1
|
Bushnaq H, Pu S, Burton T, Rodriguez-Andres J, Montoya JC, Mackenzie J, Munro C, Palmisano G, Mettu S, Mcelhinney J, Dumée LF. Visible light photosensitised cross-flow microfiltration membrane reactors for managing microplastic-contaminated bio-effluents. WATER RESEARCH 2025; 277:123317. [PMID: 40010124 DOI: 10.1016/j.watres.2025.123317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/28/2025]
Abstract
The demand for advanced water treatment solutions necessitates the development of multifunctional, photodynamically active membranes. Phthalocyanines (Pcs), a class of organic photosensitizers, offer significant potential for enhancing treatment efficacy through photodynamic activity. This study reports the development of Pc-modified polymeric microfiltration membranes as visible-light-responsive, multifunctional membrane reactors with enhanced photodynamic and filtration properties. Cobalt phthalocyanine (CoPc), zinc phthalocyanine (ZnPc), tetra-amino zinc phthalocyanine (TAZnPc), and tetra-sulfonated aluminum phthalocyanine (TSAlPc) were integrated into the membranes, imparting notable changes in morphology, surface wettability, and chemical functionality. Characterization revealed improvements in optical responsiveness and surface properties that contributed to robust photodynamic and filtration performance. Static photodynamic evaluations demonstrated high efficacy, with ZnPc mixed matrix membrane (MMM) achieving superior dye degradation and TSAlPc grafted membrane (GM) yielding significant bacterial inactivation. Filtration trials confirmed ZnPc MMM's biofouling resistance and permeance stability, reaching 99.97 % rejection of bio-fouled microplastics (MPs) and a 45 % permeance enhancement under irradiation. Virus filtration results demonstrated TSAlPc MMM's viral retention efficacy, achieving a 2.05-log reduction against Influenza A virus. These findings underscore the potential of Pc-functionalized membranes as promising candidates for advanced water treatment applications, offering robust contaminant rejection, biofouling control, and broad-spectrum antimicrobial efficacy in a single, multifunctional platform.
Collapse
Affiliation(s)
- Hooralain Bushnaq
- Khalifa University, Department of Chemical and Petrochemical Engineering, Abu Dhabi, United Arab Emirates; Research and Innovation Center in Graphene and 2D Materials (RIC2D), Khalifa University, Abu Dhabi, United Arab Emirates; Centre for Membrane and Advanced Water Treatment (CMAT), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Sisi Pu
- Khalifa University, Department of Chemical and Petrochemical Engineering, Abu Dhabi, United Arab Emirates; Research and Innovation Center in Graphene and 2D Materials (RIC2D), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Tom Burton
- Department of Microbiology and Immunology, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne at the Peter Doherty Institute, Melbourne, VIC, Australia
| | - Julio Rodriguez-Andres
- Department of Microbiology and Immunology, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne at the Peter Doherty Institute, Melbourne, VIC, Australia
| | - Julio Carrera Montoya
- Department of Microbiology and Immunology, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne at the Peter Doherty Institute, Melbourne, VIC, Australia
| | - Jason Mackenzie
- Department of Microbiology and Immunology, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne at the Peter Doherty Institute, Melbourne, VIC, Australia
| | - Catherine Munro
- Khalifa University, Department of Chemical and Petrochemical Engineering, Abu Dhabi, United Arab Emirates
| | - Giovanni Palmisano
- Khalifa University, Department of Chemical and Petrochemical Engineering, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and Hydrogen (RICH), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Srinivas Mettu
- Khalifa University, Department of Chemical and Petrochemical Engineering, Abu Dhabi, United Arab Emirates; Centre for Membrane and Advanced Water Treatment (CMAT), Khalifa University, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and Hydrogen (RICH), Khalifa University, Abu Dhabi, United Arab Emirates
| | - James Mcelhinney
- Centre for Membrane and Advanced Water Treatment (CMAT), Khalifa University, Abu Dhabi, United Arab Emirates; Khalifa University, Department of Biomedical Engineering, Abu Dhabi, United Arab Emirates
| | - Ludovic F Dumée
- Khalifa University, Department of Chemical and Petrochemical Engineering, Abu Dhabi, United Arab Emirates; Research and Innovation Center in Graphene and 2D Materials (RIC2D), Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Puteri MN, Gew LT, Ong HC, Ming LC. Technologies to eliminate microplastic from water: Current approaches and future prospects. ENVIRONMENT INTERNATIONAL 2025; 199:109397. [PMID: 40279687 DOI: 10.1016/j.envint.2025.109397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/13/2025] [Accepted: 03/17/2025] [Indexed: 04/27/2025]
Abstract
Microplastic (MP) pollution has become a widespread environmental threat which must be addressed as it affects the water bodies, soil as well as air. MPs originally from synthetic textiles, tire abrasion, plastic waste, etc. pose the significant risks to both the environment and health due to its structure, ability to absorb toxins and act as carriers of harmful substances. This characteristic enables MPs to accumulate toxic substances and spread them within the food chain which leads to adverse effects on both the environment and human health including possible endocrine disruption. This problem needs to be solved in order to protect the self-regulatory systems of the environment and safeguard for human health. This review investigates various methods developed to eliminate MPs from water which each method exposes its own strengths and limitations. Conventional methods, such as filtration, coagulation-flocculation, and sedimentation serve as the primary line of defense but often struggle with smaller particles. Membrane filtration, magnetic separation, and electrochemical methods have shown better performance particularly for a wider MPs size range. However, their adoption is limited due to high costs and high energy requirement. A chemical approach focuses on the use of reactors to degrade MPs as a means of overcoming the problem posed by the persistent particles. Biological approaches, including bioremediation through bacteria, fungi, and algae offer eco-friendly alternatives by breaking down MPs into less harmful components. Future directions in MPs management involve the integration of these technologies for enhanced removal efficiency, the development of novel materials, and improved system designs to reduce costs and environmental impact. In summary, advancing research in biotechnological solutions and optimizing existing methods is critical to address the widespread and complex nature of MPs pollution to ensure healthier ecosystems and safer water supplies.
Collapse
Affiliation(s)
| | - Lai Ti Gew
- Sir Jeffrey Cheah Sunway Medical School, Faculty of Medical and Life Sciences, Sunway University, Sunway City, Malaysia.
| | - Hwai Chyuan Ong
- School of Engineering, Faculty of Engineering and Technology, Sunway University, Sunway City, Malaysia; School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, Australia
| | - Long Chiau Ming
- Sir Jeffrey Cheah Sunway Medical School, Faculty of Medical and Life Sciences, Sunway University, Sunway City, Malaysia; Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (deemed to be University), Sawangi (M), Wardha, India
| |
Collapse
|
3
|
Malkoske TA, Bérubé PR, Andrews RC. Hydraulic and chemical cleaning efficiency for the release of microplastics retained during coagulation/flocculation-ultrafiltration. WATER RESEARCH 2025; 282:123601. [PMID: 40267594 DOI: 10.1016/j.watres.2025.123601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/18/2025] [Accepted: 04/04/2025] [Indexed: 04/25/2025]
Abstract
Microplastics (MPs) are ubiquitous in global drinking water sources (lakes, rivers), with reported concentrations ranging from 0.5 to >7,500 particles/L. Ultrafiltration (UF), widely applied in drinking water treatment, is anticipated to represent an effective barrier to MPs due to its pore size (0.01-0.1 µm), which can retain MPs of potential health concern. To-date limited studies have reported that MPs may contribute to UF fouling, albeit when considering concentrations up to 10 orders of magnitude higher than those typically observed in source waters. The present study evaluated the retention of MPs by UF membranes when incorporating coagulation/flocculation pre-treatment, as well as their release during hydraulic and chemical cleaning. Polyethylene (PE) fragments, representing a range of environmentally relevant sizes (1-50 µm) and concentrations (907 ± 293 particles/L), were spiked into untreated lake waters prior to coagulation/flocculation-UF. Results suggest that in the absence of coagulant (alum) addition, only 50% of MPs retained during UF permeation were subsequently released during hydraulic cleaning. The release of MPs during hydraulic cleaning decreased (<20%) at medium and high (8 mg/L, 15 mg/L) alum dosages when compared to the absence of coagulant addition. Chemical cleaning with sodium hypochlorite (500 mg/L) was only capable of releasing 20% to 60% of retained MPs. Both hydraulic and chemical cleaning were less effective for the release of MPs when compared to reversible fouling resistance, organic matter, and aluminum. As such, future research is required to determine if the accumulation of MPs leads to increased UF fouling over extended operating periods, in addition cleaning practices which specifically target MPs should be further examined. Low and medium alum dosages (2 mg/L, 8 mg/L) were observed to increase the release of retained MPs during chemical cleaning, suggesting that incorporation of coagulation pre-treatment is useful to increase the release of MPs and minimize potential long-term accumulation on membranes.
Collapse
Affiliation(s)
- Tyler A Malkoske
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada.
| | - Pierre R Bérubé
- Department of Civil Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Robert C Andrews
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| |
Collapse
|
4
|
Pinto PE, Giacobbo A, de Almeida GM, Rodrigues MAS, Bernardes AM. Pressure-Driven Membrane Processes for Removing Microplastics. MEMBRANES 2025; 15:81. [PMID: 40137033 PMCID: PMC11944205 DOI: 10.3390/membranes15030081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025]
Abstract
The intense consumption of polymeric materials combined with poor waste management results in the dissemination of their fragments in the environment as micro- and nanoplastics. They are easily dispersed in stormwater, wastewater, and landfill leachate and carried towards rivers, lakes, and oceans, causing their contamination. In aqueous matrices, the use of membrane separation processes has stood out for the efficiency of removing these particulate contaminants, achieving removals of up to 100%. For this review article, we researched the removal of microplastics and nanoplastics by membrane processes whose driving force is the pressure gradient. The analysis focuses on the challenges found in the operation of microfiltration, ultrafiltration, nanofiltration, and reverse-osmosis systems, as well as on the innovations applied to the membranes, with comparisons of treatment systems and the peculiarities of each system and each aqueous matrix. We also point out weaknesses and opportunities for future studies so that these techniques, known to be capable of removing many other contaminants of emerging concern, can subsequently be widely applied in the removal of micro- and nanoplastics.
Collapse
Affiliation(s)
- Priscila Edinger Pinto
- Post-Graduation Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, n. 9500, Porto Alegre 91509-900, RS, Brazil; (G.M.d.A.); (A.M.B.)
| | - Alexandre Giacobbo
- Post-Graduation Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, n. 9500, Porto Alegre 91509-900, RS, Brazil; (G.M.d.A.); (A.M.B.)
| | - Gabriel Maciel de Almeida
- Post-Graduation Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, n. 9500, Porto Alegre 91509-900, RS, Brazil; (G.M.d.A.); (A.M.B.)
| | - Marco Antônio Siqueira Rodrigues
- Post-Graduation Program in Materials Technology and Industrial Processes, Feevale University, Rodovia RS-239, n. 2755, Vila Nova, Novo Hamburgo 93525-075, RS, Brazil;
| | - Andréa Moura Bernardes
- Post-Graduation Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, n. 9500, Porto Alegre 91509-900, RS, Brazil; (G.M.d.A.); (A.M.B.)
| |
Collapse
|
5
|
Bodzek M, Bodzek P. Remediation of Micro- and Nanoplastics by Membrane Technologies. MEMBRANES 2025; 15:82. [PMID: 40137034 PMCID: PMC11943828 DOI: 10.3390/membranes15030082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025]
Abstract
Micro- and nanoplastics (NPs) cannot be completely removed from water/wastewater in conventional wastewater treatment plants (WWTPs) and drinking water treatment plants (DWTPs). According to the literature analysis, membrane processes, one of the advanced treatment technologies, are the most effective and promising technologies for the removal of microplastics (MPs) from water and wastewater. In this article, firstly, the properties of MPs commonly found in water and wastewater treatment and their removal efficiencies are briefly reviewed. In addition, research on the use of microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), and membrane bioreactors (MBR) for the remediation of MPs and NPs from water/wastewater is reviewed, and the advantages/disadvantages of each removal method are discussed. Membrane filtration is also compared with other methods used to remove MPs. Furthermore, the problem of membrane fouling by MPs during filtration and the potential for MPs to be released from the polymeric membrane structure are discussed. Finally, based on the literature survey, the current status and gaps in research on MPs removal by membrane technologies are identified, and recommendations for further research are made.
Collapse
Affiliation(s)
- Michał Bodzek
- Institute of Environmental Engineering, Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Piotr Bodzek
- Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| |
Collapse
|
6
|
Xiong Y, Zhao Z, Peng K, Zhai G, Huang X, Zeng H. Microplastic interactions with co-existing pollutants in water environments: Synergistic or antagonistic roles on their removal through current remediation technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124355. [PMID: 39933381 DOI: 10.1016/j.jenvman.2025.124355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/07/2025] [Accepted: 01/25/2025] [Indexed: 02/13/2025]
Abstract
Composite water pollution, caused by microplastics (MPs) and co-occurring pollutants, is an emerging issue that induces synergistic toxicity. Multidimensional interactions occur between MPs and co-existing pollutants in a composite system, which alter the behavior of each component, resulting in unpredictable effects on the treatment processes. However, significant gaps exist in current review papers regarding MP‒pollutant interaction mechanisms and the corresponding synergistic or antagonistic effects on their removal processes. This review comprehensively describes the latest research in composite water pollution caused by MPs and various other pollutants with different compositions and states, systematically discusses their interaction mechanisms, and critically evaluates the impact of co-existing contaminants on the treatment performance of current remediation technologies. Based on current research progress and gaps, opportunities, challenges, and perspectives for future research directions are proposed. This review highlights state-of-the-art research related to composite water pollution caused by MPs and various pollutants, which is expected to inspire new strategies for the effective removal of multiple contaminants from the aquatic environment.
Collapse
Affiliation(s)
- Yongjiao Xiong
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China
| | - Ziqian Zhao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Kaiming Peng
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China; Institute of Carbon Neutrality, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, PR China
| | - Gongqi Zhai
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China
| | - Xiangfeng Huang
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China; Institute of Carbon Neutrality, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, PR China.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
7
|
Kang J, Kwon O, Kim JP, Kim JY, Kim J, Cho Y, Kim DW. Graphene Membrane for Water-Related Environmental Application: A Comprehensive Review and Perspectives. ACS ENVIRONMENTAL AU 2025; 5:35-60. [PMID: 39830720 PMCID: PMC11741062 DOI: 10.1021/acsenvironau.4c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 01/22/2025]
Abstract
Graphene-based materials can be potentially utilized for separation membranes due to their unique structural properties such as precise molecular sieving by interlayer spacing or pore structure and excellent stability in harsh environmental conditions. Therefore, graphene-based membranes have been extensively demonstrated for various water treatment applications, including desalination, water extraction, and rare metal ion recovery. While most of the utilization has still been limited to the laboratory scale, emerging studies have dealt with scalable approaches to show commercial feasibility. This review summarizes the recent studies on diverse graphene membrane fabrications and their environmental applications related to water-containing conditions in addition to the molecular separation mechanism and critical factors related to graphene membrane performance. Additionally, we discuss future perspectives and challenges to provide insights into the practical applications of graphene-based membranes on the industrial scale.
Collapse
Affiliation(s)
- Junhyeok Kang
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ohchan Kwon
- Department
of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Jeong Pil Kim
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ju Yeon Kim
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jiwon Kim
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yonghwi Cho
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Dae Woo Kim
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
8
|
Yadav B, Gupta P, Kumar V, Umesh M, Sharma D, Thomas J, Kumar Bhagat S. Potential health, environmental implication of microplastics: A review on its detection. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 268:104467. [PMID: 39608219 DOI: 10.1016/j.jconhyd.2024.104467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/23/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024]
Abstract
Microplastic contamination of terrestrial and aquatic environment has gained immense research attention due to their potential ecotoxicity and biomagnification property when enterer into food chain. Heterogenous nature of microplastics coupled with their ability to combine with other emerging pollutants have increased the severity of this crisis. Existing detection methods often fails to accurately quantify the amount of microplastic components present in environmental and biological samples. Thus, a great deal of research gap always exists in our current understanding about microplastics including the limitations in screening, detection and mitigation. This review work presents a comprehensive out look on the impact of microplastics on both terrestrial and aquatic environment. Furthermore, an in-depth discussion on various microplastic detection techniques recently used for microplastic quantification along with their significance and limitations is summarised in this review. The review also elaborates various physical, chemical and biological methods used for the mitigation of microplastics from environmental samples.
Collapse
Affiliation(s)
- Bhawana Yadav
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248001, Uttarakhand, India
| | - Payal Gupta
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248001, Uttarakhand, India.
| | - Vinay Kumar
- Biomaterials and Tissue Engineering (BITE) Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India.
| | - Mridul Umesh
- Department of Life Sciences, Christ University, Bangalore 560029, Karnataka, India
| | - Deepak Sharma
- Department of Biotechnology, Chandigarh College of Technology, Chandigarh Group of Colleges Landran, 140307, Mohali, Punjab, India
| | - Jithin Thomas
- Department of Biotechnology, Mar Athanasius College, Kerala, India
| | - Suraj Kumar Bhagat
- Marwadi University Research Center, Department of Civil Engineering, Faculty of Engineering & Technology, Marwadi University, Gujarat, Rajkot, 360003, India
| |
Collapse
|
9
|
Qiu Y, Zhang T, Zhang P. Micro/nano plastics inhibit the formation of barium sulfate scale on metal surface. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136151. [PMID: 39426152 DOI: 10.1016/j.jhazmat.2024.136151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Mineral scale (scale) is the crystalline inorganic precipitate from aqueous solution. Scale formation in pipelines has long been a challenge in various industrial systems. Micro/nano plastics (MNPs) have the potential to strongly influence scale formation process. However, comprehensive studies and mechanistic understanding of the interactions between MNPs and scales remain significantly underexplored. To fill this gap, we firstly adopted quartz crystal microbalance with dissipation (QCM-D) technology to monitor the in situ formation of barium sulfate (BaSO4) (0.001 M, saturation index 2.5) scale influenced by MNPs on metal surfaces. Microplastic (MP) (5 µm)-loaded surface exhibits hydrophobicity (contact angle > 123.1º), which reduces the rate of scale formation (90.86 ± 11.01 (ng cm-2 min-1)). Electrostatic repulsion impeded crystal growth while ion adsorption has a limited effect. Experiments on BaSO4 formation on metal pipes loaded with foam packaging debris were conducted over 30 days, and similar inhibition results were obtained. This study highlights the important role of MNPs in controlling heterogeneous nucleation and crystal growth of scale on metal surfaces, providing valuable insights for both MNPs and scale research.
Collapse
Affiliation(s)
- Ye Qiu
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao
| | - Tong Zhang
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Ping Zhang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao.
| |
Collapse
|
10
|
Shen Y, Tan Q, Sun J, Cai X, Shen L, Lin H, Wei X. Membrane fouling characteristics and mechanisms in coagulation-ultrafiltration process for treating microplastic-containing water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176524. [PMID: 39332724 DOI: 10.1016/j.scitotenv.2024.176524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Microplastics (MPs) are recognized as a significant challenge to water treatment processes due to their ability to adsorb or accumulate alginate foulants, impacting the coagulation-ultrafiltration (CUF) process. In this study, the mechanisms of membrane fouling caused by MPs under varying dosages of polymeric aluminum chloride (PAC) coagulant in the CUF process were investigated. It was revealed that MPs contribute to membrane fouling, which initially intensifies and then alleviates as coagulant concentration increases, with a turning point at 0.05 mM PAC dosage. The most significant alleviation of membrane fouling was observed at 0.2 mM PAC dosage. An in-depth analysis of interfacial interaction energy changes during filtration was conducted using the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, demonstrating how MPs alter the interaction forces between foulants and the membrane surface, leading to either the exacerbation or mitigation of fouling. Additionally, it was shown that at optimal coagulant concentrations, the presence of MPs promotes the formation of a loose and porous cake layer, disrupting the original structure and creating a more open block structure, thereby alleviating membrane fouling. These findings provide valuable insights for optimizing the CUF process in microplastic-containing water treatment, presenting a novel approach to enhancing efficiency and reducing membrane fouling.
Collapse
Affiliation(s)
- Yue Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China.
| | - Qiyin Tan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Jiahao Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Xiang Cai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaoxuan Wei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
11
|
Yuan F, Yuan H, Zhang X, Yu W, Du J, Yang X, Wang D. Numerical study on the mechanism of microplastic separation from water by cyclonic air flotation. WATER RESEARCH 2024; 266:122338. [PMID: 39213685 DOI: 10.1016/j.watres.2024.122338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Microplastics have attracted considerable attention as emerging contaminants that threaten water bodies. The removal of microplastics from a mini-hydrocyclone, enhanced by air flotation, was studied numerically. The three-phase flow was modeled using the Eulerian-Eulerian model coupled with interphase interactions. The characteristics of the flow field and distribution of microplastics and microbubbles were discussed, and the mechanism of cyclonic air flotation separation was analyzed. It was found that injecting microbubbles accelerated the axial migration of microplastics and moved the enriched area upward toward the overflow. The coalescence rate of the bubbles near the axis was higher than their breakage rate, which led to the formation of an air core. The length and diameter of the air core increased with the inlet gas holdup. When the air core size closely matched the overflow, the constrained flow channel prevented the discharge of microplastics. The optimal air holdup must be determined to ensure the efficiency of the cyclonic air flotation process. The sizes of the microbubbles used for cyclonic air flotation should be comparable to those of the separated microplastics. The upper cone angle significantly promoted the migration of microplastics to the axis. This study was conducted to purify microplastic-containing wastewater using an environmentally friendly and energy-efficient technique and to provide a theoretical basis and practical reference for applying microplastic separation technology in water.
Collapse
Affiliation(s)
- Fangyang Yuan
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Wuxi 214122, China; School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China; Wuxi General Machinery Works Co. Ltd., Wuxi 214028, China.
| | - Hao Yuan
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Wuxi 214122, China; School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Xibin Zhang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Wuxi 214122, China; School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Wei Yu
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Wuxi 214122, China; School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiyun Du
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Wuxi 214122, China; School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Xinjun Yang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Wuxi 214122, China; School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Dongxiang Wang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Wuxi 214122, China; School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
LaRue RJ, Koo S, Warren A, McKay YG, Latulippe DR. A strategy for quantifying microplastic particles in membrane filtration processes using flow cytometry. CHEMOSPHERE 2024; 368:143613. [PMID: 39454767 DOI: 10.1016/j.chemosphere.2024.143613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Microplastic (MP) pollution is ubiquitous in the aquatic environment, with significant quantities of MPs originating from municipal wastewater treatment plants. Efforts to evaluate and implement MP removal processes are underway, with membrane technologies often recommended as an "ideal" solution. A key challenge in evaluating these technologies involves efficiently quantifying MP concentrations in samples. Here, flow cytometry (FC) is demonstrated as an effective technique to obtain concentration measurements of plastic microbeads (MBs; 1-5 μm) suspended in water with/without added humic acid. Regardless of solution conditions, MB concentrations were easily quantified via FC. Subsequently, two microfiltration membranes were challenged to these suspensions. As measured via FC, the 0.45 μm membrane demonstrated effective MB rejection (>99%) whereas the 5 μm membrane exhibited a broad range of rejections (40% to >95%) depending on solution conditions and filtration time. Finally, a model was formulated utilizing FC forward light scattering intensity measurements to estimate MB sizes in samples. Using the model, a 33% reduction in median MB size, on average, was noted across the 5 μm membrane when filtering MBs suspended in humic acid solution, affirming a preferential permeation of smaller particles. Overall, this study advances MP quantification techniques towards validating removal processes.
Collapse
Affiliation(s)
- Ryan J LaRue
- McMaster University Department of Chemical Engineering, Hamilton, ON, Canada.
| | - Samuel Koo
- McMaster University Department of Chemical Engineering, Hamilton, ON, Canada.
| | - Ashleigh Warren
- McMaster University Department of Chemical Engineering, Hamilton, ON, Canada.
| | - Yves G McKay
- McMaster University Department of Chemical Engineering, Hamilton, ON, Canada.
| | - David R Latulippe
- McMaster University Department of Chemical Engineering, Hamilton, ON, Canada.
| |
Collapse
|
13
|
Junaid M, Liu S, Liao H, Yue Q, Wang J. Environmental nanoplastics quantification by pyrolysis-gas chromatography-mass spectrometry in the Pearl River, China: First insights into spatiotemporal distributions, compositions, sources and risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135055. [PMID: 38941826 DOI: 10.1016/j.jhazmat.2024.135055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
Nanoplastics (NPs, size <1000 nm) are ubiquitous plastic particles, potentially more abundant than microplastics in the environment; however, studies highlighting their distribution dynamics in freshwater are rare due to analytical limitations. Here, we investigated spatiotemporal levels of nine polymers of NPs in surface water samples (n = 30) from the full stretch of the Pearl River (sites, n = 15) using pyrolysis gas chromatography-mass spectrometry (Py-GC/MS). Six polymers were detected, including polystyrene (PS), polyvinyl chloride (PVC), nylon/polyamide 66 (PA66), polyester (PES), poly(methyl methacrylate) (PMMA) and polyethylene (PE), where three polymers showed high detection frequencies; PS (100 % in winter and summer), followed by PVC (73 % in winter and 87 % in summer) and PA66 (53 % in winter and 67 % in summer). The spatiotemporal distribution revealed the sites related to aquaculture (AQ) and shipping (SHP) showed higher NP levels than those of human settlement (HS) and wastewater treatment plants (WWTPs) (p = 0.004), and relatively high average levels of NPs in the urban sites compared to rural sites (p = 0.04), albeit showed no obvious seasonal differences (p = 0.78). For instance, the average PS levels in the Pearl River were in the following order: AQ 411.55 µg/L > SHP 81.75 µg/L > WWTP 56.66 µg/L > HS 47.75 µg/L in summer and HS 188.1 µg/L > SHP 103.55 µg/L > AQ 74.7 µg/L > WWTP 62.1 µg/L in winter. Source apportionment showed a higher contribution through domestic plastic waste emissions among urban sites, while rural sites showed an elevated contribution via aquaculture, agriculture, and surface run-off to the NP pollution. Risk assessment revealed that NPs at SHP and AQ sites posed a higher integrated risk in terms of pollution load index (PLI) than those at WWTP and HS sites. Regarding polymer hazard index (HI), 80 % of sampling sites in summer and 60 % of sampling sites in winter posed level III polymer risk, with PVC posing the highest risk. This study provides novel insights into the seasonal contamination and polymer risks of NP in the Pearl River, which will help to regulate the production and consumption of plastics in the region. ENVIRONMENTAL IMPLICATIONS: The contamination dynamics of field nanoplastics (NPs) in freshwater resources remain little understood, mainly attributed to analytical constraints. This study aims to highlight the spatiotemporal distribution of NPs in the Pearl River among various land use types, urban-rural comparison, seasonal comparison, their compositional profiles, potential sources, interaction with environmental factors, and ecological and polymer hazard assessments of investigated polymers in the full stretch of the Pearl River from Liuxi Reservoir to the Pearl River Delta (PRD) region. This study, with a comparatively large number of samples and NP polymers, will offer novel insights into the contamination profiles of nano-sized plastic particles in one of the important freshwater riverine systems in China.
Collapse
Affiliation(s)
- Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Shulin Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Hongping Liao
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Qiang Yue
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China.
| |
Collapse
|
14
|
Biao W, Hashim NA, Rabuni MFB, Lide O, Ullah A. Microplastics in aquatic systems: An in-depth review of current and potential water treatment processes. CHEMOSPHERE 2024; 361:142546. [PMID: 38849101 DOI: 10.1016/j.chemosphere.2024.142546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Plastic products, despite their undeniable utility in modern life, pose significant environmental challenges, particularly when it comes to recycling. A crucial concern is the pervasive introduction of microplastics (MPs) into aquatic ecosystems, with deleterious effects on marine organisms. This review presents a detailed examination of the methodologies developed for MPs removal in water treatment systems. Initially, investigating the most common types of MPs in wastewater, subsequently presenting methodologies for their precise identification and quantification in aquatic environments. Instruments such as scanning electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, Raman spectroscopy, surface-enhanced Raman spectroscopy, and Raman tweezers stand out as powerful tools for studying MPs. The discussion then transitions to the exploration of both existing and emergent techniques for MPs removal in wastewater treatment plants and drinking water treatment plants. This includes a description of the core mechanisms that drive these techniques, with an emphasis on the latest research developments in MPs degradation. Present MPs removal methodologies, ranging from physical separation to chemical and biological adsorption and degradation, offer varied advantages and constraints. Addressing the MPs contamination problem in its entirety remains a significant challenge. In conclusion, the review offers a succinct overview of each technique and forwards recommendations for future research, highlighting the pressing nature of this environmental dilemma.
Collapse
Affiliation(s)
- Wang Biao
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - N Awanis Hashim
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Mohamad Fairus Bin Rabuni
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Ong Lide
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Aubaid Ullah
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Vohl S, Kristl M, Stergar J. Harnessing Magnetic Nanoparticles for the Effective Removal of Micro- and Nanoplastics: A Critical Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1179. [PMID: 39057856 PMCID: PMC11279442 DOI: 10.3390/nano14141179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
The spread of micro- (MPs) and nanoplastics (NPs) in the environment has become a significant environmental concern, necessitating effective removal strategies. In this comprehensive scientific review, we examine the use of magnetic nanoparticles (MNPs) as a promising technology for the removal of MPs and NPs from water. We first describe the issues of MPs and NPs and their impact on the environment and human health. Then, the fundamental principles of using MNPs for the removal of these pollutants will be presented, emphasizing that MNPs enable the selective binding and separation of MPs and NPs from water sources. Furthermore, we provide a short summary of various types of MNPs that have proven effective in the removal of MPs and NPs. These include ferromagnetic nanoparticles and MNPs coated with organic polymers, as well as nanocomposites and magnetic nanostructures. We also review their properties, such as magnetic saturation, size, shape, surface functionalization, and stability, and their influence on removal efficiency. Next, we describe different methods of utilizing MNPs for the removal of MPs and NPs. We discuss their advantages, limitations, and potential for further development in detail. In the final part of the review, we provide an overview of the existing studies and results demonstrating the effectiveness of using MNPs for the removal of MPs and NPs from water. We also address the challenges that need to be overcome, such as nanoparticle optimization, process scalability, and the removal and recycling of nanoparticles after the completion of the process. This comprehensive scientific review offers extensive insights into the use of MNPs for the removal of MPs and NPs from water. With improved understanding and the development of advanced materials and methods, this technology can play a crucial role in addressing the issues of MPs and NPs and preserving a clean and healthy environment. The novelty of this review article is the emphasis on MNPs for the removal of MPs and NPs from water and a detailed review of the advantages and disadvantages of various MNPs for the mentioned application. Additionally, a review of a large number of publications in this field is provided.
Collapse
Affiliation(s)
| | | | - Janja Stergar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (S.V.); (M.K.)
| |
Collapse
|
16
|
Golgoli M, Farahbakhsh J, Najafi M, Khiadani M, Johns ML, Zargar M. Resilient forward osmosis membranes against microplastics fouling enhanced by MWCNTs/UiO-66-NH 2 hybrid nanoparticles. CHEMOSPHERE 2024; 359:142180. [PMID: 38679179 DOI: 10.1016/j.chemosphere.2024.142180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 05/01/2024]
Abstract
The escalating presence of microplastics (MPs) in wastewater necessitates the investigation of effective tertiary treatment process. Forward osmosis (FO) emerges as an effective non-pressurized membrane process, however, for the effective implementation of FO systems, the development of fouling-resistance FO membranes with high-performance is essential. This study focuses on the integration of MWCNT/UiO-66-NH2 as metal-organic frameworks (MOFs) and multi-wall carbon nanotubes (MWCNT) nanocomposites in thin film composite (TFC) FO membranes, harnessing the synergistic power of hybrid nanoparticles in FO membranes. The results showed that the addition of MWCNT/UiO-66-NH2 in the aqueous phase during polyamide formation changed the polyamide surface structure, and enhanced membranes' hydrophilicity by 44%. The water flux of the modified FO membrane incorporated with 0.1 wt% MWCNTs/UiO-66-NH2 increased by 67% and the reverse salt flux decreased by 22% as in comparison with the control membrane. Moreover, the modified membrane showed improved antifouling behavior against both organic foulant and MPs. The MWCNT/UiO-66-NH2 membrane experienced 35% flux decline while the control membrane experienced 65% flux decline. This proves that the integration of MWCNT/UiO-66-NH2 nanoparticles into TFC FO membranes is a viable approach in creating advanced FO membranes with high antifouling propensity with potential to be expanded further to other membrane applications.
Collapse
Affiliation(s)
- Mitra Golgoli
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Javad Farahbakhsh
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Mohadeseh Najafi
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Michael L Johns
- Fluid Science & Resources Division, Department of Chemical Engineering, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia.
| |
Collapse
|
17
|
Oluwoye I, Tanaka S, Okuda K. Pilot-scale performance of gravity-driven ultra-high flux fabric membrane systems for removing small-sized microplastics in wastewater treatment plant effluents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121438. [PMID: 38861885 DOI: 10.1016/j.jenvman.2024.121438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/10/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
The ubiquitous nature and environmental impacts of microplastic particles and fibers demand effective solutions to remove such micropollutants from sizable point sources, including wastewater treatment plants and road runoff facilities. While advanced methods, e.g., microfiltration and ultrafiltration, have shown high removal efficiencies of small-sized microplastics (<150 μm), the low flux encountered in these systems implies high operation costs and makes them less effective in high-capacity wastewater facilities. The issue presents new opportunities for developing cheap high-flux membrane systems, deployable in low-to high-income economies, to remove small-sized microplastic and nanoplastics in wastewater. Here, we report on developing an ultra-high flux gravity-driven fabric membrane system, assessed through a laboratory-scale filtration and large-scale performance in an actual wastewater treatment plant (WWTP). The method followed a carefully designed water sampling, pre-treatment protocol, and analytical measurements involving Fourier transform infrared (FTIR) spectroscopy and laser direct infrared (LDIR) imaging. The result shows that the ultra-high flux (permeance = 550,000 L/m2h⋅bar) fabric membrane system can effectively remove small-sized microplastics (10-300 μm) in the secondary effluent of an actual WWTP at high efficiency greater than 96 %. The pilot system demonstrated a continuous treatment capacity of 300,000 L/day through a 1 m2 surface area disc, with steady removal rates of microplastics. These findings demonstrate the practical, cheap, and sustainable removal of small-sized microplastics in wastewater treatment plants, and their potential value for other large-scale point sources, e.g., stormwater treatment facilities.
Collapse
Affiliation(s)
- Ibukun Oluwoye
- Graduate School of Global Environmental Studies, Kyoto University, Yoshidahonmachi, Kyoto, 606-8501, Japan; Curtin Corrosion Centre, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
| | - Shuhei Tanaka
- Graduate School of Global Environmental Studies, Kyoto University, Yoshidahonmachi, Kyoto, 606-8501, Japan
| | - Kensuke Okuda
- Metawater R&D Center, Water Regeneration Technology Development Department, Tokyo, 101-0041, Japan
| |
Collapse
|
18
|
Rizvi NB, Sarwar A, Waheed S, Iqbal ZF, Imran M, Javaid A, Kim TH, Khan MS. Nano-based remediation strategies for micro and nanoplastic pollution. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 265:104380. [PMID: 38875891 DOI: 10.1016/j.jconhyd.2024.104380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/02/2024] [Accepted: 06/02/2024] [Indexed: 06/16/2024]
Abstract
Due to rapid urbanization, there have been continuous environmental threats from different pollutants, especially from microplastics. Plastic products rapidly proliferate significantly contributing to the occurrence of micro-plastics, which poses a significant environmental risk. These microplastics originated from diverse sources and are characterized by their persistent and widespread occurrence; human health and the entire ecosystem are adversely affected by them. The removal of microplastics not only requires innovative technologies but also efficient materials capable of effectively eliminating them from our environment. The progress made so far has highlighted the advantages of utilizing the dimensional and structural properties of nanomaterials to increase the effectiveness of existing methods for micro-plastic treatment, aiming for a more sustainable approach to their removal. In the current review, we demonstrate a thorough overview of the sources, occurrences, and potential harmful effects of microplastics, followed by a further discussion of promising technologies used for their removal. An in-depth examination of both advantages and a few limitations of all these given technologies, including physical, chemical, and biological approaches, has been discussed. Additionally, the review explores the use of nanomaterials as an effective means to overcome obstacles and improve the efficiency of microplastic elimination methods. n conclusion, this review addresses, current challenges in this field and outlines the future perspectives for further research in this domain.
Collapse
Affiliation(s)
- Nayab Batool Rizvi
- Centre for Clinical and Nutritional Chemistry, University of the Punjab, Lahore 54000, Pakistan
| | - Adnan Sarwar
- Centre for Clinical and Nutritional Chemistry, University of the Punjab, Lahore 54000, Pakistan
| | - Saba Waheed
- Centre for Clinical and Nutritional Chemistry, University of the Punjab, Lahore 54000, Pakistan
| | - Zeenat Fatima Iqbal
- Department of Chemistry, University of Engineering and Technology, Lahore-54000, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore 54000, Pakistan.
| | - Ayesha Javaid
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore 54000, Pakistan
| | - Tak H Kim
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Muhammad Shahzeb Khan
- Sulaiman Bin Abdullah Aba Al-Khail Centre for Interdisciplinary Research in Basic Sciences (SA-CIRBS), Faculty of Basic and Applied Sciences, International Islamic University Islamabad, Islamabad, Pakistan.
| |
Collapse
|
19
|
Yarahmadi A, Heidari S, Sepahvand P, Afkhami H, Kheradjoo H. Microplastics and environmental effects: investigating the effects of microplastics on aquatic habitats and their impact on human health. Front Public Health 2024; 12:1411389. [PMID: 38912266 PMCID: PMC11191580 DOI: 10.3389/fpubh.2024.1411389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/13/2024] [Indexed: 06/25/2024] Open
Abstract
Microplastics (MPs) are particles with a diameter of <5 mm. The disposal of plastic waste into the environment poses a significant and pressing issue concern globally. Growing worry has been expressed in recent years over the impact of MPs on both human health and the entire natural ecosystem. MPs impact the feeding and digestive capabilities of marine organisms, as well as hinder the development of plant roots and leaves. Numerous studies have shown that the majority of individuals consume substantial quantities of MPs either through their dietary intake or by inhaling them. MPs have been identified in various human biological samples, such as lungs, stool, placenta, sputum, breast milk, liver, and blood. MPs can cause various illnesses in humans, depending on how they enter the body. Healthy and sustainable ecosystems depend on the proper functioning of microbiota, however, MPs disrupt the balance of microbiota. Also, due to their high surface area compared to their volume and chemical characteristics, MPs act as pollutant absorbers in different environments. Multiple policies and initiatives exist at both the domestic and global levels to mitigate pollution caused by MPs. Various techniques are currently employed to remove MPs, such as biodegradation, filtration systems, incineration, landfill disposal, and recycling, among others. In this review, we will discuss the sources and types of MPs, the presence of MPs in different environments and food, the impact of MPs on human health and microbiota, mechanisms of pollutant adsorption on MPs, and the methods of removing MPs with algae and microbes.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | | | - Parisa Sepahvand
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | | |
Collapse
|
20
|
Ezaier Y, Hader A, Latif A, Khan ME, Ali W, Ali SK, Khan AU, Bashiri AH, Zakri W, Yusuf M, Rajamohan N, Ibrahim H. Solving the fouling mechanisms in composite membranes for water purification: An advance approach. ENVIRONMENTAL RESEARCH 2024; 250:118487. [PMID: 38365055 DOI: 10.1016/j.envres.2024.118487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/17/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
With the increasing population worldwide more wastewater is created by human activities and discharged into the waterbodies. This is causing the contamination of aquatic bodies, thus disturbing the marine ecosystems. The rising population is also posing a challenge to meet the demands of fresh drinking water in the water-scarce regions of the world, where drinking water is made available to people by desalination process. The fouling of composite membranes remains a major challenge in water desalination. In this innovative study, we present a novel probabilistic approach to analyse and anticipate the predominant fouling mechanisms in the filtration process. Our establishment of a robust theoretical framework hinges upon the utilization of both the geometric law and the Hermia model, elucidating the concept of resistance in series (RIS). By manipulating the transmembrane pressure, we demonstrate effective management of permeate flux rate and overall product quality. Our investigations reveal a decrease in permeate flux in three distinct phases over time, with the final stage marked by a significant reduction due to the accumulation of a denser cake layer. Additionally, an increase in transmembrane pressure leads to a correlative rise in permeate flux, while also exerting negative effects such as membrane ruptures. Our study highlights the minimal immediate impact of the intermediate blocking mechanism (n = 1) on permeate flux, necessitating continuous monitoring for potential long-term effects. Additionally, we note a reduced membrane selectivity across all three fouling types (n = 0, n = 1.5, n = 2). Ultimately, our findings indicate that the membrane undergoes complete fouling with a probability of P = 0.9 in the presence of all three fouling mechanisms. This situation renders the membrane unable to produce water at its previous flow rate, resulting in a significant reduction in the desalination plant's productivity. I have demonstrated that higher pressure values notably correlate with increased permeate flux across all four membrane types. This correlation highlights the significant role of TMP in enhancing the production rate of purified water or desired substances through membrane filtration systems. Our innovative approach opens new perspectives for water desalination management and optimization, providing crucial insights into fouling mechanisms and proposing potential strategies to address associated challenges.
Collapse
Affiliation(s)
- Yassine Ezaier
- Bio-Geosciences and Materials Engineering Laboratory, Ecole Normale Supérieure, University Hassan II, Casablanca, Morocco
| | - Ahmed Hader
- Bio-Geosciences and Materials Engineering Laboratory, Ecole Normale Supérieure, University Hassan II, Casablanca, Morocco; Regional Center for Education and Training Professions, Settat establishment, Morocco
| | - Abdelaziz Latif
- Bio-Geosciences and Materials Engineering Laboratory, Ecole Normale Supérieure, University Hassan II, Casablanca, Morocco
| | - Mohammad Ehtisham Khan
- Department of Chemical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan, 45142, Saudi Arabia.
| | - Wahid Ali
- Department of Chemical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan, 45142, Saudi Arabia
| | - Syed Kashif Ali
- Department of Chemistry, Faculty of Science Jazan University, Jazan, PO Box 114, Saudi Arabia
| | - Anwar Ulla Khan
- Department of Electrical Engineering, College of Engineering, Jazan University, P. O. Box 114, Jazan, 45142, Saudi Arabia
| | - Abdullateef H Bashiri
- Department of Mechanical Engineering, College of Engineering, Jazan University, P. O. Box 114, Jazan, 45142, Saudi Arabia
| | - Waleed Zakri
- Department of Mechanical Engineering, College of Engineering, Jazan University, P. O. Box 114, Jazan, 45142, Saudi Arabia
| | - Mohammad Yusuf
- Clean Energy Technologies Research Institute (CETRI), Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India.
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, P C 311, Sohar, Oman
| | - Hussameldin Ibrahim
- Clean Energy Technologies Research Institute (CETRI), Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada
| |
Collapse
|
21
|
Cao NDT, Vo DHT, Pham MDT, Nguyen VT, Nguyen TB, Le LT, Mukhtar H, Nguyen HV, Visvanathan C, Bui XT. Microplastics contamination in water supply system and treatment processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171793. [PMID: 38513854 DOI: 10.1016/j.scitotenv.2024.171793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/04/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Due to global demand, millions of tons of plastics have been widely consumed, resulting in the widespread entry of vast amounts of microplastic particles into the environment. The presence of microplastics (MPs) in water supplies, including bottled water, has undergone systematic review, assessing the potential impacts of MPs on humans through exposure assessment. The main challenges associated with current technologies lie in their ability to effectively treat and completely remove MPs from drinking and supply water. While the risks posed by MPs upon entering the human body have not yet been fully revealed, there is a predicted certainty of negative impacts. This review encompasses a range of current technologies, spanning from basic to advanced treatments and varying in scale. However, given the frequent detection of MPs in drinking and bottled water, it becomes imperative to implement comprehensive management strategies to address this issue effectively. Consequently, integrating current technologies with management options such as life-cycle assessment, circular economy principles, and machine learning is crucial to eliminating this pervasive problem.
Collapse
Affiliation(s)
- Ngoc-Dan-Thanh Cao
- Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Dieu-Hien Thi Vo
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam
| | - Mai-Duy-Thong Pham
- Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Van-Truc Nguyen
- Faculty of Environment, Saigon University, Ho Chi Minh City 700000, Viet Nam
| | - Thanh-Binh Nguyen
- College of Hydrosphere Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Road, Nanzih District, Kaohsiung City 81157, Taiwan
| | - Linh-Thy Le
- Department of Environmental Health, Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City (UMP HCMC), 217 Hong Bang street, District 5th, Ho Chi Minh City, Viet Nam
| | - Hussnain Mukhtar
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Huu-Viet Nguyen
- Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Chettiyappan Visvanathan
- Department of Civil and Environmental Engineering, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Xuan-Thanh Bui
- Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
22
|
Lima AR, Sammarro Silva KJ, Aguiar ASN, de Souza M, Lima THN, Blanco KC, Bagnato VS, Dias LD. Impact of PVC microplastics in photodynamic inactivation of Staphylococcus aureus and MRSA. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:2105-2117. [PMID: 38678412 DOI: 10.2166/wst.2024.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/17/2024] [Indexed: 04/30/2024]
Abstract
Photodynamic processes have found widespread application in therapies. These processes involve photosensitizers (PSs) that, when excited by specific light wavelengths and in the presence of molecular oxygen, generate reactive oxygen species (ROS), that target cells leading to inactivation. Photodynamic action has gained notable attention in environmental applications, particularly against pathogens and antibiotic-resistant bacteria (ARB) that pose a significant challenge to public health. However, environmental matrices frequently encompass additional contaminants and interferents, including microplastics (MPs), which are pollutants of current concern. Their presence in water and effluents has been extensively documented, highlighting their impact on conventional treatment methods, but this information remains scarce in the context of photodynamic inactivation (PDI) setups. Here, we described the effects of polyvinyl chloride (PVC) microparticles in PDI targeting Staphylococcus aureus and its methicillin-resistant strain (MRSA), using curcumin as a PS under blue light. The presence of PVC microparticles does not hinder ROS formation; however, depending on its concentration, it can impact bacterial inactivation. Our results underscore that PDI remains a potent method for reducing bacterial concentrations in water and wastewater containing ARB, even in highly contaminated scenarios with MPs.
Collapse
Affiliation(s)
- Alessandra Ramos Lima
- Laboratory of Environmental Biophotonics, São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil E-mail:
| | - Kamila Jessie Sammarro Silva
- Laboratory of Environmental Biophotonics, São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Antônio Sérgio Nakao Aguiar
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, Anápolis, GO, Brazil; Laboratório de Novos Materiais, Universidade Evangélica de Goiás, Anápolis, GO, Brazil
| | - Mariana de Souza
- Laboratory of Environmental Biophotonics, São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Thalita Hellen Nunes Lima
- Laboratory of Environmental Biophotonics, São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Kate Cristina Blanco
- Laboratory of Environmental Biophotonics, São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Vanderlei Salvador Bagnato
- Laboratory of Environmental Biophotonics, São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil; Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Lucas Danilo Dias
- Laboratório de Novos Materiais, Universidade Evangélica de Goiás, Anápolis, GO, Brazil
| |
Collapse
|
23
|
Arif Y, Mir AR, Zieliński P, Hayat S, Bajguz A. Microplastics and nanoplastics: Source, behavior, remediation, and multi-level environmental impact. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120618. [PMID: 38508005 DOI: 10.1016/j.jenvman.2024.120618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/21/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Plastics introduced into the natural environment persist, degrade, and fragment into smaller particles due to various environmental factors. Microplastics (MPs) (ranging from 1 μm to 5 mm) and nanoplastics (NPs) (less than 1 μm) have emerged as pollutants posing a significant threat to all life forms on Earth. Easily ingested by living organisms, they lead to ongoing bioaccumulation and biomagnification. This review summarizes existing studies on the sources of MPs and NPs in various environments, highlighting their widespread presence in air, water, and soil. It primarily focuses on the sources, fate, degradation, fragmentation, transport, and ecotoxicity of MPs and NPs. The aim is to elucidate their harmful effects on marine organisms, soil biota, plants, mammals, and humans, thereby enhancing the understanding of the complex impacts of plastic particles on the environment. Additionally, this review highlights remediation technologies and global legislative and institutional measures for managing waste associated with MPs and NPs. It also shows that effectively combating plastic pollution requires the synergization of diverse management, monitoring strategies, and regulatory measures into a comprehensive policy framework.
Collapse
Affiliation(s)
- Yamshi Arif
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Anayat Rasool Mir
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Piotr Zieliński
- Department of Water Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245, Bialystok, Poland
| | - Shamsul Hayat
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Andrzej Bajguz
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245, Bialystok, Poland.
| |
Collapse
|
24
|
Adeel M, Granata V, Carapella G, Rizzo L. Effect of microplastics on urban wastewater disinfection and impact on effluent reuse: Sunlight/H 2O 2 vs solar photo-Fenton at neutral pH. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133102. [PMID: 38070270 DOI: 10.1016/j.jhazmat.2023.133102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 02/08/2024]
Abstract
The interference of three types of microplastics (MPs) on the inactivation of Escherichia coli (E. coli) by advanced oxidation processes (AOPs) (namely, sunlight/H2O2 and solar photo-Fenton (SPF) with Ethylenediamine-N,N'-disuccinic acid (EDDS)), in real secondary treated urban wastewater was investigated for the first time. Inactivation by sunlight/H2O2 treatment decreased as MPs concentration and H2O2 dose were increased. Noteworthy, an opposite behaviour was observed for SPF process where inactivation increased as MPs concentration was increased. Biofilm formation and microbial attachment on surfaces of post-treated MPs were observed on polyethylene (PE) and polyvinyl chloride (PVC) MPs by field emission scanning electron microscopy. In presence of PE MPs, a complete inactivation of E. Coli was achieved by SPF with EDDS (Fe:EDDS = 1:2) after 90 min treatment unlike of sunlight/H2O2 treatment (∼4.0 log reduction, 40 mg/L H2O2 dose, 90 min treatment). The lower efficiency of sunlight/H2O2 process could be attributed to the blocking/scattering effect of MPs on sunlight, which finally reduced the intracellular photo Fenton effect. A reduced E. coli regrowth was observed in presence of MPs. SPF (Fe:EDDS = 1:1) with PE MPs was less effective in controlling bacterial regrowth (∼120 CFU/100 mL) than sunlight/H2O2 (∼10 CFU/100 mL) after 48 h of post-treatment. These results provide useful information about possible interference of MPs on urban wastewater disinfection by solar driven AOPs and possible implications for effluent reuse.
Collapse
Affiliation(s)
- Mister Adeel
- Water Science and Technology (WaSTe) Group, Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Veronica Granata
- Department of Physics "E.R. Caianiello", University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Giovanni Carapella
- Department of Physics "E.R. Caianiello", University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Luigi Rizzo
- Water Science and Technology (WaSTe) Group, Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy.
| |
Collapse
|
25
|
Yang Q, Zhang J, Zhang N, Wang D, Yuan X, Tang CY, Gao B, Wang Z. Impact of nanoplastics on membrane scaling and fouling in reverse osmosis desalination process. WATER RESEARCH 2024; 249:120945. [PMID: 38043352 DOI: 10.1016/j.watres.2023.120945] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Nanoplastics (NPs) are a prevalent type of emerging pollutant in marine environment. However, their fouling behavior and impact on reverse osmosis (RO) membrane performance remain unexplored. We investigated the relationship between polystyrene (PS), one of the most abundant NPs, with silica scaling and humic acid (HA) fouling in RO. The results demonstrated that the surface potential of NPs played an important role in the combined scaling and fouling process. Compared with the negatively charged NPs (original PS and carboxyl group modified PS, PS-COOH), the amino-functionalized PS (PS-NH2) with positive surface charge significantly accelerated membrane scaling/fouling and induced a synergistic water flux decline, due to the strong electrostatic attraction between PS-NH2, foulants, and the membrane surface. The amino groups acted as binding sites, which promoted the heterogeneous nucleation of silica and adsorption of HA, then formed stable composite pollutants. Thermodynamic analysis via isothermal titration calorimetry (ITC) further confirmed the spontaneous formation of stable complexes between PS-NH2 and silicates/HA. Our study provides new insights into the combined NPs fouling with other scalants or foulants, and offers guidance for the accurate prediction of RO performance in the presence of NPs.
Collapse
Affiliation(s)
- Qinghao Yang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Jiaojiao Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Na Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China.
| | - Dong Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, PR China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
26
|
Li W, Liu S, Huang K, Qin S, Liang B, Wang J. Preparation of magnetic Janus microparticles for the rapid removal of microplastics from water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166627. [PMID: 37647968 DOI: 10.1016/j.scitotenv.2023.166627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
The continuous spread of microplastics in aquatic environments poses a growing concern and a potential risk to human health. To address this concern, this paper presents a novel approach using magnetic Janus microparticles (MJMs) synthesized via a modified Pickering emulsion method with aminated Fe3O4@SiO2 as the raw material. The effectiveness of these MJMs in removing polystyrene (PS) and polyethylene (PE) microplastics from water was investigated. Paraffin was employed as the masking agent, while N-Octadecylphosphosphonic acid (PAC18) was used as the graft material for MJM preparation. The resulting particles exhibited a distinctive asymmetric flower-shaped structure on the surface, which was confirmed through various analytical techniques including FTIR, TGA, SEM, and water phase contact angle analysis. The MJMs demonstrated exceptional efficiency in adsorbing microplastics. With a microplastic suspension concentration of 2 mg/mL and an adsorbent dosage of 1 mg/mL, the MJMs can attain removal efficiencies of 92.08 % for PS and 60.67 % for PE in just 20 min of contact time. The effectiveness of the adsorption process was attributed to several factors, including hydrophobic interactions, cation-π interactions, electrostatic attraction, and the efficient dispersion of particles in water, as revealed by size distribution and zeta potential analysis. Additionally, kinetic and thermodynamic studies confirmed the remarkable adsorption rate and capacity of the MJMs (0.759 min-1 and 2.72 mg/mg for PS, 0.539 min-1 and 2.42 mg/mg for PE), highlighting their potential as a promising method for rapidly removing microplastics from water. This work provides valuable insights into the development of effective strategies for addressing microplastic pollution in aquatic environments.
Collapse
Affiliation(s)
- Wanhe Li
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Shihong Liu
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Kai Huang
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China.
| | - Shibin Qin
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Bin Liang
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Jun Wang
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China; College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
27
|
Ouda M, Pandey RP, Banat F, Hasan SW. Advancing water treatment sustainability: Investigating electrified Ti 3C 2T x composite membranes for minimizing microplastic fouling. CHEMOSPHERE 2023; 343:140224. [PMID: 37734506 DOI: 10.1016/j.chemosphere.2023.140224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/09/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
The overuse of plastics has led to a large influx of microplastics (MPs) in water bodies and water/wastewater treatment plants. Coupled with the ongoing water crisis, this poses a threat to freshwater availability as MPs disrupt the operation of these plants. MPs cause severe fouling of low-pressure membrane technologies such as ultrafiltration (UF) due to the strong adhesion between MPs and the membrane surface. An electrified membrane-based technology is suggested as an alternative MP fouling mitigation strategy. In this study, composite membranes of sulfonated polyethersulfone (SPES)/MXene (Ti3C2Tx) were fabricated and evaluated as a promising candidate for mitigating fouling of MPs. The described SPES/Ti3C2Tx composite membrane was designed to improve important physiochemical properties such as conductivity without affecting water flux. The membranes were tested under different electrical potentials to find an optimal strategy to reduce MP fouling. The performance tests showed that the flux increased from 42 L m-2. h-1 at 0 V to 49 L m-2. h-1 at 2 V due to electrostatic repulsion when 5 wt% Ti3C2Tx was used as a result of the applied electric potential. In addition, it was shown that intermittent applied voltage using "30 min ON: 60 min OFF" mode resulted in more stable water flux due to in-situ coagulant formation and cleaning. This study illustrates the potential of MXene-based membranes for mitigating MP fouling and paves the way for future research on membrane materials that can enhance system performance.
Collapse
Affiliation(s)
- Mariam Ouda
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Ravi P Pandey
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
28
|
Priya AK, Muruganandam M, Imran M, Gill R, Vasudeva Reddy MR, Shkir M, Sayed MA, AlAbdulaal TH, Algarni H, Arif M, Jha NK, Sehgal SS. A study on managing plastic waste to tackle the worldwide plastic contamination and environmental remediation. CHEMOSPHERE 2023; 341:139979. [PMID: 37659517 DOI: 10.1016/j.chemosphere.2023.139979] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/12/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
Over the past 50 years, the emergence of plastic waste as one of the most urgent environmental problems in the world has given rise to several proposals to address the rising levels of contaminants associated with plastic debris. Worldwide plastic production has increased significantly over the last 70 years, reaching a record high of 359 million tonnes in 2020. China is currently the world's largest plastic producer, with a share of 17.5%. Of the total marine waste, microplastics account for 75%, while land-based pollution accounts for responsible for 80-90%, and ocean-based pollution 10-20% only in overall pollution problems. Even at small dosages (10 μg/mL), microplastics have been found to cause toxic effects on human and animal health. This review examines the sources of microplastic contamination, the prevalent reaches of microplastics, their impacts, and the remediation methods for microplastic contamination. This review explains the relationship between the community composition and the presence of microplastic particulate matter in aquatic ecosystems. The interaction between microplastics and emerging pollutants, including heavy metals, has been linked to enhanced toxicity. The review article provided a comprehensive overview of microplastic, including its fate, environmental toxicity, and possible remediation strategies. The results of our study are of great value as they illustrate a current perspective and provide an in-depth analysis of the current status of microplastics in development, their test requirements, and remediation technologies suitable for various environments.
Collapse
Affiliation(s)
- A K Priya
- Department of Chemical Engineering, KPR Institute of Engineering and Technology, Tamilnadu, India; Project Prioritization, Monitoring & Evaluation and Knowledge Management Unit, ICAR-Indian Institute of Soil & Water Conservation (ICAR-IISWC), Dehradun, India.
| | - M Muruganandam
- Project Prioritization, Monitoring & Evaluation and Knowledge Management Unit, ICAR-Indian Institute of Soil & Water Conservation (ICAR-IISWC), Dehradun, India
| | - Muhammad Imran
- Saudi Basic Industries Corporation (SABIC) Technology and Innovation Center, Riyadh 11551, Saudi Arabia
| | - Rana Gill
- University Centre for Research & Development, Electronics & Communication Department Chandigarh University Gharuan, Mohali, Punjab, India
| | | | - Mohd Shkir
- Department of Physics, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia.
| | - M A Sayed
- Department of Physics, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - T H AlAbdulaal
- Department of Physics, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - H Algarni
- Department of Physics, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Mohd Arif
- Applied Science and Humanities Section, University Polytechnic, Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi-110025, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India.
| | - Satbir S Sehgal
- Division of Research Innovation, Uttaranchal University, Dehradun, India
| |
Collapse
|
29
|
Piyathilake U, Lin C, Bundschuh J, Herath I. A review on constructive classification framework of research trends in analytical instrumentation for secondary micro(nano)plastics: What is new and what needs next? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122320. [PMID: 37544402 DOI: 10.1016/j.envpol.2023.122320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/14/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Secondary micro(nano)plastics generated from the degradation of plastics pose a major threat to environmental and human health. Amid the growing research on microplastics to date, the detection of secondary micro(nano)plastics is hampered by inadequate analytical instrumentation in terms of accuracy, validation, and repeatability. Given that, the current review provides a critical evaluation of the research trends in instrumental methods developed so far for the qualitative and quantitative determination of micro(nano)plastics with an emphasis on the evolution, new trends, missing links, and future directions. We conducted a meta-analysis of the growing literature surveying over 800 journal articles published from 2004 to 2022 based on the Web of Science database. The significance of this review is associated with the proposed novel classification framework to identify three main research trends, viz. (i) preliminary investigations, (ii) current progression, and (iii) novel advances in sampling, characterization, and quantification targeting both micro- and nano-sized plastics. Field Flow Fractionation (FFF) and Hydrodynamic Chromatography (HDC) were found to be the latest techniques for sampling and extraction of microplastics. Fluorescent Molecular Rotor (FMR) and Thermal Desorption-Proton Transfer Reaction-Mass Spectrometry (TD-PTR-MS) were recognized as the modern developments in the identification and quantification of polymer units in micro(nano)plastics. Powerful imaging techniques, viz. Digital Holographic Imaging (DHI) and Fluorescence Lifetime Imaging Microscopy (FLIM) offered nanoscale analysis of the surface topography of nanoplastics. Machine learning provided fast and less labor-intensive analytical protocols for accurate classification of plastic types in environmental samples. Although the existing analytical methods are justifiable merely for microplastics, they are not fully standardized for nanoplastics. Future research needs to be more inclined towards secondary nanoplastics for their effective and selective analysis targeting a broad range of environmental and biological matrices.
Collapse
Affiliation(s)
- Udara Piyathilake
- Environmental Science Division, National Institute of Fundamental Studies (NIFS), Kandy, 20000, Sri Lanka
| | - Chuxia Lin
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Burwood, VIC, 3125, Australia
| | - Jochen Bundschuh
- School of Engineering, Faculty of Health, Engineering and Sciences, The University of Southern Queensland, West Street, QLD, 4350, Australia
| | - Indika Herath
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, VIC, 3216, Australia.
| |
Collapse
|
30
|
Li Z, Xie W, Zhang Z, Wei S, Chen J, Li Z. Multifunctional sodium alginate/chitosan-modified graphene oxide reinforced membrane for simultaneous removal of nanoplastics, emulsified oil, and dyes in water. Int J Biol Macromol 2023; 245:125524. [PMID: 37355070 DOI: 10.1016/j.ijbiomac.2023.125524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
Membrane technology is widely recognized as an efficient and advanced approach for wastewater treatment. However, the development of environmentally friendly and versatile membranes capable of effectively removing multiple contaminants remains a significant challenge. Inspired by natural magnets, we developed a heterostructured membrane using biomass materials to achieve the efficient removal of multiple contaminants from wastewater. Specifically, a bionic three-layer SA/GO/CS composite membrane was prepared by using sodium alginate (SA) and chitosan (CS) to modify graphene oxide (GO), respectively, and then assembled to both sides of the glass fiber (GF) membrane. The composite membranes achieved 99.87 % and 97.10 % removal of NPs with particle sizes of 500 nm and 50 nm. Moreover, the membrane demonstrated superior separation performance for mixed wastewater, enabling effective treatment of a broad spectrum of contaminants. Additionally, the membrane exhibited excellent stability when exposed to strong acid and alkali environments and demonstrated good recyclability throughout the multiple contaminants removal process. The bionic membrane, prepared using a straightforward method proposed in this study, provides an effective approach for enhanced removal of multiple contaminants in water. These findings contribute to the advancement of eco-friendly and versatile wastewater treatment membranes, opening new possibilities for sustainable water purification technologies.
Collapse
Affiliation(s)
- Zichen Li
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Wei Xie
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Zheng Zhang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Shuxia Wei
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Jiaqi Chen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Zhili Li
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China.
| |
Collapse
|
31
|
Molina S, Ocaña-Biedma H, Rodríguez-Sáez L, Landaburu-Aguirre J. Experimental Evaluation of the Process Performance of MF and UF Membranes for the Removal of Nanoplastics. MEMBRANES 2023; 13:683. [PMID: 37505049 PMCID: PMC10384815 DOI: 10.3390/membranes13070683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/29/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
Despite the high removal ability of the wastewater treatment technologies, research efforts have been limited to the relatively large-sized microplastics, leaving nanoplastics outside the studied size spectrum. This study aims to evaluate the process performance of MF and UF membranes for the removal of single and mixed solutions of polystyrene nanospheres (120 and 500 nm) and BSA. The process performance was evaluated in terms of the rejection coefficient, the normalized flux, and the permeability recovery. The fouling mechanism of these pollutants was studied, evaluating the effect of different membrane materials, membrane pore sizes, and nanoplastic sizes, as well as the synergetic effect of the mixture of foulants. This study was complemented by surface membrane characterization. Polystyrene nanospheres were successfully removed with all the membranes studied, except for the MF membrane that obtained PS 120 nm rejection coefficients of 26%. Single nanoplastic particles were deposited in UF membranes creating a pore blocking and cake layer formation, whilst the nanoplastics of 120 nm were accumulated inside the MF membrane creating an internal pore blocking. In mixed solutions, the BSA acted in two different ways: (i) as a stabilizer, hindering the deposition of nanoplastics and (ii) as a main foulant that caused a substantial flux reduction.
Collapse
Affiliation(s)
- Serena Molina
- IMDEA Water Institute, Punto Com. nº 2, 28805 Alcalá de Henares, Madrid, Spain
| | - Helena Ocaña-Biedma
- IMDEA Water Institute, Punto Com. nº 2, 28805 Alcalá de Henares, Madrid, Spain
| | - Laura Rodríguez-Sáez
- IMDEA Water Institute, Punto Com. nº 2, 28805 Alcalá de Henares, Madrid, Spain
- Chemical Engineering Department, University of Alcalá, Ctra. Madrid-Barcelona Km 33,600, 28871 Alcalá de Henares, Madrid, Spain
| | | |
Collapse
|
32
|
Shen M, Zhao Y, Liu S, Hu T, Zheng K, Wang Y, Lian J, Meng G. Recent advances on micro/nanoplastic pollution and membrane fouling during water treatment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163467. [PMID: 37062323 DOI: 10.1016/j.scitotenv.2023.163467] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 06/01/2023]
Abstract
Effluent from sewage treatment plant, as an important source of microplastics (MPs) in receiving water, has attracted extensive attention. Membrane separation process shows good microplastic removal performance in the existing tertiary water treatment process. Problematically, membrane fouling and insufficient removal of small organic molecules are still the key obstacles to its further extensive application. Dissolved organics, extracellular polymers and suspended particles in the influent are deposited on the membrane surface and internal structure, reducing the number and pore diameter of effective membrane aperture, and increasing the resistance of membrane filtration. Exploring the mechanism and approach of membrane fouling caused by micro/nanoplastics is the key to alleviate fouling and allow membranes to operate longer. In this paper, removal performance of micro/nanoplastics by current membrane filtration and the contribution to membrane fouling during water treatment are thoroughly reviewed. The coupling mechanisms between micro/nanoplastics and other pollutants and mechanism of membrane fouling caused by composite micro/nanoplastics are discussed. Additionally, on this basis, the prospect of combined process for micro/nanoplastic removal and membrane fouling prevention is also proposed and discussed, which provides a valuable reference for the preferential removal of micro/nanoplastics and development of antifouling membrane.
Collapse
Affiliation(s)
- Maocai Shen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| | - Yifei Zhao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Shiwei Liu
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Tong Hu
- Department of Environment Science, Zhejiang University, Hangzhou 310058, PR China
| | - Kaixuan Zheng
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yulai Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Jianjun Lian
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Guanhua Meng
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| |
Collapse
|
33
|
Acarer S. A review of microplastic removal from water and wastewater by membrane technologies. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:199-219. [PMID: 37452543 PMCID: wst_2023_186 DOI: 10.2166/wst.2023.186] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Microplastics (MPs) cannot be completely removed from water/wastewater in conventional wastewater treatment plants (WWTPs) and drinking water treatment plants (DWTPs). According to the literature analysis, membrane technologies, one of the advanced treatment technologies, are the most effective and promising technologies for MP removal from water and wastewater. In this paper, firstly, the properties of MPs commonly present in WWTPs/DWTPs and the MP removal efficiency of WWTPs/DWTPs are briefly reviewed. In addition, research studies on MP removal from water/wastewater by microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), and membrane bioreactors (MBRs) are reviewed. In the next section, membrane filtration is compared with other methods used for MP removal from water/wastewater, and the advantages/disadvantages of the removal methods are discussed. Moreover, the problem of membrane fouling with MPs during filtration and the potential for MP release from polymeric membrane structure to water/wastewater are discussed. Finally, based on the studies in the literature, the current status and research deficiencies of MP removal by membrane technologies are identified, and recommendations are made for further studies.
Collapse
Affiliation(s)
- Seren Acarer
- Department of Environmental Engineering, Faculty of Engineering, İstanbul University-Cerrahpaşa, Avcılar, İstanbul 34320, Turkey E-mail:
| |
Collapse
|
34
|
Elsaid K, Olabi AG, Abdel-Wahab A, Elkamel A, Alami AH, Inayat A, Chae KJ, Abdelkareem MA. Membrane processes for environmental remediation of nanomaterials: Potentials and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162569. [PMID: 36871724 DOI: 10.1016/j.scitotenv.2023.162569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 05/17/2023]
Abstract
Nanomaterials have gained huge attention with their wide range of applications. This is mainly driven by their unique properties. Nanomaterials include nanoparticles, nanotubes, nanofibers, and many other nanoscale structures have been widely assessed for improving the performance in different applications. However, with the wide implementation and utilization of nanomaterials, another challenge is being present when these materials end up in the environment, i.e. air, water, and soil. Environmental remediation of nanomaterials has recently gained attention and is concerned with removing nanomaterials from the environment. Membrane filtration processes have been widely considered a very efficient tool for the environmental remediation of different pollutants. Membranes with their different operating principles from size exclusions as in microfiltration, to ionic exclusion as in reverse osmosis, provide an effective tool for the removal of different types of nanomaterials. This work comprehends, summarizes, and critically discusses the different approaches for the environmental remediation of engineered nanomaterials using membrane filtration processes. Microfiltration (MF), ultrafiltration (UF), and nanofiltration (NF) have been shown to effectively remove nanomaterials from the air and aqueous environments. In MF, the adsorption of nanomaterials to membrane material was found to be the main removal mechanism. While in UF and NF, the main mechanism was size exclusion. Membrane fouling, hence requiring proper cleaning or replacement was found to be the major challenge for UF and NF processes. While limited adsorption capacity of nanomaterial along with desorption was found to be the main challenges for MF.
Collapse
Affiliation(s)
- Khaled Elsaid
- Chemical Engineering Program, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| | - A G Olabi
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates; Mechanical Engineering and Design, Aston University, School of Engineering and Applied Science, Aston Triangle, Birmingham B4 7ET, UK
| | - Ahmed Abdel-Wahab
- Chemical Engineering Program, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| | - Ali Elkamel
- Chemical Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Abdul Hai Alami
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Abrar Inayat
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Kyu-Jung Chae
- Department of Environmental Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, South Korea
| | - Mohammad Ali Abdelkareem
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates; Chemical Engineering Department, Minia University, Elminia, Egypt.
| |
Collapse
|
35
|
Ahmed ASS, Billah MM, Ali MM, Bhuiyan MKA, Guo L, Mohinuzzaman M, Hossain MB, Rahman MS, Islam MS, Yan M, Cai W. Microplastics in aquatic environments: A comprehensive review of toxicity, removal, and remediation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162414. [PMID: 36868275 DOI: 10.1016/j.scitotenv.2023.162414] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
The occurrence of microplastics (MPs) in aquatic environments has been a global concern because they are toxic and persistent and may serve as a vector for many legacies and emerging pollutants. MPs are discharged to aquatic environments from different sources, especially from wastewater plants (WWPs), causing severe impacts on aquatic organisms. This study mainly aims to review the Toxicity of MPs along with plastic additives in aquatic organisms at various trophic compartments and available remediation methods/strategies for MPs in aquatic environments. Occurrences of oxidative stress, neurotoxicity, and alterations in enzyme activity, growth, and feeding performance were identical in fish due to MPs toxicity. On the other hand, growth inhibition and ROS formation were observed in most of the microalgae species. In zooplankton, potential impacts were acceleration of premature molting, growth retardation, mortality increase, feeding behaviour, lipid accumulation, and decreased reproduction activity. MPs togather with additive contaminants could also exert some toxicological impacts on polychaete, including neurotoxicity, destabilization of the cytoskeleton, reduced feeding rate, growth, survivability and burrowing ability, weight loss, and high rate of mRNA transcription. Among different chemical and biological treatments for MPs, high removal rates have been reported for coagulation and filtration (>86.5 %), electrocoagulation (>90 %), advanced oxidation process (AOPs) (30 % to 95 %), primary sedimentation/Grit chamber (16.5 % to 58.84 %), adsorption removal technique (>95 %), magnetic filtration (78 % to 93 %), oil film extraction (>95 %), and density separation (95 % to 100 %). However, desirable extraction methods are required for large-scale research in MPs removal from aquatic environments.
Collapse
Affiliation(s)
- A S Shafiuddin Ahmed
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong; Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong.
| | - Md Masum Billah
- Inter-Departmental Research Centre for Environmental Science-CIRSA, University of Bologna, Ravenna Campus, Italy
| | - Mir Mohammad Ali
- Department of Aquaculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Md Khurshid Alam Bhuiyan
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, Cadiz, Spain
| | - Laodong Guo
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, USA
| | - Mohammad Mohinuzzaman
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Sonapur, Bangladesh
| | - M Belal Hossain
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Sonapur, Bangladesh; School of Engineering and Built Environment, Griffith University, Brisbane, Australia
| | - M Safiur Rahman
- Water Quality Research Laboratory, Chemistry Division, Atomic Energy Center, Atomic Energy Commission, Dhaka, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Meng Yan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong
| | - Wenlong Cai
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong; Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong
| |
Collapse
|
36
|
Monira S, Roychand R, Hai FI, Bhuiyan M, Dhar BR, Pramanik BK. Nano and microplastics occurrence in wastewater treatment plants: A comprehensive understanding of microplastics fragmentation and their removal. CHEMOSPHERE 2023; 334:139011. [PMID: 37230299 DOI: 10.1016/j.chemosphere.2023.139011] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/12/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
Nano/microplastic (NP/MP) pollution is a growing concern for the water environment. Wastewater treatment plants (WWTPs) are considered the major recipients of MP before discharging into local waterbodies. MPs enter WWTPs mainly from synthetic fibers through washing activities and personal care products. To control and prevent NP/MP pollution, it is essential to have a comprehensive understanding of their characteristics, fragmentation mechanisms, and the effectiveness of the current treatment processes used in WWTPs for NP/MP removal. Therefore, the objectives of this study are to (i) understand the detailed mapping of NP/MP in the WWTP, (ii) understand the fragmentation mechanisms of MP into NP, and (iii) investigate the removal efficiency of NP/MP by existing processes in the WWTP. This study found that fiber is the dominant shape of MP, and polyethylene, polypropylene, polyethylene terephthalate, and polystyrene are the major polymer type of MP in wastewater samples. Crack propagation and mechanical breakdown of MP due to water shear forces induced by treatment facilities (e.g., pumping, mixing, and bubbling) could be the major causes for NP generation in the WWTP. Conventional wastewater treatment processes are ineffective for the complete removal of MPs. Although these processes are capable of removing ∼95% of MPs, they tend to accumulate in sludge. Thus, a significant number of MPs may still be released into the environment from WWTPs on a daily basis. Therefore, this study suggested that using DAF process in the primary treatment unit can be an effective strategy to control MP in the initial stage before it goes to the secondary and tertiary stage.
Collapse
Affiliation(s)
- Sirajum Monira
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Rajeev Roychand
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Faisal Ibney Hai
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Muhammed Bhuiyan
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
37
|
Lu Y, Li MC, Lee J, Liu C, Mei C. Microplastic remediation technologies in water and wastewater treatment processes: Current status and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161618. [PMID: 36649776 DOI: 10.1016/j.scitotenv.2023.161618] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) are a type of contaminants produced during the use and disposal of plastic products, which are ubiquitous in our lives. With the high specific surface area and strong hydrophobicity, MPs can adsorb various hazardous microorganisms and chemical contaminants from the environment, causing irreversible damage to our humans. It is reported that the MPs have been detected in infant feces and human blood. Therefore, the presence of MPs has posed a significant threat to human health. It is critically essential to develop efficient, scalable and environmentally-friendly methods to remove MPs. Herein, recent advances in the MPs remediation technologies in water and wastewater treatment processes are overviewed. Several approaches, including membrane filtration, adsorption, chemically induced coagulation-flocculation-sedimentation, bioremediation, and advanced oxidation processes are systematically documented. The characteristics, mechanisms, advantages, and disadvantages of these methods are well discussed and highlighted. Finally, the current challenges and future trends of these methods are proposed, with the aim of facilitating the remediation of MPs in water and wastewater treatment processes in a more efficient, scalable, and environmentally-friendly way.
Collapse
Affiliation(s)
- Yang Lu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mei-Chun Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China.
| | - Juhyeon Lee
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Chaozheng Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Changtong Mei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
38
|
Sharma A, Kumari S, Chopade RL, Pandit PP, Rai AR, Nagar V, Awasthi G, Singh A, Awasthi KK, Sankhla MS. An assessment of the impact of structure and type of microplastics on ultrafiltration technology for microplastic remediation. Sci Prog 2023; 106:368504231176399. [PMID: 37321675 PMCID: PMC10358477 DOI: 10.1177/00368504231176399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Microplastic, which is of size less than 5 mm, is gaining a lot of attention as it has become a new arising contaminant because of its ecophysiology impact on the aquatic environment. These microplastics are found in freshwater or drinking water and are the major carriers of pollutants. Removal of this microplastic can be done through the primary treatment process, secondary treatment process, and tertiary treatment process. One approach for microplastic remediation is ultrafiltration technology, which involves passing water through a membrane with small pores to filter out the microplastics. However, the efficiency of this technology can be affected by the structure and type of microplastics present in the water. New strategies can be created to improve the technology and increase its efficacy in removing microplastics from water by knowing how various types and shapes of microplastics react during ultrafiltration. The filter-based technique, that is, ultrafiltration has achieved the best performance for the removal of microplastic. But with the ultrafiltration, too some microplastic that are of sizes less than of ultrafiltration membrane passes through the filter and enters the food chain. Accumulation of this microplastic on the membrane also leads to membrane fouling. Through this review article, we have assessed the impact of the structure, size, and type of MPs on ultrafiltration technology for microplastic remediation, with that how these factors affect the efficiency of the filtration process and challenges occur during filtration.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Forensic Science, Vivekananda Global University, Jaipur, India
| | - Supriya Kumari
- Department of Forensic Science, Vivekananda Global University, Jaipur, India
| | - Rushikesh L Chopade
- Department of Forensic Science, Vivekananda Global University, Jaipur, India
| | - Pritam P Pandit
- Department of Forensic Science, Vivekananda Global University, Jaipur, India
| | - Abhishek R Rai
- Department of Forensic Science, Vivekananda Global University, Jaipur, India
| | - Varad Nagar
- Department of Forensic Science, Vivekananda Global University, Jaipur, India
| | - Garima Awasthi
- Department of Life Sciences, Vivekananda Global University, Jaipur, India
| | - Apoorva Singh
- Central Forensic Science Laboratory, Chandigarh, India
| | - Kumud Kant Awasthi
- Department of Life Sciences, Vivekananda Global University, Jaipur, India
| | - Mahipal Singh Sankhla
- Department of Forensic Science, University Centre for Research and Development (UCRD), Chandigarh University, Mohali, India
| |
Collapse
|
39
|
Alvim CB, Ferrer-Polonio E, Bes-Piá MA, Mendoza-Roca JA, Fernández-Navarro J, Alonso-Molina JL, Amorós-Muñoz I. Effect of polystyrene nanoplastics on the activated sludge process performance and biomass characteristics. A laboratory study with a sequencing batch reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117131. [PMID: 36586326 DOI: 10.1016/j.jenvman.2022.117131] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The fate and presence of nanoplastics in wastewater treatment systems is a topic of increasing interest. Furthermore, challenges related to their quantification and identification have made it difficult to set up experimental conditions and compare results between studies. In this study, the effect of 100 nm polystyrene nanoplastics on activated sludge was evaluated. A concentration of 2 μg/L was used to continuously feed a sequencing batch reactor (SBR-NPs). Under the experimental conditions used in this study, no changes were observed in the process performance of the SBR-NPs compared to the reactor used as a control. Neither nitrification nor organic matter removal efficiency, which was 96% for both SBRs, were affected by the presence of 100 nm polystyrene nanoplastics, which suggests that the tested nanoplastics were not sufficiently toxic to the biomass. Although no significant differences in the relative abundances of predominant phyla between SBR-Control and SBR-NPs were observed, a slight shift in the relative abundance of Patescibacteria (1.5 ± 0.6% and 3.7 ± 0.8% in SBR-Control and SBR-NPs, respectively, at the end of the test) occurred. The higher abundance of this phylum in SBR-NPs compared to SBR-Control may suggest that these bacteria have some sensitivity to the presence of 100 nm polystyrene nanoplastics. Furthermore, even with the absence of nitrification inhibition, it was observed stagnation of the growth of Nitrotoga bacteria in SBR-NPs, which also suggests that the polystyrene nanoplastics could have an inhibitory effect on these cells and an impact on nitrification in the long term.
Collapse
Affiliation(s)
- C Bretas Alvim
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, Camino de Vera, S/n, Valencia 46022, Spain
| | - E Ferrer-Polonio
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, Camino de Vera, S/n, Valencia 46022, Spain
| | - M A Bes-Piá
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, Camino de Vera, S/n, Valencia 46022, Spain
| | - J A Mendoza-Roca
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, Camino de Vera, S/n, Valencia 46022, Spain.
| | - J Fernández-Navarro
- Instituto de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Valencia, 46022, Spain
| | - J L Alonso-Molina
- Instituto de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Valencia, 46022, Spain
| | - I Amorós-Muñoz
- Instituto de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Valencia, 46022, Spain
| |
Collapse
|
40
|
Mehmood T, Mustafa B, Mackenzie K, Ali W, Sabir RI, Anum W, Gaurav GK, Riaz U, Liu X, Peng L. Recent developments in microplastic contaminated water treatment: Progress and prospects of carbon-based two-dimensional materials for membranes separation. CHEMOSPHERE 2023; 316:137704. [PMID: 36592840 DOI: 10.1016/j.chemosphere.2022.137704] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Micro (nano)plastics pollution is a noxious menace not only for mankind but also for marine life, as removing microplastics (MPs) is challenging due to their physiochemical properties, composition, and response toward salinity and pH. This review provides a detailed assessment of the MPs pollution in different water types, environmental implications, and corresponding treatment strategies. With the advancement in nanotechnology, mitigation strategies for aqueous pollution are seen, especially due to the fabrication of nanosheets/membranes mostly utilized as a filtration process. Two-dimensional (2D) materials are increasingly used for membranes due to their diverse structure, affinity, cost-effectiveness, and, most importantly, removal efficiency. The popular 2D materials used for membrane-based organic and inorganic pollutants from water mainly include graphene and MXenes however their effectiveness for MPs removal is still in its infancy. Albeit, the available literature asserts a 70- 99% success rate in micro/nano plastics removal achieved through membranes fabricated via graphene oxide (GO), reduced graphene oxide (rGO) and MXene membranes. This review examined existing membrane separation strategies for MPs removal, focusing on the structural properties of 2D materials, composite, and how they adsorb pollutants and underlying physicochemical mechanisms. Since MPs and other contaminants commonly coexist in the natural environment, a brief examination of the response of 2D membranes to MPs removal was also conducted. In addition, the influencing factors regulate MPs removal performance of membranes by impacting their two main operating routes (filtration and adsorption). Finally, significant limitations, research gaps, and future prospects of 2D material-based membranes for effectively removing MPs are also proposed. The conclusion is that the success of 2D material is strongly linked to the types, size of MPs, and characteristics of aqueous media. Future perspectives talk about the problems that need to be solved to get 2D material-based membranes out of the lab and onto the market.
Collapse
Affiliation(s)
- Tariq Mehmood
- College of Ecology and Environment, Hainan University, Haikou, Hainan Province, 570228, China; Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, Permoserstr. 15, D-04318 Leipzig, Germany.
| | - Beenish Mustafa
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
| | - Katrin Mackenzie
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Wahid Ali
- Department of Chemical Engineering Technology, College of Applied Industrial Technology (CAIT), Jazan University, Kingdom of Saudi Arabia
| | - Raja Irfan Sabir
- Faculty of Management Sciences, University of Central Punjab, Lahore; Pakistan
| | - Wajiha Anum
- Regional Agricultural Research Institute, Bahawalpur, Pakistan
| | - Gajendra Kumar Gaurav
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 69, Brno, Czech Republic; School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China
| | - Umair Riaz
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 60000, Pakistan
| | - Xinghui Liu
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China; Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
| | - Licheng Peng
- College of Ecology and Environment, Hainan University, Haikou, Hainan Province, 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, Hainan Province, 570228, China.
| |
Collapse
|
41
|
Ali I, Tan X, Li J, Peng C, Wan P, Naz I, Duan Z, Ruan Y. Innovations in the Development of Promising Adsorbents for the Remediation of Microplastics and Nanoplastics - A Critical Review. WATER RESEARCH 2023; 230:119526. [PMID: 36577257 DOI: 10.1016/j.watres.2022.119526] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Microplastics and nanoplastics are being assumed as emerging toxic pollutants owing to their unique persistent physicochemical attributes, chemical stability, and nonbiodegradable nature. Owing to their possible toxicological impacts (not only on aquatic biota but also on humans), scientific communities are developing innovative technologies to remove microplastics and nanoplastics from polluted waters. Various technologies, including adsorption, coagulation, photocatalysis, bioremediation, and filtration, have been developed and employed to eliminate microplastics and nanoplastics. Recently, adsorption technology has been getting great interest in capturing microplastics and nanoplastics and achieving excellent removal performance. Therefore, this review is designed to discuss recent innovations in developing promising adsorbents for the remediation of microplastics and nanoplastics from wastewater and natural water. The developed adsorbents have been classified into four main classes: sponge/aerogel-based, metal-based, biochar-based, and other developed adsorbents, and their performance efficiencies have been critically examined. Further, the influence of various pertinent factors, including adsorbents' characteristics, microplastics/nanoplastics' characteristics, solution pH, reaction temperature, natural organic matter, and co-existing/interfering ions on the removal performance of advanced adsorbents, have been critically assessed. Importantly, the particle application of the developed adsorbents in removing microplastics and nanoplastics from natural water has been elucidated. In addition, barriers to market penetration of the developed adsorbents are briefly discussed to help experts transfer adsorption-based technology from laboratory-scale to commercial applications. Finally, the current knowledge gaps and future recommendations are highlighted to assist scientific communal for improving adsorption-based technologies to battle against microplastics and nanoplastics pollution.
Collapse
Affiliation(s)
- Imran Ali
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Juying Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Changsheng Peng
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; School of Environment and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China
| | - Peng Wan
- Shenzhen Water Planning & Design Institute Co., Ltd., Shenzhen 518001, China.; Guangdong Provincial Engineering and Technology Research Center for Water Affairs Big Data and Water Ecology, Shenzhen, 518001, China
| | - Iffat Naz
- Department of Biology, Deanship of Educational Services, Qassim University, Buraidah 51452, Kingdom of Saudi Arabia (KSA)
| | - Zhipeng Duan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yinlan Ruan
- Institute for Photonics and Advanced Sensing, The University of Adelaide, SA 5005, Australia
| |
Collapse
|
42
|
Adegoke KA, Adu FA, Oyebamiji AK, Bamisaye A, Adigun RA, Olasoji SO, Ogunjinmi OE. Microplastics toxicity, detection, and removal from water/wastewater. MARINE POLLUTION BULLETIN 2023; 187:114546. [PMID: 36640497 DOI: 10.1016/j.marpolbul.2022.114546] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The world has witnessed massive and preeminent microplastics (MPs) pollution in water bodies due to the inevitable continuous production of plastics for various advantageous chemical and mechanical features. Plastic pollution, particularly contamination by MPs (plastic particles having a diameter lesser than 5 mm), has been a rising environmental concern in recent years due to the inappropriate disposal of plastic trash. This study presents the recent advancements in different technologies for MPs removal in order to gain proper insight into their strengths and weaknesses, thereby orchestrating the preparation for innovation in the field. The production, origin, and global complexity of MPs were discussed. This study also reveals MPs' mode of transportation, its feedstock polymers, toxicities, detection techniques, and the conventional removal strategies of MPs from contaminated systems. Modification of conventional methods vis-à-vis new materials/techniques and other emerging technologies, such as magnetic extraction and sol-gel technique with detailed mechanistic information for the removal of MPs are presented in this study. Conclusively, some future research outlooks for advancing the MPs removal technologies/materials for practical realization are highlighted.
Collapse
Affiliation(s)
- Kayode Adesina Adegoke
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria; Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Folasade Abimbola Adu
- Discipline of Microbiology, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Abel Kolawole Oyebamiji
- Department of Chemistry and Industrial Chemistry, Bowen University, Iwo, Osun State, Nigeria.
| | - Abayomi Bamisaye
- Department of Chemistry, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria.
| | - Rasheed Adewale Adigun
- Department of Chemical Sciences, Fountain University, P. M. B. 4491, Osogbo, Osun State, Nigeria.
| | | | | |
Collapse
|
43
|
Chemical Cleaning and Membrane Aging of Poly(vinylidene fluoride) (PVDF) Membranes Fabricated via Non-solvent Induced Phase Separation (NIPS) and Thermally Induced Phase Separation (TIPS). Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|
44
|
Acarer S. Microplastics in wastewater treatment plants: Sources, properties, removal efficiency, removal mechanisms, and interactions with pollutants. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:685-710. [PMID: 36789712 DOI: 10.2166/wst.2023.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Since wastewater treatment plants (WWTPs) cannot completely remove microplastics (MPs) from wastewater, WWTPs are responsible for the release of millions of MPs into the environment even in 1 day. Therefore, knowing the sources, properties, removal efficiencies and removal mechanisms of MPs in WWTPs is of great importance for the management of MPs. In this paper, firstly the sources of MPs in WWTPs and the quantities and properties (polymer type, shape, size, and color) of MPs in influents, effluents, and sludges of WWTPs are presented. Following this, the MP removal efficiency of different treatment units (primary settling, flotation, biological treatment, secondary settling, filtration-based treatment technologies, and coagulation) in WWTPs is discussed. In the next section, details about MP removal mechanisms in critical treatment units (settling and flotation tanks, bioreactors, sand filters, membrane filters, and coagulation units) in WWTPs are given. In the last section, the mechanisms and factors that are effective in adsorbing organic-inorganic pollutants in wastewater to MPs are presented. Finally, the current situation and research gap in these areas are identified and suggestions are provided for topics that need further research in the future.
Collapse
Affiliation(s)
- Seren Acarer
- Environmental Engineering Department, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey E-mail:
| |
Collapse
|
45
|
Zhang J, Li G, Yuan X, Li P, Yu Y, Yang W, Zhao S. Reduction of Ultrafiltration Membrane Fouling by the Pretreatment Removal of Emerging Pollutants: A Review. MEMBRANES 2023; 13:77. [PMID: 36676884 PMCID: PMC9862110 DOI: 10.3390/membranes13010077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/24/2022] [Accepted: 01/06/2023] [Indexed: 05/28/2023]
Abstract
Ultrafiltration (UF) processes exhibit high removal efficiencies for suspended solids and organic macromolecules, while UF membrane fouling is the biggest obstacle affecting the wide application of UF technology. To solve this problem, various pretreatment measures, including coagulation, adsorption, and advanced oxidation, for application prior to UF processes have been proposed and applied in actual water treatment processes. Previously, researchers mainly focused on the contribution of natural macromolecular pollutants to UF membrane fouling, while the mechanisms of the influence of emerging pollutants (EPs) in UF processes (such as antibiotics, microplastics, antibiotic resistance genes, etc.) on membrane fouling still need to be determined. This review introduces the removal efficiency and separation mechanism for EPs for pretreatments combined with UF membrane separation technology and evaluates the degree of membrane fouling based on the UF membrane's materials/pores and the structural characteristics of the cake layer. This paper shows that the current membrane separation process should be actively developed with the aim of overcoming specific problems in order to meet the technical requirements for the efficient separation of EPs.
Collapse
Affiliation(s)
- Jianguo Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Gaotian Li
- School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Xingcheng Yuan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Panpan Li
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yongfa Yu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Weihua Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Shuang Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
46
|
Hachemi C, Enfrin M, Rashed AO, Jegatheesan V, Hodgson PD, Callahan DL, Lee J, Dumée LF. The impact of PET microplastic fibres on PVDF ultrafiltration performance - A short-term assessment of MP fouling in simple and complex matrices. CHEMOSPHERE 2023; 310:136891. [PMID: 36257385 DOI: 10.1016/j.chemosphere.2022.136891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/13/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Wastewater treatment plants (WWTPs) are key components for the capture of microplastics (MPs) before they are released into natural waterways. Removal efficiencies as high as 99% may be achieved but sub-micron MPs as well as nanoplastics have been overlooked because of analytical limitations. Furthermore, short MP fibres are of concern because of their low capture rate as well as the lack of understanding of their influence on purification system efficiency. This study has investigated the impact of poly(ethylene terephthalate) (PET) short nanofibres on the performance of polyvinylidene fluoride (PVDF) ultrafiltration membranes during cross-flow operation. Model MP fibres with an average length of 10 ± 7 μm and a diameter of 142 ± 40 nm were prepared via a combination of electrospinning and fine cutting using a cryomicrotome. The manufactured MPs were added to both pure and synthetic domestic wastewater at a concentration of 1 mg.L-1 to determine their impact on the performance of PVDF ultrafiltration membranes. The results show that PET fibres attach to the membrane in a disorganised manner with low pore coverage. The water flux was decreased by 8% for MPs in pure water and no noticeable effect in wastewater after 3 days of filtration. Additionally, the nutrient removal efficiency of the membrane was not altered by the presence of PET MPs. These findings show that MP fibres do not significantly influence the early stages of filtration for a standard concentration of MPs in wastewater treatment plant studies.
Collapse
Affiliation(s)
- Cyril Hachemi
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, Australia.
| | - Marie Enfrin
- Civil Engineering and Infrastructure, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
| | - Ahmed O Rashed
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, Australia
| | - Veeriah Jegatheesan
- School of Engineering and Water: Effective Technologies and Tools (WETT) Research Centre, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
| | - Peter D Hodgson
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, Australia
| | - Damien L Callahan
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Judy Lee
- Chemical and Process Engineering, University of Surrey, Guildford, Surrey, United Kingdom
| | - Ludovic F Dumée
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO2 and Hydrogen, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
47
|
Golgoli M, Khiadani M, Sen TK, Razmjou A, Johns ML, Zargar M. Synergistic effects of microplastics and organic foulants on the performance of forward osmosis membranes. CHEMOSPHERE 2023; 311:136906. [PMID: 36270521 DOI: 10.1016/j.chemosphere.2022.136906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) are emerging contaminants that are abundantly present in the influent and effluent of wastewater treatment plants (WWTPs). Forward osmosis (FO) is an advanced treatment technology with potential applications in WWTPs. The presence of MPs in WWTP effluents can contribute to FO fouling and performance deterioration. This study focuses on FO membrane fouling by MPs of different sizes, and the interactional impacts of MPs and Humic acid (HA) (as the most common organic foulant in WWTPs) on FO membrane performance. The synergistic effect of combined MPs and HA fouling is shown to cause higher flux decline for FO membranes than that of HA or MPs alone. Reverse salt flux increased in the presence of MPs, and decreased when HA was present. Further, full flux recovery was obtained for all fouled membranes after hydraulic cleaning. This indicates the efficiency of FO systems for treating wastewater with high fouling potential. This study highlights the necessity of considering MPs in studying fouling behaviour, and for mitigation strategies of membranes used in WWT. The fundamentals created here can be further extended to other membrane-assisted separation processes.
Collapse
Affiliation(s)
- Mitra Golgoli
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Tushar Kanti Sen
- Chemical Engineering Department, King Faisal University, P.O. Box: 380, Al-Ahsa, 31982, Saudi Arabia
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA 6027, Australia
| | - Michael L Johns
- Fluid Science & Resources Division, Department of Chemical Engineering, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA 6027, Australia.
| |
Collapse
|
48
|
Effect of microplastic aging degree on filter cake formation and membrane fouling characteristics in ultrafiltration process with pre-coagulation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
49
|
Rando G, Sfameni S, Plutino MR. Development of Functional Hybrid Polymers and Gel Materials for Sustainable Membrane-Based Water Treatment Technology: How to Combine Greener and Cleaner Approaches. Gels 2022; 9:gels9010009. [PMID: 36661777 PMCID: PMC9857570 DOI: 10.3390/gels9010009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Water quality and disposability are among the main challenges that governments and societies will outside during the next years due to their close relationship to population growth and urbanization and their direct influence on the environment and socio-economic development. Potable water suitable for human consumption is a key resource that, unfortunately, is strongly limited by anthropogenic pollution and climate change. In this regard, new groups of compounds, referred to as emerging contaminants, represent a risk to human health and living species; they have already been identified in water bodies as a result of increased industrialization. Pesticides, cosmetics, personal care products, pharmaceuticals, organic dyes, and other man-made chemicals indispensable for modern society are among the emerging pollutants of difficult remediation by traditional methods of wastewater treatment. However, the majority of the currently used waste management and remediation techniques require significant amounts of energy and chemicals, which can themselves be sources of secondary pollution. Therefore, this review reported newly advanced, efficient, and sustainable techniques and approaches for water purification. In particular, new advancements in sustainable membrane-based filtration technologies are discussed, together with their modification through a rational safe-by-design to modulate their hydrophilicity, porosity, surface characteristics, and adsorption performances. Thus, their preparation by the use of biopolymer-based gels is described, as well as their blending with functional cross-linkers or nanofillers or by advanced and innovative approaches, such as electrospinning.
Collapse
Affiliation(s)
- Giulia Rando
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, 98166 Messina, Italy
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| | - Silvia Sfameni
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
- Correspondence: ; Tel.: +39-0906765713
| |
Collapse
|
50
|
Le LT, Nguyen KQN, Nguyen PT, Duong HC, Bui XT, Hoang NB, Nghiem LD. Microfibers in laundry wastewater: Problem and solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158412. [PMID: 36055511 DOI: 10.1016/j.scitotenv.2022.158412] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Data corroborated in this study highlights laundry wastewater as a primary source of microfibers (MFs) in the aquatic environment. MFs can negatively impact the aquatic ecosystem via five possible pathways, namely, acting as carriers of other contaminats, physical damage to digestive systems of aquatic organisms, blocking the digestive tract, releasing toxic chemicals, and harbouring invasive and noxious plankton and bacteria. This review shows that small devices to capture MFs during household laundry activities are simple to use and affordable at household level in developed countries. However, these low cost and small devices are unrealiable and can only achieve up to 40 % MF removal efficiency. In line filtration devices can achieve higher removal efficiency under well maintained condition but their performance is still limited compared to over 98 % MF removal by large scale centralized wastewater treatment. These results infer that effort to increase sanitation coverage to ensure adequate wastewater treatment prior to environmental discharge is likely to be more cost effective than those small devices for capturing MFs. This review also shows that natural fabrics would entail significantly less environmental consequences than synthetic materials. Contribution from the fashion industry to increase the share of natural frabics in the current textile market can also reduce the loading of plastic MFs in the environment.
Collapse
Affiliation(s)
- Linh-Thy Le
- Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City (UMP), Ward 11, District 5, Ho Chi Minh City 72714, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet nam
| | - Kim-Qui N Nguyen
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet nam
| | - Phuong-Thao Nguyen
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet nam
| | - Hung C Duong
- Center for Technology in Water and Wastewater, University of Technology Sydney, Sydney, NSW 2007, Australia; School of Environmental Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet, Co Nhue, Bac Tu Liem, Ha Noi, Viet Nam
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet nam
| | - Ngoc Bich Hoang
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Long D Nghiem
- Center for Technology in Water and Wastewater, University of Technology Sydney, Sydney, NSW 2007, Australia; Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|