1
|
Chekuri S, Sirigiripeta SR, Thupakula S, Vyshnava SS, Ayesha S, Karamthote Cheniya SB, Kuruva R, Anupalli RR. Rutin isolated from Acalypha indica L.: A comprehensive analysis of its antibacterial and anticancer activities. Biochem Biophys Res Commun 2025; 765:151833. [PMID: 40267839 DOI: 10.1016/j.bbrc.2025.151833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/05/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND Antibiotic resistance and cancer demand alternative therapeutic strategies. Rutin, a polyphenol from Acalypha indica L., exhibits notable antioxidant, antibacterial, and anticancer properties. This study isolates and evaluates rutin for its bioactivity. METHODS Rutin was extracted using Soxhlet extraction, purified via column chromatography and HPLC, and characterized by HR-MS and NMR. Antibacterial activity was assessed by disc diffusion against Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Cytotoxicity was tested on MCF-7 and MDA-MB-231 breast cancer cells. Molecular docking evaluated binding to human protein disulfide isomerase (PDI). RESULTS Rutin showed antibacterial activity with inhibition zones of 5.0-9.2 mm, strongest against S. aureus. It exhibited dose- and time-dependent cytotoxicity with IC50 values of 22.31 ± 1.28 μg/mL (MCF-7) and 20.43 ± 0.81 μg/mL (MDA-MB-231) at 24 h. Docking analysis revealed strong affinity to human PDI (-5.84 kcal/mol, Ki = 52.19 μM). CONCLUSIONS Rutin from Acalypha indica L. demonstrates significant antibacterial and anticancer activity, with strong PDI interaction, supporting its potential as a natural therapeutic agent.
Collapse
Affiliation(s)
- Sudhakar Chekuri
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana, India
| | - Sanjeeva Reddy Sirigiripeta
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana, India
| | - Sreenu Thupakula
- Department of Biochemistry, University College of Science, Osmania University, Hyderabad, 500007, Telangana, India
| | - Satyanarayana Swamy Vyshnava
- Department of Biotechnology, University College of Sciences, Sri Krishnadevaraya University, Anantapuramu, 515003, Andhra Pradesh, India
| | - Sultana Ayesha
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana, India
| | - Sai Bindu Karamthote Cheniya
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana, India
| | - Raghu Kuruva
- Department of Botany, University College of Science, Osmania University, Hyderabad, 500007, Telangana, India
| | - Roja Rani Anupalli
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana, India.
| |
Collapse
|
2
|
Qu S, Yang S, Xu Q, Zhang M, Gao F, Wu Y, Li L. A Milk Extracellular Vesicle-Based Nanoplatform Enhances Combination Therapy Against Multidrug-Resistant Bacterial Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406496. [PMID: 39721033 PMCID: PMC11831456 DOI: 10.1002/advs.202406496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/09/2024] [Indexed: 12/28/2024]
Abstract
The increasing occurrence of infections caused by multidrug-resistant (MDR) bacteria drives the need for new antibacterial drugs. Due to the current lack of antibiotic discovery and development, new strategies to fight MDR bacteria are urgently needed. Efforts to develop new antibiotic adjuvants to increase the effectiveness of existing antibiotics and design delivery systems are essential to address this issue. Here, a bioinspired delivery system equipped with combination therapy and paracellular transport is shown to enhance the efficacy against bacterial infections by improving oral delivery. A screening platform is established using an in vitro-induced high polymyxin-resistant strain to acquire plumbagin, which enhances the efficacy of polymyxin. Functionalized milk extracellular vesicles (FMEVs) coloaded with polymyxin and plumbagin cleared 99% of the bacteria within 4 h. Mechanistic studies revealed that the drug combination damaged the membrane, disrupted energy metabolism, and accelerated bacterial death. Finally, FMEVs are efficiently transported transcellularly through the citric acid-mediated reversible opening of the tight junctions and showed high efficacy against an MDR Escherichia coli-associated peritonitis-sepsis model in mice. These findings provide a potential therapeutic strategy to improve the efficacy of combination therapy by enhancing oral delivery using a biomimetic delivery platform.
Collapse
Affiliation(s)
- Shaoqi Qu
- Animal‐Derived Food Safety Innovation TeamCollege of Veterinary MedicineAnhui Agricultural UniversityHefei230036China
| | - Shuo Yang
- Animal‐Derived Food Safety Innovation TeamCollege of Veterinary MedicineAnhui Agricultural UniversityHefei230036China
| | - Qingjun Xu
- Animal‐Derived Food Safety Innovation TeamCollege of Veterinary MedicineAnhui Agricultural UniversityHefei230036China
| | - Mengying Zhang
- Animal‐Derived Food Safety Innovation TeamCollege of Veterinary MedicineAnhui Agricultural UniversityHefei230036China
| | - Feng Gao
- Animal‐Derived Food Safety Innovation TeamCollege of Veterinary MedicineAnhui Agricultural UniversityHefei230036China
| | - Yongning Wu
- Animal‐Derived Food Safety Innovation TeamCollege of Veterinary MedicineAnhui Agricultural UniversityHefei230036China
- Research Unit of Food SafetyChinese Academy of Medical Sciences (No. 2019RU014)NHC Key Laboratory of Food Safety Risk AssessmentChina National Center for Food Safety Risk Assessment (CFSA)Beijing100022China
| | - Lin Li
- Animal‐Derived Food Safety Innovation TeamCollege of Veterinary MedicineAnhui Agricultural UniversityHefei230036China
| |
Collapse
|
3
|
Zeng J, Ma X, Zheng Y, Liu D, Ning W, Xiao W, Mao Q, Bai Z, Mao R, Cheng J, Lin J. Traditional Chinese Medicine Monomer Bakuchiol Attenuates the Pathogenicity of Pseudomonas aeruginosa via Targeting PqsR. Int J Mol Sci 2024; 26:243. [PMID: 39796099 PMCID: PMC11719591 DOI: 10.3390/ijms26010243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
As the antibiotic resistance of pathogens becomes increasingly severe, it is becoming more feasible to use methods that suppress the virulence of pathogens rather than exerting selective pressure on their growth. Pseudomonas aeruginosa, a dangerous opportunistic pathogen, infects hosts by producing multiple virulence factors, which are regulated by quorum-sensing (QS) systems, including the las systems, rhl systems, and pqs systems. This study used the chromosome lacZ transcription fusion reporter model to screen the traditional Chinese medicine monomer library and found that bakuchiol can effectively inhibit the pqs system and related virulence phenotypes of P. aeruginosa, including the production of virulence factors (pyocyanin, hydrogen cyanide, elastase, and lectin) and motility (swarming, swimming, and twitching motility) without affecting its growth. Subsequently, through genetic complementation analysis, we found that bakuchiol inhibited the function of the transcriptional activation protein PqsR of the pqs system in P. aeruginosa in a concentration-dependent manner. Furthermore, molecular dynamics simulation study results indicated that bakuchiol can target PqsR of the pqs system, thereby inhibiting the pqs system. Among the amino acids in PqsR, ALA-168 may be a key amino acid residue in the hydrophobic interaction between PqsR protein and bakuchiol. Finally, in vivo experiments demonstrated that bakuchiol attenuated the pathogenicity of P. aeruginosa to Chinese cabbage (Brassica pekinensis) and Caenorhabditis elegans. In summary, this study suggests that bakuchiol is an effective inhibitor that targets the pqs system of P. aeruginosa, providing a new strategy for addressing P. aeruginosa infections.
Collapse
Affiliation(s)
- Jing Zeng
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (J.Z.); (X.M.); (Y.Z.); (D.L.); (W.N.); (W.X.); (Q.M.); (Z.B.); (R.M.)
| | - Xin Ma
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (J.Z.); (X.M.); (Y.Z.); (D.L.); (W.N.); (W.X.); (Q.M.); (Z.B.); (R.M.)
| | - Yu Zheng
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (J.Z.); (X.M.); (Y.Z.); (D.L.); (W.N.); (W.X.); (Q.M.); (Z.B.); (R.M.)
| | - Dandan Liu
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (J.Z.); (X.M.); (Y.Z.); (D.L.); (W.N.); (W.X.); (Q.M.); (Z.B.); (R.M.)
| | - Wanqing Ning
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (J.Z.); (X.M.); (Y.Z.); (D.L.); (W.N.); (W.X.); (Q.M.); (Z.B.); (R.M.)
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University (NWAFU), Yangling 712100, China
| | - Wei Xiao
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (J.Z.); (X.M.); (Y.Z.); (D.L.); (W.N.); (W.X.); (Q.M.); (Z.B.); (R.M.)
| | - Qian Mao
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (J.Z.); (X.M.); (Y.Z.); (D.L.); (W.N.); (W.X.); (Q.M.); (Z.B.); (R.M.)
| | - Zhenqing Bai
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (J.Z.); (X.M.); (Y.Z.); (D.L.); (W.N.); (W.X.); (Q.M.); (Z.B.); (R.M.)
| | - Renjun Mao
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (J.Z.); (X.M.); (Y.Z.); (D.L.); (W.N.); (W.X.); (Q.M.); (Z.B.); (R.M.)
| | - Juanli Cheng
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (J.Z.); (X.M.); (Y.Z.); (D.L.); (W.N.); (W.X.); (Q.M.); (Z.B.); (R.M.)
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University (NWAFU), Yangling 712100, China
| | - Jinshui Lin
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (J.Z.); (X.M.); (Y.Z.); (D.L.); (W.N.); (W.X.); (Q.M.); (Z.B.); (R.M.)
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University (NWAFU), Yangling 712100, China
| |
Collapse
|
4
|
Hofmeisterová L, Bajer T, Walczak M, Šilha D. Chemical Composition and Antibacterial Effect of Clove and Thyme Essential Oils on Growth Inhibition and Biofilm Formation of Arcobacter spp. and Other Bacteria. Antibiotics (Basel) 2024; 13:1232. [PMID: 39766622 PMCID: PMC11672449 DOI: 10.3390/antibiotics13121232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Background: In recent years, significant resistance of microorganisms to antibiotics has been observed. A biofilm is a structure that significantly aids the survival of the microbial population and also significantly affects its resistance. Methods: Thyme and clove essential oils (EOs) were subjected to chemical analysis using gas chromatography coupled to mass spectrometry (GC-MS) and gas chromatography with a flame ionization detector (GC-FID). Furthermore, the antimicrobial effect of these EOs was tested in both the liquid and vapor phases using the volatilization method. The effect of the EOs on growth parameters was monitored using an RTS-8 bioreactor. However, the effect of the EOs on the biofilm formation of commonly occurring bacteria with pathogenic potential was also monitored, but for less described and yet clinically important strains of Arcobacter spp. Results: In total, 37 and 28 compounds were identified in the thyme and clove EO samples, respectively. The most common were terpenes and also derivatives of phenolic substances. Both EOs exhibited antimicrobial activity in the liquid and/or vapor phase against at least some strains. The determined antimicrobial activity of thyme and clove oil was in the range of 32-1024 µg/mL in the liquid phase and 512-1024 µg/mL in the vapor phase, respectively. The results of the antimicrobial effect are also supported by similar conclusions from monitoring growth curves using the RTS bioreactor. The effect of EOs on biofilm formation differed between strains. Biofilm formation of Pseudomonas aeruginosa was completely suppressed in an environment with a thyme EO concentration of 1024 µg/mL. On the other hand, increased biofilm formation was found, e.g., in an environment of low concentration (1-32 µg/mL). Conclusions: The potential of using natural matrices as antimicrobials or preservatives is evident. The effect of these EOs on biofilm formation, especially Arcobacter strains, is described for the first time.
Collapse
Affiliation(s)
- Leona Hofmeisterová
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic;
| | - Tomáš Bajer
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic;
| | - Maciej Walczak
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland;
| | - David Šilha
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic;
| |
Collapse
|
5
|
Ge R, Zhao H, Tang Q, Chandarajoti K, Bai H, Wang X, Zhang K, Ye W, Han X, Wang C, Zhou W. A novel α-mangostin derivative synergistic to antibiotics against MRSA with unique mechanisms. Microbiol Spectr 2024; 12:e0163124. [PMID: 39508612 PMCID: PMC11619392 DOI: 10.1128/spectrum.01631-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) remains a leading cause of hospital-acquired infections, often linked to complicated treatments, increased mortality risk, and significant cost burdens. Several antibacterial agents have been developed to address MRSA resistance. In this study, potential agents to combat MRSA resistance were explored, with the antibacterial activity of synthesized α-mangostin (α-MG) derivatives being evaluated alongside investigations into their cellular mechanisms against MRSA2. α-MG-4, featuring an allyl group at C3 of the lead compound α-MG, restored the sensitivity of MRSA2 to penicillin, enrofloxacin, and gentamicin, while also demonstrating improved safety profiles. Although α-MG-4 alone was ineffective against MRSA2, it exhibited an optimal synergistic ratio in vitro when combined with these antibiotics. This significant synergistic antibacterial effect was further confirmed in vivo using a mouse skin abscess model. Additionally, the synergistic mechanisms revealed that α-MG-4 was associated with changes in membrane permeability and inhibition of the MepA and NorA genes, which encode the efflux pumps of MRSA2. α-MG-4 also inhibited PBP2a expression, potentially by occupying a crucial binding site in a dose-dependent manner.IMPORTANCEMethicillin-resistant Staphylococcus aureus (MRSA)'s resistance to multiple antibiotics poses significant health and safety concerns. A novel α-mangostin (α-MG) derivative, α-MG-4, was first identified as a xanthone-based PBP2a inhibitor that reverses MRSA2 resistance to penicillin. The synergistic antibacterial effects of α-MG-4 were linked to increased cell membrane permeability and the inhibition of genes involved in efflux pump function.
Collapse
Affiliation(s)
- Rile Ge
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Haiyan Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Qun Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Kasemsiri Chandarajoti
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | - Han Bai
- Department of Clinical Pharmacy, College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Xiaoyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Keyu Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wenchong Ye
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chunmei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
6
|
Arulvendhan V, Saravana Bhavan P, Rajaganesh R. Molecular Identification and Phytochemical Analysis and Bioactivity Assessment of Catharanthus roseus Leaf Extract: Exploring Antioxidant Potential and Antimicrobial Activities. Appl Biochem Biotechnol 2024; 196:7614-7641. [PMID: 38526661 DOI: 10.1007/s12010-024-04902-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
Plants have long been at the main focus of the medical industry's attention due to their extensive list of biological and therapeutic properties and ethnobotanical applications. Catharanthus roseus, sometimes referred to as Nithyakalyani in Tamil, is an Apocynaceae family member used in traditional Indian medicine. It also examines the plant's potential antimicrobial and antioxidant activities as well as its preliminary phytochemical makeup. Leaf material from C. roseus was analyzed and found to include a variety of phytochemicals including alkaloids, terpenoids, flavonoids, tannins, phenols, saponins, glycosides, quinones, and steroids. Four of the seven secondary metabolic products discovered in C. roseus leaves showed bioactive principles: 3-methylmannoside, squalene, pentatriacontane, and 2,4,4-trimethyl-3-hydroxymethyl-5a-(3-methyl-but-2-enyl)-cyclohexene. Catharanthus roseus is rich in the anticancer compounds vinblastine and vincristine. Whole DNA was isolated from fresh leaves, then amplified, sequenced, and aligned to find prospective DNA barcode candidates. One DNA marker revealed the restricted genetic relationship among C. roseus based on genetic distance and phylogenetic analysis. The antioxidant activity of the plant extract was evaluated using the DPPH, ABTS, phosphomolybdenum, FRAP, and superoxide radical scavenging activity assays, while the antibacterial potential was evaluated using the agar well diffusion assay. The ethanol extract of C. roseus was found to have the highest reducing power. In addition, a 4- to 21-mm-wide zone of inhibition was seen when the C. roseus extract was tested against bacterial and fungal stains. In conclusion, C. roseus has the most promise as an antibacterial and antioxidant agent.
Collapse
Affiliation(s)
- Velusamy Arulvendhan
- Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Periyakali Saravana Bhavan
- Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| | - Rajapandian Rajaganesh
- Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| |
Collapse
|
7
|
Rastegar S, Skurnik M, Tadjrobehkar O, Samareh A, Samare-Najaf M, Lotfian Z, Khajedadian M, Hosseini-Nave H, Sabouri S. Synergistic effects of bacteriophage cocktail and antibiotics combinations against extensively drug-resistant Acinetobacter baumannii. BMC Infect Dis 2024; 24:1208. [PMID: 39455951 PMCID: PMC11515142 DOI: 10.1186/s12879-024-10081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The extensively drug-resistant (XDR) strains of Acinetobacter baumannii have become a major cause of nosocomial infections, increasing morbidity and mortality worldwide. Many different treatments, including phage therapy, are attractive ways to overcome the challenges of antibiotic resistance. METHODS This study investigates the biofilm formation ability of 30 XDR A. baumannii isolates and the efficacy of a cocktail of four tempetate bacteriophages (SA1, Eve, Ftm, and Gln) and different antibiotics (ampicillin/sulbactam, meropenem, and colistin) in inhibiting and degrading the biofilms of these strains. RESULTS The majority (83.3%) of the strains exhibited strong biofilm formation. The bacteriophage cocktail showed varying degrees of effectiveness against A. baumannii biofilms, with higher concentrations generally leading to more significant inhibition and degradation rates. The antibiotics-bacteriophage cocktail combinations also enhanced the inhibition and degradation of biofilms. CONCLUSION The findings suggested that the bacteriophage cocktail is an effective tool in combating A. baumannii biofilms, with its efficacy depending on the concentration. Combining antibiotics with the bacteriophage cocktail improved the inhibition and removal of biofilms, indicating a promising strategy for managing A. baumannii infections. These results contribute to our understanding of biofilm dynamics and the potential of bacteriophage cocktails as a novel therapeutic approach to combat antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Sanaz Rastegar
- Student Research Committee, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Omid Tadjrobehkar
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology(Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran
| | - Ali Samareh
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Samare-Najaf
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Zahra Lotfian
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Khajedadian
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Hosseini-Nave
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Medical Microbiology(Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran.
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Salehe Sabouri
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
8
|
Lo CC, Yeh TH, Jao YH, Wang TH, Lo HR. Efficacy of outer membrane permeabilization in promoting aromatic isothiocyanates-mediated eradication of multidrug resistant Gram-negative bacteria and bacterial persisters. Folia Microbiol (Praha) 2024; 69:993-1002. [PMID: 38319459 DOI: 10.1007/s12223-024-01143-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/27/2024] [Indexed: 02/07/2024]
Abstract
Multidrug resistant (MDR) bacteria are recognized to be one of the most important problems in public health. The outer membrane permeability is a critical intrinsic mechanism of bacterial resistance. In addition, bacteria produce a small number of dormant persister cells causing multidrug tolerance that reduces antimicrobial efficacy. This study aimed to evaluate the inhibitory effects of the combination of aromatic isothiocyanates (ITCs) with membrane-active agents on bacterial persisters and MDR Gram-negative bacteria. Our study demonstrated that membrane-active agents, particularly ethylenediaminetetraacetic acid (EDTA) synergistically enhanced the inhibitory activity of aromatic benzyl ITC and phenethyl ITC against most Gram-negative bacteria strains with fractional inhibitory concentration index values ranging from 0.18 to 0.5 and 0.16 to 0.5, respectively, and contributed to an 8- to 64-fold minimal inhibitory concentration reduction compared with those of aromatic ITCs alone. The EDTA-aromatic ITCs combination effectively reduced the survival rates of tested bacteria and significantly eradicated bacterial persisters (p = 0.033 and 0.037, respectively). The growth kinetics analysis also supported the enhanced inhibitory effect of EDTA-aromatic ITCs combination against tested bacteria. Our results suggested an alternate treatment strategy against Gram-negative bacteria, promoting the entry of aromatic ITCs into bacterial cytoplasm to facilitate bacterial clearance and thus preventing the development of bacterial resistance.
Collapse
Affiliation(s)
- Chung-Cheng Lo
- Department of Internal Medicine, Pingtung Veterans General Hospital Longquan Branch, Pingtung, 912012, Taiwan
| | - Tzu-Hui Yeh
- Department of Pathology and Laboratory Medicine, Pingtung Veterans General Hospital, Pingtung, 900053, Taiwan
| | - Ya-Hsuan Jao
- Department of Clinical Laboratory, Kaohsiung Municipal Min-Sheng Hospital, Kaohsiung, 802511, Taiwan
| | - Tzu-Hui Wang
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, 813414, Taiwan
| | - Horng-Ren Lo
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung, 831301, Taiwan.
| |
Collapse
|
9
|
Sheikhy M, Karbasizade V, Ghanadian M, Fazeli H. Evaluation of chlorogenic acid and carnosol for anti-efflux pump and anti-biofilm activities against extensively drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa. Microbiol Spectr 2024; 12:e0393423. [PMID: 39046262 PMCID: PMC11370622 DOI: 10.1128/spectrum.03934-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/18/2024] [Indexed: 07/25/2024] Open
Abstract
Efflux pumps and biofilm play significant roles in bacterial antibiotic resistance. This study investigates the potential of chlorogenic acid (CGA) and carnosol (CL), as phenolic and diterpene compounds, respectively, for their inhibitory effects on efflux pumps. Among the 12 multidrug-resistant (MDR) strains of Staphylococcus aureus and Pseudomonas aeruginosa isolated from nosocomial skin infections, eight strains were identified as extensively drug resistant (XDR) using the disc diffusion method. The presence of efflux pumps in MDR strains of S. aureus and P. aeruginosa was screened using carbonyl cyanide-m-chlorophenylhydrazone. Between the 12 MDR strains of S. aureus and P. aeruginosa, 80% (4 out of 5) of the S. aureus strains and 85.7% (6 out of 7) of the P. aeruginosa strains exhibited active efflux pumps associated with gentamicin resistance. The checkerboard assay results, in combination with gentamicin, demonstrated that CGA exhibited a reduction in the minimum inhibitory concentration (MIC) for XDR S. aureus strain. Similarly, CL showed a synergistic effect and reduced the MIC for both XDR strains of S. aureus and P. aeruginosa. Flow cytometry was used to examine efflux pump activity at sub-MIC concentrations of 1/8, 1/4, and 1/2 MIC in comparison to the control. In XDR S. aureus, CGA demonstrated 39%, 70%, and 19% inhibition, while CL exhibited 74%, 73.5%, and 62% suppression. In XDR P. aeruginosa, CL exhibited inhibition rates of 25%, 10%, and 15%. The inhibition of biofilm formation was assessed using the microtiter plate method, resulting in successful inhibition of biofilm formation. Finally, the MTT assay was conducted, and it confirmed minimal cytotoxicity. Given the significant reduction in efflux pump activity and biofilm formation observed with CGA and CL in this study, these compounds can be considered as potential inhibitors of efflux pumps and biofilm formation, offering potential strategies to overcome antimicrobial resistance. IMPORTANCE In summary, CGA and CL demonstrated promising potentiating antimicrobial effects against XDR strains of Staphylococcus aureus and Pseudomonas aeruginosa, suggesting their probably potential as candidates for addressing nosocomial pathogens. They exhibited significant suppression of efflux pump activity, indicating a possible successful inhibition of this mechanism. Moreover, all substances effectively inhibited biofilm formation, while showing minimal cytotoxicity. However, further advancement to clinical trials is needed to evaluate the feasibility of utilizing CGA and CL for reversing bacterial XDR efflux and determining their efficacy against biofilms. These trials will provide valuable insights into the practical applications of these compounds in combating drug-resistant infections.
Collapse
Affiliation(s)
- Mohaddeseh Sheikhy
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vajihe Karbasizade
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mustafa Ghanadian
- Department of Pharmacognosy, Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Fazeli
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Ungureanu D, Oniga O, Moldovan C, Ionuț I, Marc G, Stana A, Pele R, Duma M, Tiperciuc B. An Insight into Rational Drug Design: The Development of In-House Azole Compounds with Antimicrobial Activity. Antibiotics (Basel) 2024; 13:763. [PMID: 39200063 PMCID: PMC11350776 DOI: 10.3390/antibiotics13080763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Antimicrobial resistance poses a major threat to global health as the number of efficient antimicrobials decreases and the number of resistant pathogens rises. Our research group has been actively involved in the design of novel antimicrobial drugs. The blueprints of these compounds were azolic heterocycles, particularly thiazole. Starting with oxadiazolines, our research group explored, one by one, the other five-membered heterocycles, developing more or less potent compounds. An overview of this research activity conducted by our research group allowed us to observe an evolution in the methodology used (from inhibition zone diameters to minimal inhibitory concentrations and antibiofilm potential determination) correlated with the design of azole compounds based on results obtained from molecular modeling. The purpose of this review is to present the development of in-house azole compounds with antimicrobial activity, designed over the years by this research group from the departments of Pharmaceutical and Therapeutical Chemistry in Cluj-Napoca.
Collapse
Affiliation(s)
- Daniel Ungureanu
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
- “Prof. Dr. Ion Chiricuță” Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
- Department of Clinical Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Cristina Moldovan
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Ioana Ionuț
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Gabriel Marc
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Anca Stana
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Raluca Pele
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Mihaela Duma
- State Veterinary Laboratory for Animal Health and Safety, 1 Piața Mărăști Street, 400609 Cluj-Napoca, Romania;
| | - Brîndușa Tiperciuc
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| |
Collapse
|
11
|
Hałasa R, Mizerska U, Kula M, Krauze-Baranowska M. Screening Tests for the Interaction of Rubus idaeus and Rubus occidentalis Extracts with Antibiotics against Gram-Positive and Gram-Negative Human Pathogens. Antibiotics (Basel) 2024; 13:653. [PMID: 39061335 PMCID: PMC11274272 DOI: 10.3390/antibiotics13070653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
WHO (World Health Organization) reports from recent years warn about the growing number of antibiotic-resistant bacterial strains. Therefore, there is an urgent need to constantly search for new substances effective in the fight against microorganisms. Plants are a rich source of chemical compounds with antibacterial properties. These compounds, classified as secondary metabolites, may act independently or support the action of currently used antibiotics. Due to the large number of metabolites isolated from the plant kingdom and new plant species being studied, there is a need to develop new strategies/techniques or modifications of currently applied methods that can be used to select plant extracts or chemical compounds isolated from them that enter into positive, synergistic interactions with currently used antibiotics. One such method is the dual-disk synergy test (DDST). It involves the diffusion of active compounds in the agar environment and influencing the growth of microorganisms grown on it. The method was used to assess the interaction of extracts from the fruit and shoots of some cultivated varieties of Rubus idaeus and Rubus occidentalis with selected antibiotics. The research was conducted on strains of bacteria pathogenic to humans, including Staphylococcus aureus, Corynebacterium diphtheriae, Escherichia coli, Pseudomonas aeruginosa, Helicobacter pylori, and Candida albicans, showing synergy, antagonism, or lack of interaction of the tested substances-plant extract and antibiotic. As a result, it was found that the diffusion method is useful in screening tests to assess the impact of antibiotic-herbal substance interactions on Gram-positive and Gram-negative microorganisms.
Collapse
Affiliation(s)
- Rafał Hałasa
- Department of Pharmaceutical Microbiology, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland
| | - Urszula Mizerska
- Department of Polymeric Nanomaterials, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, ul. Sienkiewicza 112, 90-363 Lodz, Poland;
| | - Marta Kula
- Moderna Poland sp.zoo, Rondo Ignacego Daszyńskiego 1, 00-843 Warszawa, Poland;
| | | |
Collapse
|
12
|
Hasan MM, Islam MR, Haque AR, Kabir MR, Khushe KJ, Hasan SMK. Trends and challenges of fruit by-products utilization: insights into safety, sensory, and benefits of the use for the development of innovative healthy food: a review. BIORESOUR BIOPROCESS 2024; 11:10. [PMID: 38647952 PMCID: PMC10991904 DOI: 10.1186/s40643-023-00722-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/21/2023] [Indexed: 04/25/2024] Open
Abstract
A significant portion of the human diet is comprised of fruits, which are consumed globally either raw or after being processed. A huge amount of waste and by-products such as skins, seeds, cores, rags, rinds, pomace, etc. are being generated in our homes and agro-processing industries every day. According to previous statistics, nearly half of the fruits are lost or discarded during the entire processing chain. The concern arises when those wastes and by-products damage the environment and simultaneously cause economic losses. There is a lot of potential in these by-products for reuse in a variety of applications, including the isolation of valuable bioactive ingredients and their application in developing healthy and functional foods. The development of novel techniques for the transformation of these materials into marketable commodities may offer a workable solution to this waste issue while also promoting sustainable economic growth from the bio-economic viewpoint. This approach can manage waste as well as add value to enterprises. The goal of this study is twofold based on this scenario. The first is to present a brief overview of the most significant bioactive substances found in those by-products. The second is to review the current status of their valorization including the trends and techniques, safety assessments, sensory attributes, and challenges. Moreover, specific attention is drawn to the future perspective, and some solutions are discussed in this report.
Collapse
Affiliation(s)
- Md Mehedi Hasan
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Md Rakibul Islam
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Ahmed Redwan Haque
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Md Raihan Kabir
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Khursheda Jahan Khushe
- Department of Food Science and Nutrition, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - S M Kamrul Hasan
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh.
| |
Collapse
|
13
|
Jacobs LMC, Consol P, Chen Y. Drug Discovery in the Field of β-Lactams: An Academic Perspective. Antibiotics (Basel) 2024; 13:59. [PMID: 38247618 PMCID: PMC10812508 DOI: 10.3390/antibiotics13010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024] Open
Abstract
β-Lactams are the most widely prescribed class of antibiotics that inhibit penicillin-binding proteins (PBPs), particularly transpeptidases that function in peptidoglycan synthesis. A major mechanism of antibiotic resistance is the production of β-lactamase enzymes, which are capable of hydrolyzing β-lactam antibiotics. There have been many efforts to counter increasing bacterial resistance against β-lactams. These studies have mainly focused on three areas: discovering novel inhibitors against β-lactamases, developing new β-lactams less susceptible to existing resistance mechanisms, and identifying non-β-lactam inhibitors against cell wall transpeptidases. Drug discovery in the β-lactam field has afforded a range of research opportunities for academia. In this review, we summarize the recent new findings on both β-lactamases and cell wall transpeptidases because these two groups of enzymes are evolutionarily and functionally connected. Many efforts to develop new β-lactams have aimed to inhibit both transpeptidases and β-lactamases, while several promising novel β-lactamase inhibitors have shown the potential to be further developed into transpeptidase inhibitors. In addition, the drug discovery progress against each group of enzymes is presented in three aspects: understanding the targets, screening methodology, and new inhibitor chemotypes. This is to offer insights into not only the advancement in this field but also the challenges, opportunities, and resources for future research. In particular, cyclic boronate compounds are now capable of inhibiting all classes of β-lactamases, while the diazabicyclooctane (DBO) series of small molecules has led to not only new β-lactamase inhibitors but potentially a new class of antibiotics by directly targeting PBPs. With the cautiously optimistic successes of a number of new β-lactamase inhibitor chemotypes and many questions remaining to be answered about the structure and function of cell wall transpeptidases, non-β-lactam transpeptidase inhibitors may usher in the next exciting phase of drug discovery in this field.
Collapse
Affiliation(s)
| | | | - Yu Chen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (L.M.C.J.); (P.C.)
| |
Collapse
|
14
|
Rat A, Koletti AE, Rodić N, Papageorgiou VP, Willems A, Assimopoulou AN. Bacterial responses to plant antimicrobials: the case of alkannin and shikonin derivatives. Front Pharmacol 2023; 14:1244270. [PMID: 37608899 PMCID: PMC10440953 DOI: 10.3389/fphar.2023.1244270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023] Open
Abstract
Alkannin, shikonin and their derivatives (A/S) are secondary metabolites produced in the roots of certain plants of the Boraginaceae family such as Lithospermum erythrorhizon Siebold & Zucc. and Alkanna tinctoria (L.) Tausch. These naphthoquinones express anti-cancer, wound healing, and antimicrobial activities. To study the interactions between endophytic bacteria isolated from A. tinctoria and the antimicrobials A/S, endophytic bacteria known to be resistant to the compounds were screened for their effect on A/S in liquid medium. Thereafter, the strain Pseudomonas sp. R-72008, was selected and tested for its ability to modify A/S in nutrient medium and minimal medium with A/S as sole carbon source. Bacterial growth was recorded, and high performance liquid chromatography-diode array and ultra-high performance liquid chromatography-electrospray ionization-mass spectrometry analyses were performed to detect and quantify metabolites. In nutrient medium inoculated with R-72008, a decrease in the amount of A/S monomers initially present was observed and correlated with an increase of A/S oligomers. Moreover, a significant decrease of initial A/S monomers in minimal medium was correlated with bacterial growth, showing for the first time that a bacterial strain, Pseudomonas sp. R-72008, was able to use the naphthoquinones A/S as sole carbon source. This study opens new perspectives on the interactions between bacteria and plant antimicrobials.
Collapse
Affiliation(s)
- Angélique Rat
- Laboratory of Microbiology, Department Biochemistry and Microbiology, Fac. Sciences, Ghent University, Ghent, Belgium
| | - Antigoni E. Koletti
- Organic Chemistry Laboratory, School of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Natural Products Research Centre of Excellence (NatPro-AUTH), Center for Interdisciplinary Research and Innovation of AUTh, Thessaloniki, Greece
| | - Nebojša Rodić
- Organic Chemistry Laboratory, School of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Natural Products Research Centre of Excellence (NatPro-AUTH), Center for Interdisciplinary Research and Innovation of AUTh, Thessaloniki, Greece
| | - Vassilios P. Papageorgiou
- Organic Chemistry Laboratory, School of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Natural Products Research Centre of Excellence (NatPro-AUTH), Center for Interdisciplinary Research and Innovation of AUTh, Thessaloniki, Greece
| | - Anne Willems
- Laboratory of Microbiology, Department Biochemistry and Microbiology, Fac. Sciences, Ghent University, Ghent, Belgium
| | - Andreana N. Assimopoulou
- Organic Chemistry Laboratory, School of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Natural Products Research Centre of Excellence (NatPro-AUTH), Center for Interdisciplinary Research and Innovation of AUTh, Thessaloniki, Greece
| |
Collapse
|
15
|
Zarroug SHO, Bajaman JS, Hamza FN, Saleem RA, Abdalla HK. Caenorhabditis elegans as an In Vivo Model for the Discovery and Development of Natural Plant-Based Antimicrobial Compounds. Pharmaceuticals (Basel) 2023; 16:1070. [PMID: 37630985 PMCID: PMC10458014 DOI: 10.3390/ph16081070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Antimicrobial resistance (AMR) due to the prevalence of multidrug-resistant (MDR) pathogens is rapidly increasing worldwide, and the identification of new antimicrobial agents with innovative mechanisms of action is urgently required. Medicinal plants that have been utilised for centuries with minor side effects may hold great promise as sources of effective antimicrobial products. The free-living nematode Caenorhabditis elegans (C. elegans) is an excellent live infection model for the discovery and development of new antimicrobial compounds. However, while C. elegans has widely been utilised to explore the effectiveness and toxicity of synthetic antibiotics, it has not been used to a comparable extent for the analysis of natural products. By screening the PubMed database, we identified articles reporting the use of the C. elegans model for the identification of natural products endowed with antibacterial and antifungal potential, and we critically analysed their results. The studies discussed here provide important information regarding "in vivo" antimicrobial effectiveness and toxicity of natural products, as evaluated prior to testing in conventional vertebrate models, thereby supporting the relevance of C. elegans as a highly proficient model for their identification and functional assessment. However, their critical evaluation also underlines that the characterisation of active phytochemicals and of their chemical structure, and the unravelling of their mechanisms of action represent decisive challenges for future research in this area.
Collapse
Affiliation(s)
- Samah H. O. Zarroug
- Department of Pharmacology, College of Medicine, Alfaisal University, Takassusy Road, Riyadh 11533, Saudi Arabia
| | - Juhaina S. Bajaman
- Department of Pharmacology, College of Medicine, Alfaisal University, Takassusy Road, Riyadh 11533, Saudi Arabia
| | - Fatheia N. Hamza
- Department of Biochemistry, College of Medicine, Alfaisal University, Takassusy Road, Riyadh 11533, Saudi Arabia; (F.N.H.); (R.A.S.)
| | - Rimah A. Saleem
- Department of Biochemistry, College of Medicine, Alfaisal University, Takassusy Road, Riyadh 11533, Saudi Arabia; (F.N.H.); (R.A.S.)
| | - Hana K. Abdalla
- Department of Microbiology, College of Medicine, Alfaisal University, Takassusy Road, Riyadh 11533, Saudi Arabia;
| |
Collapse
|
16
|
Computational docking investigation of phytocompounds from bergamot essential oil against Serratia marcescens protease and FabI: Alternative pharmacological strategy. Comput Biol Chem 2023; 104:107829. [PMID: 36842391 DOI: 10.1016/j.compbiolchem.2023.107829] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
The rapid development of multi-drug resistant (MDR) pathogens adds urgency to search for novel and safe drugs having promising action on new and re-emerging infectious pathogens. Serratia marcescens is an MDR pathogen that causes several-healthcare associated infections. Curbing bacterial virulence, rather than inhibiting its growth, is a promising strategy to diminish the pathogenesis of infectious bacteria, reduce the development of antimicrobial resistance, and boost the host immune power to eradicate infections. Bergamot essential oil (BEO) is a remarkable source of promising therapeutics against pathogens. Therefore, the present investigation aimed to analyze the major phytocompounds from BEO against S. marcescens virulent proteins using in silico studies. The analysis of BEO phytocompounds was achieved by Gas chromatography-mass spectrometry (GC-MS) method. The molecular docking was carried out using the SP and XP docking protocol of the Glide program. The drug-likeness and pharmacokinetics properties (ADMET properties) were analyzed with SwissADME and pkCSM server. The results revealed that the major compounds present in BEO are Linalool (8.17%), D-Limonene (21.26%), and Linalyl acetate (26.91%). Molecular docking analysis revealed that these compounds docked strongly within the binding cavities of Serratia protease and FabI model which in turn curb the pathogenesis of this bacteria. Linalool interacted with the Serratia protease and FabI with a binding energy of - 3.130 kcal/mol and - 3.939 kcal/mol, respectively. Based on the pharmacokinetics findings all lead BEO phytocompounds appear to be promising drug candidates. Overall, these results represent a significant step in the development of plant-based compounds as a promising inhibitor of the virulent proteins of the MDR S. marcescens.
Collapse
|
17
|
Herman A, Herman AP. Herbal Products and Their Active Constituents Used Alone and in Combination with Antibiotics against Multidrug-Resistant Bacteria. PLANTA MEDICA 2023; 89:168-182. [PMID: 35995069 DOI: 10.1055/a-1890-5559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The purpose of this review is to summarize the current knowledge acquired on herbal products and their active constituents with antimicrobial activity used alone and in combination with antibiotics against multidrug-resistant bacteria. The most promising herbal products and active constituents used alone against multidrug-resistant bacteria are Piper betle (methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, extended-spectrum beta-lactamase, Acinetobacter baumannii, Pseudomonas aeruginosa), Glycyrrhiza glabra (methicillin-resistant S. aureus, vancomycin-resistant Enterococcus, P. aeruginosa), and berberine (methicillin-resistant S. aureus, A. baumannii, P. aeruginosa), respectively. The synergistic effect of the combination of herbal products and their active constituents with antibiotics against multidrug-resistant bacteria are also described. These natural antibacterial agents can be promising sources of inhibitors, which can modulate antibiotic activity against multidrug-resistant bacteria, especially as efflux pump inhibitors. Other possible mechanisms of action of herbal therapy against multidrug-resistant bacteria including modification of the bacterial cell wall and/or membrane, inhibition of the cell division protein filamenting temperature sensitive Z-ring, and inhibition of protein synthesis and gene expression, all of which will also be discussed. Our review suggests that combination herbal therapy and antibiotics can be effectively used to expand the spectrum of their antimicrobial action. Therefore, combination therapy against multidrug-resistant bacteria may enable new choices for the treatment of infectious diseases and represents a potential area for future research.
Collapse
Affiliation(s)
- Anna Herman
- Faculty of Health Sciences, Warsaw School of Engineering and Health, Warsaw, Poland
| | - Andrzej P Herman
- Department of Genetic Engineering, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna near Warsaw, Poland
| |
Collapse
|
18
|
Amoussa AMO, Lagnika L, Jullian V, Chassagne F. Anti-Salmonella activity of plant species in the Benin republic: Artemisia afra and Detarium senegalense with promising in vitro and in vivo activities. Biomed Pharmacother 2023; 158:114119. [PMID: 36521244 DOI: 10.1016/j.biopha.2022.114119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Non-typhoidal invasive Salmonella (NTiS) diseases are one of the most important zoonoses in the world. This study explored the antipathogenic potential of twenty-four plants used in Benin folk medicine against NTiS diseases. The in vitro antibacterial and antibiofilm activities of ethanolic plant extracts were screened against clinical resistant isolates and ATCC reference strains of Salmonella. Salmonella enterica serovar Typhimurium-infected rat model was used to examine the in vivo antibacterial potential of plant extracts. Of the 24 plants, 18 plants exhibited antibacterial activity against Salmonella enterica strains with minimum inhibitory concentrations (MICs) ranging from 0.156 to 1.25 mg/mL. Anacardium occidentale, Artemisia afra, Detarium microcarpum, Detarium senegalense, and Leucaena leucocephala were the most active plant species. Extracts from A. afra, D. microcarpum, and D. senegalense showed biofilm inhibition greater than 50% against Salmonella clinical isolates. In the rat model of infection, A. afra and D. senegalense extracts were found to have an effective dose of less than 100 mg/kg and to stop the salmonellosis after 10 days of treatment. Additionally, these extracts did not produce any toxic effects in the treated animals. These results indicate clear evidence supporting the anti-Salmonella activity of A. afra and D. senegalense. Further studies are now needed to isolate bioactive compounds and to ensure the safety of these plant species.
Collapse
Affiliation(s)
- Abdou Madjid Olatounde Amoussa
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, France; Laboratoire de Biochimie et Substances Naturelles Bioactives, Faculté des Sciences Techniques, Université d'Abomey-Calavi, 04BP0320 Cotonou, Benin.
| | - Latifou Lagnika
- Laboratoire de Biochimie et Substances Naturelles Bioactives, Faculté des Sciences Techniques, Université d'Abomey-Calavi, 04BP0320 Cotonou, Benin
| | | | | |
Collapse
|
19
|
Yadav H, Mahalvar A, Pradhan M, Yadav K, Kumar Sahu K, Yadav R. Exploring the potential of phytochemicals and nanomaterial: a boon to antimicrobial treatment. MEDICINE IN DRUG DISCOVERY 2023. [DOI: 10.1016/j.medidd.2023.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
20
|
Li X, Cai Y, Xia Q, Liao Y, Qin R. Antibacterial sensitizers from natural plants: A powerful weapon against methicillin-resistant Staphylococcus aureus. Front Pharmacol 2023; 14:1118793. [PMID: 36909155 PMCID: PMC9998539 DOI: 10.3389/fphar.2023.1118793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a drug-resistant bacterium that can cause a range of infections with high morbidity and mortality, including pneumonia, etc. Therefore, development of new drugs or therapeutic strategies against MRSA is urgently needed. Increasing evidence has shown that combining antibiotics with "antibacterial sensitizers" which itself has no effect on MRSA, is highly effective against MRSA. Many studies showed the development of antibacterial sensitizers from natural plants may be a promising strategy against MRSA because of their low side effects, low toxicity and multi-acting target. In our paper, we first reviewed the resistance mechanisms of MRSA including "Resistance to Beta-Lactams", "Resistance to Glycopeptide antibiotics", "Resistance to Macrolides, Aminoglycosides, and Oxazolidinones" etc. Moreover, we summarized the possible targets for antibacterial sensitizers against MRSA. Furthermore, we reviewed the synergy effects of active monomeric compounds from natural plants combined with antibiotics against MRSA and their corresponding mechanisms over the last two decades. This review provides a novel approach to overcome antibiotic resistance in MRSA.
Collapse
Affiliation(s)
- Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
| | - Yongqing Cai
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Qinchuan Xia
- Fuan Pharmaceutical Group Chongqing Bosen Pharmaceutical Co., Ltd., Chongqing, China
| | - Yongqun Liao
- Fuan Pharmaceutical Group Chongqing Bosen Pharmaceutical Co., Ltd., Chongqing, China
| | - Rongxin Qin
- Department of Pharmacology, College of Pharmacy, Army Medical University (The Third Military Medical University), Chongqing, China
| |
Collapse
|
21
|
de Oliveira GD, da Rocha WRV, Rodrigues JFB, Alves HDS. Synergistic and Antibiofilm Effects of the Essential Oil from Croton conduplicatus (Euphorbiaceae) against Methicillin-Resistant Staphylococcus aureus. Pharmaceuticals (Basel) 2022; 16:ph16010055. [PMID: 36678551 PMCID: PMC9867205 DOI: 10.3390/ph16010055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 01/01/2023] Open
Abstract
Bacterial resistance refers to the ability of bacteria to resist the action of some antibiotics due to the development of adaptation and resistance mechanisms. It is a serious public health problem, especially for diseases caused by opportunistic bacteria. In this context, the search for new drugs, used alone or in combination, appears as an alternative for the treatment of microbial infections, and natural products, such as essential oils, are important in this process due to their structural diversity, which increases the probability for antimicrobial action. The objective of this study was to extract and identify the chemical components of the essential oil from Croton conduplicatus (EOCC), to evaluate the antimicrobial activity, to investigate the effect of the interaction between the EOCC and different antibiotics and to evaluate its antibiofilm potential. The EOCC was obtained by hydrodistillation. Based on chemical characterisation, 70 compounds were identified, with 1.8 cineole (13.15%), p-cymene (10.68%), caryophyllene (9.73%) and spathulenol (6.36%) being the major constituents. The minimum inhibitory concentration (MIC) values of EOCC were 256 and 512 µg mL-1 for methicillin-sensitive and -resistant Staphylococcus aureus strains (MSSA and MRSA), respectively. The combinations of EOCC with the antibiotics oxacillin and ampicillin were synergistic (OXA/EOCC and AMP/EOCC combined decreased the OXA MIC and AMP MIC to 0.5 and 0.25 for MSSA, respectively, and OXA/EOCC and AMP/EOCC combined decreased the OXA MIC and the AMP MIC to 1 and 0.5 for MRSA, respectively) and could modify the resistance profile of MSSA and MRSA strains. The results indicated that EOCC was also able to partially inhibit biofilm formation. Our study presents important information about the chemical composition of EOCC and its antimicrobial potential and provides a reference to determine the mechanisms of action of EOCC and its use in pharmaceutical formulations.
Collapse
Affiliation(s)
- Genil Dantas de Oliveira
- Postgraduate Program in Pharmaceuticals Sciences, Department of Pharmacy, State University of Paraiba, Campina Grande 58429-500, Brazil
| | - Wilma Raianny Vieira da Rocha
- Postgraduate Program in Pharmaceuticals Sciences, Department of Pharmacy, State University of Paraiba, Campina Grande 58429-500, Brazil
| | - José Filipe Bacalhau Rodrigues
- Postgraduate Program in Materials Science and Engineering, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Harley da Silva Alves
- Postgraduate Program in Pharmaceuticals Sciences, Department of Pharmacy, State University of Paraiba, Campina Grande 58429-500, Brazil
- Correspondence: ; Tel.: +55-83-98790-9234
| |
Collapse
|
22
|
Hasan AM, Ghafil JA. Study on the anti-microbial effect of Sinigrin against some pathogenic bacterial species. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.04.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The increasing anti-bacterial drug resistance is one of the biggest challenges facing doctors around the globe, so finding alternative treatments is one of the ideal options to overcome this problem. The cruciferous family is one of the wealthiest plants worldwide because it contains the most important secondary metabolites, glucosinolates, known for their anti-microbial properties. The present study aimed to evaluate the anti-bacterial effect of glucosinolates (Sinigrin) against eight bacterial isolates (Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Actinomyces, Proteus mirabilis and Streptococcus pneumoniae). The current study investigated six concentrations of pure Sinigrin (100, 300, 500, 700, 900, and 1100 µg/ml). The sensitivity of bacterial isolates to various antibiotics was tested by VITIK 2DensiCheck equipment. The anti-bacterial activity of Sinigrin was assessed using the agar diffusion method, and the microtiter plate method measured the minimal inhibitory concentration (MIC). The highest anti-bacterial effect of Sinigrin was observed against S. aureus, E. coli, and E. faecalis. The anti-bacterial activity started as lower as 100 µg/ml, while a moderate effect was seen against P. aeruginosa and K. pneumoniae at a concentration lower than 700 µg/ml. On the other hand, Sinigrin was not effective against Actinomyces, P. mirabilis, and S. pneumoniae. It can be concluded from the present study that Sinigrin has an anti-bacterial effect on some isolates of bacteria which suggests the possibility of using Sinigrin as alternative medicine in the future.
Keywords: Anti-bacterial activity, Agar well diffusion, Glucosinolates, Minimum inhibition concentration and antibiotic susceptibility, Sinigrin.
Collapse
Affiliation(s)
- Alaa M. Hasan
- Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Jenan A. Ghafil
- Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
23
|
Sweet R, Kroon PA, Webber MA. Activity of antibacterial phytochemicals and their potential use as natural food preservatives. Crit Rev Food Sci Nutr 2022; 64:2076-2087. [PMID: 36121430 DOI: 10.1080/10408398.2022.2121255] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The risk to human health from bacterial foodborne infection is presently controlled by the addition of antimicrobial preservatives to food. However, the use of chemical preservatives such as sodium nitrite poses a health risk in themselves with concerns around carcinogenic effects. This makes the development of improved preservatives a priority for the food industry. One promising source of novel antimicrobial compounds can be found in nature; phytochemicals, in particular polyphenols are secondary metabolites produced by plants for numerous purposes including antimicrobial defence. There has been significant study of phytochemicals; including quantifying their antimicrobial activity, potential to synergise with current antibiotics and the feasibility of their application as natural food preservatives. However, there remains significant uncertainty about the relative antimicrobial efficacy of different phytochemicals, their mechanisms of action (MOA) and the potential for emergence of bacterial resistance to their effects. This review summarizes recent work relevant to the potential development of phytochemicals as antimicrobial agents.
Collapse
Affiliation(s)
- Ryan Sweet
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Paul A Kroon
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Norwich Medical School, Norwich Research Park, Norwich, UK
| |
Collapse
|
24
|
Salama SA, AL-Faifi ZE, El-Amier YA. Chemical Composition of Reichardia tingitana Methanolic Extract and Its Potential Antioxidant, Antimicrobial, Cytotoxic and Larvicidal Activity. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11152028. [PMID: 35956506 PMCID: PMC9370821 DOI: 10.3390/plants11152028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/24/2022] [Accepted: 07/29/2022] [Indexed: 06/07/2023]
Abstract
The biggest challenges are locating effective, reasonably priced, and eco-friendly compounds to treat diseases caused by insects and microbes. The aim of this study was to employ GC-MS to assess the biological potency and chemical composition of the aerial parts of Reichardia tingitana (L.) Roth. Using this technique, 17 components were interpreted from the extracted plant, accounting for around 100% of total volatile compounds. Commonly, 6,10,14-trimethylpentadecan-2-one (21.98%) and methyl oleate (27.26%) were positioned as the major components, which were ascertained after 19.25, and 23.34 min, respectively. The major components were classified as hydrocarbons (23.82%), fatty acids, esters of fatty acids (57.46%), steroids (17.26%), and terpenes (1.48%). The DPPH antioxidant activity of the R. tingitana extracted components revealed that the shoot extract is the most powerful, with an IC50 value of 30.77 mg L−1 and a radical scavenging activity percentage of 71.91%. According to the current result, methanolic extract of R. tingitana had the maximum zone of inhibition against Salmonella typhimurium and Bacillus cereus (25.71 ± 1.63 and 24.42 ± 0.81 mm, respectively), while Clostridium tetani and Staphylococcus xylosus were the main resistant species. In addition, the 50% methanol crude shoot extract of R. tingitana showed greater potential anticancer activity with high cytotoxicity for two tumor cells HepG-2 and PC3 cells (IC50 = 29.977 and 40.479 µg mL−1, respectively) and noncytotoxic activity for WI-38 normal cells (IC50 = >100 µg mL−1). The MeOH extract of plant sample was more effective against Aedes aegypti larvae with LC50 of extract being 46.85, 35.75, and 29.38 mg L−1, whereas the LC90 is 82.66, 63.82, and 53.30 mg L−1 for the various time periods of 24, 48, and 72 h, respectively. R. tingitana is a possible biologically active plant. Future study will include pure chemical isolation and individual component bioactivity evaluation.
Collapse
Affiliation(s)
- Salama A. Salama
- Biology Department, Faculty of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
- Zoology Department, Faculty of Science, Damanhur University, Damanhour 22511, Egypt
| | - Zarraq E. AL-Faifi
- Center for Environmental Research and Studies, Jazan University, P.O. Box 2097, Jazan 42145, Saudi Arabia
| | - Yasser A. El-Amier
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
25
|
Singh D, Chauhan N, Koli M, Nayak SK, Subramanian M. Dimer stilbene, a resveratrol analogue exhibits synergy with antibiotics that target protein synthesis in eradicating Staphylococcus aureus infection. Biochimie 2022; 201:128-138. [PMID: 35772578 DOI: 10.1016/j.biochi.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/07/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022]
Abstract
Antibiotic resistance has become a major hurdle for successful treatment of several infections resulting in increased length of stay in hospitals and mortality. One of the notorious pathogens that wreaks havoc due to antibiotic resistance is Staphylococcus aureus. There is an urgent need to discover and understand the function of newer molecules that could serve in the arsenal to combat these bacteria. Our recent work identified important structural determinants of stilbenes that could aid in better antibacterial activity and identified Dimer stilbene (DS) as a potent inhibitor of S. aureus. Contrasting reports exist in literature about the combination of stilbenes with different antibiotics. In this study we evaluated the ability of DS to synergize with different classes of antibiotics. A screen revealed DS exhibited positive co-operativity with antibiotics that target protein synthesis. DS exhibited synergy with the aminoglycoside kanamycin and additive effect with tetracycline. Resistance generation to DS was null while to that of kanamycin was rapid. Kanamycin resistant S. aureus was equally susceptible to DS compared to wildtype. The efficacy of DS against clinical isolates susceptible and resistant to methicillin were similar. Laboratory generated kanamycin resistant strain and clinical strains were sensitized to kanamycin by pre-treatment with DS. DS cured S. aureus infection in mice as a standalone drug as well as in conjunction with kanamycin. Synergy with kanamycin was also observed in other stilbenes apart from DS. Thus our study reveals stilbenes could be exploited towards combating S. aureus infections either as standalone drugs or in combination with existing antibiotics.
Collapse
Affiliation(s)
- Deepti Singh
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India
| | - Nitish Chauhan
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Mrunesh Koli
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Sandip Kumar Nayak
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Mahesh Subramanian
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India.
| |
Collapse
|
26
|
Romo-Rico J, Krishna SM, Bazaka K, Golledge J, Jacob MV. Potential of plant secondary metabolite-based polymers to enhance wound healing. Acta Biomater 2022; 147:34-49. [PMID: 35649506 DOI: 10.1016/j.actbio.2022.05.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/01/2022]
Abstract
There is a global epidemic of non-healing wounds. Chronic inflammation, overexpression of pro-inflammatory cytokines, oxidative stress and bacterial infection are implicated in delayed wound healing. Natural extracts are a rich source of bioactive molecules called plant secondary metabolites (PSMs) that include terpenes and phenols. These molecules may facilitate wound healing through their antioxidant, anti-inflammatory, and antibacterial activity. After briefly outlining the process of wound healing and how it is compromised in chronic wounds, this review focuses on investigating how PSMs-based polymers may improve wound healing. Best methods for incorporating PSMs into wound dressings are reviewed and critically compared. The exiting body of literature strongly suggests that PSMs-based polymers incorporated into wound dressings could have clinical value in aiding wound healing. STATEMENT OF SIGNIFICANCE: Chronic wounds develop by the persistence of inflammation, oxidative stress and infection. Chronic wounds affect the worldwide population, by reducing quality of life of patients with significant cost to healthcare systems. To help chronic wounds to heal and overcome this burden, materials with anti-inflammatory, antioxidant and antibacterial properties are required. Plant secondary metabolites (PSMs) are volatile materials that have all these properties. PSMs-based polymers can be fabricated by polymerization techniques. The present review provides an overview of the state-of-the-art of the wound healing mechanisms of PSMs. Current developments in the field of PSMs-based polymers are reviewed and their potential use as wound dressings is also covered.
Collapse
|
27
|
Kim G, Xu Y, Zhang J, Sui Z, Corke H. Antibacterial Activity and Multi-Targeting Mechanism of Dehydrocorydaline From Corydalis turtschaninovii Bess. Against Listeria monocytogenes. Front Microbiol 2022; 12:799094. [PMID: 35087499 PMCID: PMC8787222 DOI: 10.3389/fmicb.2021.799094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen, with relatively low incidence but high case-fatality. Phytochemicals have been recognized as a promising antimicrobial agent as an alternative to synthetic chemicals due to their safety and high efficacy with multi-target sites. This study identified and characterized a novel antibacterial agent, dehydrocorydaline, in the Corydalis turschaninovii rhizome using HPLC-LTQ-Orbitrap-HRMS, and its antibacterial effect with lowest MIC (1 mg/mL) and MBC (2 mg/mL) values. In addition, an in vitro growth kinetic assay, cytoplasmic nucleic acid and protein leakage assay, and observation of morphological changes in bacterial cells supported the strong antibacterial activity. Dehydrocorydaline also displayed effective inhibitory effects on biofilm formation and bacterial motility. In order to investigate the potential antibacterial mechanism of action of dehydrocorydaline against L. monocytogenes, label-free quantitative proteomics was used, demonstrating that dehydrocorydaline has multiple targets for combating L. monocytogenes including dysregulation of carbohydrate metabolism, suppression of cell wall synthesis, and inhibition of bacterial motility. Overall, this study demonstrated that dehydrocorydaline has potential as a natural and effective antibacterial agent with multi-target sites in pathogenic bacteria, and provides the basis for development of a new class of antibacterial agent.
Collapse
Affiliation(s)
- Gowoon Kim
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Yijuan Xu
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiarong Zhang
- Biotechnology and Food Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou, China
| | - Zhongquan Sui
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou, China.,Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
28
|
Samreen, Qais FA, Ahmad I. In silico screening and in vitro validation of phytocompounds as multidrug efflux pump inhibitor against E. coli. J Biomol Struct Dyn 2022; 41:2189-2201. [PMID: 35067192 DOI: 10.1080/07391102.2022.2029564] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multiple drug resistance (MDR) in bacteria has increased globally in recent times. This has reduced the efficacy of antibiotics and increasing the rate of therapeutic failure. Targeting efflux pump by natural and synthetic compounds is one of the strategies to develop an ideal broad-spectrum resistance-modifying agent. Very few inhibitors of AcrB from natural sources have been reported till date. In the current study, 19 phytocompounds were screened for efflux pump inhibitory activity against AcrB protein of E. coli TG1 using molecular docking studies. The molecular dynamics simulation provided stability the protein (AcrB) and its complex with chlorogenic acid under physiological conditions. Moreover, the detailed molecular insights of the binding were also explored. The Lipinski rule of 5 and the drug-likeness prediction was determined using Swiss ADME server, while toxicity prediction was done using admetSAR and PROTOX-II webservers. Chlorogenic acid showed the highest binding affinity (-9.1 kcal mol-1) with AcrB protein among all screened phytocompounds. Consequently, all the phytocompounds that accede to Lipinski's rule, demonstrated a high LD50 value indicating that they are non-toxic except the phytocompound reserpine. Chlorogenic acid and capsaicin are filtered out based on the synergy with tetracycline having FIC index of 0.25 and 0.28. The percentage increase of EtBr fluorescence by chlorogenic acid was 36.6% followed by piperine (24.2%). Chlorogenic acid may be a promising efflux pump inhibitor that might be employed in combination therapy with tetracycline against E. coli, based on the above relationship between in silico screening and in vitro positive efflux inhibitory activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Samreen
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
29
|
Cui X, Ng KR, Chai KF, Chen WN. Clinically relevant materials & applications inspired by food technologies. EBioMedicine 2022; 75:103792. [PMID: 34974308 PMCID: PMC8728048 DOI: 10.1016/j.ebiom.2021.103792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
Food science and technology have a fundamental and considerable overlap with medicine, and many clinically important applications were borne out of translational food science research. Globally, the food industry - through various food processing technologies - generates huge quantities of agro-waste and food processing byproducts that retain a significant biochemical potential for upcycling into important medical applications. This review explores some distinct clinical applications that are fabricable from food-based biopolymers and substances, often originating from food manufacturing side streams. These include antibacterial wound dressings and tissue scaffolding from the biopolymers cellulose and chitosan and antimicrobial food phytochemicals for combating antibiotic-resistant nosocomial infections. Furthermore, fermentation is discussed as the epitome of a translational food technology that unlocks further therapeutic value from recalcitrant food-based substrates and enables sustainable large-scale production of high-value pharmaceuticals, including novel fermented food-derived bioactive peptides (BPs).
Collapse
Affiliation(s)
- Xi Cui
- Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 CleanTech Loop, CleanTech One, No. 06-08, 637141, Singapore; Food Science and Technology Programme, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Kuan Rei Ng
- Food Science and Technology Programme, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Kong Fei Chai
- Food Science and Technology Programme, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Wei Ning Chen
- Food Science and Technology Programme, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore.
| |
Collapse
|
30
|
Amador VC, dos Santos-Silva CA, Vilela LMB, Oliveira-Lima M, de Santana Rêgo M, Roldan-Filho RS, de Oliveira-Silva RL, Lemos AB, de Oliveira WD, Ferreira-Neto JRC, Crovella S, Benko-Iseppon AM. Lipid Transfer Proteins (LTPs)-Structure, Diversity and Roles beyond Antimicrobial Activity. Antibiotics (Basel) 2021; 10:1281. [PMID: 34827219 PMCID: PMC8615156 DOI: 10.3390/antibiotics10111281] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 01/21/2023] Open
Abstract
Lipid transfer proteins (LTPs) are among the most promising plant-exclusive antimicrobial peptides (AMPs). They figure among the most challenging AMPs from the point of view of their structural diversity, functions and biotechnological applications. This review presents a current picture of the LTP research, addressing not only their structural, evolutionary and further predicted functional aspects. Traditionally, LTPs have been identified by their direct isolation by biochemical techniques, whereas omics data and bioinformatics deserve special attention for their potential to bring new insights. In this context, new possible functions have been identified revealing that LTPs are actually multipurpose, with many additional predicted roles. Despite some challenges due to the toxicity and allergenicity of LTPs, a systematic review and search in patent databases, indicate promising perspectives for the biotechnological use of LTPs in human health and also plant defense.
Collapse
Affiliation(s)
- Vinícius Costa Amador
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Carlos André dos Santos-Silva
- Department of Advanced Diagnostics, Institute for Maternal and Child Health-IRCCS, Burlo Garofolo, 34100 Trieste, Italy;
| | - Lívia Maria Batista Vilela
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Marx Oliveira-Lima
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Mireli de Santana Rêgo
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Ricardo Salas Roldan-Filho
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Roberta Lane de Oliveira-Silva
- General Microbiology Laboratory, Agricultural Science Campus, Universidade Federal do Vale do São Francisco, Petrolina 56300-990, Brazil;
| | - Ayug Bezerra Lemos
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Wilson Dias de Oliveira
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - José Ribamar Costa Ferreira-Neto
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Sérgio Crovella
- Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha 1883, Qatar;
| | - Ana Maria Benko-Iseppon
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| |
Collapse
|
31
|
Guo T, Li M, Sun X, Wang Y, Yang L, Jiao H, Li G. Synergistic Activity of Capsaicin and Colistin Against Colistin-Resistant Acinetobacter baumannii: In Vitro/Vivo Efficacy and Mode of Action. Front Pharmacol 2021; 12:744494. [PMID: 34603057 PMCID: PMC8484878 DOI: 10.3389/fphar.2021.744494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen predominantly associated with nosocomial infections. With emerging resistance against polymyxins, synergistic combinations of drugs are being investigated as a new therapeutic approach. Capsaicin is a common constituent of the human diet and is widely used in traditional alternative medicines. The present study evaluated the antibacterial activities of capsaicin in combination with colistin against three unrelated colistin-resistant Acinetobacter baumannii strains in vitro and in vivo, and then further studied their synergistic mechanisms. Using the checkerboard technique and time-kill assays, capsaicin and colistin showed a synergistic effect on colistin-resistant A. baumannii. A mouse bacteremia model confirmed the in vivo effects of capsaicin and colistin. Mechanistic studies shown that capsaicin can inhibit the biofilm formation of both colistin-resistant and non-resistant A. baumannii. In addition, capsaicin decreased the production of intracellular ATP and disrupted the outer membrane of A. baumannii. In summary, the synergy between these drugs may enable a lower concentration of colistin to be used to treat A. baumannii infection, thereby reducing the dose-dependent side effects. Hence, capsaicin–colistin combination therapy may offer a new treatment option for the control of A. baumannii infection.
Collapse
Affiliation(s)
- Tingting Guo
- Department of Microbiology, School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China
| | - Mengying Li
- Department of Microbiology, School of Medicine, Yangzhou University, Yangzhou, China.,Department of Pharmacy, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Xiaoli Sun
- Department of Microbiology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Yuhang Wang
- Department of Microbiology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Liying Yang
- Department of Microbiology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Hongmei Jiao
- Department of Microbiology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Guocai Li
- Department of Microbiology, School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China
| |
Collapse
|
32
|
Ali M, Ijaz M, Ikram M, Ul-Hamid A, Avais M, Anjum AA. Biogenic Synthesis, Characterization and Antibacterial Potential Evaluation of Copper Oxide Nanoparticles Against Escherichia coli. NANOSCALE RESEARCH LETTERS 2021; 16:148. [PMID: 34542713 PMCID: PMC8452814 DOI: 10.1186/s11671-021-03605-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/12/2021] [Indexed: 05/09/2023]
Abstract
The development of resistance against antibiotics used to treat bacterial infections along with the prevalence of medication residues presents significant public health problems globally. Antibiotic-resistant germs result in infections that are difficult or impossible to treat. Decreasing antibiotic effectiveness calls for rapid development of alternative antimicrobials. In this respect, nanoparticles (NPs) of copper oxide (CuO) manifest a latent and flexible inorganic nanostructure with noteworthy antimicrobial impact. Green synthesis of CuO NPs was performed in the current study, which was then doped with varying amounts of ginger (Zingiber officinale, ZO) and garlic (Allium sativum, AS) extracts. In low and high doses, the synthesized compound was used to measure the antimicrobial effectiveness against pathogenic Escherichia coli. The present research successfully demonstrated a renewable, eco-friendly synthesis technique with natural materials that is equally applicable to other green metal oxide NPs.
Collapse
Affiliation(s)
- Mohsin Ali
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Punjab, 54000, Pakistan
| | - Muhammad Ijaz
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Punjab, 54000, Pakistan.
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore, Punjab, 54000, Pakistan.
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Avais
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Punjab, 54000, Pakistan
| | - Aftab Ahmad Anjum
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Punjab, 54000, Pakistan
| |
Collapse
|
33
|
Amala K, Karthi S, Ganesan R, Radhakrishnan N, Srinivasan K, Mostafa AEZMA, Al-Ghamdi AA, Alkahtani J, Elshikh MS, Senthil-Nathan S, Vasantha-Srinivasan P, Krutmuang P. Bioefficacy of Epaltes divaricata (L.) n-Hexane Extracts and Their Major Metabolites against the Lepidopteran Pests Spodoptera litura (fab.) and Dengue Mosquito Aedes aegypti (Linn.). Molecules 2021; 26:3695. [PMID: 34204264 PMCID: PMC8234362 DOI: 10.3390/molecules26123695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022] Open
Abstract
The present research investigated the chemical characterization and insecticidal activity of n-Hexane extracts of Epaltes divaricata (NH-EDx) along with their chief derivatives n-Hexadecanoic acid (n-HDa) and n-Octadecanoic acid (n-ODa) against the dengue vector Aedes aegypti and lepidopteran pest Spodoptera litura. Chemical screening of NH-EDx through GC-MS analysis delivered nine major derivatives, and the maximum peak area percentage was observed in n-Hexadecanoic acid (14.63%) followed by n-Octadecadienoic acid (6.73%). The larvicidal activity of NH-EDx (1000 ppm), n-HDa (5 ppm), and n-ODa (5 ppm) against the A. aegypti and S. litura larvae showed significant mortality rate in a dose-dependent way across all the instars. The larvicidal activity was profound in the A. aegypti as compared to the S. litura across all the larval instars. The sublethal dosages of NH-EDx (500 ppm), n-HDa (2.5 ppm), and n-ODa (2.5 ppm) also showed alterations in the larval/pupal durations and adult longevity in both the insect pests. The enzyme activity revealed that the α- and β-carboxylesterase levels were decreased significantly in both the insect pests, whereas the levels of GST and CYP450 uplifted in a dose-dependent manner of NH-EDx, n-HDa, and n-ODa. Correspondingly, midgut tissues such as the epithelial layer (EL), gut lumen (GL), peritrophic matrix (Pm), and brush border membrane (BBM) were significantly altered in their morphology across both A. aegypti and S. litura against the NH-EDx and their bioactive metabolites. NH-EDx and their bioactive metabolites n-HDa and n-ODa showed significant larvicidal, growth retardant, enzyme inhibition, and midgut toxicity effects against two crucial agriculturally and medically challenging insect pest of ecological importance.
Collapse
Affiliation(s)
- Kesavan Amala
- Department of Biotechnology, St. Peter’s Institute of Higher Education and Research, Avadi-600 054 Chennai, Tamil Nadu, India;
| | - Sengodan Karthi
- Division of Bio-Pesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627412 Tirunelveli, Tamil Nadu, India;
| | - Raja Ganesan
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 200 704, Korea;
| | - Narayanaswamy Radhakrishnan
- Department of Biochemistry, St. Peter’s Institute of Higher Education and Research, Avadi-600 054 Chennai, Tamil Nadu, India; (N.R.); (K.S.)
| | - Kumaraswamy Srinivasan
- Department of Biochemistry, St. Peter’s Institute of Higher Education and Research, Avadi-600 054 Chennai, Tamil Nadu, India; (N.R.); (K.S.)
| | - Abd El-Zaher M. A. Mostafa
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (A.E.-Z.M.A.M.); (A.A.A.-G.); (J.A.); (M.S.E.)
| | - Abdullah Ahmed Al-Ghamdi
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (A.E.-Z.M.A.M.); (A.A.A.-G.); (J.A.); (M.S.E.)
| | - Jawaher Alkahtani
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (A.E.-Z.M.A.M.); (A.A.A.-G.); (J.A.); (M.S.E.)
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (A.E.-Z.M.A.M.); (A.A.A.-G.); (J.A.); (M.S.E.)
| | - Sengottayan Senthil-Nathan
- Division of Bio-Pesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627412 Tirunelveli, Tamil Nadu, India;
| | - Prabhakaran Vasantha-Srinivasan
- Department of Biotechnology, St. Peter’s Institute of Higher Education and Research, Avadi-600 054 Chennai, Tamil Nadu, India;
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai, University, Muang, Chiang Mai 50200, Thailand
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
34
|
Herbal Products and Their Active Constituents Used Alone and in Combination with Antifungal Drugs against Drug-Resistant Candida sp. Antibiotics (Basel) 2021; 10:antibiotics10060655. [PMID: 34072664 PMCID: PMC8229001 DOI: 10.3390/antibiotics10060655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
Clinical isolates of Candida yeast are the most common cause of opportunistic fungal infections resistant to certain antifungal drugs. Therefore, it is necessary to detect more effective antifungal agents that would be successful in overcoming such infections. Among them are some herbal products and their active constituents.The purpose of this review is to summarize the current state of knowledge onherbal products and their active constituents havingantifungal activity against drug-resistant Candida sp. used alone and in combination with antifungal drugs.The possible mechanisms of their action on drug-resistant Candida sp. including (1) inhibition of budding yeast transformation into hyphae; (2) inhibition of biofilm formation; (3) inhibition of cell wall or cytoplasmic membrane biosynthesis; (4) ROS production; and (5) over-expression of membrane transporters will be also described.
Collapse
|
35
|
Alavi M, Dehestaniathar S, Mohammadi S, Maleki A, Karimi N. Antibacterial Activities of Phytofabricated ZnO and CuO NPs by Mentha pulegium Leaf/Flower Mixture Extract against Antibiotic Resistant Bacteria. Adv Pharm Bull 2021; 11:497-504. [PMID: 34513624 PMCID: PMC8421631 DOI: 10.34172/apb.2021.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose: In this study, leaf/flower aqueous extract of medicinal plant species Mentha pulegium was used to synthesize ZnO and CuO nanoparticles (NPs) as a cost-effective, one-step, and eco-friendly method. Methods: Physicochemical properties of both metal oxide NPs (MONPs) were determined by UV-Vis spectroscopy, X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscope (SEM) and energy dispersive X-ray (EDX) techniques. Results: Phytofabricated ZnONPs and CuNPs illustrated 65.02±7.55 and 26.92±4.7 nm with antibacterial activities against antibiotic-resistant Escherichia coli and Staphylococcus aureus. Higher antibacterial activities were observed for CuONPs compared with ZnONPs. Conclusion: Large surface area and more reactivity resulted from smaller size as well as higher production of reactive oxygen species (ROS) were considered to antibacterial efficiency of CuONPs against antibiotic-resistant E. coli and S. aureus.
Collapse
Affiliation(s)
- Mehran Alavi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Nanobiotechnology Laboratory, Biology Department, Faculty of Science, Razi University, Kermanshah, Iran
| | - Saeed Dehestaniathar
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Shadieh Mohammadi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Afshin Maleki
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Naser Karimi
- Nanobiotechnology Laboratory, Biology Department, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
36
|
In Silico Approach for Phytocompound-Based Drug Designing to Fight Efflux Pump-Mediated Multidrug-Resistant Mycobacterium tuberculosis. Appl Biochem Biotechnol 2021; 193:1757-1779. [PMID: 33826064 PMCID: PMC8024441 DOI: 10.1007/s12010-021-03557-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/22/2021] [Indexed: 01/01/2023]
Abstract
Tuberculosis (TB), caused by the bacteria Mycobacterium tuberculosis, is one of the principal causes of death in the world despite the existence of a significant number of antibiotics aimed against it. This is mainly due to the drug resistance mechanisms present in the bacterium, which leads to multidrug-resistant tuberculosis (MDR-TB). Additionally, the development of new antibiotics has become limited over the years. Although there are various drug resistance mechanisms present, efflux pumps are of utmost importance because they extrude out several dissimilar antitubercular drugs out of the cell. There are many efflux pump proteins present in Mycobacterium tuberculosis. Therefore, blocking these efflux pumps by inhibitors can raise the efficacy of the existing antibiotics and may also pave the path for the discovery and synthesis of new drugs. Plant compounds can act as a resource for the development of efflux pump inhibitors (EPIs), which may eventually replace or augment the current therapeutic options. This is mainly because plants have been traditionally used for ages for food or treatment and are considered safe with little or no side effects. Various computational tools are available which are used for the virtual screening of a large number of phytocompounds within a short span of time. This review aims to highlight the mechanism and appearance of drug resistance in Mycobacterium tuberculosis with emphasis on efflux pumps along with the significance of phytochemicals as inhibitors of these pumps and their screening strategy by computational approaches.
Collapse
|
37
|
Khan N, Jamila N, Amin F, Masood R, Atlas A, Khan W, Ain NU, Khan SN. Quantification of macro, micro and trace elements, and antimicrobial activity of medicinal herbs and their products. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
Allemailem KS. Antimicrobial Potential of Naturally Occurring Bioactive Secondary Metabolites. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2021; 13:155-162. [PMID: 34349474 PMCID: PMC8291113 DOI: 10.4103/jpbs.jpbs_753_20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/01/2020] [Accepted: 12/25/2020] [Indexed: 11/04/2022] Open
Abstract
The use of traditional medicines of natural origin has been prevalent since ancient times globally as the plants produce a great diversity in their secondary metabolites. The naturally occurring bioactive constituents in food and other plant materials have shown widespread attention for their use as alternative medicine to prevent and cure microbial growth with the least toxic manifestations. The inclusion of these contents revealed their crucial role to improve the therapeutic efficacy of the classical drugs against various pathogenic microorganisms. Furthermore, several metabolites have also been explored in combination with antimicrobial agents to overcome the problems associated with drug resistance. This current review discusses the antimicrobial activities of secondary metabolites as well as their role in drug sensitivity against multiple-drug resistant pathogenic microbes.
Collapse
Affiliation(s)
- Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
39
|
Tiwari P, Khare T, Shriram V, Bae H, Kumar V. Plant synthetic biology for producing potent phyto-antimicrobials to combat antimicrobial resistance. Biotechnol Adv 2021; 48:107729. [PMID: 33705914 DOI: 10.1016/j.biotechadv.2021.107729] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/22/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022]
Abstract
Inappropriate and injudicious use of antimicrobial drugs in human health, hygiene, agriculture, animal husbandry and food industries has contributed significantly to rapid emergence and persistence of antimicrobial resistance (AMR), one of the serious global public health threats. The crisis of AMR versus slower discovery of newer antibiotics put forth a daunting task to control these drug-resistant superbugs. Several phyto-antimicrobials have been identified in recent years with direct-killing (bactericidal) and/or drug-resistance reversal (re-sensitization of AMR phenotypes) potencies. Phyto-antimicrobials may hold the key in combating AMR owing to their abilities to target major microbial drug-resistance determinants including cell membrane, drug-efflux pumps, cell communication and biofilms. However, limited distribution, low intracellular concentrations, eco-geographical variations, beside other considerations like dynamic environments, climate change and over-exploitation of plant-resources are major blockades in full potential exploration phyto-antimicrobials. Synthetic biology (SynBio) strategies integrating metabolic engineering, RNA-interference, genome editing/engineering and/or systems biology approaches using plant chassis (as engineerable platforms) offer prospective tools for production of phyto-antimicrobials. With expanding SynBio toolkit, successful attempts towards introduction of entire gene cluster, reconstituting the metabolic pathway or transferring an entire metabolic (or synthetic) pathway into heterologous plant systems highlight the potential of this field. Through this perspective review, we are presenting herein the current situation and options for addressing AMR, emphasizing on the significance of phyto-antimicrobials in this apparently post-antibiotic era, and effective use of plant chassis for phyto-antimicrobial production at industrial scales along with major SynBio tools and useful databases. Current knowledge, recent success stories, associated challenges and prospects of translational success are also discussed.
Collapse
Affiliation(s)
- Pragya Tiwari
- Molecular Metabolic Engineering Lab, Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Varsha Shriram
- Department of Botany, Prof. Ramkrishna More Arts, Commerce and Science College, Savitribai Phule Pune University, Akurdi, Pune 411044, India
| | - Hanhong Bae
- Molecular Metabolic Engineering Lab, Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
40
|
Parthasarathy A, Borrego EJ, Savka MA, Dobson RCJ, Hudson AO. Amino acid-derived defense metabolites from plants: A potential source to facilitate novel antimicrobial development. J Biol Chem 2021; 296:100438. [PMID: 33610552 PMCID: PMC8024917 DOI: 10.1016/j.jbc.2021.100438] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/23/2022] Open
Abstract
For millennia, humanity has relied on plants for its medicines, and modern pharmacology continues to reexamine and mine plant metabolites for novel compounds and to guide improvements in biological activity, bioavailability, and chemical stability. The critical problem of antibiotic resistance and increasing exposure to viral and parasitic diseases has spurred renewed interest into drug treatments for infectious diseases. In this context, an urgent revival of natural product discovery is globally underway with special attention directed toward the numerous and chemically diverse plant defensive compounds such as phytoalexins and phytoanticipins that combat herbivores, microbial pathogens, or competing plants. Moreover, advancements in “omics,” chemistry, and heterologous expression systems have facilitated the purification and characterization of plant metabolites and the identification of possible therapeutic targets. In this review, we describe several important amino acid–derived classes of plant defensive compounds, including antimicrobial peptides (e.g., defensins, thionins, and knottins), alkaloids, nonproteogenic amino acids, and phenylpropanoids as potential drug leads, examining their mechanisms of action, therapeutic targets, and structure–function relationships. Given their potent antibacterial, antifungal, antiparasitic, and antiviral properties, which can be superior to existing drugs, phytoalexins and phytoanticipins are an excellent resource to facilitate the rational design and development of antimicrobial drugs.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Eli J Borrego
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Michael A Savka
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - André O Hudson
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA.
| |
Collapse
|
41
|
Jesus GSDE, Micheletti AC, Takahashi KM, Matayoshi T, Pott A, Yoshida NÍC. Antimicrobial potential of Pectis substriata essential oil (Asteraceae) against drug-resistant Staphylococcus strains. AN ACAD BRAS CIENC 2020; 92:e20200456. [PMID: 33331445 DOI: 10.1590/0001-3765202020200456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/07/2020] [Indexed: 11/22/2022] Open
Abstract
Resistant bacterial infections represent one of the major threats in worldwide health services. In this scenario, plant essential oils are considered promising antimicrobial agents. Therefore, this study aimed to evaluate the antimicrobial potential of Pectis substriata essential oil alone and in combination with antibiotics, against clinical drug-resistant bacterial strains. The essential oil from the plant aerial parts was obtained by hydrodistillation. Antimicrobial activity was assessed against standard and clinical bacterial strains by broth microdilution method, and the synergistic effect was evaluated by checkerboard microtiter assay. The oil alone showed significant activity against clinical Staphylococcus warneri (62.5 µg.mL-1), and was moderately active on Staphylococcus aureus (standard strain) and clinical Staphylococcus intermedius (125 and 250 µg.mL-1, respectively). Synergism was achieved for the combinations of essential oil and ampicillin on S. warneri and of oil and kanamycin on S. intermedius. Additive effects were also observed. This is the first report of the chemical composition of P. substriata essential oil, and the results revealed the presence of compounds with proven antimicrobial activity. The oil proved active against resistant Gram-positive cocci, and showed synergism with antibiotics, revealing its potential use as adjuvant or in the development of new alternative treatments of drug-resistant antimicrobial infections.
Collapse
Affiliation(s)
- Genilson S DE Jesus
- Universidade Federal de Mato Grosso do Sul, Instituto de Química, Av. Senador Filinto Müller, 1555, Jardim Ipiranga, 79074-460 Campo Grande, MS, Brazil
| | - Ana C Micheletti
- Universidade Federal de Mato Grosso do Sul, Instituto de Química, Av. Senador Filinto Müller, 1555, Jardim Ipiranga, 79074-460 Campo Grande, MS, Brazil
| | - Karen M Takahashi
- Universidade Federal de Mato Grosso do Sul, Faculdade de Engenharias, Arquitetura e Urbanismo e Geografia, Rua César Ramos dos Santos, 346, Universitário, Cidade Universitária, 79052-564 Campo Grande, MS, Brazil
| | - Tatiana Matayoshi
- Universidade Federal de Mato Grosso do Sul, Instituto de Química, Av. Senador Filinto Müller, 1555, Jardim Ipiranga, 79074-460 Campo Grande, MS, Brazil
| | - Arnildo Pott
- Universidade Federal de Mato Grosso do Sul, Instituto de Biociências, Av. Costa e Silva, s/n, Universitário, Cidade Universitária, 79002-970 Campo Grande, MS, Brazil
| | - NÍdia C Yoshida
- Universidade Federal de Mato Grosso do Sul, Instituto de Química, Av. Senador Filinto Müller, 1555, Jardim Ipiranga, 79074-460 Campo Grande, MS, Brazil
| |
Collapse
|
42
|
Oliveira Ribeiro S, Fontaine V, Mathieu V, Zhiri A, Baudoux D, Stévigny C, Souard F. Antibacterial and Cytotoxic Activities of Ten Commercially Available Essential Oils. Antibiotics (Basel) 2020; 9:antibiotics9100717. [PMID: 33092096 PMCID: PMC7589993 DOI: 10.3390/antibiotics9100717] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
There is a huge concern in the medical field concerning the emergence of bacterial resistance to antibiotics. Essential oils are a source of antibacterial compounds that can overcome this problem. Ten essential oils that are commercially available were investigated in the present study: ajowan, basil, German chamomile, Chinese cinnamon, coriander, clove, lemongrass, Spanish lavender, oregano and palmarosa. Their direct, synergistic and indirect antibacterial activities were evaluated against different human pathogenic Gram-positive and Gram-negative strains. To evaluate their possible use in clinics, the cytotoxicity of these essential oils was also tested on keratinocyte and epithelial cell lines. Except for the Chinese cinnamon, coriander and lemongrass, all other essential oils presented no cytotoxicity at 32 and 16 μg/mL. The highest indirect antibacterial activities were observed with the palmarosa and Spanish lavender in association with penicillin V. These two associations presented a 64-fold decrease against a resistant strain of Staphylococcus aureus, however, at a cytotoxic concentration. It can also be highlighted that when tested at a non-cytotoxic concentration, the activity of oregano in association with penicillin V presented an eight-fold decrease. These results show the interest to use essential oils in combination with antibiotics to reduce their concentrations inside drugs.
Collapse
Affiliation(s)
- Sofia Oliveira Ribeiro
- Department of Research in Drug Development (RD3), Pharmacognosy, Bioanalysis and Drug Discovery Unit, Faculty of Pharmacy, Université libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium;
- Correspondence:
| | - Véronique Fontaine
- Department of Research in Drug Development (RD3), Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium;
| | - Véronique Mathieu
- Department of Pharmacotherapy and Pharmaceutics, Université libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium;
| | - Abdesselam Zhiri
- Pranarôm International S.A. 37, Avenue des Artisans, 7822 Ghislenghien, Belgium; (A.Z.); (D.B.)
- Unité de Recherche en Biotechnologie Végétale, Université libre de Bruxelles, CP 300, Rue Prof. Jeener & Brachet 12, 6041 Gosselies, Belgium
| | - Dominique Baudoux
- Pranarôm International S.A. 37, Avenue des Artisans, 7822 Ghislenghien, Belgium; (A.Z.); (D.B.)
| | - Caroline Stévigny
- Department of Research in Drug Development (RD3), Pharmacognosy, Bioanalysis and Drug Discovery Unit, Faculty of Pharmacy, Université libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium;
| | - Florence Souard
- Department of Pharmacotherapy and Pharmaceutics (DPP), Pharmacology, Pharmacotherapy and Pharmaceutical care Unit, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium;
- Département de Pharmacochimie Moléculaire (DPM), Université Grenoble Alpes, CNRS, UMR 5063, F3Y041 Grenoble, France
| |
Collapse
|
43
|
Kongkham B, Prabakaran D, Puttaswamy H. Opportunities and challenges in managing antibiotic resistance in bacteria using plant secondary metabolites. Fitoterapia 2020; 147:104762. [PMID: 33069839 DOI: 10.1016/j.fitote.2020.104762] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
Development of antibiotic resistance (ABR) in bacteria and its multidimensional spread is an emerging global threat that needs immediate attention. Extensive antibiotics (AB) usage results in development of ABR in bacteria by target modification, production of AB degrading enzymes, porin modifications, efflux pumps overexpression, etc. To counter this, apart from strict regulation of AB use and behavioural changes, research and development (R&D) of newer antimicrobials are in place. One such emerging approach to combat ABR is the use of structurally and functionally diverse plant secondary metabolites (PSMs) in combination with the conventional AB. Either the PSMs are themselves antimicrobial or they potentiate the activity of the AB through a range of mechanisms. However, their use is lagging due to poor knowledge of mode of action, structure-activity relationships, pharmacokinetics, etc. This review paper discussed the opportunities and challenges in managing ABR using PSMs. Mechanisms of ABR development in bacteria and current strategies to counter them were studied and the areas where PSMs can play an important role were highlighted. The use of PSMs, both as an anti-resistance and anti-virulence agent in combination therapy to counter multi-drug resistance along with their mechanisms of action, has been discussed in detail. The difficulties in the commercialisation of PSMs and strategies to overcome them along with future priority areas of research have also been given. Following the given R&D path will definitely help in better understanding and utilising the full potential of PSMs in solving the problem of antimicrobial resistance (AMR).
Collapse
Affiliation(s)
- Bhani Kongkham
- Environmental Biotechnology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Duraivadivel Prabakaran
- Environmental Biotechnology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Hariprasad Puttaswamy
- Environmental Biotechnology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Delhi 110016, India.
| |
Collapse
|
44
|
Dimkić I, Petrović M, Gavrilović M, Gašić U, Ristivojević P, Stanković S, Janaćković P. New perspectives of purple starthistle (Centaurea calcitrapa) leaf extracts: phytochemical analysis, cytotoxicity and antimicrobial activity. AMB Express 2020; 10:183. [PMID: 33044582 PMCID: PMC7550514 DOI: 10.1186/s13568-020-01120-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Ethnobotanical and ethnopharmacological studies of many Centaurea species indicated their potential in folk medicine so far. However, investigations of different Centaurea calcitrapa L. extracts in terms of cytotoxicity and antimicrobial activity against phytopathogens are generally scarce. The phenolic profile and broad antimicrobial activity (especially towards bacterial phytopathogens) of methanol (MeOH), 70% ethanol (EtOH), ethyl-acetate (EtOAc), 50% acetone (Me2CO) and dichloromethane: methanol (DCM: MeOH, 1: 1) extracts of C. calcitrapa leaves and their potential toxicity on MRC-5 cell line were investigated for the first time. A total of 55 phenolic compounds were identified: 30 phenolic acids and their derivatives, 25 flavonoid glycosides and aglycones. This is also the first report of the presence of centaureidin, jaceidin, kaempferide, nepetin, flavonoid glycosides, phenolic acids and their esters in C. calcitrapa extracts. The best results were obtained with EtOAc extract with lowest MIC values expressed in µg/mL ranging from 13 to 25, while methicillin resistant Staphylococcus aureus was the most susceptible strain. The most susceptible phytopathogens were Pseudomonas syringae pv. syringae, Xanthomonas campestris pv. campestris and Agrobacterium tumefaciens. The highest cytotoxicity was recorded for EtOAc and Me2CO extracts with the lowest relative and absolute IC50 values between 88 and 102 µg/mL, while EtOH extract was the least toxic with predicted relative IC50 value of 1578 µg/mL. Our results indicate that all tested extracts at concentration considered as non-toxic can be one of great importance in combat towards phytopathogenic and human pathogenic strains, as well as natural sources of antimicrobials.
Collapse
|
45
|
Efimova SS, Zakharova AA, Ostroumova OS. Alkaloids Modulate the Functioning of Ion Channels Produced by Antimicrobial Agents via an Influence on the Lipid Host. Front Cell Dev Biol 2020; 8:537. [PMID: 32695785 PMCID: PMC7339123 DOI: 10.3389/fcell.2020.00537] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022] Open
Abstract
It is widely recognized that an alteration in membrane physical properties induced by the adsorption of various drugs and biologically active compounds might greatly affect the functioning of peptides and proteins embedded in the membrane, in particular various ion channels. This study aimed to obtain deep insight into the diversity of the molecular mechanisms of membrane action of one of the most numerous and extremely important class of phytochemicals, the alkaloids. Protoalkaloids (derivatives of β-phenylethylamine, benzylamines, and colchicines), heterocyclic alkaloids (derivatives of purine, quinolysidine, piperidine, pyridine, quinoline, and isoquinoline), and steroid alkaloids were tested. We evaluated the effects of 22 compounds on lipid packing by investigating the thermotropic behavior of membrane lipids and the leakage of a fluorescent marker from unilamellar lipid vesicles. The alteration in the transmembrane distribution of the electrical potential was estimated by measuring the alkaloid induced changes in the boundary potential of planar lipid bilayers. We found that benzylamines, the chili pepper active components, capsaicin and dihydrocapsaicin, strongly affect not only the elastic properties of the lipid host, but also its electrostatics by dramatic decrease in membrane dipole potential. We concluded that the increase in the conductance and lifetime of gramicidin A channels induced by benzylamines was related to alteration in membrane dipole potential not to decrease in membrane stiffness. A sharp decrease in the lifetime of single ion pores induced by the antifungal lipopeptide syringomycin E, after addition of benzylamines and black pepper alkaloid piperine, was also mainly due to the reduction in dipole potential. At the same time, we showed that the disordering of membrane lipids in the presence of benzylamines and piperine plays a decisive role in the regulation of the conductance induced by the antifungal polyene macrolide antibiotic nystatin, while the inhibition of steady-state transmembrane current produced by the antimicrobial peptide cecropin A was attributed to both the dipole potential drop and membrane lipid disordering in the presence of pepper alkaloids. These data might lead to a better understanding of the biological activity of alkaloids, especially their action on voltage-gated and mechanosensitive ion channels in cell membranes.
Collapse
Affiliation(s)
- Svetlana S Efimova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Anastasiia A Zakharova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Olga S Ostroumova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
46
|
Gorlenko CL, Kiselev HY, Budanova EV, Zamyatnin AA, Ikryannikova LN. Plant Secondary Metabolites in the Battle of Drugs and Drug-Resistant Bacteria: New Heroes or Worse Clones of Antibiotics? Antibiotics (Basel) 2020; 9:antibiotics9040170. [PMID: 32290036 PMCID: PMC7235868 DOI: 10.3390/antibiotics9040170] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Infectious diseases that are caused by bacteria are an important cause of mortality and morbidity in all regions of the world. Bacterial drug resistance has grown in the last decades, but the rate of discovery of new antibiotics has steadily decreased. Therefore, the search for new effective antibacterial agents has become a top priority. The plant kingdom seems to be a deep well for searching for novel antimicrobial agents. This is due to the many attractive features of plants: they are readily available and cheap, extracts or compounds from plant sources often demonstrate high-level activity against pathogens, and they rarely have severe side effects. The huge variety of plant-derived compounds provides very diverse chemical structures that may supply both the novel mechanisms of antimicrobial action and provide us with new targets within the bacterial cell. In addition, the rapid development of modern biotechnologies opens up the way for obtaining bioactive compounds in environmentally friendly and low-toxic conditions. In this short review, we ask the question: do antibacterial agents derived from plants have a chance to become a panacea against infectious diseases in the "post-antibiotics era".
Collapse
Affiliation(s)
- Cyrill L. Gorlenko
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (C.L.G.); (H.Y.K.); (E.V.B.)
| | - Herman Yu. Kiselev
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (C.L.G.); (H.Y.K.); (E.V.B.)
| | - Elena V. Budanova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (C.L.G.); (H.Y.K.); (E.V.B.)
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (C.L.G.); (H.Y.K.); (E.V.B.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Correspondence: (A.A.Z.J.); (L.N.I.); Tel.: +7-495-622-98-43 (A.A.Z.J.); +7-910-472-01-49 (L.N.I.)
| | - Larisa N. Ikryannikova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (C.L.G.); (H.Y.K.); (E.V.B.)
- Correspondence: (A.A.Z.J.); (L.N.I.); Tel.: +7-495-622-98-43 (A.A.Z.J.); +7-910-472-01-49 (L.N.I.)
| |
Collapse
|
47
|
Du R, Qu Y, Qi PX, Sun X, Liu Y, Zhao M. Natural flagella-templated Au nanowires as a novel adjuvant against Listeria monocytogenes. NANOSCALE 2020; 12:5627-5635. [PMID: 32100780 DOI: 10.1039/c9nr10095d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A simple method was developed for the extraction and purification of bacterial flagella with a yield of a concentration of 113.22 ± 5.64 mg mL-1. Gold (Au) nanowires were synthesized using the bacterial flagella as the template. Transmission Electron Microscopy (TEM) analysis showed that the nanowires were scarcely clustered as stiff (no tendency to bend or fold) and straight nanorods with homogeneous surface and a uniform aspect ratio over 60. Fourier Transform Infrared (FT-IR) spectroscopic studies revealed the deep involvement of the functional groups located within and on the surface of flagellin, including C-N, N-H, O-H, and C[double bond, length as m-dash]O. The profound transformation observed in the absorption profiles of these groups supported the notion that both chemical (reduction) reaction and physical (electrostatic) binding of Au occurred during the formation of Au nanowires. Verbascoside, oleuropein, and olive leaf extract (OLE) have been shown to inhibit the growth of Listeria monocytogenes completely at their respective Minimal Inhibitory Concentrations (MICs) of 20, 64, and 64 mg mL-1. In contrast, the synthesized Au nanowires demonstrated high electrocatalytic activity and reduced the MICs of the three antibacterial compounds by half. Moreover, results from the AMES assays indicated that the synthesized Au nanowires had no mutagenic activities at the catalytic concentration used, 128 μg mL-1. Therefore, the Au nanowires fabricated in this work have the potential to be used as new antimicrobial food packaging materials to enhance food safety.
Collapse
Affiliation(s)
- Renjie Du
- College of Life Science, Northeast Forestry University, No. 26, Hexing Road, Harbin 150040, China.
| | | | | | | | | | | |
Collapse
|
48
|
Chambers CS, Viktorová J, Řehořová K, Biedermann D, Turková L, Macek T, Křen V, Valentová K. Defying Multidrug Resistance! Modulation of Related Transporters by Flavonoids and Flavonolignans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1763-1779. [PMID: 30907588 DOI: 10.1021/acs.jafc.9b00694] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Multidrug resistance (MDR) is a major challenge for the 21th century in both cancer chemotherapy and antibiotic treatment of bacterial infections. Efflux pumps and transport proteins play an important role in MDR. Compounds displaying inhibitory activity toward these proteins are prospective for adjuvant treatment of such conditions. Natural low-cost and nontoxic flavonoids, thanks to their vast structural diversity, offer a great pool of lead structures with broad possibility of chemical derivatizations. Various flavonoids were found to reverse both antineoplastic and bacterial multidrug resistance by inhibiting Adenosine triphosphate Binding Cassette (ABC)-transporters (human P-glycoprotein, multidrug resistance-associated protein MRP-1, breast cancer resistance protein, and bacterial ABC transporters), as well as other bacterial drug efflux pumps: major facilitator superfamily (MFS), multidrug and toxic compound extrusion (MATE), small multidrug resistance (SMR) and resistance-nodulation-cell-division (RND) transporters, and glucose transporters. Flavonoids and particularly flavonolignans are therefore highly prospective compounds for defying multidrug resistance.
Collapse
Affiliation(s)
- Christopher S Chambers
- Laboratory of Biotransformation , Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083 , CZ 142 20 Prague , Czech Republic
| | - Jitka Viktorová
- Department of Biochemistry and Microbiology , University of Chemistry and Technology, Prague , Technická 5 , CZ 166 28 , Prague , Czech Republic
| | - Kateřina Řehořová
- Department of Biochemistry and Microbiology , University of Chemistry and Technology, Prague , Technická 5 , CZ 166 28 , Prague , Czech Republic
| | - David Biedermann
- Laboratory of Biotransformation , Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083 , CZ 142 20 Prague , Czech Republic
| | - Lucie Turková
- Laboratory of Biotransformation , Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083 , CZ 142 20 Prague , Czech Republic
| | - Tomáš Macek
- Department of Biochemistry and Microbiology , University of Chemistry and Technology, Prague , Technická 5 , CZ 166 28 , Prague , Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation , Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083 , CZ 142 20 Prague , Czech Republic
| | - Kateřina Valentová
- Laboratory of Biotransformation , Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083 , CZ 142 20 Prague , Czech Republic
| |
Collapse
|
49
|
Yamagishi A, Nakano S, Yamasaki S, Nishino K. An efflux inhibitor of the MacAB pump in Salmonella enterica serovar Typhimurium. Microbiol Immunol 2020; 64:182-188. [PMID: 31825103 DOI: 10.1111/1348-0421.12765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/26/2019] [Accepted: 12/01/2019] [Indexed: 12/13/2022]
Abstract
Multidrug efflux pumps play an important role in bacterial multidrug resistance by actively excreting antibiotics. The ATP-binding cassette-type drug efflux pump MacAB was originally reported as a macrolide-specific pump. MacAB is also known to be required for the virulence of Salmonella enterica serovar Typhimurium following oral infection in mice. Here, we performed a screening of inhibitors of Salmonella MacAB and found a compound that increased the susceptibility of a MacAB-expressing strain to macrolides. It was previously reported that MacAB is required to resist peroxide-mediated killing in vitro and that a supernatant of wild-type Salmonella rescues the growth defect of a macAB mutant in H2 O2 . In this study, we also found that the MacAB inhibitor reduced the ability of the supernatant to rescue Salmonella cells in H2 O2 . This compound could lead to a better understanding of the function of MacAB.
Collapse
Affiliation(s)
- Ami Yamagishi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Sohei Nakano
- School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Seiji Yamasaki
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan.,Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| | - Kunihiko Nishino
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| |
Collapse
|
50
|
Wang L, Huang Y, Yin G, Wang J, Wang P, Chen ZY, Wang T, Ren G. Antimicrobial activities of Asian ginseng, American ginseng, and notoginseng. Phytother Res 2019; 34:1226-1236. [PMID: 31885119 DOI: 10.1002/ptr.6605] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/26/2019] [Accepted: 12/07/2019] [Indexed: 12/15/2022]
Abstract
Asian ginseng (Panax ginseng C.A. Meyer), American ginseng (Panax quinquefolius) and notoginseng (Panax notoginseng) are the three most commonly used ginseng botanicals in the world. With the increasing interests on antimicrobial properties of plants, the antimicrobial activities of ginseng species have been investigated by a number of researchers worldwide. This overview interprets our present knowledge of the antimicrobial activities of the three ginseng species and some of their bioactive components against pathogenic bacteria (Pseudomonas aeruginosa, Helicobacter pylori, Staphylococcus aureus, Escherichia coli, Propionibacterium acnes, et al.) and fungi (Candida albicans, Fusarium oxysporum, et al). Ginsenosides, polysaccharides, essential oil, proteins, and panaxytriol are all might responsible for the antimicrobial activities of ginseng. The antimicrobial mechanisms of ginseng components could be summarized to the following points: (a) inhibit the microbial motility and quorum-sensing ability; (b) affect the formation of biofilms and destroy the mature biofilms, which can weaken the infection ability of the microbes; (c) perturb membrane lipid bilayers, thus causing the formation of pores, leakages of cell constituents and eventually cell death; (d) stimulate of the immune system and attenuate microbes induced apoptosis, inflammation, and DNA damages, which can protect or help the host fight against microbial infections; and (e) inhibit the efflux of antibiotics that can descend the drug resistance of the microbial. The collected information might facilitate and guide further studies needed to optimize the use of ginseng and their components to improve microbial food safety and prevent or treat animal and human infections.
Collapse
Affiliation(s)
- Lijun Wang
- Shenzhen Institute for Drug Control, Shenzhen, China
| | - Yang Huang
- Shenzhen Institute for Drug Control, Shenzhen, China
| | - Guo Yin
- Shenzhen Institute for Drug Control, Shenzhen, China
| | - Jue Wang
- Shenzhen Institute for Drug Control, Shenzhen, China
| | - Ping Wang
- Shenzhen Institute for Drug Control, Shenzhen, China
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Tiejie Wang
- Shenzhen Institute for Drug Control, Shenzhen, China
| | - Guixing Ren
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|