1
|
Kurmangaliyeva SS, Madenbayeva AM, Urazayeva ST, Bazargaliyev YS, Kudabayeva KI, Kurmangaliyev KB. The Role of Memory T-Cell Mediated Immunity in Long-term COVID-19: Effects of Vaccination Status. IRANIAN JOURNAL OF MEDICAL SCIENCES 2025; 50:61-68. [PMID: 40026299 PMCID: PMC11870859 DOI: 10.30476/ijms.2024.104003.3744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 03/05/2025]
Abstract
T-cell-mediated immunity is essential for controlling severe acute respiratory syndrome coronavirus 2 (SARSCoV2) infection, preventing severe disease, and potentially reducing the risk of long-term coronavirus disease (COVID). This study investigated the impact of natural infection, vaccination, and hybrid immunity on T-cell responses, with a particular emphasis on the role of memory T-cells in long-term COVID-19. The present study reviewed current literature on T-cell responses, including memory T-cell development, in individuals with natural SARS-CoV-2 infection, those vaccinated with messenger RNA (mRNA) vaccines, and those with hybrid immunity. It examined studies that compared T-cell activity, immune regulation, and the prevalence of long-term COVID-19 across these groups. Natural infection induces variable T-cell responses, with severe cases showing stronger but sometimes dysregulated immunological activity, which may contribute to prolonged COVID-19. Vaccination, particularly with mRNA vaccines, elicits targeted and consistent T-cell responses, including memory T-cells, reducing disease severity, and the incidence of long-term COVID-19. Hybrid immunity combines natural infection and vaccination, provides the most robust protection, enhanceds memory T-cell responses, and reduces the risk of long-term COVID-19 through balanced immune regulation. Memory T-cells play a critical role in mitigating long-term COVID-19. Vaccination significantly enhances T-cell-mediated immunity, minimizing the risk of chronic symptoms compared to natural infection alone. Hybrid immunity provides the most effective defense, emphasizing the importance of vaccination, even after natural infection, to prevent long-term COVID-19.
Collapse
Affiliation(s)
- Saulesh S. Kurmangaliyeva
- Department of Microbiology, Virology, and Immunology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Akzhan M. Madenbayeva
- Department of Internal Diseases 1, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Saltanat T. Urazayeva
- Department of Epidemiology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Yerlan Sh. Bazargaliyev
- Department of Internal Diseases 1, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Khatimya I. Kudabayeva
- Department of Internal Diseases 1, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Kairat B. Kurmangaliyev
- Department of Microbiology, Virology, and Immunology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| |
Collapse
|
2
|
Mukhopadhyay R, Lambisia AW, Hoang JP, Ravenhill BJ, Agoti CN, Krishna BA, Houldcroft CJ. Adenovirus-Specific T Cells in Adults Are Frequent, Cross-Reactive to Common Childhood Adenovirus Infections and Boosted by Adenovirus-Vectored Vaccines. J Med Virol 2025; 97:e70222. [PMID: 39921609 PMCID: PMC11806872 DOI: 10.1002/jmv.70222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/10/2025]
Abstract
Human adenoviruses (HAdVs) cause diverse disease presentations as pathogens and are also used as viral vectors for vaccines and gene therapy products. Pre-existing adaptive immune responses to HAdV are known to influence symptom severity, viral clearance and the success of viral vectored products. Of note, approximately 50% of the UK's adult population has received at least one dose of a chimpanzee adenovirus vectored SARS-CoV-2 vaccine (ChAdOx1) since January 2021. We used FluoroSpot analysis to quantify the interferon-gamma (IFNγ) and interleukin-2 (IL2) responses of healthy blood donors to HAdV species A, B, C, D and F and chimpanzee adenovirus Y25, related to HAdV species E. We find that cellular immune responses to multiple species of human adenovirus are ubiquitous among healthy adult blood donors and that stimulating PBMC with whole hexon peptide libraries induces a significantly greater IFNγ and IL2 response than using selected peptide pools alone. We then compared the cellular immune responses of ChAdOx1 recipients and control donors using PBMC collected in 2021 and found that homotypic and heterotypic IFNγ responses were significantly boosted in ChAdOx1 recipients but not controls. Finally, we show that in PBMC derived from blood donors, IFNγ responses are made to both conserved and variable regions of the hexon protein. Future vaccination campaigns using adenoviral vectored vaccines will need to account for the pre-existing exposure of recipients to both circulating HAdVs and vaccines such as ChAdOx1, which convey polyfunctional antiviral T cell responses to even low seroprevalence HAdV types.
Collapse
Affiliation(s)
| | - Arnold W. Lambisia
- Kenya Medical Research Institute‐Wellcome Trust Research ProgrammeKilifiKenya
| | | | - Benjamin J. Ravenhill
- Cambridge Institute for Medical Research, School of Clinical MedicineUniversity of CambridgeCambridgeUK
| | - Charles N. Agoti
- Kenya Medical Research Institute‐Wellcome Trust Research ProgrammeKilifiKenya
| | | | | |
Collapse
|
3
|
Vojdani A, Yaqinuddin A, Beretta A, Reche PA. Editorial: Cross-reactive immunity and COVID-19. Front Immunol 2024; 15:1509379. [PMID: 39717772 PMCID: PMC11663734 DOI: 10.3389/fimmu.2024.1509379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Affiliation(s)
- Aristo Vojdani
- Laboratory, Immunosciences Lab., Inc., Los Angeles, CA, United States
- Administration, Cyrex Labs, LLC, Phoenix, AZ, United States
| | - Ahmed Yaqinuddin
- Research and Graduate Studies, Graduate Programs, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Alberto Beretta
- Solongevity Research, SoLongevity Healthcenters, Milano, Italy
| | - Pedro A. Reche
- Dpto de Immunologia, Facultad de Medicina, U. Complutense de Madrid, Madrid, Spain
| |
Collapse
|
4
|
Churrotin S, Amarullah IH, Fitria AL, Khairunisa SQ, Yamani LN, Kameoka M, Anggraeni N, Nurhariansyah R, Husada D, Wungu CDK. Cross-reactivity between dengue virus and SARS-CoV-2 antibodies: Confirmation study using specimens from dengue-infected patients before the COVID-19 pandemic. Heliyon 2024; 10:e39099. [PMID: 39524770 PMCID: PMC11550075 DOI: 10.1016/j.heliyon.2024.e39099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Background The simultaneous occurrence of the COVID-19 pandemic and a dengue outbreak has posed significant challenges for governments and medical personnel in dengue-endemic countries like Indonesia. Several studies in dengue-endemic countries have reported cases of misdiagnosis between COVID-19 and dengue. Therefore, it is crucial to evaluate the potential cross-reactivity between SARS-CoV-2 antibodies and dengue. Methods This study aimed to confirm the serological cross-reaction between dengue virus and SARS-CoV-2 in Surabaya, East Java, which is a highly dengue-endemic city in Indonesia. In total, 238 serum samples with confirmed dengue that were collected before the emergence of COVID-19 were tested to detect the presence of reacting IgG and IgM antibodies (Abs) against SARS-CoV-2 via a rapid detection test (RDT) and enzyme-linked immunosorbent assay (ELISA). Samples from patients with dengue infection collected during the pandemic, from healthy volunteers predating the pandemic, and from patients with COVID-19 were used for comparison. Results and conclusion Few (6.7 %) of the pre-COVID-19 dengue Ab-positive serum samples showed reactive on SARS-CoV-2 in the RDT, with significantly lower IgG and IgM levels detected in ELISA compared with the dengue samples collected during the pandemic and the COVID-19 samples (P < 0.005). A comparable anti-SARS-CoV-2 IgG concentration was observed in the pre-COVID-19 dengue samples and healthy volunteers (P = 0.56), which also indicated other possibilities. In conclusion, our results suggested a low risk of cross-reactivity between dengue virus and SARS-CoV-2. However, they highlighted the need for caution when using and interpreting data obtained stemming from serological methods, to prevent false-positive results. Further studies are needed to evaluate the cross-reactivity between dengue virus, SARS-CoV-2, and other common human pathogens, as well as its effect on the serosurveys, treatment of these diseases, or vaccine efficacy.
Collapse
Affiliation(s)
- Siti Churrotin
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, East Java, Indonesia
- Indonesia-Japan Collaborative Research Center for Emerging and Re-Emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, East Java, Indonesia
- Master of Immunology Program, Postgraduate School of Universitas Airlangga, Surabaya, 60286, East Java, Indonesia
| | - Ilham Harlan Amarullah
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, East Java, Indonesia
- Indonesia-Japan Collaborative Research Center for Emerging and Re-Emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, East Java, Indonesia
- Master of Immunology Program, Postgraduate School of Universitas Airlangga, Surabaya, 60286, East Java, Indonesia
| | - Anisa Lailatul Fitria
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, East Java, Indonesia
- Indonesia-Japan Collaborative Research Center for Emerging and Re-Emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, East Java, Indonesia
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, 60115, East Java, Indonesia
| | - Siti Qamariyah Khairunisa
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, East Java, Indonesia
- Research Center on Global Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, East Java, Indonesia
| | - Laura Navika Yamani
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, East Java, Indonesia
- Research Center on Global Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, East Java, Indonesia
- Department of Epidemiology, Biostatistic, Population Studies and Health Promotion, Faculty of Public Health, Universitas Airlangga, Surabaya, 60115, East Java, Indonesia
| | - Masanori Kameoka
- Indonesia-Japan Collaborative Research Center for Emerging and Re-Emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, East Java, Indonesia
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| | - Novi Anggraeni
- Ngudia Husada Madura Midwifery Academy, Bangkalan, Madura, 69116, Indonesia
| | - Robby Nurhariansyah
- Department of Child Health, Universitas Airlangga Hospital, Surabaya, 60115, Indonesia
| | - Dominicus Husada
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, East Java, Indonesia
- Indonesia-Japan Collaborative Research Center for Emerging and Re-Emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, East Java, Indonesia
- Department of Child Health, Faculty of Medicine, Universitas Airlangga/Dr Soetomo General Academic Hospital, Surabaya, 60132, Indonesia
| | - Citrawati Dyah Kencono Wungu
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, East Java, Indonesia
- Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, 60132, East Java, Indonesia
| |
Collapse
|
5
|
Callery EL, Morais CLM, Taylor JV, Challen K, Rowbottom AW. Investigation of Long-Term CD4+ T Cell Receptor Repertoire Changes Following SARS-CoV-2 Infection in Patients with Different Severities of Disease. Diagnostics (Basel) 2024; 14:2330. [PMID: 39451653 PMCID: PMC11507081 DOI: 10.3390/diagnostics14202330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The difference in the immune response to severe acute respiratory syndrome coro-navirus 2 (SARS-CoV-2) in patients with mild versus severe disease remains poorly understood. Recent scientific advances have recognised the vital role of both B cells and T cells; however, many questions remain unanswered, particularly for T cell responses. T cells are essential for helping the generation of SARS-CoV-2 antibody responses but have also been recognised in their own right as a major factor influencing COVID-19 disease outcomes. The examination of T cell receptor (TCR) family differences over a 12-month period in patients with varying COVID-19 disease severity is crucial for understanding T cell responses to SARS-CoV-2. METHODS We applied a machine learning approach to analyse TCR vb family responses in COVID-19 patients (n = 151) across multiple timepoints and disease severities alongside SARS-CoV-2 infection-naïve (healthy control) individ-uals (n = 62). RESULTS Blood samples from hospital in-patients with moderate, severe, or critical disease could be classified with an accuracy of 94%. Furthermore, we identified significant variances in TCR vb family specificities between disease and control subgroups. CONCLUSIONS Our findings suggest advantageous and disadvantageous TCR repertoire patterns in relation to disease severity. Following validation in larger cohorts, our methodology may be useful in detecting protective immunity and the assessment of long-term outcomes, particularly as we begin to unravel the immunological mechanisms leading to post-COVID complications.
Collapse
Affiliation(s)
- Emma L. Callery
- Department of Immunology, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
| | - Camilo L. M. Morais
- Institute of Chemistry, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil;
| | - Jemma V. Taylor
- Department of Immunology, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
| | - Kirsty Challen
- Department of Emergency Medicine, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
| | - Anthony W. Rowbottom
- Department of Immunology, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
- School of Medicine, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|
6
|
Garziano M, Cano Fiestas M, Vanetti C, Strizzi S, Murno ML, Clerici M, Biasin M. SARS-CoV-2 natural infection, but not vaccine-induced immunity, elicits cross-reactive immunity to OC43. Heliyon 2024; 10:e37928. [PMID: 39391514 PMCID: PMC11466580 DOI: 10.1016/j.heliyon.2024.e37928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Background The recent SARS-CoV-2 pandemic renewed interest toward other non-severe acute respiratory syndrome human coronaviruses. Among these, OC43 is a seasonal human coronavirus widely diffused in the population (90 % seroprevalence in adults) which is responsible for mild respiratory symptoms. As OC43 protective immunity is short lasting, we investigated whether humoral immunity to SARS-CoV-2, induced by vaccination or spontaneous infection, protects against OC43 re-infection at either systemic or mucosal level. Methods A neutralization assay was conducted against "wild type" SARS-CoV-2 lineage B.1 (EU) and OC43 in VeroE6 cell lines using plasma and saliva samples from 49 subjects who were never infected and received three BNT162b2 RNA vaccine doses (SARS-CoV-2-vaccinated: SV) and from 25 SARS-CoV-2-infected and vaccinated subjects (SIV). The assays were performed right before (T0), fifteen days (T1) and three months (T2) after the third dose administration (SV) or post-infection (SIV). Results After the third vaccination dose was administered, SARS-CoV-2-specific neutralizing activity (NA) significantly augmented in SV saliva (p < 0.05) and plasma (p < 0.0001); yet, this NA was not protective against OC43. Conversely, in SIV, at T1, natural infection significantly increased NA against both SARS-CoV-2 (p < 0.01) and OC43 (p < 0.05) at systemic as well as mucosal level; still, this cross-reactivity vanished at T2. Of note, NA against SARS-CoV-2 and OC43 was shown to be higher in SIV compared to SV in plasma and saliva, as well; though, statistically significant differences were evident only in the oral mucosa at T1 (p < 0.05). Conclusions Our findings show that SARS-CoV-2 spontaneous infection triggers a more comprehensive and cross-reactive immunity than vaccine-induced immunity, protecting against OC43 at the systemic and mucosal levels. These results support the development of a pan-coronavirus vaccine able to prompt cross-reactive immunity even against seasonal coronaviruses, which could have enormous economic and health benefits globally.
Collapse
Affiliation(s)
- Micaela Garziano
- Laboratory of Immunobiology, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Mario Cano Fiestas
- Laboratory of Immunobiology, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Claudia Vanetti
- Laboratory of Immunobiology, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Sergio Strizzi
- Laboratory of Immunobiology, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Maria Luisa Murno
- Laboratory of Immunobiology, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Don C. Gnocchi Foundation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation, Milan, Italy
| | - Mara Biasin
- Laboratory of Immunobiology, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Fernandez SA, Pelaez-Prestel HF, Fiyouzi T, Gomez-Perosanz M, Reiné J, Reche PA. Tetanus-diphtheria vaccine can prime SARS-CoV-2 cross-reactive T cells. Front Immunol 2024; 15:1425374. [PMID: 39091504 PMCID: PMC11291333 DOI: 10.3389/fimmu.2024.1425374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Vaccines containing tetanus-diphtheria antigens have been postulated to induce cross-reactive immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which could protect against coronavirus disease (COVID-19). In this work, we investigated the capacity of Tetanus-diphtheria (Td) vaccine to prime existing T cell immunity to SARS-CoV-2. To that end, we first collected known SARS-CoV-2 specific CD8+ T cell epitopes targeted during the course of SARS-CoV-2 infection in humans and identified as potentially cross-reactive with Td vaccine those sharing similarity with tetanus-diphtheria vaccine antigens, as judged by Levenshtein edit distances (≤ 20% edits per epitope sequence). As a result, we selected 25 potentially cross-reactive SARS-CoV-2 specific CD8+ T cell epitopes with high population coverage that were assembled into a synthetic peptide pool (TDX pool). Using peripheral blood mononuclear cells, we first determined by intracellular IFNγ staining assays existing CD8+ T cell recall responses to the TDX pool and to other peptide pools, including overlapping peptide pools covering SARS-CoV-2 Spike protein and Nucleocapsid phosphoprotein (NP). In the studied subjects, CD8+ T cell recall responses to Spike and TDX peptide pools were dominant and comparable, while recall responses to NP peptide pool were less frequent and weaker. Subsequently, we studied responses to the same peptides using antigen-inexperienced naive T cells primed/stimulated in vitro with Td vaccine. Priming stimulations were carried out by co-culturing naive T cells with autologous irradiated peripheral mononuclear cells in the presence of Td vaccine, IL-2, IL-7 and IL-15. Interestingly, naive CD8+ T cells stimulated/primed with Td vaccine responded strongly and specifically to the TDX pool, not to other SARS-CoV-2 peptide pools. Finally, we show that Td-immunization of C57BL/6J mice elicited T cells cross-reactive with the TDX pool. Collectively, our findings support that tetanus-diphtheria vaccines can prime SARS-CoV-2 cross-reactive T cells and likely contribute to shape the T cell responses to the virus.
Collapse
Affiliation(s)
- Sara Alonso Fernandez
- Department of Immunology & O2, Faculty of Medicine, Complutense University of Madrid, Ciudad Universitaria, Madrid, Spain
| | - Hector F. Pelaez-Prestel
- Department of Immunology & O2, Faculty of Medicine, Complutense University of Madrid, Ciudad Universitaria, Madrid, Spain
| | - Tara Fiyouzi
- Department of Immunology & O2, Faculty of Medicine, Complutense University of Madrid, Ciudad Universitaria, Madrid, Spain
| | - Marta Gomez-Perosanz
- Department of Immunology & O2, Faculty of Medicine, Complutense University of Madrid, Ciudad Universitaria, Madrid, Spain
| | - Jesús Reiné
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
| | - Pedro A. Reche
- Department of Immunology & O2, Faculty of Medicine, Complutense University of Madrid, Ciudad Universitaria, Madrid, Spain
| |
Collapse
|
8
|
Casado-Fernández G, Cantón J, Nasarre L, Ramos-Martín F, Manzanares M, Sánchez-Menéndez C, Fuertes D, Mateos E, Murciano-Antón MA, Pérez-Olmeda M, Cervero M, Torres M, Rodríguez-Rosado R, Coiras M. Pre-existing cell populations with cytotoxic activity against SARS-CoV-2 in people with HIV and normal CD4/CD8 ratio previously unexposed to the virus. Front Immunol 2024; 15:1362621. [PMID: 38812512 PMCID: PMC11133563 DOI: 10.3389/fimmu.2024.1362621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction HIV-1 infection may produce a detrimental effect on the immune response. Early start of antiretroviral therapy (ART) is recommended to preserve the integrity of the immune system. In fact, people with HIV (PWH) and normal CD4/CD8 ratio appear not to be more susceptible to severe forms of COVID-19 than the general population and they usually present a good seroconversion rate in response to vaccination against SARS-CoV-2. However, few studies have fully characterized the development of cytotoxic immune populations in response to COVID-19 vaccination in these individuals. Methods In this study, we recruited PWH with median time of HIV-1 infection of 6 years, median CD4/CD8 ratio of 1.0, good adherence to ART, persistently undetectable viral load, and negative serology against SARS-CoV-2, who then received the complete vaccination schedule against COVID-19. Blood samples were taken before vaccination against COVID-19 and one month after receiving the complete vaccination schedule. Results PWH produced high levels of IgG against SARS-CoV-2 in response to vaccination that were comparable to healthy donors, with a significantly higher neutralization capacity. Interestingly, the cytotoxic activity of PBMCs from PWH against SARS-CoV-2-infected cells was higher than healthy donors before receiving the vaccination schedule, pointing out the pre-existence of activated cell populations with likely unspecific antiviral activity. The characterization of these cytotoxic cell populations revealed high levels of Tgd cells with degranulation capacity against SARS-CoV-2-infected cells. In response to vaccination, the degranulation capacity of CD8+ T cells also increased in PWH but not in healthy donors. Discussion The full vaccination schedule against COVID-19 did not modify the ability to respond against HIV-1-infected cells in PWH and these individuals did not show more susceptibility to breakthrough infection with SARS-CoV-2 than healthy donors after 12 months of follow-up. These results revealed the development of protective cell populations with broad-spectrum antiviral activity in PWH with normal CD4/CD8 ratio and confirmed the importance of early ART and treatment adherence to avoid immune dysfunctions.
Collapse
Affiliation(s)
- Guiomar Casado-Fernández
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- PhD Program in Health Sciences, Faculty of Sciences, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Juan Cantón
- PhD Program in Health Sciences, Faculty of Sciences, Universidad de Alcalá, Alcalá de Henares, Spain
- Internal Medicine Service, Hospital Universitario Severo Ochoa, Leganés, Madrid, Spain
| | - Laura Nasarre
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Fernando Ramos-Martín
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Mario Manzanares
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- PhD Program in Biomedical Sciences and Public Health, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Clara Sánchez-Menéndez
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- PhD Program in Biomedical Sciences and Public Health, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Daniel Fuertes
- School of Telecommunications Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - Elena Mateos
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases [Centro de Investigación Biomédica en Red Enfermedades Infecciosas (CIBERINFEC)], Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - María Aranzazu Murciano-Antón
- Family Medicine, Centro de Salud Doctor Pedro Laín Entralgo, Alcorcón, Madrid, Spain
- International PhD School, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Mayte Pérez-Olmeda
- Biomedical Research Center Network in Infectious Diseases [Centro de Investigación Biomédica en Red Enfermedades Infecciosas (CIBERINFEC)], Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Serology Service, Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Cervero
- Internal Medicine Service, Hospital Universitario Severo Ochoa, Leganés, Madrid, Spain
- School of Medicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Montserrat Torres
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases [Centro de Investigación Biomédica en Red Enfermedades Infecciosas (CIBERINFEC)], Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Rafael Rodríguez-Rosado
- Internal Medicine Service, Hospital Universitario Severo Ochoa, Leganés, Madrid, Spain
- School of Medicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Mayte Coiras
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases [Centro de Investigación Biomédica en Red Enfermedades Infecciosas (CIBERINFEC)], Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| |
Collapse
|
9
|
Coulon PG, Prakash S, Dhanushkodi NR, Srivastava R, Zayou L, Tifrea DF, Edwards RA, Figueroa CJ, Schubl SD, Hsieh L, Nesburn AB, Kuppermann BD, Bahraoui E, Vahed H, Gil D, Jones TM, Ulmer JB, BenMohamed L. High frequencies of alpha common cold coronavirus/SARS-CoV-2 cross-reactive functional CD4 + and CD8 + memory T cells are associated with protection from symptomatic and fatal SARS-CoV-2 infections in unvaccinated COVID-19 patients. Front Immunol 2024; 15:1343716. [PMID: 38605956 PMCID: PMC11007208 DOI: 10.3389/fimmu.2024.1343716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/08/2024] [Indexed: 04/13/2024] Open
Abstract
Background Cross-reactive SARS-CoV-2-specific memory CD4+ and CD8+ T cells are present in up to 50% of unexposed, pre-pandemic, healthy individuals (UPPHIs). However, the characteristics of cross-reactive memory CD4+ and CD8+ T cells associated with subsequent protection of asymptomatic coronavirus disease 2019 (COVID-19) patients (i.e., unvaccinated individuals who never develop any COVID-19 symptoms despite being infected with SARS-CoV-2) remains to be fully elucidated. Methods This study compares the antigen specificity, frequency, phenotype, and function of cross-reactive memory CD4+ and CD8+ T cells between common cold coronaviruses (CCCs) and SARS-CoV-2. T-cell responses against genome-wide conserved epitopes were studied early in the disease course in a cohort of 147 unvaccinated COVID-19 patients who were divided into six groups based on the severity of their symptoms. Results Compared to severely ill COVID-19 patients and patients with fatal COVID-19 outcomes, the asymptomatic COVID-19 patients displayed significantly: (i) higher rates of co-infection with the 229E alpha species of CCCs (α-CCC-229E); (ii) higher frequencies of cross-reactive functional CD134+CD137+CD4+ and CD134+CD137+CD8+ T cells that cross-recognized conserved epitopes from α-CCCs and SARS-CoV-2 structural, non-structural, and accessory proteins; and (iii) lower frequencies of CCCs/SARS-CoV-2 cross-reactive exhausted PD-1+TIM3+TIGIT+CTLA4+CD4+ and PD-1+TIM3+TIGIT+CTLA4+CD8+ T cells, detected both ex vivo and in vitro. Conclusions These findings (i) support a crucial role of functional, poly-antigenic α-CCCs/SARS-CoV-2 cross-reactive memory CD4+ and CD8+ T cells, induced following previous CCCs seasonal exposures, in protection against subsequent severe COVID-19 disease and (ii) provide critical insights into developing broadly protective, multi-antigen, CD4+, and CD8+ T-cell-based, universal pan-Coronavirus vaccines capable of conferring cross-species protection.
Collapse
Affiliation(s)
- Pierre-Gregoire Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Nisha R. Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Delia F. Tifrea
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Robert A. Edwards
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Cesar J. Figueroa
- Department of Surgery, Divisions of Trauma, Burns and Critical Care, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Sebastian D. Schubl
- Department of Surgery, Divisions of Trauma, Burns and Critical Care, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Lanny Hsieh
- Department of Medicine, Division of Infectious Diseases and Hospitalist Program, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Baruch D. Kuppermann
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | | | - Hawa Vahed
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Daniel Gil
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Trevor M. Jones
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Jeffrey B. Ulmer
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
- Université Paul Sabatier, Infinity, Inserm, Toulouse, France
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
- Institute for Immunology, The University of California Irvine, School of Medicine, Irvine, CA, United States
| |
Collapse
|
10
|
Cankat S, Demael MU, Swadling L. In search of a pan-coronavirus vaccine: next-generation vaccine design and immune mechanisms. Cell Mol Immunol 2024; 21:103-118. [PMID: 38148330 PMCID: PMC10805787 DOI: 10.1038/s41423-023-01116-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/21/2023] [Indexed: 12/28/2023] Open
Abstract
Members of the coronaviridae family are endemic to human populations and have caused several epidemics and pandemics in recent history. In this review, we will discuss the feasibility of and progress toward the ultimate goal of creating a pan-coronavirus vaccine that can protect against infection and disease by all members of the coronavirus family. We will detail the unmet clinical need associated with the continued transmission of SARS-CoV-2, MERS-CoV and the four seasonal coronaviruses (HCoV-OC43, NL63, HKU1 and 229E) in humans and the potential for future zoonotic coronaviruses. We will highlight how first-generation SARS-CoV-2 vaccines and natural history studies have greatly increased our understanding of effective antiviral immunity to coronaviruses and have informed next-generation vaccine design. We will then consider the ideal properties of a pan-coronavirus vaccine and propose a blueprint for the type of immunity that may offer cross-protection. Finally, we will describe a subset of the diverse technologies and novel approaches being pursued with the goal of developing broadly or universally protective vaccines for coronaviruses.
Collapse
Affiliation(s)
- S Cankat
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London, NW3 2PP, UK
| | - M U Demael
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London, NW3 2PP, UK
| | - L Swadling
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London, NW3 2PP, UK.
| |
Collapse
|
11
|
Dos Santos Alves RP, Timis J, Miller R, Valentine K, Pinto PBA, Gonzalez A, Regla-Nava JA, Maule E, Nguyen MN, Shafee N, Landeras-Bueno S, Olmedillas E, Laffey B, Dobaczewska K, Mikulski Z, McArdle S, Leist SR, Kim K, Baric RS, Ollmann Saphire E, Elong Ngono A, Shresta S. Human coronavirus OC43-elicited CD4 + T cells protect against SARS-CoV-2 in HLA transgenic mice. Nat Commun 2024; 15:787. [PMID: 38278784 PMCID: PMC10817949 DOI: 10.1038/s41467-024-45043-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
SARS-CoV-2-reactive T cells are detected in some healthy unexposed individuals. Human studies indicate these T cells could be elicited by the common cold coronavirus OC43. To directly test this assumption and define the role of OC43-elicited T cells that are cross-reactive with SARS-CoV-2, we develop a model of sequential infections with OC43 followed by SARS-CoV-2 in HLA-B*0702 and HLA-DRB1*0101 Ifnar1-/- transgenic mice. We find that OC43 infection can elicit polyfunctional CD8+ and CD4+ effector T cells that cross-react with SARS-CoV-2 peptides. Furthermore, pre-exposure to OC43 reduces subsequent SARS-CoV-2 infection and disease in the lung for a short-term in HLA-DRB1*0101 Ifnar1-/- transgenic mice, and a longer-term in HLA-B*0702 Ifnar1-/- transgenic mice. Depletion of CD4+ T cells in HLA-DRB1*0101 Ifnar1-/- transgenic mice with prior OC43 exposure results in increased viral burden in the lung but no change in virus-induced lung damage following infection with SARS-CoV-2 (versus CD4+ T cell-sufficient mice), demonstrating that the OC43-elicited SARS-CoV-2 cross-reactive T cell-mediated cross-protection against SARS-CoV-2 is partially dependent on CD4+ T cells. These findings contribute to our understanding of the origin of pre-existing SARS-CoV-2-reactive T cells and their effects on SARS-CoV-2 clinical outcomes, and also carry implications for development of broadly protective betacoronavirus vaccines.
Collapse
Affiliation(s)
| | - Julia Timis
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Robyn Miller
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kristen Valentine
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Andrew Gonzalez
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Jose Angel Regla-Nava
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Microbiology and Pathology, University Center for Health Science (CUCS), University of Guadalajara, Guadalajara, 44340, Mexico
| | - Erin Maule
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Michael N Nguyen
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Norazizah Shafee
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Sara Landeras-Bueno
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Eduardo Olmedillas
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Brett Laffey
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Katarzyna Dobaczewska
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Sara McArdle
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth Kim
- Histopathology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Annie Elong Ngono
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA.
| | - Sujan Shresta
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA.
| |
Collapse
|
12
|
Ugwu CA, Alao O, John OG, Akinnawo B, Ajayi I, Odebode O, Bejide I, Campbell A, Campbell J, Adole JA, B. Olawoye I, Akano K, Okolie J, Eromon P, Olaitan P, Olagunoye A, Adebayo I, Adebayo V, Babalola E, Abioye O, Ajayi N, Ogah E, Ukwaja K, Okoro S, Oje O, Kingsley OC, Eke M, Onyia V, Achonduh-Atijegbe O, Ewah FE, Obasi M, Igwe V, Ayodeji O, Chukwuyem A, Owhin S, Oyejide N, Abah S, Ingbian W, Osoba M, Alebiosu A, Nadesalingam A, Aguinam ET, Carnell G, Krause N, Chan A, George C, Kinsley R, Tonks P, Temperton N, Heeney J, Happi C. Immunological insights into COVID-19 in Southern Nigeria. Front Immunol 2024; 15:1305586. [PMID: 38322252 PMCID: PMC10844438 DOI: 10.3389/fimmu.2024.1305586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
Introduction One of the unexpected outcomes of the COVID-19 pandemic was the relatively low levels of morbidity and mortality in Africa compared to the rest of the world. Nigeria, Africa's most populous nation, accounted for less than 0.01% of the global COVID-19 fatalities. The factors responsible for Nigeria's relatively low loss of life due to COVID-19 are unknown. Also, the correlates of protective immunity to SARS-CoV-2 and the impact of pre-existing immunity on the outcome of the COVID-19 pandemic in Africa are yet to be elucidated. Here, we evaluated the natural and vaccine-induced immune responses from vaccinated, non-vaccinated and convalescent individuals in Southern Nigeria throughout the three waves of the COVID-19 pandemic in Nigeria. We also examined the pre-existing immune responses to SARS-CoV-2 from samples collected prior to the COVID-19 pandemic. Methods We used spike RBD and N- IgG antibody ELISA to measure binding antibody responses, SARS-CoV-2 pseudotype assay protocol expressing the spike protein of different variants (D614G, Delta, Beta, Omicron BA1) to measure neutralizing antibody responses and nucleoprotein (N) and spike (S1, S2) direct ex vivo interferon gamma (IFNγ) T cell ELISpot to measure T cell responses. Result Our study demonstrated a similar magnitude of both binding (N-IgG (74% and 62%), S-RBD IgG (70% and 53%) and neutralizing (D614G (49% and 29%), Delta (56% and 47%), Beta (48% and 24%), Omicron BA1 (41% and 21%)) antibody responses from symptomatic and asymptomatic survivors in Nigeria. A similar magnitude was also seen among vaccinated participants. Interestingly, we revealed the presence of preexisting binding antibodies (N-IgG (60%) and S-RBD IgG (44%)) but no neutralizing antibodies from samples collected prior to the pandemic. Discussion These findings revealed that both vaccinated, non-vaccinated and convalescent individuals in Southern Nigeria make similar magnitude of both binding and cross-reactive neutralizing antibody responses. It supported the presence of preexisting binding antibody responses among some Nigerians prior to the COVID-19 pandemic. Lastly, hybrid immunity and heterologous vaccine boosting induced the strongest binding and broadly neutralizing antibody responses compared to vaccine or infection-acquired immunity alone.
Collapse
Affiliation(s)
- Chinedu A. Ugwu
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede, Osun, Nigeria
| | - Oluwasina Alao
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede, Osun, Nigeria
| | - Oluwagboadurami G. John
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede, Osun, Nigeria
| | - Blossom Akinnawo
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede, Osun, Nigeria
| | - Israel Ajayi
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede, Osun, Nigeria
| | - Ooreofe Odebode
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede, Osun, Nigeria
| | - Ifeoluwa Bejide
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede, Osun, Nigeria
| | - Allan Campbell
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede, Osun, Nigeria
| | - Julian Campbell
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede, Osun, Nigeria
| | - Jolly A. Adole
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede, Osun, Nigeria
| | - Idowu B. Olawoye
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede, Osun, Nigeria
| | - Kazeem Akano
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede, Osun, Nigeria
| | - Johnson Okolie
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
| | - Philomena Eromon
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
| | - Peter Olaitan
- Osun State University Teaching Hospital (UNIOSUNTH), Osogbo, Nigeria
| | - Ajibola Olagunoye
- Osun State University Teaching Hospital (UNIOSUNTH), Osogbo, Nigeria
| | - Ibukun Adebayo
- Osun State University Teaching Hospital (UNIOSUNTH), Osogbo, Nigeria
| | - Victor Adebayo
- Osun State University Teaching Hospital (UNIOSUNTH), Osogbo, Nigeria
| | | | - Omowumi Abioye
- Osun State University Teaching Hospital (UNIOSUNTH), Osogbo, Nigeria
| | - Nnennaya Ajayi
- Alex Ekwueme Federal University Teaching Hospital Abakaliki (AEFUTHA), Abakaliki, Nigeria
| | - Emeka Ogah
- Alex Ekwueme Federal University Teaching Hospital Abakaliki (AEFUTHA), Abakaliki, Nigeria
| | - Kingsley Ukwaja
- Alex Ekwueme Federal University Teaching Hospital Abakaliki (AEFUTHA), Abakaliki, Nigeria
| | - Sylvanus Okoro
- Alex Ekwueme Federal University Teaching Hospital Abakaliki (AEFUTHA), Abakaliki, Nigeria
| | - Ogbonnaya Oje
- Alex Ekwueme Federal University Teaching Hospital Abakaliki (AEFUTHA), Abakaliki, Nigeria
| | | | - Matthew Eke
- Alex Ekwueme Federal University Teaching Hospital Abakaliki (AEFUTHA), Abakaliki, Nigeria
| | - Venatius Onyia
- Alex Ekwueme Federal University Teaching Hospital Abakaliki (AEFUTHA), Abakaliki, Nigeria
| | - Olivia Achonduh-Atijegbe
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
| | - Friday Elechi Ewah
- Alex Ekwueme Federal University Teaching Hospital Abakaliki (AEFUTHA), Abakaliki, Nigeria
| | - Mary Obasi
- Alex Ekwueme Federal University Teaching Hospital Abakaliki (AEFUTHA), Abakaliki, Nigeria
| | - Violet Igwe
- Alex Ekwueme Federal University Teaching Hospital Abakaliki (AEFUTHA), Abakaliki, Nigeria
| | | | | | | | - Nicholas Oyejide
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
| | | | - Winifred Ingbian
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
| | - Moyosoore Osoba
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
| | - Ahmed Alebiosu
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
| | - Angalee Nadesalingam
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ernest T. Aguinam
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - George Carnell
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nina Krause
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Andrew Chan
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Charlotte George
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Rebecca Kinsley
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Paul Tonks
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent, Kent, United Kingdom
| | - Jonathan Heeney
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Christian Happi
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede, Osun, Nigeria
| |
Collapse
|
13
|
Prakash S, Dhanushkodi NR, Zayou L, Ibraim IC, Quadiri A, Coulon PG, Tifrea DF, Suzer B, Shaik AM, Chilukuri A, Edwards RA, Singer M, Vahed H, Nesburn AB, Kuppermann BD, Ulmer JB, Gil D, Jones TM, BenMohamed L. Cross-protection induced by highly conserved human B, CD4 +, and CD8 + T-cell epitopes-based vaccine against severe infection, disease, and death caused by multiple SARS-CoV-2 variants of concern. Front Immunol 2024; 15:1328905. [PMID: 38318166 PMCID: PMC10839970 DOI: 10.3389/fimmu.2024.1328905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic has created one of the largest global health crises in almost a century. Although the current rate of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections has decreased significantly, the long-term outlook of COVID-19 remains a serious cause of morbidity and mortality worldwide, with the mortality rate still substantially surpassing even that recorded for influenza viruses. The continued emergence of SARS-CoV-2 variants of concern (VOCs), including multiple heavily mutated Omicron sub-variants, has prolonged the COVID-19 pandemic and underscores the urgent need for a next-generation vaccine that will protect from multiple SARS-CoV-2 VOCs. METHODS We designed a multi-epitope-based coronavirus vaccine that incorporated B, CD4+, and CD8+ T- cell epitopes conserved among all known SARS-CoV-2 VOCs and selectively recognized by CD8+ and CD4+ T-cells from asymptomatic COVID-19 patients irrespective of VOC infection. The safety, immunogenicity, and cross-protective immunity of this pan-variant SARS-CoV-2 vaccine were studied against six VOCs using an innovative triple transgenic h-ACE-2-HLA-A2/DR mouse model. RESULTS The pan-variant SARS-CoV-2 vaccine (i) is safe , (ii) induces high frequencies of lung-resident functional CD8+ and CD4+ TEM and TRM cells , and (iii) provides robust protection against morbidity and virus replication. COVID-19-related lung pathology and death were caused by six SARS-CoV-2 VOCs: Alpha (B.1.1.7), Beta (B.1.351), Gamma or P1 (B.1.1.28.1), Delta (lineage B.1.617.2), and Omicron (B.1.1.529). CONCLUSION A multi-epitope pan-variant SARS-CoV-2 vaccine bearing conserved human B- and T- cell epitopes from structural and non-structural SARS-CoV-2 antigens induced cross-protective immunity that facilitated virus clearance, and reduced morbidity, COVID-19-related lung pathology, and death caused by multiple SARS-CoV-2 VOCs.
Collapse
Affiliation(s)
- Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Nisha R. Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Izabela Coimbra Ibraim
- High Containment Facility, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Pierre Gregoire Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Delia F. Tifrea
- Department of Pathology and Laboratory Medicine, School of Medicine, the University of California Irvine, Irvine, CA, United States
| | - Berfin Suzer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Amin Mohammed Shaik
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Amruth Chilukuri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Robert A. Edwards
- Department of Pathology and Laboratory Medicine, School of Medicine, the University of California Irvine, Irvine, CA, United States
| | - Mahmoud Singer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Hawa Vahed
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Baruch D. Kuppermann
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Jeffrey B. Ulmer
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Daniel Gil
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Trevor M. Jones
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
- Division of Infectious Diseases and Hospitalist Program, Department of Medicine, School of Medicine, the University of California Irvine, Irvine, CA, United States
- Institute for Immunology; University of California Irvine, School of Medicine, Irvine, CA, United States
| |
Collapse
|
14
|
Lee JS, Karthikeyan D, Fini M, Vincent BG, Rubinsteyn A. ACE configurator for ELISpot: optimizing combinatorial design of pooled ELISpot assays with an epitope similarity model. Brief Bioinform 2023; 25:bbad495. [PMID: 38180831 PMCID: PMC10768796 DOI: 10.1093/bib/bbad495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/16/2023] [Accepted: 12/01/2023] [Indexed: 01/07/2024] Open
Abstract
The enzyme-linked immunosorbent spot (ELISpot) assay is a powerful in vitro immunoassay that enables cost-effective quantification of antigen-specific T-cell reactivity. It is used widely in the context of cancer and infectious diseases to validate the immunogenicity of predicted epitopes. While technological advances have kept pace with the demand for increased throughput, efforts to increase scale are bottlenecked by current assay design and deconvolution methods, which have remained largely unchanged. Current methods for designing pooled ELISpot experiments offer limited flexibility of assay parameters, lack support for high-throughput scenarios and do not consider peptide identity during pool assignment. We introduce the ACE Configurator for ELISpot (ACE) to address these gaps. ACE generates optimized peptide-pool assignments from highly customizable user inputs and handles the deconvolution of positive peptides using assay readouts. In this study, we present a novel sequence-aware pooling strategy, powered by a fine-tuned ESM-2 model that groups immunologically similar peptides, reducing the number of false positives and subsequent confirmatory assays compared to existing combinatorial approaches. To validate ACE's performance on real-world datasets, we conducted a comprehensive benchmark study, contextualizing design choices with their impact on prediction quality. Our results demonstrate ACE's capacity to further increase precision of identified immunogenic peptides, directly optimizing experimental efficiency. ACE is freely available as an executable with a graphical user interface and command-line interfaces at https://github.com/pirl-unc/ace.
Collapse
Affiliation(s)
- Jin Seok Lee
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Computational Medicine Program, UNC School of Medicine, Chapel Hill, NC, USA
- Curriculum in Bioinformatics and Computational Biology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Dhuvarakesh Karthikeyan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Computational Medicine Program, UNC School of Medicine, Chapel Hill, NC, USA
- Curriculum in Bioinformatics and Computational Biology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Misha Fini
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Benjamin G Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
- Computational Medicine Program, UNC School of Medicine, Chapel Hill, NC, USA
- Curriculum in Bioinformatics and Computational Biology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Alex Rubinsteyn
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Computational Medicine Program, UNC School of Medicine, Chapel Hill, NC, USA
- Curriculum in Bioinformatics and Computational Biology, UNC School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|
15
|
Diniz MO, Maini MK, Swadling L. T cell control of SARS-CoV-2: When, which, and where? Semin Immunol 2023; 70:101828. [PMID: 37651850 DOI: 10.1016/j.smim.2023.101828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
Efficient immune protection against viruses such as SARS-CoV-2 requires the coordinated activity of innate immunity, B and T cells. Accumulating data point to a critical role for T cells not only in the clearance of established infection, but also for aborting viral replication independently of humoral immunity. Here we review the evidence supporting the contribution of antiviral T cells and consider which of their qualitative features favour efficient control of infection. We highlight how studies of SARS-CoV-2 and other coronaviridae in animals and humans have provided important lessons on the optimal timing (When), functionality and specificity (Which), and location (Where) of antiviral T cells. We discuss the clinical implications, particularly for the development of next-generation vaccines, and emphasise areas requiring further study.
Collapse
Affiliation(s)
- Mariana O Diniz
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK
| | - Mala K Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK.
| | - Leo Swadling
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK.
| |
Collapse
|
16
|
Tan CCS, Trew J, Peacock TP, Mok KY, Hart C, Lau K, Ni D, Orme CDL, Ransome E, Pearse WD, Coleman CM, Bailey D, Thakur N, Quantrill JL, Sukhova K, Richard D, Kahane L, Woodward G, Bell T, Worledge L, Nunez-Mino J, Barclay W, van Dorp L, Balloux F, Savolainen V. Genomic screening of 16 UK native bat species through conservationist networks uncovers coronaviruses with zoonotic potential. Nat Commun 2023; 14:3322. [PMID: 37369644 PMCID: PMC10300128 DOI: 10.1038/s41467-023-38717-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/05/2023] [Indexed: 06/29/2023] Open
Abstract
There has been limited characterisation of bat-borne coronaviruses in Europe. Here, we screened for coronaviruses in 48 faecal samples from 16 of the 17 bat species breeding in the UK, collected through a bat rehabilitation and conservationist network. We recovered nine complete genomes, including two novel coronavirus species, across six bat species: four alphacoronaviruses, a MERS-related betacoronavirus, and four closely related sarbecoviruses. We demonstrate that at least one of these sarbecoviruses can bind and use the human ACE2 receptor for infecting human cells, albeit suboptimally. Additionally, the spike proteins of these sarbecoviruses possess an R-A-K-Q motif, which lies only one nucleotide mutation away from a furin cleavage site (FCS) that enhances infectivity in other coronaviruses, including SARS-CoV-2. However, mutating this motif to an FCS does not enable spike cleavage. Overall, while UK sarbecoviruses would require further molecular adaptations to infect humans, their zoonotic risk warrants closer surveillance.
Collapse
Affiliation(s)
- Cedric C S Tan
- UCL Genetics Institute, University College London, Gower St, London, WC1E 6BT, UK
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Jahcub Trew
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Thomas P Peacock
- Department of Infectious Disease, Imperial College London, St Marys Medical School, Paddington, London, W2 1PG, UK
| | - Kai Yi Mok
- Department of Infectious Disease, Imperial College London, St Marys Medical School, Paddington, London, W2 1PG, UK
| | - Charlie Hart
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Kelvin Lau
- Protein Production and Structure Core Facility (PTPSP), School of Life Sciences, École Polytechnique Fédérale de Lausanne, Rte Cantonale, 1015, Lausanne, Switzerland
| | - Dongchun Ni
- Laboratory of Biological Electron Microscopy (LBEM), School of Basic Science, École Polytechnique Fédérale de Lausanne, Rte Cantonale, 1015, Lausanne, Switzerland
| | - C David L Orme
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Emma Ransome
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - William D Pearse
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Christopher M Coleman
- Queen's Medical Centre, University of Nottingham, Derby Rd, Lenton, Nottingham, NG7 2UH, UK
| | | | - Nazia Thakur
- The Pirbright Institute, Surrey, GU24 0NF, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Jessica L Quantrill
- Department of Infectious Disease, Imperial College London, St Marys Medical School, Paddington, London, W2 1PG, UK
| | - Ksenia Sukhova
- Department of Infectious Disease, Imperial College London, St Marys Medical School, Paddington, London, W2 1PG, UK
| | - Damien Richard
- UCL Genetics Institute, University College London, Gower St, London, WC1E 6BT, UK
| | - Laura Kahane
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Guy Woodward
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Thomas Bell
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Lisa Worledge
- The Bat Conservation Trust, Studio 15 Cloisters House, Cloisters Business Centre, 8 Battersea Park Road, London, SW8 4BG, UK
| | - Joe Nunez-Mino
- The Bat Conservation Trust, Studio 15 Cloisters House, Cloisters Business Centre, 8 Battersea Park Road, London, SW8 4BG, UK
| | - Wendy Barclay
- Department of Infectious Disease, Imperial College London, St Marys Medical School, Paddington, London, W2 1PG, UK
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, Gower St, London, WC1E 6BT, UK
| | - Francois Balloux
- UCL Genetics Institute, University College London, Gower St, London, WC1E 6BT, UK
| | - Vincent Savolainen
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK.
| |
Collapse
|
17
|
Milighetti M, Peng Y, Tan C, Mark M, Nageswaran G, Byrne S, Ronel T, Peacock T, Mayer A, Chandran A, Rosenheim J, Whelan M, Yao X, Liu G, Felce SL, Dong T, Mentzer AJ, Knight JC, Balloux F, Greenstein E, Reich-Zeliger S, Pade C, Gibbons JM, Semper A, Brooks T, Otter A, Altmann DM, Boyton RJ, Maini MK, McKnight A, Manisty C, Treibel TA, Moon JC, Noursadeghi M, Chain B. Large clones of pre-existing T cells drive early immunity against SARS-COV-2 and LCMV infection. iScience 2023; 26:106937. [PMID: 37275518 PMCID: PMC10201888 DOI: 10.1016/j.isci.2023.106937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/14/2023] [Accepted: 05/17/2023] [Indexed: 06/07/2023] Open
Abstract
T cell responses precede antibody and may provide early control of infection. We analyzed the clonal basis of this rapid response following SARS-COV-2 infection. We applied T cell receptor (TCR) sequencing to define the trajectories of individual T cell clones immediately. In SARS-COV-2 PCR+ individuals, a wave of TCRs strongly but transiently expand, frequently peaking the same week as the first positive PCR test. These expanding TCR CDR3s were enriched for sequences functionally annotated as SARS-COV-2 specific. Epitopes recognized by the expanding TCRs were highly conserved between SARS-COV-2 strains but not with circulating human coronaviruses. Many expanding CDR3s were present at high frequency in pre-pandemic repertoires. Early response TCRs specific for lymphocytic choriomeningitis virus epitopes were also found at high frequency in the preinfection naive repertoire. High-frequency naive precursors may allow the T cell response to respond rapidly during the crucial early phases of acute viral infection.
Collapse
Affiliation(s)
- Martina Milighetti
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Yanchun Peng
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Cedric Tan
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Michal Mark
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gayathri Nageswaran
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Suzanne Byrne
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Tahel Ronel
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Tom Peacock
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Andreas Mayer
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Aneesh Chandran
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Joshua Rosenheim
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Matthew Whelan
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Xuan Yao
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Guihai Liu
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Suet Ling Felce
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Tao Dong
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | | | - Julian C Knight
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Francois Balloux
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Erez Greenstein
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shlomit Reich-Zeliger
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Corinna Pade
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
| | - Joseph M Gibbons
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
| | - Amanda Semper
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Tim Brooks
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Ashley Otter
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Daniel M Altmann
- Department of Immunology and Inflammation, Imperial College London, London SW7 2BX, UK
| | - Rosemary J Boyton
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
- Lung Division, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Mala K Maini
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Aine McKnight
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
| | - Charlotte Manisty
- Institute of Cardiovascular Sciences, University College London, London WC1E 6BT, UK
| | - Thomas A Treibel
- Institute of Cardiovascular Sciences, University College London, London WC1E 6BT, UK
| | - James C Moon
- Institute of Cardiovascular Sciences, University College London, London WC1E 6BT, UK
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Benny Chain
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| |
Collapse
|
18
|
Nowill AE, Caruso M, de Campos-Lima PO. T-cell immunity to SARS-CoV-2: what if the known best is not the optimal course for the long run? Adapting to evolving targets. Front Immunol 2023; 14:1133225. [PMID: 37388738 PMCID: PMC10303130 DOI: 10.3389/fimmu.2023.1133225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/11/2023] [Indexed: 07/01/2023] Open
Abstract
Humanity did surprisingly well so far, considering how unprepared it was to respond to the coronavirus disease 2019 (COVID-19) threat. By blending old and ingenious new technology in the context of the accumulated knowledge on other human coronaviruses, several vaccine candidates were produced and tested in clinical trials in record time. Today, five vaccines account for the bulk of the more than 13 billion doses administered worldwide. The ability to elicit biding and neutralizing antibodies most often against the spike protein is a major component of the protection conferred by immunization but alone it is not enough to limit virus transmission. Thus, the surge in numbers of infected individuals by newer variants of concern (VOCs) was not accompanied by a proportional increase in severe disease and death rate. This is likely due to antiviral T-cell responses, whose evasion is more difficult to achieve. The present review helps navigating the very large literature on T cell immunity induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination. We examine the successes and shortcomings of the vaccinal protection in the light of the emergence of VOCs with breakthrough potential. SARS-CoV-2 and human beings will likely coexist for a long while: it will be necessary to update existing vaccines to improve T-cell responses and attain better protection against COVID-19.
Collapse
Affiliation(s)
- Alexandre E. Nowill
- Integrated Center for Pediatric OncoHaematological Research, State University of Campinas, Campinas, SP, Brazil
| | - Manuel Caruso
- CHU de Québec-Université Laval Research Center (Oncology Division), Université Laval Cancer Research Center, Québec, QC, Canada
| | - Pedro O. de Campos-Lima
- Boldrini Children’s Center, Campinas, SP, Brazil
- Molecular and Morphofunctional Biology Graduate Program, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
19
|
Feng Y, Zhang Y, Liu S, Guo M, Huang H, Guo C, Wang W, Zhang W, Tang H, Wan Y. Unexpectedly higher levels of anti-orthopoxvirus neutralizing antibodies are observed among gay men than general adult population. BMC Med 2023; 21:183. [PMID: 37189197 DOI: 10.1186/s12916-023-02872-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND The confirmed cases in the current outbreak of Monkeypox are predominantly identified in the networks of men who have sex with men (MSM). The preexisting antibodies may profoundly impact the transmission of monkeypox virus (MPXV), however the current-day prevalence of antibodies against MPXV among gay men is not well characterized. METHODS A cohort of gay men (n = 326) and a cohort of the general adult population (n = 295) were enrolled in this study. Binding antibodies responses against MPXV/vaccinia and neutralizing antibody responses against vaccinia virus (Tiantan strain) were measured. The antibody responses of these two cohorts were then compared, as well as the responses of individuals born before and in/after 1981 (when the smallpox vaccination ceased in China). Finally, the correlation between the anti-MPXV antibody responses and the anti-vaccinia antibody responses, and the associations between preexisting anti-orthopoxvirus antibody responses and the diagnosed sexually transmitted infections (STIs) in the MSM cohort were analyzed separately. RESULTS Our data showed that binding antibodies against MPXV H3, A29, A35, E8, B6, M1 proteins and vaccinia whole-virus lysate could be detected in individuals born both before and in/after 1981, of which the prevalence of anti-vaccinia binding antibodies was significantly higher among individuals born before 1981 in the general population cohort. Moreover, we unexpectedly found that the positive rates of binding antibody responses against MPXV H3, A29, A35, E8 and M1 proteins were significantly lower among individuals of the MSM cohort born in/after 1981, but the positive rates of anti-MPXV B6 and anti-vaccinia neutralizing antibody responses were significantly higher among these individuals compared to those of age-matched participants in the general population cohort. Additionally, we demonstrated that the positive and negative rates of anti-MPXV antibody responses were associated with the anti-vaccinia antibody responses among individuals born before 1981 in the general population cohort, but no significant association was observed among individuals born in/after 1981 in both cohorts. The positive rates of both the binding and the neutralizing antibody responses were comparable between individuals with and without diagnosed STIs in the MSM cohort. CONCLUSIONS Anti-MPXV and anti-vaccinia antibodies could be readily detected in an MSM cohort and a general population cohort. And a higher level of anti-vaccinia neutralizing antibody responses was observed among individuals who did not get vaccinated against smallpox in the MSM cohort compared to age-matched individuals in the general population cohort.
Collapse
Affiliation(s)
- Yanmeng Feng
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430065, China
| | - Yifan Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, 450052, China
| | - Shengya Liu
- Shenzhen International Travel Health Care Center (Shenzhen Customs District Port Outpatient Clinics), Shenzhen Customs District, Shenzhen, 518033, China
| | - Meng Guo
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430065, China
| | - Haojie Huang
- Wuhan Pioneer Social Work Service Center, Wuhan, 430071, China
| | - Cuiyuan Guo
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, 450052, China
| | - Wanhai Wang
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, 450052, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
- Shanghai Huashen Institute of Microbes and Infections, 6 Lane 1220 Huashan Rd., Shanghai, 200052, NO, China.
| | - Heng Tang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430065, China.
| | - Yanmin Wan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
- Shanghai Huashen Institute of Microbes and Infections, 6 Lane 1220 Huashan Rd., Shanghai, 200052, NO, China.
- Department of Radiology, Shanghai Public Health Clinical Center, Shanghai, 201508, China.
| |
Collapse
|
20
|
Nantambi H, Sembera J, Ankunda V, Ssali I, Kalyebi AW, Oluka GK, Kato L, Ubaldo B, Kibengo F, Katende JS, Gombe B, Baine C, Odoch G, Mugaba S, Sande OJ, Kaleebu P, Serwanga J. Pre-pandemic SARS-CoV-2-specific IFN-γ and antibody responses were low in Ugandan samples and significantly reduced in HIV-positive specimens. Front Immunol 2023; 14:1148877. [PMID: 37153598 PMCID: PMC10154590 DOI: 10.3389/fimmu.2023.1148877] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction We investigated whether prior SARS-CoV-2-specific IFN-γ and antibody responses in Ugandan COVID-19 pre-pandemic specimens aligned to this population's low disease severity. Methods We used nucleoprotein (N), spike (S), NTD, RBD, envelope, membrane, SD1/2-directed IFN-γ ELISpots, and an S- and N-IgG antibody ELISA to screen for SARS-CoV-2-specific cross-reactivity. Results HCoV-OC43-, HCoV-229E-, and SARS-CoV-2-specific IFN-γ occurred in 23, 15, and 17 of 104 specimens, respectively. Cross-reactive IgG was more common against the nucleoprotein (7/110, 15.5%; p = 0.0016, Fishers' Exact) than the spike (3/110, 2.72%). Specimens lacking anti-HuCoV antibodies had higher rates of pre-epidemic SARS-CoV-2-specific IFN-γ cross-reactivity (p-value = 0.00001, Fishers' exact test), suggesting that exposure to additional factors not examined here might play a role. SARS-CoV-2-specific cross-reactive antibodies were significantly less common in HIV-positive specimens (p=0.017; Fishers' Exact test). Correlations between SARS-CoV-2- and HuCoV-specific IFN-γ responses were consistently weak in both HIV negative and positive specimens. Discussion These findings support the existence of pre-epidemic SARS-CoV-2-specific cellular and humoral cross-reactivity in this population. The data do not establish that these virus-specific IFN-γ and antibody responses are entirely specific to SARS-CoV-2. Inability of the antibodies to neutralise SARS-CoV-2 implies that prior exposure did not result in immunity. Correlations between SARS-CoV-2 and HuCoV-specific responses were consistently weak, suggesting that additional variables likely contributed to the pre-epidemic cross-reactivity patterns. The data suggests that surveillance efforts based on the nucleoprotein might overestimate the exposure to SARS-CoV-2 compared to inclusion of additional targets, like the spike protein. This study, while limited in scope, suggests that HIV-positive people are less likely than HIV-negative people to produce protective antibodies against SARS-CoV-2.
Collapse
Affiliation(s)
- Hellen Nantambi
- Medical Research Council (MRC), Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Jackson Sembera
- Medical Research Council (MRC), Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Violet Ankunda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Ivan Ssali
- Medical Research Council (MRC), Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
| | - Arthur Watelo Kalyebi
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Gerald Kevin Oluka
- Medical Research Council (MRC), Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Laban Kato
- Medical Research Council (MRC), Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
| | - Bahemuka Ubaldo
- Medical Research Council (MRC), Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
| | - Freddie Kibengo
- Medical Research Council (MRC), Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
| | - Joseph Ssebwana Katende
- Medical Research Council (MRC), Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Ben Gombe
- Medical Research Council (MRC), Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
| | - Claire Baine
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Geoffrey Odoch
- Medical Research Council (MRC), Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
| | - Susan Mugaba
- Medical Research Council (MRC), Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
| | - Obondo James Sande
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - The COVID-19 Immunoprofiling Team
- Medical Research Council (MRC), Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Pontiano Kaleebu
- Medical Research Council (MRC), Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Jennifer Serwanga
- Medical Research Council (MRC), Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| |
Collapse
|
21
|
Humbert M, Olofsson A, Wullimann D, Niessl J, Hodcroft EB, Cai C, Gao Y, Sohlberg E, Dyrdak R, Mikaeloff F, Neogi U, Albert J, Malmberg KJ, Lund-Johansen F, Aleman S, Björkhem-Bergman L, Jenmalm MC, Ljunggren HG, Buggert M, Karlsson AC. Functional SARS-CoV-2 cross-reactive CD4 + T cells established in early childhood decline with age. Proc Natl Acad Sci U S A 2023; 120:e2220320120. [PMID: 36917669 PMCID: PMC10041119 DOI: 10.1073/pnas.2220320120] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/15/2023] [Indexed: 03/16/2023] Open
Abstract
Pre-existing SARS-CoV-2-reactive T cells have been identified in SARS-CoV-2-unexposed individuals, potentially modulating COVID-19 and vaccination outcomes. Here, we provide evidence that functional cross-reactive memory CD4+ T cell immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is established in early childhood, mirroring early seroconversion with seasonal human coronavirus OC43. Humoral and cellular immune responses against OC43 and SARS-CoV-2 were assessed in SARS-CoV-2-unexposed children (paired samples at age two and six) and adults (age 26 to 83). Pre-existing SARS-CoV-2-reactive CD4+ T cell responses targeting spike, nucleocapsid, and membrane were closely linked to the frequency of OC43-specific memory CD4+ T cells in childhood. The functional quality of the cross-reactive memory CD4+ T cell responses targeting SARS-CoV-2 spike, but not nucleocapsid, paralleled OC43-specific T cell responses. OC43-specific antibodies were prevalent already at age two. However, they did not increase further with age, contrasting with the antibody magnitudes against HKU1 (β-coronavirus), 229E and NL63 (α-coronaviruses), rhinovirus, Epstein-Barr virus (EBV), and influenza virus, which increased after age two. The quality of the memory CD4+ T cell responses peaked at age six and subsequently declined with age, with diminished expression of interferon (IFN)-γ, interleukin (IL)-2, tumor necrosis factor (TNF), and CD38 in late adulthood. Age-dependent qualitative differences in the pre-existing SARS-CoV-2-reactive T cell responses may reflect the ability of the host to control coronavirus infections and respond to vaccination.
Collapse
Affiliation(s)
- Marion Humbert
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 141 52Huddinge, Sweden
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Anna Olofsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 141 52Huddinge, Sweden
| | - David Wullimann
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Julia Niessl
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Emma B. Hodcroft
- Institute of Social and Preventive Medicine, University of Bern, Bern3012, Switzerland
- Swiss Institute of Bioinformatics, Lausanne1015, Switzerland
| | - Curtis Cai
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Yu Gao
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Ebba Sohlberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Robert Dyrdak
- Department of Clinical Microbiology, Karolinska University Hospital, 171 76Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77Stockholm, Sweden
| | - Flora Mikaeloff
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Jan Albert
- Department of Clinical Microbiology, Karolinska University Hospital, 171 76Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77Stockholm, Sweden
| | - Karl-Johan Malmberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
- Department of Cancer Immunology, Institute for Cancer Research, University of Oslo, 0379Oslo, Norway
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0379Oslo, Norway
| | - Fridtjof Lund-Johansen
- Department of Immunology, Institute of Clinical Medicine, Oslo University Hospital, 0372Oslo, Norway
- ImmunoLingo Convergence Center, Institute of Clinical Medicine, University of Oslo, 0372Oslo, Norway
| | - Soo Aleman
- Unit for Infectious Diseases and Dermatology, I73, Karolinska University Hospital, Huddinge, 141 86Stockholm, Sweden
- Infectious Diseases and Dermatology Unit, Department of Medicine, Huddinge, Karolinska Institutet, 141 86Huddinge, Sweden
| | - Linda Björkhem-Bergman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 83Huddinge, Sweden
- Palliative Medicine, Stockholms Sjukhem, 112 19Stockholm, Sweden
| | - Maria C. Jenmalm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, 581 83Linköping, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Annika C. Karlsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 141 52Huddinge, Sweden
| |
Collapse
|
22
|
Zornikova KV, Sheetikov SA, Rusinov AY, Iskhakov RN, Bogolyubova AV. Architecture of the SARS-CoV-2-specific T cell repertoire. Front Immunol 2023; 14:1070077. [PMID: 37020560 PMCID: PMC10067759 DOI: 10.3389/fimmu.2023.1070077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/08/2023] [Indexed: 03/22/2023] Open
Abstract
The T cell response plays an indispensable role in the early control and successful clearance of SARS-CoV-2 infection. However, several important questions remain about the role of cellular immunity in COVID-19, including the shape and composition of disease-specific T cell repertoires across convalescent patients and vaccinated individuals, and how pre-existing T cell responses to other pathogens—in particular, common cold coronaviruses—impact susceptibility to SARS-CoV-2 infection and the subsequent course of disease. This review focuses on how the repertoire of T cell receptors (TCR) is shaped by natural infection and vaccination over time. We also summarize current knowledge regarding cross-reactive T cell responses and their protective role, and examine the implications of TCR repertoire diversity and cross-reactivity with regard to the design of vaccines that confer broader protection against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ksenia V. Zornikova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Saveliy A. Sheetikov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander Yu Rusinov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Rustam N. Iskhakov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Apollinariya V. Bogolyubova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- *Correspondence: Apollinariya V. Bogolyubova,
| |
Collapse
|
23
|
Swadling L, Maini MK. Can T Cells Abort SARS-CoV-2 and Other Viral Infections? Int J Mol Sci 2023; 24:4371. [PMID: 36901802 PMCID: PMC10002440 DOI: 10.3390/ijms24054371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Despite the highly infectious nature of the SARS-CoV-2 virus, it is clear that some individuals with potential exposure, or even experimental challenge with the virus, resist developing a detectable infection. While a proportion of seronegative individuals will have completely avoided exposure to the virus, a growing body of evidence suggests a subset of individuals are exposed, but mediate rapid viral clearance before the infection is detected by PCR or seroconversion. This type of "abortive" infection likely represents a dead-end in transmission and precludes the possibility for development of disease. It is, therefore, a desirable outcome on exposure and a setting in which highly effective immunity can be studied. Here, we describe how early sampling of a new pandemic virus using sensitive immunoassays and a novel transcriptomic signature can identify abortive infections. Despite the challenges in identifying abortive infections, we highlight diverse lines of evidence supporting their occurrence. In particular, expansion of virus-specific T cells in seronegative individuals suggests abortive infections occur not only after exposure to SARS-CoV-2, but for other coronaviridae, and diverse viral infections of global health importance (e.g., HIV, HCV, HBV). We discuss unanswered questions related to abortive infection, such as: 'Are we just missing antibodies? Are T cells an epiphenomenon? What is the influence of the dose of viral inoculum?' Finally, we argue for a refinement of the current paradigm that T cells are only involved in clearing established infection; instead, we emphasise the importance of considering their role in terminating early viral replication by studying abortive infections.
Collapse
Affiliation(s)
- Leo Swadling
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK
| | - Mala K. Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK
| |
Collapse
|
24
|
Zsichla L, Müller V. Risk Factors of Severe COVID-19: A Review of Host, Viral and Environmental Factors. Viruses 2023; 15:175. [PMID: 36680215 PMCID: PMC9863423 DOI: 10.3390/v15010175] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The clinical course and outcome of COVID-19 are highly variable, ranging from asymptomatic infections to severe disease and death. Understanding the risk factors of severe COVID-19 is relevant both in the clinical setting and at the epidemiological level. Here, we provide an overview of host, viral and environmental factors that have been shown or (in some cases) hypothesized to be associated with severe clinical outcomes. The factors considered in detail include the age and frailty, genetic polymorphisms, biological sex (and pregnancy), co- and superinfections, non-communicable comorbidities, immunological history, microbiota, and lifestyle of the patient; viral genetic variation and infecting dose; socioeconomic factors; and air pollution. For each category, we compile (sometimes conflicting) evidence for the association of the factor with COVID-19 outcomes (including the strength of the effect) and outline possible action mechanisms. We also discuss the complex interactions between the various risk factors.
Collapse
Affiliation(s)
- Levente Zsichla
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
25
|
Perico L, Todeschini M, Casiraghi F, Mister M, Pezzotta A, Peracchi T, Tomasoni S, Trionfini P, Benigni A, Remuzzi G. Long-term adaptive response in COVID-19 vaccine recipients and the effect of a booster dose. Front Immunol 2023; 14:1123158. [PMID: 36926327 PMCID: PMC10011096 DOI: 10.3389/fimmu.2023.1123158] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
We examined the immune response in subjects previously infected with SARS-CoV2 and infection-naïve 9 months after primary 2-dose COVID-19 mRNA vaccination and 3 months after the booster dose in a longitudinal cohort of healthcare workers. Nine months after primary vaccination, previously infected subjects exhibited higher residual antibody levels, with significant neutralizing activity against distinct variants compared to infection-naïve subjects. The higher humoral response was associated with higher levels of receptor binding domain (RBD)-specific IgG+ and IgA+ memory B cells. The booster dose increased neither neutralizing activity, nor the B and T cell frequencies. Conversely, infection-naïve subjects needed the booster to achieve comparable levels of neutralizing antibodies as those found in previously infected subjects after primary vaccination. The neutralizing titer correlated with anti-RBD IFNγ producing T cells, in the face of sustained B cell response. Notably, pre-pandemic samples showed high Omicron cross-reactivity. These data show the importance of the booster dose in reinforcing immunological memory and increasing circulating antibodies in infection-naïve subjects.
Collapse
Affiliation(s)
- Luca Perico
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Marta Todeschini
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Federica Casiraghi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Marilena Mister
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Anna Pezzotta
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Tobia Peracchi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Susanna Tomasoni
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Piera Trionfini
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Ariela Benigni
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
26
|
Gustiananda M, Julietta V, Hermawan A, Febriana GG, Hermantara R, Kristiani L, Sidhartha E, Sutejo R, Agustriawan D, Andarini S, Parikesit AA. Immunoinformatics Identification of the Conserved and Cross-Reactive T-Cell Epitopes of SARS-CoV-2 with Human Common Cold Coronaviruses, SARS-CoV, MERS-CoV and Live Attenuated Vaccines Presented by HLA Alleles of Indonesian Population. Viruses 2022; 14:v14112328. [PMID: 36366426 PMCID: PMC9699331 DOI: 10.3390/v14112328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 02/01/2023] Open
Abstract
Reports on T-cell cross-reactivity against SARS-CoV-2 epitopes in unexposed individuals have been linked with prior exposure to the human common cold coronaviruses (HCCCs). Several studies suggested that cross-reactive T-cells response to live attenuated vaccines (LAVs) such as BCG (Bacillus Calmette-Guérin), OPV (Oral Polio Vaccine), and MMR (measles, mumps, and rubella) can limit the development and severity of COVID-19. This study aims to identify potential cross-reactivity between SARS-CoV-2, HCCCs, and LAVs in the context of T-cell epitopes peptides presented by HLA (Human Leukocyte Antigen) alleles of the Indonesian population. SARS-CoV-2 derived T-cell epitopes were predicted using immunoinformatics tools and assessed for their conservancy, variability, and population coverage. Two fully conserved epitopes with 100% similarity and nine heterologous epitopes with identical T-cell receptor (TCR) contact residues were identified from the ORF1ab fragment of SARS-CoV-2 and all HCCCs. Cross-reactive epitopes from various proteins of SARS-CoV-2 and LAVs were also identified (15 epitopes from BCG, 7 epitopes from MMR, but none from OPV). A majority of the identified epitopes were observed to belong to ORF1ab, further suggesting the vital role of ORF1ab in the coronaviruses family and suggesting it as a candidate for a potential universal coronavirus vaccine that protects against severe disease by inducing cell mediated immunity.
Collapse
Affiliation(s)
- Marsia Gustiananda
- Department of Biomedicine, School of Life Sciences, Indonesia International Institute for Life Sciences, Jl. Pulomas Barat Kav 88, Jakarta 13210, Indonesia
- Correspondence:
| | - Vivi Julietta
- Department of Biomedicine, School of Life Sciences, Indonesia International Institute for Life Sciences, Jl. Pulomas Barat Kav 88, Jakarta 13210, Indonesia
| | - Angelika Hermawan
- Department of Biomedicine, School of Life Sciences, Indonesia International Institute for Life Sciences, Jl. Pulomas Barat Kav 88, Jakarta 13210, Indonesia
| | - Gabriella Gita Febriana
- Department of Biomedicine, School of Life Sciences, Indonesia International Institute for Life Sciences, Jl. Pulomas Barat Kav 88, Jakarta 13210, Indonesia
| | - Rio Hermantara
- Department of Biomedicine, School of Life Sciences, Indonesia International Institute for Life Sciences, Jl. Pulomas Barat Kav 88, Jakarta 13210, Indonesia
| | - Lidya Kristiani
- Department of Biomedicine, School of Life Sciences, Indonesia International Institute for Life Sciences, Jl. Pulomas Barat Kav 88, Jakarta 13210, Indonesia
| | - Elizabeth Sidhartha
- Department of Biomedicine, School of Life Sciences, Indonesia International Institute for Life Sciences, Jl. Pulomas Barat Kav 88, Jakarta 13210, Indonesia
| | - Richard Sutejo
- Department of Biomedicine, School of Life Sciences, Indonesia International Institute for Life Sciences, Jl. Pulomas Barat Kav 88, Jakarta 13210, Indonesia
| | - David Agustriawan
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jl. Pulomas Barat Kav 88, Jakarta 13210, Indonesia
| | - Sita Andarini
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine University of Indonesia, Persahabatan Hospital, Jl. Persahabatan Raya 1, Jakarta 13230, Indonesia
| | - Arli Aditya Parikesit
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jl. Pulomas Barat Kav 88, Jakarta 13210, Indonesia
| |
Collapse
|
27
|
Bartolo L, Afroz S, Pan YG, Xu R, Williams L, Lin CF, Tanes C, Bittinger K, Friedman ES, Gimotty PA, Wu GD, Su LF. SARS-CoV-2-specific T cells in unexposed adults display broad trafficking potential and cross-react with commensal antigens. Sci Immunol 2022; 7:eabn3127. [PMID: 35857619 PMCID: PMC9348748 DOI: 10.1126/sciimmunol.abn3127] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/30/2022] [Indexed: 01/18/2023]
Abstract
The baseline composition of T cells directly affects later response to pathogens, but the complexity of precursor states remains poorly defined. Here, we examined the baseline state of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cells in unexposed individuals. SARS-CoV-2-specific CD4+ T cells were identified in prepandemic blood samples by major histocompatibility complex (MHC) class II tetramer staining and enrichment. Our data revealed a substantial number of SARS-CoV-2-specific T cells that expressed memory phenotype markers. Integrated phenotypic analyses demonstrated diverse preexisting memory states that included cells with distinct polarization features and trafficking potential to barrier tissues. T cell clones generated from tetramer-labeled cells cross-reacted with antigens from commensal bacteria in the skin and gastrointestinal tract. Direct ex vivo tetramer staining for one spike-specific population showed a similar level of cross-reactivity to sequences from endemic coronavirus and commensal bacteria. These data highlight the complexity of precursor T cell repertoire and implicate noninfectious exposures to common microbes as a key factor that shapes human preexisting immunity to SARS-CoV-2.
Collapse
Affiliation(s)
- Laurent Bartolo
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sumbul Afroz
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi-Gen Pan
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruozhang Xu
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Lea Williams
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Chin-Fang Lin
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ceylan Tanes
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, PA, 19104, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, PA, 19104, USA
| | - Elliot S. Friedman
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Phyllis A. Gimotty
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Gary D. Wu
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura F. Su
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| |
Collapse
|
28
|
Diniz MO, Mitsi E, Swadling L, Rylance J, Johnson M, Goldblatt D, Ferreira D, Maini MK. Airway-resident T cells from unexposed individuals cross-recognize SARS-CoV-2. Nat Immunol 2022; 23:1324-1329. [PMID: 36038709 PMCID: PMC9477726 DOI: 10.1038/s41590-022-01292-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022]
Abstract
T cells can contribute to clearance of respiratory viruses that cause acute-resolving infections such as SARS-CoV-2, helping to provide long-lived protection against disease. Recent studies have suggested an additional role for T cells in resisting overt infection: pre-existing cross-reactive responses were preferentially enriched in healthcare workers who had abortive infections1, and in household contacts protected from infection2. We hypothesize that such early viral control would require pre-existing cross-reactive memory T cells already resident at the site of infection; such airway-resident responses have been shown to be critical for mediating protection after intranasal vaccination in a murine model of SARS-CoV3. Bronchoalveolar lavage samples from the lower respiratory tract of healthy donors obtained before the COVID-19 pandemic revealed airway-resident, SARS-CoV-2-cross-reactive T cells, which correlated with the strength of human seasonal coronavirus immunity. We therefore demonstrate the potential to harness functional airway-resident SARS-CoV-2-reactive T cells in next-generation mucosal vaccines.
Collapse
Affiliation(s)
- Mariana O Diniz
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Elena Mitsi
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Leo Swadling
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Jamie Rylance
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | | | - Daniela Ferreira
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK.
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.
| | - Mala K Maini
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK.
| |
Collapse
|
29
|
Li S, Zhou Y, Yan D, Wan Y. An Update on the Mutual Impact between SARS-CoV-2 Infection and Gut Microbiota. Viruses 2022; 14:1774. [PMID: 36016396 PMCID: PMC9415881 DOI: 10.3390/v14081774] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 12/15/2022] Open
Abstract
The gut microbiota is essential for good health. It has also been demonstrated that the gut microbiota can regulate immune responses against respiratory tract infections. Since the outbreak of the COVID-19 pandemic, accumulating evidence suggests that there is a link between the severity of COVID-19 and the alteration of one's gut microbiota. The composition of gut microbiota can be profoundly affected by COVID-19 and vice versa. Here, we summarize the observations of the mutual impact between SARS-CoV-2 infection and gut microbiota composition. We discuss the consequences and mechanisms of the bi-directional interaction. Moreover, we also discuss the immune cross-reactivity between SARS-CoV-2 and commensal bacteria, which represents a previously overlooked connection between COVID-19 and commensal gut bacteria. Finally, we summarize the progress in managing COVID-19 by utilizing microbial interventions.
Collapse
Affiliation(s)
- Shaoshuai Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Shanghai Public Health Clinical Center, Department of Laboratory Medicine, Shanghai 201508, China
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi 154000, China
| | - Yang Zhou
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Dongmei Yan
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi 154000, China
| | - Yanmin Wan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Shanghai Public Health Clinical Center, Department of Radiology, Shanghai 201508, China
| |
Collapse
|
30
|
Saggau C, Martini GR, Rosati E, Meise S, Messner B, Kamps AK, Bekel N, Gigla J, Rose R, Voß M, Geisen UM, Reid HM, Sümbül M, Tran F, Berner DK, Khodamoradi Y, Vehreschild MJGT, Cornely O, Koehler P, Krumbholz A, Fickenscher H, Kreuzer O, Schreiber C, Franke A, Schreiber S, Hoyer B, Scheffold A, Bacher P. The pre-exposure SARS-CoV-2-specific T cell repertoire determines the quality of the immune response to vaccination. Immunity 2022; 55:1924-1939.e5. [PMID: 35985324 PMCID: PMC9372089 DOI: 10.1016/j.immuni.2022.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2 infection and vaccination generates enormous host-response heterogeneity and an age-dependent loss of immune-response quality. How the pre-exposure T cell repertoire contributes to this heterogeneity is poorly understood. We combined analysis of SARS-CoV-2-specific CD4+ T cells pre- and post-vaccination with longitudinal T cell receptor tracking. We identified strong pre-exposure T cell variability that correlated with subsequent immune-response quality and age. High-quality responses, defined by strong expansion of high-avidity spike-specific T cells, high interleukin-21 production, and specific immunoglobulin G, depended on an intact naive repertoire and exclusion of pre-existing memory T cells. In the elderly, T cell expansion from both compartments was severely compromised. Our results reveal that an intrinsic defect of the CD4+ T cell repertoire causes the age-dependent decline of immune-response quality against SARS-CoV-2 and highlight the need for alternative strategies to induce high-quality T cell responses against newly arising pathogens in the elderly.
Collapse
Affiliation(s)
- Carina Saggau
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany
| | - Gabriela Rios Martini
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany; Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany
| | - Elisa Rosati
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany; Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany
| | - Silja Meise
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany
| | - Berith Messner
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany; Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany
| | - Ann-Kristin Kamps
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany; Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany
| | - Nicole Bekel
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany; Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany
| | - Johannes Gigla
- Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany
| | - Ruben Rose
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Mathias Voß
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ulf M Geisen
- Medical Department I, Department for Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Hayley M Reid
- Medical Department I, Department for Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Melike Sümbül
- Department of Dermatology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany; Department of Internal Medicine I, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Dennis K Berner
- Medical Department I, Department for Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Yascha Khodamoradi
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt & Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maria J G T Vehreschild
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt & Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Oliver Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Philipp Koehler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Andi Krumbholz
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany; Labor Dr. Krause und Kollegen MVZ GmbH, Kiel, Germany
| | - Helmut Fickenscher
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | - Claudia Schreiber
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany; Department of Internal Medicine I, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Bimba Hoyer
- Medical Department I, Department for Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany
| | - Petra Bacher
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany; Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany.
| |
Collapse
|
31
|
Balloux F, Tan C, Swadling L, Richard D, Jenner C, Maini M, van Dorp L. The past, current and future epidemiological dynamic of SARS-CoV-2. OXFORD OPEN IMMUNOLOGY 2022; 3:iqac003. [PMID: 35872966 PMCID: PMC9278178 DOI: 10.1093/oxfimm/iqac003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/11/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2, the agent of the COVID-19 pandemic, emerged in late 2019 in China, and rapidly spread throughout the world to reach all continents. As the virus expanded in its novel human host, viral lineages diversified through the accumulation of around two mutations a month on average. Different viral lineages have replaced each other since the start of the pandemic, with the most successful Alpha, Delta and Omicron variants of concern (VoCs) sequentially sweeping through the world to reach high global prevalence. Neither Alpha nor Delta was characterized by strong immune escape, with their success coming mainly from their higher transmissibility. Omicron is far more prone to immune evasion and spread primarily due to its increased ability to (re-)infect hosts with prior immunity. As host immunity reaches high levels globally through vaccination and prior infection, the epidemic is expected to transition from a pandemic regime to an endemic one where seasonality and waning host immunization are anticipated to become the primary forces shaping future SARS-CoV-2 lineage dynamics. In this review, we consider a body of evidence on the origins, host tropism, epidemiology, genomic and immunogenetic evolution of SARS-CoV-2 including an assessment of other coronaviruses infecting humans. Considering what is known so far, we conclude by delineating scenarios for the future dynamic of SARS-CoV-2, ranging from the good-circulation of a fifth endemic 'common cold' coronavirus of potentially low virulence, the bad-a situation roughly comparable with seasonal flu, and the ugly-extensive diversification into serotypes with long-term high-level endemicity.
Collapse
Affiliation(s)
- François Balloux
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Cedric Tan
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 138672 Singapore, Singapore
| | - Leo Swadling
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | - Damien Richard
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | - Charlotte Jenner
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Mala Maini
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| |
Collapse
|
32
|
Becerra-Artiles A, Calvo-Calle JM, Co MD, Nanaware PP, Cruz J, Weaver GC, Lu L, Forconi C, Finberg RW, Moormann AM, Stern LJ. Broadly recognized, cross-reactive SARS-CoV-2 CD4 T cell epitopes are highly conserved across human coronaviruses and presented by common HLA alleles. Cell Rep 2022; 39:110952. [PMID: 35675811 PMCID: PMC9135679 DOI: 10.1016/j.celrep.2022.110952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/03/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
Sequence homology between SARS-CoV-2 and common-cold human coronaviruses (HCoVs) raises the possibility that memory responses to prior HCoV infection can affect T cell response in COVID-19. We studied T cell responses to SARS-CoV-2 and HCoVs in convalescent COVID-19 donors and identified a highly conserved SARS-CoV-2 sequence, S811-831, with overlapping epitopes presented by common MHC class II proteins HLA-DQ5 and HLA-DP4. These epitopes are recognized by low-abundance CD4 T cells from convalescent COVID-19 donors, mRNA vaccine recipients, and uninfected donors. TCR sequencing revealed a diverse repertoire with public TCRs. T cell cross-reactivity is driven by the high conservation across human and animal coronaviruses of T cell contact residues in both HLA-DQ5 and HLA-DP4 binding frames, with distinct patterns of HCoV cross-reactivity explained by MHC class II binding preferences and substitutions at secondary TCR contact sites. These data highlight S811-831 as a highly conserved CD4 T cell epitope broadly recognized across human populations.
Collapse
Affiliation(s)
| | | | - Mary Dawn Co
- Department of Medicine, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Padma P Nanaware
- Department of Pathology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - John Cruz
- Department of Pathology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Grant C Weaver
- Department of Pathology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Liying Lu
- Department of Pathology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Catherine Forconi
- Department of Medicine, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Robert W Finberg
- Department of Medicine, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Ann M Moormann
- Department of Medicine, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Lawrence J Stern
- Department of Pathology, UMass Chan Medical School, Worcester, MA 01655, USA; Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
33
|
Shafqat A, Arabi TZ, Sabbah BN, Abdulkader HS, Shafqat S, Razak A, Kashir J, Alkattan K, Yaqinuddin A. Understanding COVID-19 Vaccines Today: Are T-cells Key Players? Vaccines (Basel) 2022; 10:904. [PMID: 35746512 PMCID: PMC9227180 DOI: 10.3390/vaccines10060904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 02/05/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has heavily mutated since the beginning of the coronavirus-2019 (COVID-19) pandemic. In this regard, the so-called variants of concern (VOCs) feature mutations that confer increased transmissibility and evasion of antibody responses. The VOCs have caused significant spikes in COVID-19 cases, raising significant concerns about whether COVID-19 vaccines will protect against current and future variants. In this context, whereas the protection COVID-19 vaccines offer against the acquisition of infection appears compromised, the protection against severe COVID-19 is maintained. From an immunologic standpoint, this is likely underpinned by the maintenance of T-cell responses against VOCs. Therefore, the role of T-cells is essential to understanding the broader adaptive immune response to COVID-19, which has the potential to shape public policies on vaccine protocols and inform future vaccine design. In this review, we survey the literature on the immunology of T-cell responses upon SARS-CoV-2 vaccination with the current FDA-approved and Emergency Use Authorized COVID-19 vaccines.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.Z.A.); (B.N.S.); (H.S.A.); (A.R.); (J.K.); (K.A.); (A.Y.)
| | - Tarek Z. Arabi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.Z.A.); (B.N.S.); (H.S.A.); (A.R.); (J.K.); (K.A.); (A.Y.)
| | - Belal N. Sabbah
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.Z.A.); (B.N.S.); (H.S.A.); (A.R.); (J.K.); (K.A.); (A.Y.)
| | - Humzah S. Abdulkader
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.Z.A.); (B.N.S.); (H.S.A.); (A.R.); (J.K.); (K.A.); (A.Y.)
| | - Shameel Shafqat
- Medical College, Aga Khan University, P.O. Box 3500, Karachi, Pakistan;
| | - Adhil Razak
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.Z.A.); (B.N.S.); (H.S.A.); (A.R.); (J.K.); (K.A.); (A.Y.)
| | - Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.Z.A.); (B.N.S.); (H.S.A.); (A.R.); (J.K.); (K.A.); (A.Y.)
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.Z.A.); (B.N.S.); (H.S.A.); (A.R.); (J.K.); (K.A.); (A.Y.)
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.Z.A.); (B.N.S.); (H.S.A.); (A.R.); (J.K.); (K.A.); (A.Y.)
| |
Collapse
|
34
|
Shafqat A, Shafqat S, Salameh SA, Kashir J, Alkattan K, Yaqinuddin A. Mechanistic Insights Into the Immune Pathophysiology of COVID-19; An In-Depth Review. Front Immunol 2022; 13:835104. [PMID: 35401519 PMCID: PMC8989408 DOI: 10.3389/fimmu.2022.835104] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/02/2022] [Indexed: 12/15/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), which causes coronavirus-19 (COVID-19), has caused significant morbidity and mortality globally. In addition to the respiratory manifestations seen in severe cases, multi-organ pathologies also occur, making management a much-debated issue. In addition, the emergence of new variants can potentially render vaccines with a relatively limited utility. Many investigators have attempted to elucidate the precise pathophysiological mechanisms causing COVID-19 respiratory and systemic disease. Spillover of lung-derived cytokines causing a cytokine storm is considered the cause of systemic disease. However, recent studies have provided contradictory evidence, whereby the extent of cytokine storm is insufficient to cause severe illness. These issues are highly relevant, as management approaches considering COVID-19 a classic form of acute respiratory distress syndrome with a cytokine storm could translate to unfounded clinical decisions, detrimental to patient trajectory. Additionally, the precise immune cell signatures that characterize disease of varying severity remain contentious. We provide an up-to-date review on the immune dysregulation caused by COVID-19 and highlight pertinent discussions in the scientific community. The response from the scientific community has been unprecedented regarding the development of highly effective vaccines and cutting-edge research on novel therapies. We hope that this review furthers the conversations held by scientists and informs the aims of future research projects, which will potentially further our understanding of COVID-19 and its immune pathogenesis.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | | | - Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Center of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
35
|
Pothast CR, Dijkland RC, Thaler M, Hagedoorn RS, Kester MGD, Wouters AK, Hiemstra PS, van Hemert MJ, Gras S, Falkenburg JHF, Heemskerk MHM. SARS-CoV-2-specific CD4 + and CD8 + T cell responses can originate from cross-reactive CMV-specific T cells. eLife 2022; 11:82050. [PMID: 36408799 PMCID: PMC9822249 DOI: 10.7554/elife.82050] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022] Open
Abstract
Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) specific CD4+ and CD8+ T cells in SARS-CoV-2-unexposed donors has been explained by the presence of T cells primed by other coronaviruses. However, based on the relatively high frequency and prevalence of cross-reactive T cells, we hypothesized cytomegalovirus (CMV) may induce these cross-reactive T cells. Stimulation of pre-pandemic cryo-preserved peripheral blood mononuclear cells (PBMCs) with SARS-CoV-2 peptides revealed that frequencies of SARS-CoV-2-specific T cells were higher in CMV-seropositive donors. Characterization of these T cells demonstrated that membrane-specific CD4+ and spike-specific CD8+ T cells originate from cross-reactive CMV-specific T cells. Spike-specific CD8+ T cells recognize SARS-CoV-2 spike peptide FVSNGTHWF (FVS) and dissimilar CMV pp65 peptide IPSINVHHY (IPS) presented by HLA-B*35:01. These dual IPS/FVS-reactive CD8+ T cells were found in multiple donors as well as severe COVID-19 patients and shared a common T cell receptor (TCR), illustrating that IPS/FVS-cross-reactivity is caused by a public TCR. In conclusion, CMV-specific T cells cross-react with SARS-CoV-2, despite low sequence homology between the two viruses, and may contribute to the pre-existing immunity against SARS-CoV-2.
Collapse
Affiliation(s)
- Cilia R Pothast
- Department of Hematology, Leiden University Medical CenterLeidenNetherlands
| | - Romy C Dijkland
- Department of Hematology, Leiden University Medical CenterLeidenNetherlands
| | - Melissa Thaler
- Department of Medical Microbiology, Leiden University Medical CenterLeidenNetherlands
| | - Renate S Hagedoorn
- Department of Hematology, Leiden University Medical CenterLeidenNetherlands
| | - Michel GD Kester
- Department of Hematology, Leiden University Medical CenterLeidenNetherlands
| | - Anne K Wouters
- Department of Hematology, Leiden University Medical CenterLeidenNetherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical CenterLeidenNetherlands
| | - Martijn J van Hemert
- Department of Medical Microbiology, Leiden University Medical CenterLeidenNetherlands
| | - Stephanie Gras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe UniversityVictoriaAustralia,Department of Biochemistry and Molecular Biology, Monash UniversityClaytonAustralia
| | | | | |
Collapse
|
36
|
Swadling L, Diniz MO, Schmidt NM, Amin OE, Chandran A, Shaw E, Pade C, Gibbons JM, Le Bert N, Tan AT, Jeffery-Smith A, Tan CCS, Tham CYL, Kucykowicz S, Aidoo-Micah G, Rosenheim J, Davies J, Johnson M, Jensen MP, Joy G, McCoy LE, Valdes AM, Chain BM, Goldblatt D, Altmann DM, Boyton RJ, Manisty C, Treibel TA, Moon JC, van Dorp L, Balloux F, McKnight Á, Noursadeghi M, Bertoletti A, Maini MK. Pre-existing polymerase-specific T cells expand in abortive seronegative SARS-CoV-2. Nature 2022; 601:110-117. [PMID: 34758478 PMCID: PMC8732273 DOI: 10.1038/s41586-021-04186-8] [Citation(s) in RCA: 281] [Impact Index Per Article: 93.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022]
Abstract
Individuals with potential exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) do not necessarily develop PCR or antibody positivity, suggesting that some individuals may clear subclinical infection before seroconversion. T cells can contribute to the rapid clearance of SARS-CoV-2 and other coronavirus infections1-3. Here we hypothesize that pre-existing memory T cell responses, with cross-protective potential against SARS-CoV-2 (refs. 4-11), would expand in vivo to support rapid viral control, aborting infection. We measured SARS-CoV-2-reactive T cells, including those against the early transcribed replication-transcription complex (RTC)12,13, in intensively monitored healthcare workers (HCWs) who tested repeatedly negative according to PCR, antibody binding and neutralization assays (seronegative HCWs (SN-HCWs)). SN-HCWs had stronger, more multispecific memory T cells compared with a cohort of unexposed individuals from before the pandemic (prepandemic cohort), and these cells were more frequently directed against the RTC than the structural-protein-dominated responses observed after detectable infection (matched concurrent cohort). SN-HCWs with the strongest RTC-specific T cells had an increase in IFI27, a robust early innate signature of SARS-CoV-2 (ref. 14), suggesting abortive infection. RNA polymerase within RTC was the largest region of high sequence conservation across human seasonal coronaviruses (HCoV) and SARS-CoV-2 clades. RNA polymerase was preferentially targeted (among the regions tested) by T cells from prepandemic cohorts and SN-HCWs. RTC-epitope-specific T cells that cross-recognized HCoV variants were identified in SN-HCWs. Enriched pre-existing RNA-polymerase-specific T cells expanded in vivo to preferentially accumulate in the memory response after putative abortive compared to overt SARS-CoV-2 infection. Our data highlight RTC-specific T cells as targets for vaccines against endemic and emerging Coronaviridae.
Collapse
Affiliation(s)
- Leo Swadling
- Division of Infection and Immunity, University College London, London, UK.
| | - Mariana O Diniz
- Division of Infection and Immunity, University College London, London, UK
| | - Nathalie M Schmidt
- Division of Infection and Immunity, University College London, London, UK
| | - Oliver E Amin
- Division of Infection and Immunity, University College London, London, UK
| | - Aneesh Chandran
- Division of Infection and Immunity, University College London, London, UK
| | - Emily Shaw
- Division of Infection and Immunity, University College London, London, UK
| | - Corinna Pade
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Joseph M Gibbons
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Nina Le Bert
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore, Singapore
| | - Anthony T Tan
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore, Singapore
| | - Anna Jeffery-Smith
- Division of Infection and Immunity, University College London, London, UK
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Cedric C S Tan
- UCL Genetics Institute, University College London, London, UK
| | - Christine Y L Tham
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore, Singapore
| | | | | | - Joshua Rosenheim
- Division of Infection and Immunity, University College London, London, UK
| | - Jessica Davies
- Division of Infection and Immunity, University College London, London, UK
| | - Marina Johnson
- Great Ormond Street Institute of Child Health NIHR Biomedical Research Centre, University College London, London, UK
| | - Melanie P Jensen
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- Department of Cellular Pathology, Northwest London Pathology, Imperial College London NHS Trust, London, UK
| | - George Joy
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - Laura E McCoy
- Division of Infection and Immunity, University College London, London, UK
| | - Ana M Valdes
- Academic Rheumatology, Clinical Sciences, Nottingham City Hospital, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| | - Benjamin M Chain
- Division of Infection and Immunity, University College London, London, UK
| | - David Goldblatt
- Great Ormond Street Institute of Child Health NIHR Biomedical Research Centre, University College London, London, UK
| | - Daniel M Altmann
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Rosemary J Boyton
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Lung Division, Royal Brompton & Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Charlotte Manisty
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - Thomas A Treibel
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - James C Moon
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, London, UK
| | | | - Áine McKnight
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, UK
| | - Antonio Bertoletti
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore, Singapore
- Singapore Immunology Network, A*STAR, Singapore, Singapore
| | - Mala K Maini
- Division of Infection and Immunity, University College London, London, UK.
| |
Collapse
|
37
|
Waterlow NR, van Leeuwen E, Davies NG, Flasche S, Eggo RM. How immunity from and interaction with seasonal coronaviruses can shape SARS-CoV-2 epidemiology. Proc Natl Acad Sci U S A 2021; 118:e2108395118. [PMID: 34873059 PMCID: PMC8670441 DOI: 10.1073/pnas.2108395118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 12/11/2022] Open
Abstract
We hypothesized that cross-protection from seasonal epidemics of human coronaviruses (HCoVs) could have affected severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission, including generating reduced susceptibility in children. To determine what the prepandemic distribution of immunity to HCoVs was, we fitted a mathematical model to 6 y of seasonal coronavirus surveillance data from England and Wales. We estimated a duration of immunity to seasonal HCoVs of 7.8 y (95% CI 6.3 to 8.1) and show that, while cross-protection between HCoV and SARS-CoV-2 may contribute to the age distribution, it is insufficient to explain the age pattern of SARS-CoV-2 infections in the first wave of the pandemic in England and Wales. Projections from our model illustrate how different strengths of cross-protection between circulating coronaviruses could determine the frequency and magnitude of SARS-CoV-2 epidemics over the coming decade, as well as the potential impact of cross-protection on future seasonal coronavirus transmission.
Collapse
Affiliation(s)
- Naomi R Waterlow
- Centre for Mathematical Modeling of Infectious Disease, London School of Hygiene and Tropical Medicine, London WC14 7HT, United Kingdom;
| | - Edwin van Leeuwen
- Centre for Mathematical Modeling of Infectious Disease, London School of Hygiene and Tropical Medicine, London WC14 7HT, United Kingdom
- Statistics, Modelling and Economics Department, UK Health Security Agency, London NW9 5EQ, United Kingdom
| | - Nicholas G Davies
- Centre for Mathematical Modeling of Infectious Disease, London School of Hygiene and Tropical Medicine, London WC14 7HT, United Kingdom
| | - Stefan Flasche
- Centre for Mathematical Modeling of Infectious Disease, London School of Hygiene and Tropical Medicine, London WC14 7HT, United Kingdom
| | - Rosalind M Eggo
- Centre for Mathematical Modeling of Infectious Disease, London School of Hygiene and Tropical Medicine, London WC14 7HT, United Kingdom
| |
Collapse
|
38
|
Bell D, Schultz Hansen K. Relative Burdens of the COVID-19, Malaria, Tuberculosis, and HIV/AIDS Epidemics in Sub-Saharan Africa. Am J Trop Med Hyg 2021; 105:1510-1515. [PMID: 34634773 PMCID: PMC8641365 DOI: 10.4269/ajtmh.21-0899] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/10/2021] [Indexed: 02/01/2023] Open
Abstract
COVID-19 has had considerable global impact; however, in sub-Saharan Africa, it is one of several infectious disease priorities. Prioritization is normally guided by disease burden, but the highly age-dependent nature of COVID-19 and that of other infectious diseases make comparisons challenging unless considered through metrics that incorporate life-years lost and time lived with adverse health. Therefore, we compared the 2020 mortality and disability-adjusted life-years (DALYs) lost estimates for malaria, tuberculosis, and HIV/AIDS in sub-Saharan African populations with more than 12 months of COVID-19 burden (until the end of March 2021) by applying known age-related mortality to United Nations estimates of the age structure. We further compared exacerbations of disease burden predicted from the COVID-19 public health response. Data were derived from public sources and predicted exacerbations were derived from those published by international agencies. For sub-Saharan African populations north of South Africa, the estimated recorded COVID-19 DALYs lost in 2020 were 3.7%, 2.3%, and 2.4% of those for tuberculosis, HIV/AIDS, and malaria, respectively. Predicted exacerbations of these diseases were greater than the estimated COVID-19 burden. Including South Africa and Lesotho, COVID-19 DALYs lost were < 12% of those for other compared diseases; furthermore, the mortality of compared diseases were dominant in all age groups younger than 65 years. This analysis suggests the relatively low impact of COVID-19. Although all four epidemics continue, tuberculosis, HIV/AIDS, and malaria remain far greater health priorities based on their disease burdens. Therefore, resource diversion to COVID-19 poses a high risk of increasing the overall disease burden and causing net harm, thereby further increasing global inequities in health and life expectancy.
Collapse
Affiliation(s)
- David Bell
- Independent Consultant, Issaquah, Washington
| | - Kristian Schultz Hansen
- Department of Public Health and Centre for Health Economics and Policy, University of Copenhagen, Copenhagen, Denmark
- The National Research Center of Working Environment, Copenhagen, Denmark
| |
Collapse
|