1
|
Thakur RK, Aggarwal K, Sood N, Kumar A, Joshi S, Jindal P, Maurya R, Patel P, Kurmi BD. Harnessing advances in mechanisms, detection, and strategies to combat antimicrobial resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 982:179641. [PMID: 40373688 DOI: 10.1016/j.scitotenv.2025.179641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/28/2025] [Accepted: 05/08/2025] [Indexed: 05/17/2025]
Abstract
Antimicrobial resistance (AMR) is a growing global health crisis, threatening the effectiveness of antibiotics and other antimicrobial agents, leading to increased morbidity, mortality, and economic burdens. This review article provides a comprehensive analysis of AMR, beginning with a timeline of antibiotics discovery and the year of first observed resistance. Main mechanisms of AMR in bacteria, fungi, viruses, and parasites are summarized, and the main mechanisms of bacteria are given in detail. Additionally, we discussed in detail methods for detecting AMR, including phenotypic, genotypic, and advanced methods, which are crucial for identifying and monitoring AMR. In addressing AMR mitigation, we explore innovative interventions such as CRISPR-Cas systems, nanotechnology, antibody therapy, artificial intelligence (AI), and the One Health approach. Moreover, we discussed both finished and ongoing clinical trials for AMR. This review emphasizes the urgent need for global action and highlights promising technologies that could shape the future of AMR surveillance and treatment. By integrating interdisciplinary research and emerging clinical insights, this study aims to guide individuals toward impactful solutions in the battle against AMR.
Collapse
Affiliation(s)
- Ritik Kumar Thakur
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Kaushal Aggarwal
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Nayan Sood
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Aman Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Sachin Joshi
- Department of Pharmaceutical Quality Assurance, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Priya Jindal
- Department of Pharmaceutical Quality Assurance, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Rashmi Maurya
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India.
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India.
| |
Collapse
|
2
|
Chakraborty S, Dinakaran I, Karunasagar A, Ahmed W, Mohan Raj J, Karunasagar I, Vashisth M, Chauhan A. WGS of a lytic phage targeting biofilm-forming carbapenem-resistant Klebsiella pneumoniae prevalent in a tertiary healthcare setup. Microb Pathog 2025; 205:107680. [PMID: 40348211 DOI: 10.1016/j.micpath.2025.107680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/22/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) are listed as a priority-one critical pathogen category by the WHO because of their abysmal treatment outcomes owing to antibiotic inefficiency. Among CRE, Klebsiella pneumoniae is prevalent in acquiring resistance genes and withstanding the last-resort drugs. Additionally, its ability to form robust biofilms further exacerbates the treatment challenges. The escalating resistance and recalcitrance of biofilm-residing bacteria against standard antibiotic treatments demand an alternative to antibiotics. Phages, being nature-tailored, are a never-ending arsenal against the bacteria because of their capacity to lyse bacteria rapidly and co-evolve with bacteria. In our study, we isolated K. pneumoniae from patients at Madras Medical Mission Hospital (MMMH), India, and assessed their antibiogram profiles, presence of carbapenemase genes, and biofilm-forming abilities. 100 % of the strains were extended-spectrum beta-lactamase producing, multidrug-resistant (ESBL-MDR), with 95 % harbouring carbapenemase genes. Among the isolates, 65 % were strong biofilm formers, and the rest were moderate. Further, we isolated a bacteriophage, SAKp11, from the hospital sewage, which was able to lyse 62 out of 167 clinical isolates and successfully reduced 99.99 % viable bacterial cells of the 24-h-old biofilm of strong biofilm forming MDR K. pneumoniae strains. Whole genome analysis revealed that SAKp11, with a genome size of 59,338bp, belonged to the Casjensviridae family, one of the less explored bacteriophage families. Comprehensive characterization of SAKp11 indicated its suitability for therapeutic use. Our study highlights the severity of drug-resistant K. pneumoniae in Indian healthcare and the inadequacy of current antibiotics, underscoring the potential of phages as an alternative therapeutic option.
Collapse
Affiliation(s)
- Sambuddha Chakraborty
- Department of Microbiology, University of Delhi South Campus, Benito Jaurez Marg, New Delhi, 110021, India
| | - I Dinakaran
- The Madras Medical Mission, 4-A Dr JJ Nagar Mogappair, 600053, Chennai, India
| | - Anusha Karunasagar
- Speciality Microbiology, The Princess Alexandra Hospital Harlow, Essex, CM20 2UD, United Kingdom
| | - Wasim Ahmed
- Department of Microbiology, Tripura University, Suryamaninagar, 799022, Tripura, India
| | - Juliet Mohan Raj
- Department of Infectious Diseases and Microbial Genomics, Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Mangaluru, 575018, Karnataka, India
| | - Indrani Karunasagar
- Department of Infectious Diseases and Microbial Genomics, Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Mangaluru, 575018, Karnataka, India
| | - Medhavi Vashisth
- Department of Microbiology, University of Delhi South Campus, Benito Jaurez Marg, New Delhi, 110021, India
| | - Ashwini Chauhan
- Department of Microbiology, University of Delhi South Campus, Benito Jaurez Marg, New Delhi, 110021, India.
| |
Collapse
|
3
|
Zhang X, Xiong D, Li X, Xue H, Chen M, Yu J, Wei H. Lung-directed delivery of a ligand-mediated chimeric lysin has an enhanced ability to eradicate pulmonary and intracellular Staphylococcus aureus. BMC Microbiol 2025; 25:262. [PMID: 40312318 PMCID: PMC12044732 DOI: 10.1186/s12866-025-03978-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/21/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Bacteriophage lysins have high antimicrobial activities with many advantages as alternatives to antibiotics, however, lysins generally do not exhibit intracellular bactericidal capabilities due to a lack of cell-penetrating properties and/or reduced activity under the intracellular environment. To address this problem, p-ClyC, an engineered chimeric lysin with a lung cell-targeting peptide, was used to kill Staphylococcus aureus (S. aureus) in vitro and in vivo. METHODS p-ClyC was constructed by fusing ClyC with a lung-directed peptide. Antimicrobial activities of the two lysins (ClyC, p-ClyC) against S. aureus were evaluated in vitro and in a murine lung infection model. The cell internalization of the lysins was explored using laser confocal imaging. The intracellular bactericidal efficacies of the lysins and gentamicin were evaluated using intracellular growth inhibition studies. The risk of generating antimicrobial resistance after the lysin or antibiotics treatment was investigated by deep sequencing, MIC and growth rate monitoring. RESULTS The bactericidal activity against pulmonary intracellular S. aureus of p-ClyC was obviously promoted. The treatment with p-ClyC made the surviving intracellular bacteria generate less tendence to resistance in terms of growth rates and minor alleles in genomes than the treatment with gentamicin. In murine lung infection model, the survival rate for the group of p-ClyC was significantly improved, and more pulmonary bacteria were killed by the p-ClyC than those by the ClyC. CONCLUSIONS The lung-directed peptide-fused ClyC (p-ClyC) is a novel and effective lysin to be against intracellular S. aureus and a potential antimicrobial agent for therapeutics against the pulmonary infections by S. aureus.
Collapse
Affiliation(s)
- Xiaoxu Zhang
- WHP Innovation Lab, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Dongyan Xiong
- WHP Innovation Lab, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohong Li
- WHP Innovation Lab, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Heng Xue
- WHP Innovation Lab, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Chen
- WHP Innovation Lab, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junping Yu
- WHP Innovation Lab, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hongping Wei
- WHP Innovation Lab, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
4
|
Sela U, Heselpoth RD, Fischetti VA. Engineered Lysin-Derived Peptide as a Potent Antimicrobial for Acne Vulgaris. Antibiotics (Basel) 2025; 14:344. [PMID: 40298522 PMCID: PMC12024193 DOI: 10.3390/antibiotics14040344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Acne vulgaris is a skin disorder that affects millions worldwide, with Cutibacterium acnes playing a key role in its inflammation. Antibiotics reduce C. acnes and inflammation, but growing antibiotic resistance has limited their efficacy. Additionally, other common acne treatments with bactericidal activity, like benzoyl peroxide, cause irritation, dryness, and peeling. To fulfill the unmet need for alternative therapies, our strategy focused on identifying potent phage lysins and/or their derived cationic peptides. Methods: The C-terminal cationic antimicrobial peptide of the Prevotella intermedia phage lysin PlyPi01 was synthesized along with several sequence-engineered variants in an attempt to enhance their bactericidal efficacy. In vitro bacterial killing assays evaluated the potency of the lysin-derived peptide derivatives against C. acnes and Staphylococcus aureus, another skin bacterium associated with acne. Antibacterial activity was assessed both in conditions simulating the human skin and in combination with retinoids. Results: The variant peptide P156 was engineered by adding arginine residues at both the N- and C-terminal ends of the parental peptide PiP01. P156 was highly potent and eradicated all tested strains of C. acnes and S. aureus. P156 acted rapidly (>5-log kill in 10 min), further reducing the potential of resistance development. Additionally, P156 maintained its potency under conditions (e.g., temperature, pH, and salt concentration) observed on the skin surface and in hair follicles, as well as in combination with retinoid-all without being toxic to human cells. Conclusions: These collective findings position P156 as a promising topical drug for clinical applications to control acne vulgaris.
Collapse
|
5
|
Ghaznavi G, Vosough P, Ghasemian A, Tabar MMM, Tayebi L, Taghizadeh S, Savardashtaki A. Engineering bacteriophages for targeted superbug eradication. Mol Biol Rep 2025; 52:221. [PMID: 39934535 DOI: 10.1007/s11033-025-10332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
The rise of antibiotic-resistant bacteria, termed "superbugs," presents a formidable challenge to global health. These pathogens, often responsible for persistent nosocomial infections, threaten the effectiveness of conventional antibiotic therapies. This review delves into the potential of bacteriophages, viruses specifically targeting bacteria, as a powerful tool to combat superbugs. We examined the latest developments in genetic engineering that improve the efficacy of bacteriophages, focusing on modifications in host range, lysis mechanisms, and their ability to overcome bacterial defense systems. This review article highlights the CRISPR-Cas system as a promising method for precisely manipulating phage genomes, enabling the development of novel phage therapies with enhanced efficacy and specificity. Furthermore, we discussed developing novel phage-based strategies, such as phage cocktails and phage-antibiotic combinations. We also analyzed the challenges and ethical considerations associated with phage engineering, emphasizing the need for responsible and rigorous research to ensure this technology's safe and effective deployment to combat the growing threat of antibiotic resistance.
Collapse
Affiliation(s)
- Ghazal Ghaznavi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Vosough
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Saeed Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Science Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Zhang B, Song L, Wang Y, Zhang M, Chen C, Ning H, Wang L, Qiu C, Wang X, Sun C, Feng X, Han W, Wang B, Ji Y, Gu J. Therapeutic efficacy of LysGH15 against necrotising pneumonia caused by Staphylococcus aureus in a rabbit model. Front Vet Sci 2025; 12:1529870. [PMID: 39981314 PMCID: PMC11841505 DOI: 10.3389/fvets.2025.1529870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Staphylococcus aureus (S. aureus) is one of the most important zoonotic pathogens and can be transmitted to humans through the meat diet routes, causing necrotising pneumonia. Methods This study investigated the therapeutic effect of bacteriophage lysin LysGH15 on necrotising pneumonia in rabbit model caused by S. aureus. Results In the in vitro experiments, 50 μg/mL LysGH15 not only significantly reduced the viable count (approximately 3.24 × 106 CFU/g) of chicken meat stored at 4°C for 48 h but also effectively reduced the viable count of chicken meat thawed at 4°C and 30°C, with reductions of approximately 1.42 × 106 CFU/g and 2.78 × 106 CFU/g, respectively. In the in vivo experiments, a single intranasal administration of 300 μg/rabbit increased the survival rate of rabbits to 60%. At 72 h postinfection, the number of bacteria in the lung tissues of the rabbits treated with LysGH15 was 7 × 104 CFU/g, which was significantly lower than that in the lung tissues of rabbits treated with PBS (7.76 × 106 CFU/g) or linezolid (6.38 × 105 CFU/g). In addition, LysGH15 treatment alleviated lung tissue damage in infected rabbits and significantly reduced the levels of Panton-Valentine leukocidin (PVL), alpha-toxin (Hla), and the cytokines IFN-γ, TNF-α, and IL-8 in their lung tissues, similar to those in rabbits treated with linezolid. Discussion These results suggest that LysGH15 has the potential to be used as a novel antimicrobial agent for the treatment of necrotising pneumonia caused by S. aureus.
Collapse
Affiliation(s)
- Bowei Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Liran Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yongran Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Meimei Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chong Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hui Ning
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Li Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Cao Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinwu Wang
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Changjiang Sun
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xin Feng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenyu Han
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Bin Wang
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Yalu Ji
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jingmin Gu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Sabur A, Khan A, Borphukan B, Razzak A, Salimullah M, Khatun M. The Unique Capability of Endolysin to Tackle Antibiotic Resistance: Cracking the Barrier. J Xenobiot 2025; 15:19. [PMID: 39997362 PMCID: PMC11856723 DOI: 10.3390/jox15010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 02/26/2025] Open
Abstract
The lack of new antibacterial medicines and the rapid rise in bacterial resistance to antibiotics pose a major threat to individuals and healthcare systems. Despite the availability of various antibiotics, bacterial resistance has emerged for almost every antibiotic discovered to date. The increasing prevalence of multidrug-resistant bacterial strains has rendered some infections nearly untreatable, posing severe challenges to health care. Thus, the development of alternatives to conventional antibiotics is critical for the treatment of both humans and food-producing animals. Endolysins, which are peptidoglycan hydrolases encoded by bacteriophages, represent a promising new class of antimicrobials. Preliminary research suggests that endolysins are more effective against Gram-positive bacteria than Gram-negative bacteria when administered exogenously, although they can still damage the cell wall of Gram-negative bacteria. Numerous endolysins have a modular domain structure that divides their binding and catalytic activity into distinct subunits, which helps maximize their bioengineering and potential drug development. Endolysins and endolysin-derived antimicrobials offer several advantages as antibiotic substitutes. They have a unique mechanism of action and efficacy against bacterial persisters (without requiring an active host metabolism); subsequently, they target both Gram-positive and Gram-negative bacteria (including antibiotic-resistant strains), and mycobacteria. Furthermore, there has been limited evidence of endolysin being resistant. Because these enzymes target highly conserved links, resistance may develop more slowly compared to traditional antibiotics. This review provides an overview and insight of the potential applications of endolysins as novel antimicrobials.
Collapse
Affiliation(s)
- Abdus Sabur
- Animal Biotechnology Division, National Institute of Biotechnology, Savar, Dhaka 1349, Bangladesh;
| | - Angkan Khan
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh, Mohakhali, Dhaka 1212, Bangladesh;
| | - B. Borphukan
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA;
| | - Abdur Razzak
- Bioassay Department, Eurofins Biopharma, Columbia, MO 65201, USA;
| | - M. Salimullah
- Molecular Biotechnology Division, National Institute of Biotechnology, Savar, Dhaka 1349, Bangladesh;
| | - Muslima Khatun
- Molecular Biotechnology Division, National Institute of Biotechnology, Savar, Dhaka 1349, Bangladesh;
| |
Collapse
|
8
|
Mursalin MH, Coburn PS, Longoria-Gonzalez L, Astley R, Fischetti VA, Callegan MC. Novel Anti-Microbial/Anti-Inflammatory Combination Improves Clinical Outcome of Bacillus cereus Endophthalmitis. Invest Ophthalmol Vis Sci 2025; 66:39. [PMID: 39813055 PMCID: PMC11741065 DOI: 10.1167/iovs.66.1.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 12/26/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose The purpose of this study was to explore the therapeutic potential of the novel combination of Bacillus bacteriophage lysin (PlyB) and a synthetic TLR2/4 inhibitor (oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine, OxPAPC) in the treatment of experimental Bacillus cereus endophthalmitis. Methods C57BL/6J mice were injected with 100 colony forming units (CFUs) Bacillus cereus to induce endophthalmitis. Two hours postinfection, groups of mice were treated with either PlyB, PlyB with OxPAPC, or the groups were left untreated to serve as a control. A group of uninfected mice was injected with only PlyB to serve as a treatment control. Eight hours post-treatment, infected/treated mice were analyzed for bacterial counts, retinal function, histology, and inflammation. Results Groups treated with PlyB alone or PlyB/OxPAPC showed significantly reduced bacterial loads compared with untreated eyes. Compared with untreated eyes, PlyB and PlyB/OxPAPC-treated eyes retained significant A-wave and B-wave function. PlyB/OxPAPC-treated eyes retained greater A- and B-wave function compared with eyes treated with PlyB alone. Histology showed that retinal structures were well preserved, and retinal layers were distinguishable in eyes treated with PlyB and PlyB/OxPAPC. Ninety-five percent of infiltrating CD45+ cells in infected untreated eyes were Ly6G+/Ly6C+ neutrophils. Infected eyes treated with PlyB and PlyB/OxPAPC had significantly reduced numbers of CD45+ immune cells compared with untreated eyes. Eyes treated with PlyB/OxPAPC had a significantly lower number of neutrophils than eyes treated with PlyB alone. Conclusions These results demonstrated that the novel combination of bacteriophage lysin and TLR2/4 inhibitor was a successful treatment option for treating experimental Bacillus cereus endophthalmitis.
Collapse
Affiliation(s)
- Md Huzzatul Mursalin
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| | - Phillip S. Coburn
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| | - Luis Longoria-Gonzalez
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Roger Astley
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, United States
| | - Michelle C. Callegan
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
9
|
Easwaran M, Govindaraj RG, Naderi M, Brylinski M, De Zoysa M, Shin HJ. Evaluating the antibacterial activity of engineered phage ФEcSw endolysin against multidrug-resistant Escherichia coli strain Sw1. Int J Antimicrob Agents 2025; 65:107395. [PMID: 39612993 DOI: 10.1016/j.ijantimicag.2024.107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
OBJECTIVE The emergence of bacteriophage-encoded endolysins hold significant promise as novel antibacterial agents, particularly against the growing threat of antibiotic-resistant bacteria. Therefore, we investigated the phage ФEcSw endolysin to enhance the lytic activity against multi-drug-resistant Escherichia coli Sw1 through site-directed mutagenesis (SDM) guided by in silico identification of critical residues. METHODS A computational analysis was conducted to elucidate the protein folding pattern, identify the active domains, and recognize critical residues of ФEcSw endolysin. Structural similarity-based docking simulations were employed to identify residues potentially involved in both recognition and cleavage of the bacterial peptidoglycan. Phage endolysin was amplified, cloned, expressed, and purified from phage ФEcSw. Pure endolysin (EL) activity was subsequently validated through SDM. RESULTS Our studies revealed both open and closed conformations of ФEcSw endolysin within specific residue ranges (51-60 and 128-141). Notably, the active site was identified and contains the crucial catalytic residues, Glu19 and Asp34. A time-kill assay demonstrated that the holin (HL) - EL effectively reduced E. coli Sw1 growth by 46% within 12 h. Furthermore, treatment with HL, EL, and HL-EL significantly increased bacterial membrane permeability (11%, 74%, and 85%, respectively) within just 1 h. Importantly, SDM identified a double mutant (K19/H34) of the endolysin exhibiting the highest lytic activity compared to the wild-type and other mutants (E19D, E19K, D34E, and D34H) due to increase net charge from +3.23 to +6.29. CONCLUSIONS Our findings demonstrate that phage endolysins and HLs or engineered endolysin hold significant potential as therapeutic agents to combat multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Maheswaran Easwaran
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Rajiv Gandhi Govindaraj
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA; HotSpot Therapeutics, Boston, MA, USA
| | - Misagh Naderi
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA; Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, USA
| | - Mahanama De Zoysa
- College of Veterinary Medicine, Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hyun-Jin Shin
- College of Veterinary Medicine, Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
10
|
Nakonieczna A, Topolska-Woś A, Łobocka M. New bacteriophage-derived lysins, LysJ and LysF, with the potential to control Bacillus anthracis. Appl Microbiol Biotechnol 2024; 108:76. [PMID: 38194144 PMCID: PMC10776502 DOI: 10.1007/s00253-023-12839-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 01/10/2024]
Abstract
Bacillus anthracis is an etiological agent of anthrax, a severe zoonotic disease that can be transmitted to people and cause high mortalities. Bacteriophages and their lytic enzymes, endolysins, have potential therapeutic value in treating infections caused by this bacterium as alternatives or complements to antibiotic therapy. They can also be used to identify and detect B. anthracis. Endolysins of two B. anthracis Wbetavirus phages, J5a and F16Ba which were described by us recently, differ significantly from the best-known B. anthracis phage endolysin PlyG from Wbetavirus genus bacteriophage Gamma and a few other Wbetavirus genus phages. They are larger than PlyG (351 vs. 233 amino acid residues), contain a signal peptide at their N-termini, and, by prediction, have a different fold of cell binding domain suggesting different structural basis of cell epitope recognition. We purified in a soluble form the modified versions of these endolysins, designated by us LysJ and LysF, respectively, and depleted of signal peptides. Both modified endolysins could lyse the B. anthracis cell wall in zymogram assays. Their activity against the living cells of B. anthracis and other species of Bacillus genus was tested by spotting on the layers of bacteria in soft agar and by assessing the reduction of optical density of bacterial suspensions. Both methods proved the effectiveness of LysJ and LysF in killing the anthrax bacilli, although the results obtained by each method differed. Additionally, the lytic efficiency of both proteins was different, which apparently correlates with differences in their amino acid sequence. KEY POINTS: • LysJ and LysF are B. anthracis-targeting lysins differing from lysins studied so far • LysJ and LysF could be overproduced in E. coli in soluble and active forms • LysJ and LysF are active in killing cells of B. anthracis virulent strains.
Collapse
Affiliation(s)
- Aleksandra Nakonieczna
- Military Institute of Hygiene and Epidemiology, Biological Threats Identification and Countermeasure Center, 24-100, Puławy, Poland.
| | | | - Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, 02-106, Warsaw, Poland
| |
Collapse
|
11
|
Park JM, Kim JH, Choi KS, Kwon HJ. Deleterious Effects of Histidine Tagging to the SH3b Cell Wall-Binding Domain on Recombinant Endolysin Activity. J Microbiol Biotechnol 2024; 34:2331-2337. [PMID: 39467703 PMCID: PMC11637818 DOI: 10.4014/jmb.2408.08003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/30/2024]
Abstract
Natural and artificial endolysins exhibit bactericidal effects by destroying peptidoglycans in the cell wall of gram-positive bacteria and are usually composed of an N-terminal catalytic domain (CTD) and a C-terminal cell wall-binding domain (CBD). The structures and receptors of CBDs are variable, but bacterial Src homology 3 (SH3b) CBDs are prevalent among the natural endolysins of Staphylococcus aureus. Moreover, although recombinant endolysins with a C-terminal 6x histidine tag (His-tag) are often produced and convenient to purify, the deleterious effects of His-tags on antibacterial activity have not been evaluated thoroughly. Recently, we reported that the antibacterial activity of a commercial lysostaphin without a His-tag differed from that of cell-free lysostaphin with a C-terminal His-tag, and lysostaphin also contains a C-terminal SH3b CBD. In this study, we directly compared the effects of His-tags on the antibacterial activities of lysostaphin and several chimeric lysins possessing different SH3b CBDs. We confirmed that antibacterial activity decreased 16.0-32.0-fold after a His-tag was added to the SH3b CBD.
Collapse
Affiliation(s)
- Jin-Mi Park
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea
- GeNiner Inc., Seoul 08826, Republic of Korea
| | - Jun-Hyun Kim
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea
- GeNiner Inc., Seoul 08826, Republic of Korea
| | - Kang-Seuk Choi
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea
| | - Hyuk-Joon Kwon
- Laboratory of Poultry Medicine, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea
- Farm Animal Clinical Training and Research Center (FACTRC), GBST, Seoul National University, Gangwon-do 25354, Republic of Korea
- GeNiner Inc., Seoul 08826, Republic of Korea
| |
Collapse
|
12
|
Li L, Cai F, Guo C, Liu Z, Qin J, Huang J. Gut microbiome and NAFLD: impact and therapeutic potential. Front Microbiol 2024; 15:1500453. [PMID: 39664063 PMCID: PMC11632136 DOI: 10.3389/fmicb.2024.1500453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/13/2024] [Indexed: 12/13/2024] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) affects approximately 32.4% of the global population and poses a significant health concern. Emerging evidence underscores the pivotal role of the gut microbiota-including bacteria, viruses, fungi, and parasites-in the development and progression of NAFLD. Dysbiosis among gut bacteria alters key biological pathways that contribute to liver fat accumulation and inflammation. The gut virome, comprising bacteriophages and eukaryotic viruses, significantly shapes microbial community dynamics and impacts host metabolism through complex interactions. Similarly, gut fungi maintain a symbiotic relationship with bacteria; the relationship between gut fungi and bacteria is crucial for overall host health, with certain fungal species such as Candida in NAFLD patients showing detrimental associations with metabolic markers and liver function. Additionally, the "hygiene hypothesis" suggests that reduced exposure to gut parasites may affect immune regulation and metabolic processes, potentially influencing conditions like obesity and insulin resistance. This review synthesizes current knowledge on the intricate interactions within the gut microbiota and their associations with NAFLD. We highlight the therapeutic potential of targeting these microbial communities through interventions such as probiotics, prebiotics, and fecal microbiota transplantation. Addressing the complexities of NAFLD requires comprehensive strategies that consider the multifaceted roles of gut microorganisms in disease pathology.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiean Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
13
|
Pu F, Zhang N, Pang J, Zeng N, Baloch FB, Li Z, Li B. Deciphering the Genetic Architecture of Staphylococcus warneri Prophage vB_G30_01: A Comprehensive Molecular Analysis. Viruses 2024; 16:1631. [PMID: 39459963 PMCID: PMC11512304 DOI: 10.3390/v16101631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
The current knowledge of Staphylococcus warneri phages is limited, with few genomes sequenced and characterized. In this study, a prophage, vB_G30_01, isolated from Staphylococcus warneri G30 was characterized and evaluated for its lysogenic host range. The phage was studied using transmission electron microscopy and a host range. The phage genome was sequenced and characterized in depth, including phylogenetic and taxonomic analyses. The linear dsDNA genome of vB_G30_01 contains 67 predicted open reading frames (ORFs), classifying it within Bronfenbrennervirinae. With a total of 10 ORFs involved in DNA replication-related and transcriptional regulator functions, vB_G30_01 may play a role in the genetics and transcription of a host. Additionally, vB_G30_01 possesses a complete set of genes related to host lysogeny and lysis, implying that vB_G30_01 may influence the survival and adaptation of its host. Furthermore, a comparative genomic analysis reveals that vB_G30_01 shares high genomic similarity with other Staphylococcus phages and is relatively closely related to those of Exiguobacterium and Bacillus, which, in combination with the cross-infection assay, suggests possible cross-species infection capabilities. This study enhances the understanding of Staphylococcus warneri prophages, providing insights into phage-host interactions and potential horizontal gene transfer.
Collapse
Affiliation(s)
- Fangxiong Pu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (F.P.); (J.P.)
| | - Ning Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (F.P.); (J.P.)
| | - Jiahe Pang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (F.P.); (J.P.)
| | - Nan Zeng
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China; (N.Z.); (F.B.B.)
| | - Faryal Babar Baloch
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China; (N.Z.); (F.B.B.)
| | - Zijing Li
- Food Science College, Shenyang Agricultural University, Shenyang 110866, China;
| | - Bingxue Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China; (N.Z.); (F.B.B.)
| |
Collapse
|
14
|
Sathe N, Suphioglu C, Athan E, Kapat A. Bacteriophage vB_kpnS-Kpn15: Unveiling its potential triumph against extended-spectrum beta-lactamase-producing Klebsiella pneumoniae - Unraveling efficacy through innovative animal alternate models. Microb Pathog 2024; 195:106891. [PMID: 39214425 DOI: 10.1016/j.micpath.2024.106891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Aim -To isolate bacteriophages targeting extended-spectrum beta-lactamase-producing K. pneumoniae and evaluate their effectiveness across diverse models, incorporating innovative alternatives in animal testing. METHODS AND RESULTS vB_kpnS-Kpn15 was isolated from sewage sample from Thane district. It produced a clear plaques on K. pneumoniae ATCC 700603. It has a flexible, non-contractile long tail and an icosahedral head and the Siphoviridae family of viruses in the order Caudovirales matched all of its structural criteria. Sequencing of vB_kpnS-Kpn15 revealed a 48,404 bp genome. The vB_KpnS-Kpn15 genome was found to contain 50 hypothetical proteins, of which 16 were found to possess different functions. The vB_KpnS-Kpn15 was also found to possess enzymes for its DNA synthesis. It was found to be lytic for the planktonic cells of K. pneumoniae and bactericidal for up to 48 h and potentially affected established K. pneumoniae biofilms. It demonstrated a broad host range and caused lytic zones on about 46 % of K. pneumoniae multi-drug resistant strains. In an in vitro wound and burn infection model, phage vB_kpnS-Kpn15 in combination with other phages resulted in successful cell proliferation and wound healing. Based on vB_kpnS-Kpn15's lytic properties, it can be incorporated in a bacteriophage cocktail to combat ESBL strains. CONCLUSIONS The phages isolated during this research are better candidates for phage therapy, and therefore provide new and exciting options for the successful control of antibiotic-resistant bacterial infections in the future. The utilization of animal alternative models in this study elucidates cellular proliferation and migration, underscoring its significance in screening novel drugs with potential applications in the treatment of wound and burn infections. SIGNIFICANCE AND IMPACT OF THE RESEARCH The findings of this research have implications for the creation of innovative, promising strategies to treat ESBL K. pneumoniae infections.
Collapse
Affiliation(s)
- Nikhil Sathe
- Reliance Life Sciences Pvt. Ltd, Dhirubhai Ambani Life Sciences Centre, Thane Belapur Road, Rabale, Navi Mumbai 400701, Maharashtra, India; School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221, Burwood Highway, Burwood VIC 3125, Australia
| | - Cenk Suphioglu
- School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221, Burwood Highway, Burwood VIC 3125, Australia; NeuroAllergy Research Laboratory, School of Life and Environmental Sciences, Deakin University, Geelong Campus at Waurn Ponds, 75 Pigdons Road, Waurn Ponds VIC 3216. Australia
| | - Eugene Athan
- School of Medicine, Deakin University, PO Box 281 Geelong 3220, Australia.
| | - Arnab Kapat
- Reliance Life Sciences Pvt. Ltd, Dhirubhai Ambani Life Sciences Centre, Thane Belapur Road, Rabale, Navi Mumbai 400701, Maharashtra, India.
| |
Collapse
|
15
|
Mehta D, Singh S. Nanozymes and their biomolecular conjugates as next-generation antibacterial agents: A comprehensive review. Int J Biol Macromol 2024; 278:134582. [PMID: 39122068 DOI: 10.1016/j.ijbiomac.2024.134582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Antimicrobial resistance (AMR), the ability of bacterial species to develop resistance against exposed antibiotics, has gained immense global attention in the past few years. Bacterial infections are serious health concerns affecting millions of people annually worldwide. Therefore, developing novel antibacterial agents that are highly effective and avoid resistance development is imperative. Among various strategies, recent developments in nanozyme technology have shown promising results as antibacterials in several antibiotic-sensitive and resistant bacterial species. Nanozymes offer several advantages over corresponding natural enzymes, such as inexpensive, stable, multifunctional, tunable catalytic properties, etc. Although the use of nanozymes as antibacterial agents has provided promising results, the specific biomolecule-conjugated nanozymes have shown further improvement in catalytic performance and associated antibacterial efficacy. The exclusive design of functional nanozymes with theranostic potential is found to simultaneously inhibit the growth and image of AMR bacterial species. This review comprehensively summarizes the history of nanozymes, their classification, biomolecules conjugated nanozyme, and their mechanism of enzyme-mimetic activity and associated antibacterial activity in antibiotic-sensitive and resistant species. The futureneeds to effectively engineer the existing or new nanozymes to curb AMR have also been discussed.
Collapse
Affiliation(s)
- Divya Mehta
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad 500032, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India
| | - Sanjay Singh
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad 500032, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India.
| |
Collapse
|
16
|
Yoda T, Matsuhashi A, Matsushita A, Shibagaki S, Sasakura Y, Aoki K, Hosokawa M, Tsuda S. Uncovering Endolysins against Methicillin-Resistant Staphylococcus aureus Using a Microbial Single-Cell Genome Database. ACS Infect Dis 2024; 10:2679-2689. [PMID: 38906534 PMCID: PMC11320564 DOI: 10.1021/acsinfecdis.4c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/18/2024] [Accepted: 05/22/2024] [Indexed: 06/23/2024]
Abstract
Endolysins, peptidoglycan hydrolases derived from bacteriophages (phages), are being developed as a promising alternative to conventional antibiotics. To obtain highly active endolysins, a diverse library of these endolysins is vital. We propose here microbial single-cell genome sequencing as an efficient tool to discover dozens of previously unknown endolysins, owing to its culture-independent sequencing method. As a proof of concept, we analyzed and recovered endolysin genes within prophage regions of Staphylococcus single-amplified genomes in human skin microbiome samples. We constructed a library of chimeric endolysins by shuffling domains of the natural endolysins and performed high-throughput screening against Staphylococcus aureus. One of the lead endolysins, bbst1027, exhibited desirable antimicrobial properties, such as rapid bactericidal activity, no detectable resistance development, and in vivo efficacy. We foresee that this endolysin discovery pipeline is in principle applicable to any bacterial target and boost the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Takuya Yoda
- bitBiome,
Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Ayumi Matsuhashi
- bitBiome,
Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Ai Matsushita
- bitBiome,
Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Shohei Shibagaki
- bitBiome,
Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Yukie Sasakura
- bitBiome,
Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Kazuteru Aoki
- bitBiome,
Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Masahito Hosokawa
- bitBiome,
Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- Department
of Life Science and Medical Bioscience, Waseda University, 2-2
Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Research
Organization for Nano and Life Innovation, Waseda University, 513
Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- Institute
for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Soichiro Tsuda
- bitBiome,
Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| |
Collapse
|
17
|
Kakkar A, Kandwal G, Nayak T, Jaiswal LK, Srivastava A, Gupta A. Engineered bacteriophages: A panacea against pathogenic and drug resistant bacteria. Heliyon 2024; 10:e34333. [PMID: 39100447 PMCID: PMC11295868 DOI: 10.1016/j.heliyon.2024.e34333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Antimicrobial resistance (AMR) is a major global concern; antibiotics and other regular treatment methods have failed to overcome the increasing number of infectious diseases. Bacteriophages (phages) are viruses that specifically target/kill bacterial hosts without affecting other human microbiome. Phage therapy provides optimism in the current global healthcare scenario with a long history of its applications in humans that has now reached various clinical trials. Phages in clinical trials have specific requirements of being exclusively lytic, free from toxic genes with an enhanced host range that adds an advantage to this requisite. This review explains in detail the various phage engineering methods and their potential applications in therapy. To make phages more efficient, engineering has been attempted using techniques like conventional homologous recombination, Bacteriophage Recombineering of Electroporated DNA (BRED), clustered regularly interspaced short palindromic repeats (CRISPR)-Cas, CRISPY-BRED/Bacteriophage Recombineering with Infectious Particles (BRIP), chemically accelerated viral evolution (CAVE), and phage genome rebooting. Phages are administered in cocktail form in combination with antibiotics, vaccines, and purified proteins, such as endolysins. Thus, phage therapy is proving to be a better alternative for treating life-threatening infections, with more specificity and fewer detrimental consequences.
Collapse
Affiliation(s)
- Anuja Kakkar
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Garima Kandwal
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Tanmayee Nayak
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Lav Kumar Jaiswal
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Amit Srivastava
- University of Jyväskylä, Nanoscience Centre, Department of Biological and Environmental Science, 40014, Jyväskylä, Finland
| | - Ankush Gupta
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| |
Collapse
|
18
|
Bałdysz S, Nawrot R, Barylski J. "Tear down that wall"-a critical evaluation of bioinformatic resources available for lysin researchers. Appl Environ Microbiol 2024; 90:e0236123. [PMID: 38842338 PMCID: PMC11267937 DOI: 10.1128/aem.02361-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
Lytic enzymes, or lysins for short, break down peptidoglycan and interrupt the continuity of the cell wall, which, in turn, causes osmotic lysis of the bacterium. Their ability to destroy bacteria from within makes them promising antimicrobial agents that can be used as alternatives or supplements to antibiotics. In this paper, we briefly summarize basic terms and concepts used to describe lysin sequences and delineate major lysin groups. More importantly, we describe the domain repertoire found in lysins and critically review bioinformatic tools or databases which are used in studies of these enzymes (with particular emphasis on the repositories of Hidden Markov models). Finally, we present a novel comprehensive, meticulously curated set of lysin-related family and domain models, sort them into clusters that reflect major families, and demonstrate that the selected models can be used to efficiently search for new lysins.
Collapse
Affiliation(s)
- Sophia Bałdysz
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Robert Nawrot
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Jakub Barylski
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
19
|
Wang Y, Wang X, Liu X, Lin B. Research Progress on Strategies for Improving the Enzyme Properties of Bacteriophage Endolysins. J Microbiol Biotechnol 2024; 34:1189-1196. [PMID: 38693045 PMCID: PMC11239441 DOI: 10.4014/jmb.2312.12050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 05/03/2024]
Abstract
Bacterial resistance to commonly used antibiotics is one of the major challenges to be solved today. Bacteriophage endolysins (Lysins) have become a hot research topic as a new class of antibacterial agents. They have promising applications in bacterial infection prevention and control in multiple fields, such as livestock and poultry farming, food safety, clinical medicine and pathogen detection. However, many phage endolysins display low bactericidal activities, short half-life and narrow lytic spectrums. Therefore, some methods have been used to improve the enzyme properties (bactericidal activity, lysis spectrum, stability and targeting the substrate, etc) of bacteriophage endolysins, including deletion or addition of domains, DNA mutagenesis, chimerization of domains, fusion to the membrane-penetrating peptides, fusion with domains targeting outer membrane transport systems, encapsulation, the usage of outer membrane permeabilizers. In this review, research progress on the strategies for improving their enzyme properties are systematically presented, with a view to provide references for the development of lysins with excellent performances.
Collapse
Affiliation(s)
- Yulu Wang
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan 528300, P.R. China
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, P.R. China
| | - Xue Wang
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, P.R. China
| | - Xin Liu
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, P.R. China
| | - Bokun Lin
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan 528300, P.R. China
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, P.R. China
| |
Collapse
|
20
|
Azari R, Yousefi MH, Fallah AA, Alimohammadi A, Nikjoo N, Wagemans J, Berizi E, Hosseinzadeh S, Ghasemi M, Mousavi Khaneghah A. Controlling of foodborne pathogen biofilms on stainless steel by bacteriophages: A systematic review and meta-analysis. Biofilm 2024; 7:100170. [PMID: 38234712 PMCID: PMC10793095 DOI: 10.1016/j.bioflm.2023.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 01/19/2024] Open
Abstract
This study investigates the potential of using bacteriophages to control foodborne pathogen biofilms on stainless steel surfaces in the food industry. Biofilm-forming bacteria can attach to stainless steel surfaces, rendering them difficult to eradicate even after a thorough cleaning and sanitizing procedures. Bacteriophages have been proposed as a possible solution, as they can penetrate biofilms and destroy bacterial cells within, reducing the number of viable bacteria and preventing the growth and spread of biofilms. This systematic review and meta-analysis evaluates the potential of bacteriophages against different biofilm-forming foodborne bacteria, including Cronobacter sakazakii, Escherichia coli, Staphylococcus aureus, Pseudomonas fluorescens, Pseudomonas aeruginosa and Listeria monocytogenes. Bacteriophage treatment generally causes a significant average reduction of 38 % in biofilm formation of foodborne pathogens on stainless steel. Subgroup analyses revealed that phages are more efficient in long-duration treatment. Also, applying a cocktail of phages is 1.26-fold more effective than applying individual phages. Phages at concentrations exceeding 107 PFU/ml are significantly more efficacious in eradicating bacteria within a biofilm. The antibacterial phage activity decreases substantially by 3.54-fold when applied at 4 °C compared to temperatures above 25 °C. This analysis suggests that bacteriophages can be a promising solution for controlling biofilms in the food industry.
Collapse
Affiliation(s)
- Rahim Azari
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hashem Yousefi
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, 71946-84471, Iran
| | - Aziz A. Fallah
- Department of Food Hygiene and Quality Control, School of Veterinary Medicine, Shahrekord University, Shahrekord, 34141, Iran
| | - Arezoo Alimohammadi
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nastaran Nikjoo
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Enayat Berizi
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Hosseinzadeh
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, 71946-84471, Iran
| | - Mohammad Ghasemi
- Department of Pharmacology, School of Veterinary Medicine, Shahrekord University, P. O. Box 115, Shahrekord, Iran
| | - Amin Mousavi Khaneghah
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland
| |
Collapse
|
21
|
Bhandare S, Lawal OU, Colavecchio A, Cadieux B, Zahirovich-Jovich Y, Zhong Z, Tompkins E, Amitrano M, Kukavica-Ibrulj I, Boyle B, Wang S, Levesque RC, Delaquis P, Danyluk M, Goodridge L. Genomic and Phenotypic Analysis of Salmonella enterica Bacteriophages Identifies Two Novel Phage Species. Microorganisms 2024; 12:695. [PMID: 38674639 PMCID: PMC11052255 DOI: 10.3390/microorganisms12040695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Bacteriophages (phages) are potential alternatives to chemical antimicrobials against pathogens of public health significance. Understanding the diversity and host specificity of phages is important for developing effective phage biocontrol approaches. Here, we assessed the host range, morphology, and genetic diversity of eight Salmonella enterica phages isolated from a wastewater treatment plant. The host range analysis revealed that six out of eight phages lysed more than 81% of the 43 Salmonella enterica isolates tested. The genomic sequences of all phages were determined. Whole-genome sequencing (WGS) data revealed that phage genome sizes ranged from 41 to 114 kb, with GC contents between 39.9 and 50.0%. Two of the phages SB13 and SB28 represent new species, Epseptimavirus SB13 and genera Macdonaldcampvirus, respectively, as designated by the International Committee for the Taxonomy of Viruses (ICTV) using genome-based taxonomic classification. One phage (SB18) belonged to the Myoviridae morphotype while the remaining phages belonged to the Siphoviridae morphotype. The gene content analyses showed that none of the phages possessed virulence, toxin, antibiotic resistance, type I-VI toxin-antitoxin modules, or lysogeny genes. Three (SB3, SB15, and SB18) out of the eight phages possessed tailspike proteins. Whole-genome-based phylogeny of the eight phages with their 113 homologs revealed three clusters A, B, and C and seven subclusters (A1, A2, A3, B1, B2, C1, and C2). While cluster C1 phages were predominantly isolated from animal sources, cluster B contained phages from both wastewater and animal sources. The broad host range of these phages highlights their potential use for controlling the presence of S. enterica in foods.
Collapse
Affiliation(s)
- Sudhakar Bhandare
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC H9X 3V9, Canada or (S.B.)
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham LE12 5RD, UK
| | - Opeyemi U. Lawal
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Anna Colavecchio
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC H9X 3V9, Canada or (S.B.)
| | - Brigitte Cadieux
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC H9X 3V9, Canada or (S.B.)
| | - Yella Zahirovich-Jovich
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC H9X 3V9, Canada or (S.B.)
| | - Zeyan Zhong
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC H9X 3V9, Canada or (S.B.)
| | - Elizabeth Tompkins
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC H9X 3V9, Canada or (S.B.)
| | - Margot Amitrano
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC H9X 3V9, Canada or (S.B.)
| | - Irena Kukavica-Ibrulj
- Institute for Integrative Systems Biology (IBIS), Laval University, Québec, QC G1V 0A6, Canada (R.C.L.)
| | - Brian Boyle
- Institute for Integrative Systems Biology (IBIS), Laval University, Québec, QC G1V 0A6, Canada (R.C.L.)
| | - Siyun Wang
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Roger C. Levesque
- Institute for Integrative Systems Biology (IBIS), Laval University, Québec, QC G1V 0A6, Canada (R.C.L.)
| | - Pascal Delaquis
- Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada
| | - Michelle Danyluk
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Lawrence Goodridge
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
22
|
Antillon SF, Bernhardt TG, Chamakura K, Young R. Physiological characterization of single-gene lysis proteins. J Bacteriol 2024; 206:e0038423. [PMID: 38426721 PMCID: PMC10955853 DOI: 10.1128/jb.00384-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Single-strand RNA (ssRNA) and single-strand DNA phages elicit host lysis using a single gene, in each case designated as sgl. Of the 11 identified Sgls, three have been shown to be specific inhibitors of different steps in the pathway that supplies lipid II to the peptidoglycan (PG) biosynthesis machinery. These Sgls have been called "protein antibiotics" because the lytic event is a septal catastrophe indistinguishable from that caused by cell wall antibiotics. Here, we designate these as type I Sgls. In this formalism, the other eight Sgls are assigned to type II, the best-studied of which is protein L of the paradigm F-specific ssRNA phage MS2. Comparisons have suggested that type II Sgls have four sequence elements distinguished by hydrophobic and polar character. Environmental metatranscriptomics has revealed thousands of new ssRNA phage genomes, each of which presumably has an Sgl. Here, we describe methods to distinguish type I and type II Sgls. Using phase contrast microscopy, we show that both classes of Sgls cause the formation of blebs prior to lysis, but the location of the blebs differs significantly. In addition, we show that L and other type II Sgls do not inhibit the net synthesis of PG, as measured by radio-labeling of PG. Finally, we provide direct evidence that the Sgl from Pseudomonas phage PP7 is a type I Sgl, in support of a recent report based on a genetic selection. This shows that the putative four-element sequence structure suggested for L is not a reliable discriminator for the operational characterization of Sgls. IMPORTANCE The ssRNA phage world has recently undergone a metagenomic expansion upward of a thousandfold. Each genome likely carries at least one single-gene lysis (sgl) cistron encoding a protein that single-handedly induces host autolysis. Here, we initiate an approach to segregate the Sgls into operational types based on physiological analysis, as a first step toward the alluring goal of finding many new ways to induce bacterial death and the attendant expectations for new antibiotic development.
Collapse
Affiliation(s)
- S. Francesca Antillon
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M AgriLife Research, College Station, Texas, USA
| | - Thomas G. Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Karthik Chamakura
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M AgriLife Research, College Station, Texas, USA
| | - Ry Young
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M AgriLife Research, College Station, Texas, USA
| |
Collapse
|
23
|
Dicks LMT, Vermeulen W. Bacteriophage-Host Interactions and the Therapeutic Potential of Bacteriophages. Viruses 2024; 16:478. [PMID: 38543843 PMCID: PMC10975011 DOI: 10.3390/v16030478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 05/23/2024] Open
Abstract
Healthcare faces a major problem with the increased emergence of antimicrobial resistance due to over-prescribing antibiotics. Bacteriophages may provide a solution to the treatment of bacterial infections given their specificity. Enzymes such as endolysins, exolysins, endopeptidases, endosialidases, and depolymerases produced by phages interact with bacterial surfaces, cell wall components, and exopolysaccharides, and may even destroy biofilms. Enzymatic cleavage of the host cell envelope components exposes specific receptors required for phage adhesion. Gram-positive bacteria are susceptible to phage infiltration through their peptidoglycan, cell wall teichoic acid (WTA), lipoteichoic acids (LTAs), and flagella. In Gram-negative bacteria, lipopolysaccharides (LPSs), pili, and capsules serve as targets. Defense mechanisms used by bacteria differ and include physical barriers (e.g., capsules) or endogenous mechanisms such as clustered regularly interspaced palindromic repeat (CRISPR)-associated protein (Cas) systems. Phage proteins stimulate immune responses against specific pathogens and improve antibiotic susceptibility. This review discusses the attachment of phages to bacterial cells, the penetration of bacterial cells, the use of phages in the treatment of bacterial infections, and the limitations of phage therapy. The therapeutic potential of phage-derived proteins and the impact that genomically engineered phages may have in the treatment of infections are summarized.
Collapse
Affiliation(s)
- Leon M. T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa;
| | | |
Collapse
|
24
|
Jiang L, Xu Q, Wu Y, Zhou X, Chen Z, Sun Q, Wen J. Characterization of a Straboviridae phage vB_AbaM-SHI and its inhibition effect on biofilms of Acinetobacter baumannii. Front Cell Infect Microbiol 2024; 14:1351993. [PMID: 38524182 PMCID: PMC10958429 DOI: 10.3389/fcimb.2024.1351993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
Acinetobacter baumannii (A. baumannii) is a popular clinical pathogen worldwide. Biofilm-associated antibiotic-resistant A. baumannii infection poses a great threat to human health. Bacteria in biofilms are highly resistant to antibiotics and disinfectants. Furthermore, inhibition or eradication of biofilms in husbandry, the food industry and clinics are almost impossible. Phages can move across the biofilm matrix and promote antibiotic penetration. In the present study, a lytic A. baumannii phage vB_AbaM-SHI, belonging to family Straboviridae, was isolated from sauce chop factory drain outlet in Wuxi, China. The DNA genome consists of 44,180 bp which contain 93 open reading frames, and genes encoding products morphogenesis are located at the end of the genome. The amino acid sequence of vB_AbaM-SHI endolysin is different from those of previously reported A. baumannii phages in NCBI. Phage vB_AbaM-SHI endolysin has two additional β strands due to the replacement of a lysine (K) (in KU510289.1, NC_041857.1, JX976549.1 and MH853786.1) with an arginine (R) (SHI) at position 21 of A. baumannii phage endolysin. Spot test showed that phage vB_AbaM-SHI is able to lyse some antibiotic-resistant bacteria, such as A. baumannii (SL, SL1, and SG strains) and E. coli BL21 strain. Additionally, phage vB_AbaM-SHI independently killed bacteria and inhibited bacterial biofilm formation, and synergistically exerted strong antibacterial effects with antibiotics. This study provided a new perspective into the potential application value of phage vB_AbaM-SHI as an antimicrobial agent.
Collapse
Affiliation(s)
- Liming Jiang
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Qian Xu
- Department of Blood Transfusion, Hubei No. 3 People’s Hospital of Jianghan University, Wuhan, Hubei, China
| | - Ying Wu
- Department of Rheumatology Immunology, The First People’s Hospital of Hefei, Hefei, Anhui, China
| | - Xianglian Zhou
- Department of Rheumatology Immunology, The First People’s Hospital of Hefei, Hefei, Anhui, China
| | - Zhu Chen
- Department of Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Qiangming Sun
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Jinsheng Wen
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
25
|
Shanmugasundaram S, Nayak N, Puzhankara L, Kedlaya MN, Rajagopal A, Karmakar S. Bacteriophages: the dawn of a new era in periodontal microbiology? Crit Rev Microbiol 2024; 50:212-223. [PMID: 36883683 DOI: 10.1080/1040841x.2023.2182667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/02/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023]
Abstract
The oral microbiome, populated by a diverse range of species, plays a critical role in the initiation and progression of periodontal disease. The most dominant yet little-discussed players in the microbiome, the bacteriophages, influence the health and disease of the host in various ways. They, not only contribute to periodontal health by preventing the colonization of pathogens and disrupting biofilms but also play a role in periodontal disease by upregulating the virulence of periodontal pathogens through the transfer of antibiotic resistance and virulence factors. Since bacteriophages selectively infect only bacterial cells, they have an enormous scope to be used as a therapeutic strategy; recently, phage therapy has been successfully used to treat antibiotic-resistant systemic infections. Their ability to disrupt biofilms widens the scope against periodontal pathogens and dental plaque biofilms in periodontitis. Future research focussing on the oral phageome and phage therapy's effectiveness and safety could pave way for new avenues in periodontal therapy. This review explores our current understanding of bacteriophages, their interactions in the oral microbiome, and their therapeutic potential in periodontal disease.
Collapse
Affiliation(s)
- Shashikiran Shanmugasundaram
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Namratha Nayak
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Lakshmi Puzhankara
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Madhurya N Kedlaya
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anjale Rajagopal
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shaswata Karmakar
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
26
|
Oechslin F, Zhu X, Morency C, Somerville V, Shi R, Moineau S. Fermentation Practices Select for Thermostable Endolysins in Phages. Mol Biol Evol 2024; 41:msae055. [PMID: 38489607 PMCID: PMC10980517 DOI: 10.1093/molbev/msae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/12/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024] Open
Abstract
Endolysins are produced by (bacterio)phages and play a crucial role in degrading the bacterial cell wall and the subsequent release of new phage progeny. These lytic enzymes exhibit a remarkable diversity, often occurring in a multimodular form that combines different catalytic and cell wall-binding domains, even in phages infecting the same species. Yet, our current understanding lacks insight into how environmental factors and ecological niches may have influenced the evolution of these enzymes. In this study, we focused on phages infecting Streptococcus thermophilus, as this bacterial species has a well-defined and narrow ecological niche, namely, dairy fermentation. Among the endolysins found in phages targeting this species, we observed limited diversity, with a singular structural type dominating in most of identified S. thermophilus phages. Within this prevailing endolysin type, we discovered a novel and highly conserved calcium-binding motif. This motif proved to be crucial for the stability and activity of the enzyme at elevated temperatures. Ultimately, we demonstrated its positive selection within the host's environmental conditions, particularly under the temperature profiles encountered in the production of yogurt, mozzarella, and hard cheeses that rely on S. thermophilus.
Collapse
Affiliation(s)
- Frank Oechslin
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Canada
| | - Xiaojun Zhu
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, Canada
| | - Carlee Morency
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Canada
| | - Vincent Somerville
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Canada
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Rong Shi
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, Canada
| | - Sylvain Moineau
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Canada
- Félix d’Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec City, Canada
| |
Collapse
|
27
|
Park JM, Kim JH, Kim G, Sim HJ, Ahn SM, Choi KS, Kwon HJ. Rapid Antibacterial Activity Assessment of Chimeric Lysins. Int J Mol Sci 2024; 25:2430. [PMID: 38397110 PMCID: PMC10888538 DOI: 10.3390/ijms25042430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024] Open
Abstract
Various chimeric lysins have been developed as efficacious antibiotics against multidrug-resistant bacteria, but direct comparisons of their antibacterial activities have been difficult due to the preparation of multiple recombinant chimeric lysins. Previously, we reported an Escherichia coli cell-free expression method to better screen chimeric lysins against Staphylococcus aureus, but we still needed to increase the amounts of expressed proteins enough to be able to detect them non-isotopically for quantity comparisons. In this study, we improved the previous cell-free expression system by adding a previously reported artificial T7 terminator and reversing the different nucleotides between the T7 promoter and start codon to those of the T7 phage. The new method increased the expressed amount of chimeric lysins enough for us to detect them using Western blotting. Therefore, the qualitative comparison of activity between different chimeric lysins has become possible via the adjustment of the number of variables between samples without protein purification. We applied this method to select more active chimeric lysins derived from our previously reported chimeric lysin (ALS2). Finally, we compared the antibacterial activities of our selected chimeric lysins with reported chimeric lysins (ClyC and ClyO) and lysostaphin and determined the rank orders of antibacterial activities on different Staphylococcus aureus strains in our experimental conditions.
Collapse
Affiliation(s)
- Jin-Mi Park
- Laboratory of Poultry Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; (J.-M.P.); (J.-H.K.); (S.-M.A.)
- College of Veterinary Medicine and BK21 for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (G.K.); (H.-J.S.)
- GeNiner Inc., Seoul 08826, Republic of Korea
| | - Jun-Hyun Kim
- Laboratory of Poultry Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; (J.-M.P.); (J.-H.K.); (S.-M.A.)
- College of Veterinary Medicine and BK21 for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (G.K.); (H.-J.S.)
- GeNiner Inc., Seoul 08826, Republic of Korea
| | - Gun Kim
- College of Veterinary Medicine and BK21 for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (G.K.); (H.-J.S.)
- Laboratory of Pharmacology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Hun-Ju Sim
- College of Veterinary Medicine and BK21 for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (G.K.); (H.-J.S.)
- Laboratory of Pharmacology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun-Min Ahn
- Laboratory of Poultry Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; (J.-M.P.); (J.-H.K.); (S.-M.A.)
| | - Kang-Seuk Choi
- College of Veterinary Medicine and BK21 for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (G.K.); (H.-J.S.)
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyuk-Joon Kwon
- Laboratory of Poultry Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; (J.-M.P.); (J.-H.K.); (S.-M.A.)
- College of Veterinary Medicine and BK21 for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (G.K.); (H.-J.S.)
- GeNiner Inc., Seoul 08826, Republic of Korea
| |
Collapse
|
28
|
Deshotel MB, Dave UM, Farmer B, Kemboi D, Nelson DC. Bacteriophage endolysin treatment for systemic infection of Streptococcus iniae in hybrid striped bass. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109296. [PMID: 38104698 DOI: 10.1016/j.fsi.2023.109296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Streptococcus iniae, a zoonotic Gram-positive pathogen, poses a threat to finfish aquaculture, causing streptococcosis with an annual economic impact exceeding $150 million globally. As aquaculture trends shift towards recirculating systems, the potential for horizontal transmission of S. iniae among fish intensifies. Current vaccine development provides only short-term protection, driving the widespread use of antibiotics like florfenicol. However, this practice raises environmental concerns and potentially contributes to antibiotic resistance. Thus, alternative strategies are urgently needed. Endolysin therapy, derived from bacteriophages, employs hydrolytic endolysin enzymes that target bacterial peptidoglycan cell walls. This study assesses three synthetic endolysins (PlyGBS 90-1, PlyGBS 90-8, and ClyX-2) alongside the antibiotic carbenicillin in treating S. iniae-infected hybrid striped bass (HSB). Results demonstrate that ClyX-2 exhibits remarkable bacteriolytic potency, with lytic activity detected at concentrations as low as ∼15 μg/mL, approximately 8-fold more potent than the PlyGBS derivatives. In therapeutic effectiveness assessments, both carbenicillin and ClyX-2 treatments achieved significantly higher survival rates (85 % and 95 %, respectively) compared to placebo and PlyGBS-based endolysin treatments. Importantly, no statistical differences were observed between ClyX-2 and carbenicillin treatments. This highlights ClyX-2 as a promising alternative for combating S. iniae infections in aquaculture, offering potent bacteriolytic activity and high survival rates.
Collapse
Affiliation(s)
- Michael B Deshotel
- United States Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR, 72160, USA.
| | - Urmil M Dave
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
| | - Bradley Farmer
- United States Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR, 72160, USA
| | - Daniel Kemboi
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
| | - Daniel C Nelson
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA; Department of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
29
|
Sánchez C, Garde S, Landete JM, Calzada J, Baker DJ, Evans R, Narbad A, Mayer MJ, Ávila M. Identification, activity and delivery of new LysFA67 endolysin to target cheese spoilage Clostridium tyrobutyricum. Food Microbiol 2024; 117:104401. [PMID: 37919009 DOI: 10.1016/j.fm.2023.104401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 11/04/2023]
Abstract
Bacteriophages and their endolysins are potential biocontrol agents for the anaerobic spoilage organism Clostridium tyrobutyricum, which causes cheese late blowing defect. This study sequenced and compared the genomes of eight bacteriophages from Spanish dairy farms that were active against C. tyrobutyricum, to identify novel species and phage proteins. Phages vB_CtyS-FA67 and vB_CtyS-FA70 shared >94% intergenomic similarity to each other but neither phage had significant similarity to ΦCTP1, the unique C. tyrobutyricum phage sequenced to date. Taxonomic analysis indicated that both phages belong to the class Caudoviricetes and are related to dsDNA viruses with long non-contractile tails. vB_CtyS-FA67 had no other close relatives and encoded a novel endolysin, LysFA67, predicted to belong to the glycoside hydrolase GH24 family. LysFA67 lysed 93% of C. tyrobutyricum cells after 4 min in turbidity reduction assays, retaining lytic activity at pHs 4.2-8.1 and at 30-45 °C. The endolysin remained stable after 30 d storage at 4, 12 and 25 °C, while its activity decreased at -20 °C. LysFA67 lysed several clostridia species, while common dairy bacteria were not affected. Lactococcus lactis INIA 437, used as a cheese starter, was engineered to deliver LysFA67 and red fluorescent LysFA67-mCherry to dairy products. We demonstrated that these engineered strains were able to maintain lytic activity and fluorescence without affecting their technological properties in milk.
Collapse
Affiliation(s)
- Carmen Sánchez
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña km 7, 28040, Madrid, Spain
| | - Sonia Garde
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña km 7, 28040, Madrid, Spain.
| | - José María Landete
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña km 7, 28040, Madrid, Spain
| | - Javier Calzada
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña km 7, 28040, Madrid, Spain
| | - Dave J Baker
- Science Operations, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Rhiannon Evans
- Science Operations, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Arjan Narbad
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Colney, Norwich, NR4 7UA, UK
| | - Melinda J Mayer
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Colney, Norwich, NR4 7UA, UK.
| | - Marta Ávila
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña km 7, 28040, Madrid, Spain.
| |
Collapse
|
30
|
Boroujeni MB, Mohebi S, Malekian A, Shahraeini SS, Gharagheizi Z, Shahkolahi S, Sadeghi RV, Naderifar M, Akbarizadeh MR, Soltaninejad S, Moghadam ZT, Moghadam MT, Mirzadeh F. The therapeutic effect of engineered phage, derived protein and enzymes against superbug bacteria. Biotechnol Bioeng 2024; 121:82-99. [PMID: 37881139 DOI: 10.1002/bit.28581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/18/2023] [Accepted: 10/15/2023] [Indexed: 10/27/2023]
Abstract
Defending against antibiotic-resistant infections is similar to fighting a war with limited ammunition. As the new century unfolded, antibiotic resistance became a significant concern. In spite of the fact that phage treatment has been used as an effective means of fighting infections for more than a century, researchers have had to overcome many challenges of superbug bacteria by manipulating phages and producing engineered enzymes. New enzymes and phages with enhanced properties have a significant impact on the ability to fight antibiotic-resistant infections, which is considered a window of hope for the future. This review, therefore, illustrates not only the challenges caused by antibiotic resistance and superbug bacteria but also the engineered enzymes and phages that are being developed to solve these issues. Our study found that engineered phages, phage proteins, and enzymes can be effective in treating superbug bacteria and destroying the biofilm caused by them. Combining these engineered compounds with other antimicrobial substances can increase their effectiveness against antibiotic-resistant bacteria. Therefore, engineered phages, proteins, and enzymes can be used as a substitute for antibiotics or in combination with antibiotics to treat patients with superbug infections in the future.
Collapse
Affiliation(s)
| | - Samane Mohebi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azam Malekian
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Sadegh Shahraeini
- Department of Medical Biotechnology, Drug Design and Bioinformatics Unit, Biotechnology Research Centre, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Gharagheizi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shaghayegh Shahkolahi
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Rezvaneh Vahedian Sadeghi
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahin Naderifar
- School of Nursing & Midwifery, Zabol University of Medical Sciences, Zabol, Iran
| | | | | | - Zahra Taati Moghadam
- School of Nursing and Midwifery, Guilan University of Medical Sciences, Rasht, Iran
| | | | | |
Collapse
|
31
|
Shin D, Ha E, Kong M, Ryu S. Characterization of thermostable bacteriophage CPD2 and its endolysin LysCPD2 as biocontrol agents against Clostridium perfringens. Food Sci Biotechnol 2023; 32:2069-2077. [PMID: 37860732 PMCID: PMC10581990 DOI: 10.1007/s10068-023-01314-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 10/21/2023] Open
Abstract
Clostridium perfringens is one of the major foodborne pathogens in humans and animals. With the prevalence of antibiotic-resistant C. perfringens strains, bacteriophages and their endolysins have received considerable attention as promising alternatives to antibiotics. In this study, C. perfringens phage CPD2 was isolated from retail chicken samples. CPD2 belongs to the Podoviridae family and exhibits remarkable thermostability. While CPD2 has narrow host specificity, its endolysin LysCPD2 showed a broader lytic range, killing not only C. perfringens strains but other Gram-positive bacteria, such as B. cereus and B. subtilis. In addition, due to its exceptional thermal stability, LysCPD2 showed significant antibacterial ability against germinating C. perfringens spores during the heat activation process (75 °C for 20 min). Taken together, these results indicate that both thermostable phage CPD2 and its endolysin LysCPD2 can be used as efficient antimicrobial agents to control C. perfringens during thermal processing of foods.
Collapse
Affiliation(s)
- Daeun Shin
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| | - Eunsu Ha
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| | - Minsuk Kong
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul, 01811 Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| |
Collapse
|
32
|
Gallardo-Becerra L, Cervantes-Echeverría M, Cornejo-Granados F, Vazquez-Morado LE, Ochoa-Leyva A. Perspectives in Searching Antimicrobial Peptides (AMPs) Produced by the Microbiota. MICROBIAL ECOLOGY 2023; 87:8. [PMID: 38036921 PMCID: PMC10689560 DOI: 10.1007/s00248-023-02313-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Changes in the structure and function of the microbiota are associated with various human diseases. These microbial changes can be mediated by antimicrobial peptides (AMPs), small peptides produced by the host and their microbiota, which play a crucial role in host-bacteria co-evolution. Thus, by studying AMPs produced by the microbiota (microbial AMPs), we can better understand the interactions between host and bacteria in microbiome homeostasis. Additionally, microbial AMPs are a new source of compounds against pathogenic and multi-resistant bacteria. Further, the growing accessibility to metagenomic and metatranscriptomic datasets presents an opportunity to discover new microbial AMPs. This review examines the structural properties of microbiota-derived AMPs, their molecular action mechanisms, genomic organization, and strategies for their identification in any microbiome data as well as experimental testing. Overall, we provided a comprehensive overview of this important topic from the microbial perspective.
Collapse
Affiliation(s)
- Luigui Gallardo-Becerra
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Melany Cervantes-Echeverría
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Fernanda Cornejo-Granados
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Luis E Vazquez-Morado
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Adrian Ochoa-Leyva
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
33
|
Loney RE, Delesalle VA, Chaudry BE, Czerpak M, Guffey AA, Goubet-McCall L, McCarty M, Strine MS, Tanke NT, Vill AC, Krukonis GP. A Novel Subcluster of Closely Related Bacillus Phages with Distinct Tail Fiber/Lysin Gene Combinations. Viruses 2023; 15:2267. [PMID: 38005943 PMCID: PMC10674732 DOI: 10.3390/v15112267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Bacteriophages (phages) are the most numerous entities on Earth, but we have only scratched the surface of describing phage diversity. We isolated seven Bacillus subtilis phages from desert soil in the southwest United States and then sequenced and characterized their genomes. Comparative analyses revealed high nucleotide and amino acid similarity between these seven phages, which constitute a novel subcluster. Interestingly, the tail fiber and lysin genes of these phages seem to come from different origins and carry out slightly different functions. These genes were likely acquired by this subcluster of phages via horizontal gene transfer. In conjunction with host range assays, our data suggest that these phages are adapting to hosts with different cell walls.
Collapse
Affiliation(s)
- Rachel E. Loney
- University Program in Genetics and Genomics, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Véronique A. Delesalle
- Department of Biology, Gettysburg College, 300 N Washington St., Gettysburg, PA 17325, USA; (M.C.); (M.M.)
| | | | - Megan Czerpak
- Department of Biology, Gettysburg College, 300 N Washington St., Gettysburg, PA 17325, USA; (M.C.); (M.M.)
| | - Alexandra A. Guffey
- Janssen Scientific Affairs, LLC. 200 Tournament Dr., Horsham, PA 19044, USA;
| | - Leo Goubet-McCall
- Department of Biology, The Pennsylvania State University, 201 Huck Life Sciences Building, University Park, PA 16802, USA;
| | - Michael McCarty
- Department of Biology, Gettysburg College, 300 N Washington St., Gettysburg, PA 17325, USA; (M.C.); (M.M.)
| | - Madison S. Strine
- Department of Immunobiology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA;
| | - Natalie T. Tanke
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Albert C. Vill
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA;
| | - Greg P. Krukonis
- Department of Biology, Angelo State University, Cavness Science Building 101, ASU Station #10890, San Angelo, TX 76909, USA;
| |
Collapse
|
34
|
Bartoš O, Klimešová B, Volfová K, Chmel M, Dresler J, Pajer P, Kabíčková H, Adamík P, Modrý D, Fučíková AM, Votýpka J. Two novel Bartonella (sub)species isolated from edible dormice ( Glis glis): hints of cultivation stress-induced genomic changes. Front Microbiol 2023; 14:1289671. [PMID: 38033559 PMCID: PMC10684924 DOI: 10.3389/fmicb.2023.1289671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Bartonelloses are neglected emerging infectious diseases caused by facultatively intracellular bacteria transmitted between vertebrate hosts by various arthropod vectors. The highest diversity of Bartonella species has been identified in rodents. Within this study we focused on the edible dormouse (Glis glis), a rodent with unique life-history traits that often enters households and whose possible role in the epidemiology of Bartonella infections had been previously unknown. We identified and cultivated two distinct Bartonella sub(species) significantly diverging from previously described species, which were characterized using growth characteristics, biochemical tests, and various molecular techniques including also proteomics. Two novel (sub)species were described: Bartonella grahamii subsp. shimonis subsp. nov. and Bartonella gliris sp. nov. We sequenced two individual strains per each described (sub)species. During exploratory genomic analyses comparing two genotypes ultimately belonging to the same species, both factually and most importantly even spatiotemporally, we noticed unexpectedly significant structural variation between them. We found that most of the detected structural variants could be explained either by prophage excision or integration. Based on a detailed study of one such event, we argue that prophage deletion represents the most probable explanation of the observed phenomena. Moreover, in one strain of Bartonella grahamii subsp. shimonis subsp. nov. we identified a deletion related to Bartonella Adhesin A, a major pathogenicity factor that modulates bacteria-host interactions. Altogether, our results suggest that even a limited number of passages induced sufficient selective pressure to promote significant changes at the level of the genome.
Collapse
Affiliation(s)
- Oldřich Bartoš
- Military Health Institute, Military Medical Agency, Prague, Czechia
| | - Běla Klimešová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Karolina Volfová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Martin Chmel
- Military Health Institute, Military Medical Agency, Prague, Czechia
- Department of Infectious Diseases, First Faculty of Medicine, Charles University and Military University Hospital Prague, Prague, Czechia
| | - Jiří Dresler
- Military Health Institute, Military Medical Agency, Prague, Czechia
| | - Petr Pajer
- Military Health Institute, Military Medical Agency, Prague, Czechia
| | - Hana Kabíčková
- Military Health Institute, Military Medical Agency, Prague, Czechia
| | - Peter Adamík
- Department of Zoology, Faculty of Science, Palacký University, Olomouc, Czechia
- Museum of Natural History, Olomouc, Czechia
| | - David Modrý
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
- Department of Veterinary Sciences/CINeZ, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | | | - Jan Votýpka
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| |
Collapse
|
35
|
Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:1615. [PMID: 38004480 PMCID: PMC10675245 DOI: 10.3390/ph16111615] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Antibiotics have revolutionized medicine, saving countless lives since their discovery in the early 20th century. However, the origin of antibiotics is now overshadowed by the alarming rise in antibiotic resistance. This global crisis stems from the relentless adaptability of microorganisms, driven by misuse and overuse of antibiotics. This article explores the origin of antibiotics and the subsequent emergence of antibiotic resistance. It delves into the mechanisms employed by bacteria to develop resistance, highlighting the dire consequences of drug resistance, including compromised patient care, increased mortality rates, and escalating healthcare costs. The article elucidates the latest strategies against drug-resistant microorganisms, encompassing innovative approaches such as phage therapy, CRISPR-Cas9 technology, and the exploration of natural compounds. Moreover, it examines the profound impact of antibiotic resistance on drug development, rendering the pursuit of new antibiotics economically challenging. The limitations and challenges in developing novel antibiotics are discussed, along with hurdles in the regulatory process that hinder progress in this critical field. Proposals for modifying the regulatory process to facilitate antibiotic development are presented. The withdrawal of major pharmaceutical firms from antibiotic research is examined, along with potential strategies to re-engage their interest. The article also outlines initiatives to overcome economic challenges and incentivize antibiotic development, emphasizing international collaborations and partnerships. Finally, the article sheds light on government-led initiatives against antibiotic resistance, with a specific focus on the Middle East. It discusses the proactive measures taken by governments in the region, such as Saudi Arabia and the United Arab Emirates, to combat this global threat. In the face of antibiotic resistance, a multifaceted approach is imperative. This article provides valuable insights into the complex landscape of antibiotic development, regulatory challenges, and collaborative efforts required to ensure a future where antibiotics remain effective tools in safeguarding public health.
Collapse
Affiliation(s)
- Ghazala Muteeb
- Department of Nursing, College of Applied Medical Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11437, Saudi Arabia;
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates;
| | - Moayad Shahwan
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates;
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
36
|
Wang M, Ning Y, Jiao X, Liu J, Qiao J. Bacteriophages and their derived enzymes as promising alternatives for the treatment of Acinetobacter baumannii infections. Arch Virol 2023; 168:288. [PMID: 37947926 DOI: 10.1007/s00705-023-05910-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/11/2023] [Indexed: 11/12/2023]
Abstract
Nosocomial infections with the opportunistic bacterium Acinetobacter baumannii pose a severe challenge to clinical treatment, which is aggravated by the increasing occurrence of multi-drug resistance, especially resistance to carbapenems. The use of phage therapy as an alternative and supplement to the current antibiotics has become an important research topic in the post-antibiotic era. This review summarizes in vivo and in vitro studies on phage therapy against multi-drug-resistant A. baumannii infection that have used different approaches, including treatment with a single phage, combination with other phages or non-phage agents, and administration of phage-derived enzymes. We also briefly discuss the current challenges of phage-based therapy as well as promising approaches for the treatment of A. baumannii infection in the future.
Collapse
Affiliation(s)
- Menglu Wang
- Department of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, People's Republic of China
| | - Yu Ning
- Department of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, People's Republic of China
| | - Xin Jiao
- Department of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, People's Republic of China
| | - Jiayi Liu
- Department of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, People's Republic of China
- Department of Basic Medicine, Weifang Nursing Vocational College, Weifang, 262500, Shandong, People's Republic of China
| | - Jinjuan Qiao
- Department of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, People's Republic of China.
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, 261053, Shandong, People's Republic of China.
| |
Collapse
|
37
|
Antillon SF, Bernhardt TG, Chamakura K, Young R. Physiological characterization of single gene lysis proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562596. [PMID: 37905155 PMCID: PMC10614894 DOI: 10.1101/2023.10.16.562596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Until recently only 11 distinct Sgls (single gene lysis proteins) have been experimentally identified. Of these, three have been shown to be specific inhibitors of different steps in the pathway that supplies Lipid II to the peptidoglycan (PG) biosynthesis machinery: Qβ A2 inhibits MurA, ϕX174 E inhibits MraY, and Lys from coliphage M inhibits MurJ. These Sgls have been called "protein antibiotics" because the lytic event is a septal catastrophe indistinguishable from that caused by cell wall antibiotics. Here we propose to designate these as members of type I Sgls, to distinguish them from another Sgl, the L protein of the paradigm ssRNA phage MS2. Although none of the other distinct Sgls have significant sequence similarity to L, alignments suggested the presence of four domains distinguished by hydrophobic and polar character. The simplest notion is that these other Sgls have the same autolytic mechanism and, based on this, constitute type II. Although the number of experimentally confirmed Sgls has not changed, recent environmental metagenomes and metatranscriptomes have revealed thousands of new ssRNA phage genomes, each of which presumably has at least one Sgl gene. Here we report on methods to distinguish type I and type II Sgls. Using phase-contrast microscopy, we show that both classes of Sgls cause the formation of blebs prior to lysis, but the location of the blebs differs significantly. In addition, we show that L and other type II Sgls do not inhibit net synthesis of PG, as measured by incorporation of 3[H]-diaminopimelic acid. Finally, we provide support for the unexpected finding by Adler and colleagues that the Sgl from Pseudomonas phage PP7 is a type I Sgl, as determined by the two methods. This shows that the sharing the putative 4-domain structure suggested for L is not a reliable discriminator for operational characterization of Sgls. Overall, this study establishes new ways to rapidly classify novel Sgls and thus may facilitate the identification of new cell envelope targets that will help generate new antibiotics.
Collapse
Affiliation(s)
- S Francesca Antillon
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, United States
- Center for Phage Technology, Texas A&M AgriLife Research, College Station, TX, 77843-2128, United States
| | - Thomas G Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
- HHMI, Chevy Chase, MD 20815
| | - Karthik Chamakura
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, United States
- Center for Phage Technology, Texas A&M AgriLife Research, College Station, TX, 77843-2128, United States
| | - Ry Young
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, United States
- Center for Phage Technology, Texas A&M AgriLife Research, College Station, TX, 77843-2128, United States
| |
Collapse
|
38
|
Khan FM, Chen JH, Zhang R, Liu B. A comprehensive review of the applications of bacteriophage-derived endolysins for foodborne bacterial pathogens and food safety: recent advances, challenges, and future perspective. Front Microbiol 2023; 14:1259210. [PMID: 37869651 PMCID: PMC10588457 DOI: 10.3389/fmicb.2023.1259210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Foodborne diseases are caused by food contaminated by pathogenic bacteria such as Escherichia coli, Salmonella, Staphylococcus aureus, Listeria monocytogenes, Campylobacter, and Clostridium, a critical threat to human health. As a novel antibacterial agent against foodborne pathogens, endolysins are peptidoglycan hydrolases encoded by bacteriophages that lyse bacterial cells by targeting their cell wall, notably in Gram-positive bacteria due to their naturally exposed peptidoglycan layer. These lytic enzymes have gained scientists' interest in recent years due to their selectivity, mode of action, engineering potential, and lack of resistance mechanisms. The use of endolysins for food safety has undergone significant improvements, which are summarized and discussed in this review. Endolysins can remove bacterial biofilms of foodborne pathogens and their cell wall-binding domain can be employed as a tool for quick detection of foodborne pathogens. We explained the applications of endolysin for eliminating pathogenic bacteria in livestock and various food matrices, as well as the limitations and challenges in use as a dietary supplement. We also highlight the novel techniques of the development of engineering endolysin for targeting Gram-negative bacterial pathogens. In conclusion, endolysin is safe and effective against foodborne pathogens and has no adverse effect on human cells and beneficial microbiota. As a result, endolysin could be employed as a functional bio-preservative agent to improve food stability and safety and maintain the natural taste of food quality.
Collapse
Affiliation(s)
- Fazal Mehmood Khan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Jie-Hua Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Bin Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| |
Collapse
|
39
|
Gan T, Wang D. Picobirnaviruses encode proteins that are functional bacterial lysins. Proc Natl Acad Sci U S A 2023; 120:e2309647120. [PMID: 37669381 PMCID: PMC10500164 DOI: 10.1073/pnas.2309647120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
Picobirnaviruses (PBVs) are double-stranded RNA viruses frequently detected in human and animal enteric viromes. Associations of PBVs with enteric graft-versus-host disease and type I diabetes during pregnancy have been established. Since their discovery in 1988, PBVs have been generally assumed to be animal-infecting viruses despite the lack of culture system, animal model, or detection in animal cells or tissues. Recent studies have proposed that bacteria or fungi could be the hosts of PBVs based on genomic analysis. Here, we functionally demonstrate that multiple PBVs of different genome organizations encode bacterial lysins that lyse Escherichia coli. Such genes are typically encoded only by bacteriophages supporting the model that PBVs infect bacterial hosts. Recognition of PBVs as RNA phages in the human gut would completely shift models of how PBVs could impact human health. In addition, expanding the RNA phage world beyond the two recognized clades to three clades has implications for our understanding of the evolution of RNA viruses.
Collapse
Affiliation(s)
- Tianyu Gan
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO63110
| | - David Wang
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO63110
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO63110
| |
Collapse
|
40
|
Shah S, Das R, Chavan B, Bajpai U, Hanif S, Ahmed S. Beyond antibiotics: phage-encoded lysins against Gram-negative pathogens. Front Microbiol 2023; 14:1170418. [PMID: 37789862 PMCID: PMC10542408 DOI: 10.3389/fmicb.2023.1170418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
Antibiotics remain the frontline agents for treating deadly bacterial pathogens. However, the indiscriminate use of these valuable agents has led to an alarming rise in AMR. The antibiotic pipeline is insufficient to tackle the AMR threat, especially with respect to the WHO critical category of priority Gram-negative pathogens, which have become a serious problem as nosocomial and community infections and pose a threat globally. The AMR pandemic requires solutions that provide novel antibacterial agents that are not only effective but against which bacteria are less likely to gain resistance. In this regard, natural or engineered phage-encoded lysins (enzybiotics) armed with numerous features represent an attractive alternative to the currently available antibiotics. Several lysins have exhibited promising efficacy and safety against Gram-positive pathogens, with some in late stages of clinical development and some commercially available. However, in the case of Gram-negative bacteria, the outer membrane acts as a formidable barrier; hence, lysins are often used in combination with OMPs or engineered to overcome the outer membrane barrier. In this review, we have briefly explained AMR and the initiatives taken by different organizations globally to tackle the AMR threat at different levels. We bring forth the promising potential and challenges of lysins, focusing on the WHO critical category of priority Gram-negative bacteria and lysins under investigation for these pathogens, along with the challenges associated with developing them as therapeutics within the existing regulatory framework.
Collapse
Affiliation(s)
- Sanket Shah
- Techinvention Lifecare Private Limited, Mumbai, India
| | - Ritam Das
- Techinvention Lifecare Private Limited, Mumbai, India
| | - Bhakti Chavan
- Techinvention Lifecare Private Limited, Mumbai, India
| | - Urmi Bajpai
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Sarmad Hanif
- Techinvention Lifecare Private Limited, Mumbai, India
| | - Syed Ahmed
- Techinvention Lifecare Private Limited, Mumbai, India
| |
Collapse
|
41
|
Son B, Kim Y, Yu B, Kong M. Isolation and Characterization of a Weizmannia coagulans Bacteriophage Youna2 and Its Endolysin PlyYouna2. J Microbiol Biotechnol 2023; 33:1050-1056. [PMID: 37218442 PMCID: PMC10468668 DOI: 10.4014/jmb.2303.03021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023]
Abstract
Weizmannia coagulans (formerly Bacillus coagulans) is Gram-positive, and spore-forming bacteria causing food spoilage, especially in acidic canned food products. To control W. coagulans, we isolated a bacteriophage Youna2 from a sewage sludge sample. Morphological analysis revealed that phage Youna2 belongs to the Siphoviridae family with a non-contractile and flexible tail. Youna2 has 52,903 bp double-stranded DNA containing 61 open reading frames. There are no lysogeny-related genes, suggesting that Youna2 is a virulent phage. plyYouna2, a putative endolysin gene was identified in the genome of Youna2 and predicted to be composed of a N-acetylmuramoyl-L-alanine amidase domain (PF01520) at the N-terminus and unknown function DUF5776 domain (PF19087) at the C-terminus. While phage Youna2 has a narrow host range, infecting only certain strains of W. coagulans, PlyYouna2 exhibited a broad antimicrobial spectrum beyond the Bacillus genus. Interestingly, PlyYouna2 can lyse Gram-negative bacteria such as Escherichia coli, Yersinia enterocolitica, Pseudomonas putida and Cronobacter sakazakii without other additives to destabilize bacterial outer membrane. To the best of our knowledge, Youna2 is the first W. coagulans-infecting phage and we speculate its endolysin PlyYouna2 can provide the basis for the development of a novel biocontrol agent against various foodborne pathogens.
Collapse
Affiliation(s)
- Bokyung Son
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea
| | - Youna Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Booyoung Yu
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Minsuk Kong
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
42
|
Mursalin MH, Astley R, Coburn PS, Bagaruka E, Hunt JJ, Fischetti VA, Callegan MC. Therapeutic potential of Bacillus phage lysin PlyB in ocular infections. mSphere 2023; 8:e0004423. [PMID: 37273201 PMCID: PMC10449515 DOI: 10.1128/msphere.00044-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/19/2023] [Indexed: 06/06/2023] Open
Abstract
Bacteriophage lytic enzymes (i.e., phage lysins) are a trending alternative for general antibiotics to combat growing antimicrobial resistance. Gram-positive Bacillus cereus causes one of the most severe forms of intraocular infection, often resulting in complete vision loss. It is an inherently β-lactamase-resistant organism that is highly inflammogenic in the eye, and antibiotics are not often beneficial as the sole therapeutic option for these blinding infections. The use of phage lysins as a treatment for B. cereus ocular infection has never been tested or reported. In this study, the phage lysin PlyB was tested in vitro, demonstrating rapid killing of vegetative B. cereus but not its spores. PlyB was also highly group specific and effectively killed the bacteria in various bacterial growth conditions, including ex vivo rabbit vitreous (Vit). Furthermore, PlyB demonstrated no cytotoxic or hemolytic activity toward human retinal cells or erythrocytes and did not trigger innate activation. In in vivo therapeutic experiments, PlyB was effective in killing B. cereus when administered intravitreally in an experimental endophthalmitis model and topically in an experimental keratitis model. In both models of ocular infection, the effective bactericidal property of PlyB prevented pathological damage to ocular tissues. Thus, PlyB was found to be safe and effective in killing B. cereus in the eye, greatly improving an otherwise devastating outcome. Overall, this study demonstrates that PlyB is a promising therapeutic option for B. cereus eye infections.IMPORTANCEEye infections from antibiotic-resistant Bacillus cereus are devastating and can result in blindness with few available treatment options. Bacteriophage lysins are an alternative to conventional antibiotics with the potential to control antibiotic-resistant bacteria. This study demonstrates that a lysin called PlyB can effectively kill B. cereus in two models of B. cereus eye infections, thus treating and preventing the blinding effects of these infections.
Collapse
Affiliation(s)
- Md Huzzatul Mursalin
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Roger Astley
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, USA
| | - Phillip S. Coburn
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, USA
| | - Eddy Bagaruka
- Oklahoma Christian University, Edmond, Oklahoma, USA
| | | | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
| | - Michelle C. Callegan
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
43
|
Tran NN, Morrisette T, Jorgensen SCJ, Orench-Benvenutti JM, Kebriaei R. Current therapies and challenges for the treatment of Staphylococcus aureus biofilm-related infections. Pharmacotherapy 2023; 43:816-832. [PMID: 37133439 DOI: 10.1002/phar.2806] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 05/04/2023]
Abstract
Staphylococcus aureus is a major cause of nosocomial and community-acquired infections and contributes to significant increase in morbidity and mortality especially when associated with medical devices and in biofilm form. Biofilm structure provides a pathway for the enrichment of resistant and persistent phenotypes of S. aureus leading to relapse and recurrence of infection. Minimal diffusion of antibiotics inside biofilm structure leads to heterogeneity and distinct physiological activity. Additionally, horizontal gene transfer between cells in proximity adds to the challenges associated with eradication of biofilms. This narrative review focuses on biofilm-associated infections caused by S. aureus, the impact of environmental conditions on biofilm formation, interactions inside biofilm communities, and the clinical challenges that they present. Conclusively, potential solutions, novel treatment strategies, combination therapies, and reported alternatives are discussed.
Collapse
Affiliation(s)
- Nikki N Tran
- Department of Pharmacy, The Ohio State University Wexner Medical Center - The James Cancer Hospital and Solove Research Institute, Columbus, Ohio, USA
| | - Taylor Morrisette
- Department of Clinical Pharmacy and Outcomes Sciences, Medical University of South Carolina College of Pharmacy, Charleston, South Carolina, USA
- Department of Pharmacy Services, Medical University of South Carolina Shawn Jenkins Children's Hospital, Charleston, South Carolina, USA
| | - Sarah C J Jorgensen
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - José M Orench-Benvenutti
- P3 Research Laboratory, Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Razieh Kebriaei
- P3 Research Laboratory, Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
44
|
Chen K, Guan Y, Hu R, Cui X, Liu Q. Characterization of the LysP2110-HolP2110 Lysis System in Ralstonia solanacearum Phage P2110. Int J Mol Sci 2023; 24:10375. [PMID: 37373522 DOI: 10.3390/ijms241210375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Ralstonia solanacearum, a pathogen causing widespread bacterial wilt disease in numerous crops, currently lacks an optimal control agent. Given the limitations of traditional chemical control methods, including the risk of engendering drug-resistant strains and environmental harm, there is a dire need for sustainable alternatives. One alternative is lysin proteins that selectively lyse bacteria without contributing to resistance development. This work explored the biocontrol potential of the LysP2110-HolP2110 system of Ralstonia solanacearum phage P2110. Bioinformatics analyses pinpointed this system as the primary phage-mediated host cell lysis mechanism. Our data suggest that LysP2110, a member of the Muraidase superfamily, requires HolP2110 for efficient bacterial lysis, presumably via translocation across the bacterial membrane. LysP2110 also exhibits broad-spectrum antibacterial activity in the presence of the outer membrane permeabilizer EDTA. Additionally, we identified HolP2110 as a distinct holin structure unique to the Ralstonia phages, underscoring its crucial role in controlling bacterial lysis through its effect on bacterial ATP levels. These findings provide valuable insights into the function of the LysP2110-HolP2110 lysis system and establish LysP2110 as a promising antimicrobial agent for biocontrol applications. This study underpins the potential of these findings in developing effective and environment-friendly biocontrol strategies against bacterial wilt and other crop diseases.
Collapse
Affiliation(s)
- Kaihong Chen
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yanhui Guan
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ronghua Hu
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiaodong Cui
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Qiongguang Liu
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
45
|
Kapil K, Xu S, Lee I, Murata H, Kwon SJ, Dordick JS, Matyjaszewski K. Highly Sensitive Detection of Bacteria by Binder-Coupled Multifunctional Polymeric Dyes. Polymers (Basel) 2023; 15:2723. [PMID: 37376368 DOI: 10.3390/polym15122723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Infectious diseases caused by pathogens are a health burden, but traditional pathogen identification methods are complex and time-consuming. In this work, we have developed well-defined, multifunctional copolymers with rhodamine B dye synthesized by atom transfer radical polymerization (ATRP) using fully oxygen-tolerant photoredox/copper dual catalysis. ATRP enabled the efficient synthesis of copolymers with multiple fluorescent dyes from a biotin-functionalized initiator. Biotinylated dye copolymers were conjugated to antibody (Ab) or cell-wall binding domain (CBD), resulting in a highly fluorescent polymeric dye-binder complex. We showed that the unique combination of multifunctional polymeric dyes and strain-specific Ab or CBD exhibited both enhanced fluorescence and target selectivity for bioimaging of Staphylococcus aureus by flow cytometry and confocal microscopy. The ATRP-derived polymeric dyes have the potential as biosensors for the detection of target DNA, protein, or bacteria, as well as bioimaging.
Collapse
Affiliation(s)
- Kriti Kapil
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Shirley Xu
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Inseon Lee
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Hironobu Murata
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Seok-Joon Kwon
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
46
|
Alreja AB, Linden SB, Lee HR, Chao KL, Herzberg O, Nelson DC. Understanding the Molecular Basis for Homodimer Formation of the Pneumococcal Endolysin Cpl-1. ACS Infect Dis 2023; 9:1092-1104. [PMID: 37126660 PMCID: PMC10577085 DOI: 10.1021/acsinfecdis.2c00627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The rise of multi-drug-resistant bacteria that cannot be treated with traditional antibiotics has prompted the search for alternatives to combat bacterial infections. Endolysins, which are bacteriophage-derived peptidoglycan hydrolases, are attractive tools in this fight. Several studies have already demonstrated the efficacy of endolysins in targeting bacterial infections. Endolysins encoded by bacteriophages that infect Gram-positive bacteria typically possess an N-terminal catalytic domain and a C-terminal cell-wall binding domain (CWBD). In this study, we have uncovered the molecular mechanisms that underlie formation of a homodimer of Cpl-1, an endolysin that targets Streptococcus pneumoniae. Here, we use site-directed mutagenesis, analytical size exclusion chromatography, and analytical ultracentrifugation to disprove a previous suggestion that three residues at the N-terminus of the CWBD are involved in the formation of a Cpl-1 dimer in the presence of choline in solution. We conclusively show that the C-terminal tail region of Cpl-1 is involved in formation of the dimer. Alanine scanning mutagenesis generated various tail mutant constructs that allowed identification of key residues that mediate Cpl-1 dimer formation. Finally, our results allowed identification of a consensus sequence (FxxEPDGLIT) required for choline-dependent dimer formation─a sequence that occurs frequently in pneumococcal autolysins and endolysins. These findings shed light on the mechanisms of Cpl-1 and related enzymes and can be used to inform future engineering efforts for their therapeutic development against S. pneumoniae.
Collapse
Affiliation(s)
- Adit B Alreja
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA
- Biological Sciences Graduate Program - Molecular and Cellular Biology Concentration, University of Maryland, College Park, Maryland 20742, USA
| | - Sara B Linden
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA
| | - Harrison R Lee
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA
| | - Kinlin L Chao
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA
| | - Osnat Herzberg
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA
- Department of Biochemistry and Chemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Daniel C Nelson
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
47
|
Liu H, Hu Z, Li M, Yang Y, Lu S, Rao X. Therapeutic potential of bacteriophage endolysins for infections caused by Gram-positive bacteria. J Biomed Sci 2023; 30:29. [PMID: 37101261 PMCID: PMC10131408 DOI: 10.1186/s12929-023-00919-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
Gram-positive (G+) bacterial infection is a great burden to both healthcare and community medical resources. As a result of the increasing prevalence of multidrug-resistant G+ bacteria such as methicillin-resistant Staphylococcus aureus (MRSA), novel antimicrobial agents must urgently be developed for the treatment of infections caused by G+ bacteria. Endolysins are bacteriophage (phage)-encoded enzymes that can specifically hydrolyze the bacterial cell wall and quickly kill bacteria. Bacterial resistance to endolysins is low. Therefore, endolysins are considered promising alternatives for solving the mounting resistance problem. In this review, endolysins derived from phages targeting G+ bacteria were classified based on their structural characteristics. The active mechanisms, efficacy, and advantages of endolysins as antibacterial drug candidates were summarized. Moreover, the remarkable potential of phage endolysins in the treatment of G+ bacterial infections was described. In addition, the safety of endolysins, challenges, and possible solutions were addressed. Notwithstanding the limitations of endolysins, the trends in development indicate that endolysin-based drugs will be approved in the near future. Overall, this review presents crucial information of the current progress involving endolysins as potential therapeutic agents, and it provides a guideline for biomaterial researchers who are devoting themselves to fighting against bacterial infections.
Collapse
Affiliation(s)
- He Liu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Mengyang Li
- Department of Microbiology, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Yi Yang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Shuguang Lu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China.
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
48
|
Lu SY, Liu S, Patel MH, Glenzinski KM, Skory CD. Saccharomyces cerevisiae surface display of endolysin LysKB317 for control of bacterial contamination in corn ethanol fermentations. Front Bioeng Biotechnol 2023; 11:1162720. [PMID: 37091344 PMCID: PMC10117863 DOI: 10.3389/fbioe.2023.1162720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/20/2023] [Indexed: 04/09/2023] Open
Abstract
Control of bacterial contamination in bioethanol fermentation facilities has traditionally relied on chemical-based products such as hop acids and use of antibiotics. Recent emphasis on antibiotic stewardship has prompted new research into the development of alternative approaches to microbial remediation strategies. We recently described a recombinant peptidoglycan hydrolase, endolysin LysKB317, which inhibited Limosilactobacillus fermentum strains in corn mash fermentation. Here, Saccharomyces cerevisiae EBY100 was used to anchor recombinant LysKB317 using cell surface display with the a-agglutinin proteins Aga1p–Aga2p. Immunostaining and confocal fluorescence were used for localization of the extracellular interface of the cells. Yeast surface-expressed endolysin demonstrated an 83.8% decrease in bacterial cell counts compared to a 9.5% decrease in control yeast. Recombinant S. cerevisiae expressing LysKB317 used for small-scale corn mash fermentation, when infected with L. fermentum, could proactively control bacterial infection for 72 h with at least 1-log fold reduction. Analysis of fermentation products showed improved ethanol concentrations from 3.4% to at least 5.9% compared to the infection-only control and reduced levels of lactic and acetic acid from 34.7 mM to 13.8 mM and 25.5 mM to 18.1 mM, respectively. In an optimized yeast surface display system, proactive treatment of bacterial contaminants by endolysin LysKB317 can improve fermentation efficiency in the presence of L. fermentum contamination.
Collapse
Affiliation(s)
- Shao-Yeh Lu
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, USDA, Agricultural Research Service, Peoria, IL, United States
- *Correspondence: Shao-Yeh Lu,
| | - Siqing Liu
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, USDA, Agricultural Research Service, Peoria, IL, United States
| | - Maulik H. Patel
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, United States
| | - Kristina M. Glenzinski
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, USDA, Agricultural Research Service, Peoria, IL, United States
| | - Christopher D. Skory
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, USDA, Agricultural Research Service, Peoria, IL, United States
| |
Collapse
|
49
|
Kim H, Seo J. A Novel Strategy to Identify Endolysins with Lytic Activity against Methicillin-Resistant Staphylococcus aureus. Int J Mol Sci 2023; 24:ijms24065772. [PMID: 36982851 PMCID: PMC10059956 DOI: 10.3390/ijms24065772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
The increasing prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in the dairy industry has become a fundamental concern. Endolysins are bacteriophage-derived peptidoglycan hydrolases that induce the rapid lysis of host bacteria. Herein, we evaluated the lytic activity of endolysin candidates against S. aureus and MRSA. To identify endolysins, we used a bioinformatical strategy with the following steps: (1) retrieval of genetic information, (2) annotation, (3) selection of MRSA, (4) selection of endolysin candidates, and (5) evaluation of protein solubility. We then characterized the endolysin candidates under various conditions. Approximately 67% of S. aureus was detected as MRSA, and 114 putative endolysins were found. These 114 putative endolysins were divided into three groups based on their combinations of conserved domains. Considering protein solubility, we selected putative endolysins 117 and 177. Putative endolysin 117 was the only successfully overexpressed endolysin, and it was renamed LyJH1892. LyJH1892 showed potent lytic activity against both methicillin-susceptible S. aureus and MRSA and showed broad lytic activity against coagulase-negative staphylococci. In conclusion, this study demonstrates a rapid strategy for the development of endolysin against MRSA. This strategy could also be used to combat other antibiotic-resistant bacteria.
Collapse
|
50
|
Chang Y, Li Q, Zhang S, Zhang Q, Liu Y, Qi Q, Lu X. Identification and Molecular Modification of Staphylococcus aureus Bacteriophage Lysin LysDZ25. ACS Infect Dis 2023; 9:497-506. [PMID: 36787534 DOI: 10.1021/acsinfecdis.2c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
With the continuous emergence and spread of drug-resistant and multi-drug-resistant Staphylococcus aureus, traditional antibiotic treatment has gradually lost its effect. There is an urgent need to develop and study new and effective bio-green inhibitors to control S. aureus. In this study, the S. aureus phage DZ25 was isolated from milk and the lysin LysDZ25 with excellent tolerance to serum and NaCl solution was identified. Subsequently, to improve the lytic activity and thermal stability of LysDZ25, RoseTTAFold was used to construct three-dimensional (3D) structures, molecular dynamics (MD) simulation was used for conformational acquisition, and the MDL strategy previously developed in our lab was used to rationally design variants. After two rounds of rational design, the optimal variant with improved thermal stability, S333V/N245R/D299L, was obtained, and its half-life time was 4.0-fold that of wild-type LysDZ25. At 37, 40, 45, and 50 °C, the lytic activity of the optimal triple-point variant S333V/N245R/D299L was increased by 17.3-, 26.7-, 20.2-, and 50.1-fold compared with that of the wild-type LysDZ25, respectively. Finally, cell count was used to evaluate the lytic activity, and the results showed that the optimal variant S333V/N245R/D299L could drop about 3.5 log 10 values compared with the control and about 2.6 log 10 values compared with the wild-type LysDZ25.
Collapse
Affiliation(s)
- Yan Chang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Qingbin Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Shuhang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Qing Zhang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yuqing Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|