1
|
Korpak K, Rossi M, Van Meerhaeghe A, Boudjeltia KZ, Compagnie M. Omega-3 long-chain polyunsaturated fatty acids and their bioactive lipids: A strategy to improve resistance to respiratory tract infectious diseases in the elderly? NUTRITION AND HEALTHY AGING 2024; 9:55-76. [DOI: 10.3233/nha-220184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Age-related changes in organ function, immune dysregulation, and the effects of senescence explain in large part the high prevalence of infections, including respiratory tract infections in older persons. Poor nutritional status in many older persons increases susceptibility to infection and worsens prognosis. Interestingly, there is an association between the amount of saturated fats in the diet and the rate of community-acquired pneumonia. Polyunsaturated fatty acids, particularly omega-3 long chain polyunsaturated fatty acids (ω-3 LC-PUFAs) including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have well-known anti-inflammatory, immunomodulatory, and antimicrobial effects, which may, in theory, be largely induced by PUFAs-derived lipids such as specialized pro-resolving mediators (SPMs). In adults, preliminary results of studies show that ω-3 LC-PUFAs supplementation can lead to SPM generation. SPMs have a crucial role in the resolution of inflammation, a factor relevant to survival from infection independent of the pathogen’s virulence. Moreover, the immune system of older adults appears to be more sensitive to ω-3 PUFAs. This review explores the effects of ω-3 LC-PUFAs, and PUFA bioactive lipid-derived SPMs in respiratory tract infections and the possible relevance of these data to infectious disease outcomes in the older population. The hypothesis that PUFAs have beneficial effects via SPM generation will need to be confirmed by animal experiments and patient-derived data.
Collapse
Affiliation(s)
- Kéziah Korpak
- Department of Geriatric Medicine, CHU de Charleroi, Université libre de Bruxelles (ULB), Charleroi, Belgium
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université libre de Bruxelles (ULB), Montigny-le-Tilleul, Belgium
| | - M. Rossi
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université libre de Bruxelles (ULB), Montigny-le-Tilleul, Belgium
- Department of Urology, CHU de Charleroi, A. Vésale Hospital, Université libre de Bruxelles (ULB), Montigny-le-Tilleul, Belgium
| | - A. Van Meerhaeghe
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université libre de Bruxelles (ULB), Montigny-le-Tilleul, Belgium
| | - K. Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université libre de Bruxelles (ULB), Montigny-le-Tilleul, Belgium
| | - M. Compagnie
- Department of Geriatric Medicine, CHU de Charleroi, Université libre de Bruxelles (ULB), Charleroi, Belgium
| |
Collapse
|
2
|
Melkam A, Sionov RV, Shalish M, Steinberg D. Enhanced Anti-Bacterial Activity of Arachidonic Acid against the Cariogenic Bacterium Streptococcus mutans in Combination with Triclosan and Fluoride. Antibiotics (Basel) 2024; 13:540. [PMID: 38927206 PMCID: PMC11200779 DOI: 10.3390/antibiotics13060540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Dental caries is a global health problem that requires better prevention measures. One of the goals is to reduce the prevalence of the cariogenic Gram-positive bacterium Streptococcus mutans. We have recently shown that naturally occurring arachidonic acid (AA) has both anti-bacterial and anti-biofilm activities against this bacterium. An important question is how these activities are affected by other anti-bacterial compounds commonly used in mouthwashes. Here, we studied the combined treatment of AA with chlorhexidine (CHX), cetylpyridinium chloride (CPC), triclosan, and fluoride. Checkerboard microtiter assays were performed to determine the effects on bacterial growth and viability. Biofilms were quantified using the MTT metabolic assay, crystal violet (CV) staining, and live/dead staining with SYTO 9/propidium iodide (PI) visualized by spinning disk confocal microscopy (SDCM). The bacterial morphology and the topography of the biofilms were visualized by high-resolution scanning electron microscopy (HR-SEM). The effect of selected drug combinations on cell viability and membrane potential was investigated by flow cytometry using SYTO 9/PI staining and the potentiometric dye DiOC2(3), respectively. We found that CHX and CPC had an antagonistic effect on AA at certain concentrations, while an additive effect was observed with triclosan and fluoride. This prompted us to investigate the triple treatment of AA, triclosan, and fluoride, which was more effective than either compound alone or the double treatment. We observed an increase in the percentage of PI-positive bacteria, indicating increased bacterial cell death. Only AA caused significant membrane hyperpolarization, which was not significantly enhanced by either triclosan or fluoride. In conclusion, our data suggest that AA can be used together with triclosan and fluoride to improve the efficacy of oral health care.
Collapse
Affiliation(s)
- Avraham Melkam
- Faculty of Dental Medicine, Ein Kerem Campus, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (A.M.); (R.V.S.)
- Hadassah Medical Center, Department of Orthodontics, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
| | - Ronit Vogt Sionov
- Faculty of Dental Medicine, Ein Kerem Campus, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (A.M.); (R.V.S.)
| | - Miriam Shalish
- Hadassah Medical Center, Department of Orthodontics, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
| | - Doron Steinberg
- Faculty of Dental Medicine, Ein Kerem Campus, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (A.M.); (R.V.S.)
| |
Collapse
|
3
|
Saleem S. Targeting MAPK signaling: A promising approach for treating inflammatory lung disease. Pathol Res Pract 2024; 254:155122. [PMID: 38246034 DOI: 10.1016/j.prp.2024.155122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
The extracellular signals that initiate intracellular reactions are dispatched by the mitogen-activated protein kinases (MAPKs), which oversee a multitude of cellular activities. p38, Extracellular signal-regulated kinase (ERK), and c-Jun NH2-terminal kinase (JNK) are members of the vertebrate family of MAPKs, and each MAPK signaling pathway consists of a MAPK kinase (MAP3K), a MAPK kinase (MAP2K), and a MAPK. These signaling pathways orchestrate numerous cellular processes, including cell growth, survival, differentiation, and apoptosis. The emergence of various inflammatory respiratory diseases in humans has been linked to the dysregulation of MAPK signaling pathways. Conditions such as asthma, lung cancer, pulmonary fibrosis, and COPD are among the prevalent respiratory ailments where MAPK plays a pivotal role. Additionally, MAPK is implicated in infectious diseases, including COVID-19, pneumonia, and tuberculosis. COPD, asthma, emphysema, chronic bronchitis, and other inflammatory lung disorders highlight the significance of MAPK as a potential target for therapeutic development. Further studies are needed to delve into the molecular mechanisms by which the MAPK signaling pathway contributes to inflammatory lung disorders, representing an area that demands continued research.
Collapse
Affiliation(s)
- Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, P.O. Box 93499, Riyadh 11673, Saudi Arabia.
| |
Collapse
|
4
|
Ueland T, Waagsbø B, Berge RK, Trøseid M, Aukrust P, Damås JK. Fatty Acids Composition and HIV Infection: Altered Levels of n-6 Polyunsaturated Fatty Acids Are Associated with Disease Progression. Viruses 2023; 15:1613. [PMID: 37515299 PMCID: PMC10385810 DOI: 10.3390/v15071613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Fatty acids (FAs) are important regulators of immune responses and innate defense mechanisms. We hypothesized that disturbed FA metabolism could contribute to the progression of HIV infection. Plasma levels of 45 FAs were analyzed with gas chromatography in healthy controls and HIV-infected patients with regard to Mycobacterium avium complex (MAC) infection. In vitro, we assessed MAC-PPD-induced release of inflammatory cytokines in peripheral and bone marrow mononuclear cells (PBMC and BMMC) according to levels of n-6 polyunsaturated fatty acids (PUFAs). While plasma saturated FAs were higher in HIV infection, PUFAs, and in particular the n-6 PUFA arachidonic acid (AA), were lower in patients with advanced disease. The ratio between AA and precursor dihomo-γ-linolenic acid, reflecting Δ5-desaturase activity, was markedly lower and inversely correlated with plasma HIV RNA levels in these patients. Depletion of AA was observed prior to MAC infection, and MAC-PPD-induced release of TNF and IL-6 in PBMC and BMMC was lower in patients with low plasma AA. Our findings suggest that dysregulated metabolism of n-6 PUFAs may play a role in the progression of HIV infection. While high AA may contribute to chronic inflammation in asymptomatic HIV-infected patients, low AA seems to increase the susceptibility to MAC infection in patients with advanced disease.
Collapse
Affiliation(s)
- Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, NO-0420 Oslo, Norway
- Faculty of Medicine, University of Oslo, NO-0318 Oslo, Norway
- Thrombosis Research Center (TREC), Division of Internal Medicine, University Hospital of North Norway, NO-9038 Tromsø, Norway
| | - Bjørn Waagsbø
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- Department of Infectious Diseases, St Olav's Hospital, NO-7006 Trondheim, Norway
| | - Rolf K Berge
- Department of Clinical Science, University of Bergen, NO-5021 Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, NO-5021 Bergen, Norway
| | - Marius Trøseid
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, NO-0420 Oslo, Norway
- Faculty of Medicine, University of Oslo, NO-0318 Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, NO-0424 Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, NO-0420 Oslo, Norway
- Faculty of Medicine, University of Oslo, NO-0318 Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, NO-0424 Oslo, Norway
| | - Jan K Damås
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- Department of Infectious Diseases, St Olav's Hospital, NO-7006 Trondheim, Norway
| |
Collapse
|
5
|
Sharma N, Upadhyay D, Gautam H, Sharma U, Lodha R, Kabra SK, Das BK, Kapil A, Mohan A, Jagannathan NR, Guleria R, Singh UB. Small molecule bio-signature in childhood intra-thoracic tuberculosis identified by metabolomics. NMR IN BIOMEDICINE 2023:e4941. [PMID: 36999218 DOI: 10.1002/nbm.4941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
The diagnosis of pediatric tuberculosis (TB) remains a major challenge, hence the evaluation of new tools for improved diagnostics is urgently required. We investigated the serum metabolic profile of children with culture-confirmed intra-thoracic TB (ITTB) (n = 23) and compared it with those of non-TB controls (NTCs) (n = 13) using proton NMR spectroscopy-based targeted and untargeted metabolomics approaches. In targeted metabolic profiling, five metabolites (histidine, glycerophosphocholine, creatine/phosphocreatine, acetate, and choline) differentiated TB children from NTCs. Additionally, seven discriminatory metabolites (N-α-acetyl-lysine, polyunsaturated fatty acids, phenylalanine, lysine, lipids, glutamate + glutamine, and dimethylglycine) were identified in untargeted metabolic profiling. The pathway analysis revealed alterations in six metabolic pathways. The altered metabolites were associated with impaired protein synthesis, hindered anti-inflammatory and cytoprotective mechanisms, abnormalities in energy generation processes and membrane metabolism, and deregulated fatty acid and lipid metabolisms in children with ITTB. The diagnostic significance of the classification models obtained from significantly distinguishing metabolites showed sensitivity, specificity, and area under the curve of 78.2%, 84.6%, and 0.86, respectively, in the targeted profiling and 92.3%, 100%, and 0.99, respectively, in the untargeted profiling. Our findings highlight detectable metabolic changes in childhood ITTB; however, further validation is warranted in a large cohort of the pediatric population.
Collapse
Affiliation(s)
- Nupur Sharma
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Deepti Upadhyay
- Department of Nuclear Magnetic Resonance, All India Institute of Medical Sciences, New Delhi, India
| | - Hitender Gautam
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Uma Sharma
- Department of Nuclear Magnetic Resonance, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sushil Kumar Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Bimal Kumar Das
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Arti Kapil
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Anant Mohan
- Department of Pulmonary Medicine & Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Naranamangalam Raghunathan Jagannathan
- Department of Nuclear Magnetic Resonance, All India Institute of Medical Sciences, New Delhi, India
- Department of Radiology, Chettinad Academy of Research & Education, Kelambakkam, Tamil Nadu, India
| | - Randeep Guleria
- Department of Pulmonary Medicine & Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
- Department of Pulmonary Medicine, Medanta, Gurgaon, Haryana, India
| | - Urvashi Balbir Singh
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
6
|
Campbell JR, Chan ED, Falzon D, Trajman A, Keshavjee S, Leung CC, Miller AC, Monedero-Recuero I, Rodrigues DS, Seo H, Baghaei P, Udwadia Z, Viiklepp P, Bastos M, Menzies D. Low Body Mass Index at Treatment Initiation and Rifampicin-Resistant Tuberculosis Treatment Outcomes: An Individual Participant Data Meta-Analysis. Clin Infect Dis 2022; 75:2201-2210. [PMID: 35476134 DOI: 10.1093/cid/ciac322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The impact of low body mass index (BMI) at initiation of rifampicin-resistant tuberculosis (RR-TB) treatment on outcomes is uncertain. We evaluated the association between BMI at RR-TB treatment initiation and end-of-treatment outcomes. METHODS We performed an individual participant data meta-analysis of adults aged ≥18 years with RR-TB whose BMI was documented at treatment initiation. We compared odds of any unfavorable treatment outcome, mortality, or failure/recurrence between patients who were underweight (BMI <18.5 kg/m2) and not underweight. Adjusted odds ratios (aORs) and 95% confidence intervals (CIs) were estimated using logistic regression, with matching on demographic, clinical, and treatment-related factors. We evaluated effect modification by human immunodeficiency virus (HIV) status and other variables using likelihood ratio tests. We also estimated cumulative incidence of mortality during treatment stratified by HIV. RESULTS Overall, 5148 patients were included; 1702 (33%) were underweight at treatment initiation. The median (interquartile range) age was 37 years (29 to 47), and 455 (9%) had HIV. Compared with nonunderweight patients, the aOR among underweight patients was 1.7 (95% CI, 1.4-1.9) for any unfavorable outcome, 3.1 (2.4-3.9) for death, and 1.6 (1.2-2.0) for failure/recurrence. Significant effect modification was found for World Health Organization region of treatment. Among HIV-negative patients, 24-month mortality was 14.8% (95% CI, 12.7%-17.3%) for underweight and 5.6% (4.5%-7.0%) for not underweight patients. Among patients with HIV, corresponding values were 33.0% (25.6%-42.6%) and 20.9% (14.1%-27.6%). CONCLUSIONS Low BMI at treatment initiation for RR-TB is associated with increased odds of unfavorable treatment outcome, particularly mortality.
Collapse
Affiliation(s)
- Jonathon R Campbell
- Department of Epidemiology, Biostatistics, and Occupational Health, Faculty of Medicine, McGill University, Montreal, Canada
| | - Edward D Chan
- Department of Academic Affairs and Medicine, National Jewish Health, Denver, Colorado, USA.,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA.,Pulmonary Section, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, USA
| | - Dennis Falzon
- Global TB Programme, World Health Organization, Geneva, Switzerland
| | - Anete Trajman
- Departamento de Clínica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Medicine, Division of Respiratory Diseases, McGill University, Montreal, Canada
| | - Salmaan Keshavjee
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Chi C Leung
- Hong Kong Tuberculosis, Chest, and Heart Diseases Association, Hong Kong
| | - Ann C Miller
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Ignacio Monedero-Recuero
- TB-HIV Department, International Union against Tuberculosis and Lung Disease (The Union), Paris, France
| | - Denise S Rodrigues
- The Secretary of Health of The State of Sao Paulo, Instituto Clemente Ferreira, São Paulo, Brazil
| | - Haesook Seo
- Department of Tuberculosis, Seoul Metropolitan Government Seobuk Hospital, Seoul, South Korea
| | - Parvaneh Baghaei
- Clinical Tuberculosis and Epidemiology Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zarir Udwadia
- Pulmonary Department, Hinduja Hospital & Research Center, Mumbai, India
| | - Piret Viiklepp
- Department of Registries, National Institute for Health Development, Tallinn, Estonia
| | - Mayara Bastos
- Department of Epidemiology, Biostatistics, and Occupational Health, Faculty of Medicine, McGill University, Montreal, Canada
| | - Dick Menzies
- Department of Epidemiology, Biostatistics, and Occupational Health, Faculty of Medicine, McGill University, Montreal, Canada
| |
Collapse
|
7
|
Yan B, Fung K, Ye S, Lai PM, Wei YX, Sze KH, Yang D, Gao P, Kao RYT. Linoleic acid metabolism activation in macrophages promotes the clearing of intracellular Staphylococcus aureus. Chem Sci 2022; 13:12445-12460. [PMID: 36382278 PMCID: PMC9629105 DOI: 10.1039/d2sc04307f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/05/2022] [Indexed: 09/02/2023] Open
Abstract
Multidrug-resistant bacterial pathogens pose an increasing threat to human health. Certain bacteria, such as Staphylococcus aureus, are able to survive within professional phagocytes to escape the bactericidal effects of antibiotics and evade killing by immune cells, potentially leading to chronic or persistent infections. By investigating the macrophage response to S. aureus infection, we may devise a strategy to prime the innate immune system to eliminate the infected bacteria. Here we applied untargeted tandem mass spectrometry to characterize the lipidome alteration in S. aureus infected J774A.1 macrophage cells at multiple time points. Linoleic acid (LA) metabolism and sphingolipid metabolism pathways were found to be two major perturbed pathways upon S. aureus infection. The subsequent validation has shown that sphingolipid metabolism suppression impaired macrophage phagocytosis and enhanced intracellular bacteria survival. Meanwhile LA metabolism activation significantly reduced intracellular S. aureus survival without affecting the phagocytic capacity of the macrophage. Furthermore, exogenous LA treatment also exhibited significant bacterial load reduction in multiple organs in a mouse bacteremia model. Two mechanisms are proposed to be involved in this progress: exogenous LA supplement increases downstream metabolites that partially contribute to LA's capacity of intracellular bacteria-killing and LA induces intracellular reactive oxygen species (ROS) generation through an electron transport chain pathway in multiple immune cell lines, which further increases the capacity of killing intracellular bacteria. Collectively, our findings not only have characterized specific lipid pathways associated with the function of macrophages but also demonstrated that exogenous LA addition may activate lipid modulator-mediated innate immunity as a potential therapy for bacterial infections.
Collapse
Affiliation(s)
- Bingpeng Yan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong 21 Sassoon Road Pokfulam Hong Kong China
| | - Kingchun Fung
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong 21 Sassoon Road Pokfulam Hong Kong China
| | - Sen Ye
- Morningside Laboratory for Chemical Biology and Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Pok-Man Lai
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong 21 Sassoon Road Pokfulam Hong Kong China
| | - Yuan Xin Wei
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong 21 Sassoon Road Pokfulam Hong Kong China
| | - Kong-Hung Sze
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong 21 Sassoon Road Pokfulam Hong Kong China
| | - Dan Yang
- Morningside Laboratory for Chemical Biology and Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
- Laboratory of Chemical Biology and Molecular Medicine, School of Life Sciences, Westlake University Hangzhou Zhejiang P. R. China
| | - Peng Gao
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong 21 Sassoon Road Pokfulam Hong Kong China
| | - Richard Yi-Tsun Kao
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong 21 Sassoon Road Pokfulam Hong Kong China
| |
Collapse
|
8
|
Taylor EN, Beckmann M, Hewinson G, Rooke D, Mur LAJ, Koets AP. Metabolomic changes in polyunsaturated fatty acids and eicosanoids as diagnostic biomarkers in Mycobacterium avium ssp. paratuberculosis (MAP)-inoculated Holstein-Friesian heifers. Vet Res 2022; 53:68. [PMID: 36056402 PMCID: PMC9440510 DOI: 10.1186/s13567-022-01087-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/03/2022] [Indexed: 11/10/2022] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is the causative organism of Johne's disease, a chronic granulomatous enteritis of ruminants. We have previously used naturally MAP-infected heifer calves to document metabolomic changes occurring in MAP infections. Herein, we used experimentally MAP-inoculated heifer calves to identify biomarkers for MAP infections. At 2-weeks of age, 20 Holstein-Friesian (HF) calves were experimentally inoculated with MAP. These calves, along with 20 control calves, were sampled biweekly up to 13-months of age and then monthly up to 19-months of age. Sera were assessed using flow infusion electrospray high-resolution mass spectrometry (FIE-HRMS) on a Q Exactive hybrid quadrupole-Orbitrap mass spectrometer for high throughput, sensitive, non-targeted metabolite fingerprinting. Partial least squares-discriminate analysis (PLS-DA) and hierarchical cluster analysis (HCA) discriminated between MAP-inoculated and control heifer calves. Out of 34 identified metabolites, six fatty acyls were able to differentiate between experimental groups throughout the study, including 8, 11, 14-eicosatrienoic acid and cis-8, 11, 14, 17-eicosatetraenoic acid which were also detected in our previous study and so further suggested their value as biomarkers for MAP infection. Pathway analysis highlighted the role of the alpha-linoleic acid and linoleic acid metabolism. Within these pathways, two broad types of response, with a rapid increase in some saturated fatty acids and some n-3 polyunsaturated fatty acids (PUFAs) and later n-6 PUFAs, became predominant. This could indicate an initial anti-inflammatory colonisation phase, followed by an inflammatory phase. This study demonstrates the validity of the metabolomic approach in studying MAP infections. Nevertheless, further work is required to define further key events, particularly at a cell-specific level.
Collapse
Affiliation(s)
- Emma N Taylor
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Ceredigion, SY23 3DA, UK
| | - Manfred Beckmann
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Ceredigion, SY23 3DA, UK
| | - Glyn Hewinson
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Ceredigion, SY23 3DA, UK.,Centre of Excellence for Bovine Tuberculosis, Aberystwyth University, Ceredigion, SY23 3DA, UK
| | - David Rooke
- ProTEM Services Ltd, Horsham, RH12 4BD, West Sussex, UK
| | - Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Ceredigion, SY23 3DA, UK.
| | - Ad P Koets
- Wageningen Bioveterinary Research, 8221 RA, Lelystad, The Netherlands. .,Faculty of Veterinary Medicine, Population Health Systems, Utrecht University, 3584 CS, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Wu S, Wang S, Wang L, Peng H, Zhang S, Yang Q, Huang M, Li Y, Guan S, Jiang W, Zhang Z, Bi Q, Li L, Gao Y, Xiong P, Zhong Z, Xu B, Deng Y, Deng Y. Docosahexaenoic acid supplementation represses the early immune response against murine cytomegalovirus but enhances NK cell effector function. BMC Immunol 2022; 23:17. [PMID: 35439922 PMCID: PMC9017742 DOI: 10.1186/s12865-022-00492-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 04/12/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Docosahexaenoic acid (DHA) supplementation is beneficial for several chronic diseases; however, its effect on immune regulation is still debated. Given the prevalence of cytomegalovirus (CMV) infection and because natural killer (NK) cells are a component of innate immunity critical for controlling CMV infection, the current study explored the effect of a DHA-enriched diet on susceptibility to murine (M) CMV infection and the NK cell effector response to MCMV infection. RESULTS Male C57BL/6 mice fed a control or DHA-enriched diet for 3 weeks were infected with MCMV and sacrificed at the indicated time points postinfection. Compared with control mice, DHA-fed mice had higher liver and spleen viral loads at day 7 postinfection, but final MCMV clearance was not affected. The total numbers of NK cells and their terminal mature cell subset (KLRG1+ and Ly49H+ NK cells) were reduced compared with those in control mice at day 7 postinfection but not day 21. DHA feeding resulted in higher IFN-γ and granzyme B expression in splenic NK cells at day 7 postinfection. A mechanistic analysis showed that the splenic NK cells of DHA-fed mice had enhanced glucose uptake, increased CD71 and CD98 expression, and higher mitochondrial mass than control mice. In addition, DHA-fed mice showed reductions in the total numbers and activation levels of CD4+ and CD8+ T cells. CONCLUSIONS These results suggest that DHA supplementation represses the early response to CMV infection but preserves NK cell effector functions by improving mitochondrial activity, which may play critical roles in subsequent MCMV clearance.
Collapse
Affiliation(s)
- Shuting Wu
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Shanshan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, People's Republic of China
| | - Lili Wang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Hongyan Peng
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Shuju Zhang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Qinglan Yang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Minghui Huang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Yana Li
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Shuzhen Guan
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Wenjuan Jiang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Zhaohui Zhang
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Qinghua Bi
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Liping Li
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Yuan Gao
- Southwest Hospital/Southwest Eye Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Peiwen Xiong
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Zhaoyang Zhong
- Cancer Center, Daping Hospital and Research Institute of Surgery, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Bo Xu
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, People's Republic of China.
| | - Yafei Deng
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China.
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China.
| | - Youcai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China.
| |
Collapse
|
10
|
Nienaber A, Ozturk M, Dolman R, Blaauw R, Zandberg LL, van Rensburg S, Britz M, Hayford FEA, Brombacher F, Loots DT, Smuts CM, Parihar SP, Malan L. n-3 long-chain PUFA promote antibacterial and inflammation-resolving effects in Mycobacterium tuberculosis-infected C3HeB/FeJ mice, dependent on fatty acid status. Br J Nutr 2022; 127:384-397. [PMID: 33814018 DOI: 10.1017/s0007114521001124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Non-resolving inflammation is characteristic of tuberculosis (TB). Given their inflammation-resolving properties, n-3 long-chain PUFA (n-3 LCPUFA) may support TB treatment. This research aimed to investigate the effects of n-3 LCPUFA on clinical and inflammatory outcomes of Mycobacterium tuberculosis-infected C3HeB/FeJ mice with either normal or low n-3 PUFA status before infection. Using a two-by-two design, uninfected mice were conditioned on either an n-3 PUFA-sufficient (n-3FAS) or -deficient (n-3FAD) diet for 6 weeks. One week post-infection, mice were randomised to either n-3 LCPUFA supplemented (n-3FAS/n-3+ and n-3FAD/n-3+) or continued on n-3FAS or n-3FAD diets for 3 weeks. Mice were euthanised and fatty acid status, lung bacterial load and pathology, cytokine, lipid mediator and immune cell phenotype analysed. n-3 LCPUFA supplementation in n-3FAS mice lowered lung bacterial loads (P = 0·003), T cells (P = 0·019), CD4+ T cells (P = 0·014) and interferon (IFN)-γ (P < 0·001) and promoted a pro-resolving lung lipid mediator profile. Compared with n-3FAS mice, the n-3FAD group had lower bacterial loads (P = 0·037), significantly higher immune cell recruitment and a more pro-inflammatory lipid mediator profile, however, significantly lower lung IFN-γ, IL-1α, IL-1β and IL-17, and supplementation in the n-3FAD group provided no beneficial effect on lung bacterial load or inflammation. Our study provides the first evidence that n-3 LCPUFA supplementation has antibacterial and inflammation-resolving benefits in TB when provided 1 week after infection in the context of a sufficient n-3 PUFA status, whilst a low n-3 PUFA status may promote better bacterial control and lower lung inflammation not benefiting from n-3 LCPUFA supplementation.
Collapse
Affiliation(s)
- Arista Nienaber
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, Western Cape, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Robin Dolman
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Renee Blaauw
- Division of Human Nutrition, Stellenbosch University, Tygerberg, Cape Town, Western Cape, South Africa
| | - Lizelle L Zandberg
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Simone van Rensburg
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Melinda Britz
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Frank E A Hayford
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
- Department of Nutrition and Dietetics, University of Ghana, Accra, Ghana
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, Western Cape, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, Western Cape, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, Western Cape, South Africa
| | - Du Toit Loots
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Cornelius M Smuts
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Suraj P Parihar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, Western Cape, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, Western Cape, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, Western Cape, South Africa
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Linda Malan
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| |
Collapse
|
11
|
Taylor EN, Beckmann M, Villarreal-Ramos B, Vordermeier HM, Hewinson G, Rooke D, Mur LAJ, Koets AP. Metabolomic Changes in Naturally MAP-Infected Holstein-Friesian Heifers Indicate Immunologically Related Biochemical Reprogramming. Metabolites 2021; 11:metabo11110727. [PMID: 34822384 PMCID: PMC8625860 DOI: 10.3390/metabo11110727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/04/2021] [Accepted: 10/21/2021] [Indexed: 11/28/2022] Open
Abstract
Johne’s disease, caused by Mycobacterium avium subsp. paratuberculosis (MAP), causes weight loss, diarrhoea, and reduced milk yields in clinically infected cattle. Asymptomatic, subclinically infected cattle shed MAP bacteria but are frequently not detected by diagnostic tests. Herein, we compare the metabolite profiles of sera from subclinically infected Holstein–Friesian heifers and antibody binding to selected MAP antigens. The study used biobanked serum samples from 10 naturally MAP-infected and 10 control heifers, sampled monthly from ~1 to 19 months of age. Sera were assessed using flow infusion electrospray–high-resolution mass spectrometry (FIE–HRMS) on a Q Exactive hybrid quadrupole–Orbitrap mass spectrometer for high-throughput, sensitive, non-targeted metabolite fingerprinting. Partial least-squares discriminant analyses (PLS-DA) and hierarchical cluster analysis (HCA) of the data discriminated between naturally MAP-infected and control heifers. In total, 33 metabolites that differentially accumulated in naturally MAP-infected heifers compared to controls were identified. Five were significantly elevated within MAP-infected heifers throughout the study, i.e., leukotriene B4, bicyclo prostaglandin E2 (bicyclo PGE2), itaconic acid, 2-hydroxyglutaric acid and N6-acetyl-L-lysine. These findings highlight the potential of metabolomics in the identification of novel MAP diagnostic markers and particular biochemical pathways, which may provide insights into the bovine immune response to MAP.
Collapse
Affiliation(s)
- Emma N. Taylor
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Ceredigion SY23 3DA, UK; (E.N.T.); (M.B.); (B.V.-R.); (H.-M.V.); (G.H.)
| | - Manfred Beckmann
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Ceredigion SY23 3DA, UK; (E.N.T.); (M.B.); (B.V.-R.); (H.-M.V.); (G.H.)
| | - Bernardo Villarreal-Ramos
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Ceredigion SY23 3DA, UK; (E.N.T.); (M.B.); (B.V.-R.); (H.-M.V.); (G.H.)
- Centre of Excellence for Bovine Tuberculosis, Aberystwyth University, Ceredigion SY23 3DA, UK
- Animal and Plant Health Agency, Weybridge, Surrey KT15 3NB, UK
| | - Hans-Martin Vordermeier
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Ceredigion SY23 3DA, UK; (E.N.T.); (M.B.); (B.V.-R.); (H.-M.V.); (G.H.)
- Centre of Excellence for Bovine Tuberculosis, Aberystwyth University, Ceredigion SY23 3DA, UK
- Animal and Plant Health Agency, Weybridge, Surrey KT15 3NB, UK
| | - Glyn Hewinson
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Ceredigion SY23 3DA, UK; (E.N.T.); (M.B.); (B.V.-R.); (H.-M.V.); (G.H.)
- Centre of Excellence for Bovine Tuberculosis, Aberystwyth University, Ceredigion SY23 3DA, UK
| | - David Rooke
- ProTEM Services Ltd., Horsham, West Sussex RH12 4BD, UK;
| | - Luis A. J. Mur
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Ceredigion SY23 3DA, UK; (E.N.T.); (M.B.); (B.V.-R.); (H.-M.V.); (G.H.)
- Correspondence: (L.A.J.M.); (A.P.K.)
| | - Ad P. Koets
- Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands
- Population Health Systems, Faculty of Veterinary Medicine, Utrecht University, 3584 CS Utrecht, The Netherlands
- Correspondence: (L.A.J.M.); (A.P.K.)
| |
Collapse
|
12
|
Hayford FEA, Ozturk M, Dolman RC, Blaauw R, Nienaber A, Loots DT, Brombacher F, Smuts CM, Parihar SP, Malan L. Longer-Term Omega-3 LCPUFA More Effective Adjunct Therapy for Tuberculosis Than Ibuprofen in a C3HeB/FeJ Tuberculosis Mouse Model. Front Immunol 2021; 12:659943. [PMID: 33995381 PMCID: PMC8113969 DOI: 10.3389/fimmu.2021.659943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
Advancement in the understanding of inflammation regulation during tuberculosis (TB) treatment has led to novel therapeutic approaches being proposed. The use of immune mediators like anti-inflammatory and pro-resolving molecules for such, merits attention. Drug repurposing is a widely used strategy that seeks to identify new targets to treat or manage diseases. The widely explored nonsteroidal anti-inflammatory drug (NSAID) ibuprofen and a more recently explored pharmaconutrition therapy using omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs), have the potential to modulate the immune system and are thus considered potential repurposed drugs in this context. These approaches may be beneficial as supportive therapy to the already existing treatment regimen to improve clinical outcomes. Here, we applied adjunct ibuprofen and n-3 LCPUFA therapy, respectively, with standard anti-TB treatment, in a C3HeB/FeJ murine model of TB. Bacterial loads, lung pathology, lung cytokines/chemokines and lung lipid mediators were measured as outcomes. Lung bacterial load on day 14 post-treatment (PT) was lower in the n-3 LCPUFA, compared to the ibuprofen group (p = 0.039), but was higher in the ibuprofen group than the treated control group (p = 0.0315). Treated control and ibuprofen groups had more free alveolar space initially as compared to the n-3 LCPUFA group (4 days PT, p= 0.0114 and p= 0.002, respectively); however, significantly more alveolar space was present in the n-3 LCPUFA group as compared to the ibuprofen group by end of treatment (14 days PT, p = 0.035). Interleukin 6 (IL-6) was lower in the ibuprofen group as compared to the treated control, EPA/DHA and untreated control groups at 4 days PT (p = 0.019, p = 0.019 and p = 0.002, respectively). Importantly, pro-resolving EPA derived 9-HEPE, 11-HEPE, 12-HEPE and 18-HEPE lipid mediators (LMs) were significantly higher in the EPA/DHA group as compared to the ibuprofen and treated control groups. This suggests that n-3 LCPUFAs do improve pro-resolving and anti-inflammatory properties in TB, and it may be safe and effective to co-administer as adjunct therapy with standard TB treatment, particularly longer-term. Also, our results show host benefits upon short-term co-administration of ibuprofen, but not throughout the entire TB treatment course.
Collapse
Affiliation(s)
- Frank E. A. Hayford
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
- Department of Dietetics, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
| | - Robin C. Dolman
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Renee Blaauw
- Division of Human Nutrition, Stellenbosch University, Tygerberg, Cape Town, South Africa
| | - Arista Nienaber
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Du Toit Loots
- Laboratory of Infectious Disease Metabolomics, Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Cornelius M. Smuts
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Suraj P. Parihar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Division of Medical Microbiology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Linda Malan
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| |
Collapse
|
13
|
Nienaber A, Hayford FEA, Variava E, Martinson N, Malan L. The Manipulation of the Lipid Mediator Metabolism as Adjunct Host-Directed Therapy in Tuberculosis. Front Immunol 2021; 12:623941. [PMID: 33777003 PMCID: PMC7994275 DOI: 10.3389/fimmu.2021.623941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Host-directed therapies (HDTs) enhance the host response to tuberculosis (TB) infection to reduce disease severity. For instance, the manipulation of lipid mediator production diminishes the hyperactive immune response which is a known pathological feature of TB that generates lung tissue damage. Non-steroidal anti-inflammatory drugs (NSAIDs) and omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) are examples of such HDTs. In this mini-review, we recapitulate the literature available on the effects of NSAIDs and n-3 LCPUFA in TB as well as the immunological pathways underpinning these effects. Many NSAIDs have a great deal of data describing their effects and safety and in many jurisdictions are inexpensive, and sold over the counter in neighborhood convenience stores and supermarkets. The potential benefits of NSAIDs in TB are well-documented in pre-clinical studies. The reduction of pro-inflammatory lipid mediator production by inhibiting cyclooxygenase (COX) pathways with NSAIDs has been found to improve lung histopathology, bacterial control, and survival. Additionally, n-3 LCPUFA and its novel bioactive metabolites produced by COX and lipoxygenase (LOX) have been identified as safe and effective pro-resolving and antibacterial pharmaconutrients. Nevertheless, heterogeneous results have been reported in pre-clinical TB studies. Recently, the importance of the correct timing of NSAIDs and n-3 LCPUFA administration in TB has also been highlighted. This mini-review will provide a better understanding of the potential contribution of these therapies toward reducing inflammatory lung damage and improving bactericidal activity, especially during later stages of TB infection. It further highlights that clinical trials are required to confirm benefit and safety in TB patients.
Collapse
Affiliation(s)
- Arista Nienaber
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Frank E A Hayford
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa.,Department of Nutrition and Dietetics, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Ebrahim Variava
- Perinatal HIV Research Unit, University of Witwatersrand, Soweto, South Africa.,Department of Internal Medicine, Klerksdorp Tshepong Hospital Complex, North West Department of Health, Klerksdorp, South Africa
| | - Neil Martinson
- Perinatal HIV Research Unit, University of Witwatersrand, Soweto, South Africa
| | - Linda Malan
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| |
Collapse
|
14
|
Ashokcoomar S, Loots DT, Beukes D, van Reenen M, Pillay B, Pillay M. M. tuberculosis curli pili (MTP) is associated with alterations in carbon, fatty acid and amino acid metabolism in a THP-1 macrophage infection model. Microb Pathog 2021; 154:104806. [PMID: 33610716 DOI: 10.1016/j.micpath.2021.104806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/28/2021] [Accepted: 02/11/2021] [Indexed: 12/16/2022]
Abstract
The initial host-pathogen interaction is crucial for the establishment of infection. An improved understanding of the pathophysiology of Mycobacterium tuberculosis (M. tuberculosis) during macrophage infection can aid the development of intervention therapeutics against tuberculosis. M. tuberculosis curli pili (MTP) is a surface located adhesin, involved in the first point-of-contact between pathogen and host. This study aimed to better understand the role of MTP in modulating the intertwined metabolic pathways of M. tuberculosis and its THP-1 macrophage host. Metabolites were extracted from pelleted wet cell mass of THP-1 macrophages infected with M. tuberculosis wild-type V9124 (WT), Δmtp-deletion mutant and the mtp-complemented strains, respectively, via a whole metabolome extraction method using a 1:3:1 ratio of chloroform:methanol:water. Metabolites were detected by two-dimensional gas chromatography time-of-flight mass spectrometry. Significant metabolites were determined through univariate and multivariate statistical tests and online pathway databases. Relative to the WT, a total of nine and ten metabolites were significantly different in the Δmtp and complement strains, respectively. All nine significant metabolites were found in elevated levels in the Δmtp relative to the WT. Additionally, of the ten significant metabolites, eight were detected in lower levels and two were detected in higher levels in the complement relative to the WT. The absence of the MTP adhesin resulted in reduced virulence of M. tuberculosis leading to alterations in metabolites involved in carbon, fatty acid and amino acid metabolism during macrophage infection, suggesting that MTP plays an important role in the modulation of host metabolic activity. These findings support the prominent role of the MTP adhesin as a virulence factor as well as a promising biomarker for possible diagnostic and therapeutic intervention.
Collapse
Affiliation(s)
- Shinese Ashokcoomar
- Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, 1st Floor Doris Duke Medical Research Institute, Congella, Private Bag 7, Durban, 4013, South Africa.
| | - Du Toit Loots
- Human Metabolomics, North-West University, Potchefstroom, Private Bag X6001, Box 269, 2531, South Africa.
| | - Derylize Beukes
- Human Metabolomics, North-West University, Potchefstroom, Private Bag X6001, Box 269, 2531, South Africa.
| | - Mari van Reenen
- Human Metabolomics, North-West University, Potchefstroom, Private Bag X6001, Box 269, 2531, South Africa.
| | - Balakrishna Pillay
- Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban. 4000, South Africa.
| | - Manormoney Pillay
- Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, 1st Floor Doris Duke Medical Research Institute, Congella, Private Bag 7, Durban, 4013, South Africa.
| |
Collapse
|
15
|
Vu SH, Bernardo Reyes AW, Ngoc Huy TX, Min W, Lee HJ, Kim HJ, Lee JH, Kim S. Transcriptomic profiling of phospholipase A2 and the role of arachidonic acid during Brucella abortus 544 infection in both in vitro and in vivo systems. Microb Pathog 2020; 152:104655. [PMID: 33264666 DOI: 10.1016/j.micpath.2020.104655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/24/2022]
Abstract
To date, the antimicrobial activity of arachidonic acid (AA) with regard to pathogenesis of Brucella in macrophages is unknown. We found that AA is highly toxic to B. abortus in a time- and dose-dependent manner. Transcription profiling of different groups of phospholipases A2 (PLA2) was examined, ten PLA2 were detected including cPLA2-IV-A, cPLA2-IV-B, iPLA2-VI, sPLA2-I-B, sPLA2-II-C, sPLA2-II-D, sPLA2-II-E, sPLA2-V, sPLA2-X, sPLA2-XII-A. Phagocytic signaling investigation indicated that AA treatment attenuated p38α activity in infected culture macrophages possibly leading to inhibition of Brucella internalization. Post-treatment with the fatty acid did not influence bacterial intracellular multiplication or alter production of antimicrobial effectors like ROS and NO in RAW 264.7 cells. On the other hand, AA administration significantly reduced bacterial load and modestly inhibited pro-inflammatory cytokine secretion including TNF, IFN-γ and IL-6 in mice plasma. To our knowledge, we are the first to suggest that B. abortus invasion to RAW 264.7 macrophages is impaired by AA.
Collapse
Affiliation(s)
- Son Hai Vu
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea; Institute of Applied Sciences, Ho Chi Minh City University of Technology - HUTECH, 475A Dien Bien Phu St., Ward 25, Binh Thanh District, Ho Chi Minh City, Vietnam, Republic of Korea
| | | | - Tran Xuan Ngoc Huy
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Wongi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hu Jang Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyun Jin Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
16
|
Nienaber A, Baumgartner J, Dolman RC, Ozturk M, Zandberg L, Hayford FEA, Brombacher F, Blaauw R, Parihar SP, Smuts CM, Malan L. Omega-3 Fatty Acid and Iron Supplementation Alone, but Not in Combination, Lower Inflammation and Anemia of Infection in Mycobacterium tuberculosis-Infected Mice. Nutrients 2020; 12:E2897. [PMID: 32971969 PMCID: PMC7551947 DOI: 10.3390/nu12092897] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Progressive inflammation and anemia are common in tuberculosis (TB) and linked to poor clinical outcomes. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have inflammation-resolving properties, whereas iron supplementation in TB may have limited efficacy and enhance bacterial growth. We investigated effects of iron and EPA/DHA supplementation, alone and in combination, on inflammation, anemia, iron status markers and clinical outcomes in Mycobacterium tuberculosis-infected C3HeB/FeJ mice. One week post-infection, mice received the AIN-93 diet without (control) or with supplemental iron (Fe), EPA/DHA, or Fe+EPA/DHA for 3 weeks. Mice supplemented with Fe or EPA/DHA had lower soluble transferrin receptor, ferritin and hepcidin than controls, but these effects were attenuated in Fe+EPA/DHA mice. EPA/DHA increased inflammation-resolving lipid mediators and lowered lung IL-1α, IFN-γ, plasma IL-1β, and TNF-α. Fe lowered lung IL-1α, IL-1β, plasma IL-1β, TNF-α, and IL-6. However, the cytokine-lowering effects in the lungs were attenuated with Fe+EPA/DHA. Mice supplemented with EPA/DHA had lower lung bacterial loads than controls, but this effect was attenuated in Fe+EPA/DHA mice. Thus, individually, post-infection EPA/DHA and iron supplementation lowered systemic and lung inflammation and mitigated anemia of infection in TB, but not when combined. EPA/DHA also enhanced bactericidal effects and could support inflammation resolution and management of anemia.
Collapse
Affiliation(s)
- Arista Nienaber
- Centre of Excellence for Nutrition, North-West University, Potchefstroom 2531, South Africa; (J.B.); (R.C.D.); (L.Z.); (F.E.A.H.); (C.M.S.); (L.M.)
| | - Jeannine Baumgartner
- Centre of Excellence for Nutrition, North-West University, Potchefstroom 2531, South Africa; (J.B.); (R.C.D.); (L.Z.); (F.E.A.H.); (C.M.S.); (L.M.)
- Laboratory of Human Nutrition, ETH, 8092 Zurich, Switzerland
| | - Robin C. Dolman
- Centre of Excellence for Nutrition, North-West University, Potchefstroom 2531, South Africa; (J.B.); (R.C.D.); (L.Z.); (F.E.A.H.); (C.M.S.); (L.M.)
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town 7925, South Africa; (M.O.); (F.B.); (S.P.P.)
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town 7925, South Africa
| | - Lizelle Zandberg
- Centre of Excellence for Nutrition, North-West University, Potchefstroom 2531, South Africa; (J.B.); (R.C.D.); (L.Z.); (F.E.A.H.); (C.M.S.); (L.M.)
| | - Frank E. A. Hayford
- Centre of Excellence for Nutrition, North-West University, Potchefstroom 2531, South Africa; (J.B.); (R.C.D.); (L.Z.); (F.E.A.H.); (C.M.S.); (L.M.)
- Department of Nutrition and Dietetics, School of biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra Box KB143, Ghana
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town 7925, South Africa; (M.O.); (F.B.); (S.P.P.)
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town 7925, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa
| | - Renee Blaauw
- Division of Human Nutrition, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa;
| | - Suraj P. Parihar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town 7925, South Africa; (M.O.); (F.B.); (S.P.P.)
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town 7925, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Microbiology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Cornelius M. Smuts
- Centre of Excellence for Nutrition, North-West University, Potchefstroom 2531, South Africa; (J.B.); (R.C.D.); (L.Z.); (F.E.A.H.); (C.M.S.); (L.M.)
| | - Linda Malan
- Centre of Excellence for Nutrition, North-West University, Potchefstroom 2531, South Africa; (J.B.); (R.C.D.); (L.Z.); (F.E.A.H.); (C.M.S.); (L.M.)
| |
Collapse
|
17
|
Ramalho R, Rao M, Zhang C, Agrati C, Ippolito G, Wang FS, Zumla A, Maeurer M. Immunometabolism: new insights and lessons from antigen-directed cellular immune responses. Semin Immunopathol 2020; 42:279-313. [PMID: 32519148 PMCID: PMC7282544 DOI: 10.1007/s00281-020-00798-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023]
Abstract
Modulation of immune responses by nutrients is an important area of study in cellular biology and clinical sciences in the context of cancer therapies and anti-pathogen-directed immune responses in health and disease. We review metabolic pathways that influence immune cell function and cellular persistence in chronic infections. We also highlight the role of nutrients in altering the tissue microenvironment with lessons from the tumor microenvironment that shapes the quality and quantity of cellular immune responses. Multiple layers of biological networks, including the nature of nutritional supplements, the genetic background, previous exposures, and gut microbiota status have impact on cellular performance and immune competence against molecularly defined targets. We discuss how immune metabolism determines the differentiation pathway of antigen-specific immune cells and how these insights can be explored to devise better strategies to strengthen anti-pathogen-directed immune responses, while curbing unwanted, non-productive inflammation.
Collapse
Affiliation(s)
- Renata Ramalho
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM, U4585 FCT), Applied Nutrition Studies Group G.E.N.A.-IUEM), Instituto Universitário Egas Moniz, Egas Moniz Higher Education School, Monte de Caparica, Portugal
| | - Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Chao Zhang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | | | | | - Fu-Sheng Wang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Alimuddin Zumla
- Division of Infection and Immunity, University College London and NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, UK
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal.
- I Medizinische Klinik, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
18
|
Rutting S, Zakarya R, Bozier J, Xenaki D, Horvat JC, Wood LG, Hansbro PM, Oliver BG. Dietary Fatty Acids Amplify Inflammatory Responses to Infection through p38 MAPK Signaling. Am J Respir Cell Mol Biol 2019; 60:554-568. [PMID: 30648905 DOI: 10.1165/rcmb.2018-0215oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Obesity is an important risk factor for severe asthma exacerbations, which are mainly caused by respiratory infections. Dietary fatty acids, which are increased systemically in obese patients and are further increased after high-fat meals, affect the innate immune system and may contribute to dysfunctional immune responses to respiratory infection. In this study we investigated the effects of dietary fatty acids on immune responses to respiratory infection in pulmonary fibroblasts and a bronchial epithelial cell line (BEAS-2B). Cells were challenged with BSA-conjugated fatty acids (ω-6 polyunsaturated fatty acids [PUFAs], ω-3 PUFAs, or saturated fatty acids [SFAs]) +/- the viral mimic polyinosinic:polycytidylic acid (poly[I:C]) or bacterial compound lipoteichoic acid (LTA), and release of proinflammatory cytokines was measured. In both cell types, challenge with arachidonic acid (AA) (ω-6 PUFA) and poly(I:C) or LTA led to substantially greater IL-6 and CXCL8 release than either challenge alone, demonstrating synergy. In epithelial cells, palmitic acid (SFA) combined with poly(I:C) also led to greater IL-6 release. The underlying signaling pathways of AA and poly(I:C)- or LTA-induced cytokine release were examined using specific signaling inhibitors and IB. Cytokine production in pulmonary fibroblasts was prostaglandin dependent, and synergistic upregulation occurred via p38 mitogen-activated protein kinase signaling, whereas cytokine production in bronchial epithelial cell lines was mainly mediated through JNK and p38 mitogen-activated protein kinase signaling. We confirmed these findings using rhinovirus infection, demonstrating that AA enhances rhinovirus-induced cytokine release. This study suggests that during respiratory infection, increased levels of dietary ω-6 PUFAs and SFAs may lead to more severe airway inflammation and may contribute to and/or increase the severity of asthma exacerbations.
Collapse
Affiliation(s)
- Sandra Rutting
- 1 Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia.,2 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Razia Zakarya
- 1 Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia.,3 School of Life Sciences and
| | - Jack Bozier
- 1 Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia.,3 School of Life Sciences and
| | - Dia Xenaki
- 1 Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia
| | - Jay C Horvat
- 2 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Lisa G Wood
- 2 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Philip M Hansbro
- 2 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia.,5 University of Technology Sydney, Faculty of Science, Ultimo, Australia; and.,4 Centre for Inflammation, Centenary Institute, Sydney, Australia
| | - Brian G Oliver
- 1 Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia.,3 School of Life Sciences and
| |
Collapse
|
19
|
Omega-3 Polyunsaturated Fatty Acids Prevent Toxoplasma gondii Infection by Inducing Autophagy via AMPK Activation. Nutrients 2019; 11:nu11092137. [PMID: 31500218 PMCID: PMC6771136 DOI: 10.3390/nu11092137] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω3-PUFAs) have potential protective activity in a variety of infectious diseases, but their actions and underlying mechanisms in Toxoplasma gondii infection remain poorly understood. Here, we report that docosahexaenoic acid (DHA) robustly induced autophagy in murine bone marrow-derived macrophages (BMDMs). Treatment of T. gondii-infected macrophages with DHA resulted in colocalization of Toxoplasma parasitophorous vacuoles with autophagosomes and reduced intracellular survival of T. gondii. The autophagic and anti-Toxoplasma effects induced by DHA were mediated by AMP-activated protein kinase (AMPK) signaling. Importantly, BMDMs isolated from Fat-1 transgenic mice, a well-known animal model capable of synthesizing ω3-PUFAs from ω6-PUFAs, showed increased activation of autophagy and AMPK, leading to reduced intracellular survival of T. gondii when compared with wild-type BMDMs. Moreover, Fat-1 transgenic mice exhibited lower cyst burden in the brain following infection with the avirulent strain ME49 than wild-type mice. Collectively, our results revealed mechanisms by which endogenous ω3-PUFAs and DHA control T. gondii infection and suggest that ω3-PUFAs might serve as therapeutic candidate to prevent toxoplasmosis and infection with other intracellular protozoan parasites.
Collapse
|
20
|
Zhang K, Wang X, Tu J, Rong H, Werz O, Chen X. The interplay between depression and tuberculosis. J Leukoc Biol 2019; 106:749-757. [PMID: 31254317 DOI: 10.1002/jlb.mr0119-023r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/19/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
Depression is a major mental health condition and is expected be the most debilitating and widespread health disorder by 2030. Tuberculosis (TB) is also a leading cause of morbidity and mortality worldwide and interestingly, is a common comorbidity of depression. As such, much attention has been paid to the association between these 2 pathologies. Based on clinical reports, the association between TB and depression seems to be bidirectional, with a substantial overlap in symptoms between the 2 conditions. TB infection or reactivation may precipitate depression, likely as a consequence of the host's inflammatory response and/or dysregulation of the hypothalamic-pituitary-adrenal axis. Nevertheless, few studies have considered whether patients with depression are at a higher risk for TB. In this review, we discuss the hypotheses on the association between depression and TB, highlighting the immuno-inflammatory response and lipid metabolism as potential mechanisms. Improving our understanding of the interplay between these 2 disorders should help guide TB clinical care and prevention both in patients with comorbid depression and in the general population.
Collapse
Affiliation(s)
- Kehong Zhang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China.,Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Xin Wang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Jie Tu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Chinese Academy of Sciences, Shenzhen, China
| | - Han Rong
- Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Xinchun Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
21
|
Yi WJ, Han YS, Wei LL, Shi LY, Huang H, Jiang TT, Li ZB, Chen J, Hu YT, Tu HH, Li JC. l-Histidine, arachidonic acid, biliverdin, and l-cysteine-glutathione disulfide as potential biomarkers for cured pulmonary tuberculosis. Biomed Pharmacother 2019; 116:108980. [PMID: 31125821 DOI: 10.1016/j.biopha.2019.108980] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/15/2019] [Accepted: 05/08/2019] [Indexed: 11/25/2022] Open
Abstract
Lack of laboratory standards for cured tuberculosis (TB) can lead to early discharge of untreated TB patients from the hospital, resulting in increased risk of TB spread and of developing drug resistant Mycobacterium tuberculosis (Mtb). We used ultra-high performance liquid chromatography coupled with mass spectrometry (LC-MS) to detect heparin anticoagulant in plasma of untreated TB patients, two-month treated TB patients, cured TB subjects, and healthy controls. Screening of differentially expressed metabolites resulted in identification of four differentially expressed metabolites such as, l-Histidine, Arachidonic acid (AA), Biliverdin, and l-Cysteine-glutathione disulfide after 6 months of TB treatment. Among them, l-Cysteine-glutathione disulfide and AA could be identified after 2 months of TB treatment. We established a cured TB model with an area under the curve (AUC) of 0.909 (95% CI, 0.802-0.970), 86.2% sensitivity, and 85.2% specificity. The diagnostic model fitted from the four differential metabolites in combination (l-Histidine, AA, Biliverdin, and l-Cysteine-glutathione disulfide) can be used as potential biomarkers for cured TB. Our study provided laboratory standards for hospital discharge of TB patients, as well as experimental basis for evaluating the efficacy of anti-TB drugs.
Collapse
Affiliation(s)
- Wen-Jing Yi
- Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Yu-Shuai Han
- Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Li-Liang Wei
- Department of Pneumology, Shaoxing Municipal Hospital, Shaoxing, 312000, China.
| | - Li-Ying Shi
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, 310058, China.
| | - Huai Huang
- School of Medicine, South China University of Technology, Guangzhou, 510000, China.
| | - Ting-Ting Jiang
- School of Medicine, South China University of Technology, Guangzhou, 510000, China.
| | - Zhi-Bin Li
- Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Jing Chen
- Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Yu-Ting Hu
- School of Medicine, South China University of Technology, Guangzhou, 510000, China.
| | - Hui-Hui Tu
- Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Ji-Cheng Li
- Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
22
|
Garcia-So J, Zhang X, Yang X, Rubinstein MR, Mao DY, Kitajewski J, Liu K, Han YW. Omega-3 fatty acids suppress Fusobacterium nucleatum-induced placental inflammation originating from maternal endothelial cells. JCI Insight 2019; 4:e125436. [PMID: 30728337 PMCID: PMC6413831 DOI: 10.1172/jci.insight.125436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022] Open
Abstract
Fusobacterium nucleatum is an oral anaerobe prevalent in intrauterine infection associated with a wide spectrum of adverse pregnancy outcomes. We demonstrate here that F. nucleatum triggers placental inflammation through maternal, rather than paternal, TLR4-mediated signaling. Elimination of TLR4 from maternal endothelial cells alleviated placental inflammation and reduced fetal and neonatal death, while elimination of TLR4 in the hematopoietic cells had no effect. The placental inflammatory response followed a spatiotemporal pattern, with NF-κB activation observed first in the maternal endothelial cells and then in the decidual cells surrounding the endothelium, followed by induction of inflammatory cytokines and chemokines. Supplementation of pregnant mice with fish oil as a source of omega-3 fatty acids suppressed placental inflammation, reduced F. nucleatum proliferation in the placenta, and increased fetal and neonatal survival. In vitro analysis illustrates that omega-3 fatty acids inhibit bacterial-induced inflammatory responses from human umbilical cord endothelial cells. Our study therefore reveals a mechanism by which microbial infections affect pregnancy and identifies a prophylactic therapy to protect against intrauterine infections.
Collapse
Affiliation(s)
- Jeewon Garcia-So
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Xinwen Zhang
- Department of Periodontics, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xiaohua Yang
- Department of Periodontics, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mara Roxana Rubinstein
- Division of Periodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - De Yu Mao
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Pharmacology
| | - Jan Kitajewski
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kang Liu
- Department of Microbiology and Immunology, and
| | - Yiping W. Han
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
- Division of Periodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, New York, USA
- Department of Microbiology and Immunology, and
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
23
|
Eijkelkamp BA, Begg SL, Pederick VG, Trapetti C, Gregory MK, Whittall JJ, Paton JC, McDevitt CA. Arachidonic Acid Stress Impacts Pneumococcal Fatty Acid Homeostasis. Front Microbiol 2018; 9:813. [PMID: 29867785 PMCID: PMC5958418 DOI: 10.3389/fmicb.2018.00813] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/10/2018] [Indexed: 12/21/2022] Open
Abstract
Free fatty acids hold dual roles during infection, serving to modulate the host immune response while also functioning directly as antimicrobials. Of particular importance are the long chain polyunsaturated fatty acids, which are not commonly found in bacterial organisms, that have been proposed to have antibacterial roles. Arachidonic acid (AA) is a highly abundant long chain polyunsaturated fatty acid and we examined its effect upon Streptococcus pneumoniae. Here, we observed that in a murine model of S. pneumoniae infection the concentration of AA significantly increases in the blood. The impact of AA stress upon the pathogen was then assessed by a combination of biochemical, biophysical and microbiological assays. In vitro bacterial growth and intra-macrophage survival assays revealed that AA has detrimental effects on pneumococcal fitness. Subsequent analyses demonstrated that AA exerts antimicrobial activity via insertion into the pneumococcal membrane, although this did not increase the susceptibility of the bacterium to antibiotic, oxidative or metal ion stress. Transcriptomic profiling showed that AA treatment also resulted in a dramatic down-regulation of the genes involved in fatty acid biosynthesis, in addition to impacts on other metabolic processes, such as carbon-source utilization. Hence, these data reveal that AA has two distinct mechanisms of perturbing the pneumococcal membrane composition. Collectively, this work provides a molecular basis for the antimicrobial contribution of AA to combat pneumococcal infections.
Collapse
Affiliation(s)
- Bart A Eijkelkamp
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Stephanie L Begg
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Victoria G Pederick
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Claudia Trapetti
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Melissa K Gregory
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Jonathan J Whittall
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Christopher A McDevitt
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
24
|
Chandrasekaran P, Saravanan N, Bethunaickan R, Tripathy S. Malnutrition: Modulator of Immune Responses in Tuberculosis. Front Immunol 2017; 8:1316. [PMID: 29093710 PMCID: PMC5651251 DOI: 10.3389/fimmu.2017.01316] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 09/29/2017] [Indexed: 11/13/2022] Open
Abstract
Nutrition plays a major role in the management of both acute and chronic diseases, in terms of body’s response to the pathogenic organism. An array of nutrients like macro- and micro-nutrients, vitamins, etc., are associated with boosting the host’s immune responses against intracellular pathogens including mycobacterium tuberculosis (M.tb). These nutrients have an immunomodulatory effects in controlling the infection and inflammation process and nutritional deficiency of any form, i.e., malnutrition may lead to nutritionally acquired immunodeficiency syndrome, which greatly increases an individual’s susceptibility to progression of infection to disease. This narrative review looks at the various mechanisms by which nutrition or its deficiency leads to impaired cell mediated and humoral immune responses, which in turn affects the ability of an individual to fight M.tb infection or disease. There is very little evidence in the literature that any specific food on its own or a specific quantity can alter the course of TB disease or be effective in the treatment of malnutrition. Further clinical trials or studies will be needed to recommend and to better understand the link between malnutrition, tuberculosis, and impaired immunity.
Collapse
Affiliation(s)
| | - Natarajan Saravanan
- Department of Biochemistry and Clinical Pharmacology, National Institute for Research in Tuberculosis, Chennai, India
| | | | | |
Collapse
|
25
|
Modulation of host defence against bacterial and viral infections by omega-3 polyunsaturated fatty acids. J Infect 2016; 73:523-535. [DOI: 10.1016/j.jinf.2016.10.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 12/20/2022]
|
26
|
Bah A, Lacarrière C, Vergne I. Autophagy-Related Proteins Target Ubiquitin-Free Mycobacterial Compartment to Promote Killing in Macrophages. Front Cell Infect Microbiol 2016; 6:53. [PMID: 27242971 PMCID: PMC4863073 DOI: 10.3389/fcimb.2016.00053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/26/2016] [Indexed: 01/02/2023] Open
Abstract
Autophagy is a lysosomal degradative process that plays essential functions in innate immunity, particularly, in the clearance of intracellular bacteria such as Mycobacterium tuberculosis. The molecular mechanisms involved in autophagy activation and targeting of mycobacteria, in innate immune responses of macrophages, are only partially characterized. Autophagy targets pathogenic M. tuberculosis via a cytosolic DNA recognition- and an ubiquitin-dependent pathway. In this report, we show that non-pathogenic M. smegmatis induces a robust autophagic response in THP-1 macrophages with an up regulation of several autophagy-related genes. Autophagy activation relies in part on recognition of mycobacteria by Toll-like receptor 2 (TLR2). Notably, LC3 targeting of M. smegmatis does not rely on membrane damage, ubiquitination, or autophagy receptor recruitment. Lastly, M. smegmatis promotes recruitment of several autophagy proteins, which are required for mycobacterial killing. In conclusion, our study uncovered an alternative autophagic pathway triggered by mycobacteria which involves cell surface recognition but not bacterial ubiquitination.
Collapse
Affiliation(s)
- Aïcha Bah
- Tuberculosis and Infection Biology, Institut de Pharmacologie et de Biologie Structurale, UMR 5089 Centre National de la Recherche Scientifique - Université de Toulouse Toulouse, France
| | - Camille Lacarrière
- Tuberculosis and Infection Biology, Institut de Pharmacologie et de Biologie Structurale, UMR 5089 Centre National de la Recherche Scientifique - Université de Toulouse Toulouse, France
| | - Isabelle Vergne
- Tuberculosis and Infection Biology, Institut de Pharmacologie et de Biologie Structurale, UMR 5089 Centre National de la Recherche Scientifique - Université de Toulouse Toulouse, France
| |
Collapse
|
27
|
Soh AZ, Chee CBE, Wang YT, Yuan JM, Koh WP. Dietary Cholesterol Increases the Risk whereas PUFAs Reduce the Risk of Active Tuberculosis in Singapore Chinese. J Nutr 2016; 146:1093-100. [PMID: 27075903 PMCID: PMC4841926 DOI: 10.3945/jn.115.228049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/07/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Experimental studies suggest that cholesterol enhances the intracellular survival of Mycobacterium tuberculosis, whereas marine ω-3 (n-3) and ω-6 (n-6) fatty acids (FAs) may modulate responses to M. tuberculosis in macrophage and animal models. However, there are no epidemiologic data from prospective studies of the relation between dietary cholesterol and FAs and the risk of developing active tuberculosis. OBJECTIVE We aimed to investigate the relation between dietary intake of cholesterol and FAs and the risk of active tuberculosis in a prospective cohort in Singapore. METHODS We analyzed data from the Singapore Chinese Health Study, a cohort of 63,257 Chinese men and women aged 45-74 y recruited between 1993 and 1998. Dietary intake of cholesterol and FAs was determined with the use of a validated food-frequency questionnaire. Incident cases of active tuberculosis were identified via linkage with the nationwide tuberculosis registry. Analysis was performed with the use of Cox proportional hazards models. RESULTS As of 31 December 2013, 1136 incident cases of active tuberculosis were identified. Dietary cholesterol was positively associated with an increased risk of active tuberculosis in a dose-dependent manner. Compared with the lowest intake quartile, the HR was 1.22 (95% CI: 1.00, 1.47) for the highest quartile (P-trend = 0.04). Conversely, dietary marine n-3 and n-6 FAs were associated with a reduced risk of active tuberculosis in a dose-dependent manner. Compared with the lowest quartile, the HR for the highest intake quartile was 0.77 (95% CI: 0.62, 0.95) for marine n-3 FAs (P-trend = 0.01) and 0.82 (95% CI: 0.68, 0.98) for n-6 FAs (P-trend = 0.03). There was no association with saturated, monounsaturated, or plant-based n-3 FA intake. CONCLUSION Dietary intake of cholesterol may increase the risk of active tuberculosis, whereas marine n-3 and n-6 FAs may reduce the risk of active tuberculosis in the Chinese population.
Collapse
Affiliation(s)
- Avril Z Soh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Cynthia BE Chee
- Singapore Tuberculosis Control Unit, Tan Tock Seng Hospital, Singapore
| | - Yee-Tang Wang
- Singapore Tuberculosis Control Unit, Tan Tock Seng Hospital, Singapore
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, and Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA; and
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore; Duke-NUS Graduate Medical School Singapore, Singapore
| |
Collapse
|
28
|
Host Transcriptional Profiles and Immunopathologic Response following Mycobacterium avium subsp. paratuberculosis Infection in Mice. PLoS One 2015; 10:e0138770. [PMID: 26439498 PMCID: PMC4595071 DOI: 10.1371/journal.pone.0138770] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/03/2015] [Indexed: 01/11/2023] Open
Abstract
Paratuberculosis or Johne’s disease is a chronic granulomatous enteropathy in ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP) infection. In the present study, we examined the host response to MAP infection in spleens of mice in order to investigate the host immunopathology accompanying host-pathogen interaction. Transcriptional profiles of the MAP-infected mice at 3 and 6 weeks p.i. showed severe histopathological changes, whereas those at 12 weeks p.i. displayed reduced lesion severity in the spleen and liver. MAP-infected mice at 3 and 6 weeks p.i. showed up-regulation of interferon-related genes, scavenger receptor, and complement components, suggesting an initial innate immune reaction, such as macrophage activation, bactericidal activity, and macrophage invasion of MAP. Concurrently, MAP-infected mice at 3 and 6 weeks p.i. were also suggested to express M2 macrophage phenotype with up-regulation of Mrc1, and Marco and down-regulation of MHC class II, Ccr7, and Irf5, and canonical pathways related to the T cell response including ICOS-ICOSL signaling in T helper cells, calcium-induced T lymphocyte apoptosis, and CD28 signaling in T helper cell. These results provide information which furthers the understanding of the immunopathologic response to MAP infection in mice, thereby providing insights valuable for research into the pathogenesis for MAP infection.
Collapse
|
29
|
Shin MK, Shin SW, Jung M, Park H, Park HE, Yoo HS. Host gene expression for Mycobacterium avium subsp. paratuberculosis infection in human THP-1 macrophages. Pathog Dis 2015; 73:ftv031. [PMID: 25877879 DOI: 10.1093/femspd/ftv031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2015] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne's disease, which causes considerable economic loss in the dairy industry and has a possible relationship to Crohn's disease (CD) in humans. As MAP has been detected in retail pasteurized milk samples, its transmission via milk is of concern. Despite its possible role in the etiology of CD, there have been few studies examining the interactions between MAP and human cells. In the current study, we applied Ingenuity Pathway Analysis to the transcription profiles generated from a murine model with MAP infection as part of a previously conducted study. Twenty-one genes were selected as potential host immune responses, compared with the transcriptional profiles in naturally MAP-infected cattle, and validated in MAP-infected human monocyte-derived macrophage THP-1 cells. Of these, the potential host responses included up-regulation of genes related to immune response (CD14, S100A8, S100A9, LTF, HP and CHCIL3), up-regulation of Th1-polarizing factor (CCL4, CCL5, CXCL9 and CXCL10), down-regulation of genes related to metabolism (ELANE, IGF1, TCF7L2 and MPO) and no significant response of other genes (GADD45a, GPNMB, HMOX1, IFNG and NQO1) in THP-1 cells infected with MAP.
Collapse
Affiliation(s)
- Min-Kyoung Shin
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 151-742 Korea Dairy and Swine Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 1Z3, Canada
| | - Seung Won Shin
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 151-742 Korea
| | - Myunghwan Jung
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 151-742 Korea
| | - Hongtae Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 151-742 Korea
| | - Hyun-Eui Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 151-742 Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 151-742 Korea Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, 232-916, Korea
| |
Collapse
|
30
|
Bettencourt P, Marion S, Pires D, Santos LF, Lastrucci C, Carmo N, Blake J, Benes V, Griffiths G, Neyrolles O, Lugo-Villarino G, Anes E. Actin-binding protein regulation by microRNAs as a novel microbial strategy to modulate phagocytosis by host cells: the case of N-Wasp and miR-142-3p. Front Cell Infect Microbiol 2013; 3:19. [PMID: 23760605 PMCID: PMC3672780 DOI: 10.3389/fcimb.2013.00019] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 05/17/2013] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a successful intracellular pathogen that thrives in macrophages (Mφs). There is a need to better understand how Mtb alters cellular processes like phagolysosome biogenesis, a classical determinant of its pathogenesis. A central feature of this bacteria's strategy is the manipulation of Mφ actin. Here, we examined the role of microRNAs (miRNAs) as a potential mechanism in the regulation of actin-mediated events leading to phagocytosis in the context of mycobacteria infection. Given that non-virulent Mycobacterium smegmatis also controls actin filament assembly to prolong its intracellular survival inside host cells, we performed a global transcriptomic analysis to assess the modulation of miRNAs upon M. smegmatis infection of the murine Mφ cell line, J774A.1. This approach identified miR-142-3p as a key candidate to be involved in the regulation of actin dynamics required in phagocytosis. We unequivocally demonstrate that miR-142-3p targets N-Wasp, an actin-binding protein required during microbial challenge. A gain-of-function approach for miR-142-3p revealed a down-regulation of N-Wasp expression accompanied by a decrease of mycobacteria intake, while a loss-of-function approach yielded the reciprocal increase of the phagocytosis process. Equally important, we show Mtb induces the early expression of miR-142-3p and partially down-regulates N-Wasp protein levels in both the murine J774A.1 cell line and primary human Mφs. As proof of principle, the partial siRNA-mediated knock down of N-Wasp resulted in a decrease of Mtb intake by human Mφs, reflected in lower levels of colony-forming units (CFU) counts over time. We therefore propose the modulation of miRNAs as a novel strategy in mycobacterial infection to control factors involved in actin filament assembly and other early events of phagolysosome biogenesis.
Collapse
Affiliation(s)
- Paulo Bettencourt
- Centro de Patogénese Molecular, Faculdade de Farmácia, Unidade dos Retrovírus e Infecções Associadas e Instituto de Medicina Molecular, Universidade de Lisboa Lisboa, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jaganath D, Mupere E. Childhood tuberculosis and malnutrition. J Infect Dis 2012; 206:1809-15. [PMID: 23033147 PMCID: PMC3502375 DOI: 10.1093/infdis/jis608] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/13/2012] [Indexed: 01/05/2023] Open
Abstract
Despite the burden of both malnutrition and tuberculosis in children worldwide, there are few studies on the mechanisms that underlie this relationship. From available research, it appears that malnutrition is a predictor of tuberculosis disease and is associated with worse outcomes. This is supported through several lines of evidence, including the role of vitamin D receptor genotypes, malnutrition's effects on immune development, respiratory infections among malnourished children, and limited work specifically on pediatric tuberculosis and malnutrition. Nutritional supplementation has yet to suggest significant benefits on the course of tuberculosis in children. There is a critical need for research on childhood tuberculosis, specifically on how nutritional status affects the risk and progression of tuberculosis and whether nutritional supplementation improves clinical outcomes or prevents disease.
Collapse
Affiliation(s)
- Devan Jaganath
- David Geffen School of Medicine at the University of California, Los Angeles
- Tuberculosis Research Unit (TBRU), Case Western Reserve University, Cleveland, Ohio
| | - Ezekiel Mupere
- Makerere University, Kampala, Uganda
- Tuberculosis Research Unit (TBRU), Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
32
|
Al-Mubarak R, Vander Heiden J, Broeckling CD, Balagon M, Brennan PJ, Vissa VD. Serum metabolomics reveals higher levels of polyunsaturated fatty acids in lepromatous leprosy: potential markers for susceptibility and pathogenesis. PLoS Negl Trop Dis 2011; 5:e1303. [PMID: 21909445 PMCID: PMC3167790 DOI: 10.1371/journal.pntd.0001303] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/20/2011] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Leprosy is a disease of the skin and peripheral nervous system caused by the obligate intracellular bacterium Mycobacterium leprae. The clinical presentations of leprosy are spectral, with the severity of disease determined by the balance between the cellular and humoral immune response of the host. The exact mechanisms that facilitate disease susceptibility, onset and progression to certain clinical phenotypes are presently unclear. Various studies have examined lipid metabolism in leprosy, but there has been limited work using whole metabolite profiles to distinguish the clinical forms of leprosy. METHODOLOGY AND PRINCIPAL FINDINGS In this study we adopted a metabolomics approach using high mass accuracy ultrahigh pressure liquid chromatography mass spectrometry (UPLC-MS) to investigate the circulatory biomarkers in newly diagnosed untreated leprosy patients. Sera from patients having bacterial indices (BI) below 1 or above 4 were selected, subjected to UPLC-MS, and then analyzed for biomarkers which distinguish the polar presentations of leprosy. We found significant increases in the abundance of certain polyunsaturated fatty acids (PUFAs) and phospholipids in the high-BI patients, when contrasted with the levels in the low-BI patients. In particular, the median values of arachidonic acid (2-fold increase), eicosapentaenoic acid (2.6-fold increase) and docosahexaenoic acid (1.6-fold increase) were found to be greater in the high-BI patients. SIGNIFICANCE Eicosapentaenoic acid and docosahexaenoic acid are known to exert anti-inflammatory properties, while arachidonic acid has been reported to have both pro- and anti-inflammatory activities. The observed increase in the levels of several lipids in high-BI patients may provide novel clues regarding the biological pathways involved in the immunomodulation of leprosy. Furthermore, these results may lead to the discovery of biomarkers that can be used to investigate susceptibility to infection, facilitate early diagnosis and monitor the progression of disease.
Collapse
Affiliation(s)
- Reem Al-Mubarak
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jason Vander Heiden
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Corey D. Broeckling
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, Colorado, United States of America
| | - Marivic Balagon
- Leonard Wood Memorial Center for Leprosy Research, Cebu, Philippines
| | - Patrick J. Brennan
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Varalakshmi D. Vissa
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
33
|
McMurray DN, Bonilla DL, Chapkin RS. n-3 Fatty acids uniquely affect anti-microbial resistance and immune cell plasma membrane organization. Chem Phys Lipids 2011; 164:626-35. [PMID: 21798252 DOI: 10.1016/j.chemphyslip.2011.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 04/20/2011] [Accepted: 07/11/2011] [Indexed: 12/18/2022]
Abstract
It is now well established that dietary lipids are incorporated into macrophage and T-cell membrane microdomains, altering their structure and function. Within cell membranes, there are specific detergent-resistant domains in which key signal transduction proteins are localized. These regions are classified as "lipid rafts". Rafts are composed mostly of cholesterol and sphingolipids and therefore do not integrate well into the fluid phospholipid bilayers causing them to form microdomains. Upon cell activation, rafts compartmentalize signal-transducing molecules, thus providing an environment conducive to signal transduction. In this review, we discuss recent novel data describing the effects of n-3 PUFA on alterations in the activation and functions of macrophages and T-cells. We believe that the modifications in these two disparate immune cell types are linked by fundamentally similar changes in membrane lipid composition and transmembrane signaling functions. We conclude that the outcomes of n-3 PUFA-mediated immune cell alterations may be beneficial (e.g., anti-inflammatory) or detrimental (e.g., loss of microbial immunity) depending upon the cell type interrogated.
Collapse
Affiliation(s)
- David N McMurray
- Department of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center, College Station, TX 77843-1313, USA.
| | | | | |
Collapse
|
34
|
Both high and low serum vitamin D concentrations are associated with tuberculosis: a case-control study in Greenland. Br J Nutr 2010; 104:1487-91. [PMID: 20553638 DOI: 10.1017/s0007114510002333] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Vitamin D deficiency has been associated with increased risk of tuberculosis (TB). Changes from a traditional to a Westernised diet among Greenlanders have resulted in reduced serum vitamin D, leading to considerations of whether preventive vitamin D supplementation should be introduced. The association between vitamin D status and TB was examined to assess the feasibility of vitamin D supplementation in Greenland. This was examined in a case-control study involving seventy-two matched pairs of TB patients (cases) and controls aged 8-74 years. Cases were diagnosed with TB during 2004-6 based on clinical findings in combination with either (1) positive Mycobacterium tuberculosis culture, (2) characteristic X-ray abnormalities together with a positive tuberculin skin test or a positive interferon-γ release assay or (3) characteristic histology. Controls were individually matched on age ( ± 5 years), sex and district. Serum 25-hydroxyvitamin D (25(OH)D) concentrations were measured and OR of TB were the outcome. Compared with individuals with 25(OH)D concentrations between 75 and 140 nmol/l, individuals with concentrations < 75 nmol/l (OR 6.5; 95% CI 1.8, 23.5) or > 140 nmol/l (OR 6.5; 95% CI 1.9, 22.2) had higher risks of active TB (P = 0.003; adjustment for alcohol and ethnicity). Supplementing individuals with low vitamin D to normalise serum 25(OH)D concentrations was estimated to result in a 29% reduction in the number of TB cases. The study indicated that vitamin D supplementation may be beneficial to individuals with insufficient vitamin D concentrations but may increase the risk of TB among individuals with normal or high concentrations.
Collapse
|
35
|
Bonilla DL, Ly LH, Fan YY, Chapkin RS, McMurray DN. Incorporation of a dietary omega 3 fatty acid impairs murine macrophage responses to Mycobacterium tuberculosis. PLoS One 2010; 5:e10878. [PMID: 20526363 PMCID: PMC2878322 DOI: 10.1371/journal.pone.0010878] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 04/09/2010] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Beside their health benefits, dietary omega 3 polyunsaturated fatty acids (n-3 PUFA) might impair host resistance to Mycobacterium tuberculosis (Mtb) by creating an immunosuppressive environment. We hypothesized that incorporation of n-3 PUFA suppresses activation of macrophage antimycobacterial responses and favors bacterial growth, in part, by modulating the IFNgamma-mediated signaling pathway. METHODOLOGY/PRINCIPAL FINDINGS Murine macrophage-like J774A.1 cells were incubated with bovine serum albumin (BSA)-conjugated docosahexaenoic acid (DHA; 22:6n-3) or BSA alone, activated with recombinant IFNgamma, and infected with a virulent strain (H37Rv) of M. tuberculosis. The fatty acid composition of macrophage membranes was modified significantly by DHA treatment. DHA-treated macrophages were less effective in controlling intracellular mycobacteria and showed impaired oxidative metabolism and reduced phagolysosome maturation. Incorporation of DHA resulted in defective macrophage activation, as characterized by reduced production of pro-inflammatory cytokines (TNFalpha, IL-6 and MCP-1), and lower expression of co-stimulatory molecules (CD40 and CD86). DHA treatment impaired STAT1 phosphorylation and colocalization of the IFNgamma receptor with lipid rafts, without affecting surface expression of IFNgamma receptor. CONCLUSIONS/SIGNIFICANCE We conclude that DHA reduces the ability of J774A.1 cells to control M. tuberculosis in response to activation by IFNgamma, by modulation of IFNgamma receptor signaling and function, suggesting that n-3 PUFA-enriched diets may have a detrimental effect on host immunity to tuberculosis.
Collapse
Affiliation(s)
- Diana L Bonilla
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, College Station, Texas, United States of America.
| | | | | | | | | |
Collapse
|
36
|
Transgenic mice enriched in omega-3 fatty acids are more susceptible to pulmonary tuberculosis: impaired resistance to tuberculosis in fat-1 mice. J Infect Dis 2010; 201:399-408. [PMID: 20053136 DOI: 10.1086/650344] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND. Besides their health benefits, dietary omega-3 fatty acids (n-3 PUFAs) can impair host resistance to intracellular pathogens. Previously, we and others have showed that n-3 PUFA-treated macrophages poorly control Mycobacterium tuberculosis infection in vitro. METHODS. Wild-type and fat-1 transgenic mice were infected with virulent H37Rv M. tuberculosis via the aerosol route. We evaluated bacteriological and histopathological changes in lungs, as well as differences in activation and antimycobacterial capacity in primary macrophages ex vivo. RESULTS. fat-1 mice were more susceptible to tuberculosis, as demonstrated by higher bacterial loads and less robust inflammatory responses in lungs. Macrophages obtained from fat-1 mice were more readily infected with M. tuberculosis in vitro, compared with wild-type macrophages. This impaired bacterial control in cells from fat-1 mice correlated with reduced proinflammatory cytokine secretion, impaired oxidative metabolism, and diminished M. tuberculosis-lysotracker colocalization within phagosomes. CONCLUSIONS. We showed that endogenous production of n-3 PUFAs in fat-1 mice increases their susceptibility to tuberculosis, which could be explained in part by diminished activation and antimycobacterial responses in cells from fat-1 mice. These data suggest that n-3 PUFA-supplemented diets might have a detrimental effect on immunity to M. tuberculosis and raise concerns regarding the safety of omega-3 dietary supplementation in humans.
Collapse
|
37
|
Simões MF, Valente E, Gómez MJR, Anes E, Constantino L. Lipophilic pyrazinoic acid amide and ester prodrugs. Eur J Pharm Sci 2009; 37:257-63. [DOI: 10.1016/j.ejps.2009.02.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Revised: 02/19/2009] [Accepted: 02/21/2009] [Indexed: 11/28/2022]
|