1
|
Castaneda-Carpio D, Gutierrez-Loli R, Maravi-Jaime J, Del Aguila SW, Villar-Davila V, Moyano LM, Tapia-Limonchi R, Chenet SM, Guerra-Giraldez C. Transcriptome of Taenia solium during in vitro cyst activation and initial growth into the tapeworm stage. Sci Data 2025; 12:808. [PMID: 40382389 DOI: 10.1038/s41597-025-05141-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 05/06/2025] [Indexed: 05/20/2025] Open
Abstract
The cestode Taenia solium develops as a tapeworm solely in the human intestine, starting from a larva (cyst). Upon maturing, it produces hundreds of thousands of infectious eggs. When ingested by pigs or humans, the eggs develop as cysts that lodge in various tissues, including the brain, leading to neurocysticercosis. Despite advances in understanding cestode biology through genomic and transcriptomic studies, particularly in model organisms, much remains unknown about the activation of T. solium cysts in the human digestive tract and the events that drive the development into adult worms-the stage responsible for dispersing the parasite. We present a transcriptome generated by Next Generation Sequencing from T. solium cysts activated in culture and collected at three different in vitro growth phases, defined by their morphology. Differentially expressed genes and biological processes relevant to activation and growth can be explored with the dataset. The information is valuable for identifying genes that regulate the molecular, metabolic, and cellular events leading to parasite maturation or elements driving its transmission.
Collapse
Affiliation(s)
- David Castaneda-Carpio
- Laboratorio de Proliferación Celular y Regeneración, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Renzo Gutierrez-Loli
- Laboratorio de Proliferación Celular y Regeneración, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Toulouse Institute for Infectious and Inflammatory Diseases, Université de Toulouse, CNRS, Inserm, Toulouse, 31300, France
| | - Jose Maravi-Jaime
- Laboratorio de Proliferación Celular y Regeneración, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Segundo W Del Aguila
- Laboratorio de Proliferación Celular y Regeneración, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Villanueva Lab, Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Valeria Villar-Davila
- Laboratorio de Proliferación Celular y Regeneración, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Luz M Moyano
- Centro de Salud Global, Tumbes, Universidad Peruana Cayetano Heredia, San Martín de Porres, Peru
- Escuela Profesional de Medicina Humana, Universidad Nacional de Tumbes, Tumbes, Peru
| | - Rafael Tapia-Limonchi
- Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
- Facultad de Medicina, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
| | - Stella M Chenet
- Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
- Facultad de Medicina, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
| | - Cristina Guerra-Giraldez
- Laboratorio de Proliferación Celular y Regeneración, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru.
| |
Collapse
|
2
|
Smyth DJ, Hodge SH, Ong NWP, Richards J, Colomb F, Di Carmine S, Shek V, Frangova T, Poveda MC, Maizels RM, McSorley HJ. Vaccination against helminth IL-33 modulators permits immune-mediated parasite ejection. Cell Rep 2025; 44:115721. [PMID: 40378045 DOI: 10.1016/j.celrep.2025.115721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/19/2025] [Accepted: 04/29/2025] [Indexed: 05/18/2025] Open
Abstract
The murine intestinal nematode Heligmosomoides polygyrus bakeri (Hpb) modulates the host immune response via the Hpb alarmin release inhibitor (HpARI) family (HpARI1/2/3), which acts on interleukin (IL)-33, and the Hpb binds alarmin receptor and inhibits (HpBARI) family (HpBARI and HpBARI_Hom2), which acts on the IL-33 receptor ST2. Here, we find that this immunomodulation is evident only in the first week of infection and affects local and distal tissues. Vaccination with HpARI or HpBARI proteins raises antibody responses that block their immunomodulatory activities: HpARI2 vaccination results in significantly increased type 2 innate lymphoid cells (ILC2s), T helper (Th)2, and serum IL-4 and IL-5 responses, while HpBARI + HpBARI_Hom2 vaccination reverses infection-mediated ST2 suppression and increases Th2 immunity. A cocktail of HpARI2 + HpBARI + HpBARI_Hom2 gives robust protection against infection, associated with stunting of adult parasites, reduced egg burden, increased type 2 immune responses, and intestinal goblet cell expansion. Therefore, vaccination with immunomodulatory proteins can protect the host against infection and can be used as a tool for blocking the effects of specific parasite-derived proteins.
Collapse
Affiliation(s)
- Danielle J Smyth
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Suzanne H Hodge
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Nicole W P Ong
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Josh Richards
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Florent Colomb
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Samuele Di Carmine
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Vivien Shek
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Tania Frangova
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Marta Campillo Poveda
- Centre for Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, UK
| | - Rick M Maizels
- Centre for Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, UK
| | - Henry J McSorley
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
3
|
Playford MC, Besier RB. Gastrointestinal nematode parasites of grazing ruminants: a comprehensive literature review of diagnostic methods for quantifying parasitism, larval differentiation and measuring anthelmintic resistance. N Z Vet J 2025; 73:149-164. [PMID: 39522537 DOI: 10.1080/00480169.2024.2415029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/08/2024] [Indexed: 11/16/2024]
Abstract
This review summarises up-to-date research on the diagnosis of gastrointestinal nematode (GIN) infection in livestock and anthelmintic resistance in GIN. It was commissioned to assist funding bodies to prioritise and guide research and extension efforts to improve the health, welfare and productivity of grazing ruminants in the face of challenge with GIN. A comprehensive review of published articles from journals, books and websites was undertaken, with a focus on peer-reviewed articles published between 2000 and 2024 involving genera of GIN in grazing sheep and cattle with economic importance to New Zealand. Suggestions for articles to include were received from 14 experts in GIN diagnostics. This review is a summary of a longer report submitted to the sponsoring organisation. Clinical signs of GIN infection in grazing ruminants in temperate grazing systems are inadequate as triggers for management interventions including anthelmintic treatment as they are visible only after economically significant pathological changes have occurred. Livestock producers benefit from monitoring GIN burdens using faecal egg counts (FEC) or associated signals such as weight gain. In future, they may use remote monitoring devices for activity in animals, as well as estimating pasture larval contamination. Methods of diagnosing GIN infections using automated FEC devices have improved the convenience of monitoring parasite burdens compared with traditional laboratory methods. However, a lack of quality control measures and a gap in training of skilled technicians for larval differentiation may lead to a shortage of diagnostic capability. Current methods of diagnosing anthelmintic resistance, particularly FEC reduction tests, are not likely to be replaced by laboratory assays in the near future and attention should be focused on facilitating application of new FEC technologies for both animal monitoring and resistance diagnosis. Extension and application of currently available methods and technology will improve animal health and productivity in ruminant grazing systems in the short term. Adoption of novel technologies for remote animal monitoring, practical tools for estimating pasture larval contamination and promoting genetic selection for immunity and resilience to GIN in both sheep and cattle will further enhance productivity in the long term.
Collapse
|
4
|
Ouyang J, Han G, Chen J, Hu J, Luo L, Zhang H, Lan C, Lu Q, Gou Y, Gu H, Hu Y, Zhang P, Xu A, Huang S. Identification and characterization of a novel ApeC-containing transmembrane protein family in parasitic flatworms. Int J Biol Macromol 2025; 309:142866. [PMID: 40210028 DOI: 10.1016/j.ijbiomac.2025.142866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/25/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
The Apextrin C-terminal (ApeC) domain is widely distributed across various animal clades. Several ApeC domains have been identified as carbohydrate-binding domains, contributing to extracellular adhesion and mucosal immunity. However, the functions and evolutionary history of most ApeC-containing protein (ACP) families remain largely unexplored. In this study, we identified 213 ACPs in flatworms (Platyhelminthes), with each species containing one to two such proteins. All flatworm ACPs belong to a unique transmembrane protein family, characterized by a length of 1700-2200 amino acids and a distinctive domain architecture (SP-[Kringle]1-2-[ApeC]7-[EGF]1-4-TM) unlike any found in other phyla. This ACP is conserved across all major parasitic flatworm lineages, including flukes (Trematoda), tapeworms (Cestoda) and monogeneans (Monogenea), despite their diverse morphologies and habitats. Notably, it is also present in one group of free-living flatworms, the planarians (Tricladida), suggesting that this ACP originated in the free-living ancestor of parasitic flatworms. This ACP contains seven consecutive ApeC domains, an unparalleled number among known animal proteins. Five of these ApeC domains are highly divergent, necessitating the definition of a new domain model (ApeC_Pla; Pfam: PF24148) for accurate classification. Structural predictions indicate that these ApeC domains adopt a conserved three β-sheet structure. Furthermore, transcriptomic analysis revealed that flatworm ACPs, along with several important serpins and proteases, are predominantly expressed in parenchymal cells and feeding organs, suggesting that ACPs serve as novel marker genes for parenchymal tissue and may be involved in cell adhesion, oral immunity, and parasite-host interactions. Taken together, our findings indicate that this flatworm ACP represents a promising target for vaccine development and provides key insights into the physiology of the parenchyma, a unique flatworm tissue that functions as a substitute for a body cavity.
Collapse
Affiliation(s)
- Jihua Ouyang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Guangkun Han
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Jinsong Chen
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Jiaxuan Hu
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Lei Luo
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Hao Zhang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Chunliu Lan
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Qianyu Lu
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Yin Gou
- Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Hanjie Gu
- Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Yonghua Hu
- Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Peng Zhang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Shengfeng Huang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| |
Collapse
|
5
|
Almeida MV, Li Z, Rebelo-Guiomar P, Dallaire A, Fiedler L, Price JL, Sluka J, Liu X, Butter F, Rödelsperger C, Miska EA. Transposable Elements Drive Regulatory and Functional Innovation of F-box Genes. Mol Biol Evol 2025; 42:msaf097. [PMID: 40279373 PMCID: PMC12062965 DOI: 10.1093/molbev/msaf097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/27/2025] [Accepted: 04/03/2025] [Indexed: 04/27/2025] Open
Abstract
Protein domains of transposable elements (TEs) and viruses increase the protein diversity of host genomes by recombining with other protein domains. By screening 10 million eukaryotic proteins, we identified several domains that define multicopy gene families and frequently co-occur with TE/viral domains. Among these, a Tc1/Mariner transposase helix-turn-helix (HTH) domain was captured by F-box genes in the Caenorhabditis genus, creating a new class of F-box genes. For specific members of this class, like fbxa-215, we found that the HTH domain is required for diverse processes including germ granule localization, fertility, and thermotolerance. Furthermore, we provide evidence that Heat Shock Factor 1 (HSF-1) mediates the transcriptional integration of fbxa-215 into the heat shock response by binding to Helitron TEs directly upstream of the fbxa-215 locus. The interactome of HTH-bearing F-box factors suggests roles in post-translational regulation and proteostasis, consistent with established functions of F-box proteins. Based on AlphaFold2 multimer proteome-wide screens, we propose that the HTH domain may diversify the repertoire of protein substrates that F-box factors regulate post-translationally. We also describe an independent capture of a TE domain by F-box genes in zebrafish. In conclusion, we identify two independent TE domain captures by F-box genes in eukaryotes and provide insights into how these novel proteins are integrated within host gene regulatory networks.
Collapse
Affiliation(s)
- Miguel Vasconcelos Almeida
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
- The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Zixin Li
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen 72076, Germany
| | | | - Alexandra Dallaire
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
- The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Comparative Fungal Biology, Royal Botanic Gardens Kew, Jodrell Laboratory, Richmond TW9 3DS, UK
| | - Lukáš Fiedler
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
- The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Jonathan L Price
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
- The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Jan Sluka
- Institute of Molecular Biology (IMB), Quantitative Proteomics, Mainz 55128, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Südufer, Greifswald 17493, Germany
| | - Xiaodan Liu
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
- The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Falk Butter
- Institute of Molecular Biology (IMB), Quantitative Proteomics, Mainz 55128, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Südufer, Greifswald 17493, Germany
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Eric A Miska
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
- The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| |
Collapse
|
6
|
Song H, Kim S, Lim DS, Choi HJ, Lee J. Robust Binding Capability and Occasional Gene Loss of Telomere-Binding Proteins Underlying Telomere Evolution in Nematoda. Genome Biol Evol 2025; 17:evaf085. [PMID: 40356370 PMCID: PMC12084805 DOI: 10.1093/gbe/evaf085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/15/2025] Open
Abstract
Telomeres, the nucleoprotein complexes that protect the ends of linear chromosomes, are essential for maintaining the stability of eukaryotic genomes. As telomeres generally consist of repetitive DNA associated with specifically bound proteins, telomeric repeat motifs are thought to be difficult to evolve. However, a recent study identified nematodes with telomeric repeats distinct from the canonical TTAGGC motif. Here, we investigated how telomere repeats could have evolved despite the challenge posed by the specificity of telomere-binding proteins (TBPs) to the telomeric DNA in Nematoda. We performed a phylogenetic analysis and electrophoresis mobility shift assays to assess the binding affinities of two TBPs, which displayed different conservation patterns. Our results revealed that the well-conserved protein CEH-37 exhibits limited specificity, unable to distinguish telomeric repeats found in nematodes except for the TTAGGG motif, while the less conserved POT proteins displayed rigid specificity. These findings suggest that the emergence of novel telomeric repeat motifs correlated with the characteristics and evolutionary outcomes of TBPs in Nematoda. Our study not only revealed the dynamics of telomere evolution but also enhanced the understanding of the evolutionary relationship between proteins and DNAs.
Collapse
Affiliation(s)
- Hobum Song
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
| | - Seonhong Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Daisy Sunghee Lim
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea
| | - Hee-Jung Choi
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Junho Lee
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
7
|
Maxwell MWH, Causier BE, Chippendale J, Ault JR, Bell CA. Diet-regulated transcriptional plasticity of plant parasites in plant-mutualist environments. Proc Natl Acad Sci U S A 2025; 122:e2421367122. [PMID: 40244681 PMCID: PMC12037023 DOI: 10.1073/pnas.2421367122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/12/2025] [Indexed: 04/18/2025] Open
Abstract
Crop pathogens often lack exclusive access to their host and must interact with plants concurrently engaged with numerous other symbionts. Here, we demonstrate that the colonization of hosts by plant-mutualistic mycorrhizal fungi can indirectly induce transcriptional responses of a major plant parasite, the nematode Globodera pallida, via a modified host resource profile. A shift in the resource profile of the root, where the parasite feeds, is perceived and responded to by the parasite through transcriptional changes, potentially to optimize resource intake. Specifically, G. pallida react to reduced host-photosynthate influx due to concurrent mycorrhizal-host symbiosis by upregulating the expression of a sugar transporter (SWEET3) in the nematode intestine. We identify this gene's role in parasite growth and development, regulated by the putative diet-responsive transcription factor Gp-HBL1. Overall, our data unveil a mechanism by which a parasitic animal responds to fluctuations in host plant quality that is induced by a plant-mutualistic fungus, to enhance parasitism and reproduction.
Collapse
Affiliation(s)
- M. Willow H. Maxwell
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Barry E. Causier
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Jasper Chippendale
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - James R. Ault
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Chris A. Bell
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| |
Collapse
|
8
|
Pilaka-Akella P, Sadek NH, Fusca D, Cutter AD, Calarco JA. Neuron-specific repression of alternative splicing by the conserved CELF protein UNC-75 in Caenorhabditis elegans. Genetics 2025; 229:iyaf025. [PMID: 40059624 PMCID: PMC12005262 DOI: 10.1093/genetics/iyaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/29/2025] [Indexed: 04/18/2025] Open
Abstract
Tissue-regulated alternative exons are dictated by the interplay between cis-elements and trans-regulatory factors such as RNA-binding proteins (RBPs). Despite extensive research on splicing regulation, the full repertoire of these cis and trans features and their evolutionary dynamics across species are yet to be fully characterized. Members of the CUG-binding protein and ETR-like family (CELF) of RBPs are known to play a key role in the regulation of tissue-biased splicing patterns, and when mutated, these proteins have been implicated in a number of neurological and muscular disorders. In this study, we sought to characterize specific mechanisms that drive tissue-specific splicing in vivo of a model switch-like exon regulated by the neuronal-enriched CELF ortholog in Caenorhabditis elegans, UNC-75. Using sequence alignments, we identified deeply conserved intronic UNC-75 binding motifs overlapping the 5' splice site and upstream of the 3' splice site, flanking a strongly neural-repressed alternative exon in the Zonula Occludens gene zoo-1. We confirmed that loss of UNC-75 or mutations in either of these cis-elements lead to substantial de-repression of the alternative exon in neurons. Moreover, mis-expression of UNC-75 in muscle cells is sufficient to induce the neuron-like robust skipping of this alternative exon. Lastly, we demonstrate that overlapping an UNC-75 motif within a heterologous 5' splice site leads to increased skipping of the adjacent alternative exon in an unrelated splicing event. Together, we have demonstrated that a specific configuration and combination of cis elements bound by this important family of RBPs can achieve robust splicing outcomes in vivo.
Collapse
Affiliation(s)
- Pallavi Pilaka-Akella
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| | - Nour H Sadek
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| | - Daniel Fusca
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Wilcocks Street, Toronto, Ontario, Canada M5S 3B2
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Wilcocks Street, Toronto, Ontario, Canada M5S 3B2
| | - John A Calarco
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| |
Collapse
|
9
|
Li H, Wang R, Pan J, Chen J, Hao X. Bioinformatics Analysis of the Glutamate-Gated Chloride Channel Family in Bursaphelenchus xylophilus. Int J Mol Sci 2025; 26:3477. [PMID: 40331936 PMCID: PMC12026476 DOI: 10.3390/ijms26083477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/21/2025] [Accepted: 03/29/2025] [Indexed: 05/08/2025] Open
Abstract
Glutamate-gated chloride channels (GluCls), a class of ion channels found in the nerve and muscle cells of invertebrates, are involved in vital life processes. Bursaphelenchus xylophilus, the pathogen of pine wilt disease, has induced major economic and ecological losses in invaded areas of Asia and Europe. We identified 33 GluCls family members by sequence alignment analysis. A subsequent bioinformatic analysis revealed the physicochemical properties, protein structure, and gene expression patterns in different developmental stages. The results showed that GluCls genes are distributed across all six chromosomes of B. xylophilus. These proteins indicated a relatively conserved structure by NCBI-conserved domains and InterPro analysis. A gene structure analysis revealed that GluCls genes consist of 5 to 14 exons. Expression pattern analysis revealed BxGluCls were extensively involved in the development of second instar larvae of B. xylophilus. Furthermore, BxGluCls15, BxGluCls25, and BxGluCls28 were mainly associated with the development of eggs of B. xylophilus. BxGluCls12, BxGluCls18, and BxGluCls32 were predominantly linked to nematode resistance and adaptation. Investigation the structure and expression patterns of BxGluCls is crucial to understand the developmental trends of B. xylophilus. It also helps identify molecular targets for the development of biopesticides or drugs designed to control this nematode.
Collapse
Affiliation(s)
- Haixiang Li
- Key Laboratory of National Forestry and Grassland Administration on Prevention and Control Technology of Pine Wilt Disease, Anhui Academy of Forestry, Hefei 230088, China; (H.L.); (J.P.)
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Southwest Forestry University, Kunming 650224, China;
| | - Rui Wang
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Southwest Forestry University, Kunming 650224, China;
| | - Jialiang Pan
- Key Laboratory of National Forestry and Grassland Administration on Prevention and Control Technology of Pine Wilt Disease, Anhui Academy of Forestry, Hefei 230088, China; (H.L.); (J.P.)
| | - Jie Chen
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Southwest Forestry University, Kunming 650224, China;
| | - Xin Hao
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Southwest Forestry University, Kunming 650224, China;
| |
Collapse
|
10
|
Hu RS, Gu K, Ehsan M, Abbas Raza SH, Wang CR. Transformer-based deep learning enables improved B-cell epitope prediction in parasitic pathogens: A proof-of-concept study on Fasciola hepatica. PLoS Negl Trop Dis 2025; 19:e0012985. [PMID: 40300022 PMCID: PMC12064019 DOI: 10.1371/journal.pntd.0012985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 05/09/2025] [Accepted: 03/13/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND The identification of B-cell epitopes (BCEs) is fundamental to advancing epitope-based vaccine design, therapeutic antibody development, and diagnostics, such as in neglected tropical diseases caused by parasitic pathogens. However, the structural complexity of parasite antigens and the high cost of experimental validation present certain challenges. Advances in Artificial Intelligence (AI)-driven protein engineering, particularly through machine learning and deep learning, offer efficient solutions to enhance prediction accuracy and reduce experimental costs. METHODOLOGY/PRINCIPAL FINDINGS Here, we present deepBCE-Parasite, a Transformer-based deep learning model designed to predict linear BCEs from peptide sequences. By leveraging a state-of-the-art self-attention mechanism, the model achieved remarkable predictive performance, achieving an accuracy of approximately 81% and an AUC of 0.90 in both 10-fold cross-validation and independent testing. Comparative analyses against 12 handcrafted features and four conventional machine learning algorithms (GNB, SVM, RF, and LGBM) highlighted the superior predictive power of the model. As a case study, deepBCE-Parasite predicted eight BCEs from the leucine aminopeptidase (LAP) protein in Fasciola hepatica proteomic data. Dot-blot immunoassays confirmed the specific binding of seven synthetic peptides to positive sera, validating their IgG reactivity and demonstrating the model's efficacy in BCE prediction. CONCLUSIONS/SIGNIFICANCE deepBCE-Parasite demonstrates excellent performance in predicting BCEs across diverse parasitic pathogens, offering a valuable tool for advancing the design of epitope-based vaccines, antibodies, and diagnostic applications in parasitology.
Collapse
Affiliation(s)
- Rui-Si Hu
- School of Health and Wellness Industry & School of Medicine, Sichuan University of Arts and Science, Dazhou, Sichuan Province, People’s Republic of China
- Key Laboratory of Intelligent Medicine and Health Data Science, Sichuan University of Arts and Science, Dazhou, Sichuan Province, People’s Republic of China
| | - Kui Gu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Banan, Chongqing, People’s Republic of China
| | - Muhammad Ehsan
- Department of Parasitology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Sayed Haidar Abbas Raza
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Chun-Ren Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, People’s Republic of China
| |
Collapse
|
11
|
Caña-Bozada VH, Dawoud AAZ, Ramos-de la Cruz I, Flores-Méndez LC, Barrera-Redondo J, Briones-Mendoza J, Yañez-Guerra LA. Global analysis of ligand-gated ion channel conservation across Platyhelminthes. Gen Comp Endocrinol 2025; 366:114718. [PMID: 40157577 DOI: 10.1016/j.ygcen.2025.114718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Ligand-gated ion channels (LGICs) are critical for neurotransmission, mediating responses to neurotransmitters and hormones, and influencing diverse physiological processes. This study identifies and classifies LGICs across Platyhelminthes, with a particular focus on parasitic neodermatans, which impact human and animal health. Using bioinformatics tools, we analyzed LGICs from 41 neodermatan species and expanded our investigation to encompass vertebrates, other invertebrates, and non-bilaterians to trace LGIC evolutionary pathways across Metazoa. We identified 2,269 putative LGICs within neodermatan species, which we classified into the cys-loop, ASIC/Deg/ENaC, iGluR, and P2X families. Our phylogenetic and clustering analyses reveal lineage-specific patterns with distinct evolutionary trajectories for each LGIC family in neodermatans compared to free-living platyhelminths and other taxa. Notably, the ASIC/Deg/ENaC family displayed the greatest degree of neodermatan-specific divergence, while cys-loop and P2X families were more conserved across taxa. To provide insight into their potential physiological roles, we analyzed LGIC expression patterns in Schistosoma mansoni, revealing widespread expression across neuronal and muscle cell types. The distribution of acid-sensing ion channels (ASICs) in both neurons and muscles suggests a role in neuromuscular signalling, while the P2X receptor (Smp_333600) exhibited sex-specific expression, potentially indicating distinct functional roles in males and females. Additionally, several cys-loop acetylcholine and GABA receptors showed differential neuronal and muscle expression, highlighting their likely contributions to cholinergic and inhibitory neurotransmission. These findings underscore the relevance of LGICs in parasite physiology, particularly in neuromuscular and sensory processes, and suggest potential targets for antiparasitic interventions.
Collapse
Affiliation(s)
- Víctor Hugo Caña-Bozada
- Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán 82112 Sinaloa, Mexico; Centro de Investigación para la Salud en América Latina (CISeAL), Pontificia Universidad Católica del Ecuador (PUCE), Quito, Ecuador.
| | - Ahmed A Z Dawoud
- School of biology. University of Southampton, University Road, SO17 1BJ Southampton, UK
| | - Ivana Ramos-de la Cruz
- Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán 82112 Sinaloa, Mexico
| | - Lizeth C Flores-Méndez
- Universidad Autónoma de Occidente, Unidad Regional Mazatlán. Av. del Mar, Tellería, Mazatlán 82100 Sinaloa, Mexico
| | - Josué Barrera-Redondo
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen 72076 Tübingen, Germany
| | - Jesús Briones-Mendoza
- Carrera de Biología, Facultad de Ciencias de la Vida y Tecnologías, Universidad Laica "Eloy Alfaro" de Manabí, Ciudadela Universitaria vía San Mateo, Manta, Ecuador
| | - Luis A Yañez-Guerra
- School of biology. University of Southampton, University Road, SO17 1BJ Southampton, UK; Institute for Life Sciences. University of Southampton, University Road SO17 1BJ Southampton, UK.
| |
Collapse
|
12
|
Henthorn CR, McCusker P, Le Clec’h W, Chevalier FD, Anderson TJ, Zamanian M, Chan JD. Transcriptional phenotype of the anti-parasitic benzodiazepine meclonazepam on the blood fluke Schistosoma mansoni. PLoS Negl Trop Dis 2025; 19:e0012969. [PMID: 40198716 PMCID: PMC12058154 DOI: 10.1371/journal.pntd.0012969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 05/07/2025] [Accepted: 03/09/2025] [Indexed: 04/10/2025] Open
Abstract
There are limited control measures for the disease schistosomiasis, despite the fact that infection with parasitic blood flukes affects hundreds of millions of people worldwide. The current treatment, praziquantel, has been in use since the 1980's and there is a concern that drug resistance may emerge with continued monotherapy. Given the need for additional antischistosomal drugs, we have re-visited an old lead, meclonazepam. In comparison to praziquantel, there has been relatively little work on its antiparasitic mechanism. Recent findings indicate that praziquantel and meclonazepam act through distinct receptors, making benzodiazepines a promising chemical series for further exploration. Previous work has profiled the transcriptional changes evoked by praziquantel treatment. Here, we examine in detail schistosome phenotypes evoked by in vitro and in vivo meclonazepam treatment. These data confirm that meclonazepam causes extensive tegument damage and directly kills parasites, as measured by pro-apoptotic caspase activation. In vivo meclonazepam exposure results in differential expression of many genes that are divergent in parasitic flatworms, as well as several gene products implicated in blood feeding and regulation of hemostasis in other parasites. Many of these transcripts are also differentially expressed with praziquantel exposure, which may reflect a common schistosome response to the two drugs. However, despite these similarities in drug response, praziquantel-resistant parasites retain susceptibility to meclonazepam's schistocidal effects. These data provide new insight into the mechanism of antischistosomal benzodiazepines, resolving similarities and differences with the current frontline therapy, praziquantel.
Collapse
Affiliation(s)
- Clair R. Henthorn
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Paul McCusker
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Winka Le Clec’h
- Disease Intervention & Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Frédéric D. Chevalier
- Disease Intervention & Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Timothy J.C. Anderson
- Disease Intervention and Prevention program, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - John D. Chan
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Global Health Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
13
|
Mariene GM, Wasmuth JD. Genome assembly variation and its implications for gene discovery in nematodes. Int J Parasitol 2025; 55:239-252. [PMID: 39832614 DOI: 10.1016/j.ijpara.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/10/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Genome assemblers are a critical component of genome science, but the choice of assembly software and protocols can be daunting. Here, we investigate genome assembly variation and its implications for gene discovery across three nematode species-Caenorhabditis bovis, Haemonchus contortus, and Heligmosomoides bakeri-highlighting the critical interplay between assembly choice and downstream genomic analysis. Selecting commonly used genome assemblers, we generated multiple assemblies for each species, analyzing their structure, completeness, and effect on gene family analysis. Our findings demonstrate that assembly variations can significantly affect gene family composition, with notable differences in gene families important in anthelmintic discovery and immunomodulation. Despite broadly similar performance using various assembly metrics, comparisons of assemblies with a single species revealed underlying structural rearrangements and inconsistencies in gene content, which would affect downstream analyses. This emphasizes the need for continuous refinement of genome assemblies and their annotations.
Collapse
Affiliation(s)
- Grace M Mariene
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada; Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Alberta, Canada
| | - James D Wasmuth
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada; Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
14
|
Vosála O, Krátký J, Matoušková P, Rychlá N, Štěrbová K, Raisová Stuchlíková L, Vokřál I, Skálová L. Biotransformation of anthelmintics in nematodes in relation to drug resistance. Int J Parasitol Drugs Drug Resist 2025; 27:100579. [PMID: 39827513 PMCID: PMC11787565 DOI: 10.1016/j.ijpddr.2025.100579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
In all organisms, the biotransformation of xenobiotics to less toxic and more hydrophilic compounds represents an effective defense strategy. In pathogens, the biotransformation of drugs (used for their elimination from the host) may provide undesirable protective effects that could potentially compromise the drug's efficacy. Accordingly, increased drug deactivation via accelerated biotransformation is now considered as one of the mechanisms of drug resistance. The present study summarizes the current knowledge regarding the biotransformation of anthelmintics, specifically drugs used to treat mainly nematodes, a group of parasites that are a significant health concern for humans and animals. The main biotransformation enzymes are introduced and their roles in anthelmintics metabolism in nematodes are discussed with a particular focus on their potential participation in drug resistance. Similarly, the inducibility of biotransformation enzymes with sublethal doses of anthelmintics is presented in view of its potential contribution to drug resistance development. In the conclusion, the main tasks awaiting scientists in this area are outlined.
Collapse
Affiliation(s)
- Ondřej Vosála
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Josef Krátký
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Nikola Rychlá
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Karolína Štěrbová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Lucie Raisová Stuchlíková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Ivan Vokřál
- Department of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic.
| |
Collapse
|
15
|
da Trindade NS, Valentini MB, Rognon A, Mendes TMF, Gomes MDS, Allegretti SM, Grunau C, Cabral FJ. Heterochromatin protein 1 (HP1) of Schistosoma mansoni: non-canonical chromatin landscape and oviposition effects. Mem Inst Oswaldo Cruz 2025; 120:e240075. [PMID: 40172426 PMCID: PMC11961034 DOI: 10.1590/0074-02760240075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/14/2024] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Heterochromatin protein 1 (HP1) is widespread in several organisms playing a role in control of gene expression by heterochromatin formation and maintenance of silent chromatin. Schistosoma mansoni is a human parasite that is responsible for Schistosomiasis, a tropical neglected disease in the tropical and subtropical areas in the world, where the intermediate host Biomphalaria glabrata is present. OBJECTIVES In this study we attempted to investigate if the SmHP1 is enriched in S. mansoni chromatin in cercariae larvae stage, compared with another larvae stage sporocysts and its importance for S. mansoni life cycle progression and parasite oviposition. METHODS We used ChIPmentation with commercial antibody ab109028 that passed in-house quality control. We also used RNA interference, mice infection and histology. FINDINGS Our data show that S. mansoni HP1 enrichment is non-canonical with a peak at the transcription end sites of protein coding genes. We did not find strong differences in SmHP1 chromatin landscapes between sporocysts and cercariae. Knock- down of SmHP1 in schistosomula and in vivo experiments in mice unexpectedly increased parasite oviposition. MAIN CONCLUSIONS Our results suggest that SmHP1 may influence chromatin structure in a non-canonical way in S. mansoni stages and may play a role in regulation of parasite oviposition.
Collapse
Affiliation(s)
- Natália Silva da Trindade
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Campinas, SP, Brasil
- Hosts-Pathogens-Environments Interactions, University of Perpignan Via Domitia, Centre National de la Recherche Scientifique, Institut français de Recherche pour l’Exploitation de la Mer, University of Montpellier, Perpignan, France
| | - Marilia Bergamini Valentini
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Campinas, SP, Brasil
| | - Anne Rognon
- Hosts-Pathogens-Environments Interactions, University of Perpignan Via Domitia, Centre National de la Recherche Scientifique, Institut français de Recherche pour l’Exploitation de la Mer, University of Montpellier, Perpignan, France
| | | | | | - Silmara Marques Allegretti
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Campinas, SP, Brasil
| | - Christoph Grunau
- Hosts-Pathogens-Environments Interactions, University of Perpignan Via Domitia, Centre National de la Recherche Scientifique, Institut français de Recherche pour l’Exploitation de la Mer, University of Montpellier, Perpignan, France
| | - Fernanda Janku Cabral
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Campinas, SP, Brasil
| |
Collapse
|
16
|
Rumley JD, Kim JH, Hobert O. Protocol to identify transcription factor target genes using TargetOrtho2. STAR Protoc 2025; 6:103680. [PMID: 40056408 PMCID: PMC11930065 DOI: 10.1016/j.xpro.2025.103680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/27/2025] [Accepted: 02/15/2025] [Indexed: 03/10/2025] Open
Abstract
TargetOrtho2 uses transcription factor binding site information to predict transcription factor targets in C. elegans, based on an in silico phylogenetic footprinting approach. Here, we present a protocol to identify transcription factor target genes using a new version of TargetOrtho2. We provide instructions for installing TargetOrtho2 and its required suite of programs, for predicting transcription factor target genes, and for updating and adding new genomes to TargetOrtho2.
Collapse
Affiliation(s)
- Jonathan D Rumley
- Department of Biological Sciences, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, New York, NY 10027, USA.
| | - Jee Hun Kim
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, New York, NY 10027, USA.
| |
Collapse
|
17
|
Pellegrin C, Damm A, Sperling AL, Molloy B, Shin DS, Long J, Brett P, Iguh TC, Kranse OP, Bravo ADT, Lynch SJ, Senatori B, Vieira P, Mejias J, Kumar A, Masonbrink RE, Maier TR, Baum TJ, Eves-van den Akker S. The SUbventral-Gland Regulator (SUGR-1) of nematode virulence. Proc Natl Acad Sci U S A 2025; 122:e2415861122. [PMID: 40063806 PMCID: PMC11929438 DOI: 10.1073/pnas.2415861122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/29/2025] [Indexed: 03/25/2025] Open
Abstract
Pathogens must precisely tailor their gene expression to cause infection. However, a signaling cascade from host signal to effector production has remained elusive for metazoan pathogens. Here, we show that plants contain molecular signals, termed effectostimulins, that activate the first identified regulator of plant-parasitic nematode effectors. SUGR-1 directly binds effector promoters, and is central to a transcriptional network that activates 58 effector genes. Importantly, we demonstrate that downregulation of sugr-1 inhibits parasitism, underlining SUGR-1 signaling as a valuable target for crop protection and food security. This, in the wider context of nematodes as parasites of humans and other animals, has scope for potentially broader impact: Disrupting effector production could, in principle, be applied to any pathogen that secrets effectors.
Collapse
Affiliation(s)
- Clement Pellegrin
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, CambridgeCB2 3EA, United Kingdom
| | - Anika Damm
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, CambridgeCB2 3EA, United Kingdom
| | - Alexis L. Sperling
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, CambridgeCB2 3EA, United Kingdom
| | - Beth Molloy
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, CambridgeCB2 3EA, United Kingdom
| | - Dio S. Shin
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, CambridgeCB2 3EA, United Kingdom
| | - Jonathan Long
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, CambridgeCB2 3EA, United Kingdom
| | - Paul Brett
- Department of Biochemistry and Metabolism, John Innes Centre, NorwichNR4 7UH, United Kingdom
| | - Tochukwu Chisom Iguh
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, CambridgeCB2 3EA, United Kingdom
| | - Olaf P. Kranse
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, CambridgeCB2 3EA, United Kingdom
| | - Andrea Díaz-Tendero Bravo
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, CambridgeCB2 3EA, United Kingdom
| | - Sarah Jane Lynch
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, CambridgeCB2 3EA, United Kingdom
| | - Beatrice Senatori
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, CambridgeCB2 3EA, United Kingdom
| | - Paulo Vieira
- Department of Agriculture—Agricultural Research Service, Mycology and Nematology Genetic Diversity and Biology Laboratory, Beltsville, MD20705
| | - Joffrey Mejias
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | - Anil Kumar
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | | | - Tom R. Maier
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | - Thomas J. Baum
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | - Sebastian Eves-van den Akker
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, CambridgeCB2 3EA, United Kingdom
| |
Collapse
|
18
|
Perez MF. CelEst: a unified gene regulatory network for estimating transcription factor activities in C. elegans. Genetics 2025; 229:iyae189. [PMID: 39705007 PMCID: PMC11912867 DOI: 10.1093/genetics/iyae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/02/2024] [Indexed: 12/21/2024] Open
Abstract
Transcription factors (TFs) play a pivotal role in orchestrating critical intricate patterns of gene regulation. Although gene expression is complex, differential expression of hundreds of genes is often due to regulation by just a handful of TFs. Despite extensive efforts to elucidate TF-target regulatory relationships in Caenorhabditis elegans, existing experimental datasets cover distinct subsets of TFs and leave data integration challenging. Here, I introduce CelEst, a unified gene regulatory network designed to estimate the activity of 487 distinct C. elegans TFs-∼58% of the total-from gene expression data. To integrate data from ChIP-seq, DNA-binding motifs, and eY1H screens, optimal processing of each data type was benchmarked against a set of TF perturbation RNA-seq experiments. Moreover, I showcase how leveraging TF motif conservation in target promoters across genomes of related species can distinguish highly informative interactions, a strategy which can be applied to many model organisms. Integrated analyses of data from commonly studied conditions including heat shock, bacterial infection, and sex differences validates CelEst's performance and highlights overlooked TFs that likely play major roles in coordinating the transcriptional response to these conditions. CelEst can infer TF activity on a standard laptop computer within minutes. Furthermore, an R Shiny app with a step-by-step guide is provided for the community to perform rapid analysis with minimal coding required. I anticipate that widespread adoption of CelEsT will significantly enhance the interpretive power of transcriptomic experiments, both present and retrospective, thereby advancing our understanding of gene regulation in C. elegans and beyond.
Collapse
Affiliation(s)
- Marcos Francisco Perez
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, Parc Científic de Barcelona, C. Baldiri Reixac, 4-8, 08028 Barcelona, Spain
| |
Collapse
|
19
|
Stephens DR, Fung HYJ, Han Y, Liang J, Chen Z, Ready J, Collins JJ. A genome-scale drug discovery pipeline uncovers new therapeutic targets and a unique p97 allosteric binding site in Schistosoma mansoni. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643303. [PMID: 40161785 PMCID: PMC11952559 DOI: 10.1101/2025.03.14.643303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Schistosomes are parasitic flatworms that infect more than 200 million people globally. However, there is a shortage of molecular tools that enable the discovery of potential drug targets within schistosomes. Thus, praziquantel has remained the frontline treatment for schistosomiasis despite known liabilities. Here, we have conducted a genome-wide study in S. mansoni using the human druggable genome as a bioinformatic template to identify essential genes within schistosomes bearing similarity to catalogued drug targets. Then, we assessed these candidate targets in silico using a set of unbiased criteria to determine which possess ideal characteristics for a ready-made drug discovery campaign. Following this prioritization, we pursued a parasite p97 ortholog as a bona-fide drug target for the development of therapeutics to treat schistosomiasis. From this effort, we identified a covalent inhibitor series that kills schistosomes through an on-target killing mechanism by disrupting the ubiquitin proteasome system. Fascinatingly, these inhibitors induce a conformational change in the conserved D2 domain P-loop of schistosome p97 upon modification of Cys519. This conformational change reveals an allosteric binding site adjacent to the D2 domain active site reminiscent of the 'DFG' flip in protein kinases. This allosteric binding site can potentially be utilized to generate new classes of species-selective p97 inhibitors. Furthermore, these studies provide a resource for the development of alternative therapeutics for schistosomiasis and a workflow to identify potential drug targets in similar systems with few available molecular tools.
Collapse
Affiliation(s)
- Dylon R Stephens
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ho Yee Joyce Fung
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Yan Han
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jue Liang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Zhe Chen
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Joseph Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - James J Collins
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX
- Howard Hughes Medical Institute, Chevy Chase, MD
| |
Collapse
|
20
|
Verma P, Allen JM, Sánchez Alvarado A, Duncan EM. Chromatin remodeling protein BPTF mediates chromatin accessibility at gene promoters in planarian stem cells. BMC Genomics 2025; 26:232. [PMID: 40069606 PMCID: PMC11895202 DOI: 10.1186/s12864-025-11405-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND The regulation of chromatin accessibility is essential in eukaryotic cells as one of several mechanisms that ensure gene activation occurs at appropriate times and in appropriate cell types. Accordingly, mutations in chromatin remodeling proteins are linked to many different developmental disorders and cancers. One example of a chromatin protein that has been linked to both developmental abnormalities and cancer is BPTF/NURF301, the largest subunit of the Nucleosome Remodeling Factor (NuRF) complex. The BPTF subunit is not only important for the formation of NuRF but also helps direct its activity to particular regions of chromatin by preferentially binding histone H3 lysine four trimethylation (H3K4me3). Notably, defects caused by knockdown of bptf in Xenopus embryos mimic those caused by knockdown of wdr5, a core subunit of all H3K4me3 methyltransferase complexes. However, the mechanistic details of how and where BPTF/NuRF is recruited to regulate gene expression vary between studies and have been largely tested in vitro and/or in cultured cells. Improving our understanding of how this chromatin remodeling complex targets specific gene loci and regulates their expression in an organismal context will provide important insight into how pathogenic mutations disrupt its normal, in vivo, cellular functions. RESULTS Here, we report our findings on the role of BPTF in maintaining chromatin accessibility and essential function in planarian (Schmidtea mediterranea) stem cells. We find that depletion of planarian BPTF primarily affects accessibility at gene promoters near transcription start sites (TSSs). BPTF-dependent loss of accessibility did not correlate with decreased gene expression when we considered all affected loci. However, we found that genes marked by Set1-dependent H3K4me3, but not MLL1/2-dependent H3K4me3, showed increased sensitivity to the loss of BPTF-dependent accessibility. In addition, knockdown of bptf (Smed-bptf) produces loss-of-function phenotypes similar to those caused by knockdown of Smed-set1. CONCLUSIONS The S.mediterranea homolog of NuRF protein BPTF (SMED-BPTF) is essential for normal homeostasis in planarian tissues, potentially through its role in maintaining chromatin accessibility at a specific subset of gene promoters in planarian stem cells. By identifying loci that lose both chromatin accessibility and gene expression after depletion of BPTF, we have identified a cohort of genes that may have important functions in stem cell biology.
Collapse
Affiliation(s)
- Prince Verma
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - John M Allen
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | | | | |
Collapse
|
21
|
Di Maggio LS, Fischer K, Rosa BA, Yates D, Cho BK, Lukowski J, Zamacona Calderon A, Son M, Goo YA, Opoku NO, Weil GJ, Mitreva M, Fischer PU. Spatial proteomics of Onchocerca volvulus with pleomorphic neoplasms shows local and systemic dysregulation of protein expression. PLoS Negl Trop Dis 2025; 19:e0012929. [PMID: 40163807 PMCID: PMC11981190 DOI: 10.1371/journal.pntd.0012929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 04/09/2025] [Accepted: 02/20/2025] [Indexed: 04/02/2025] Open
Abstract
Onchocerca volvulus is the agent of onchocerciasis (river blindness) and targeted by WHO for elimination though mass drug administration with ivermectin. A small percentage of adult female worms develop pleomorphic neoplasms (PN) which occur more frequently after ivermectin treatment. Worms with PN have a lower life expectancy and improved understanding of proteins expressed in PN and their impact on different tissues could help elucidate the mechanisms of macrofilaricidal activity of ivermectin. Within paraffin embedded nodules removed after ivermectin treatment, we detected 24 (5.6%) O. volvulus females with PN. To assess the protein inventory of the PN and identify proteins potentially linked with tumor development, we used laser capture microdissection and highly sensitive mass spectrometry analysis. Three female worms were used to compare the protein profiles of three tissue types (body wall, uterus, and intestine) to the PN, and then to healthy female worms without PN. The healthy females showed all normal embryogenesis. In PN worms, 151 proteins were detected in the body wall, 215 proteins in the intestine, 47 proteins in the uterus and 1,577 proteins in the PN. Only the uterus of one PN female with some stretched intrauterine microfilariae had an elevated number of proteins (601) detectable, while in the uteri of the healthy females 1,710 proteins were detected. Even in tissues that were not directly affected by PN (intestine, body wall), fewer proteins were detected compared to the corresponding tissue of the healthy controls. Immunolocalization of calcium binding protein OvDig-1 (OVOC8391), which was identified through mass spectrometry as one of the proteins with the highest spectral counts in the PN tissue triplicates, allowed us to confirm the results using an independent method. In conclusion we identified proteins that are potentially linked to the development of PN, and systemic dysregulation of protein expression may contribute to worm mortality.
Collapse
Affiliation(s)
- Lucia S. Di Maggio
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kerstin Fischer
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Bruce A. Rosa
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Devyn Yates
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Byoung-Kyu Cho
- Mass Spectrometry Technology Access Center at McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jessica Lukowski
- Mass Spectrometry Technology Access Center at McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Antonia Zamacona Calderon
- Mass Spectrometry Technology Access Center at McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Minsoo Son
- Mass Spectrometry Technology Access Center at McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Young Ah Goo
- Mass Spectrometry Technology Access Center at McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Nicholas O. Opoku
- Fred Newton Binka School of Public Health, University of Health and Allied Sciences, Ho, Ghana
| | - Gary J. Weil
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Makedonka Mitreva
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Peter U. Fischer
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
22
|
Zhao L, Wendt GR, Collins III JJ. A Krüppel-like factor establishes cellular heterogeneity during schistosome tegumental maintenance. PLoS Pathog 2025; 21:e1013002. [PMID: 40153400 PMCID: PMC11978072 DOI: 10.1371/journal.ppat.1013002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 04/08/2025] [Accepted: 02/23/2025] [Indexed: 03/30/2025] Open
Abstract
Schistosomes are blood dwelling parasitic flatworms that can survive in the circulation of their human hosts for decades. These parasites possess a unique syncytial skin-like surface tissue known as the tegument that is thought to be uniquely adapted for survival in the blood by mediating evasion of host defenses. Previous studies have shown that cell bodies within the tegumental syncytium are turned over and perpetually replaced by new tegumental cells derived from a pool of somatic stem cells called neoblasts. Thus, neoblast-driven tegumental homeostasis has been suggested to be a key part of the parasite's strategy for long-term survival in the blood. However, the comprehensive set of molecular programs that control the specification of tegumental cells are not defined. To better understand these programs, we characterized a homolog of a Krüppel-like factor 4 (klf4) transcription factor that was identified in previous single-cell RNA sequencing (scRNAseq) studies to be expressed in a putative tegument related lineage (TRL) of Schistosoma mansoni. Here, using a combination of RNAi, coupled with scRNAseq and bulk RNAseq approaches, we show that klf4 is essential for the maintenance of an entire TRL. Loss of this klf4+ TRL resulted in loss of a subpopulation of molecularly unique tegument cells, without altering the total number of mature tegumental cells. Thus, klf4 is critical for regulating the balance between different cell populations within the tegumental progenitor pool and thereby influences tegumental production dynamics and the fine-tuning of the molecular identity of the mature tegument. Understanding the functions of distinct populations of cells within the tegumental syncytium is expected to provide insights into parasite defense mechanisms and new avenues for combatting the disease these worms cause.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - George R. Wendt
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - James. J. Collins III
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
23
|
Tenorio JCB, Heikal MF, Kafle A, Macalalad MAB, Orosco FL, Saichua P, Suttiprapa S. Unraveling the mechanisms of benzimidazole resistance in hookworms: A molecular docking and dynamics study. J Genet Eng Biotechnol 2025; 23:100472. [PMID: 40074446 PMCID: PMC11879688 DOI: 10.1016/j.jgeb.2025.100472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/26/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Benzimidazole resistance is an emerging challenge among parasitic helminths. It is caused by single nucleotide polymorphisms (SNPs) in specific loci in helminths' β-tubulin genes. Field studies and laboratory investigations reported resistance-associated SNPs in 4 codon locations with 7 allelic variations among hookworms. This study aimed to determine the effects of these mutations on the binding efficiency and behavior of the β-tubulin protein in four hookworm species against four benzimidazole drugs. METHODS β-tubulin gene coding sequences of Ancylostoma caninum, A. duodenale, A. ceylanicum, and Necator americanus were retrieved, assessed phylogenetically, and used to construct the 3D structure models of the proteins. The modeled protein structures were verified and edited to contain the reported SNPs: Q134H, F167Y, E198A, E198K, E198V, F200L, and F200Y. Benzimidazole drugs such as albendazole (ABZ), fenbendazole (FBZ), mebendazole (MBZ) and oxfendazole (OBZ) were used as ligands. Molecular docking experiments were performed with the wild-type and mutated proteins. Molecular dynamics simulation assessed the dynamic behavior of the β-tubulin-benzimidazole complex. RESULTS In silico docking assessments showed that various amino acid substitutions due to resistance-associated SNPs cause alterations in binding affinities and positions. E198K and Q134H in hookworm β-tubulins substantially weakened the binding affinities and altered the binding positions of benzimidazole drugs. Molecular dynamics analysis revealed that these mutations also caused marked reductions in the binding free energies owing to diminished hydrogen bond contacts with the benzimidazole ligands. CONCLUSION The evidence shown herein indicates that mutations at positions 198 and 134 are detrimental to conferring benzimidazole resistance among hookworms. The presence of these mutations may alter the efficacy of pharmacological interventions. Hence, further studies should be conducted to assess their emergence among hookworms in endemic areas with histories of chemotherapy.
Collapse
Affiliation(s)
- Jan Clyden B Tenorio
- Tropical Medicine Graduate Program, Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of Southern Mindanao, Kabacan, 9407 Cotabato, Philippines
| | - Muhammad Fikri Heikal
- Tropical Medicine Graduate Program, Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Alok Kafle
- Tropical Medicine Graduate Program, Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Mark Andrian B Macalalad
- Virology and Vaccine Research and Development Program, Department of Science and Technology - Industrial Technology Development Institute, 1631 Taguig City, Metro Manila, Philippines
| | - Fredmoore L Orosco
- Virology and Vaccine Research and Development Program, Department of Science and Technology - Industrial Technology Development Institute, 1631 Taguig City, Metro Manila, Philippines; S&T Fellows Program, Department of Science and Technology, 1631 Taguig City, Metro Manila, Philippines; Department of Biology, College of Arts and Sciences, University of the Philippines - Manila 1000 Manila, Metro Manila, Philippines
| | - Prasert Saichua
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sutas Suttiprapa
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
24
|
Abdullah S, Stocker T, Kang H, Scott I, Hayward D, Jaensch S, Ward MP, Jones MK, Kotze AC, Šlapeta J. Widespread occurrence of benzimidazole resistance single nucleotide polymorphisms in the canine hookworm, Ancylostoma caninum, in Australia. Int J Parasitol 2025; 55:173-182. [PMID: 39716589 DOI: 10.1016/j.ijpara.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Canine hookworm (Ancylostoma caninum), a gastrointestinal nematode of domestic dogs, principally infects the small intestine of dogs and has the potential to cause zoonotic disease. In greyhounds and pet dogs in the USA, A. caninum has been shown to be resistant to multiple anthelmintics. We conducted a molecular survey of benzimidazole resistance in A. caninum from dogs at veterinary diagnostic centers in Australia and New Zealand. First, we implemented an internal transcribed spacer (ITS)-2 rDNA deep amplicon metabarcoding sequencing approach to ascertain the species of hookworms infecting dogs in the region. Then, we evaluated the frequency of the canonical F167Y and Q134H isotype-1 β-tubulin mutations, which confer benzimidazole resistance, using the same sequencing approach. The most detected hookworm species in diagnostic samples was A. caninum (90%; 83/92); the related Northern hookworm (Uncinaria stenocephala) was identified in 11% (10/92) of the diagnostic samples. There was a single sample with coinfection by A. caninum and U. stenocephala. Both isotype-1 β-tubulin mutations were present in A. caninum, 49% and 67% for Q134H and F167Y, respectively. Mutation F167Y in the isotype-1 β-tubulin mutation was recorded in U. stenocephala for the first known time. Canonical benzimidazole resistance codons 198 and 200 mutations were absent. Egg hatch assays performed on a subset of the A. caninum samples showed significant correlation between 50% inhibitory concentration (IC50) to thiabendazole and F167Y, with an increased IC50 for samples with > 75% F167Y mutation. We detected 14% of dogs with > 75% F167Y mutation in A. caninum. Given that these samples were collected from dogs across various regions of Australia, the present study suggests that benzimidazole resistance in A. caninum is widespread. Therefore, to mitigate the risk of resistance selection and further spread, adoption of a risk assessment-based approach to limit unnecessary anthelmintic use should be a key consideration for future parasite control.
Collapse
Affiliation(s)
- Swaid Abdullah
- The University of Queensland, School of Veterinary Science, Gatton 4343, QLD, Australia.
| | - Thomas Stocker
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Hyungsuk Kang
- The University of Queensland, School of Veterinary Science, Gatton 4343, QLD, Australia
| | - Ian Scott
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Douglas Hayward
- Vetnostics NSW - North Ryde Laboratory, Macquarie Park, New South Wales, Australia
| | - Susan Jaensch
- Vetnostics NSW - North Ryde Laboratory, Macquarie Park, New South Wales, Australia
| | - Michael P Ward
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Malcolm K Jones
- The University of Queensland, School of Veterinary Science, Gatton 4343, QLD, Australia
| | - Andrew C Kotze
- The University of Queensland, School of Veterinary Science, Gatton 4343, QLD, Australia
| | - Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia; Sydney Institute for Infectious Diseases, The University of Sydney, New South Wales, Australia.
| |
Collapse
|
25
|
Rachel F, Luttermann C, Höper D, Conraths FJ, Dapprich J, Maksimov P. Typing of Echinococcus multilocularis by Region-Specific Extraction and Next-Generation Sequencing of the mitogenome. Front Microbiol 2025; 16:1535628. [PMID: 40092033 PMCID: PMC11906691 DOI: 10.3389/fmicb.2025.1535628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Background Infection by the fox tapeworm Echinococcus multilocularis may lead to a severe zoonosis in humans, alveolar echinococcosis, which may be fatal if left untreated. Typing is important to understand the epidemiology of this parasite, yet there is limited knowledge on the microdiversity of E. multilocularis on the local scale, since the typing resolution of established methods is restricted. Methods The mitogenome of E. multilocularis was used as the target regions to modify, apply and validate the Region-Specific Extraction (RSE) method in combination with Next-Generation Sequencing (NGS). Single Nucleotide Polymorphisms (SNPs) were detected in the mitochondrial DNA (mtDNA) and analysed bioinformatically. To validate the success and the accuracy of the RSE protocol, the mitogenomes of some E. multilocularis isolates were also analysed by the Whole-Genome Sequencing (WGS). Results With the chosen combination of methods, the entire mitogenome (~13 kb) of E. multilocularis could be captured and amplified. The read depth (median ≥ 156X) was sufficient to detect existing SNPs. The comparison of mitogenome sequences extracted by RSE with mitogenome sequences obtained by WGS showed that the accuracy of the RSE method was consistently comparable to direct Whole-Genome Sequencing. Conclusion The results demonstrate that the RSE method in combination with NGS is suitable to analyse the microdiversity of E. multilocularis at the whole mitogenome level. For the capture and sequencing of large (several kb) genomic regions of E. multilocularis and other applications, this method can be very helpful.
Collapse
Affiliation(s)
- Franziska Rachel
- National Reference Laboratory for Echinococcosis, Institute of Epidemiology, Friedrich-Loeffler-Institut - Federal Research Institute for Animal Health (FLI), Greifswald, Germany
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| | - Christine Luttermann
- Laboratory for Antiviral Immunity, Institute of Immunology, Friedrich-Loeffler-Institut - Federal Research Institute for Animal Health (FLI), Greifswald, Germany
| | - Dirk Höper
- Laboratory for NGS-Based Pathogen Characterization and Animal Disease Diagnostics, Institute of Diagnostic Virology, Friedrich-Loeffler-Institut - Federal Research Institute for Animal Health (FLI), Greifswald, Germany
| | - Franz Josef Conraths
- National Reference Laboratory for Echinococcosis, Institute of Epidemiology, Friedrich-Loeffler-Institut - Federal Research Institute for Animal Health (FLI), Greifswald, Germany
| | | | - Pavlo Maksimov
- National Reference Laboratory for Echinococcosis, Institute of Epidemiology, Friedrich-Loeffler-Institut - Federal Research Institute for Animal Health (FLI), Greifswald, Germany
| |
Collapse
|
26
|
Lechevalier O, Gazengel K, Esquibet M, Fournet S, Grenier E, Daval S, Montarry J. Identification through a transcriptomic approach of candidate genes involved in the adaptation of the cyst nematode Globodera pallida to the potato resistance factor GpaV vrn. BMC Genomics 2025; 26:191. [PMID: 39994529 PMCID: PMC11852814 DOI: 10.1186/s12864-025-11332-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Since the banning of chemical products used to control plant-parasitic nematode populations, the use of resistant plants has become the most effective management approach against the potato cyst nematode Globodera pallida. However, some populations, from experimental evolution setups and field samplings, are able to overcome these resistances. Herein, a transcriptomics approach was used to disentangle the mechanisms by which G. pallida adapts to the plant resistant factor GpaVvrn, and to elucidate the functions involved in this adaptation. RESULTS Differential gene expression analysis between virulent and avirulent lineages originating from experimental evolution experiments identified candidate genes involved in the adaptation to GpaVvrn. GO enrichment analyses showed that virulent lineages up-regulated genes involved in cell wall destruction and stress response compared to avirulent lineages. In virulent lineages, a set of genes was up-regulated later in the parasitism stages and are thus potentially involved in adaptation. These genes encode effectors of the VAP and SPRYSEC families contributing to the suppression of plant immunity. CONCLUSION These results will have a major impact on our understanding of the mechanisms by which nematodes adapt to resistant plants, and will contribute to identify effective and sustainable management strategies.
Collapse
Affiliation(s)
| | - Kévin Gazengel
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France
| | | | | | - Eric Grenier
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France
| | | | | |
Collapse
|
27
|
Konečný L, Jedličková L, Ibnahaten Z, Roberts A, Crosnier C, Dvořák J. Eggs-posed: revision of Schistosoma mansoni venom allergen-like proteins unveils new genes and offers new insights into egg-host interactions. BMC Genomics 2025; 26:189. [PMID: 39994520 PMCID: PMC11854430 DOI: 10.1186/s12864-025-11369-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Venom allergen-like proteins (VALs) are abundant in the excretory-secretory products (ESPs) of numerous parasitic helminths and have been extensively studied for over 30 years because of their potential to interact with host systems. Despite substantial research, however, the precise functions of these proteins remain largely unresolved. Schistosomes, parasites of the circulatory system, are no exception, with 29 SmVAL genes identified in the genome of Schistosoma mansoni to date. The eggs of these parasites, as primary pathogenic agents, interact directly with host tissues and release excretory-secretory products that aid their egress from the host. Although SmVALs have been detected in the egg secretome in the past, direct evidence of their secretion and functional interaction with host molecules has never been demonstrated. These findings fuel the ongoing debate as to whether egg-expressed SmVALs interact with the mammalian host or are rather miracidial proteins synthesized within the egg during larval development. RESULTS Based on complete revision of the SmVAL family and an associated robust transcriptomic meta-analysis of gene expression across the life cycle, we show that many of SmVAL genes, including 6 newly identified genes, are expressed in the infective larvae-producing stages (eggs and sporocysts). Following localization of two "egg-specific" SmVAL9 and SmVAL29 did not prove active secretion of these molecules into surrounding tissues but were aligned with miracidial structures interfacing with the molluscan host, specifically the larval surface and penetration glands. Finally, we show the complete lack of interactions between candidate SmVAL proteins and an array of 755 human cell receptors via a state-of-the-art SAVEXIS screen. CONCLUSIONS Overall, we conclude that these "egg" SmVALs are not involved in direct host‒parasite interactions in the mammalian host and are rather proteins employed during intermediate host invasion. Our study revisits and updates the SmVAL gene family, highlighting the limitations of in silico protein function predictions while emphasizing the need for up-to-date datasets and tools together with experimental validation in host-parasite interactions. By uncovering the diversity, expression patterns, and interaction dynamics of SmVALs, we open new avenues for understanding host manipulation and reevaluating orthologous proteins in other helminths.
Collapse
Affiliation(s)
- Lukáš Konečný
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia.
- Department of Ecology, Center of Infectious Animal Diseases, Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Czechia.
| | - Lucie Jedličková
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
- Department of Zoology and Fisheries, Center of Infectious Animal Diseases, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | | | - Adam Roberts
- Department of Biology, University of York, York, UK
- Hull York Medical School, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Cecile Crosnier
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Jan Dvořák
- Department of Ecology, Center of Infectious Animal Diseases, Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Czechia
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
28
|
Moescheid MF, Lu Z, Soria CD, Quack T, Puckelwaldt O, Holroyd N, Holzaepfel P, Haeberlein S, Rinaldi G, Berriman M, Grevelding CG. The retinoic acid family-like nuclear receptor SmRAR identified by single-cell transcriptomics of ovarian cells controls oocyte differentiation in Schistosoma mansoni. Nucleic Acids Res 2025; 53:gkae1228. [PMID: 39676663 PMCID: PMC11879061 DOI: 10.1093/nar/gkae1228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/30/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024] Open
Abstract
Studies on transcription regulation in platyhelminth development are scarce, especially for parasitic flatworms. Here, we employed single-cell transcriptomics to identify genes involved in reproductive development in the trematode model Schistosoma mansoni. This parasite causes schistosomiasis, a major neglected infectious disease affecting >240 million people worldwide. The pathology of schistosomiasis is closely associated with schistosome eggs deposited in host organs including the liver. Unlike other trematodes, schistosomes exhibit distinct sexes, with egg production reliant on the pairing-dependent maturation of female reproductive organs. Despite this significance, the molecular mechanisms underlying ovary development and oocyte differentiation remain largely unexplored. Utilizing an organ isolation approach for S. mansoni, we extracted ovaries of paired females followed by single-cell RNA sequencing (RNA-seq) with disassociated oocytes. A total of 1967 oocytes expressing 7872 genes passed quality control (QC) filtering. Unsupervised clustering revealed four distinct cell clusters: somatic, germ cells and progeny, intermediate and late germ cells. Among distinct marker genes for each cluster, we identified a hitherto uncharacterized transcription factor of the retinoic acid receptor family, SmRAR. Functional analyses of SmRAR and associated genes like Smmeiob (meiosis-specific, oligonucleotide/oligosaccharide binding motif (OB) domain-containing) demonstrated their pairing-dependent and ovary-preferential expression and their decisive roles in oocyte differentiation of S. mansoni.
Collapse
Affiliation(s)
- Max F Moescheid
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| | - Zhigang Lu
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10, 1SA, UK
| | - Carmen Diaz Soria
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10, 1SA, UK
| | - Thomas Quack
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| | - Oliver Puckelwaldt
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| | - Nancy Holroyd
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10, 1SA, UK
| | - Pauline Holzaepfel
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| | - Simone Haeberlein
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| | - Gabriel Rinaldi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10, 1SA, UK
- Department of Life Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DA, UK
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10, 1SA, UK
- School of Infection and Immunity, College of Medicine, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Christoph G Grevelding
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| |
Collapse
|
29
|
Schwarz EM, Noon JB, Chicca JD, Garceau C, Li H, Antoshechkin I, Ilík V, Pafčo B, Weeks AM, Homan EJ, Ostroff GR, Aroian RV. Hookworm genes encoding intestinal excreted-secreted proteins are transcriptionally upregulated in response to the host's immune system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.01.636063. [PMID: 39975173 PMCID: PMC11838427 DOI: 10.1101/2025.02.01.636063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Hookworms are intestinal parasitic nematodes that chronically infect ~500 million people, with reinfection common even after clearance by drugs. How infecting hookworms successfully overcome host protective mechanisms is unclear, but it may involve hookworm proteins that digest host tissues, or counteract the host's immune system, or both. To find such proteins in the zoonotic hookworm Ancylostoma ceylanicum, we identified hookworm genes encoding excreted-secreted (ES) proteins, hookworm genes preferentially expressed in the hookworm intestine, and hookworm genes whose transcription is stimulated by the host immune system. We collected ES proteins from adult hookworms harvested from hamsters; mass spectrometry identified 565 A. ceylanicum genes encoding ES proteins. We also used RNA-seq to identify A. ceylanicum genes expressed both in young adults (12 days post-infection) and in intestinal and non-intestinal tissues dissected from mature adults (19 days post-infection), with hamster hosts that either had normal immune systems or were immunosuppressed by dexamethasone. In adult A. ceylanicum, we observed 1,670 and 1,196 genes with intestine- and non-intestine-biased expression, respectively. Comparing hookworm gene activity in normal versus immunosuppressed hosts, we observed almost no changes of gene activity in 12-day young adults or non-intestinal 19-day adult tissues. However, in intestinal 19-day adult tissues, we observed 1,951 positively immunoregulated genes (upregulated at least two-fold in normal hosts versus immunosuppressed hosts), and 137 genes that were negatively immunoregulated. Thus, immunoregulation was observed primarily in mature adult hookworm intestine directly exposed to host blood; it may include hookworm genes activated in response to the host immune system in order to neutralize the host immune system. We observed 153 ES genes showing positive immunoregulation in 19-day adult intestine; of these genes, 69 had ES gene homologs in the closely related hookworm Ancylostoma caninum, 24 in the human hookworm Necator americanus, and 24 in the more distantly related strongylid parasite Haemonchus contortus. Such a mixture of rapidly evolving and conserved genes could comprise virulence factors enabling infection, provide new targets for drugs or vaccines against hookworm, and aid in developing therapies for autoimmune diseases.
Collapse
Affiliation(s)
- Erich M. Schwarz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Jason B. Noon
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jeffrey D. Chicca
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Current address: Cellular and Molecular Biology Graduate Program, University of Wisconsin, 413 Bock Labs, 1525 Linden Drive, Madison, WI, 53706, USA
| | - Carli Garceau
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Current address: Leveragen Inc., 17 Briden Street, Worcester, MA, 01605, USA
| | - Hanchen Li
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Vladislav Ilík
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
| | - Barbora Pafčo
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
| | - Amy M. Weeks
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - E. Jane Homan
- ioGenetics LLC, 301 South Bedford Street, Ste.1, Madison, WI, 53703, USA
| | - Gary R. Ostroff
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Raffi V. Aroian
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
30
|
Bahramibanan F, Taherkhani A, Najafi R, Alizadeh N, Ghadimipour H, Barati N, Derakhshandeh K, Soleimani M. Prognostic markers and molecular pathways in primary colorectal cancer with a high potential of liver metastases: a systems biology approach. Res Pharm Sci 2025; 20:121-141. [PMID: 40190820 PMCID: PMC11972027 DOI: 10.4103/rps.rps_128_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2025] Open
Abstract
Background and purpose Colorectal cancer (CRC) holds the position of being the third most prevalent cancer and the second primary cause of cancer-related fatalities on a global scale. Approximately 65% of CRC patients survive for 5 years following diagnosis. Metastasis and recurrence frequently occur in half of CRC patients diagnosed at the late stage. This study used bioinformatics analysis to identify key signaling pathways, hub genes, transcription factors, and protein kinases involved in transforming primary CRC with liver metastasis potential. Prognostic markers in CRC were also identified. Experimental approach The GSE81582 dataset was re-analyzed to identify differentially expressed genes (DEGs) in early CRC compared to non-tumoral tissues. A protein interaction network (PIN) was constructed, revealing significant modules and hub genes. Prognostic markers, transcription factors, and protein kinases were determined. Boxplot and gene set enrichment analyses were performed. Findings/Results This study identified 1113 DEGs in primary CRC compared to healthy controls. PIN analysis revealed 75 hub genes and 8 significant clusters associated with early CRC. The down-regulation of SUCLG2 and KPNA2 correlated with poor prognosis. SIN3A and CDK6 played crucial roles in early CRC transformation, affecting rRNA processing pathways. Conclusion and implications This study demonstrated several pathways, biological processes, and genes mediating the malignant transformation of healthy colorectal tissues to primary CRC and may help the prognosis and treatment of patients with early CRC.
Collapse
Affiliation(s)
- Fatemeh Bahramibanan
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, I.R. Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, I.R. Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, I.R. Iran
| | - Neda Alizadeh
- Department of Anesthesiology and Critical Care, School of Medicine, Hamadan University of Medical Sciences, Hamadan, I.R. Iran
| | - Hamidreza Ghadimipour
- Department of Pathology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, I.R. Iran
| | - Nastaran Barati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, I.R. Iran
| | - Katayoun Derakhshandeh
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, I.R. Iran
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, I.R. Iran
| |
Collapse
|
31
|
Poullet M, Konigopal H, Rancurel C, Sallaberry M, Lopez-Roques C, Mota APZ, Lledo J, Kiewnick S, Danchin EGJ. High-fidelity annotated triploid genome of the quarantine root-knot nematode, Meloidogyne enterolobii. Sci Data 2025; 12:184. [PMID: 39885189 PMCID: PMC11782629 DOI: 10.1038/s41597-025-04434-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025] Open
Abstract
Root-knot nematodes (RKN) of the genus Meloidogyne are obligatory plant endoparasites that cause substantial economic losses to agricultural production and impact the global food supply. These plant parasitic nematodes belong to the most widespread and devastating genus worldwide, yet few measures of control are available. The most efficient way to control RKN is deployment of resistance genes in plants. However, current resistance genes that control other Meloidogyne species are mostly inefficient on Meloidogyne enterolobii. Consequently, M. enterolobii was listed as a European Union quarantine pest requiring regulation. To gain insight into the molecular characteristics underlying its parasitic success, exploring the genome of M. enterolobii is essential. Here, we report a high-quality genome assembly of M. enterolobii using the high-fidelity long-read sequencing technology developed by Pacific Biosciences, combined with a gap-aware sequence transformer, DeepConsensus. The resulting triploid genome assembly spans 285.4 Mb with 556 contigs, a GC% of 30 ± 0.042 and an N50 value of 2.11 Mb, constituting a useful platform for comparative, population and functional genomics.
Collapse
Affiliation(s)
- Marine Poullet
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France.
| | - Hemanth Konigopal
- Julius Kühn-Institut, Institute for Plant Protection in Field Crops and Grassland, Messeweg 11-12, 38104, Braunschweig, Germany
| | - Corinne Rancurel
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France
| | | | | | - Ana Paula Zotta Mota
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France
| | - Joanna Lledo
- INRAE, GeT_PlaGe, Genotoul, 31326, Castanet - Tolosan, France
| | - Sebastian Kiewnick
- Julius Kühn-Institut, Institute for Plant Protection in Field Crops and Grassland, Messeweg 11-12, 38104, Braunschweig, Germany
| | - Etienne G J Danchin
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France.
| |
Collapse
|
32
|
Banerjee N, Gang SS, Castelletto ML, Walsh B, Ruiz F, Hallem EA. Carbon dioxide shapes parasite-host interactions in a human-infective nematode. Curr Biol 2025; 35:277-286.e6. [PMID: 39719698 PMCID: PMC11753939 DOI: 10.1016/j.cub.2024.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 12/26/2024]
Abstract
Skin-penetrating nematodes infect nearly one billion people worldwide. The developmentally arrested infective larvae (iL3s) seek out hosts, invade hosts via skin penetration, and resume development inside the host in a process called activation. Activated infective larvae (iL3as) traverse the host body, ending up as parasitic adults in the small intestine. Skin-penetrating nematodes respond to many chemosensory cues, but how chemosensation contributes to host seeking and intra-host navigation-two crucial steps of the parasite-host interaction-remains poorly understood. Here, we investigate the role of carbon dioxide (CO2) in promoting host seeking and intra-host navigation in the human-infective threadworm Strongyloides stercoralis. We show that S. stercoralis exhibits life-stage-specific behavioral preferences for CO2: iL3s are repelled, non-infective larvae and adults are neutral, and iL3as are attracted. CO2 repulsion in iL3s may prime them for host seeking by stimulating dispersal from host feces, while CO2 attraction in iL3as may direct worms toward high-CO2 areas of the body, such as the lungs and intestine. We also identify sensory neurons that detect CO2; these neurons display CO2-evoked calcium activity, promote behavioral responses to CO2, and express the receptor guanylate cyclase Ss-GCY-9. Finally, we develop an approach for generating stable knockout lines in S. stercoralis and use this approach to show that Ss-gcy-9 is required for CO2-evoked behavioral responses in both iL3s and iL3as. Our results highlight chemosensory mechanisms that shape the interaction between parasitic nematodes and their human hosts and may aid in the design of novel anthelmintics that target the CO2-sensing pathway.
Collapse
Affiliation(s)
- Navonil Banerjee
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Spencer S Gang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michelle L Castelletto
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Breanna Walsh
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Interdepartmental PhD Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA-Caltech Medical Scientist Training Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Felicitas Ruiz
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
33
|
Dong B, Zhong H, Zhu D, Wu L, Wang J, Li H, Jin Y. Antibody Responses and the Vaccine Efficacy of Recombinant Glycosyltransferase and Nicastrin Against Schistosoma japonicum. Pathogens 2025; 14:70. [PMID: 39861031 PMCID: PMC11768875 DOI: 10.3390/pathogens14010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Schistosomiasis is a neglected tropical disease and the second most common parasitic disease after malaria. While praziquantel remains the primary treatment, concerns about drug resistance highlight the urgent need for new drugs and effective vaccines to achieve sustainable control. Previous proteomic studies from our group revealed that the expression of Schistosoma japonicum glycosyltransferase and nicastrin as proteins was higher in single-sex males than mated males, suggesting their critical roles in parasite reproduction and their potential as vaccine candidates. In this study, bioinformatic tools were employed to analyze the structural and functional properties of these proteins, including their signal peptide regions, transmembrane domains, tertiary structures, and protein interaction networks. Recombinant forms of glycosyltransferase and nicastrin were expressed and purified, followed by immunization experiments in BALB/c mice. Immunized mice exhibited significantly elevated specific IgG antibody levels after three immunizations compared to adjuvant and PBS controls. Furthermore, immunization with recombinant glycosyltransferase and nicastrin significantly reduced the reproductive capacity of female worms and liver egg burden, though egg hatchability and adult worm survival were unaffected. These findings demonstrate that recombinant glycosyltransferase and nicastrin are immunogenic and reduce female worm fecundity, supporting their potential as vaccine candidates against schistosomiasis.
Collapse
Affiliation(s)
- Bowen Dong
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (B.D.); (H.Z.); (D.Z.); (H.L.)
| | - Haoran Zhong
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (B.D.); (H.Z.); (D.Z.); (H.L.)
| | - Danlin Zhu
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (B.D.); (H.Z.); (D.Z.); (H.L.)
| | - Luobin Wu
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China;
| | - Jinming Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China;
- Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Hao Li
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (B.D.); (H.Z.); (D.Z.); (H.L.)
| | - Yamei Jin
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (B.D.); (H.Z.); (D.Z.); (H.L.)
| |
Collapse
|
34
|
Cruz-Laufer AJ, Vanhove MPM, Bachmann L, Barson M, Bassirou H, Bitja Nyom AR, Geraerts M, Hahn C, Huyse T, Kasembele GK, Njom S, Resl P, Smeets K, Kmentová N. Adaptive evolution of stress response genes in parasites aligns with host niche diversity. BMC Biol 2025; 23:10. [PMID: 39800686 PMCID: PMC11727194 DOI: 10.1186/s12915-024-02091-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Stress responses are key the survival of parasites and, consequently, also the evolutionary success of these organisms. Despite this importance, our understanding of the evolution of molecular pathways dealing with environmental stressors in parasitic animals remains limited. Here, we tested the link between adaptive evolution of parasite stress response genes and their ecological diversity and species richness. We comparatively investigated antioxidant, heat shock, osmoregulatory, and behaviour-related genes (foraging) in two model parasitic flatworm lineages with contrasting ecological diversity, Cichlidogyrus and Kapentagyrus (Platyhelminthes: Monopisthocotyla), through whole-genome sequencing of 11 species followed by in silico exon bait capture as well as phylogenetic and codon analyses. RESULTS We assembled the sequences of 48 stress-related genes and report the first foraging (For) gene orthologs in flatworms. We found duplications of heat shock (Hsp) and oxidative stress genes in Cichlidogyrus compared to Kapentagyrus. We also observed positive selection patterns in genes related to mitochondrial protein import (Hsp) and behaviour (For) in species of Cichlidogyrus infecting East African cichlids-a host lineage under adaptive radiation. These patterns are consistent with a potential adaptation linked to a co-radiation of these parasites and their hosts. Additionally, the absence of cytochrome P450 and kappa and sigma-class glutathione S-transferases in monogenean flatworms is reported, genes considered essential for metazoan life. CONCLUSIONS This study potentially identifies the first molecular function linked to a flatworm radiation. Furthermore, the observed gene duplications and positive selection indicate the potentially important role of stress responses for the ecological adaptation of parasite species.
Collapse
Affiliation(s)
- Armando J Cruz-Laufer
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium.
- Systems Ecology and Resource Management Research Unit (SERM), Université Libre de Bruxelles-ULB, Brussels, Belgium.
| | - Maarten P M Vanhove
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium
| | - Lutz Bachmann
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Maxwell Barson
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Hassan Bassirou
- Department of Biological Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Arnold R Bitja Nyom
- Department of Biological Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
- Department of Management of Fisheries and Aquatic Ecosystems, Institute of Fisheries, University of Douala, Douala, Cameroon
| | - Mare Geraerts
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium
- Department of Biology, Evolutionary Ecology Group - EVECO, University of Antwerp, Antwerp, Belgium
| | - Christoph Hahn
- Institute of Biology, University of Graz, Graz, Austria.
| | - Tine Huyse
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
| | - Gyrhaiss Kapepula Kasembele
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium
- Unité de Recherche en Biodiversité Et Exploitation Durable Des Zones Humides (BEZHU), Faculté Des Sciences Agronomiques, Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Samuel Njom
- Department of Biological Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Philipp Resl
- Institute of Biology, University of Graz, Graz, Austria
| | - Karen Smeets
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium
| | - Nikol Kmentová
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium
- Aquatic and Terrestrial Ecology, Operational Directorate Natural Environment, Royal Belgian Institute for Natural Sciences, Brussels, Belgium
| |
Collapse
|
35
|
de Oliveira FM, Lopes GFM, Ribeiro RIMA, Villar JAFP, Fonseca CT, Lopes DDO. Evaluating the Immunoprotective and Diagnostic Potential of Schistosoma mansoni Epitopes from Sm050890 and Sm141290 Proteins Identified Through Reverse Vaccinology. Acta Parasitol 2025; 70:14. [PMID: 39775981 DOI: 10.1007/s11686-024-00981-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/08/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE Schistosomiasis remains a parasitic disease affecting millions of people worldwide, requiring interventions like vaccination. In previous work, our group used reverse vaccinology to identify two epitopes from the Schistosoma mansoni proteins, Sm050890 (44-58) and Sm141290 (225-239). This study evaluated the immune response profile and protection induced by peptides, as a mixture of immunogens, in murine vaccination trials. Additionally, the diagnostic potential of these peptides was assessed on immunoassays. METHODS Mice were immunized with a formulation containing the mixture of the peptides, subsequently infected, and perfused for worm burden recovery and quantification. Liver and blood samples from animals were used to evaluate the effect of immunization on the formation of granulomas and specific anti-peptide antibodies (IgG). Additionally, cytokine measurement was performed in splenocyte cultures from immunized mice, and peripheral blood serum from individuals infected with S. mansoni was used to assess the recognition of the peptides by IgG antibodies. RESULTS The vaccine stimulated an increase in the production of IgG and IgG2c antibodies, associated with a significant reduction of 44 - 29% in worm burden. Although the vaccine did not reduce liver pathology, it enhanced the production of IFN-γ while decreasing IL-10 production by splenocytes. Furthermore, the peptides Sm050890 (44-58) and Sm141290 (225-239) were not recognized by IgG antibodies in the serum from infected individuals. CONCLUSION Overall, our data suggest that the peptides Sm050890 (44-58) and Sm141290 (225-239) are promising vaccine candidates against schistosomiasis and can be used to compose a multiepitope/chimeric vaccine in future studies.
Collapse
Affiliation(s)
| | | | | | | | - Cristina Toscano Fonseca
- Research Group on Biology and Immunology of Infectious and Parasitic Diseases, René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brasil
| | | |
Collapse
|
36
|
Bateman A, Martin MJ, Orchard S, Magrane M, Adesina A, Ahmad S, Bowler-Barnett EH, Bye-A-Jee H, Carpentier D, Denny P, Fan J, Garmiri P, Gonzales LJDC, Hussein A, Ignatchenko A, Insana G, Ishtiaq R, Joshi V, Jyothi D, Kandasaamy S, Lock A, Luciani A, Luo J, Lussi Y, Marin JSM, Raposo P, Rice DL, Santos R, Speretta E, Stephenson J, Totoo P, Tyagi N, Urakova N, Vasudev P, Warner K, Wijerathne S, Yu CWH, Zaru R, Bridge AJ, Aimo L, Argoud-Puy G, Auchincloss AH, Axelsen KB, Bansal P, Baratin D, Batista Neto TM, Blatter MC, Bolleman JT, Boutet E, Breuza L, Gil BC, Casals-Casas C, Echioukh KC, Coudert E, Cuche B, de Castro E, Estreicher A, Famiglietti ML, Feuermann M, Gasteiger E, Gaudet P, Gehant S, Gerritsen V, Gos A, Gruaz N, Hulo C, Hyka-Nouspikel N, Jungo F, Kerhornou A, Mercier PL, Lieberherr D, Masson P, Morgat A, Paesano S, Pedruzzi I, Pilbout S, Pourcel L, Poux S, Pozzato M, Pruess M, Redaschi N, Rivoire C, Sigrist CJA, Sonesson K, Sundaram S, Sveshnikova A, Wu CH, Arighi CN, Chen C, Chen Y, Huang H, Laiho K, Lehvaslaiho M, McGarvey P, Natale DA, Ross K, Vinayaka CR, Wang Y, Zhang J. UniProt: the Universal Protein Knowledgebase in 2025. Nucleic Acids Res 2025; 53:D609-D617. [PMID: 39552041 PMCID: PMC11701636 DOI: 10.1093/nar/gkae1010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
The aim of the UniProt Knowledgebase (UniProtKB; https://www.uniprot.org/) is to provide users with a comprehensive, high-quality and freely accessible set of protein sequences annotated with functional information. In this publication, we describe ongoing changes to our production pipeline to limit the sequences available in UniProtKB to high-quality, non-redundant reference proteomes. We continue to manually curate the scientific literature to add the latest functional data and use machine learning techniques. We also encourage community curation to ensure key publications are not missed. We provide an update on the automatic annotation methods used by UniProtKB to predict information for unreviewed entries describing unstudied proteins. Finally, updates to the UniProt website are described, including a new tab linking protein to genomic information. In recognition of its value to the scientific community, the UniProt database has been awarded Global Core Biodata Resource status.
Collapse
|
37
|
Gu C, Zhong H, Luo X, Yuan J, Gong G, Feng Y, Zhang X, Feng X, Jin Y, Li J. Ivermectin induces oxidative stress and mitochondrial damage in Haemonchus contortus. Vet Parasitol 2025; 333:110352. [PMID: 39566278 DOI: 10.1016/j.vetpar.2024.110352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Haemonchus contortus poses a severe threat to livestock, leading to substantial economic losses. The extensive use of ivermectin (IVM), an effective anthelmintic drug, has resulted in the development of resistant strains, reducing the drug's effectiveness and making disease management more challenging. Hence, understanding the underlying mechanisms of IVM resistance is crucial. IVM has been shown to induce apoptosis and oxidative stress imbalance in cancer cells, thereby inhibiting tumor growth; however, whether there is a similar impact on H. contortus has not been well-documented. In this study, the biological functions of previously identified resistance-associated genes were investigated, revealing their involvement in apoptosis and oxidative stress. Experiments were conducted to compare cell apoptosis, mitochondrial function, and oxidative stress markers in IVM-treated and untreated sensitive and resistant strains isolated from the field. The findings demonstrated that mitochondrial dysfunction and increased apoptosis were induced by IVM treatment in sensitive strains, as indicated by elevated mitochondrial membrane potential and apoptosis rates. Conversely, stable mitochondrial function and apoptosis levels under IVM exposure were observed in resistant strains. These results provide novel insights into the resistance mechanisms of H. contortus and offer a theoretical basis for future research on overcoming IVM resistance.
Collapse
Affiliation(s)
- Cuifang Gu
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control, Veterinary Research Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, PR China; National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China
| | - Haoran Zhong
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China
| | - Xiaoping Luo
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control, Veterinary Research Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, PR China
| | - Jianqi Yuan
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China
| | - Gaowa Gong
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control, Veterinary Research Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, PR China
| | - Ying Feng
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control, Veterinary Research Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, PR China
| | - Xingfu Zhang
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control, Veterinary Research Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, PR China
| | - Xingang Feng
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control, Veterinary Research Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, PR China; National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China
| | - Yamei Jin
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China.
| | - Junyan Li
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control, Veterinary Research Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, PR China.
| |
Collapse
|
38
|
Wong Y, Rosa BA, Becker L, Camberis M, LeGros G, Zhan B, Bottazzi ME, Fujiwara RT, Ritmejeryte E, Laha T, Chaiyadet S, Taweethavonsawat P, Brindley PJ, Bracken BK, Giacomin PR, Mitreva M, Loukas A. Proteomic characterization and comparison of the infective and adult life stage secretomes from Necator americanus and Ancylostoma ceylanicum. PLoS Negl Trop Dis 2025; 19:e0012780. [PMID: 39832284 PMCID: PMC11745416 DOI: 10.1371/journal.pntd.0012780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
More than 470 million people globally are infected with the hookworms Ancylostoma ceylanicum and Necator americanus, resulting in an annual loss of 2.1 to 4 million disability-adjusted-life-years. Current infection management approaches are limited by modest drug efficacy, the costs associated with frequent mass drug administration campaigns, and the risk of reinfection and burgeoning drug resistance. Subunit vaccines based on proteins excreted and secreted (ES) by hookworms that reduce worm numbers and associated disease burden are a promising management strategy to overcome these limitations. However, studies on the ES proteomes of hookworms have mainly described proteins from the adult life stage which may preclude the opportunity to target the infective larva. Here, we employed high resolution mass spectrometry to identify 103 and 57 ES proteins from the infective third larvae stage (L3) as well as 106 and 512 ES proteins from the adult N. americanus and A. ceylanicum respectively. Comparisons between these developmental stages identified 91 and 41 proteins uniquely expressed in the L3 ES products of N. americanus and A. ceylanicum, respectively. We characterized these proteins based on functional annotation, KEGG pathway analysis, InterProScan signature and gene ontology. We also performed reciprocal BLAST analysis to identify orthologs across species for both the L3 and adult stages and identified five orthologous proteins in both life stages and 15 proteins that could be detected only in the L3 stage of both species. Last, we performed a three-way reciprocal BLAST on the L3 proteomes from both hookworm species together with a previously reported L3 proteome from the rodent hookworm Nippostrongylus brasiliensis, and identified eight L3 proteins that could be readily deployed for testing using well established rodent models. This novel characterization of L3 proteins and taxonomic conservation across hookworm species provides a raft of potential candidates for vaccine discovery for prevention of hookworm infection and disease.
Collapse
Affiliation(s)
- Yide Wong
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, Australia
| | - Bruce A. Rosa
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Luke Becker
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Mali Camberis
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Graham LeGros
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Bin Zhan
- National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maria Elena Bottazzi
- National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ricardo T. Fujiwara
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Edita Ritmejeryte
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sujittra Chaiyadet
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Piyanan Taweethavonsawat
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C., United States of America
| | - Bethany K. Bracken
- Charles River Analytics, Cambridge, Massachusetts, United States of America
| | - Paul R. Giacomin
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
- Macrobiome Therapeutics Pty Ltd, Cairns, Australia
| | - Makedonka Mitreva
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
- Macrobiome Therapeutics Pty Ltd, Cairns, Australia
| |
Collapse
|
39
|
McCoy CJ, Wray CP, Freeman L, Crooks BA, Golinelli L, Marks NJ, Temmerman L, Beets I, Atkinson LE, Mousley A. Exploitation of phylum-spanning omics resources reveals complexity in the nematode FLP signalling system and provides insights into flp-gene evolution. BMC Genomics 2024; 25:1220. [PMID: 39702046 DOI: 10.1186/s12864-024-11111-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Parasitic nematodes significantly undermine global human and animal health and productivity. Parasite control is reliant on anthelmintic administration however over-use of a limited number of drugs has resulted in escalating parasitic nematode resistance, threatening the sustainability of parasite control and underscoring an urgent need for the development of novel therapeutics. FMRFamide-like peptides (FLPs), the largest family of nematode neuropeptides, modulate nematode behaviours including those important for parasite survival, highlighting FLP receptors (FLP-GPCRs) as appealing putative novel anthelmintic targets. Advances in omics resources have enabled the identification of FLPs and neuropeptide-GPCRs in some parasitic nematodes, but remaining gaps in FLP-ligand libraries hinder the characterisation of receptor-ligand interactions, which are required to drive the development of novel control approaches. RESULTS In this study we exploited recent expansions in nematode genome data to identify 2143 flp-genes in > 100 nematode species across free-living, entomopathogenic, plant, and animal parasitic lifestyles and representing 7 of the 12 major nematode clades. Our data reveal that: (i) the phylum-spanning flps, flp-1, -8, -14, and - 18, may be representative of the flp profile of the last common ancestor of nematodes; (ii) the majority of parasitic nematodes have a reduced flp complement relative to free-living species; (iii) FLP prepropeptide architecture is variable within and between flp-genes and across nematode species; (iv) FLP prepropeptide signatures facilitate flp-gene discrimination; (v) FLP motifs display variable length, amino acid sequence, and conservation; (vi) CLANS analysis provides insight into the evolutionary history of flp-gene sequelogues and reveals putative flp-gene paralogues and, (vii) flp expression is upregulated in the infective larval stage of several nematode parasites. CONCLUSIONS These data provide the foundation required for phylum-spanning FLP-GPCR deorphanisation screens in nematodes to seed the discovery and development of novel parasite control approaches.
Collapse
Affiliation(s)
- Ciaran J McCoy
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, Leuven, 3000, Belgium
| | - Christopher P Wray
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Laura Freeman
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Bethany A Crooks
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Luca Golinelli
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, Leuven, 3000, Belgium
| | - Nikki J Marks
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, Leuven, 3000, Belgium
| | - Isabel Beets
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, Leuven, 3000, Belgium
| | - Louise E Atkinson
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Angela Mousley
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK.
| |
Collapse
|
40
|
Luh D, Ghezellou P, Heiles S, Gramberg S, Haeberlein S, Spengler B. Glycolipidomics of Liver Flukes and Host Tissues during Fascioliasis: Insights from Mass Spectrometry Imaging. ACS Infect Dis 2024; 10:4233-4245. [PMID: 39510517 DOI: 10.1021/acsinfecdis.4c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Fascioliasis, a zoonotic disease caused by liver flukes of the genus Fasciola, poses significant health threats to both humans and livestock. While some infections remain asymptomatic, others can lead to fatal outcomes, particularly during the acute phase characterized by the migration of immature parasites causing severe liver damage. Through the combination of data acquired via high-spatial-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) and nanohydrophilic interaction chromatography tandem mass spectrometry, we investigated glycosphingolipids (GSLs) in both adult and immature parasite stages as well as the host liver and bile duct to unravel the intricacies of the host-pathogen interplay and associated pathology. Several GSLs showed characteristic distribution patterns within the parasite depending on the fatty acid composition of their ceramides, notably including GSLs carrying very long-chain fatty acids. Additionally, GSL compositions within the tegument of immature versus adult parasites varied, suggestive of tissue remodeling upon maturation. AP-SMALDI MSI further enabled the identification of GSLs potentially involved in in vivo interactions between the host and immature parasites. Moreover, our experiments unveiled alterations in other lipid classes during Fasciola infection, providing a broader understanding of lipidomic changes associated with the disease. Collectively, our findings contribute to a deeper comprehension of the molecular intricacies underlying fascioliasis, with a specific focus on GSLs.
Collapse
Affiliation(s)
- David Luh
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Parviz Ghezellou
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Sven Heiles
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund 44139, Germany
- Lipidomics, Faculty of Chemistry, University of Duisburg-Essen, Essen 45141, Germany
| | - Svenja Gramberg
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen 35392, Germany
| | - Simone Haeberlein
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen 35392, Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen 35392, Germany
| |
Collapse
|
41
|
Campos TL, Korhonen PK, Young ND, Chang BC, Gasser RB. Inference of essential genes in Brugia malayi and Onchocerca volvulus by machine learning and the implications for discovering new interventions. Comput Struct Biotechnol J 2024; 23:3081-3089. [PMID: 39185442 PMCID: PMC11342751 DOI: 10.1016/j.csbj.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/27/2024] Open
Abstract
Detailed explorations of the model organisms Caenorhabditis elegans (elegant worm) and Drosophila melanogaster (vinegar fly) have substantially improved our knowledge and understanding of biological processes and pathways in metazoan organisms. Extensive functional genomic and multi-omic data sets have enabled the discovery and characterisation of 'essential' genes that are critical for the survival of these organisms. Recently, we showed that a machine learning (ML)-based pipeline could be utilised to predict essential genes in both C. elegans and D. melanogaster using features from DNA, RNA, protein and/or cellular data or associated information. As these distantly-related species are within the Ecdysozoa, we hypothesised that this approach could be suited for non-model organisms within the same group (phylum) of protostome animals. In the present investigation, we cross-predicted essential genes within the phylum Nematoda - between C. elegans and the parasitic filarial nematodes Brugia malayi and Onchocerca volvulus, and then ranked and prioritised these genes. Highly ranked genes were linked to key biological pathways or processes, such as ribosome biogenesis, translation and RNA processing, and were expressed at relatively high levels in the germline, gonad, hypodermis and/or nerves. The present in silico workflow is hoped to expedite the identification of drug targets in parasitic organisms for subsequent experimental validation in the laboratory.
Collapse
Affiliation(s)
- Túlio L. Campos
- Department of Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
- Núcleo de Bioinformática, Instituto Aggeu Magalhães, Fiocruz., Av. Professor Moraes Rego, s/n, Cidade Universitária, Recife, PE CEP 50740–465, Brazil
| | - Pasi K. Korhonen
- Department of Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil D. Young
- Department of Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bill C.H. Chang
- Department of Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B. Gasser
- Department of Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
42
|
Korhonen PK, Wang T, Young ND, Byrne JJ, Campos TL, Chang BC, Taki AC, Gasser RB. Analysis of Haemonchus embryos at single cell resolution identifies two eukaryotic elongation factors as intervention target candidates. Comput Struct Biotechnol J 2024; 23:1026-1035. [PMID: 38435301 PMCID: PMC10907403 DOI: 10.1016/j.csbj.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
Advances in single cell technologies are allowing investigations of a wide range of biological processes and pathways in animals, such as the multicellular model organism Caenorhabditis elegans - a free-living nematode. However, there has been limited application of such technology to related parasitic nematodes which cause major diseases of humans and animals worldwide. With no vaccines against the vast majority of parasitic nematodes and treatment failures due to drug resistance or inefficacy, new intervention targets are urgently needed, preferably informed by a deep understanding of these nematodes' cellular and molecular biology - which is presently lacking for most worms. Here, we created the first single cell atlas for an early developmental stage of Haemonchus contortus - a highly pathogenic, C. elegans-related parasitic nematode. We obtained and curated RNA sequence (snRNA-seq) data from single nuclei from embryonating eggs of H. contortus (150,000 droplets), and selected high-quality transcriptomic data for > 14,000 single nuclei for analysis, and identified 19 distinct clusters of cells. Guided by comparative analyses with C. elegans, we were able to reproducibly assign seven cell clusters to body wall muscle, hypodermis, neuronal, intestinal or seam cells, and identified eight genes that were transcribed in all cell clusters/types, three of which were inferred to be essential in H. contortus. Two of these genes (i.e. Hc-eef-1A and Hc-eef1G), coding for eukaryotic elongation factors (called Hc-eEF1A and Hc-eEF1G), were also demonstrated to be transcribed and expressed in all key developmental stages of H. contortus. Together with these findings, sequence- and structure-based comparative analyses indicated the potential of Hc-eEF1A and/or Hc-eEF1G as intervention targets within the protein biosynthesis machinery of H. contortus. Future work will focus on single cell studies of all key developmental stages and tissues of H. contortus, and on evaluating the suitability of the two elongation factor proteins as drug targets in H. contortus and related nematodes, with a view to finding new nematocidal drug candidates.
Collapse
Affiliation(s)
- Pasi K. Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil D. Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph J. Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tulio L. Campos
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bill C.H. Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Aya C. Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
43
|
Menzel R, Tobias K, Fidan T, Rietz A, Ruess L. Dissection of the synthesis of polyunsaturated fatty acids in nematodes and Collembola of the soil fauna. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159541. [PMID: 39097082 DOI: 10.1016/j.bbalip.2024.159541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/10/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
It is becoming increasingly clear that not only unicellular, photoautotrophic eukaryotes, plants, and fungi, but also invertebrates are capable of synthesizing ω3 long-chain polyunsaturated fatty acids (LC-PUFA) de novo. However, the distribution of this anabolic capacity among different invertebrate groups and its implementation at the gene and protein level are often still unknown. This study investigated the PUFA pathways in common soil fauna, i.e. two nematode and two Collembola species. Of these, one species each (Panagrellus redivivus, Folsomia candida) was assumed to produce ω3 LC-PUFA de novo, while the others (Acrobeloides bodenheimeri, Isotoma caerulea) were supposed to be unable to do so. A highly labeled oleic acid (99 % 13C) was supplemented and the isotopic signal was used to trace its metabolic path. All species followed the main pathway of lipid biosynthesis. However, in A. bodenheimeri this terminated at arachidonic acid (ω6 PUFA), whereas the other three species continued the pathway to eicosapentaenoic acid (ω3 PUFA), including I. caerulea. For the nematode P. redivivus the identification and functional characterization of four new fatty acid desaturase (FAD) genes was performed. These genes encode the FAD activities Δ9, Δ6, and Δ5, respectively. Additionally, the Δ12 desaturase was analyzed, yet the observed activity of an ω3 FAD could not be attributed to a coding gene. In the Collembola F. candida, 11 potential first desaturases (Δ9) and 13 front-end desaturases (Δ6 or Δ5 FADs) have been found. Further sequence analysis indicates the presence of omega FADs, specifically Δ12, which are likely derived from Δ9 FADs.
Collapse
Affiliation(s)
- Ralph Menzel
- Institute of Biology - Ecology, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Kevin Tobias
- Institute of Biology - Ecology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tugce Fidan
- Institute of Biology - Ecology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alexandra Rietz
- Institute of Biology - Ecology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Liliane Ruess
- Institute of Biology - Ecology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
44
|
Matúš D, Post WB, Groß VE, Knierim AB, Kuhn CK, Fiedler F, Tietgen DB, Schön JL, Schöneberg T, Prömel S. The N terminus-only (trans) function of the adhesion G protein-coupled receptor latrophilin-1 controls multiple processes in reproduction of Caenorhabditis elegans. G3 (BETHESDA, MD.) 2024; 14:jkae206. [PMID: 39243387 PMCID: PMC11540312 DOI: 10.1093/g3journal/jkae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 09/09/2024]
Abstract
Adhesion G protein-coupled receptors are unique molecules. They are able to transmit classical signals via G protein activation as well as mediate functions solely through their extracellular N termini, completely independently of the seven transmembrane helices domain and the C terminus. This dual mode of action is highly unusual for G protein-coupled receptors and allows for a plethora of possible cellular consequences. However, the physiological implications and molecular details of this N terminus-mediated signaling are poorly understood. Here, we show that several distinct seven transmembrane helices domain-independent/trans functions of the adhesion G protein-coupled receptor latrophilin homolog latrophilin-1 in the nematode Caenorhabditis elegans together regulate reproduction: sperm guidance, ovulation, and germ cell apoptosis. In these contexts, the receptor elicits its functions in a noncell autonomous manner. The functions might be realized through alternative splicing of the receptor specifically generating N terminus-only variants. Thus, our findings shed light on the versatility of seven transmembrane helices domain-independent/N terminus-only/trans functions of adhesion G protein-coupled receptor and discuss possible molecular details.
Collapse
Affiliation(s)
- Daniel Matúš
- Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Willem Berend Post
- Department of Biology, Institute of Cell Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Victoria Elisabeth Groß
- Department of Biology, Institute of Cell Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Alexander Bernd Knierim
- Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
- IFB Adiposity Diseases, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Christina Katharina Kuhn
- Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology (IZI), 04103 Leipzig, Germany
| | - Franziska Fiedler
- Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Darian Benno Tietgen
- Department of Biology, Institute of Cell Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Johanna Lena Schön
- Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Center, Leipzig University, 04103 Leipzig, Germany
| | - Torsten Schöneberg
- Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
- School of Medicine, University of Global Health Equity, Kigali 6955, Rwanda
| | - Simone Prömel
- Department of Biology, Institute of Cell Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
45
|
Townley RA, Stacy KS, Cheraghi F, de la Cova CC. The Raf/LIN-45 C-terminal distal tail segment negatively regulates signaling in Caenorhabditis elegans. Genetics 2024; 228:iyae152. [PMID: 39288021 PMCID: PMC11538406 DOI: 10.1093/genetics/iyae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024] Open
Abstract
Raf protein kinases act as Ras-GTP sensing components of the ERK signal transduction pathway in animal cells, influencing cell proliferation, differentiation, and survival. In humans, somatic and germline mutations in the genes BRAF and RAF1 are associated with malignancies and developmental disorders. Recent studies shed light on the structure of activated Raf, a heterotetramer consisting of Raf and 14-3-3 dimers, and raised the possibility that a Raf C-terminal distal tail segment (DTS) regulates activation. We investigated the role of the DTS using the Caenorhabditis elegans Raf ortholog lin-45. Truncations removing the DTS strongly enhanced lin-45(S312A), a weak gain-of-function allele equivalent to RAF1 mutations found in patients with Noonan Syndrome. We genetically defined three elements of the LIN-45 DTS, which we termed the active site binding sequence (ASBS), the KTP motif, and the aromatic cluster. In the context of lin-45(S312A), the mutation of each of these elements enhanced activity. We used AlphaFold to predict DTS protein interactions for LIN-45, fly Raf, and human BRAF within the activated heterotetramer complex. We propose the following distinct functions for the LIN-45 DTS elements: (1) the ASBS binds the kinase active site as an inhibitor; (2) phosphorylation of the KTP motif modulates the DTS-kinase domain interaction; and (3) the aromatic cluster anchors the DTS in an inhibitory conformation. Human RASopathy-associated variants in BRAF affect residues of the DTS, consistent with these predictions. This work establishes that the Raf/LIN-45 DTS negatively regulates signaling in C. elegans and provides a model for its function in other Raf proteins.
Collapse
Affiliation(s)
- Robert A Townley
- Department of Biological Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201USA
| | - Kennedy S Stacy
- Department of Biological Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201USA
| | - Fatemeh Cheraghi
- Department of Biological Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201USA
| | - Claire C de la Cova
- Department of Biological Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201USA
| |
Collapse
|
46
|
Blow F, Jeffrey K, Chow FWN, Nikonorova IA, Barr MM, Cook AG, Prevo B, Cheerambathur DK, Buck AH. SID-2 is a conserved extracellular vesicle protein that is not associated with environmental RNAi in parasitic nematodes. Open Biol 2024; 14:240190. [PMID: 39501794 PMCID: PMC11538922 DOI: 10.1098/rsob.240190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024] Open
Abstract
In the free-living nematode Caenorhabditis elegans, the transmembrane protein SID-2 imports double-stranded RNA into intestinal cells to trigger systemic RNA interference (RNAi), allowing organisms to sense and respond to environmental cues such as the presence of pathogens. This process, known as environmental RNAi, has not been observed in the most closely related parasites that are also within clade V. Previous sequence-based searches failed to identify sid-2 orthologues in available clade V parasite genomes. In this study, we identified sid-2 orthologues in these parasites using genome synteny and protein structure-based comparison, following identification of a SID-2 orthologue in extracellular vesicles from the murine intestinal parasitic nematode Heligmosomoides bakeri. Expression of GFP-tagged H. bakeri SID-2 in C. elegans showed similar localization to the intestinal apical membrane as seen for GFP-tagged C. elegans SID-2, and further showed mobility in intestinal cells in vesicle-like structures. We tested the capacity of H. bakeri SID-2 to functionally complement environmental RNAi in a C. elegans SID-2 null mutant and show that H. bakeri SID-2 does not rescue the phenotype in this context. Our work identifies SID-2 as a highly abundant EV protein whose ancestral function may be unrelated to environmental RNAi, and rather highlights an association with extracellular vesicles in nematodes.
Collapse
Affiliation(s)
- Frances Blow
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Kate Jeffrey
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Franklin Wang-Ngai Chow
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong
| | - Inna A Nikonorova
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey NJ 08854, USA
| | - Maureen M Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey NJ 08854, USA
| | - Atlanta G Cook
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Bram Prevo
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Dhanya K Cheerambathur
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Amy H Buck
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| |
Collapse
|
47
|
Jarero F, Baillie A, Riddiford N, Montagne J, Koziol U, Olson PD. Muscular remodeling and anteroposterior patterning during tapeworm segmentation. Dev Dyn 2024; 253:998-1023. [PMID: 38689520 DOI: 10.1002/dvdy.712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Tapeworms are parasitic flatworms that independently evolved a segmented body plan, historically confounding comparisons with other animals. Anteroposterior (AP) patterning in free-living flatworms and in tapeworm larvae is associated with canonical Wnt signaling and positional control genes (PCGs) are expressed by their musculature in regionalized domains along the AP axis. Here, we extend investigations of PCG expression to the adult of the mouse bile-duct tapeworm Hymenolepis microstoma, focusing on the growth zone of the neck region and the initial establishment of segmental patterning. RESULTS We show that the adult musculature includes new, segmental elements that first appear in the neck and that the spatial patterns of Wnt factors are consistent with expression by muscle cells. Wnt factor expression is highly regionalized and becomes AP-polarized in segments, marking them with axes in agreement with the polarity of the main body axis, while the transition between the neck and strobila is specifically demarcated by the expression domain of a Wnt11 paralog. CONCLUSION We suggest that segmentation could originate in the muscular system and participate in patterning the AP axis through regional and polarized expression of PCGs, akin to the gene regulatory networks employed by free-living flatworms and other animals.
Collapse
Affiliation(s)
- Francesca Jarero
- Department of Life Sciences, Natural History Museum, London, UK
- Department of Genetics, Evolution and Environment, University College, London, UK
| | - Andrew Baillie
- Department of Life Sciences, Natural History Museum, London, UK
| | - Nick Riddiford
- Department of Life Sciences, Natural History Museum, London, UK
| | - Jimena Montagne
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Uriel Koziol
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Peter D Olson
- Department of Life Sciences, Natural History Museum, London, UK
| |
Collapse
|
48
|
Zheng Y, Young ND, Campos TL, Korhonen PK, Wang T, Sumanam SB, Taki AC, Byrne JJ, Chang BCH, Song J, Gasser RB. Chromosome-contiguous genome for the Haecon-5 strain of Haemonchus contortus reveals marked genetic variability and enables the discovery of essential gene candidates. Int J Parasitol 2024; 54:705-715. [PMID: 39168434 DOI: 10.1016/j.ijpara.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
Millions of livestock animals worldwide are infected with the haematophagous barber's pole worm, Haemonchus contortus, the aetiological agent of haemonchosis. Despite the major significance of this parasite worldwide and its widespread resistance to current treatments, the lack of a high-quality genome for the well-defined strain of this parasite from Australia, called Haecon-5, has constrained research in a number of areas including host-parasite interactions, drug discovery and population genetics. To enable research in these areas, we report here a chromosome-contiguous genome (∼280 Mb) for Haecon-5 with high-quality models for 19,234 protein-coding genes. Comparative genomic analyses show significant genomic similarity (synteny) with a UK strain of H. contortus, called MHco3(ISE).N1 (abbreviated as "ISE"), but we also discover marked differences in genomic structure/gene arrangements, distribution of nucleotide variability (single nucleotide polymorphisms (SNPs) and indels) and orthology between Haecon-5 and ISE. We used the genome and extensive transcriptomic resources for Haecon-5 to predict a subset of essential single-copy genes employing a "cross-species" machine learning (ML) approach using a range of features from nucleotide/protein sequences, protein orthology, subcellular localisation, single-cell RNA-seq and/or histone methylation data available for the model organisms Caenorhabditis elegans and Drosophila melanogaster. From a set of 1,464 conserved single copy genes, transcribed in key life-cycle stages of H. contortus, we identified 232 genes whose homologs have critical functions in C. elegans and/or D. melanogaster, and prioritised 10 of them for further characterisation; nine of the 10 genes likely play roles in neurophysiological processes, germline, hypodermis and/or respiration, and one is an unknown (orphan) gene for which no detailed functional information exists. Future studies of these genes/gene products are warranted to elucidate their roles in parasite biology, host-parasite interplay and/or disease. Clearly, the present Haecon-5 reference genome and associated resources now underpin a broad range of fundamental investigations of H. contortus and could assist in accelerating the discovery of novel intervention targets and drug candidates to combat haemonchosis.
Collapse
Affiliation(s)
- Yuanting Zheng
- Department of Veterinary Bioscience, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Neil D Young
- Department of Veterinary Bioscience, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia.
| | - Tulio L Campos
- Department of Veterinary Bioscience, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Pasi K Korhonen
- Department of Veterinary Bioscience, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Tao Wang
- Department of Veterinary Bioscience, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Sunita B Sumanam
- Department of Veterinary Bioscience, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Aya C Taki
- Department of Veterinary Bioscience, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Joseph J Byrne
- Department of Veterinary Bioscience, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Bill C H Chang
- Department of Veterinary Bioscience, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Jiangning Song
- Faculty of IT, Department of Data Science and AI, Monash University, Victoria, Australia; Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia; Monash Data Futures Institute, Monash University, Victoria, Australia.
| | - Robin B Gasser
- Department of Veterinary Bioscience, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
49
|
Nakayama K, Hiraga H, Manabe A, Chihara T, Okumura M. cGMP-dependent pathway and a GPCR kinase are required for photoresponse in the nematode Pristionchus pacificus. PLoS Genet 2024; 20:e1011320. [PMID: 39541254 PMCID: PMC11563456 DOI: 10.1371/journal.pgen.1011320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Light sensing is a critical function in most organisms and is mediated by photoreceptor proteins and phototransduction. Although most nematodes lack eyes, some species exhibit phototaxis. In the nematode Caenorhabditis elegans, the unique photoreceptor protein Cel-LITE-1, its downstream G proteins, and cyclic GMP (cGMP)-dependent pathways are required for phototransduction. However, the mechanism of light-sensing in other nematodes remains unknown. To address this question, we used the nematode Pristionchus pacificus, which was established as a satellite model organism for comparison with C. elegans. Similar to C. elegans, illumination with short-wavelength light induces avoidance behavior in P. pacificus. Opsin, cryptochrome/photolyase, and lite-1 were not detected in the P. pacificus genome using orthology and domain prediction-based analyses. To identify the genes related to phototransduction in P. pacificus, we conducted forward genetic screening for light-avoidance behavior and isolated five light-unresponsive mutants. Whole-genome sequencing and genetic mapping revealed that the cGMP-dependent pathway and Ppa-grk-2, which encodes a G protein-coupled receptor kinase (GRK) are required for light avoidance. Although the cGMP-dependent pathway is conserved in C. elegans phototransduction, GRK is not necessary for light avoidance in C. elegans. This suggests similarities and differences in light-sensing mechanisms between the two species. Using a reverse genetic approach, we showed that gamma-aminobutyric acid (GABA) and glutamate were involved in light avoidance. Through reporter analysis and suppression of synapse transmission, we identified candidate photosensory neurons. These findings advance our understanding of the diversity of phototransduction in nematodes even in the absence of eyes.
Collapse
Affiliation(s)
- Kenichi Nakayama
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Hirokuni Hiraga
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Aya Manabe
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takahiro Chihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
50
|
Rödelsperger C, Röseler W, Athanasouli M, Wighard S, Herrmann M, Sommer RJ. Genome Assembly of the Nematode Rhabditoides Inermis From a Complex Microbial Community. Genome Biol Evol 2024; 16:evae230. [PMID: 39509322 PMCID: PMC11542624 DOI: 10.1093/gbe/evae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Free-living nematodes such as Caenorhabditis elegans and Pristionchus pacificus are powerful model systems for linking specific traits to their underlying genetic basis. To trace the evolutionary history of specific traits or genes, a robust phylogenomic framework is indispensable. In the context of the nematode family Diplogastridae to which P. pacificus belongs, the identity of a sister group has long been debated. In this work, we generated a pseudochromosome level genome assembly of the nematode Rhabditoides inermis, which has previously been proposed as the sister taxon. The genome was assembled from a complex microbial community that is stably associated with R. inermis isolates and that consists of multiple bacteria and a fungus, which we identified as a strain of Vanrija albida. The R. inermis genome spans 173.5Mb that are largely assembled into five pseudochromosomes. This chromosomal configuration likely arose from two recent fusions of different Nigon elements. Phylogenomic analysis did not support a sister group relationship between R. inermis and diplogastrids, but rather supports a sister group relationship between the monophyletic Diplogastridae and a group of genera of Rhabditidae including C. elegans and R. inermis. Thus, our work addresses for the first time the long lasting question about the sister group to diplogastrids at the phylogenomic level and provides with the genomes of R. inermis and the associated fungus V. albida valuable resources for future genomic comparisons.
Collapse
Affiliation(s)
- Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Waltraud Röseler
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Marina Athanasouli
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Sara Wighard
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Matthias Herrmann
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen 72076, Germany
| |
Collapse
|