised individuals are more susceptible to this infection. The present study aimed to determine the seroprevalence, parasitism and genetic diversity of Toxoplasma gondii among patients with cancer undergoing chemotherapy in northern Iran. METHODS A total of 350 serum samples obtained from cancer patients were collected from laboratory centers in northern Iran. Immunodiagnosis and DNA detection were accomplished by ELISA and PCR. Thereafter, multiplex-nested PCR-restriction fragment length polymorphism was used for the genotyping of T. gondii. RESULTS In general, out of 350 patients, 264 (75.4%) and 9 (2.57%) cases were positive for anti-T. gondii IgG and IgM, respectively. Moreover, 19 (5.43%) samples contained T. gondii DNA. From 19 positive samples, 10 high-quality samples with sharp and non-smear bands were selected to determine the genotypes of T. gondii. Accordingly, the samples were classified as genotype #1 (type II clonal; n=4, 40%), genotype #2 (type III clonal; n=3, 30%), genotype #10 (type I clonal; n=2, 20%) and genotype #27 (type I variant; n=1, 10%). CONCLUSIONS As evidenced by the results, due to the high prevalence of T. gondii, cancer patients in northern Iran are at serious risk of severe toxoplasmosis and its complications. Therefore, oncologists need to regard this critical health problem as a matter requiring urgent attention.
Collapse
Affiliation(s)
- Seyed Abdollah Hosseini
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Mazandaran, Sari, Iran.,Department of Parasitology, School of Medicine, Mazandaran University of Medical Science, Mazandaran, Sari, Iran
| | - Mehdi Sharif
- Department of Parasitology, School of Medicine, Sari Branch, Islamic AZAD University, Sari, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Mazandaran, Sari, Iran.,Department of Parasitology, School of Medicine, Mazandaran University of Medical Science, Mazandaran, Sari, Iran
| | - Ghasem Janbabai
- Gastrointestinal Cancer Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahrbanoo Keihanian
- Department of Internal Medicine, Faculty of Medicine, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Saeid Abediankenari
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sara Gholami
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Science, Mazandaran, Sari, Iran
| | - Afsaneh Amouei
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Mazandaran, Sari, Iran.,Department of Parasitology, School of Medicine, Mazandaran University of Medical Science, Mazandaran, Sari, Iran
| | - Javad Javidnia
- Department of Mycology, School of Medicine, Mazandaran University of Medical Science, Mazandaran, Sari, Iran
| | - Reza Saberi
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Mazandaran, Sari, Iran
| | - Ramin Shekarriz
- Gastrointestinal Cancer Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Mazandaran, Sari, Iran.,Department of Parasitology, School of Medicine, Mazandaran University of Medical Science, Mazandaran, Sari, Iran
| |
Collapse
|
14
|
de Faria Junior GM, Murata FHA, Lorenzi HA, Castro BBP, Assoni LCP, Ayo CM, Brandão CC, de Mattos LC. The Role of microRNAs in the Infection by T. gondii in Humans. Front Cell Infect Microbiol 2021; 11:670548. [PMID: 34055667 PMCID: PMC8160463 DOI: 10.3389/fcimb.2021.670548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs are molecules belonging to an evolutionarily conserved family of small non-coding RNAs, which act on post-transcriptional gene regulation, causing messenger RNA (mRNA) degradation or inhibiting mRNA translation into proteins. These molecules represent potential biomarkers for diagnosis, non-invasive prognosis, and monitoring the development of the disease. Moreover, they may provide additional information on the pathophysiology of parasitic infections and guide strategies for treatment. The Apicomplexan parasite Toxoplasma gondii modifies the levels of microRNAs and mRNAs in infected host cells by modulating the innate and adaptive immune responses, facilitating its survival within the host. Some studies have shown that microRNAs are promising molecular markers for developing diagnostic tools for human toxoplasmosis. MicroRNAs can be detected in human specimens collected using non-invasive procedures. changes in the circulating host microRNAs have been associated with T. gondii infection in mice and ocular toxoplasmosis in humans. Besides, microRNAs can be amplified from samples using sensitive and molecular-specific approaches such as real-time PCR. This review presents recent findings of the role that microRNAs play during T. gondii infection and discuss their potential use of these small nuclei acid molecules to different approaches such as laboratory diagnosis, modulation of cell and tissue infected as other potential applications in human toxoplasmosis.
Collapse
Affiliation(s)
- Geraldo Magela de Faria Junior
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| | - Fernando Henrique Antunes Murata
- Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | | | - Bruno Bello Pede Castro
- Department of Preventive Veterinary Medicine and Animal Health, Faculty of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Letícia Carolina Paraboli Assoni
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| | - Christiane Maria Ayo
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| | - Cinara Cássia Brandão
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| | - Luiz Carlos de Mattos
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| |
Collapse
|
15
|
Shi W, He JJ, Mei XF, Lu KJ, Zeng ZX, Zhang YY, Sheng ZA, Elsheikha HM, Huang WY, Zhu XQ. Dysregulation of hepatic microRNA expression in C57BL/6 mice affected by excretory-secretory products of Fasciola gigantica. PLoS Negl Trop Dis 2020; 14:e0008951. [PMID: 33332355 PMCID: PMC7775122 DOI: 10.1371/journal.pntd.0008951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/31/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
The excretory-secretory products released by the liver fluke Fasciola gigantica (FgESPs) play important roles in regulating the host immune response during the infection. Identification of hepatic miRNAs altered by FgESPs may improve our understanding of the pathogenesis of F. gigantica infection. In this study, we investigated the alterations in the hepatic microRNAs (miRNAs) in mice treated with FgESPs using high-throughput small RNA (sRNA) sequencing and bioinformatics analysis. The expression of seven miRNAs was confirmed by quantitative stem-loop reverse transcription quantitative PCR (qRT-PCR). A total of 1,313 miRNAs were identified in the liver of mice, and the differentially expressed (DE) miRNAs varied across the time lapsed post exposure to FgESPs. We identified 67, 154 and 53 dysregulated miRNAs at 1, 4 and 12 weeks post-exposure, respectively. 5 miRNAs (miR-126a-3p, miR-150-5p, miR-155-5p, miR-181a-5p and miR-362-3p) were commonly dysregulated at the three time points. We also found that most of the DE miRNAs were induced by FgESPs in the mouse liver after 4 weeks of exposure. These were subjected to Gene Ontology (GO) enrichment analysis, which showed that the predicted targets of the hepatic DE miRNAs of mice 4 weeks of FgESPs injection were enriched in GO terms, including cell membrane, ion binding, cellular communication, organelle and DNA damage. KEGG analysis indicated that the predicted targets of the most downregulated miRNAs were involved in 15 neural activity-related pathways, 6 digestion-related pathways, 20 immune response-related pathways and 17 cancer-related pathways. These data provide new insights into how FgESPs can dysregulate hepatic miRNAs, which play important roles in modulating several aspects of F. gigantica pathogenesis.
Collapse
Affiliation(s)
- Wei Shi
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People’s Republic of China
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People’s Republic of China
- * E-mail:
| | - Xue-Fang Mei
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Ke-Jing Lu
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Zi-Xuan Zeng
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Yao-Yao Zhang
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Zhao-An Sheng
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Hany M. Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Wei-Yi Huang
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People’s Republic of China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, People’s Republic of China
| |
Collapse
|
16
|
Medina L, Castillo C, Liempi A, Guerrero-Muñoz J, Rojas-Pirela M, Maya JD, Prieto H, Kemmerling U. Trypanosoma cruzi and Toxoplasma gondii Induce a Differential MicroRNA Profile in Human Placental Explants. Front Immunol 2020; 11:595250. [PMID: 33240284 PMCID: PMC7677230 DOI: 10.3389/fimmu.2020.595250] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Trypanosoma cruzi and Toxoplasma gondii are two parasites than can be transmitted from mother to child through the placenta. However, congenital transmission rates are low for T. cruzi and high for T. gondii. Infection success or failure depends on complex parasite-host interactions in which parasites can alter host gene expression by modulating non-coding RNAs such as miRNAs. As of yet, there are no reports on altered miRNA expression in placental tissue in response to either parasite. Therefore, we infected human placental explants ex vivo by cultivation with either T. cruzi or T. gondii for 2 h. We then analyzed the miRNA expression profiles of both types of infected tissue by miRNA sequencing and quantitative PCR, sequence-based miRNA target prediction, pathway functional enrichment, and upstream regulator analysis of differentially expressed genes targeted by differentially expressed miRNAs. Both parasites induced specific miRNA profiles. GO analysis revealed that the in silico predicted targets of the differentially expressed miRNAs regulated different cellular processes involved in development and immunity, and most of the identified KEGG pathways were related to chronic diseases and infection. Considering that the differentially expressed miRNAs identified here modulated crucial host cellular targets that participate in determining the success of infection, these miRNAs might explain the differing congenital transmission rates between the two parasites. Molecules of the different pathways that are regulated by miRNAs and modulated during infection, as well as the miRNAs themselves, may be potential targets for the therapeutic control of either congenital Chagas disease or toxoplasmosis.
Collapse
Affiliation(s)
- Lisvaneth Medina
- Programa de Anatomía y Biología del Desarrollo, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Christian Castillo
- Programa de Anatomía y Biología del Desarrollo, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Ana Liempi
- Programa de Anatomía y Biología del Desarrollo, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Jesús Guerrero-Muñoz
- Programa de Anatomía y Biología del Desarrollo, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Maura Rojas-Pirela
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Juan Diego Maya
- Programa de Farmacología Molecular y Clínica, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Humberto Prieto
- Instituto de Investigaciones Agropecuarias, Ministerio de Agricultura, Santiago, Chile
| | - Ulrike Kemmerling
- Programa de Anatomía y Biología del Desarrollo, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
17
|
Kalantari N, Gorgani-Firouzjaee T, Hassani S, Chehrazi M, Ghaffari S. Association between Toxoplasma gondii exposure and hematological malignancies: A systematic review and meta-analysis. Microb Pathog 2020; 148:104440. [PMID: 32822769 DOI: 10.1016/j.micpath.2020.104440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 11/19/2022]
Abstract
The possible association between Toxoplasma gondii infection and hematological malignancies has been suggested by several studies. The current systematic review and meta-analysis was directed to further understand this relationship. In the present study, five electronic databases were reviewed for T. gondii infection in patients with blood cancer. The random effects model and 95% confidence intervals (CI) were used to determine the overall odds ratio (OR). Heterogeneity was deliberate with Cochran's Q test and I2 statistic. In total, 13 studies including 1504 patients with hematological neoplasia and 2622 subjects without any malignancies were included in this meta-analysis. Overall, 324 patients with blood cancer and 391 subjects without any malignancies were exposed to Toxoplasma infection. The pooled random effect favored a statistically significant increased risk of T. gondii infection in patients with hematological neoplasia compared with non-cancer individuals [OR = 2.43; 95% CI: 1.49-3.97; χ2 = 49.7, I2 = 75.9%, P = 0.00]. Also, significant pooled ORs of positive association were observed for studies which measured anti- Toxoplasma antibodies (IgG) [OR = 2.66; 95% CI: 1.46-4.83; χ2 = 40.3; I2 = 82.6%, P = 0.00]. T-value and P-value were obtained 0.20 and 0.85 by Harbords modified regression test. This meta-analysis demonstrates that toxoplasmosis may be associated with an elevated risk of hematological malignancies. Also, it has found that immunoglobulin class and types of blood cancer are the specific sources of heterogeneity. Additional studies should be performed to examine the impact of T. gondii infection in the onset or development of hematologic neoplasms in the future.
Collapse
Affiliation(s)
- Narges Kalantari
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Tahmineh Gorgani-Firouzjaee
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Saeed Hassani
- Department of Laboratory Sciences, Faculty of Paramedical Sciences, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Chehrazi
- Department of Biostatistics and Epidemiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Salman Ghaffari
- Department of Mycology and Parasitology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
18
|
Abo-Al-Ela HG. Toxoplasmosis and Psychiatric and Neurological Disorders: A Step toward Understanding Parasite Pathogenesis. ACS Chem Neurosci 2020; 11:2393-2406. [PMID: 31268676 DOI: 10.1021/acschemneuro.9b00245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Toxoplasmosis, a disease that disrupts fetal brain development and severely affects the host's brain, has been linked to many behavioral and neurological disorders. There is growing interest in how a single-celled neurotropic parasite, Toxoplasma gondii, can control or change the behavior of the host as well as how it dominates the host's neurons. Secrets beyond these could be answered by decoding the Toxoplasma gondii genome, unravelling the function of genomic sequences, and exploring epigenetics and mRNAs alterations, as well as the postulated mechanisms contributing to various neurological and psychiatric symptoms caused by this parasite. Substantial efforts have been made to elucidate the action of T. gondii on host immunity and the biology of its infection. However, the available studies on the molecular aspects of toxoplasmosis that affect central nervous system (CNS) circuits remain limited, and much research is still needed on this interesting topic. In my opinion, this parasite is a gift for studying the biology of the nervous system and related diseases. We should utilize the unique features of Toxoplasma, such as its abilities to modulate brain physiology, for neurological studies or as a possible tool or approach to cure neurological disease.
Collapse
Affiliation(s)
- Haitham G. Abo-Al-Ela
- Animal Health Research Institute, Agriculture Research Center, Shibin Al-Kom, El-Minufiya 7001, Egypt
| |
Collapse
|
19
|
Tyebji S, Hannan AJ, Tonkin CJ. Pathogenic Infection in Male Mice Changes Sperm Small RNA Profiles and Transgenerationally Alters Offspring Behavior. Cell Rep 2020; 31:107573. [DOI: 10.1016/j.celrep.2020.107573] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/01/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022] Open
|
20
|
Acuña SM, Floeter-Winter LM, Muxel SM. MicroRNAs: Biological Regulators in Pathogen-Host Interactions. Cells 2020; 9:E113. [PMID: 31906500 PMCID: PMC7016591 DOI: 10.3390/cells9010113] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
An inflammatory response is essential for combating invading pathogens. Several effector components, as well as immune cell populations, are involved in mounting an immune response, thereby destroying pathogenic organisms such as bacteria, fungi, viruses, and parasites. In the past decade, microRNAs (miRNAs), a group of noncoding small RNAs, have emerged as functionally significant regulatory molecules with the significant capability of fine-tuning biological processes. The important role of miRNAs in inflammation and immune responses is highlighted by studies in which the regulation of miRNAs in the host was shown to be related to infectious diseases and associated with the eradication or susceptibility of the infection. Here, we review the biological aspects of microRNAs, focusing on their roles as regulators of gene expression during pathogen-host interactions and their implications in the immune response against Leishmania, Trypanosoma, Toxoplasma, and Plasmodium infectious diseases.
Collapse
Affiliation(s)
| | | | - Sandra Marcia Muxel
- Department of Physiology, Universidade de São Paulo, 05508-090 São Paulo, Brazil; (S.M.A.); (L.M.F.-W.)
| |
Collapse
|
21
|
Toxoplasma gondii infection in children with lymphoma in Eastern China: seroprevalence, risk factors and case-control studies. Epidemiol Infect 2019; 147:e305. [PMID: 31767044 PMCID: PMC7003632 DOI: 10.1017/s0950268819001869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Epidemiological data for Toxoplasma gondii regarding malignancy have gained increasing attention; however, the information about T. gondii infection among children with malignant lymphoma (ML) in China is unclear. Therefore, 314 children with lymphoma and 314 healthy children, age- and gender-matched, were recruited to estimate the seroprevalence of T. gondii in the participants and identify the risk factors of infection. Blood samples from all participants were collected and examined for T. gondii IgG and IgM antibodies using ELISA. The results showed that the overall seroprevalence of T. gondii antibodies (including IgG and/or IgM) in ML patients and healthy controls was 19.8% and 9.9%, respectively. Contact with the cats, consumption of oysters and history of chemotherapy were estimated to be the risk factors for T. gondii infection in children with lymphoma by multivariable logistic regression analysis, whereas in healthy children, contact with cats and consumption of oysters were the risk factors. Moreover, among various histological types of lymphoma, individuals with NK/T-cell lymphoma, B-small lymphocytic lymphoma, marginal zone B-lymphoma and Hodgkin's lymphoma had a higher seroprevalence than healthy controls (P < 0.05). These findings indicated the high prevalence of T. gondii infection in children with lymphoma, and hence, efforts should be performed to evaluate the effect of the infection further in lymphoma patients.
Collapse
|
22
|
Menard KL, Haskins BE, Denkers EY. Impact of Toxoplasma gondii Infection on Host Non-coding RNA Responses. Front Cell Infect Microbiol 2019; 9:132. [PMID: 31157172 PMCID: PMC6530353 DOI: 10.3389/fcimb.2019.00132] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/12/2019] [Indexed: 12/12/2022] Open
Abstract
As an intracellular microbe, Toxoplasma gondii must establish a highly intimate relationship with its host to ensure success as a parasite. Many studies over the last decade-and-a-half have highlighted how the host reshapes its immunoproteome to survive infection, and conversely how the parasite regulates host responses to ensure persistence. The role of host non-protein-coding RNA during infection is a vast and largely unexplored area of emerging interest. The potential importance of this facet of the host-parasite interaction is underscored by current estimates that as much as 80% of the host genome is transcribed into non-translated RNA. Here, we review the current state of knowledge with respect to two major classes of non-coding RNA, microRNA (miRNA) and long non-coding RNA (lncRNA), in the host response to T. gondii infection. These two classes of regulatory RNA are known to have profound and widespread effects on cell function. However, their impact on infection and immunity is not well-understood, particularly for the response to T. gondii. Nevertheless, numerous miRNAs have been identified that are upregulated by Toxoplasma, and emerging evidence suggests a functional role during infection. While the field of lncRNA is in its infancy, it is already clear that Toxoplasma is also a strong trigger for this class of regulatory RNA. Non-coding RNA responses induced by T. gondii are likely to be major determinants of the host's ability to resist infection and the parasite's ability to establish long-term latency.
Collapse
Affiliation(s)
- Kayla L Menard
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, United States
| | - Breanne E Haskins
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, United States
| | - Eric Y Denkers
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
23
|
Zhou N, Fu H, Wang Z, Shi H, Yu Y, Qu T, Wang L, Zhang X, Wang L. Seroprevalence and risk factors of Toxoplasma gondii infection in children with leukemia in Shandong Province, Eastern China: a case-control prospective study. PeerJ 2019; 7:e6604. [PMID: 30886781 PMCID: PMC6420808 DOI: 10.7717/peerj.6604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/12/2019] [Indexed: 12/20/2022] Open
Abstract
Limited information is available concerning the epidemiology of Toxoplasma gondii infection in children with leukemia in Eastern China. Therefore, a case-control study was conducted to estimate the seroprevalence of toxoplasmosis in this patient group and to identify risk factors and possible routes of infection. Serum samples were collected from 339 children with leukemia and 339 age matched health control subjects in Qingdao from September 2014 to March 2018. Enzyme linked immunoassays were used to screen anti- T. gondii IgG and anti- T. gondii IgM antibodies. Forty-eight (14.2%) children with leukemia and 31 (9.1%) control subjects were positive for anti-T. gondii IgG antibodies (P < 0.05), while 13 (3.8%) patients and 14 (4.1%) controls were positive for anti-T. gondii IgM antibodies (P = 0.84). Multivariate analysis showed exposure to soil and a history of blood transfusion were risk factors for T. gondii infection. Compared with IgG, patients with a history of blood transfusion were more likely to present anti- T. gondii IgM (P = 0.003). Moreover, patients with chronic lymphocytic leukemia and acute lymphocytic leukemia had higher T. gondii seroprevalence in comparison to control subjects (P = 0.002 and P = 0.016, respectively). The results indicated that the seroprevalence of T. gondii infection in children with leukemia is higher than that of healthy children in Eastern China. This information may be used to guide future research and clinical management, and further studies are necessary to elucidate the role of T. gondii in children with leukemia.
Collapse
Affiliation(s)
- Na Zhou
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Haiyang Fu
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhongjun Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hailei Shi
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yang Yu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tingting Qu
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Longlong Wang
- Department of Urinary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangyan Zhang
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lin Wang
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
24
|
Hou Z, Liu D, Su S, Wang L, Zhao Z, Ma Y, Li Q, Jia C, Xu J, Zhou Y, Tao J. Comparison of splenocyte microRNA expression profiles of pigs during acute and chronic toxoplasmosis. BMC Genomics 2019; 20:97. [PMID: 30700253 PMCID: PMC6354428 DOI: 10.1186/s12864-019-5458-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 01/17/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Toxoplasma gondii is an obligate intracellular parasite that infects humans and other warm-blooded animals. Previous quantitative proteomic analyses of infected host cells revealed that the expression of many host proteins is modulated by T. gondii infection. However, at present limited data are available on the differentially expressed miRNAs (DEMs) associated with the pathology and host immune responses induced by acute and chronic infection with T. gondii in pigs in vivo. In this study, high-throughput sequencing was used to investigate expression profiles of spleen miRNAs at 10, 25 and 50 days post-infection (DPI) in pigs infected with Chinese I genotype strain T. gondii isolated from a dead pig. RESULTS When compared to the control group, 34, 6 and 86 DEMs were found in spleens of infected pigs at 10, 25 and 50 DPI, respectively. Gene Ontology (GO) enrichment analysis of the target genes of DEMs showed that no GO terms were enriched at 25 DPI, whereas 28 and 241 GO terms, of which two and 215 were sample-specific, were significantly enriched at 10 and 50 DPI, respectively. The top 20 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of the target genes of DEMs included signal transduction, immune system, metabolism and diseases. miRNA-gene network analysis revealed that the DEMs played important roles in the host immune response to T. gondii infection by modulating expression levels of cellular immunity-related cytokines and immune-related C-type lectins. CONCLUSION Our results not only showed that host miRNA expression is altered by T. gondii but also revealed differences in the regulation of key biological processes and pathways involved in host responses to acute versus chronic T. gondii infection. This will aid future research into miRNA-target interactions during T. gondii infection in pigs and the development of novel therapies against T. gondii.
Collapse
Affiliation(s)
- Zhaofeng Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Shijie Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Lele Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Zhenxing Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yifei Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Qiaoqiao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Chuanli Jia
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yonghua Zhou
- Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China. .,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou, 225009, People's Republic of China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
25
|
Anvari D, Sharif M, Sarvi S, Aghayan SA, Gholami S, Pagheh AS, Hosseini SA, Saberi R, Chegeni TN, Hosseininejad Z, Daryani A. Seroprevalence of Toxoplasma gondii infection in cancer patients: A systematic review and meta-analysis. Microb Pathog 2019; 129:30-42. [PMID: 30708042 DOI: 10.1016/j.micpath.2019.01.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/11/2019] [Accepted: 01/28/2019] [Indexed: 12/24/2022]
Abstract
Toxoplasmosis, caused by Toxoplasma gondii, is a great public health concern in cancer patients, which can induce serious pathological effects. This systematic review and meta-analysis was performed to evaluate the worldwide seroprevalence rate of T. gondii infection among cancer patients. A search was conducted on five electronic databases that reported data on T. gondii seroprevalence in cancer patients. The searching process resulted in the inclusion of 57 studies. The results showed that T. gondii had the pooled prevalence of 30.8% in cancer patients using a random-effect model (95% CI: 26.3-35.6). Cancer patients had a higher overall prevalence of T. gondii infection, compared to those without cancer. Furthermore, the odds ratio of toxoplasmosis in cancer patients was 3.1 times, compared to that of controls (95% CI: 2.5-3.8, P < 0.0001). Toxoplasmosis had a higher prevalence in females (40%) than in males (33%). Furthermore, the age group of upper 40 years had the highest prevalence infection rate (30%). In addition, a significant association was also observed between toxoplasmosis infection and year (P < 0.001), type of cancer (P < 0.001), country (P < 0.001), gender (P < 0.001), age (P = 0.006) and diagnostic method (P < 0.001) in cancer patients. Considering the high prevalence of T. gondii infection in cancer patients and its serious outcomes, the researchers are suggested to carry out further studies to prevent and control toxoplasmosis among this population.
Collapse
Affiliation(s)
- Davood Anvari
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department of Parasitology and Mycology, School of Medicine, Mazandaran University of Medical Science, Sari, Iran; Student Research Committee, Mazandaran University of Medical Science, Sari, Iran
| | - Mehdi Sharif
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department of Parasitology and Mycology, School of Medicine, Mazandaran University of Medical Science, Sari, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department of Parasitology and Mycology, School of Medicine, Mazandaran University of Medical Science, Sari, Iran
| | - Sargis A Aghayan
- Laboratory of Zoology, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan, Armenia
| | - Shirzad Gholami
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department of Parasitology and Mycology, School of Medicine, Mazandaran University of Medical Science, Sari, Iran
| | - Abdol Sattar Pagheh
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department of Parasitology and Mycology, School of Medicine, Mazandaran University of Medical Science, Sari, Iran; Student Research Committee, Mazandaran University of Medical Science, Sari, Iran
| | - Seyed Abdollah Hosseini
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department of Parasitology and Mycology, School of Medicine, Mazandaran University of Medical Science, Sari, Iran; Student Research Committee, Mazandaran University of Medical Science, Sari, Iran
| | - Reza Saberi
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department of Parasitology and Mycology, School of Medicine, Mazandaran University of Medical Science, Sari, Iran; Student Research Committee, Mazandaran University of Medical Science, Sari, Iran
| | - Tooran Nayeri Chegeni
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department of Parasitology and Mycology, School of Medicine, Mazandaran University of Medical Science, Sari, Iran; Student Research Committee, Mazandaran University of Medical Science, Sari, Iran
| | - Zahra Hosseininejad
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department of Parasitology and Mycology, School of Medicine, Mazandaran University of Medical Science, Sari, Iran; Student Research Committee, Mazandaran University of Medical Science, Sari, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department of Parasitology and Mycology, School of Medicine, Mazandaran University of Medical Science, Sari, Iran.
| |
Collapse
|
26
|
Hu RS, He JJ, Elsheikha HM, Zhang FK, Zou Y, Zhao GH, Cong W, Zhu XQ. Differential Brain MicroRNA Expression Profiles After Acute and Chronic Infection of Mice With Toxoplasma gondii Oocysts. Front Microbiol 2018; 9:2316. [PMID: 30333806 PMCID: PMC6176049 DOI: 10.3389/fmicb.2018.02316] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/11/2018] [Indexed: 12/16/2022] Open
Abstract
Brain microRNAs (miRNAs) change in abundance in response to Toxoplasma gondii infection. However, their precise role in the pathogenesis of cerebral infection with T. gondii oocyst remains unclear. We studied the abundance of miRNAs in the brain of mice on days 11 and 33 post-infection (dpi) in order to identify miRNA pattern specific to early (11 dpi) and late (33 dpi) T. gondii infection. Mice were challenged with T. gondii oocysts (Type II strain) and on 11 and 33 dpi, the expression of miRNAs in mouse brain was investigated using small RNA (sRNA) sequencing. miRNA expression was confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to identify the biological processes, molecular functions, and cellular components, as well as pathways involved in infection. More than 1,500 miRNAs (1,352 known and 150 novel miRNAs) were detected in the infected and control mice. The expression of miRNAs varied across time after infection; 3, 38, and 108 differentially expressed miRNAs (P < 0.05) were detected during acute infection, chronic infection and chronic vs. acute infection, respectively. GO analysis showed that chronically infected mice had more predicted targets of dysregulated miRNAs than acutely infected mice. KEGG analysis indicated that most predicted targets were involved in immune- or disease-related pathways. Our data indicate that T. gondii infection alters the abundance of miRNAs in mouse brain particularly at the chronic stage, probably to fine-tune conditions required for the establishment of a latent brain infection.
Collapse
Affiliation(s)
- Rui-Si Hu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, The University of Nottingham, Loughborough, United Kingdom
| | - Fu-Kai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yang Zou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guang-Hui Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wei Cong
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Marine Science, Shandong University at Weihai, Weihai, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
27
|
Rezaei F, Daryani A, Sharifi M, Sarvi S, Jafari N, Pagheh AS, Hashemi N, Hejazi SH. miR-20a inhibition using locked nucleic acid (LNA) technology and its effects on apoptosis of human macrophages infected by Toxoplasma gondii RH strain. Microb Pathog 2018; 121:269-276. [PMID: 29800695 DOI: 10.1016/j.micpath.2018.05.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 05/19/2018] [Accepted: 05/20/2018] [Indexed: 11/16/2022]
Abstract
Toxoplasma gondii is a ubiquitous and infectious parasite that multiplies in any nucleated cell of warm-blooded animals and humans worldwide. This parasite has intricate mechanisms to reciprocate host-cell apoptosis to exist in the host cell. So far, the details of the parasite interactions with host cells are not well known. MicroRNAs (miRNAs) are one of the small noncoding RNAs that are now considered as a key mechanism of gene regulation. They are important in physiological and pathological processes such as apoptosis. In this study a Real Time quantitative PCR technique was used to evaluate the levels of miR-20a of miRNAs family in human macrophage during T. gondii infection to determine the role of miR-20a in apoptosis. Then, the inhibition of miR-20a function through interaction with transfection of Locked Nucleic Acid (LNA) antisense oligomer was studied. Furthermore, it was examined whether miR-20a is involved in apoptosis of human macrophages with T. gondii infected cells using flow cytometry. We found that miR-20a expression is up-regulated in human macrophages following T. gondii infection. After LNA anti miR-20a oligomer transfection, miR-20a inhibition was evaluated by quantitative reverse transcriptase polymerase chain reaction. Flow cytometry results showed that LNA anti-miR20a oligomer increased apoptosis. In agreement with this result, we found that specific LNA oligonucleotides prevent the functional activity of miR-20a and promotion of human macrophages apoptosis with T. gondii infection by inhibition of this miRNAs gene. Also, the results support the concept that LNA oligomer antisense may be used as a therapeutic implement for blocking detrimental miRNAs overexpressed in infections.
Collapse
Affiliation(s)
- Fatemeh Rezaei
- Department of Parasitology & Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical Sciences, Sari, Iran
| | - Narjes Jafari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdol Sattar Pagheh
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nooshin Hashemi
- North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Hossein Hejazi
- Skin Diseases and Leishmaniasis Research Center, Department of Parasitology & Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
28
|
Liu W, Huang L, Wei Q, Zhang Y, Zhang S, Zhang W, Cai L, Liang S. Microarray analysis of long non-coding RNA expression profiles uncovers a Toxoplasma-induced negative regulation of host immune signaling. Parasit Vectors 2018. [PMID: 29530077 PMCID: PMC5848448 DOI: 10.1186/s13071-018-2697-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Toxoplasma gondii is an obligate intracellular protozoan parasite that can infect mammalian cells and thereby regulate host gene expression. The long non-coding RNAs (lncRNAs) have been demonstrated to be an important class of RNA molecules that regulate many biological processes, including host-pathogen interactions. However, the role of host lncRNAs in the response to T. gondii infection remains largely unknown. METHODS We applied a microarray approach to determine the differential expression profiles of both lncRNAs and mRNAs in the human foreskin fibroblast (HFF) cells after T. gondii infection. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to reveal the potential functions of T. gondii-induced genes. Based on the co-expression networks of lncRNAs and immune-related genes, the role of NONSHAT022487 on the regulation of UNC93B1 related immune signaling was investigated by the knockdown and over-expression of lncRNA in human macrophage derived from the PMA-induced promonocytic cell line THP-1. RESULTS Our data showed that 996 lncRNAs and 109 mRNAs in HFF cells were significantly and differentially expressed following T. gondii infection (fold change ≥ 5, P < 0.05). The results from the GO and KEGG pathway analyses indicated that the mRNAs with differential expression were mainly involved in the host immune response. Remarkably, we identified a novel lncRNA, NONSHAT022487, which suppresses the expression of the immune-related molecule UNC93B1. After T. gondii infection, NONSHAT022487 impaired the secretion of the cytokines IL-12, TNF-α, IL-1β and IFN-γ by downregulating UNC93B1 expression in human macrophage cells. CONCLUSIONS Our study identified infection-induced lncRNA expression as a novel mechanism by which the Toxoplasma parasite regulates host immune signaling, which advances our understanding of the interaction of T. gondii parasites and host cells.
Collapse
Affiliation(s)
- Wenquan Liu
- Department of Parasitology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Liyang Huang
- Department of Parasitology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qimei Wei
- Department of Parasitology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yu Zhang
- Department of Parasitology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Shengnan Zhang
- Department of Parasitology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Wenting Zhang
- Department of Parasitology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Liya Cai
- Department of Parasitology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Shaohui Liang
- Department of Parasitology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
29
|
Global miRNA expression profiling of domestic cat livers following acute Toxoplasma gondii infection. Oncotarget 2018; 8:25599-25611. [PMID: 28424428 PMCID: PMC5421954 DOI: 10.18632/oncotarget.16108] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/08/2017] [Indexed: 12/30/2022] Open
Abstract
Although microRNAs (miRNAs) play an important role in liver homeostasis, the extent to which they can be altered by Toxoplasma gondii infection is unknown. Here, we utilized small RNA sequencing and bioinformatic analyses to characterize miRNA expression profiles in the liver of domestic cats at 7 days after oral infection with T. gondii (Type II) strain. A total of 384 miRNAs were identified and 82 were differentially expressed, of which 33 were up-regulated and 49 down-regulated. Also, 5690 predicted host gene targets for the differentially expressed miRNAs were identified using the bioinformatic algorithm miRanda. Gene ontology analysis revealed that the predicted gene targets of the dysregulated miRNAs were significantly enriched in apoptosis. Kyoto Encyclopedia of Genes and Genomes analysis showed that the predicted gene targets were involved in several pathways, including acute myeloid leukemia, central carbon metabolism in cancer, choline metabolism in cancer, estrogen signaling pathway, fatty acid degradation, lysosome, nucleotide excision repair, progesterone-mediated oocyte maturation, and VEGF signaling pathway. The expression level of 6 upregulated miRNAs (mmu-miR-21a-5p, mmu-miR-20a-5p, mmu-miR-17-5p, mmu-miR-30e-3p, mmu-miR-142a-3p, and mmu-miR-106b-3p) was confirmed by stem-loop quantitative reverse transcription PCR, which yielded results consistent with the sequencing data. These findings expand our understanding of the regulatory mechanisms of miRNAs underlying T. gondii pathogenesis and contribute new database information on cat miRNAs, opening a new perspective on the prevention and treatment of T. gondii infection.
Collapse
|
30
|
Brasil TR, Freire-de-Lima CG, Morrot A, Vetö Arnholdt AC. Host- Toxoplasma gondii Coadaptation Leads to Fine Tuning of the Immune Response. Front Immunol 2017; 8:1080. [PMID: 28955329 PMCID: PMC5601305 DOI: 10.3389/fimmu.2017.01080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/21/2017] [Indexed: 12/22/2022] Open
Abstract
Toxoplasma gondii has successfully developed strategies to evade host's immune response and reach immune privileged sites, which remains in a controlled environment inside quiescent tissue cysts. In this review, we will approach several known mechanisms used by the parasite to modulate mainly the murine immune system at its favor. In what follows, we review recent findings revealing interference of host's cell autonomous immunity and cell signaling, gene expression, apoptosis, and production of microbicide molecules such as nitric oxide and oxygen reactive species during parasite infection. Modulation of host's metalloproteinases of extracellular matrix is also discussed. These immune evasion strategies are determinant to parasite dissemination throughout the host taking advantage of cells from the immune system to reach brain and retina, crossing crucial hosts' barriers.
Collapse
Affiliation(s)
- Thaís Rigueti Brasil
- Laboratório de Biologia do Reconhecer, Universidade Estadual do Norte Fluminense, Rio de Janeiro, Brazil
| | | | - Alexandre Morrot
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | |
Collapse
|
31
|
Znalesniak EB, Fu T, Salm F, Händel U, Hoffmann W. Transcriptional Responses in the Murine Spleen after Toxoplasma gondii Infection: Inflammasome and Mucus-Associated Genes. Int J Mol Sci 2017; 18:ijms18061245. [PMID: 28604600 PMCID: PMC5486068 DOI: 10.3390/ijms18061245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/24/2017] [Accepted: 06/03/2017] [Indexed: 12/12/2022] Open
Abstract
The spleen plays an important role in coordinating both adaptive and innate immune responses. Here, the transcriptional response to T. gondii infection in the murine spleen was characterized concerning inflammasome sensors (two different models: seven days after oral or four weeks after intraperitoneal infection). Additionally, Tff1KO and Tff3KO mice were investigated because TFF genes are often upregulated during inflammation. The expression of the pattern-recognition receptors Nlrp3, Nlrp12, and Nlrp1a was significantly increased after infection. This increase was diminished in Tff1KO and Tff3KO mice pointing towards a positive regulation of the inflammatory response by Tff1 and Tff3. Furthermore, the transcription of Tff1 (encoding a motogenic lectin) and other secretory genes was analyzed, i.e., gastrokines (Gkn), IgG Fc binding protein (Fcgbp), and the mucin Muc2. The corresponding gene products belong to an interactome protecting mucous epithelia. Tff1 was significantly induced after infection, which might increase the motility of immune cells. In contrast, Gkn3, Fcgbp, and Muc2 were downregulated seven days after oral infection; whereas four weeks after i.p. infection only Gkn3 remained downregulated. This might be an indication that Gkn3, Fcgbp, and Muc2 are involved in the transient disruption of the splenic architecture and its reorganization, which is characteristic after T. gondii infection.
Collapse
Affiliation(s)
- Eva B Znalesniak
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
| | - Ting Fu
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
| | - Franz Salm
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
| | - Ulrike Händel
- Institute of Medical Microbiology and Hygiene, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
| | - Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
| |
Collapse
|
32
|
Han S, Tang Q, Lu X, Chen R, Li Y, Shu J, Zhang X, Cao J. Dysregulation of hepatic microRNA expression profiles with Clonorchis sinensis infection. BMC Infect Dis 2016; 16:724. [PMID: 27899092 PMCID: PMC5129388 DOI: 10.1186/s12879-016-2058-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 11/22/2016] [Indexed: 12/18/2022] Open
Abstract
Background Clonorchiasis remains an important zoonotic parasitic disease worldwide. The molecular mechanisms of host-parasite interaction are not fully understood. Non-coding microRNAs (miRNAs) are considered to be key regulators in parasitic diseases. The regulation of miRNAs and host micro-environment may be involved in clonorchiasis, and require further investigation. Methods MiRNA microarray technology and bioinformatic analysis were used to investigate the regulatory mechanisms of host miRNA and to compare miRNA expression profiles in the liver tissues of control and Clonorchis sinensis (C. sinensis)-infected rats. Results A total of eight miRNAs were downregulated and two were upregulated, which showed differentially altered expression profiles in the liver tissue of C. sinensis-infected rats. Further analysis of the differentially expressed miRNAs revealed that many important signal pathways were triggered after infection with C. sinensis, which were related to clonorchiasis pathogenesis, such as cell apoptosis and inflammation, as well as genes involved in signal transduction mechanisms, such as pathways in cancer and the Wnt and Mitogen-activated protein kinases (MAPK) signaling pathways. Conclusions The present study revealed that the miRNA expression profiles of the host were changed by C. sinensis infection. This dysregulation in miRNA expression may contribute to the etiology and pathophysiology of clonorchiasis. These results also provide new insights into the regulatory mechanisms of miRNAs in clonorchiasis, which may present potential targets for future C. sinensis control strategies.
Collapse
Affiliation(s)
- Su Han
- Department of Parasitology, Harbin Medical University, Harbin, 150081, China.,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health, MOH; National Center for International Research on Tropical Diseases; WHO Collaborating Center for Tropical Diseases, Shanghai, People's Republic of China
| | - Qiaoran Tang
- Department of Parasitology, Harbin Medical University, Harbin, 150081, China
| | - Xi Lu
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Chen
- Department of Orthopedic Surgery, The fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yihong Li
- Department of Parasitology, Harbin Medical University, Harbin, 150081, China
| | - Jing Shu
- Department of Parasitology, Harbin Medical University, Harbin, 150081, China
| | - Xiaoli Zhang
- Department of Parasitology, Harbin Medical University, Harbin, 150081, China.
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health, MOH; National Center for International Research on Tropical Diseases; WHO Collaborating Center for Tropical Diseases, Shanghai, People's Republic of China.
| |
Collapse
|
33
|
Yan C, Shen LP, Ma R, Li B, Li XY, Hua H, Zhang B, Yu Q, Wang YG, Tang RX, Zheng KY. Characterization and identification of differentially expressed microRNAs during the process of the peribiliary fibrosis induced by Clonorchis sinensis. INFECTION GENETICS AND EVOLUTION 2016; 43:321-8. [PMID: 27267304 DOI: 10.1016/j.meegid.2016.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/26/2016] [Accepted: 06/03/2016] [Indexed: 12/16/2022]
Abstract
Clonorchis sinensis (C. sinensis) infection can lead to biliary fibrosis. MicroRNAs (miRNAs) play important roles in regulation of genes expression in the liver diseases. However, the differential expression of miRNAs that probably regulates the portal fibrogenesis caused by C. sinensis has not yet been investigated. Hepatic miRNAs expression profiles from C. sinensis-infected mice at different time-points were analyzed by miRNA microarray and validated by quantitative real-time PCR (qRT-PCR). 349 miRNAs were differentially expressed in the liver of the C. sinensis-infected mice at 2, 8 or 16weeks post infection (p.i.), compared with those at 0week p.i., and there were 143 down-regulated and 206 up-regulated miRNAs among them. These all dysregulated miRNAs were potentially involved in the pathological processes of clonorchiasis by regulation of cancer-related signaling pathway, TGF-β signaling pathway, MAPK signaling pathway, Toll-like receptor signaling pathway, PI3K /AKT signaling pathway, etc. 169 of these dysregulated miRNAs were predicted to be involved in the TGF/Smads signaling pathway which plays an important role in the biliary fibrosis caused by C. sinensis. Additionally, miRNA-32, miRNA-34a, miRNA-125b and miRNA-497 were negatively correlated with Smad7 expression, indicating these miRNAs may specifically down-regulate Smad7 expression and participate in regulation of biliary fibrosis caused by C. sinensis. The results of the present study for the first time demonstrated that miRNAs were differentially expressed in the liver of mice infected by C. sinensis, and these miRNAs may play important roles in regulation of peribiliary fibrosis caused by C. sinensis, which may provide possible therapeutic targets for clonorchiasis.
Collapse
Affiliation(s)
- Chao Yan
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, People's Republic of China
| | - Li-Ping Shen
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, People's Republic of China
| | - Rui Ma
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, People's Republic of China
| | - Bo Li
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, People's Republic of China
| | - Xiang-Yang Li
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, People's Republic of China
| | - Hui Hua
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, People's Republic of China
| | - Bo Zhang
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, People's Republic of China
| | - Qian Yu
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, People's Republic of China
| | - Yu-Gang Wang
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, People's Republic of China
| | - Ren-Xian Tang
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, People's Republic of China.
| | - Kui-Yang Zheng
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, People's Republic of China.
| |
Collapse
|
34
|
Huang Y, Huang Y, Chang A, Wang J, Zeng X, Wu J. Is Toxoplasma Gondii Infection a Risk Factor for Leukemia? An Evidence-Based Meta-Analysis. Med Sci Monit 2016; 22:1547-52. [PMID: 27155015 PMCID: PMC4917333 DOI: 10.12659/msm.897155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/05/2016] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Possible associations of parasite infection with cancer risk have recently attracted much attention. Published studies concerning the association between Toxoplasma gondii (T. gondii) infection and leukemia risk have generated inconsistent results. In the present study, we aimed to address this topic by conducting a quantitative meta-analysis. MATERIAL AND METHODS Relevant publications were searched in electronic databases and eligible studies were rigorously screened and selected. Essential information was extracted and the data were pooled. Subgroup analysis on source of controls and detection target was also performed. RESULTS A total of 6 studies that met the inclusion criteria were selected. The overall data show that T. gondii infection might have an association with increased leukemia risk (OR=3.05; 95%CI=1.83-5.08). Similar results were shown in the subgroups regarding source of controls and detection target. CONCLUSIONS Our results suggest that T. gondii infection might be a risk factor for leukemia, providing new insight into the etiology of leukemia. Future studies with large sample sizes in different geographic areas are needed to confirm this conclusion.
Collapse
Affiliation(s)
- Yi Huang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P.R. China
| | - Yu Huang
- Department of Invasive Technology, Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou, P.R. China
| | - Aoshuang Chang
- Department of Parasitology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, P.R. China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P.R. China
| | - Xiaoqing Zeng
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P.R. China
| | - Jiahong Wu
- Department of Parasitology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, P.R. China
| |
Collapse
|
35
|
Transcriptional changes of mouse splenocyte organelle components following acute infection with Toxoplasma gondii. Exp Parasitol 2016; 167:7-16. [PMID: 27132051 DOI: 10.1016/j.exppara.2016.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 04/24/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023]
Abstract
Toxoplasmosis is a globally spread zoonosis. The pathogen Toxoplasma gondii can hijack cellular organelles of host for replication. Although a number of important cellular life events are controlled by cell organelles, very little is known of the transcriptional changes of host cellular organelles after infection with T. gondii. Herein, we performed RNA-sequencing (RNA-seq) and bioinformatics analyses to study the global organelle component changes. It was found that many transcripts of the mouse spleen cellular organelle components were altered by acute T. gondii infection with the RH strain (Type I). Most differentially expressed transcripts of mitochondrial components were downregulated, especially those involved in biosynthetic and metabolic processes. Moreover, mitochondria based apoptosis process was downregulated. In terms of cytoskeleton, most differentially expressed transcript of cytoskeleton components were also downregulated, including septin cytoskeleton, cytoskeleton organization, centrosome and myosin. For endolysosomal system, ion transporters were downregulated at mRNA level, whereas the cytolytic components were increased, such as granzymes, Rab27a and perforin1 (Prf1). The main transcripts of Golgi apparatus components involved in sialylation or vesicle-mediated transportation were downregulated, while immune related components were upregulated. For endoplasmic reticulum (ER), posttranslational modification, drug metabolism and material transportation related transcripts were downregulated. In addition, T. gondii antigen cross-presentation by MHC-I complex could be downregulated by the downregulation of CD76 and ubiquitination related transcripts. The present study, for the first time, described the transcriptional changes of the mouse spleen cellular organelles following acute T. gondii infection, which provides a foundation to study the interaction between T. gondii and host cells at the sub-cellular level.
Collapse
|