1
|
Hajra D, Nair AV, Chakravortty D. Decoding the invasive nature of a tropical pathogen of concern: The invasive non-Typhoidal Salmonella strains causing host-restricted extraintestinal infections worldwide. Microbiol Res 2023; 277:127488. [PMID: 37716125 DOI: 10.1016/j.micres.2023.127488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023]
Abstract
Invasive-Non-Typhoidal Salmonella (iNTS) are the major cause of health concern in the low-income, under-developed nations in Africa and Asia that lack proper sanitation facilities. Around 5% of the NTS cases give rise to invasive, extraintestinal diseases leading to focal infections like osteomyelitis, meningitis, osteoarthritis, endocarditis and neonatal sepsis. iNTS serovars like S. Typhimurium, S. Enteritidis, S. Dublin, S. Choleraesuis show a greater propensity to become invasive than others which hints at the genetic basis of their emergence. The major risk factors attributing to the invasive diseases include immune-compromised individuals having co-infection with malaria or HIV, or suffering from malnutrition. The rampant use of antibiotics leading to the emergence of multi-drug resistant strains poses a great challenge in disease management. An extensive understanding of the iNTS pathogenesis and its epidemiology will open up avenues for the development of new vaccination and therapeutic strategies to restrict the spread of this neglected disease.
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | - Abhilash Vijay Nair
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | | |
Collapse
|
2
|
Depew CE, McSorley SJ. The role of tissue resident memory CD4 T cells in Salmonella infection: Implications for future vaccines. Vaccine 2023; 41:6426-6433. [PMID: 37739887 DOI: 10.1016/j.vaccine.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/20/2023] [Accepted: 09/05/2023] [Indexed: 09/24/2023]
Abstract
Salmonella infections cause a wide range of intestinal and systemic disease that affects global human health. While some vaccines are available, they do not mitigate the impact of Salmonella on endemic areas. Research using Salmonella mouse models has revealed the important role of CD4 T cells and antibody in the development of protective immunity against Salmonella infection. Recent work points to a critical role for hepatic tissue-resident memory lymphocytes in naturally acquired immunity to systemic infection. Thus, understanding the genesis and function of this Salmonella-specific population is an important objective and is the primary focus of this review. Greater understanding of how these memory lymphocytes contribute to bacterial elimination could suggest new approaches to vaccination against an important human pathogen.
Collapse
Affiliation(s)
- Claire E Depew
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA.
| | - Stephen J McSorley
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
3
|
MacLennan CA, Stanaway J, Grow S, Vannice K, Steele AD. Salmonella Combination Vaccines: Moving Beyond Typhoid. Open Forum Infect Dis 2023; 10:S58-S66. [PMID: 37274529 PMCID: PMC10236507 DOI: 10.1093/ofid/ofad041] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
There is now a robust pipeline of licensed and World Health Organization (WHO)-prequalified typhoid conjugate vaccines with a steady progression of national introductions. However, typhoid fever is responsible for less than half the total global burden of Salmonella disease, and even less among children aged <5 years. Invasive nontyphoidal Salmonella disease is the dominant clinical presentation of Salmonella in Africa, and over a quarter of enteric fever in Asia is due to paratyphoid A. In this article, we explore the case for combination Salmonella vaccines, review the current pipeline of these vaccines, and discuss key considerations for their development, including geographies of use, age of administration, and pathways to licensure. While a trivalent typhoid/nontyphoidal Salmonella vaccine is attractive for Africa, and a bivalent enteric fever vaccine for Asia, a quadrivalent vaccine covering the 4 main disease-causing serovars of Salmonella enterica would provide a single vaccine option for global Salmonella coverage.
Collapse
Affiliation(s)
- Calman A MacLennan
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, Washington, USA
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Jeffrey Stanaway
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, USA
| | - Stephanie Grow
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Kirsten Vannice
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - A Duncan Steele
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| |
Collapse
|
4
|
Piccioli D, Alfini R, Monaci V, Arato V, Carducci M, Aruta MG, Rossi O, Necchi F, Anemona A, Bartolini E, Micoli F. Antigen presentation by Follicular Dendritic cells to cognate B cells is pivotal for Generalised Modules for Membrane Antigens (GMMA) immunogenicity. Vaccine 2022; 40:6305-6314. [PMID: 36137901 DOI: 10.1016/j.vaccine.2022.09.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/26/2022] [Accepted: 09/09/2022] [Indexed: 01/27/2023]
Abstract
GMMA has been proposed as a potent technology platform for the design of safe, effective and affordable vaccines. As GMMA are vesicles blebbing out of the outer membrane of Gram-negative bacteria, they contain lipopolysaccharides, lipoproteins and peptidoglycans that stimulate immune cells via Toll-like Receptors 4 (TLR4) or TLR2. Being basically nanoparticles, GMMA can be efficiently captured by Follicular Dendritic Cells (FDC) for antigen presentation to cognate B cells. GMMA have shown to be highly immunogenic in preclinical and clinical studies and the engagement of TLR4 and TLR2 or antigen presentation by FDC may have a prominent role in GMMA immunogenicity, which is well worth investigating. By using GMMA derived from Shigella sonnei and Salmonella Typhimurium, we show for the first time that the antigen presentation by FDC to cognate B cells plays a major role in the induction of an effective humoral immune response upon immunization with GMMA by using both models. The engagement of TLR4 is critical to elicit an optimal antibody production, but its effect on antibody functionality is dependent on GMMA type and is dispensable when immunizing with Alum adjuvant, whereas TLR2 does not have any role for GMMA immunogenicity. Our findings represent a substantial advancement of the knowledge on GMMA mode of action and shed a light on novel perspectives for the design of safer and more effective GMMA-based vaccines. ONE SENTENCE SUMMARY: The study demonstrated that the antigen presentation by FDC to cognate B cells plays a major role for GMMA immunogenicity.
Collapse
Affiliation(s)
| | - Renzo Alfini
- GSK Vaccine Institute for Global Health (GVGH), Siena, Italy
| | | | - Vanessa Arato
- GSK Vaccine Institute for Global Health (GVGH), Siena, Italy
| | | | | | - Omar Rossi
- GSK Vaccine Institute for Global Health (GVGH), Siena, Italy
| | | | | | | | | |
Collapse
|
5
|
Genetic and Structural Variation in the O-Antigen of Salmonella enterica Serovar Typhimurium Isolates Causing Bloodstream Infections in the Democratic Republic of the Congo. mBio 2022; 13:e0037422. [PMID: 35862803 PMCID: PMC9426603 DOI: 10.1128/mbio.00374-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Salmonella enterica serovar Typhimurium causes a devastating burden of invasive disease in sub-Saharan Africa with high levels of antimicrobial resistance. No licensed vaccine is available, but O-antigen-based candidates are in development, as the O-antigen moiety of lipopolysaccharides is the principal target of protective immunity. The vaccines under development are designed based on isolates with O-antigen O-acetylated at position C-2 of abequose, giving the O:5 antigen. Serotyping data on recent Salmonella Typhimurium clinical isolates from the Democratic Republic of the Congo (DRC), however, indicate increasing levels of isolates without O:5. The importance and distribution of this loss of O:5 antigen in the population as well as the genetic mechanism responsible for the loss and chemical characteristics of the O-antigen are poorly understood. In this study, we Illumina whole-genome sequenced 354 Salmonella Typhimurium isolates from the DRC, which were isolated between 2002 and 2017. We used genomics and phylogenetics combined with chemical approaches (1H nuclear magnetic resonance [NMR], high-performance anion-exchange chromatography with pulsed amperometric detection [HPAEC-PAD], high-performance liquid chromatography–PAD [HPLC-PAD], and HPLC-size exclusion chromatography [HPLC-SEC]) to characterize the O-antigen features within the bacterial population. We observed convergent evolution toward the loss of the O:5 epitope predominantly caused by recombination events in a single gene, the O-acetyltransferase gene oafA. In addition, we observe further O-antigen variations, including O-acetylation of the rhamnose residue, different levels of glucosylation, and the absence of O-antigen repeating units. Large recombination events underlying O-antigen variation were resolved using long-read MinION sequencing. Our study suggests evolutionary pressure toward O-antigen variants in a region where invasive disease by Salmonella Typhimurium is highly endemic. This needs to be taken into account when developing O-antigen-based vaccines, as it might impact the breadth of coverage in such regions.
Collapse
|
6
|
Development of a novel trivalent invasive non-typhoidal Salmonella outer membrane vesicles based vaccine against salmonellosis and fowl typhoid in chickens. Immunobiology 2022; 227:152183. [DOI: 10.1016/j.imbio.2022.152183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/04/2022] [Accepted: 01/23/2022] [Indexed: 11/17/2022]
|
7
|
Zhu H, Rollier CS, Pollard AJ. Recent advances in lipopolysaccharide-based glycoconjugate vaccines. Expert Rev Vaccines 2021; 20:1515-1538. [PMID: 34550840 DOI: 10.1080/14760584.2021.1984889] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The public health burden caused by pathogenic Gram-negative bacteria is increasingly prominent due to antimicrobial resistance. The surface carbohydrates are potential antigens for vaccines against Gram-negative bacteria. The enhanced immunogenicity of the O-specific polysaccharide (O-SP) moiety of LPS when coupled to a carrier protein may protect against bacterial pathogens. However, because of the toxic lipid A moiety and relatively high costs of O-SP isolation, LPS has not been a popular vaccine antigen until recently. AREAS COVERED In this review, we discuss the rationales for developing LPS-based glycoconjugate vaccines, principles of glycoconjugate-induced immunity, and highlight the recent developments and challenges faced by LPS-based glycoconjugate vaccines. EXPERT OPINION Advances in LPS harvesting, LPS chemical synthesis, and newer carrier proteins in the past decade have propelled LPS-based glycoconjugate vaccines toward further development, through to clinical evaluation. The development of LPS-based glycoconjugates offers a new horizon for vaccine prevention of Gram-negative bacterial infection.
Collapse
Affiliation(s)
- Henderson Zhu
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research (Nihr) Oxford Biomedical Research Centre, Oxford, UK
| | - Christine S Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research (Nihr) Oxford Biomedical Research Centre, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research (Nihr) Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
8
|
Di Benedetto R, Alfini R, Carducci M, Aruta MG, Lanzilao L, Acquaviva A, Palmieri E, Giannelli C, Necchi F, Saul A, Micoli F. Novel Simple Conjugation Chemistries for Decoration of GMMA with Heterologous Antigens. Int J Mol Sci 2021; 22:10180. [PMID: 34638530 PMCID: PMC8508390 DOI: 10.3390/ijms221910180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 11/30/2022] Open
Abstract
Outer Membrane Vesicles (OMV) constitute a promising platform for the development of efficient vaccines. OMV can be decorated with heterologous antigens (proteins or polysaccharides), becoming attractive novel carriers for the development of multicomponent vaccines. Chemical conjugation represents a tool for linking antigens, also from phylogenetically distant pathogens, to OMV. Here we develop two simple and widely applicable conjugation chemistries targeting proteins or lipopolysaccharides on the surface of Generalized Modules for Membrane Antigens (GMMA), OMV spontaneously released from Gram-negative bacteria mutated to increase vesicle yield and reduce potential reactogenicity. A Design of Experiment approach was used to identify optimal conditions for GMMA activation before conjugation, resulting in consistent processes and ensuring conjugation efficiency. Conjugates produced by both chemistries induced strong humoral response against the heterologous antigen and GMMA. Additionally, the use of the two orthogonal chemistries allowed to control the linkage of two different antigens on the same GMMA particle. This work supports the further advancement of this novel platform with great potential for the design of effective vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy; (R.D.B.); (R.A.); (M.C.); (M.G.A.); (L.L.); (A.A.); (E.P.); (C.G.); (F.N.); (A.S.)
| |
Collapse
|
9
|
Abstract
Polysaccharides are often the most abundant antigens found on the extracellular surfaces of bacterial cells. These polysaccharides play key roles in interactions with the outside world, and for many bacterial pathogens, they represent what is presented to the human immune system. As a result, many vaccines have been or currently are being developed against carbohydrate antigens. In this review, we explore the diversity of capsular polysaccharides (CPS) in Salmonella and other selected bacterial species and explain the classification and function of CPS as vaccine antigens. Despite many vaccines being developed using carbohydrate antigens, the low immunogenicity and the diversity of infecting strains and serovars present an antigen formulation challenge to manufacturers. Vaccines tend to focus on common serovars or have changing formulations over time, reflecting the trends in human infection, which can be costly and time-consuming. We summarize the approaches to generate carbohydrate-based vaccines for Salmonella, describe vaccines that are in development and emphasize the need for an effective vaccine against non-typhoidal Salmonella strains.
Collapse
|
10
|
Richards A, Baranova DE, Pizzuto MS, Jaconi S, Willsey GG, Torres-Velez FJ, Doering JE, Benigni F, Corti D, Mantis NJ. Recombinant Human Secretory IgA Induces Salmonella Typhimurium Agglutination and Limits Bacterial Invasion into Gut-Associated Lymphoid Tissues. ACS Infect Dis 2021; 7:1221-1235. [PMID: 33728898 PMCID: PMC8154420 DOI: 10.1021/acsinfecdis.0c00842] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 12/11/2022]
Abstract
As the predominant antibody type in mucosal secretions, human colostrum, and breast milk, secretory IgA (SIgA) plays a central role in safeguarding the intestinal epithelium of newborns from invasive enteric pathogens like the Gram-negative bacterium Salmonella enterica serovar Typhimurium (STm). SIgA is a complex molecule, consisting of an assemblage of two or more IgA monomers, joining (J)-chain, and secretory component (SC), whose exact functions in neutralizing pathogens are only beginning to be elucidated. In this study, we produced and characterized a recombinant human SIgA variant of Sal4, a well-characterized monoclonal antibody (mAb) specific for the O5-antigen of STm lipopolysaccharide (LPS). We demonstrate by flow cytometry, light microscopy, and fluorescence microscopy that Sal4 SIgA promotes the formation of large, densely packed bacterial aggregates in vitro. In a mouse model, passive oral administration of Sal4 SIgA was sufficient to entrap STm within the intestinal lumen and reduce bacterial invasion into gut-associated lymphoid tissues by several orders of magnitude. Bacterial aggregates induced by Sal4 SIgA treatment in the intestinal lumen were recalcitrant to immunohistochemical staining, suggesting the bacteria were encased in a protective capsule. Indeed, a crystal violet staining assay demonstrated that STm secretes an extracellular matrix enriched in cellulose following even short exposures to Sal4 SIgA. Collectively, these results demonstrate that recombinant human SIgA recapitulates key biological activities associated with mucosal immunity and raises the prospect of oral passive immunization to combat enteric diseases.
Collapse
Affiliation(s)
- Angelene
F. Richards
- Department
of Biomedical Sciences, University at Albany
School of Public Health, Albany, New York 12208, United States
- Division
of Infectious Diseases, Wadsworth Center,
New York State Department of Health, Albany, New York 12208, United States
| | - Danielle E. Baranova
- Division
of Infectious Diseases, Wadsworth Center,
New York State Department of Health, Albany, New York 12208, United States
| | - Matteo S. Pizzuto
- Humabs
BioMed SA a Subsidiary of Vir Biotechnology Inc., 6500 Bellinzona, Switzerland
| | - Stefano Jaconi
- Humabs
BioMed SA a Subsidiary of Vir Biotechnology Inc., 6500 Bellinzona, Switzerland
| | - Graham G. Willsey
- Division
of Infectious Diseases, Wadsworth Center,
New York State Department of Health, Albany, New York 12208, United States
| | - Fernando J. Torres-Velez
- Division
of Infectious Diseases, Wadsworth Center,
New York State Department of Health, Albany, New York 12208, United States
| | - Jennifer E. Doering
- Division
of Infectious Diseases, Wadsworth Center,
New York State Department of Health, Albany, New York 12208, United States
| | - Fabio Benigni
- Humabs
BioMed SA a Subsidiary of Vir Biotechnology Inc., 6500 Bellinzona, Switzerland
| | - Davide Corti
- Humabs
BioMed SA a Subsidiary of Vir Biotechnology Inc., 6500 Bellinzona, Switzerland
| | - Nicholas J. Mantis
- Department
of Biomedical Sciences, University at Albany
School of Public Health, Albany, New York 12208, United States
- Division
of Infectious Diseases, Wadsworth Center,
New York State Department of Health, Albany, New York 12208, United States
| |
Collapse
|
11
|
Fiorino F, Pettini E, Koeberling O, Ciabattini A, Pozzi G, Martin LB, Medaglini D. Long-Term Anti-Bacterial Immunity against Systemic Infection by Salmonella enterica Serovar Typhimurium Elicited by a GMMA-Based Vaccine. Vaccines (Basel) 2021; 9:495. [PMID: 34065899 PMCID: PMC8150838 DOI: 10.3390/vaccines9050495] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/27/2022] Open
Abstract
Salmonella Typhimurium (STm) represents the most prevalent cause of invasive non-typhoidal Salmonella (iNTS) disease, and currently no licensed vaccine is available. In this work we characterized the long-term anti-bacterial immunity elicited by a STm vaccine based on Generalized Modules of Membrane Antigens (GMMA) delivering O:4,5 antigen, using a murine model of systemic infection. Subcutaneous immunization of mice with STmGMMA/Alhydrogel elicited rapid, high, and persistent antigen-specific serum IgG and IgM responses. The serum was bactericidal in vitro. O:4,5-specific IgG were also detected in fecal samples after immunization and positively correlated with IgG observed in intestinal washes. Long-lived plasma cells and O:4,5-specific memory B cells were detected in spleen and bone marrow. After systemic STm challenge, a significant reduction of bacterial load in blood, spleen, and liver, as well as a reduction of circulating neutrophils and G-CSF glycoprotein was observed in STmGMMA/Alhydrogel immunized mice compared to untreated animals. Taken together, these data support the development of a GMMA-based vaccine for prevention of iNTS disease.
Collapse
Affiliation(s)
- Fabio Fiorino
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (F.F.); (E.P.); (A.C.); (G.P.)
| | - Elena Pettini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (F.F.); (E.P.); (A.C.); (G.P.)
| | - Oliver Koeberling
- GSK Vaccines Institute for Global Health S.r.l., 53100 Siena, Italy;
| | - Annalisa Ciabattini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (F.F.); (E.P.); (A.C.); (G.P.)
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (F.F.); (E.P.); (A.C.); (G.P.)
| | - Laura B. Martin
- GSK Vaccines Institute for Global Health S.r.l., 53100 Siena, Italy;
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (F.F.); (E.P.); (A.C.); (G.P.)
| |
Collapse
|
12
|
Kariuki S, Owusu-Dabo E. Research on Invasive Nontyphoidal Salmonella Disease and Developments Towards Better Understanding of Epidemiology, Management, and Control Strategies. Clin Infect Dis 2021; 71:S127-S129. [PMID: 32725224 PMCID: PMC7388720 DOI: 10.1093/cid/ciaa315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
During the 11th International Conference on Typhoid and Other Invasive Salmonelloses held in Hanoi, Vietnam, a number of papers were presented on the burden of disease, epidemiology, genomics, management, and control strategies for invasive nontyphoidal Salmonella (iNTS) disease, which is increasingly becoming an important public health threat in low- and middle-income countries, but especially in sub-Saharan Africa (sSA). Although there were minor variations in characteristics of iNTS in different settings (urban vs rural, country to country), it was observed that iNTS has gained greater recognition as a major disease entity in children younger than 5 years. Renewed efforts towards greater understanding of the burden of illness, detection and diagnostic strategies, and management and control of the disease in communities in sSA through the introduction of vaccines will be important.
Collapse
Affiliation(s)
- Samuel Kariuki
- Kenya Medical Research Institute, Centre for Microbiology Research, Nairobi, Kenya
| | - Ellis Owusu-Dabo
- Kwame Nkrumah University of Science and Technology (KNUST), School of Public Health, Kumasi, Ghana
| |
Collapse
|
13
|
Sokaribo AS, Perera SR, Sereggela Z, Krochak R, Balezantis LR, Xing X, Lam S, Deck W, Attah-Poku S, Abbott DW, Tamuly S, White AP. A GMMA-CPS-Based Vaccine for Non-Typhoidal Salmonella. Vaccines (Basel) 2021; 9:vaccines9020165. [PMID: 33671372 PMCID: PMC7922415 DOI: 10.3390/vaccines9020165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 11/16/2022] Open
Abstract
Non-typhoidal Salmonella are a major cause of gastroenteritis worldwide, as well as causing bloodstream infections in sub-Saharan Africa with a high fatality rate. No vaccine is currently available for human use. Current vaccine development strategies are focused on capsular polysaccharides (CPS) present on the surface of non-typhoidal Salmonella. This study aimed to boost the amount of CPS purified from S. Typhimurium for immunization trials. Random mutagenesis with Tn10 transposon increased the production of CPS colanic acid, by 10-fold compared to wildtype. Immunization with colanic acid or colanic acid conjugated to truncated glycoprotein D or inactivated diphtheria toxin did not induce a protective immune response in mice. However, immunization with Generalized Modules for Membrane Antigens (GMMAs) isolated from colanic acid overproducing isolates reduced Salmonella colonization in mice. Our results support the development of a GMMA-CPS-based vaccine against non-typhoidal Salmonella.
Collapse
Affiliation(s)
- Akosiererem S. Sokaribo
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| | - Sumudu R. Perera
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| | - Zoe Sereggela
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| | - Ryan Krochak
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| | - Lindsay R. Balezantis
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| | - Xiaohui Xing
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J4B1, Canada; (X.X.); (D.W.A.)
| | - Shirley Lam
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
| | - William Deck
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
| | - Sam Attah-Poku
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
| | - Dennis Wade Abbott
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J4B1, Canada; (X.X.); (D.W.A.)
| | - Shantanu Tamuly
- Department of Veterinary Biochemistry, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati 781022, Assam, India;
| | - Aaron P. White
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
- Correspondence: ; Tel.: +01-306-966-7485
| |
Collapse
|
14
|
Maiti S, Howlader DR, Halder P, Bhaumik U, Dutta M, Dutta S, Koley H. Bivalent non-typhoidal Salmonella outer membrane vesicles immunized mice sera confer passive protection against gastroenteritis in a suckling mice model. Vaccine 2020; 39:380-393. [PMID: 33303233 DOI: 10.1016/j.vaccine.2020.11.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/06/2020] [Accepted: 11/15/2020] [Indexed: 11/28/2022]
Abstract
Invasive non-typhoidal Salmonella (iNTS) serovars, especially Salmonella Typhimurium (ST) and Salmonella Enteritidis (SE), cause gastroenteritis worldwide. Due to the emergence of multi-drug resistance in iNTS, a broad-spectrum vaccine is urgently needed for the prevention of iNTS infection. Currently, there is no effective licensed vaccine against iNTS available in the market. We have formulated an outer membrane vesicles (OMVs) based bivalent immunogen as a vaccine candidate to generate broad-spectrum protective immunity against both recently circulating prevalent ST and SE. We have isolated OMVs from ST and SE and formulated the immunogen by mixing both OMVs (1:1 ratio). Three doses of bivalent immunogen significantly induced humoral immune responses against lipopolysaccharides (LPSs) and outer membrane proteins (OMPs) as well as a cell-mediated immune response in adult mice. We also observed that proteins of OMVs act as an adjuvant for generation of high levels of anti-LPS antibodies through T cell activation. We then characterized the one-day old suckling mice model for both ST and SE mediated gastroenteritis and used the model for a passive protection study. In the passive protection study, we found the passive transfer of bivalent OMVs immunized sera significantly reduced ST and SE mediated colonization and gastroenteritis symptoms in the colon of suckling mice compared to non-immunized sera recipients. The overall study demonstrated that OMVs based bivalent vaccine could generate broad-spectrum immunity against prevalent iNTS mediated gastroenteritis. This study also established the suckling mice model as a suitable animal model for vaccine study against iNTS mediated gastroenteritis.
Collapse
Affiliation(s)
- Suhrid Maiti
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Debaki Ranjan Howlader
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Prolay Halder
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Ushasi Bhaumik
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Moumita Dutta
- Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India.
| |
Collapse
|
15
|
Piccini G, Montomoli E. Pathogenic signature of invasive non-typhoidal Salmonella in Africa: implications for vaccine development. Hum Vaccin Immunother 2020; 16:2056-2071. [PMID: 32692622 PMCID: PMC7553687 DOI: 10.1080/21645515.2020.1785791] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Invasive non-typhoidal Salmonella (iNTS) infections are a leading cause of bacteremia in Sub-Saharan Africa (sSA), thereby representing a major public health threat. Salmonella Typhimurium clade ST313 and Salmonella Enteriditis lineages associated with Western and Central/Eastern Africa are among the iNTS serovars which are of the greatest concern due to their case-fatality rate, especially in children and in the immunocompromised population. Identification of pathogen-associated features and host susceptibility factors that increase the risk for invasive non-typhoidal salmonellosis would be instrumental for the design of targeted prevention strategies, which are urgently needed given the increasing spread of multidrug-resistant iNTS in Africa. This review summarizes current knowledge of bacterial traits and host immune responses associated with iNTS infections in sSA, then discusses how this knowledge can guide vaccine development while providing a summary of vaccine candidates in preclinical and early clinical development.
Collapse
Affiliation(s)
| | - Emanuele Montomoli
- VisMederi srl , Siena, Italy.,Department of Molecular and Developmental Medicine, University of Siena , Siena, Italy
| |
Collapse
|
16
|
de Alwis R, Tu LTP, Quynh NLT, Thompson CN, Anders KL, Van Thuy NT, Hieu NT, Vi LL, Chau NVV, Duong VT, Chau TTH, Tuyen HT, Nga TVT, Minh PV, Tan TV, Thu TNH, Nhu TDH, Thwaites GE, Simmons C, Baker S. The Role of Maternally Acquired Antibody in Providing Protective Immunity Against Nontyphoidal Salmonella in Urban Vietnamese Infants: A Birth Cohort Study. J Infect Dis 2019; 219:295-304. [PMID: 30321351 PMCID: PMC6306017 DOI: 10.1093/infdis/jiy501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/16/2018] [Indexed: 11/24/2022] Open
Abstract
Background Nontyphoidal Salmonella (NTS) organisms are a major cause of gastroenteritis and bacteremia, but little is known about maternally acquired immunity and natural exposure in infant populations residing in areas where NTS disease is highly endemic. Methods We recruited 503 pregnant mothers and their infants (following delivery) from urban areas in Vietnam and followed infants until they were 1 year old. Exposure to the dominant NTS serovars, Salmonella enterica serovars Typhimurium and Enteritidis, were assessed using lipopolysaccharide (LPS) O antigen–specific antibodies. Antibody dynamics, the role of maternally acquired antibodies, and NTS seroincidence rates were modeled using multivariate linear risk factor models and generalized additive mixed-effect models. Results Transplacental transfer of NTS LPS–specific maternal antibodies to infants was highly efficient. Waning of transplacentally acquired NTS LPS–specific antibodies at 4 months of age left infants susceptible to Salmonella organisms, after which they began to seroconvert. High seroincidences of S. Typhimurium and S. Enteritidis LPS were observed, and infants born with higher anti-LPS titers had greater plasma bactericidal activity and longer protection from seroconversion. Conclusions Although Vietnamese infants have extensive exposure to NTS, maternally acquired antibodies appear to play a protective role against NTS infections during early infancy. These findings suggest that prenatal immunization may be an appropriate strategy to protect vulnerable infants from NTS disease.
Collapse
Affiliation(s)
- Ruklanthi de Alwis
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom.,Program in Emerging Infectious Diseases, Duke University-National University of Singapore (Duke-NUS) Medical School, Singapore.,Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore
| | - Le Thi Phuong Tu
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Nhi Le Thi Quynh
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Corinne N Thompson
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom.,London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Nguyen Thi Van Thuy
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | | | - Lu Lan Vi
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | | | - Vu Thuy Duong
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Tran Thi Hong Chau
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Ha Thanh Tuyen
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Tran Vu Thieu Nga
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Pham Van Minh
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Trinh Van Tan
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Trang Nguyen Hoang Thu
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Tran Do Hoang Nhu
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
| | - Cameron Simmons
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom.,Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Stephen Baker
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom.,Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Baliban SM, Curtis B, Amin MN, Levine MM, Pasetti MF, Simon R. Maternal Antibodies Elicited by Immunization With an O- Polysaccharide Glycoconjugate Vaccine Protect Infant Mice Against Lethal Salmonella Typhimurium Infection. Front Immunol 2019; 10:2124. [PMID: 31555302 PMCID: PMC6743215 DOI: 10.3389/fimmu.2019.02124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 08/23/2019] [Indexed: 12/17/2022] Open
Abstract
Non-typhoidal Salmonella (NTS) are a leading cause of pediatric invasive bacterial infections in sub-Saharan Africa with high associated case fatality rates in children under 5 years old. We have developed glycoconjugate vaccines consisting of the lipid A-removed surface polysaccharide of NTS, core and O-polysaccharide (COPS), and the flagellar monomer protein (FliC) from the homologous serovar as the carrier. We previously established that COPS:FliC was immunogenic and protective in mice immunized as adults or infants; however, the brief period of murine infancy precluded the evaluation of protection against invasive NTS (iNTS) disease in early life. In the present study, we used a mouse model of maternal immunization to investigate transmission of S. Typhimurium COPS:FliC-induced maternal antibodies and protection against lethal iNTS challenge in infant mice. We found that vaccinated dams developed high levels of COPS- and FliC-specific IgG, which were transferred to their offspring. Sera from both vaccinated mothers and their litters mediated complement-dependent bactericidal activity in-vitro. Passively immunized 2-week old infant mice born to vaccinated mothers were fully protected from challenge with an S. Typhimurium blood isolate from sub-Saharan Africa. The pre-clinical findings reported herein demonstrate that anti-COPS:FliC antibodies induced by vaccination are sufficient for protection of murine infants against experimental S. Typhimurium infection. By underscoring the protective role of antibody, our results suggest that maintaining an adequate titer of protective anti-Salmonella antibodies during early life, either through pediatric or maternal COPS:FliC vaccination, may reduce iNTS disease in young children in sub-Saharan Africa.
Collapse
Affiliation(s)
- Scott M. Baliban
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Brittany Curtis
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Mohammed N. Amin
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Myron Mike Levine
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marcela F. Pasetti
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Raphael Simon
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
18
|
Ondari EM, Klemm EJ, Msefula CL, El Ghany MA, Heath JN, Pickard DJ, Barquist L, Dougan G, Kingsley RA, MacLennan CA. Rapid transcriptional responses to serum exposure are associated with sensitivity and resistance to antibody-mediated complement killing in invasive Salmonella Typhimurium ST313. Wellcome Open Res 2019; 4:74. [PMID: 31231691 PMCID: PMC6560496 DOI: 10.12688/wellcomeopenres.15059.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2019] [Indexed: 11/20/2022] Open
Abstract
Background:
Salmonella Typhimurium ST313 exhibits signatures of adaptation to invasive human infection, including higher resistance to humoral immune responses than gastrointestinal isolates. Full resistance to antibody-mediated complement killing (serum resistance) among nontyphoidal
Salmonellae is uncommon, but selection of highly resistant strains could compromise vaccine-induced antibody immunity. Here, we address the hypothesis that serum resistance is due to a distinct genotype or transcriptome response in
S. Typhimurium ST313. Methods: Six
S. Typhimurium ST313 bloodstream isolates, three of which were antibody resistant, were studied. Genomic content (single nucleotide polymorphisms and larger chromosomal modifications) of the strains was determined by Illumina and PACBIO sequencing, and functionally characterized using RNA-seq, transposon directed insertion site sequencing (TraDIS), targeted gene deletion and transfer of selected point mutations in an attempt to identify features associated with serum resistance.
Results: Sequence polymorphisms in genes from strains with atypical serum susceptibility when transferred from strains that were highly resistant or susceptible to a strain that exhibited intermediate susceptibility did not significantly alter serum killing phenotype. No large chromosomal modifications typified serum resistance or susceptibility. Genes required for resistance to serum identified by TraDIS and RNA-seq included those involved in exopolysaccharide synthesis, iron scavenging and metabolism. Most of the down-regulated genes were associated with membrane proteins. Resistant and susceptible strains had distinct transcriptional responses to serum, particularly related to genes responsible for polysaccharide biosynthesis. There was higher upregulation of
wca locus genes, involved in the biosynthesis of colanic acid exopolysaccharide, in susceptible strains and increased expression of
fepE, a regulator of very long-chain lipopolysaccharide in resistant strains. Conclusion: Clinical isolates of
S. Typhimurium ST313 exhibit distinct antibody susceptibility phenotypes that may be associated with changes in gene expression on exposure to serum.
Collapse
Affiliation(s)
- Edna M Ondari
- Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Novartis Vaccines Institute for Global Health, Siena, Italy.,Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - Chisomo L Msefula
- Wellcome Trust Sanger Institute, Hinxton, UK.,Malawi-Liverpool-Wellcome Trust Clinical Research Institute, Blantyre, Malawi.,Department of Microbiology, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Moataz Abd El Ghany
- Wellcome Trust Sanger Institute, Hinxton, UK.,The Westmead Institute for Medical Research and Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead, Australia.,King Abdullah University of Science and Technology , Thuwal, Saudi Arabia
| | - Jennifer N Heath
- Institute of Immunology and Immuotherapy, University of Birmingham, Birmingham, UK
| | | | - Lars Barquist
- Wellcome Trust Sanger Institute, Hinxton, UK.,Helmholtz Institute for RNA-based Infection Research , Würzburg, Germany.,Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Hinxton, UK.,Department of Medicine, University of Cambridge Addenbrooke's Hospital Cambridge, Cambridge, UK
| | | | - Calman A MacLennan
- Institute of Immunology and Immuotherapy, University of Birmingham, Birmingham, UK.,Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Comparative immunogenicity and efficacy of equivalent outer membrane vesicle and glycoconjugate vaccines against nontyphoidal Salmonella. Proc Natl Acad Sci U S A 2018; 115:10428-10433. [PMID: 30262653 PMCID: PMC6187145 DOI: 10.1073/pnas.1807655115] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Nontyphoidal Salmonellae cause a devastating burden of invasive disease in sub-Saharan Africa with high levels of antimicrobial resistance. Vaccination has potential for a major global health impact, but no licensed vaccine is available. The lack of commercial incentive makes simple, affordable technologies the preferred route for vaccine development. Here we compare equivalent Generalized Modules for Membrane Antigens (GMMA) outer membrane vesicles and O-antigen-CRM197 glycoconjugates to deliver lipopolysaccharide O-antigen in bivalent Salmonella Typhimurium and Enteritidis vaccines. Salmonella strains were chosen and tolR deleted to induce GMMA production. O-antigens were extracted from wild-type bacteria and conjugated to CRM197 Purified GMMA and glycoconjugates were characterized and tested in mice for immunogenicity and ability to reduce Salmonella infection. GMMA and glycoconjugate O-antigen had similar structural characteristics, O-acetylation, and glucosylation levels. Immunization with GMMA induced higher anti-O-antigen IgG than glycoconjugate administered without Alhydrogel adjuvant. With Alhydrogel, antibody levels were similar. GMMA induced a diverse antibody isotype profile with greater serum bactericidal activity than glycoconjugate, which induced almost exclusively IgG1. Immunization reduced bacterial colonization of mice subsequently infected with SalmonellaS Typhimurium numbers were lower in tissues of mice vaccinated with GMMA compared with glycoconjugate. S. Enteritidis burden in the tissues was similar in mice immunized with either vaccine. With favorable immunogenicity, low cost, and ability to induce functional antibodies and reduce bacterial burden, GMMA offer a promising strategy for the development of a nontyphoidal Salmonella vaccine compared with established glycoconjugates. GMMA technology is potentially attractive for development of vaccines against other bacteria of global health significance.
Collapse
|
20
|
De Benedetto G, Salvini L, Gotta S, Cescutti P, Micoli F. Investigation on Sugar–Protein Connectivity in Salmonella O-Antigen Glycoconjugate Vaccines. Bioconjug Chem 2018; 29:1736-1747. [DOI: 10.1021/acs.bioconjchem.8b00178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gianluigi De Benedetto
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., via Fiorentina 1, 53100 Siena, Italy
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Ed. C11, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Laura Salvini
- Fondazione Toscana Life Sciences, via Fiorentina 1, 53100 Siena, Italy
| | - Stefano Gotta
- GSK Vaccines S.r.l., via Fiorentina 1, 53100 Siena, Italy
| | - Paola Cescutti
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Ed. C11, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., via Fiorentina 1, 53100 Siena, Italy
| |
Collapse
|
21
|
IgG Responses to Porins and Lipopolysaccharide within an Outer Membrane-Based Vaccine against Nontyphoidal Salmonella Develop at Discordant Rates. mBio 2018; 9:mBio.02379-17. [PMID: 29511082 PMCID: PMC5844998 DOI: 10.1128/mbio.02379-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Antibodies acquired after vaccination or natural infection with Gram-negative bacteria, such as invasive Salmonella enterica serovar Typhimurium, can protect against disease. Immunization with naturally shed outer membrane vesicles from Gram-negative bacteria is being studied for its potential to protect against many infections, since antigens within vesicles maintain their natural conformation and orientation. Shedding can be enhanced through genetic modification, and the resulting particles, generalized modules for membrane antigens (GMMA), not only offer potential as vaccines but also can facilitate the study of B-cell responses to bacterial antigens. Here we show that the response to immunization with GMMA from S. Typhimurium (STmGMMA) provides B-cell-dependent protection and induces antibodies to two immunodominant antigens, lipopolysaccharide (LPS) and porins. Antibodies to LPS O antigen (O-Ag) markedly enhance protection in the spleen, but this effect is less marked in the liver. Strikingly, IgG responses to LPS and porins develop with distinct kinetics. In the first week after immunization, there is a dramatic T-cell-independent B1b-cell-associated induction of all IgG isotypes, except IgG1, to porins but not to LPS. In contrast, production of IgG1 to either antigen was delayed and T cell dependent. Nevertheless, after 1 month, cells in the bone marrow secreting IgG against porins or LPS were present at a similar frequency. Unexpectedly, immunization with O-Ag-deficient STmGMMA did not substantially enhance the anti-porin response. Therefore, IgG switching to all antigens does not develop synchronously within the same complex and so the rate of IgG switching to a single component does not necessarily reflect its frequency within the antigenic complex. Vaccines save millions of lives, yet for some infections there are none. This includes some types of Salmonella infections, killing hundreds of thousands of people annually. We show how a new type of vaccine, called GMMA, that is made from blebs shed from the Salmonella cell wall, works to protect against infection in mice by inducing host proteins (antibodies) specifically recognizing bacterial components (antigens). The rate of development of IgG antibody to antigens within GMMA occurred with different kinetics. However, the antibody response to GMMA persists and is likely to provide prolonged protection for those who need it. These results help show how antibody responses to bacterial antigens develop and how vaccines like GMMA can work and help prevent infection.
Collapse
|
22
|
Juel HB, Thomaides-Brears HB, Darton TC, Jones C, Jones E, Shrestha S, Sie R, Eustace A, Galal U, Kurupati P, Van TT, Thieu NTV, Baker S, Blohmke CJ, Pollard AJ. Salmonella Typhi Bactericidal Antibodies Reduce Disease Severity but Do Not Protect against Typhoid Fever in a Controlled Human Infection Model. Front Immunol 2018; 8:1916. [PMID: 29387052 PMCID: PMC5776093 DOI: 10.3389/fimmu.2017.01916] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/14/2017] [Indexed: 01/12/2023] Open
Abstract
Effective vaccines against Salmonella Typhi, a major cause of febrile illness in tropical regions, can have a significant effect as a disease control measure. Earlier work has shown that immunization with either of two Salmonella Typhi vaccines, licensed Ty21a or candidate M01ZH09, did not provide full immunity in a controlled human infection model. Here, we describe the human humoral immune responses to these oral vaccines and their functional role in protection after challenge with S. Typhi. Serum, obtained from healthy volunteers before and after vaccination with Ty21a or M01ZH09 or placebo and before and after oral challenge with wild-type S. Typhi, was assessed for bactericidal activity. Single-dose vaccination with M01ZH09 induced an increase in serum bactericidal antibodies (p = 0.001) while three doses of Ty21a did not. No association between bactericidal activity and protection against typhoid after challenge was seen in either vaccine arm. Bactericidal activity after vaccination correlated significantly with delayed disease onset (p = 0.013), lower bacterial burden (p = 0.006), and decreased disease severity scores (p = 0.021). Depletion of antibodies directed against lipopolysaccharide significantly reduced bactericidal activity (p = 0.009). We conclude that antibodies induced after ingestion of oral live-attenuated typhoid vaccines or after challenge with wild-type S. Typhi exhibit bactericidal activity. This bactericidal activity is mediated by anti-O:LPS antibodies and significantly reduces clinical symptoms but does not provide sterile immunity. This directs future vaccine studies toward other antigens or mechanisms of protection against typhoid.
Collapse
Affiliation(s)
- Helene B Juel
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom.,Statens Serum Institut, Copenhagen, Denmark
| | - Helena B Thomaides-Brears
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Thomas C Darton
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Claire Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Elizabeth Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Sonu Shrestha
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Rebecca Sie
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Andrew Eustace
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Ushma Galal
- Nuffield Department of Primary Care Health Sciences, Clinical Trials Unit, University of Oxford, Oxford, United Kingdom
| | - Prathiba Kurupati
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Tan T Van
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Nga T V Thieu
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Stephen Baker
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,The Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Christoph J Blohmke
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
23
|
Zhao X, Dai Q, Jia R, Zhu D, Liu M, Wang M, Chen S, Sun K, Yang Q, Wu Y, Cheng A. Two Novel Salmonella Bivalent Vaccines Confer Dual Protection against Two Salmonella Serovars in Mice. Front Cell Infect Microbiol 2017; 7:391. [PMID: 28929089 PMCID: PMC5591321 DOI: 10.3389/fcimb.2017.00391] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 08/22/2017] [Indexed: 12/12/2022] Open
Abstract
Non-typhoidal Salmonella includes thousands of serovars that are leading causes of foodborne diarrheal illness worldwide. In this study, we constructed three bivalent vaccines for preventing both Salmonella Typhimurium and Salmonella Newport infections by using the aspartate semialdehyde dehydrogenase (Asd)-based balanced-lethal vector-host system. The constructed Asd+ plasmid pCZ11 carrying a subset of the Salmonella Newport O-antigen gene cluster including the wzx-wbaR-wbaL-wbaQ-wzy-wbaW-wbaZ genes was introduced into three Salmonella Typhimurium mutants: SLT19 (Δasd) with a smooth LPS phenotype, SLT20 (Δasd ΔrfbN) with a rough LPS phenotype, and SLT22 (Δasd ΔrfbN ΔpagL::T araC PBADrfbN) with a smooth LPS phenotype when grown with arabinose. Immunoblotting demonstrated that SLT19 harboring pCZ11 [termed SLT19 (pCZ11)] co-expressed the homologous and heterologous O-antigens; SLT20 (pCZ11) exclusively expressed the heterologous O-antigen; and when arabinose was available, SLT22 (pCZ11) expressed both types of O-antigens, while in the absence of arabinose, SLT22 (pCZ11) expressed only the heterologous O-antigen. Exclusive expression of the heterologous O-antigen in Salmonella Typhimurium decreased the swimming ability of the bacterium and its susceptibility to polymyxin B. Next, the crp gene was deleted from the three recombinant strains for attenuation purposes, generating the three bivalent vaccine strains SLT25 (pCZ11), SLT26 (pCZ11), and SLT27 (pCZ11), respectively. Groups of BALB/c mice (12 mice/group) were orally immunized with 109 CFU of each vaccine strain twice at an interval of 4 weeks. Compared with a mock immunization, immunization with all three vaccine strains induced significant serum IgG responses against both Salmonella Typhimurium and Salmonella Newport LPS. The bacterial loads in the mouse tissues were significantly lower in the three vaccine-strain-immunized groups than in the mock group after either Salmonella Typhimurium or Salmonella Newport lethal challenge. All of the mice in the three vaccine-immunized groups survived the lethal Salmonella Typhimurium challenge. In contrast, SLT26 (pCZ11) and SLT27 (pCZ11) conferred full protection against lethal Salmonella Newport challenge, but SLT25 (pCZ11) provided only 50% heterologous protection. Thus, we developed two novel Salmonella bivalent vaccines, SLT26 (pCZ11) and SLT27 (pCZ11), suggesting that the delivery of a heterologous O-antigen in attenuated Salmonella strains is a prospective approach for developing Salmonella vaccines with broad serovar coverage.
Collapse
Affiliation(s)
- Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Qinlong Dai
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Kunfeng Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| |
Collapse
|
24
|
Fiorino F, Rondini S, Micoli F, Lanzilao L, Alfini R, Mancini F, MacLennan CA, Medaglini D. Immunogenicity of a Bivalent Adjuvanted Glycoconjugate Vaccine against Salmonella Typhimurium and Salmonella Enteritidis. Front Immunol 2017; 8:168. [PMID: 28289411 PMCID: PMC5326758 DOI: 10.3389/fimmu.2017.00168] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/02/2017] [Indexed: 12/12/2022] Open
Abstract
Salmonella enterica serovars Typhimurium and Enteritidis are the predominant causes of invasive non-typhoidal Salmonella (iNTS) disease. Considering the co-endemicity of S. Typhimurium and S. Enteritidis, a bivalent vaccine formulation against both pathogens is necessary for protection against iNTS disease, thus investigation of glycoconjugate combination is required. In the present work, we investigated the immune responses induced by S. Typhimurium and S. Enteritidis monovalent and bivalent glycoconjugate vaccines adjuvanted with aluminum hydroxide (alum) only or in combination with cytosine-phosphorothioate-guanine oligodeoxynucleotide (CpG). Humoral and cellular, systemic and local, immune responses were characterized in two different mouse strains. All conjugate vaccines elicited high levels of serum IgG against the respective O-antigens (OAg) with bactericidal activity. The bivalent conjugate vaccine induced systemic production of antibodies against both S. Typhimurium and S. Enteritidis OAg. The presence of alum or alum + CpG adjuvants in vaccine formulations significantly increased the serum antigen-specific antibody production. The alum + CpG bivalent vaccine formulation triggered the highest systemic anti-OAg antibodies and also a significant increase of anti-OAg IgG in intestinal washes and fecal samples, with a positive correlation with serum levels. These data demonstrate the ability of monovalent and bivalent conjugate vaccines against S. Typhimurium and S. Enteritidis to induce systemic and local immune responses in different mouse strains, and highlight the suitability of a bivalent glycoconjugate formulation, especially when adjuvanted with alum + CpG, as a promising candidate vaccine against iNTS disease.
Collapse
Affiliation(s)
- Fabio Fiorino
- Laboratorio di Microbiologia Molecolare e Biotecnologia (LA.M.M.B.), Dipartimento di Biotecnologie Mediche, Università di Siena , Siena , Italy
| | - Simona Rondini
- GSK Vaccines Institute for Global Health S.r.l. (formerly Novartis Vaccines Institute for Global Health S.r.l.) , Siena , Italy
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health S.r.l. (formerly Novartis Vaccines Institute for Global Health S.r.l.) , Siena , Italy
| | - Luisa Lanzilao
- GSK Vaccines Institute for Global Health S.r.l. (formerly Novartis Vaccines Institute for Global Health S.r.l.) , Siena , Italy
| | - Renzo Alfini
- GSK Vaccines Institute for Global Health S.r.l. (formerly Novartis Vaccines Institute for Global Health S.r.l.) , Siena , Italy
| | - Francesca Mancini
- GSK Vaccines Institute for Global Health S.r.l. (formerly Novartis Vaccines Institute for Global Health S.r.l.) , Siena , Italy
| | - Calman A MacLennan
- Jenner Institute, Nuffield Department of Medicine, University of Oxford , Oxford , UK
| | - Donata Medaglini
- Laboratorio di Microbiologia Molecolare e Biotecnologia (LA.M.M.B.), Dipartimento di Biotecnologie Mediche, Università di Siena , Siena , Italy
| |
Collapse
|
25
|
Necchi F, Saul A, Rondini S. Development of a high-throughput method to evaluate serum bactericidal activity using bacterial ATP measurement as survival readout. PLoS One 2017; 12:e0172163. [PMID: 28192483 PMCID: PMC5305226 DOI: 10.1371/journal.pone.0172163] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/31/2017] [Indexed: 11/18/2022] Open
Abstract
Serum Bactericidal Activity (SBA) assay is the method of choice to evaluate the complement-mediated functional activity of both infection- and vaccine-induced antibodies. To perform a typical SBA assay, serial dilutions of sera are incubated with target bacterial strains and complement. The conventional SBA assay is based on plating on agar the SBA reaction mix and counting the surviving bacterial colony forming units (CFU) at each serum dilution. Even with automated colony counting, it is labor-intensive, time-consuming and not amenable for large-scale studies. Here, we have developed a luminescence-based SBA (L-SBA) method able to detect surviving bacteria by measuring their ATP. At the end of the SBA reaction, a single commercially available reagent is added to each well of the SBA plate, and the resulting luminescence signal is measured in a microplate reader. The signal obtained is proportional to the ATP present, which is directly proportional to the number of viable bacteria. Bactericidal activity is subsequently calculated. We demonstrated the applicability of L-SBA with multiple bacterial serovars, from 5 species: Citrobacter freundii, Salmonella enterica serovars Typhimurium and Enteritidis, Shigella flexneri serovars 2a and 3a, Shigella sonnei and Neisseria meningitidis. Serum bactericidal titers obtained by the luminescence readout method strongly correlate with the data obtained by the conventional agar plate-based assay, and the new assay is highly reproducible. L-SBA considerably shortens assay time, facilitates data acquisition and analysis and reduces the operator dependency, avoiding the plating and counting of CFUs. Our results demonstrate that L-SBA is a useful high-throughput bactericidal assay.
Collapse
Affiliation(s)
- Francesca Necchi
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Allan Saul
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Simona Rondini
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| |
Collapse
|
26
|
De Benedetto G, Alfini R, Cescutti P, Caboni M, Lanzilao L, Necchi F, Saul A, MacLennan CA, Rondini S, Micoli F. Characterization of O-antigen delivered by Generalized Modules for Membrane Antigens (GMMA) vaccine candidates against nontyphoidal Salmonella. Vaccine 2016; 35:419-426. [PMID: 27998639 DOI: 10.1016/j.vaccine.2016.11.089] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/21/2016] [Accepted: 11/27/2016] [Indexed: 12/20/2022]
Abstract
Invasive nontyphoidal Salmonella disease (iNTS) is a leading cause of death and morbidity in Africa. The most common pathogens are Salmonella enterica serovars Typhimurium and Enteritidis. The O-antigen portion of their lipopolysaccharide is a target of protective immunity and vaccines targeting O-antigen are currently in development. Here we investigate the use of Generalized Modules for Membrane Antigens (GMMA) as delivery system for S. Typhimurium and S. Enteritidis O-antigen. Gram-negative bacteria naturally shed outer membrane in a blebbing process. By deletion of the tolR gene, the level of shedding was greatly enhanced. Further genetic modifications were introduced into the GMMA-producing strains in order to reduce reactogenicity, by detoxifying the lipid A moiety of lipopolysaccharide. We found that genetic mutations can impact on expression of O-antigen chains. All S. Enteritidis GMMA characterized had an O-antigen to protein w/w ratio higher than 0.6, while the ratio was 0.7 for S. Typhimurium ΔtolR GMMA, but decreased to less than 0.1 when further mutations for lipid A detoxification were introduced. Changes were also observed in O-antigen chain length and level and/or position of O-acetylation. When tested in mice, the GMMA induced high levels of anti-O-antigen-specific IgG functional antibodies, despite variation in density and O-antigen structural modifications. In conclusion, simplicity of manufacturing process and low costs of production, coupled with encouraging immunogenicity data, make GMMA an attractive strategy to further investigate for the development of a vaccine against iNTS.
Collapse
Affiliation(s)
- G De Benedetto
- GSK Vaccines Institute for Global Health (GVGH) S.r.l. (former Novartis Vaccines Institute for Global Health, NVGH), Via Fiorentina 1, 53100 Siena, Italy; Dipartimento di Scienze della Vita, Ed. C11, Università degli Studi di Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| | - R Alfini
- GSK Vaccines Institute for Global Health (GVGH) S.r.l. (former Novartis Vaccines Institute for Global Health, NVGH), Via Fiorentina 1, 53100 Siena, Italy
| | - P Cescutti
- Dipartimento di Scienze della Vita, Ed. C11, Università degli Studi di Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| | - M Caboni
- Antimicrobial Discovery Center, Department of Biology, 360 Huntington Ave., Boston, MA 02115, United States
| | - L Lanzilao
- GSK Vaccines Institute for Global Health (GVGH) S.r.l. (former Novartis Vaccines Institute for Global Health, NVGH), Via Fiorentina 1, 53100 Siena, Italy
| | - F Necchi
- GSK Vaccines Institute for Global Health (GVGH) S.r.l. (former Novartis Vaccines Institute for Global Health, NVGH), Via Fiorentina 1, 53100 Siena, Italy
| | - A Saul
- GSK Vaccines Institute for Global Health (GVGH) S.r.l. (former Novartis Vaccines Institute for Global Health, NVGH), Via Fiorentina 1, 53100 Siena, Italy
| | - C A MacLennan
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - S Rondini
- GSK Vaccines Institute for Global Health (GVGH) S.r.l. (former Novartis Vaccines Institute for Global Health, NVGH), Via Fiorentina 1, 53100 Siena, Italy
| | - F Micoli
- GSK Vaccines Institute for Global Health (GVGH) S.r.l. (former Novartis Vaccines Institute for Global Health, NVGH), Via Fiorentina 1, 53100 Siena, Italy.
| |
Collapse
|
27
|
Goh YS, Necchi F, O’Shaughnessy CM, Micoli F, Gavini M, Young SP, Msefula CL, Gondwe EN, Mandala WL, Gordon MA, Saul AJ, MacLennan CA. Bactericidal Immunity to Salmonella in Africans and Mechanisms Causing Its Failure in HIV Infection. PLoS Negl Trop Dis 2016; 10:e0004604. [PMID: 27057743 PMCID: PMC4825999 DOI: 10.1371/journal.pntd.0004604] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 03/12/2016] [Indexed: 12/17/2022] Open
Abstract
Background Nontyphoidal strains of Salmonella are a leading cause of death among HIV-infected Africans. Antibody-induced complement-mediated killing protects healthy Africans against Salmonella, but increased levels of anti-lipopolysaccharide (LPS) antibodies in some HIV-infected African adults block this killing. The objective was to understand how these high levels of anti-LPS antibodies interfere with the killing of Salmonella. Methodology/Principal Findings Sera and affinity-purified antibodies from African HIV-infected adults that failed to kill invasive S. Typhimurium D23580 were compared to sera from HIV-uninfected and HIV-infected subjects with bactericidal activity. The failure of sera from certain HIV-infected subjects to kill Salmonella was found to be due to an inherent inhibitory effect of anti-LPS antibodies. This inhibition was concentration-dependent and strongly associated with IgA and IgG2 anti-LPS antibodies (p<0.0001 for both). IgG anti-LPS antibodies, from sera of HIV-infected individuals that inhibit killing at high concentration, induced killing when diluted. Conversely, IgG, from sera of HIV-uninfected adults that induce killing, inhibited killing when concentrated. IgM anti-LPS antibodies from all subjects also induced Salmonella killing. Finally, the inhibitory effect of high concentrations of anti-LPS antibodies is seen with IgM as well as IgG and IgA. No correlation was found between affinity or avidity, or complement deposition or consumption, and inhibition of killing. Conclusion/Significance IgG and IgM classes of anti-S. Typhimurium LPS antibodies from HIV-infected and HIV-uninfected individuals are bactericidal, while at very high concentrations, anti-LPS antibodies of all classes inhibit in vitro killing of Salmonella. This could be due to a variety of mechanisms relating to the poor ability of IgA and IgG2 to activate complement, and deposition of complement at sites where it cannot insert in the bacterial membrane. Vaccine trials are required to understand the significance of lack of in vitro killing by anti-LPS antibodies from a minority of HIV-infected individuals with impaired immune homeostasis. Bacteremia caused by nontyphoidal Salmonellae are a major health burden in Africa. While antibody-induced complement-mediated killing protects healthy Africans against Salmonella, increased levels of anti-LPS antibodies in some HIV-infected Africans block this killing. Little is known about the mechanism of the interference of killing by these antibodies. Here, we compared sera and affinity-purified antibodies from African HIV-infected adults that are unable to kill invasive S. Typhimurium D23580, with sera from HIV-uninfected and HIV-infected subjects with bactericidal activity. We found that the blocking effect of anti-LPS antibodies is a factor of antibody concentration, rather than antibody structure or specificity. While all three isotypes (IgG, IgA and IgM) can inhibit killing of Salmonella at grossly high concentrations, the IgG and IgM isotypes of the anti-LPS antibodies have in vitro bactericidal activity against invasive African S. Typhimurium. Inhibition of killing did not associate with antibody affinity or avidity, or complement deposition or consumption. It is possible that a LPS-based vaccine would induce antibodies at bactericidal rather than inhibitory concentrations in HIV-uninfected individuals. In HIV-infected individuals, it is uncertain whether vaccination will induce a protective response or a dysregulated excess of anti-LPS antibodies that impairs serum killing of Salmonella.
Collapse
Affiliation(s)
- Yun Shan Goh
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore
| | - Francesca Necchi
- Sclavo Behring Vaccines Institute for Global Health, a GlaxoSmith Kline Company, Siena, Italy
| | - Colette M. O’Shaughnessy
- School of Immunity and Infection, College of Medicine and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Francesca Micoli
- Sclavo Behring Vaccines Institute for Global Health, a GlaxoSmith Kline Company, Siena, Italy
| | | | - Stephen P. Young
- Centre for Translational Inflammation Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Chisomo L. Msefula
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
- Department of Pathology, Division of Microbiology, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Esther N. Gondwe
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
- Department of Basic Medical Sciences, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Wilson L. Mandala
- Centre for Translational Inflammation Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Melita A. Gordon
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Allan J. Saul
- Sclavo Behring Vaccines Institute for Global Health, a GlaxoSmith Kline Company, Siena, Italy
| | - Calman A. MacLennan
- School of Immunity and Infection, College of Medicine and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Tennant SM, MacLennan CA, Simon R, Martin LB, Khan MI. Nontyphoidal salmonella disease: Current status of vaccine research and development. Vaccine 2016; 34:2907-2910. [PMID: 27032517 DOI: 10.1016/j.vaccine.2016.03.072] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 03/09/2016] [Indexed: 12/30/2022]
Abstract
Among more than 2500 nontyphoidal Salmonella enterica (NTS) serovars, S. enterica serovar Typhimurium and S. enterica serovar Enteritidis account for approximately fifty percent of all human isolates of NTS reported globally. The global incidence of NTS gastroenteritis in 2010 was estimated to be 93 million cases, approximately 80 million of which were contracted via food-borne transmission. It is estimated that 155,000 deaths resulted from NTS in 2010. NTS also causes severe, extra-intestinal, invasive bacteremia, referred to as invasive nontyphoidal Salmonella (iNTS) disease. iNTS disease usually presents as a febrile illness, frequently without gastrointestinal symptoms, in both adults and children. Symptoms of iNTS are similar to malaria, often including fever (>90%) and splenomegaly (>40%). The underlying reasons for the high rates of iNTS disease in Africa are still being elucidated. Evidence from animal and human studies supports the feasibility of developing a safe and effective vaccine against iNTS. Both antibodies and complement can kill Salmonella species in vitro. Proof-of-principle studies in animal models have demonstrated efficacy for live attenuated and subunit vaccines that target the O-antigens, flagellin proteins, and other outer membrane proteins of serovars Typhimurium and Enteritidis. More recently, a novel delivery strategy for NTS vaccines has been developed: the Generalized Modules for Membrane Antigens (GMMA) technology which presents surface polysaccharides and outer membrane proteins in their native conformation. GMMA technology is self-adjuvanting, as it delivers multiple pathogen-associated molecular pattern molecules. GMMA may be particularly relevant for low- and middle-income countries as it has the potential for high immunologic potency at a low cost and involves a relatively simple production process without the need for complex conjugation. Several vaccines for the predominant NTS serovars Typhimurium and Enteritidis, are currently under development.
Collapse
Affiliation(s)
- Sharon M Tennant
- Center for Vaccine Development and Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Calman A MacLennan
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom; Wellcome Trust Sanger Institute, Wellcome Trust Genomes Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Raphael Simon
- Center for Vaccine Development and Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Laura B Martin
- GSK Vaccines Institute for Global Health, S.r.l. Via Fiorentina 1, 53100 Siena, Italy
| | - M Imran Khan
- Center of Excellence in Woman and Child Health, The Aga Khan University, Stadium Road Karachi 74800, Pakistan.
| |
Collapse
|
29
|
Aribam SD, Harada T, Elsheimer-Matulova M, Iwata T, Kanehira K, Hikono H, Matsui H, Ogawa Y, Shimoji Y, Eguchi M. Specific Monoclonal Antibody Overcomes the Salmonella enterica Serovar Typhimurium's Adaptive Mechanisms of Intramacrophage Survival and Replication. PLoS One 2016; 11:e0151352. [PMID: 26986057 PMCID: PMC4795626 DOI: 10.1371/journal.pone.0151352] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/26/2016] [Indexed: 12/31/2022] Open
Abstract
Salmonella-specific antibodies play an important role in host immunity; however, the mechanisms of Salmonella clearance by pathogen-specific antibodies remain to be completely elucidated since previous studies on antibody-mediated protection have yielded inconsistent results. These inconsistencies are at least partially attributable to the use of polyclonal antibodies against Salmonella antigens. Here, we developed a new monoclonal antibody (mAb)-449 and identified its related immunogen that protected BALB/c mice from infection with Salmonella enterica serovar Typhimurium. In addition, these data indicate that the mAb-449 immunogen is likely a major protective antigen. Using in vitro infection studies, we also analyzed the mechanism by which mAb-449 conferred host protection. Notably, macrophages infected with mAb-449-treated S. Typhimurium showed enhanced pathogen uptake compared to counterparts infected with control IgG-treated bacteria. Moreover, these macrophages produced elevated levels of pro-inflammatory cytokine TNFα and nitric oxide, indicating that mAb-449 enhanced macrophage activation. Finally, the number of intracellular bacteria in mAb-449-activated macrophages decreased considerably, while the opposite was found in IgG-treated controls. Based on these findings, we suggest that, although S. Typhimurium has the potential to survive and replicate within macrophages, host production of a specific antibody can effectively mediate macrophage activation for clearance of intracellular bacteria.
Collapse
Affiliation(s)
- Swarmistha Devi Aribam
- National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305–0856, Japan
| | - Tomoyuki Harada
- National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305–0856, Japan
| | | | - Taketoshi Iwata
- National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305–0856, Japan
| | - Katsushi Kanehira
- National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305–0856, Japan
| | - Hirokazu Hikono
- National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305–0856, Japan
| | - Hidenori Matsui
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108–8641, Japan
| | - Yohsuke Ogawa
- National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305–0856, Japan
| | - Yoshihiro Shimoji
- National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305–0856, Japan
| | - Masahiro Eguchi
- National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305–0856, Japan
- * E-mail:
| |
Collapse
|
30
|
Stefanetti G, Saul A, MacLennan CA, Micoli F. Click Chemistry Applied to the Synthesis of Salmonella Typhimurium O-Antigen Glycoconjugate Vaccine on Solid Phase with Sugar Recycling. Bioconjug Chem 2015; 26:2507-13. [PMID: 26549104 DOI: 10.1021/acs.bioconjchem.5b00521] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A solid-phase conjugation method was developed and applied to the synthesis of an O-antigen based glycoconjugate vaccine against Salmonella Typhimurium, with CRM197 as the carrier protein. Copper-free click chemistry was used as the conjugation chemistry, after derivatizing the sugar and the protein components with alkyne and azido linkers, respectively. This chemistry has the advantage of not deactivating functional groups during the conjugation step, thereby allowing the recycling of unreacted components. The activated carrier protein was adsorbed to an anion exchange matrix and quantitatively conjugated to the O-antigen. The resulting conjugate was eluted from the resin free of unconjugated sugar which was previously removed by simple washing steps. Unreacted O-antigen was recycled by addition to a new batch of resin-CRM197 resulting in further quantitative protein conjugation. This process has advantages in relation to reduction of costs for production of conjugate vaccines, allowing unreacted sugar recovery and simplifying the purification of the glycoconjugate.
Collapse
Affiliation(s)
- Giuseppe Stefanetti
- GSK Vaccines Institute for Global Health (former Novartis Vaccines Institute for Global Health NVGH) , Via Fiorentina 1, 53100 Siena, Italy
| | - Allan Saul
- GSK Vaccines Institute for Global Health (former Novartis Vaccines Institute for Global Health NVGH) , Via Fiorentina 1, 53100 Siena, Italy
| | - Calman A MacLennan
- Jenner Institute, Nuffield Department of Medicine, University of Oxford , Oxford, OX3 7DQ, United Kingdom.,Wellcome Trust Sanger Institute , Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (former Novartis Vaccines Institute for Global Health NVGH) , Via Fiorentina 1, 53100 Siena, Italy
| |
Collapse
|
31
|
Strain Selection for Generation of O-Antigen-Based Glycoconjugate Vaccines against Invasive Nontyphoidal Salmonella Disease. PLoS One 2015; 10:e0139847. [PMID: 26445460 PMCID: PMC4596569 DOI: 10.1371/journal.pone.0139847] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/17/2015] [Indexed: 01/09/2023] Open
Abstract
Nontyphoidal Salmonellae, principally S. Typhimurium and S. Enteritidis, are a major cause of invasive bloodstream infections in sub-Saharan Africa with no vaccine currently available. Conjugation of lipopolysaccharide O-antigen to a carrier protein constitutes a promising vaccination strategy. Here we describe a rational process to select the most appropriate isolates of Salmonella as source of O-antigen for developing a bivalent glycoconjugate vaccine. We screened a library of 30 S. Typhimurium and 21 S. Enteritidis in order to identify the most suitable strains for large scale O-antigen production and generation of conjugate vaccines. Initial screening was based on growth characteristics, safety profile of the isolates, O-antigen production, and O-antigen characteristics in terms of molecular size, O-acetylation and glucosylation level and position, as determined by phenol sulfuric assay, NMR, HPLC-SEC and HPAEC-PAD. Three animal isolates for each serovar were identified and used to synthesize candidate glycoconjugate vaccines, using CRM197 as carrier protein. The immunogenicity of these conjugates and the functional activity of the induced antibodies was investigated by ELISA, serum bactericidal assay and flow cytometry. S. Typhimurium O-antigen showed high structural diversity, including O-acetylation of rhamnose in a Malawian invasive strain generating a specific immunodominant epitope. S. Typhimurium conjugates provoked an anti-O-antigen response primarily against the O:5 determinant. O-antigen from S. Enteritidis was structurally more homogeneous than from S. Typhimurium, and no idiosyncratic antibody responses were detected for the S. Enteritidis conjugates. Of the three initially selected isolates, two S. Typhimurium (1418 and 2189) and two S. Enteritidis (502 and 618) strains generated glycoconjugates able to induce high specific antibody levels with high breadth of serovar-specific strain coverage, and were selected for use in vaccine production. The strain selection approach described is potentially applicable to the development of glycoconjugate vaccines against other bacterial pathogens.
Collapse
|
32
|
Monoclonal Antibodies of a Diverse Isotype Induced by an O-Antigen Glycoconjugate Vaccine Mediate In Vitro and In Vivo Killing of African Invasive Nontyphoidal Salmonella. Infect Immun 2015; 83:3722-31. [PMID: 26169269 PMCID: PMC4534659 DOI: 10.1128/iai.00547-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/30/2015] [Indexed: 12/15/2022] Open
Abstract
Nontyphoidal Salmonella (NTS), particularly Salmonella enterica serovars Typhimurium and Enteritidis, is responsible for a major global burden of invasive disease with high associated case-fatality rates. We recently reported the development of a candidate O-antigen–CRM197 glycoconjugate vaccine against S. Typhimurium. Here, using a panel of mouse monoclonal antibodies generated by the vaccine, we examined the relative efficiency of different antibody isotypes specific for the O:4 antigen of S. Typhimurium to effect in vitro and in vivo killing of the invasive African S. Typhimurium strain D23580. All O:4-specific antibody isotypes could mediate cell-free killing and phagocytosis of S. Typhimurium by mouse blood cells. Opsonization of Salmonella with O:4-specific IgA, IgG1, IgG2a, and IgG2b, but not IgM, resulted in cell-dependent bacterial killing. At high concentrations, O:4-specific antibodies inhibited both cell-free complement-mediated and cell-dependent opsonophagocytic killing of S. Typhimurium in vitro. Using passive immunization in mice, the O:4-specific antibodies provided in vivo functional activity by decreasing the bacterial load in the blood and tissues, with IgG2a and IgG2b being the most effective isotypes. In conclusion, an O-antigen–CRM197 glycoconjugate vaccine can induce O-antigen-specific antibodies of different isotypes that exert in vitro and in vivo killing of S. Typhimurium.
Collapse
|
33
|
Yang J, Barrila J, Roland KL, Kilbourne J, Ott CM, Forsyth RJ, Nickerson CA. Characterization of the Invasive, Multidrug Resistant Non-typhoidal Salmonella Strain D23580 in a Murine Model of Infection. PLoS Negl Trop Dis 2015; 9:e0003839. [PMID: 26091096 PMCID: PMC4474555 DOI: 10.1371/journal.pntd.0003839] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/18/2015] [Indexed: 01/09/2023] Open
Abstract
A distinct pathovar of Salmonella enterica serovar Typhimurium, ST313, has emerged in sub-Saharan Africa as a major cause of fatal bacteremia in young children and HIV-infected adults. D23580, a multidrug resistant clinical isolate of ST313, was previously shown to have undergone genome reduction in a manner that resembles that of the more human-restricted pathogen, Salmonella enterica serovar Typhi. It has since been shown through tissue distribution studies that D23580 is able to establish an invasive infection in chickens. However, it remains unclear whether ST313 can cause lethal disease in a non-human host following a natural course of infection. Herein we report that D23580 causes lethal and invasive disease in a murine model of infection following peroral challenge. The LD50 of D23580 in female BALB/c mice was 4.7 x 105 CFU. Tissue distribution studies performed 3 and 5 days post-infection confirmed that D23580 was able to more rapidly colonize the spleen, mesenteric lymph nodes and gall bladder in mice when compared to the well-characterized S. Typhimurium strain SL1344. D23580 exhibited enhanced resistance to acid stress relative to SL1344, which may lend towards increased capability to survive passage through the gastrointestinal tract as well as during its intracellular lifecycle. Interestingly, D23580 also displayed higher swimming motility relative to SL1344, S. Typhi strain Ty2, and the ST313 strain A130. Biochemical tests revealed that D23580 shares many similar metabolic features with SL1344, with several notable differences in the Voges-Proskauer and catalase tests, as well alterations in melibiose, and inositol utilization. These results represent the first full duration infection study using an ST313 strain following the entire natural course of disease progression, and serve as a benchmark for ongoing and future studies into the pathogenesis of D23580. A deadly form of non-typhoidal Salmonella has emerged as a major cause of invasive disease in sub-Saharan Africa. Initial genomic profiling of this novel Salmonella sequence type, ST313, indicated that although it is technically classified as S. Typhimurium (a serovar characterized by a broad host range), it may be evolving towards becoming a more human-specific, ‘typhoid-like’ pathogen. However, it was recently demonstrated that ST313 strains were indeed able to establish an invasive and damaging infection in chickens. Despite these important findings, it remains unclear whether ST313 is able to cause lethal disease in a non-human host, since no study has yet followed the entire natural course of disease progression. As such, there are no data available concerning the median lethal dose (LD50) of any ST313 strain. This is an important metric, as the LD50 value will serve as a benchmark for mechanistic studies focused on understanding the relationship between virulence and the phenotypic and molecular genetic attributes associated with ST313 infections. Here we report that D23580 causes lethal disease in BALB/c mice and determined the LD50 following peroral challenge. Phenotypic characterization revealed distinct differences in tissue distribution, acid stress resistance, and biochemical utilization between D23580 and the ‘classic’ Typhimurium strain SL1344.
Collapse
Affiliation(s)
- Jiseon Yang
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Jennifer Barrila
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Kenneth L. Roland
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Jacquelyn Kilbourne
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - C. Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, Texas, United States of America
| | - Rebecca J. Forsyth
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Cheryl A. Nickerson
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
34
|
Bridge DR, Whitmire JM, Gilbreath JJ, Metcalf ES, Merrell DS. An enterobacterial common antigen mutant of Salmonella enterica serovar Typhimurium as a vaccine candidate. Int J Med Microbiol 2015; 305:511-22. [PMID: 26070977 DOI: 10.1016/j.ijmm.2015.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 05/15/2015] [Accepted: 05/26/2015] [Indexed: 11/19/2022] Open
Abstract
Due to increasing rates of invasive Salmonella enterica serovar Typhimurium infection, there is a need for an effective vaccine to prevent this disease. Previous studies showed that a mutation in the first gene of the Enterobacterial common antigen biosynthetic pathway, wecA, resulted in attenuation of S. Typhimurium in a murine model of salmonellosis. Furthermore, immunization with a wecA(-) strain protected against lethal challenge with the parental wild type S. Typhimurium strain. Herein, we examined whether the S. Typhimurium wecA(-) strain could also provide cross-protection against non-parental strains of S. Typhimurium and S. Enteritidis. We found that intraperitoneal immunization (IP) with S. Typhimurium SL1344 wecA(-) resulted in a significant increase in survival compared to control mice for all Salmonella challenge strains tested. Oral immunization with SL1344 wecA(-) also resulted in increased survival; however, protection was less significant than with intraperitoneal immunization. The increase in survival of SL1344 wecA(-) immunized mice was associated with a Salmonella-specific IgG antibody response. Furthermore, analysis of sera from IP and orally immunized animals revealed cross-reactive antibodies to numerous Salmonella isolates. Functional analysis of antibodies found within the sera from IP immunized animals revealed agglutination and opsonophagocytic activity against all tested O:4 Salmonella serovars. Together these results indicate that immunization with a S. Typhimurium wecA(-) strain confers protection against lethal challenge with wild type S. Typhimurium and S. Enteritidis and that immunization correlates with functional antibody production.
Collapse
Affiliation(s)
- Dacie R Bridge
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Jeannette M Whitmire
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Jeremy J Gilbreath
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Eleanor S Metcalf
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - D Scott Merrell
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| |
Collapse
|
35
|
Onsare RS, Micoli F, Lanzilao L, Alfini R, Okoro CK, Muigai AW, Revathi G, Saul A, Kariuki S, MacLennan CA, Rondini S. Relationship between antibody susceptibility and lipopolysaccharide O-antigen characteristics of invasive and gastrointestinal nontyphoidal Salmonellae isolates from Kenya. PLoS Negl Trop Dis 2015; 9:e0003573. [PMID: 25739091 PMCID: PMC4352093 DOI: 10.1371/journal.pntd.0003573] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 01/28/2015] [Indexed: 01/01/2023] Open
Abstract
Background Nontyphoidal Salmonellae (NTS) cause a large burden of invasive and gastrointestinal disease among young children in sub-Saharan Africa. No vaccine is currently available. Previous reports indicate the importance of the O-antigen of Salmonella lipopolysaccharide for virulence and resistance to antibody-mediated killing. We hypothesised that isolates with more O-antigen have increased resistance to antibody-mediated killing and are more likely to be invasive than gastrointestinal. Methodology/Principal Findings We studied 192 NTS isolates (114 Typhimurium, 78 Enteritidis) from blood and stools, mostly from paediatric admissions in Kenya 2000–2011. Isolates were tested for susceptibility to antibody-mediated killing, using whole adult serum. O-antigen structural characteristics, including O-acetylation and glucosylation, were investigated. Overall, isolates were susceptible to antibody-mediated killing, but S. Enteritidis were less susceptible and expressed more O-antigen than Typhimurium (p<0.0001 for both comparisons). For S. Typhimurium, but not Enteritidis, O-antigen expression correlated with reduced sensitivity to killing (r = 0.29, 95% CI = 0.10-0.45, p = 0.002). Both serovars expressed O-antigen populations ranging 21–33 kDa average molecular weight. O-antigen from most Typhimurium were O-acetylated on rhamnose and abequose residues, while Enteritidis O-antigen had low or no O-acetylation. Both Typhimurium and Enteritidis O-antigen were approximately 20%–50% glucosylated. Amount of S. Typhimurium O-antigen and O-antigen glucosylation level were inversely related. There was no clear association between clinical presentation and antibody susceptibility, O-antigen level or other O-antigen features. Conclusion/Significance Kenyan S. Typhimurium and Enteritidis clinical isolates are susceptible to antibody-mediated killing, with degree of susceptibility varying with level of O-antigen for S. Typhimurium. This supports the development of an antibody-inducing vaccine against NTS for Africa. No clear differences were found in the phenotype of isolates from blood and stool, suggesting that the same isolates can cause invasive disease and gastroenteritis. Genome studies are required to understand whether invasive and gastrointestinal isolates differ at the genotypic level. Nontyphoidal Salmonellae (NTS) are an emerging major cause of invasive bacterial disease in African children aged less than 5 years and immunocompromised adults, with an estimated case fatality rate of 20–25%. NTS also cause diarrhoea, a killer of about 1.5 million young children annually, mainly in low- and middle-income countries. No vaccine against NTS is available, but improved understanding of the Salmonella bacteria that cause disease in Africa would help the development of new vaccines. The authors characterized a collection of 192 Kenyan NTS strains (114 S. Typhimurium and 78 S. Enteritidis) from blood and stool specimens. All strains could be killed to differing extents by antibodies present in the blood of healthy HIV-uninfected African adults, supporting the development of a vaccine that will induce protective antibodies when given to African children. Differences in killing by antibody were partly related to the amount of O-antigen on the bacterial surface. There were no clear distinction between stains causing invasive disease and diarrhoea, suggesting that the same strains may be capable of causing both forms of disease. Clarification of this will require genomic analysis.
Collapse
Affiliation(s)
- Robert S. Onsare
- Centre for Microbiology Research (CMR), Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
- Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Francesca Micoli
- Novartis Vaccines Institute for Global Health (NVGH), Siena, Italy
| | - Luisa Lanzilao
- Novartis Vaccines Institute for Global Health (NVGH), Siena, Italy
| | - Renzo Alfini
- Novartis Vaccines Institute for Global Health (NVGH), Siena, Italy
| | - Chinyere K. Okoro
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Anne W. Muigai
- Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Gunturu Revathi
- Division of Microbiology, Department of Pathology, Aga Khan University Hospital, Nairobi, Kenya
| | - Allan Saul
- Novartis Vaccines Institute for Global Health (NVGH), Siena, Italy
| | - Samuel Kariuki
- Centre for Microbiology Research (CMR), Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | | | - Simona Rondini
- Novartis Vaccines Institute for Global Health (NVGH), Siena, Italy
- * E-mail:
| |
Collapse
|
36
|
Design of glycoconjugate vaccines against invasive African Salmonella enterica serovar Typhimurium. Infect Immun 2014; 83:996-1007. [PMID: 25547792 DOI: 10.1128/iai.03079-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Nontyphoidal salmonellae, particularly Salmonella enterica serovar Typhimurium, are a major cause of invasive disease in Africa, affecting mainly young children and HIV-infected individuals. Glycoconjugate vaccines provide a safe and reliable strategy against invasive polysaccharide-encapsulated pathogens, and lipopolysaccharide (LPS) is a target of protective immune responses. With the aim of designing an effective vaccine against S. Typhimurium, we have synthesized different glycoconjugates, by linking O-antigen and core sugars (OAg) of LPS to the nontoxic mutant of diphtheria toxin (CRM(197)). The OAg-CRM(197) conjugates varied in (i) OAg source, with three S. Typhimurium strains used for OAg extraction, producing OAg with differences in structural specificities, (ii) OAg chain length, and (iii) OAg/CRM(197) ratio. All glycoconjugates were compared for immunogenicity and ability to induce serum bactericidal activity in mice. In vivo enhancement of bacterial clearance was assessed for a selected S. Typhimurium glycoconjugate by challenge with live Salmonella. We found that the largest anti-OAg antibody responses were elicited by (i) vaccines synthesized from OAg with the highest glucosylation levels, (ii) OAg composed of mixed- or medium-molecular-weight populations, and (iii) a lower OAg/CRM(197) ratio. In addition, we found that bactericidal activity can be influenced by S. Typhimurium OAg strain, most likely as a result of differences in OAg O-acetylation and glucosylation. Finally, we confirmed that mice immunized with the selected OAg-conjugate were protected against S. Typhimurium colonization of the spleen and liver. In conclusion, our findings indicate that differences in the design of OAg-based glycoconjugate vaccines against invasive African S. Typhimurium can have profound effects on immunogenicity and therefore optimal vaccine design requires careful consideration.
Collapse
|
37
|
Carden S, Okoro C, Dougan G, Monack D. Non-typhoidal Salmonella Typhimurium ST313 isolates that cause bacteremia in humans stimulate less inflammasome activation than ST19 isolates associated with gastroenteritis. Pathog Dis 2014; 73:ftu023. [PMID: 25808600 PMCID: PMC4399442 DOI: 10.1093/femspd/ftu023] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2014] [Indexed: 02/07/2023] Open
Abstract
Salmonella is an enteric pathogen that causes a range of diseases in humans. Non-typhoidal Salmonella (NTS) serovars such as Salmonella enterica serovar Typhimurium generally cause a self-limiting gastroenteritis whereas typhoidal serovars cause a systemic disease, typhoid fever. However, S. Typhimurium isolates within the multi-locus sequence type ST313 have emerged in sub-Saharan Africa as a major cause of bacteremia in humans. The S. Typhimurium ST313 lineage is phylogenetically distinct from classical S. Typhimurium lineages, such as ST19, that cause zoonotic gastroenteritis worldwide. Previous studies have shown that the ST313 lineage has undergone genome degradation when compared to the ST19 lineage, similar to that observed for typhoidal serovars. Currently, little is known about phenotypic differences between ST313 isolates and other NTS isolates. We find that representative ST313 isolates invade non-phagocytic cells less efficiently than the classical ST19 isolates that are more commonly associated with gastroenteritis. In addition, ST313 isolates induce less Caspase-1-dependent macrophage death and IL-1β release than ST19 isolates. ST313 isolates also express relatively lower levels of mRNA of the genes encoding the SPI-1 effector sopE2 and the flagellin, fliC, providing possible explanations for the decrease in invasion and inflammasome activation. The ST313 isolates have invasion and inflammatory phenotypes that are intermediate; more invasive and inflammatory than Salmonella enterica serovar Typhi and less than ST19 isolates associated with gastroenteritis. This suggests that both phenotypically and at the genomic level ST313 isolates are evolving signatures that facilitate a systemic lifestyle in humans.
Collapse
Affiliation(s)
- Sarah Carden
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chinyere Okoro
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Denise Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
38
|
Stefanetti G, Rondini S, Lanzilao L, Saul A, MacLennan CA, Micoli F. Impact of conjugation chemistry on the immunogenicity of S. Typhimurium conjugate vaccines. Vaccine 2014; 32:6122-9. [PMID: 25192974 DOI: 10.1016/j.vaccine.2014.08.056] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/12/2014] [Accepted: 08/27/2014] [Indexed: 10/24/2022]
Abstract
Salmonella Typhimurium is major cause of invasive nontyphoidal Salmonella disease in Africa. Conjugation of S. Typhimurium O-antigen to an appropriate carrier protein constitutes a possible strategy for the development of a vaccine against this disease, for which no vaccines are currently available. The conjugation chemistry used is one of the parameters that can affect the immunogenicity of glycoconjugate vaccines. Herein different glycoconjugates were synthesized to investigate the impact of this variable on the immunogenicity of S. Typhimurium conjugate vaccines in mice, all with CRM₁₉₇ as carrier protein. Random derivatization along the O-antigen chain was compared with site-directed activation of the terminal KDO sugar residue of the core oligosaccharide. In particular, two different random approaches were used, based on the oxidation of the polysaccharide, which differently impact the structure and conformation of the O-antigen chain. For the selective conjugation methods, linkers of two different lengths were compared. When tested in mice, all conjugates induced anti-O-antigen IgG antibodies with serum bactericidal activity. Similar anti-O-antigen antibody levels were elicited independent of the chemistry used and a higher degree of saccharide derivatization did not impact negatively on the anti-O-antigen IgG response. Bactericidal activity of serum antibodies induced by selective conjugates was similar independent of the length of the spacer used. Random conjugates elicited antibodies with greater bactericidal activity than selective ones, and an inverse correlation was found between degree of O-antigen modification and antibody functional activity.
Collapse
Affiliation(s)
- G Stefanetti
- Novartis Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy
| | - S Rondini
- Novartis Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy
| | - L Lanzilao
- Novartis Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy
| | - A Saul
- Novartis Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy
| | - C A MacLennan
- Novartis Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy
| | - F Micoli
- Novartis Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy.
| |
Collapse
|
39
|
Effect of human immunodeficiency virus infection on plasma bactericidal activity against Salmonella enterica serovar Typhimurium. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1437-42. [PMID: 25121777 DOI: 10.1128/cvi.00501-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Individuals with human immunodeficiency virus (HIV) infection have increased susceptibility to invasive disease caused by Salmonella enterica serovar Typhimurium. Studies from Africa have suggested that this susceptibility is related in part to the development of a high level of lipopolysaccharide (LPS)-specific IgG that is able to inhibit the killing of S. Typhimurium by bactericidal antibodies in healthy individuals. To explore this issue further, we examined the bactericidal activity against S. Typhimurium using serum and plasma samples from healthy controls and various clinical subgroups of HIV-infected adults in the United States. We found that the bactericidal activity in the samples from HIV-positive elite controllers was comparable to that from healthy individuals, whereas it was significantly reduced in HIV-positive viremic controllers and untreated chronic progressors. As demonstrated previously for healthy controls, the bactericidal activity of the plasma from the elite controllers was inhibited by preincubation with S. Typhimurium LPS, suggesting that it was mediated by anti-LPS antibodies. S. Typhimurium LPS-specific IgG was significantly reduced in all subgroups of HIV-infected individuals. Interestingly, and in contrast to the healthy controls, plasma from all HIV-positive subgroups inhibited in vitro killing of S. Typhimurium by plasma from a healthy individual. Our results, together with the findings from Africa, suggest that multiple mechanisms may be involved in the HIV-induced dysregulation of humoral immunity to S. Typhimurium.
Collapse
|
40
|
Nyirenda TS, Gilchrist JJ, Feasey NA, Glennie SJ, Bar-Zeev N, Gordon MA, MacLennan CA, Mandala WL, Heyderman RS. Sequential acquisition of T cells and antibodies to nontyphoidal Salmonella in Malawian children. J Infect Dis 2014; 210:56-64. [PMID: 24443544 PMCID: PMC4054899 DOI: 10.1093/infdis/jiu045] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/10/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Salmonella Typhimurium (STm) remain a prominent cause of bacteremia in sub-Saharan Africa. Complement-fixing antibodies to STm develop by 2 years of age. We hypothesized that STm-specific CD4⁺ T cells develop alongside this process. METHODS Eighty healthy Malawian children aged 0-60 months were recruited. STm-specific CD4⁺ T cells producing interferon γ, tumor necrosis factor α, and interleukin 2 were quantified using intracellular cytokine staining. Antibodies to STm were measured by serum bactericidal activity (SBA) assay, and anti-STm immunoglobulin G antibodies by enzyme-linked immunosorbent assay. RESULTS Between 2006 and 2011, STm bacteremias were detected in 449 children <5 years old. STm-specific CD4⁺ T cells were acquired in infancy, peaked at 14 months, and then declined. STm-specific SBA was detectable in newborns, declined in the first 8 months, and then increased to a peak at age 35 months. Acquisition of SBA correlated with acquisition of anti-STm-lipopolysaccharide (LPS) immunoglobulin G (r = 0.329 [95% confidence interval, .552-.062]; P = .01) but not anti-STm-outer membrane protein or anti-STm-flagellar protein (FliC). CONCLUSIONS Acquisition of STm-specific CD4⁺ T cells in early childhood is consistent with early exposure to STm or cross-reactive protein antigens priming this T-cell development. STm-specific CD4⁺ T cells seem insufficient to protect against invasive nontyphoidal Salmonella disease, but sequential acquisition of SBA to STm LPS is associated with a decline in its incidence.
Collapse
Affiliation(s)
| | | | - Nicholas A. Feasey
- Malawi Liverpool Wellcome Trust Clinical Research Programme
- Liverpool School of Tropical Medicine
| | | | - Naor Bar-Zeev
- Malawi Liverpool Wellcome Trust Clinical Research Programme
| | - Melita A. Gordon
- Institute of Infection and Global Health, University of Liverpool
| | - Calman A. MacLennan
- Medical Research Council Centre for Immune Regulation, Institute of Biomedical Research, College of Medicine and Dental Sciences, University of Birmingham, United Kingdom
- Novartis Vaccines Institute for Global Health, Siena, Italy
| | - Wilson L. Mandala
- Biochemistry Section, Basic Medical Sciences Department, University of Malawi College of Medicine, Blantyre
| | | |
Collapse
|
41
|
MacLennan CA, Martin LB, Micoli F. Vaccines against invasive Salmonella disease: current status and future directions. Hum Vaccin Immunother 2014; 10:1478-93. [PMID: 24804797 PMCID: PMC4185946 DOI: 10.4161/hv.29054] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Though primarily enteric pathogens, Salmonellae are responsible for a considerable yet under-appreciated global burden of invasive disease. In South and South-East Asia, this manifests as enteric fever caused by serovars Typhi and Paratyphi A. In sub-Saharan Africa, a similar disease burden results from invasive nontyphoidal Salmonellae, principally serovars Typhimurium and Enteritidis. The existing Ty21a live-attenuated and Vi capsular polysaccharide vaccines target S. Typhi and are not effective in young children where the burden of invasive Salmonella disease is highest. After years of lack of investment in new Salmonella vaccines, recent times have seen increased interest in the area led by emerging-market manufacturers, global health vaccine institutes and academic partners. New glycoconjugate vaccines against S. Typhi are becoming available with similar vaccines against other invasive serovars in development. With other new vaccines under investigation, including live-attenuated, protein-based and GMMA vaccines, now is an exciting time for the Salmonella vaccine field.
Collapse
Affiliation(s)
- Calman A MacLennan
- Novartis Vaccines Institute for Global Health; Siena, Italy; Medical Research Council Centre for Immune Regulation and Clinical Immunology Service; Institute of Biomedical Research, School of Immunity and Infection; College of Medicine and Dental Sciences; University of Birmingham; Birmingham, UK
| | - Laura B Martin
- Novartis Vaccines Institute for Global Health; Siena, Italy
| | | |
Collapse
|
42
|
Serum bactericidal assays to evaluate typhoidal and nontyphoidal Salmonella vaccines. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:712-21. [PMID: 24623629 DOI: 10.1128/cvi.00115-14] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Invasive Salmonella infections for which improved or new vaccines are being developed include enteric fever caused by Salmonella enterica serovars Typhi, Paratyphi A, and Paratyphi B and sepsis and meningitis in young children in sub-Saharan Africa caused by nontyphoidal Salmonella (NTS) serovars, particularly S. enterica serovars Typhimurium and Enteritidis. Assays are needed to measure functional antibodies elicited by the new vaccines to assess their immunogenicities and potential protective capacities. We developed in vitro assays to quantify serum bactericidal antibody (SBA) activity induced by S. Typhi, S. Paratyphi A, S. Typhimurium, and S. Enteritidis vaccines in preclinical studies. Complement from various sources was tested in assays designed to measure antibody-dependent complement-mediated killing. Serum from rabbits 3 to 4 weeks of age provided the best complement source compared to serum from pigs, goats, horses, bovine calves, or rabbits 8 to 12 weeks of age. For S. Enteritidis, S. Typhimurium, and S. Typhi SBA assays to be effective, bacteria had to be harvested at log phase. In contrast, S. Paratyphi A was equally susceptible to killing whether it was grown to the stationary or log phase. The typhoidal serovars were more susceptible to complement-mediated killing than were the nontyphoidal serovars. Lastly, the SBA endpoint titers correlated with serum IgG anti-lipopolysaccharide (LPS) titers in mice immunized with mucosally administered S. Typhimurium, S. Enteritidis, and S. Paratyphi A but not S. Typhi live attenuated vaccines. The SBA assay described here is a useful tool for measuring functional antibodies elicited by Salmonella vaccine candidates.
Collapse
|
43
|
Micoli F, Ravenscroft N, Cescutti P, Stefanetti G, Londero S, Rondini S, Maclennan CA. Structural analysis of O-polysaccharide chains extracted from different Salmonella Typhimurium strains. Carbohydr Res 2013; 385:1-8. [PMID: 24384528 DOI: 10.1016/j.carres.2013.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
Abstract
Salmonella Typhimurium is the major cause of invasive nontyphoidal Salmonella disease in Africa, with high mortality among children and HIV-infected individuals. Currently, no vaccine is available for use in humans. Antibodies directed against the O-polysaccharide of the lipopolysaccharide molecule of Salmonella mediate bacterial killing and are protective, and conjugation of the O-polysaccharide to a carrier protein represents a possible strategy for vaccine development. Here we have purified the O-polysaccharide from six different strains of S. Typhimurium and fully characterized them using analytical methods including HPLC-SEC, HPAEC-PAD, GC, GC-MS, 1D and 2D NMR spectroscopy. All the O-polysaccharide samples showed a similar bimodal molecular mass distribution, but differed with respect to the amount and position of O-acetylation and glucosylation. For some strains, O-acetyl groups were found not only on C-2 of abequose (factor 5 specificity), but also on C-2 and C-3 of rhamnose; glucose was found to be linked 1→4 or 1→6 to galactose in different amounts according to the strain of origin. This structural variability could have an impact on the immunogenicity of corresponding glycoconjugate vaccines and different strains need to be evaluated in order to identify the appropriate source of O-polysaccharide to use for the development of a candidate conjugate vaccine with broad coverage against S. Typhimurium.
Collapse
Affiliation(s)
- Francesca Micoli
- Novartis Vaccines Institute for Global Health, Via Fiorentina 1, I-53100 Siena, Italy.
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Paola Cescutti
- Dipartimento di Scienze della Vita, Ed. C11, Università di Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Giuseppe Stefanetti
- Novartis Vaccines Institute for Global Health, Via Fiorentina 1, I-53100 Siena, Italy
| | - Silvia Londero
- Dipartimento di Scienze della Vita, Ed. C11, Università di Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Simona Rondini
- Novartis Vaccines Institute for Global Health, Via Fiorentina 1, I-53100 Siena, Italy
| | - Calman A Maclennan
- Novartis Vaccines Institute for Global Health, Via Fiorentina 1, I-53100 Siena, Italy; Medical Research Council Centre for Immune Regulation, Institute of Biomedical Research, School of Immunity and Infection, College of Medicine and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
44
|
MacLennan CA, Tennant SM. Comparing the roles of antibodies to nontyphoidal Salmonella enterica in high- and low-income countries and implications for vaccine development. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1487-90. [PMID: 23904457 PMCID: PMC3807204 DOI: 10.1128/cvi.00465-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Calman A. MacLennan
- Novartis Vaccines Institute for Global Health, Siena, Italy
- MRC Centre for Immune Regulation, School of Immunity and Infection, College of Medicine and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sharon M. Tennant
- Center for Vaccine Development
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|