1
|
Du J, Yuan X, Wang J, Zhang L, Tan F, Hu T, Li X, Liu F, Ran H, Wang Z, Li Y, Feng Y, Melgiri ND, Cao Y, Jiang L, Huang R, Sun Y. The RNA-binding protein RBPMS inhibits smooth muscle cell-driven vascular remodeling in atherosclerosis and vascular injury. Proc Natl Acad Sci U S A 2025; 122:e2415933122. [PMID: 39999164 PMCID: PMC11892686 DOI: 10.1073/pnas.2415933122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/13/2025] [Indexed: 02/27/2025] Open
Abstract
Atherosclerosis and vessel wall trauma induce vascular smooth muscle cell (VSMC) phenotypic modulation, leading to plaque cap growth and postintervention restenosis. Our systems biology approach identified RNA binding protein, mRNA processing factor (RBPMS) as a conserved, VSMC-specific gene associated with VSMC modulation in atherosclerosis. RBPMS gene expression positively correlates with VSMC contractile markers in human and murine atherosclerotic arteries as well as in two vascular injury models during the postinjury intimal hyperplasia phase. RBPMS promotes contractile VSMC differentiation, reduces plaque cap development in high-fat diet-fed apolipoprotein E-null (ApoE-/-) murine atherosclerotic arteries, and inhibits intimal hyperplasia. Mechanistically, the RBPMS protein interacts with the myocardin (MYOCD) pre-mRNA and enhances MYOCD_v3/MYOCD_v1 transcript balance through alternative exon 2a splicing. RBPMS promotes the VSMC contractile phenotype and reduces their fibroproliferative activity in a MYOCD_v3a-dependent manner. RBPMS enhances Myocd_v3/Myocd_v1 transcript balance in both atherosclerotic and injured vessels. RBPMS may inhibit VSMC-driven plaque cap development and intervention-induced restenosis.
Collapse
Affiliation(s)
- Jianlin Du
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing400016, China
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing400016, China
| | - Jiajia Wang
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Municipality Clinical Research Center for Geriatrics and Gerontology, Chongqing400016, China
| | - Lujun Zhang
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Municipality Clinical Research Center for Geriatrics and Gerontology, Chongqing400016, China
| | - Fangyan Tan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing400016, China
| | - Tianyang Hu
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Municipality Clinical Research Center for Geriatrics and Gerontology, Chongqing400016, China
| | - Xingsheng Li
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Municipality Clinical Research Center for Geriatrics and Gerontology, Chongqing400016, China
| | - Fan Liu
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing400016, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Therapy, Chongqing400016, China
| | - Haitao Ran
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing400016, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Therapy, Chongqing400016, China
| | - Zhigang Wang
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing400016, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Therapy, Chongqing400016, China
| | - Yongyong Li
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Municipality Clinical Research Center for Geriatrics and Gerontology, Chongqing400016, China
| | - Yuxing Feng
- Department of Rehabilitation and Pain Medicine, The Ninth People’s Hospital of Chongqing, Chongqing400700, China
| | - N. D. Melgiri
- Impactys Foundation for Biomedical Research, San Diego, CA92121
| | - Yu Cao
- Department of Cardiothoracic Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming363880, China
| | - Lihong Jiang
- Center for Translational Research in Clinical Medicine, School of Medicine, Kunming University of Science and Technology, Kunming650500, China
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming363880, China
| | - Rongzhong Huang
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Municipality Clinical Research Center for Geriatrics and Gerontology, Chongqing400016, China
| | - Yang Sun
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing400016, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Therapy, Chongqing400016, China
| |
Collapse
|
2
|
Walsh R, Mauleekoonphairoj J, Mengarelli I, Bosada FM, Verkerk AO, van Duijvenboden K, Poovorawan Y, Wongcharoen W, Sutjaporn B, Wandee P, Chimparlee N, Chokesuwattanaskul R, Vongpaisarnsin K, Dangkao P, Wu CI, Tadros R, Amin AS, Lieve KV, Postema PG, Kooyman M, Beekman L, Sahasatas D, Amnueypol M, Krittayaphong R, Prechawat S, Anannab A, Makarawate P, Ngarmukos T, Phusanti K, Veerakul G, Kingsbury Z, Newington T, Maheswari U, Ross MT, Grace A, Lambiase PD, Behr ER, Schott JJ, Redon R, Barc J, Christoffels VM, Wilde AA, Nademanee K, Bezzina CR, Khongphatthanayothin A. A Rare Noncoding Enhancer Variant in SCN5A Contributes to the High Prevalence of Brugada Syndrome in Thailand. Circulation 2025; 151:31-44. [PMID: 39391988 PMCID: PMC11670919 DOI: 10.1161/circulationaha.124.069041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Brugada syndrome (BrS) is a cardiac arrhythmia disorder that causes sudden death in young adults. Rare genetic variants in the SCN5A gene encoding the Nav1.5 sodium channel and common noncoding variants at this locus are robustly associated with the condition. BrS is particularly prevalent in Southeast Asia but the underlying ancestry-specific factors remain largely unknown. METHODS Genome sequencing of BrS probands and population-matched controls from Thailand was performed to identify rare noncoding variants at the SCN5A-SCN10A locus that were enriched in patients with BrS. A likely causal variant was prioritized by computational methods and introduced into human induced pluripotent stem cell (hiPSC) lines using CRISPR-Cas9. The effect of the variant on SCN5A expression and Nav1.5 sodium channel current was then assessed in hiPSC-derived cardiomyocytes (hiPSC-CMs). RESULTS A rare noncoding variant in an SCN5A intronic enhancer region was highly enriched in patients with BrS (detected in 3.9% of cases with a case-control odds ratio of 45.2). The variant affects a nucleotide conserved across all mammalian species and predicted to disrupt a Mef2 transcription factor binding site. Heterozygous introduction of the enhancer variant in hiPSC-CMs caused significantly reduced SCN5A expression from the variant-containing allele and a 30% reduction in Nav1.5-mediated sodium current density compared with isogenic controls, confirming its pathogenicity. Patients with the variant had severe phenotypes, with 89% experiencing cardiac arrest. CONCLUSIONS This is the first example of a functionally validated rare noncoding variant at the SCN5A locus and highlights how genome sequencing in understudied populations can identify novel disease mechanisms. The variant partly explains the increased prevalence of BrS in this region and enables the identification of at-risk variant carriers to reduce the burden of sudden cardiac death in Thailand.
Collapse
Affiliation(s)
- Roddy Walsh
- Departments of Experimental Cardiology (R.W., I.M., F.M.B., A.O.V., M.K., L.B., C.R.B.), Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., V.M.C., A.A.M.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., J.-J.S., R.R., J.B., A.A.M.W., C.R.B.)
| | - John Mauleekoonphairoj
- Department of Medicine, Center of Excellence in Arrhythmia Research (J.M., W.W., B.S., P.W., N.C., R.C., S.P., K.N., A.K.), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Isabella Mengarelli
- Departments of Experimental Cardiology (R.W., I.M., F.M.B., A.O.V., M.K., L.B., C.R.B.), Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., V.M.C., A.A.M.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., J.-J.S., R.R., J.B., A.A.M.W., C.R.B.)
| | - Fernanda M. Bosada
- Departments of Experimental Cardiology (R.W., I.M., F.M.B., A.O.V., M.K., L.B., C.R.B.), Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., V.M.C., A.A.M.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., J.-J.S., R.R., J.B., A.A.M.W., C.R.B.)
| | - Arie O. Verkerk
- Departments of Experimental Cardiology (R.W., I.M., F.M.B., A.O.V., M.K., L.B., C.R.B.), Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
- Medical Biology (A.O.V., K.v.D., V.M.C.), Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., V.M.C., A.A.M.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., J.-J.S., R.R., J.B., A.A.M.W., C.R.B.)
| | - Karel van Duijvenboden
- Medical Biology (A.O.V., K.v.D., V.M.C.), Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
| | - Yong Poovorawan
- Departments of Pediatrics (Y.P., A.K.), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wanwarang Wongcharoen
- Department of Medicine, Center of Excellence in Arrhythmia Research (J.M., W.W., B.S., P.W., N.C., R.C., S.P., K.N., A.K.), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Boosamas Sutjaporn
- Department of Medicine, Center of Excellence in Arrhythmia Research (J.M., W.W., B.S., P.W., N.C., R.C., S.P., K.N., A.K.), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pharawee Wandee
- Department of Medicine, Center of Excellence in Arrhythmia Research (J.M., W.W., B.S., P.W., N.C., R.C., S.P., K.N., A.K.), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nitinan Chimparlee
- Department of Medicine, Center of Excellence in Arrhythmia Research (J.M., W.W., B.S., P.W., N.C., R.C., S.P., K.N., A.K.), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Medicine, Piyavate Hospital, Bangkok, Thailand (N.C.)
| | - Ronpichai Chokesuwattanaskul
- Department of Medicine, Center of Excellence in Arrhythmia Research (J.M., W.W., B.S., P.W., N.C., R.C., S.P., K.N., A.K.), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kornkiat Vongpaisarnsin
- Forensic Medicine (K.V.), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Forensic Genetics, Ratchadapiseksompotch Fund (K.V., P.D.), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Piyawan Dangkao
- Center of Excellence in Forensic Genetics, Ratchadapiseksompotch Fund (K.V., P.D.), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Forensic Serology and DNA, King Chulalongkorn Memorial Hospital and Thai Red Cross Society, Bangkok, Thailand (P.D.)
| | - Cheng-I Wu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taiwan (C.-I.W.)
| | - Rafik Tadros
- Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute and Faculty of Medicine, Université de Montréal, Quebec, Canada (R.T.)
| | - Ahmad S. Amin
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., V.M.C., A.A.M.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., J.-J.S., R.R., J.B., A.A.M.W., C.R.B.)
- Department of Clinical Cardiology, Heart Centre, Amsterdam University Medical Centre, location AMC, the Netherlands (A.S.A., K.V.V.L., P.G.P., A.A.M.W.)
| | - Krystien V.V. Lieve
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., V.M.C., A.A.M.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., J.-J.S., R.R., J.B., A.A.M.W., C.R.B.)
- Department of Clinical Cardiology, Heart Centre, Amsterdam University Medical Centre, location AMC, the Netherlands (A.S.A., K.V.V.L., P.G.P., A.A.M.W.)
| | - Pieter G. Postema
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., V.M.C., A.A.M.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., J.-J.S., R.R., J.B., A.A.M.W., C.R.B.)
- Department of Clinical Cardiology, Heart Centre, Amsterdam University Medical Centre, location AMC, the Netherlands (A.S.A., K.V.V.L., P.G.P., A.A.M.W.)
| | - Maarten Kooyman
- Departments of Experimental Cardiology (R.W., I.M., F.M.B., A.O.V., M.K., L.B., C.R.B.), Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., V.M.C., A.A.M.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., J.-J.S., R.R., J.B., A.A.M.W., C.R.B.)
| | - Leander Beekman
- Departments of Experimental Cardiology (R.W., I.M., F.M.B., A.O.V., M.K., L.B., C.R.B.), Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., V.M.C., A.A.M.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., J.-J.S., R.R., J.B., A.A.M.W., C.R.B.)
| | - Dujdao Sahasatas
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Thailand (D.S., P.M.)
| | - Montawatt Amnueypol
- Departments of Medicine, Faculty of Medicine at Ramathibodi Hospital (M.A., T. Ngarmukos), Mahidol University, Bangkok, Thailand
| | - Rungroj Krittayaphong
- Faculty of Medicine at Siriraj Hospital (R.K.), Mahidol University, Bangkok, Thailand
| | - Somchai Prechawat
- Department of Medicine, Center of Excellence in Arrhythmia Research (J.M., W.W., B.S., P.W., N.C., R.C., S.P., K.N., A.K.), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Alisara Anannab
- Department of Cardiovascular and Intervention, Central Chest Institute of Thailand, Nonthaburi, Thailand (A.A.)
| | - Pattarapong Makarawate
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Thailand (D.S., P.M.)
| | - Tachapong Ngarmukos
- Departments of Medicine, Faculty of Medicine at Ramathibodi Hospital (M.A., T. Ngarmukos), Mahidol University, Bangkok, Thailand
| | - Keerapa Phusanti
- Department of Medicine, Maharat Nakhon Ratchasima Hospital, Nakorn Ratchasima, Thailand (K.P.)
| | | | - Zoya Kingsbury
- Illumina Cambridge Ltd, Granta Park, Great Abington, Cambridge, UK (Z.K., T. Newington, U.M., M.T.R.)
| | - Taksina Newington
- Illumina Cambridge Ltd, Granta Park, Great Abington, Cambridge, UK (Z.K., T. Newington, U.M., M.T.R.)
| | - Uma Maheswari
- Illumina Cambridge Ltd, Granta Park, Great Abington, Cambridge, UK (Z.K., T. Newington, U.M., M.T.R.)
| | - Mark T. Ross
- Illumina Cambridge Ltd, Granta Park, Great Abington, Cambridge, UK (Z.K., T. Newington, U.M., M.T.R.)
| | - Andrew Grace
- Department of Biochemistry, University of Cambridge, UK (A.G.)
| | - Pier D. Lambiase
- Cardiology, Medicine, Barts Heart Centre, London, UK (P.D.L.)
- Institute of Cardiovascular Science, Population Health, UCL, London, UK (P.D.L.)
| | - Elijah R. Behr
- Molecular and Clinical Sciences Research Institute, St. George’s, University of London, UK (E.R.B.)
- Cardiology Clinical Academic Group, St. George’s University Hospitals NHS Foundation Trust, London, UK (E.R.B.)
| | - Jean-Jacques Schott
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., J.-J.S., R.R., J.B., A.A.M.W., C.R.B.)
- Nantes Université, CHU Nantes, CNRS, INSERM, l’Institut du Thorax, Nantes, France (J.-J.S., R.R., J.B.)
| | - Richard Redon
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., J.-J.S., R.R., J.B., A.A.M.W., C.R.B.)
- Nantes Université, CHU Nantes, CNRS, INSERM, l’Institut du Thorax, Nantes, France (J.-J.S., R.R., J.B.)
| | - Julien Barc
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., J.-J.S., R.R., J.B., A.A.M.W., C.R.B.)
- Nantes Université, CHU Nantes, CNRS, INSERM, l’Institut du Thorax, Nantes, France (J.-J.S., R.R., J.B.)
| | - Vincent M. Christoffels
- Departments of Experimental Cardiology (R.W., I.M., F.M.B., A.O.V., M.K., L.B., C.R.B.), Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., V.M.C., A.A.M.W., C.R.B.)
| | - Arthur A.M. Wilde
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., V.M.C., A.A.M.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., J.-J.S., R.R., J.B., A.A.M.W., C.R.B.)
- Department of Clinical Cardiology, Heart Centre, Amsterdam University Medical Centre, location AMC, the Netherlands (A.S.A., K.V.V.L., P.G.P., A.A.M.W.)
| | - Koonlawee Nademanee
- Department of Medicine, Center of Excellence in Arrhythmia Research (J.M., W.W., B.S., P.W., N.C., R.C., S.P., K.N., A.K.), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Pacific Rim Electrophysiology Research Institute, Bumrungrad Hospital, Bangkok, Thailand (K.N.)
| | - Connie R. Bezzina
- Departments of Experimental Cardiology (R.W., I.M., F.M.B., A.O.V., M.K., L.B., C.R.B.), Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (R.W., I.M., F.M.B., A.O.V., A.S.A., K.V.V.L., P.G.P., M.K., L.B., V.M.C., A.A.M.W., C.R.B.)
| | - Apichai Khongphatthanayothin
- Department of Medicine, Center of Excellence in Arrhythmia Research (J.M., W.W., B.S., P.W., N.C., R.C., S.P., K.N., A.K.), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Departments of Pediatrics (Y.P., A.K.), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Bangkok Heart Hospital, Bangkok General Hospital, Thailand (G.V., A.K.)
| |
Collapse
|
3
|
Jacob AG, Moutsopoulos I, Petchey A, Kollyfas R, Knight-Schrijver VR, Mohorianu I, Sinha S, Smith CWJ. RNA binding protein with multiple splicing (RBPMS) promotes contractile phenotype splicing in human embryonic stem cell-derived vascular smooth muscle cells. Cardiovasc Res 2024; 120:2104-2116. [PMID: 39248180 PMCID: PMC11646123 DOI: 10.1093/cvr/cvae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/12/2024] [Accepted: 07/14/2024] [Indexed: 09/10/2024] Open
Abstract
AIMS Differentiated vascular smooth muscle cells (VSMCs) express a unique network of mRNA isoforms via smooth muscle-specific alternative pre-mRNA splicing (SM-AS) in functionally critical genes, including those comprising the contractile machinery. We previously described RNA Binding Protein with Multiple Splicing (RBPMS) as a potent driver of differentiated SM-AS in the rat PAC1 VSMC cell line. What is unknown is how RBPMS affects VSMC phenotype and behaviour. Here, we aimed to dissect the role of RBPMS in SM-AS in human cells and determine the impact on VSMC phenotypic properties. METHODS AND RESULTS We used human embryonic stem cell-derived VSMCs (hESC-VSMCs) as our platform. hESC-VSMCs are inherently immature, and we found that they display only partially differentiated SM-AS patterns while RBPMS protein levels are low. We found that RBPMS over-expression induces SM-AS patterns in hESC-VSMCs akin to the contractile tissue VSMC splicing patterns. We present in silico and experimental findings that support RBPMS' splicing activity as mediated through direct binding and via functional cooperativity with splicing factor RBFOX2 on a significant subset of targets. We also demonstrate that RBPMS can alter the motility and the proliferative properties of hESC-VSMCs to mimic a more differentiated state. CONCLUSION Overall, this study emphasizes a critical role for RBPMS in establishing the contractile phenotype splicing programme of human VSMCs.
Collapse
Affiliation(s)
- Aishwarya G Jacob
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
- MRC-Wellcome Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
| | | | - Alex Petchey
- MRC-Wellcome Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
| | - Rafael Kollyfas
- MRC-Wellcome Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
| | | | - Irina Mohorianu
- MRC-Wellcome Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
| | - Sanjay Sinha
- MRC-Wellcome Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
| | | |
Collapse
|
4
|
Gan P, Eppert M, De La Cruz N, Lyons H, Shah AM, Veettil RT, Chen K, Pradhan P, Bezprozvannaya S, Xu L, Liu N, Olson EN, Sabari BR. Coactivator condensation drives cardiovascular cell lineage specification. SCIENCE ADVANCES 2024; 10:eadk7160. [PMID: 38489358 PMCID: PMC10942106 DOI: 10.1126/sciadv.adk7160] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024]
Abstract
During development, cells make switch-like decisions to activate new gene programs specifying cell lineage. The mechanisms underlying these decisive choices remain unclear. Here, we show that the cardiovascular transcriptional coactivator myocardin (MYOCD) activates cell identity genes by concentration-dependent and switch-like formation of transcriptional condensates. MYOCD forms such condensates and activates cell identity genes at critical concentration thresholds achieved during smooth muscle cell and cardiomyocyte differentiation. The carboxyl-terminal disordered region of MYOCD is necessary and sufficient for condensate formation. Disrupting this region's ability to form condensates disrupts gene activation and smooth muscle cell reprogramming. Rescuing condensate formation by replacing this region with disordered regions from functionally unrelated proteins rescues gene activation and smooth muscle cell reprogramming. Our findings demonstrate that MYOCD condensate formation is required for gene activation during cardiovascular differentiation. We propose that the formation of transcriptional condensates at critical concentrations of cell type-specific regulators provides a molecular switch underlying the activation of key cell identity genes during development.
Collapse
Affiliation(s)
- Peiheng Gan
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mikayla Eppert
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nancy De La Cruz
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Heankel Lyons
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Akansha M. Shah
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Reshma T. Veettil
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prashant Pradhan
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Svetlana Bezprozvannaya
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ning Liu
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eric N. Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Benjamin R. Sabari
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
5
|
Jing K, Mipam TD, Zhang P, Peng W, Wang M, Yue B, Chen X, Wang J, Shu S, Fu C, Zhong J, Cai X. Transcriptomic analysis of yak longissimus dorsi muscle identifies genes associated with tenderness. Anim Biotechnol 2023; 34:3978-3987. [PMID: 37593948 DOI: 10.1080/10495398.2023.2248493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Meat tenderness is an important sensory index when consumers choose meat products, which determines the value of meat products and consumers' buying intentions. Yak meat is rich in nutrition and unique in flavor, which is favored by consumers. However, its meat has the deficiencies of low tenderness and poor taste, which has a negative impact on the value of its meat products and customer satisfaction. To identify the genes affecting the yak meat tenderness, we used RNA-seq to analyze the longissimus dorsi muscle of yaks with different tenderness, screened a total of 1120 differentially expressed genes (DEGs). Meanwhile, 23 pathways were significantly enriched. By further analysis, we identified eight genes related to yak meat tenderness (WNT5A, ARID5B, SERPINE1 KLHL40, RUNX1, MAFF, RFX7 and ARID5A). Notably, SERPINE1 was involved in the significant enrichment pathways of 'complement and coagulation cascade pathway', 'HIF-1 signaling pathway' and 'AGE-RAGE signaling pathway in diabetic complications' which can regulate meat tenderness. This implies that SERPINE1 may play an important regulatory role among them. The DEGs associated with yak meat quality screened in this work will be helpful to identify potential biomarkers related to meat tenderness.
Collapse
Affiliation(s)
- Kemin Jing
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Tserang Donko Mipam
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Peng Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Wei Peng
- Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining, People's Republic of China
| | - Mingxiu Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Binglin Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Xuemei Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Jiabo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Shi Shu
- Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining, People's Republic of China
| | - Changqi Fu
- Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining, People's Republic of China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| |
Collapse
|
6
|
Li C, Zhang Z, Wei Y, Qi K, Dou Y, Song C, Liu Y, Li X, Li X, Wang K, Qiao R, Yang F, Han X. Genome-Wide Analysis of MAMSTR Transcription Factor-Binding Sites via ChIP-Seq in Porcine Skeletal Muscle Fibroblasts. Animals (Basel) 2023; 13:1731. [PMID: 37889674 PMCID: PMC10252000 DOI: 10.3390/ani13111731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 10/29/2023] Open
Abstract
Myocyte enhancer factor-2-activating motif and SAP domain-containing transcriptional regulator (MAMSTR) regulates its downstream through binding in its promoter regions. However, its molecular mechanism, particularly the DNA-binding sites, and coregulatory genes are quite unexplored. Therefore, to identify the genome-wide binding sites of the MAMSTR transcription factors and their coregulatory genes, chromatin immunoprecipitation sequencing was carried out. The results showed that MAMSTR was associated with 1506 peaks, which were annotated as 962 different genes. Most of these genes were involved in transcriptional regulation, metabolic pathways, and cell development and differentiation, such as AMPK signaling pathway, TGF-beta signaling pathway, transcription coactivator activity, transcription coactivator binding, adipocytokine signaling pathway, fat digestion and absorption, skeletal muscle fiber development, and skeletal muscle cell differentiation. Lastly, the expression levels and transcriptional activities of PID1, VTI1B, PRKAG1, ACSS2, and SLC28A3 were screened and verified via functional markers and analysis. Overall, this study has increased our understanding of the regulatory mechanism of MAMSTR during skeletal muscle fibroblast development and provided a reference for analyzing muscle development mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
7
|
Morita T, Hayashi K. Actin-related protein 5 suppresses the cooperative activation of cardiac gene transcription by myocardin and MEF2. FEBS Open Bio 2023; 13:363-379. [PMID: 36610028 PMCID: PMC9900090 DOI: 10.1002/2211-5463.13549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/15/2022] [Accepted: 01/05/2023] [Indexed: 01/08/2023] Open
Abstract
MYOCD is a transcription factor important for cardiac and smooth muscle development. We previously identified that actin-related protein 5 (ARP5) binds to the N-terminus of MYOCD. Here, we demonstrate that ARP5 inhibits the cooperative action of the cardiac-specific isoform of MYOCD with MEF2. ARP5 overexpression in murine hearts induced cardiac hypertrophy and fibrosis, whereas ARP5 knockdown in P19CL6 cells significantly increased cardiac gene expression. ARP5 was found to bind to a MEF2-binding motif of cardiac MYOCD and inhibit MEF2-mediated transactivation by MYOCD. RNA-seq analysis revealed 849 genes that are upregulated by MYOCD-MEF2 and 650 genes that are repressed by ARP5. ARP5 expression increased with cardiomyopathy and was negatively correlated with the expression of Tnnt2 and Ttn, which were regulated by cardiac MYOCD-MEF2. Overall, our data suggest that ARP5 is a potential suppressor of cardiac MYOCD during physiological and pathological processes.
Collapse
Affiliation(s)
| | - Ken'ichiro Hayashi
- Department of OphthalmologyYamaguchi University Graduate School of MedicineJapan,Department of RNA Biology and NeuroscienceOsaka University Graduate School of MedicineJapan
| |
Collapse
|
8
|
Wang J, Li B, Yang X, Liang C, Raza SHA, Pan Y, Zhang K, Zan L. Integration of RNA-seq and ATAC-seq identifies muscle-regulated hub genes in cattle. Front Vet Sci 2022; 9:925590. [PMID: 36032309 PMCID: PMC9404375 DOI: 10.3389/fvets.2022.925590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
As the main product of livestock, muscle itself plays an irreplaceable role in maintaining animal body movement and regulating metabolism. Therefore, it is of great significance to explore its growth, development and regeneration to improve the meat yield and quality of livestock. In this study, we attempted to use RNA-seq and ATAC-seq techniques to identify differentially expressed genes (DEGs) specifically expressed in bovine skeletal muscle as potential candidates for studying the regulatory mechanisms of muscle development. Microarray data from 8 tissue samples were selected from the GEO database for analysis. First, we obtained gene modules related to each tissue through WGCNA analysis. Through Gene Ontology (GO) functional annotation, the module of lightyellow (MElightyellow) was closely related to muscle development, and 213 hub genes were screened as follow-up research targets. Further, the difference analysis showed that, except for PREB, all other candidate hub genes were up-regulated (muscle group vs. other-group). ATAC-seq analysis showed that muscle-specific accessible chromatin regions were mainly located in promoter of genes related to muscle structure development (GO:0061061), muscle cell development (GO:0055001) and muscle system process (GO:0003012), which were involved in cAMP, CGMP-PKG, MAPK, and other signaling pathways. Next, we integrated the results of RNA-seq and ATAC-seq analysis, and 54 of the 212 candidate hub genes were identified as key regulatory genes in skeletal muscle development. Finally, through motif analysis, 22 of the 54 key genes were found to be potential target genes of transcription factor MEF2C. Including CAPN3, ACTN2, MB, MYOM3, SRL, CKM, ALPK3, MAP3K20, UBE2G1, NEURL2, CAND2, DOT1L, HRC, MAMSTR, FSD2, LRRC2, LSMEM1, SLC29A2, FHL3, KLHL41, ATXN7L2, and PDRG1. This provides a potential reference for studying the molecular mechanism of skeletal muscle development in mammals.
Collapse
Affiliation(s)
- Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Bingzhi Li
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xinran Yang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Chengcheng Liang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | | | - Yueting Pan
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Ke Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
- National Beef Cattle Improvement Center, Northwest A&F University, Xianyang, China
- *Correspondence: Linsen Zan
| |
Collapse
|
9
|
Liu L, Kryvokhyzha D, Rippe C, Jacob A, Borreguero-Muñoz A, Stenkula KG, Hansson O, Smith CWJ, Fisher SA, Swärd K. Myocardin regulates exon usage in smooth muscle cells through induction of splicing regulatory factors. Cell Mol Life Sci 2022; 79:459. [PMID: 35913515 PMCID: PMC9343278 DOI: 10.1007/s00018-022-04497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 11/03/2022]
Abstract
AbstractDifferentiation of smooth muscle cells (SMCs) depends on serum response factor (SRF) and its co-activator myocardin (MYOCD). The role of MYOCD for the SMC program of gene transcription is well established. In contrast, the role of MYOCD in control of SMC-specific alternative exon usage, including exon splicing, has not been explored. In the current work we identified four splicing factors (MBNL1, RBPMS, RBPMS2, and RBFOX2) that correlate with MYOCD across human SMC tissues. Forced expression of MYOCD family members in human coronary artery SMCs in vitro upregulated expression of these splicing factors. For global profiling of transcript diversity, we performed RNA-sequencing after MYOCD transduction. We analyzed alternative transcripts with three different methods. Exon-based analysis identified 1637 features with differential exon usage. For example, usage of 3´ exons in MYLK that encode telokin increased relative to 5´ exons, as did the 17 kDa telokin to 130 kDa MYLK protein ratio. Dedicated event-based analysis identified 239 MYOCD-driven splicing events. Events involving MBNL1, MCAM, and ACTN1 were among the most prominent, and this was confirmed using variant-specific PCR analyses. In support of a role for RBPMS and RBFOX2 in MYOCD-driven splicing we found enrichment of their binding motifs around differentially spliced exons. Moreover, knockdown of either RBPMS or RBFOX2 antagonized splicing events stimulated by MYOCD, including those involving ACTN1, VCL, and MBNL1. Supporting an in vivo role of MYOCD-SRF-driven splicing, we demonstrate altered Rbpms expression and splicing in inducible and SMC-specific Srf knockout mice. We conclude that MYOCD-SRF, in part via RBPMS and RBFOX2, induce a program of differential exon usage and alternative splicing as part of the broader program of SMC differentiation.
Collapse
|
10
|
Khachigian LM, Black BL, Ferdinandy P, De Caterina R, Madonna R, Geng YJ. Transcriptional regulation of vascular smooth muscle cell proliferation, differentiation and senescence: Novel targets for therapy. Vascul Pharmacol 2022; 146:107091. [PMID: 35896140 DOI: 10.1016/j.vph.2022.107091] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
Vascular smooth muscle cells (SMC) possess a unique cytoplasticity, regulated by transcriptional, translational and phenotypic transformation in response to a diverse range of extrinsic and intrinsic pathogenic factors. The mature, differentiated SMC phenotype is physiologically typified transcriptionally by expression of genes encoding "contractile" proteins, such as SMα-actin (ACTA2), SM-MHC (myosin-11) and SM22α (transgelin). When exposed to various pathological conditions (e.g., pro-atherogenic risk factors, hypertension), SMC undergo phenotypic modulation, a bioprocess enabling SMC to de-differentiate in immature stages or trans-differentiate into other cell phenotypes. As recent studies suggest, the process of SMC phenotypic transformation involves five distinct states characterized by different patterns of cell growth, differentiation, migration, matrix protein expression and declined contractility. These changes are mediated via the action of several transcriptional regulators, including myocardin and serum response factor. Conversely, other factors, including Kruppel-like factor 4 and nuclear factor-κB, can inhibit SMC differentiation and growth arrest, while factors such as yin yang-1, can promote SMC differentiation whilst inhibiting proliferation. This article reviews recent advances in our understanding of regulatory mechanisms governing SMC phenotypic modulation. We propose the concept that transcription factors mediating this switching are important biomarkers and potential pharmacological targets for therapeutic intervention in cardiovascular disease.
Collapse
Affiliation(s)
- Levon M Khachigian
- Vascular Biology and Translational Research, Department of Pathology, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Brian L Black
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States of America
| | - Péter Ferdinandy
- Cardiovascular and Metabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| | - Raffaele De Caterina
- Cardiovascular Division, Pisa University Hospital & University of Pisa, Via Paradisa, 2, Pisa 56124, Italy
| | - Rosalinda Madonna
- Cardiovascular Division, Pisa University Hospital & University of Pisa, Via Paradisa, 2, Pisa 56124, Italy; Division of Cardiovascular Medicine, Department of Internal Medicine, The Center for Cardiovascular Biology and Atherosclerosis Research, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Yong-Jian Geng
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Center for Cardiovascular Biology and Atherosclerosis Research, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| |
Collapse
|
11
|
MRTF specifies a muscle-like contractile module in Porifera. Nat Commun 2022; 13:4134. [PMID: 35840552 PMCID: PMC9287330 DOI: 10.1038/s41467-022-31756-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022] Open
Abstract
Muscle-based movement is a hallmark of animal biology, but the evolutionary origins of myocytes are unknown. Although believed to lack muscles, sponges (Porifera) are capable of coordinated whole-body contractions that purge debris from internal water canals. This behavior has been observed for decades, but their contractile tissues remain uncharacterized with respect to their ultrastructure, regulation, and development. We examine the sponge Ephydatia muelleri and find tissue-wide organization of a contractile module composed of actin, striated-muscle myosin II, and transgelin, and that contractions are regulated by the release of internal Ca2+ stores upstream of the myosin-light-chain-kinase (MLCK) pathway. The development of this contractile module appears to involve myocardin-related transcription factor (MRTF) as part of an environmentally inducible transcriptional complex that also functions in muscle development, plasticity, and regeneration. As an actin-regulated force-sensor, MRTF-activity offers a mechanism for how the contractile tissues that line water canals can dynamically remodel in response to flow and can re-form normally from stem-cells in the absence of the intrinsic spatial cues typical of animal embryogenesis. We conclude that the contractile module of sponge tissues shares elements of homology with contractile tissues in other animals, including muscles, indicating descent from a common, multifunctional tissue in the animal stem-lineage. Myocytes are a key cell type that enable animal movement, but their evolutionary origins remain unclear. Colgren and Nichols describe molecular and functional similarities between a contractile module in tissues of a sponge and muscle tissues in other animals, indicating a common evolutionary origin.
Collapse
|
12
|
Turner AW, Hu SS, Mosquera JV, Ma WF, Hodonsky CJ, Wong D, Auguste G, Song Y, Sol-Church K, Farber E, Kundu S, Kundaje A, Lopez NG, Ma L, Ghosh SKB, Onengut-Gumuscu S, Ashley EA, Quertermous T, Finn AV, Leeper NJ, Kovacic JC, Björkegren JLM, Zang C, Miller CL. Single-nucleus chromatin accessibility profiling highlights regulatory mechanisms of coronary artery disease risk. Nat Genet 2022; 54:804-816. [PMID: 35590109 PMCID: PMC9203933 DOI: 10.1038/s41588-022-01069-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 03/31/2022] [Indexed: 12/24/2022]
Abstract
Coronary artery disease (CAD) is a complex inflammatory disease involving genetic influences across cell types. Genome-wide association studies have identified over 200 loci associated with CAD, where the majority of risk variants reside in noncoding DNA sequences impacting cis-regulatory elements. Here, we applied single-nucleus assay for transposase-accessible chromatin with sequencing to profile 28,316 nuclei across coronary artery segments from 41 patients with varying stages of CAD, which revealed 14 distinct cellular clusters. We mapped ~320,000 accessible sites across all cells, identified cell-type-specific elements and transcription factors, and prioritized functional CAD risk variants. We identified elements in smooth muscle cell transition states (for example, fibromyocytes) and functional variants predicted to alter smooth muscle cell- and macrophage-specific regulation of MRAS (3q22) and LIPA (10q23), respectively. We further nominated key driver transcription factors such as PRDM16 and TBX2. Together, this single-nucleus atlas provides a critical step towards interpreting regulatory mechanisms across the continuum of CAD risk.
Collapse
Affiliation(s)
- Adam W Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Shengen Shawn Hu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jose Verdezoto Mosquera
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Wei Feng Ma
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA, USA
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Chani J Hodonsky
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Doris Wong
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Gaëlle Auguste
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Yipei Song
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Katia Sol-Church
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
- Genome Analysis & Technology Core, University of Virginia, Charlottesville, VA, USA
| | - Emily Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Genome Sciences Laboratory, University of Virginia, Charlottesville, VA, USA
| | - Soumya Kundu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Nicolas G Lopez
- Division of Vascular Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Genome Sciences Laboratory, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Euan A Ashley
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Thomas Quertermous
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | | | - Nicholas J Leeper
- Division of Vascular Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
- St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Chongzhi Zang
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA.
| | - Clint L Miller
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA.
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
13
|
Dinsmore CJ, Soriano P. Differential regulation of cranial and cardiac neural crest by serum response factor and its cofactors. eLife 2022; 11:e75106. [PMID: 35044299 PMCID: PMC8806183 DOI: 10.7554/elife.75106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Serum response factor (SRF) is an essential transcription factor that influences many cellular processes including cell proliferation, migration, and differentiation. SRF directly regulates and is required for immediate early gene (IEG) and actin cytoskeleton-related gene expression. SRF coordinates these competing transcription programs through discrete sets of cofactors, the ternary complex factors (TCFs) and myocardin-related transcription factors (MRTFs). The relative contribution of these two programs to in vivo SRF activity and mutant phenotypes is not fully understood. To study how SRF utilizes its cofactors during development, we generated a knock-in SrfaI allele in mice harboring point mutations that disrupt SRF-MRTF-DNA complex formation but leave SRF-TCF activity unaffected. Homozygous SrfaI/aI mutants die at E10.5 with notable cardiovascular phenotypes, and neural crest conditional mutants succumb at birth to defects of the cardiac outflow tract but display none of the craniofacial phenotypes associated with complete loss of SRF in that lineage. Our studies further support an important role for MRTF mediating SRF function in cardiac neural crest and suggest new mechanisms by which SRF regulates transcription during development.
Collapse
Affiliation(s)
- Colin J Dinsmore
- Department of Cell, Development and Regenerative Biology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Philippe Soriano
- Department of Cell, Development and Regenerative Biology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
14
|
Calizo RC, Bell MK, Ron A, Hu M, Bhattacharya S, Wong NJ, Janssen WGM, Perumal G, Pederson P, Scarlata S, Hone J, Azeloglu EU, Rangamani P, Iyengar R. Cell shape regulates subcellular organelle location to control early Ca 2+ signal dynamics in vascular smooth muscle cells. Sci Rep 2020; 10:17866. [PMID: 33082406 PMCID: PMC7576209 DOI: 10.1038/s41598-020-74700-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022] Open
Abstract
The shape of the cell is connected to its function; however, we do not fully understand underlying mechanisms by which global shape regulates a cell's functional capabilities. Using theory, experiments and simulation, we investigated how physiologically relevant cell shape changes affect subcellular organization, and consequently intracellular signaling, to control information flow needed for phenotypic function. Vascular smooth muscle cells going from a proliferative and motile circular shape to a contractile fusiform shape show changes in the location of the sarcoplasmic reticulum, inter-organelle distances, and differential distribution of receptors in the plasma membrane. These factors together lead to the modulation of signals transduced by the M3 muscarinic receptor/Gq/PLCβ pathway at the plasma membrane, amplifying Ca2+ dynamics in the cytoplasm, and the nucleus resulting in phenotypic changes, as determined by increased activity of myosin light chain kinase in the cytoplasm and enhanced nuclear localization of the transcription factor NFAT. Taken together, our observations show a systems level phenomenon whereby global cell shape affects subcellular organization to modulate signaling that enables phenotypic changes.
Collapse
Affiliation(s)
- R C Calizo
- Department of Pharmacological Sciences, Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1215, New York, NY, 10029, USA
| | - M K Bell
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - A Ron
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - M Hu
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - S Bhattacharya
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - N J Wong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - W G M Janssen
- Department of Pharmacological Sciences, Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1215, New York, NY, 10029, USA
| | - G Perumal
- Carl Zeiss Microscopy LLC, White Plains, NY, 10601, USA
| | - P Pederson
- Carl Zeiss Microscopy LLC, White Plains, NY, 10601, USA
| | - S Scarlata
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - J Hone
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - E U Azeloglu
- Department of Pharmacological Sciences, Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1215, New York, NY, 10029, USA
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - P Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, 92093, USA.
| | - R Iyengar
- Department of Pharmacological Sciences, Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1215, New York, NY, 10029, USA.
| |
Collapse
|
15
|
Transcriptional changes in muscle of hibernating arctic ground squirrels (Urocitellus parryii): implications for attenuation of disuse muscle atrophy. Sci Rep 2020; 10:9010. [PMID: 32488149 PMCID: PMC7265340 DOI: 10.1038/s41598-020-66030-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/11/2020] [Indexed: 01/10/2023] Open
Abstract
Physical inactivity generates muscle atrophy in most mammalian species. In contrast, hibernating mammals demonstrate limited muscle loss over the prolonged intervals of immobility during winter, which suggests that they have adaptive mechanisms to reduce disuse muscle atrophy. To identify transcriptional programs that underlie molecular mechanisms attenuating muscle loss, we conducted a large-scale gene expression profiling in quadriceps muscle of arctic ground squirrels, comparing hibernating (late in a torpor and during torpor re-entry after arousal) and summer active animals using next generation sequencing of the transcriptome. Gene set enrichment analysis showed a coordinated up-regulation of genes involved in all stages of protein biosynthesis and ribosome biogenesis during both stages of hibernation that suggests induction of translation during interbout arousals. Elevated proportion of down-regulated genes involved in apoptosis, NFKB signaling as well as significant under expression of atrogenes, upstream regulators (FOXO1, FOXO3, NFKB1A), key components of the ubiquitin proteasome pathway (FBXO32, TRIM63, CBLB), and overexpression of PPARGC1B inhibiting proteolysis imply suppression of protein degradation in muscle during arousals. The induction of protein biosynthesis and decrease in protein catabolism likely contribute to the attenuation of disuse muscle atrophy through prolonged periods of immobility of hibernation.
Collapse
|
16
|
Hirai H, Yang B, Garcia-Barrio MT, Rom O, Ma PX, Zhang J, Chen YE. Direct Reprogramming of Fibroblasts Into Smooth Muscle-Like Cells With Defined Transcription Factors-Brief Report. Arterioscler Thromb Vasc Biol 2019; 38:2191-2197. [PMID: 30026272 DOI: 10.1161/atvbaha.118.310870] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective- To identify the transcription factors that could contribute to direct reprogramming of fibroblasts toward smooth muscle cell fate. Approach and Results- We screened various combinations of transcription factors, including Myocd (myocardin), Mef2C (myocyte enhancer factor 2C), Mef2B (myocyte enhancer factor 2B), Mkl1 (MKL [megakaryoblastic leukemia]/Myocd-like 1), Gata4 (GATA-binding protein 4), Gata5 (GATA-binding protein 5), Gata6 (GATA-binding protein 6), Ets1 (E26 avian leukemia oncogene 1, 5' domain), and their corresponding carboxyterminal fusions to the transactivation domain of MyoD (myogenic differentiation 1)-indicated by *-for their effects on reprogramming mouse embryonic fibroblasts and human adult dermal fibroblasts to the smooth muscle cell fate as determined by the expression of specific markers. The combination of 3 transcription factors, Myocd (or Myocd*) with Mef2C (or Mef2C*) and Gata6, was the most efficient in enhancing the expression of smooth muscle marker genes and decreasing fibroblast gene expression. Additionally, the derived induced smooth muscle-like cells showed a contractile phenotype in response to carbachol. Conclusions- Combination of Myocd and Gata6 with Mef2C* (MG2*) could sufficiently and efficiently direct differentiation of mouse embryonic and human dermal fibroblasts into induced smooth muscle-like cells, thus opening new opportunities for disease modeling, tissue engineering, and personalized medicine.
Collapse
Affiliation(s)
- Hiroyuki Hirai
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (H.H., M.T.G.-B., O.R., J.Z., Y.E.C.).,Department of Cardiac Surgery (H.H., B.Y., Y.E.C.)
| | - Bo Yang
- Department of Cardiac Surgery (H.H., B.Y., Y.E.C.)
| | - Minerva T Garcia-Barrio
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (H.H., M.T.G.-B., O.R., J.Z., Y.E.C.)
| | - Oren Rom
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (H.H., M.T.G.-B., O.R., J.Z., Y.E.C.)
| | - Peter X Ma
- Department of Materials Science and Engineering (P.X.M.), University of Michigan, Ann Arbor
| | - Jifeng Zhang
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (H.H., M.T.G.-B., O.R., J.Z., Y.E.C.)
| | - Y Eugene Chen
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (H.H., M.T.G.-B., O.R., J.Z., Y.E.C.).,Department of Cardiac Surgery (H.H., B.Y., Y.E.C.)
| |
Collapse
|
17
|
Master control: transcriptional regulation of mammalian Myod. J Muscle Res Cell Motil 2019; 40:211-226. [PMID: 31301002 PMCID: PMC6726840 DOI: 10.1007/s10974-019-09538-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/03/2019] [Indexed: 12/22/2022]
Abstract
MYOD is a master regulator of the skeletal myogenic program. But what regulates expression of Myod? More than 20 years ago, studies established that Myod expression is largely controlled by just two enhancer regions located within a region 24 kb upstream of the transcription start site in mammals, which regulate Myod expression in the embryo, fetus and adult. Despite this apparently simple arrangement, Myod regulation is complex, with different combinations of transcription factors acting on these enhancers in different muscle progenitor cells and phases of differentiation. A range of epigenetic modifications in the Myod upstream region also play a part in activating and repressing Myod expression during development and regeneration. Here the evidence for this binding at Myod control regions is summarized, giving an overview of our current understanding of Myod expression regulation in mammals.
Collapse
|
18
|
Nakagaki-Silva EE, Gooding C, Llorian M, Jacob AG, Richards F, Buckroyd A, Sinha S, Smith CW. Identification of RBPMS as a mammalian smooth muscle master splicing regulator via proximity of its gene with super-enhancers. eLife 2019; 8:46327. [PMID: 31283468 PMCID: PMC6613909 DOI: 10.7554/elife.46327] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/12/2019] [Indexed: 01/08/2023] Open
Abstract
Alternative splicing (AS) programs are primarily controlled by regulatory RNA-binding proteins (RBPs). It has been proposed that a small number of master splicing regulators might control cell-specific splicing networks and that these RBPs could be identified by proximity of their genes to transcriptional super-enhancers. Using this approach we identified RBPMS as a critical splicing regulator in differentiated vascular smooth muscle cells (SMCs). RBPMS is highly down-regulated during phenotypic switching of SMCs from a contractile to a motile and proliferative phenotype and is responsible for 20% of the AS changes during this transition. RBPMS directly regulates AS of numerous components of the actin cytoskeleton and focal adhesion machineries whose activity is critical for SMC function in both phenotypes. RBPMS also regulates splicing of other splicing, post-transcriptional and transcription regulators including the key SMC transcription factor Myocardin, thereby matching many of the criteria of a master regulator of AS in SMCs.
Collapse
Affiliation(s)
| | - Clare Gooding
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Miriam Llorian
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.,Francis Crick Institute, London, United Kingdom
| | - Aishwarya G Jacob
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.,Anne McLaren Laboratory, Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Frederick Richards
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Adrian Buckroyd
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Sanjay Sinha
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.,Anne McLaren Laboratory, Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
19
|
MEF2A Regulates the MEG3-DIO3 miRNA Mega Cluster-Targeted PP2A Signaling in Bovine Skeletal Myoblast Differentiation. Int J Mol Sci 2019; 20:ijms20112748. [PMID: 31167510 PMCID: PMC6600538 DOI: 10.3390/ijms20112748] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 05/23/2019] [Indexed: 12/16/2022] Open
Abstract
Understanding the molecular mechanisms of skeletal myoblast differentiation is essential for studying muscle developmental biology. In our previous study, we reported that knockdown of myocyte enhancer factor 2A (MEF2A) inhibited myoblast differentiation. Here in this study, we further identified that MEF2A controlled this process through regulating the maternally expressed 3 (MEG3)-iodothyronine deiodinase 3 (DIO3) miRNA mega cluster and protein phosphatase 2A (PP2A) signaling. MEF2A was sufficient to induce MEG3 expression in bovine skeletal myoblasts. A subset of miRNAs in the MEG3-DIO3 miRNA cluster was predicted to target PP2A subunit genes. Consistent with these observations, MEF2A regulated PP2A signaling through its subunit gene protein phosphatase 2 regulatory subunit B, gamma (PPP2R2C) during bovine myoblast differentiation. MiR-758 and miR-543 in the MEG3-DIO3 miRNA cluster were down-regulated in MEF2A-depleted myocytes. Expression of miR-758 and miR-543 promoted myoblast differentiation and repressed PPP2R2C expression. Luciferase activity assay showed that PPP2R2C was post-transcriptionally targeted by miR-758 and miR-543. Taken together, these results reveal that the MEG3-DIO3 miRNAs function at downstream of MEF2A to modulate PP2A signaling in bovine myoblast differentiation.
Collapse
|
20
|
Mughal W, Martens M, Field J, Chapman D, Huang J, Rattan S, Hai Y, Cheung KG, Kereliuk S, West AR, Cole LK, Hatch GM, Diehl-Jones W, Keijzer R, Dolinsky VW, Dixon IM, Parmacek MS, Gordon JW. Myocardin regulates mitochondrial calcium homeostasis and prevents permeability transition. Cell Death Differ 2018; 25:1732-1748. [PMID: 29511336 PMCID: PMC6180099 DOI: 10.1038/s41418-018-0073-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 12/17/2017] [Accepted: 01/15/2018] [Indexed: 01/20/2023] Open
Abstract
Myocardin is a transcriptional co-activator required for cardiovascular development, but also promotes cardiomyocyte survival through an unclear molecular mechanism. Mitochondrial permeability transition is implicated in necrosis, while pore closure is required for mitochondrial maturation during cardiac development. We show that loss of myocardin function leads to subendocardial necrosis at E9.5, concurrent with elevated expression of the death gene Nix. Mechanistically, we demonstrate that myocardin knockdown reduces microRNA-133a levels to allow Nix accumulation, leading to mitochondrial permeability transition, reduced mitochondrial respiration, and necrosis. Myocardin knockdown elicits calcium release from the endo/sarcoplasmic reticulum with mitochondrial calcium accumulation, while restoration of microRNA-133a function, or knockdown of Nix rescues calcium perturbations. We observed reduced myocardin and elevated Nix expression within the infarct border-zone following coronary ligation. These findings identify a myocardin-regulated pathway that maintains calcium homeostasis and mitochondrial function during development, and is attenuated during ischemic heart disease. Given the diverse role of Nix and microRNA-133a, these findings may have broader implications to metabolic disease and cancer.
Collapse
Affiliation(s)
- Wajihah Mughal
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Matthew Martens
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Jared Field
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Biological Science, University of Manitoba, Winnipeg, MB, Canada
| | - Donald Chapman
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Jianhe Huang
- Department of Medicine, Penn Cardiovascular Institute, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Sunil Rattan
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Research Centre, Winnipeg, MB, Canada
| | - Yan Hai
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- College of Nursing, University of Manitoba, Winnipeg, MB, Canada
| | - Kyle G Cheung
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Stephanie Kereliuk
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Adrian R West
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
- The Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Laura K Cole
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Grant M Hatch
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - William Diehl-Jones
- Department of Biological Science, University of Manitoba, Winnipeg, MB, Canada
- Faculty of Health Disciplines, Athabasca University, Edmonton, MB, Canada
| | - Richard Keijzer
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
- The Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Surgery, University of Manitoba, Winnipeg, MB, Canada
| | - Vernon W Dolinsky
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Ian M Dixon
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Research Centre, Winnipeg, MB, Canada
| | - Michael S Parmacek
- Department of Medicine, Penn Cardiovascular Institute, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph W Gordon
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada.
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
- College of Nursing, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
21
|
Lyu Q, Dhagia V, Han Y, Guo B, Wines-Samuelson ME, Christie CK, Yin Q, Slivano OJ, Herring P, Long X, Gupte SA, Miano JM. CRISPR-Cas9-Mediated Epitope Tagging Provides Accurate and Versatile Assessment of Myocardin-Brief Report. Arterioscler Thromb Vasc Biol 2018; 38:2184-2190. [PMID: 29976770 PMCID: PMC6204210 DOI: 10.1161/atvbaha.118.311171] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/22/2018] [Indexed: 11/16/2022]
Abstract
Objective- Unreliable antibodies often hinder the accurate detection of an endogenous protein, and this is particularly true for the cardiac and smooth muscle cofactor, MYOCD (myocardin). Accordingly, the mouse Myocd locus was targeted with 2 independent epitope tags for the unambiguous expression, localization, and activity of MYOCD protein. Approach and Results- 3cCRISPR (3-component clustered regularly interspaced short palindromic repeat) was used to engineer a carboxyl-terminal 3×FLAG or 3×HA epitope tag in mouse embryos. Western blotting with antibodies to each tag revealed a MYOCD protein product of ≈150 kDa, a size considerably larger than that reported in virtually all publications. MYOCD protein was most abundant in some adult smooth muscle-containing tissues with surprisingly low-level expression in the heart. Both alleles of Myocd are active in aorta because a 2-fold increase in protein was seen in mice homozygous versus heterozygous for FLAG-tagged Myocd. ChIP (chromatin immunoprecipitation)-quantitative polymerase chain reaction studies provide proof-of-principle data demonstrating the utility of this mouse line in conducting genome-wide ChIP-seq studies to ascertain the full complement of MYOCD-dependent target genes in vivo. Although FLAG-tagged MYOCD protein was undetectable in sections of adult mouse tissues, low-passaged vascular smooth muscle cells exhibited expected nuclear localization. Conclusions- This report validates new mouse models for analyzing MYOCD protein expression, localization, and binding activity in vivo and highlights the need for rigorous authentication of antibodies in biomedical research.
Collapse
Affiliation(s)
- Qing Lyu
- Aab Cardiovascular Research Institute, University of
Rochester Medical Center, Rochester, NY
| | - Vidhi Dhagia
- Department of Pharmacology, New York Medical College,
Valhalla NY
| | - Yu Han
- Aab Cardiovascular Research Institute, University of
Rochester Medical Center, Rochester, NY
| | - Bing Guo
- Aab Cardiovascular Research Institute, University of
Rochester Medical Center, Rochester, NY
| | - Mary E. Wines-Samuelson
- Aab Cardiovascular Research Institute, University of
Rochester Medical Center, Rochester, NY
| | - Christine K. Christie
- Aab Cardiovascular Research Institute, University of
Rochester Medical Center, Rochester, NY
| | - Qiangzong Yin
- Aab Cardiovascular Research Institute, University of
Rochester Medical Center, Rochester, NY
| | - Orazio J. Slivano
- Aab Cardiovascular Research Institute, University of
Rochester Medical Center, Rochester, NY
| | - Paul Herring
- Department of Cellular and Integrative Physiology, Indiana
University School of Medicine, Indianapolis, IN
| | - Xiaochun Long
- Department of Molecular and Cellular Physiology, Albany
Medical College, Albany, NY 12208
| | - Sachin A. Gupte
- Department of Pharmacology, New York Medical College,
Valhalla NY
| | - Joseph M. Miano
- Aab Cardiovascular Research Institute, University of
Rochester Medical Center, Rochester, NY
| |
Collapse
|
22
|
Metabolic Maturation during Muscle Stem Cell Differentiation Is Achieved by miR-1/133a-Mediated Inhibition of the Dlk1-Dio3 Mega Gene Cluster. Cell Metab 2018; 27:1026-1039.e6. [PMID: 29606596 DOI: 10.1016/j.cmet.2018.02.022] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 12/20/2017] [Accepted: 02/23/2018] [Indexed: 12/20/2022]
Abstract
Muscle stem cells undergo a dramatic metabolic switch to oxidative phosphorylation during differentiation, which is achieved by massively increased mitochondrial activity. Since expression of the muscle-specific miR-1/133a gene cluster correlates with increased mitochondrial activity during muscle stem cell (MuSC) differentiation, we examined the potential role of miR-1/133a in metabolic maturation of skeletal muscles in mice. We found that miR-1/133a downregulate Mef2A in differentiated myocytes, thereby suppressing the Dlk1-Dio3 gene cluster, which encodes multiple microRNAs inhibiting expression of mitochondrial genes. Loss of miR-1/133a in skeletal muscles or increased Mef2A expression causes continuous high-level expression of the Dlk1-Dio3 gene cluster, compromising mitochondrial function. Failure to terminate the stem cell-like metabolic program characterized by high-level Dlk1-Dio3 gene cluster expression initiates profound changes in muscle physiology, essentially abrogating endurance running. Our results suggest a major role of miR-1/133a in metabolic maturation of skeletal muscles but exclude major functions in muscle development and MuSC maintenance.
Collapse
|
23
|
de Bruin RG, Rabelink TJ, van Zonneveld AJ, van der Veer EP. Emerging roles for RNA-binding proteins as effectors and regulators of cardiovascular disease. Eur Heart J 2018; 38:1380-1388. [PMID: 28064149 DOI: 10.1093/eurheartj/ehw567] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/02/2016] [Indexed: 12/18/2022] Open
Abstract
The cardiovascular system comprises multiple cell types that possess the capacity to modulate their phenotype in response to acute or chronic injury. Transcriptional and post-transcriptional mechanisms play a key role in the regulation of remodelling and regenerative responses to damaged cardiovascular tissues. Simultaneously, insufficient regulation of cellular phenotype is tightly coupled with the persistence and exacerbation of cardiovascular disease. Recently, RNA-binding proteins such as Quaking, HuR, Muscleblind, and SRSF1 have emerged as pivotal regulators of these functional adaptations in the cardiovascular system by guiding a wide-ranging number of post-transcriptional events that dramatically impact RNA fate, including alternative splicing, stability, localization and translation. Moreover, homozygous disruption of RNA-binding protein genes is commonly associated with cardiac- and/or vascular complications. Here, we summarize the current knowledge on the versatile role of RNA-binding proteins in regulating the transcriptome during phenotype switching in cardiovascular health and disease. We also detail existing and potential DNA- and RNA-based therapeutic approaches that could impact the treatment of cardiovascular disease in the future.
Collapse
Affiliation(s)
- Ruben G de Bruin
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2300RC, The Netherlands.,Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2300RC, The Netherlands
| | - Ton J Rabelink
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2300RC, The Netherlands.,Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2300RC, The Netherlands
| | - Anton Jan van Zonneveld
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2300RC, The Netherlands.,Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2300RC, The Netherlands
| | - Eric P van der Veer
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2300RC, The Netherlands.,Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2300RC, The Netherlands
| |
Collapse
|
24
|
Sun X, Hota SK, Zhou YQ, Novak S, Miguel-Perez D, Christodoulou D, Seidman CE, Seidman JG, Gregorio CC, Henkelman RM, Rossant J, Bruneau BG. Cardiac-enriched BAF chromatin-remodeling complex subunit Baf60c regulates gene expression programs essential for heart development and function. Biol Open 2018; 7:bio029512. [PMID: 29183906 PMCID: PMC5829499 DOI: 10.1242/bio.029512] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 11/21/2017] [Indexed: 01/01/2023] Open
Abstract
How chromatin-remodeling complexes modulate gene networks to control organ-specific properties is not well understood. For example, Baf60c (Smarcd3) encodes a cardiac-enriched subunit of the SWI/SNF-like BAF chromatin complex, but its role in heart development is not fully understood. We found that constitutive loss of Baf60c leads to embryonic cardiac hypoplasia and pronounced cardiac dysfunction. Conditional deletion of Baf60c in cardiomyocytes resulted in postnatal dilated cardiomyopathy with impaired contractile function. Baf60c regulates a gene expression program that includes genes encoding contractile proteins, modulators of sarcomere function, and cardiac metabolic genes. Many of the genes deregulated in Baf60c null embryos are targets of the MEF2/SRF co-factor Myocardin (MYOCD). In a yeast two-hybrid screen, we identified MYOCD as a BAF60c interacting factor; we showed that BAF60c and MYOCD directly and functionally interact. We conclude that Baf60c is essential for coordinating a program of gene expression that regulates the fundamental functional properties of cardiomyocytes.
Collapse
Affiliation(s)
- Xin Sun
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1X8 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Swetansu K Hota
- Gladstone Institutes, San Francisco, CA, 94158 USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Yu-Qing Zhou
- The Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, M5G 1X8 Canada
| | - Stefanie Novak
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Dario Miguel-Perez
- Gladstone Institutes, San Francisco, CA, 94158 USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, Gladstone Institutes, San Francisco, CA 94158, USA
| | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - J G Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - R Mark Henkelman
- The Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, M5G 1X8 Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1X8 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, CA, 94158 USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
25
|
Krawczyk KM, Hansson J, Nilsson H, Krawczyk KK, Swärd K, Johansson ME. Injury induced expression of caveolar proteins in human kidney tubules - role of megakaryoblastic leukemia 1. BMC Nephrol 2017; 18:320. [PMID: 29065889 PMCID: PMC5655893 DOI: 10.1186/s12882-017-0738-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 09/25/2017] [Indexed: 11/17/2022] Open
Abstract
Background Caveolae are membrane invaginations measuring 50–100 nm. These organelles, composed of caveolin and cavin proteins, are important for cellular signaling and survival. Caveolae play incompletely defined roles in human kidneys. Induction of caveolin-1/CAV1 in diseased tubules has been described previously, but the responsible mechanism remains to be defined. Methods Healthy and atrophying human kidneys were stained for caveolar proteins, (caveolin 1–3 and cavin 1–4) and examined by electron microscopy. Induction of caveolar proteins was studied in isolated proximal tubules and primary renal epithelial cells. These cells were challenged with hypoxia or H2O2. Primary tubular cells were also subjected to viral overexpression of megakaryoblastic leukemia 1 (MKL1) and MKL1 inhibition by the MKL1 inhibitor CCG-1423. Putative coregulators of MKL1 activity were investigated by Western blotting for suppressor of cancer cell invasion (SCAI) and filamin A (FLNA). Finally, correlative bioinformatic studies of mRNA expression of caveolar proteins and MKL1 were performed. Results In healthy kidneys, caveolar proteins were expressed by the parietal epithelial cells (PECs) of Bowman’s capsule, endothelial cells and vascular smooth muscle. Electron microscopy confirmed caveolae in the PECs. No expression was seen in proximal tubules. In contrast, caveolar proteins were expressed in proximal tubules undergoing atrophy. Caveolar proteins were also induced in cultures of primary epithelial tubular cells. Expression was not enhanced by hypoxia or free radical stress (H2O2), but proved sensitive to inhibition of MKL1. Viral overexpression of MKL1 induced caveolin-1/CAV1, caveolin-2/CAV2 and SDPR/CAVIN2. In kidney tissue, the mRNA level of MKL1 correlated with the mRNA levels for caveolin-1/CAV1, caveolin-2/CAV2 and the archetypal MKL1 target tenascin C (TNC), as did the MKL1 coactivator FLNA. Costaining for TNC as readout for MKL1 activity demonstrated overlap with caveolin-1/CAV1 expression in PECs as well as in atrophic segments of proximal tubules. Conclusions Our findings support the view that MKL1 contributes to the expression of caveolar proteins in healthy kidneys and orchestrates the induction of tubular caveolar proteins in renal injury. Electronic supplementary material The online version of this article (10.1186/s12882-017-0738-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Krzysztof M Krawczyk
- Department of Translational Medicine, Clinical Pathology, Lund University, SUS Malmö, Jan Waldenströms gata 59, SE-20502, Malmö, Sweden
| | - Jennifer Hansson
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Helén Nilsson
- Department of Translational Medicine, Clinical Pathology, Lund University, SUS Malmö, Jan Waldenströms gata 59, SE-20502, Malmö, Sweden
| | | | - Karl Swärd
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Martin E Johansson
- Department of Translational Medicine, Clinical Pathology, Lund University, SUS Malmö, Jan Waldenströms gata 59, SE-20502, Malmö, Sweden.
| |
Collapse
|
26
|
Veber M, Dolivo D, Rolle M, Dominko T. Pro-myogenic and low-oxygen culture increases expression of contractile smooth muscle markers in human fibroblasts. J Tissue Eng Regen Med 2017; 12:572-582. [PMID: 28513058 DOI: 10.1002/term.2473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/25/2017] [Accepted: 05/09/2017] [Indexed: 01/23/2023]
Abstract
Smooth muscle cells (SMCs) are essential for tissue engineering strategies to fabricate organs such as blood vessels, the oesophagus and bladder, and to create disease models of these systems. In order for such therapies and models to be feasible, SMCs must be sourced effectively to enable production of large numbers of functional cells. In vitro, SMCs divide slowly and demonstrate short proliferative lifespans compared with other types of cells, including stem cells and fibroblasts, limiting the number of cells that can be derived from expansion in culture of a primary isolation. As such, it would be beneficial to better understand the factors underlying induction and maintenance of SMC phenotypes, in order to produce new sources of SMCs for tissue engineering and disease modelling. Here we report the ability of human dermal fibroblasts to display patterns of gene expression resembling contractile SMCs when cultured under conditions that are known to promote a contractile phenotype in SMCs, including culture on collagen IV, low-serum culture, TGF-β1 treatment and hypoxia. These factors drive expression of the myogenic transcription factor myocardin, as well as expression of several of its gene targets that are known contributors to contractile phenotype in SMCs, including smooth muscle alpha actin, calponin, and myosin heavy chain. Our results suggest that culture conditions associated with culture of SMCs may be sufficient to induce myogenic gene expression patterns and potential myogenic function in non-muscle cells.
Collapse
Affiliation(s)
| | - David Dolivo
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Marsha Rolle
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Tanja Dominko
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.,Center for Biomedical Sciences and Engineering, University of Nova Gorica, Vipava, Slovenia
| |
Collapse
|
27
|
Anderson CM, Hu J, Thomas R, Gainous TB, Celona B, Sinha T, Dickel DE, Heidt AB, Xu SM, Bruneau BG, Pollard KS, Pennacchio LA, Black BL. Cooperative activation of cardiac transcription through myocardin bridging of paired MEF2 sites. Development 2017; 144:1235-1241. [PMID: 28351867 DOI: 10.1242/dev.138487] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 01/25/2017] [Indexed: 12/17/2022]
Abstract
Enhancers frequently contain multiple binding sites for the same transcription factor. These homotypic binding sites often exhibit synergy, whereby the transcriptional output from two or more binding sites is greater than the sum of the contributions of the individual binding sites alone. Although this phenomenon is frequently observed, the mechanistic basis for homotypic binding site synergy is poorly understood. Here, we identify a bona fide cardiac-specific Prkaa2 enhancer that is synergistically activated by homotypic MEF2 binding sites. We show that two MEF2 sites in the enhancer function cooperatively due to bridging of the MEF2C-bound sites by the SAP domain-containing co-activator protein myocardin, and we show that paired sites buffer the enhancer from integration site-dependent effects on transcription in vivo Paired MEF2 sites are prevalent in cardiac enhancers, suggesting that this might be a common mechanism underlying synergy in the control of cardiac gene expression in vivo.
Collapse
Affiliation(s)
- Courtney M Anderson
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143-3120, USA
| | - Jianxin Hu
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143-3120, USA
| | - Reuben Thomas
- Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
| | - T Blair Gainous
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143-3120, USA
| | - Barbara Celona
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143-3120, USA
| | - Tanvi Sinha
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143-3120, USA
| | - Diane E Dickel
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Analeah B Heidt
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143-3120, USA
| | - Shan-Mei Xu
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143-3120, USA
| | - Benoit G Bruneau
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143-3120, USA.,Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Katherine S Pollard
- Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Len A Pennacchio
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Brian L Black
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143-3120, USA .,Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
28
|
|
29
|
Xia XD, Zhou Z, Yu XH, Zheng XL, Tang CK. Myocardin: A novel player in atherosclerosis. Atherosclerosis 2017; 257:266-278. [PMID: 28012646 DOI: 10.1016/j.atherosclerosis.2016.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 12/21/2022]
|
30
|
Brunet T, Fischer AH, Steinmetz PR, Lauri A, Bertucci P, Arendt D. The evolutionary origin of bilaterian smooth and striated myocytes. eLife 2016; 5. [PMID: 27906129 PMCID: PMC5167519 DOI: 10.7554/elife.19607] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/01/2016] [Indexed: 12/25/2022] Open
Abstract
The dichotomy between smooth and striated myocytes is fundamental for bilaterian musculature, but its evolutionary origin is unsolved. In particular, interrelationships of visceral smooth muscles remain unclear. Absent in fly and nematode, they have not yet been characterized molecularly outside vertebrates. Here, we characterize expression profile, ultrastructure, contractility and innervation of the musculature in the marine annelid Platynereis dumerilii and identify smooth muscles around the midgut, hindgut and heart that resemble their vertebrate counterparts in molecular fingerprint, contraction speed and nervous control. Our data suggest that both visceral smooth and somatic striated myocytes were present in the protostome-deuterostome ancestor and that smooth myocytes later co-opted the striated contractile module repeatedly – for example, in vertebrate heart evolution. During these smooth-to-striated myocyte conversions, the core regulatory complex of transcription factors conveying myocyte identity remained unchanged, reflecting a general principle in cell type evolution. DOI:http://dx.doi.org/10.7554/eLife.19607.001
Collapse
Affiliation(s)
- Thibaut Brunet
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Antje Hl Fischer
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Patrick Rh Steinmetz
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Antonella Lauri
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Paola Bertucci
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
31
|
Cenik BK, Liu N, Chen B, Bezprozvannaya S, Olson EN, Bassel-Duby R. Myocardin-related transcription factors are required for skeletal muscle development. Development 2016; 143:2853-61. [PMID: 27385017 PMCID: PMC5004908 DOI: 10.1242/dev.135855] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/17/2016] [Indexed: 12/24/2022]
Abstract
Myocardin-related transcription factors (MRTFs) play a central role in the regulation of actin expression and cytoskeletal dynamics. Stimuli that promote actin polymerization allow for shuttling of MRTFs to the nucleus where they activate serum response factor (SRF), a regulator of actin and other cytoskeletal protein genes. SRF is an essential regulator of skeletal muscle differentiation and numerous components of the muscle sarcomere, but the potential involvement of MRTFs in skeletal muscle development has not been examined. We explored the role of MRTFs in muscle development in vivo by generating mutant mice harboring a skeletal muscle-specific deletion of MRTF-B and a global deletion of MRTF-A. These double knockout (dKO) mice were able to form sarcomeres during embryogenesis. However, the sarcomeres were abnormally small and disorganized, causing skeletal muscle hypoplasia and perinatal lethality. Transcriptome analysis demonstrated dramatic dysregulation of actin genes in MRTF dKO mice, highlighting the importance of MRTFs in actin cycling and myofibrillogenesis. MRTFs were also shown to be necessary for the survival of skeletal myoblasts and for the efficient formation of intact myotubes. Our findings reveal a central role for MRTFs in sarcomere formation during skeletal muscle development and point to the potential involvement of these transcriptional co-activators in skeletal myopathies.
Collapse
Affiliation(s)
- Bercin K Cenik
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Beibei Chen
- Clinical Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Svetlana Bezprozvannaya
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| |
Collapse
|
32
|
Llorian M, Gooding C, Bellora N, Hallegger M, Buckroyd A, Wang X, Rajgor D, Kayikci M, Feltham J, Ule J, Eyras E, Smith CWJ. The alternative splicing program of differentiated smooth muscle cells involves concerted non-productive splicing of post-transcriptional regulators. Nucleic Acids Res 2016; 44:8933-8950. [PMID: 27317697 PMCID: PMC5062968 DOI: 10.1093/nar/gkw560] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 06/08/2016] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing (AS) is a key component of gene expression programs that drive cellular differentiation. Smooth muscle cells (SMCs) are important in the function of a number of physiological systems; however, investigation of SMC AS has been restricted to a handful of events. We profiled transcriptome changes in mouse de-differentiating SMCs and observed changes in hundreds of AS events. Exons included in differentiated cells were characterized by particularly weak splice sites and by upstream binding sites for Polypyrimidine Tract Binding protein (PTBP1). Consistent with this, knockdown experiments showed that that PTBP1 represses many smooth muscle specific exons. We also observed coordinated splicing changes predicted to downregulate the expression of core components of U1 and U2 snRNPs, splicing regulators and other post-transcriptional factors in differentiated cells. The levels of cognate proteins were lower or similar in differentiated compared to undifferentiated cells. However, levels of snRNAs did not follow the expression of splicing proteins, and in the case of U1 snRNP we saw reciprocal changes in the levels of U1 snRNA and U1 snRNP proteins. Our results suggest that the AS program in differentiated SMCs is orchestrated by the combined influence of auxiliary RNA binding proteins, such as PTBP1, along with altered activity and stoichiometry of the core splicing machinery.
Collapse
Affiliation(s)
- Miriam Llorian
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Clare Gooding
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Nicolas Bellora
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK Catalan Institute for Research and Advanced Studies (ICREA), E08010 Barcelona, Spain
| | - Martina Hallegger
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK Computational Genomics, Universitat Pompeu Fabra, E08003 Barcelona, Spain
| | - Adrian Buckroyd
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Xiao Wang
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Dipen Rajgor
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Melis Kayikci
- INIBIOMA, CONICET-UNComahue, Bariloche 8400 Río Negro, Argentina
| | - Jack Feltham
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Jernej Ule
- Computational Genomics, Universitat Pompeu Fabra, E08003 Barcelona, Spain
| | - Eduardo Eyras
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK MRC-Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Christopher W J Smith
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| |
Collapse
|
33
|
NFATc4 and myocardin synergistically up-regulate the expression of LTCC α1C in ET-1-induced cardiomyocyte hypertrophy. Life Sci 2016; 155:11-20. [DOI: 10.1016/j.lfs.2016.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/26/2016] [Accepted: 05/03/2016] [Indexed: 11/18/2022]
|
34
|
Swärd K, Stenkula KG, Rippe C, Alajbegovic A, Gomez MF, Albinsson S. Emerging roles of the myocardin family of proteins in lipid and glucose metabolism. J Physiol 2016; 594:4741-52. [PMID: 27060572 DOI: 10.1113/jp271913] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/17/2016] [Indexed: 12/20/2022] Open
Abstract
Members of the myocardin family bind to the transcription factor serum response factor (SRF) and act as coactivators controlling genes of relevance for myogenic differentiation and motile function. Binding of SRF to DNA is mediated by genetic elements called CArG boxes, found often but not exclusively in muscle and growth controlling genes. Studies aimed at defining the full spectrum of these CArG elements in the genome (i.e. the CArGome) have in recent years, unveiled unexpected roles of the myocardin family proteins in lipid and glucose homeostasis. This coactivator family includes the protein myocardin (MYOCD), the myocardin-related transcription factors A and B (MRTF-A/MKL1 and MRTF-B/MKL2) and MASTR (MAMSTR). Here we discuss growing evidence that SRF-driven transcription is controlled by extracellular glucose through activation of the Rho-kinase pathway and actin polymerization. We also describe data showing that adipogenesis is influenced by MLK activity through actions upstream of peroxisome proliferator-activated receptor γ with consequences for whole body fat mass and insulin sensitivity. The recently demonstrated involvement of myocardin coactivators in the biogenesis of caveolae, Ω-shaped membrane invaginations of importance for lipid and glucose metabolism, is finally discussed. These novel roles of myocardin proteins may open the way for new unexplored strategies to combat metabolic diseases such as diabetes, which, at the current incidence, is expected to reach 333 million people worldwide by 2025. This review highlights newly discovered roles of myocardin-related transcription factors in lipid and glucose metabolism as well as novel insights into their well-established role as mediators of stretch-dependent effects in smooth muscle. As co-factors for serum response factor (SRF), MKLs regulates transcription of genes involved in the contractile function of smooth muscle cells. In addition to mechanical stimuli, this regulation has now been found to be promoted by extracellular glucose levels in smooth muscle. Recent reports also suggest that MKLs can regulate a subset of genes involved in the formation of lipid-rich invaginations in the cell membrane called caveolae. Finally, a potential role of MKLs in non-muscle cells has been discovered as they negatively influence adipocyte differentiation.
Collapse
Affiliation(s)
- Karl Swärd
- Department of Experimental Medical Science, BMC D12, Lund University, Lund, Sweden
| | - Karin G Stenkula
- Department of Experimental Medical Science, BMC D12, Lund University, Lund, Sweden
| | - Catarina Rippe
- Department of Experimental Medical Science, BMC D12, Lund University, Lund, Sweden
| | - Azra Alajbegovic
- Department of Experimental Medical Science, BMC D12, Lund University, Lund, Sweden
| | - Maria F Gomez
- Department of Clinical Sciences, CRC, Lund University, Malmö, Sweden
| | - Sebastian Albinsson
- Department of Experimental Medical Science, BMC D12, Lund University, Lund, Sweden
| |
Collapse
|
35
|
Gurdziel K, Vogt KR, Walton KD, Schneider GK, Gumucio DL. Transcriptome of the inner circular smooth muscle of the developing mouse intestine: Evidence for regulation of visceral smooth muscle genes by the hedgehog target gene, cJun. Dev Dyn 2016; 245:614-26. [PMID: 26930384 DOI: 10.1002/dvdy.24399] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/29/2016] [Accepted: 02/16/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Digestion is facilitated by coordinated contractions of the intestinal muscularis externa, a bilayered smooth muscle structure that is composed of inner circular muscles (ICM) and outer longitudinal muscles (OLM). We performed transcriptome analysis of intestinal mesenchyme tissue at E14.5, when the ICM, but not the OLM, is present, to investigate the transcriptional program of the ICM. RESULTS We identified 3967 genes enriched in E14.5 intestinal mesenchyme. The gene expression profiles were clustered and annotated to known muscle genes, identifying a muscle-enriched subcluster. Using publically available in situ data, 127 genes were verified as expressed in ICM. Examination of the promoter and regulatory regions for these co-expressed genes revealed enrichment for cJUN transcription factor binding sites, and cJUN protein was enriched in ICM. cJUN ChIP-seq, performed at E14.5, revealed that cJUN regulatory regions contain characteristics of muscle enhancers. Finally, we show that cJun is a target of Hedgehog (Hh), a signaling pathway known to be important in smooth muscle development, and identify a cJun genomic enhancer that is responsive to Hh. CONCLUSIONS This work provides the first transcriptional catalog for the developing ICM and suggests that cJun regulates gene expression in the ICM downstream of Hh signaling. Developmental Dynamics 245:614-626, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Katherine Gurdziel
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109
| | - Kyle R Vogt
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109
| | - Katherine D Walton
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109
| | - Gary K Schneider
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109
| | - Deborah L Gumucio
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109
| |
Collapse
|
36
|
Zhang R, Pan Y, Fanelli V, Wu S, Luo AA, Islam D, Han B, Mao P, Ghazarian M, Zeng W, Spieth PM, Wang D, Khang J, Mo H, Liu X, Uhlig S, Liu M, Laffey J, Slutsky AS, Li Y, Zhang H. Mechanical Stress and the Induction of Lung Fibrosis via the Midkine Signaling Pathway. Am J Respir Crit Care Med 2015; 192:315-23. [PMID: 25945397 DOI: 10.1164/rccm.201412-2326oc] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
RATIONALE Lung-protective ventilatory strategies have been widely used in patients with acute respiratory distress syndrome (ARDS), but the ARDS mortality rate remains unacceptably high and there is no proven pharmacologic therapy. OBJECTIVES Mechanical ventilation can induce oxidative stress and lung fibrosis, which may contribute to high dependency on ventilator support and increased ARDS mortality. We hypothesized that the novel cytokine, midkine (MK), which can be up-regulated in oxidative stress, plays a key role in the pathogenesis of ARDS-associated lung fibrosis. METHODS Blood samples were collected from 17 patients with ARDS and 10 healthy donors. Human lung epithelial cells were challenged with hydrogen chloride followed by mechanical stretch for 72 hours. Wild-type and MK gene-deficient (MK(-/-)) mice received two-hit injury of acid aspiration and mechanical ventilation, and were monitored for 14 days. MEASUREMENTS AND MAIN RESULTS Plasma concentrations of MK were higher in patients with ARDS than in healthy volunteers. Exposure to mechanical stretch of lung epithelial cells led to an epithelial-mesenchymal transition profile associated with increased expression of angiotensin-converting enzyme, which was attenuated by silencing MK, its receptor Notch2, or NADP reduced oxidase 1. An increase in collagen deposition and hydroxyproline level and a decrease in lung tissue compliance seen in wild-type mice were largely attenuated in MK(-/-) mice. CONCLUSIONS Mechanical stretch can induce an epithelial-mesenchymal transition phenotype mediated by the MK-Notch2-angiotensin-converting enzyme signaling pathway, contributing to lung remodeling. The MK pathway is a potential therapeutic target in the context of ARDS-associated lung fibrosis.
Collapse
Affiliation(s)
- Rong Zhang
- 1 The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ying Pan
- 1 The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Vito Fanelli
- 2 Department of Anesthesia and Critical Care, University of Turin, AOU Città della Salute e della Scienza di Torino-Ospedale Molinette, Turin, Italy.,3 The Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Sulong Wu
- 1 The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Alice Aili Luo
- 3 The Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Diana Islam
- 3 The Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Bing Han
- 3 The Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Pu Mao
- 1 The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mirna Ghazarian
- 3 The Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Wenmei Zeng
- 1 The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,3 The Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Peter M Spieth
- 3 The Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada.,4 Department of Anesthesiology and Intensive Care Medicine, Technische Universität, Dresden, Germany
| | - Dingyan Wang
- 3 The Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Julie Khang
- 3 The Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Hongyin Mo
- 1 The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoqing Liu
- 1 The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Stefan Uhlig
- 5 Faculty of Medicine, RWTH Aachen University, Aachen, Germany; and
| | | | - John Laffey
- 3 The Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada.,6 Department of Physiology.,7 Department of Anesthesia, and.,8 Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Arthur S Slutsky
- 1 The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,3 The Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada.,8 Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yimin Li
- 1 The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haibo Zhang
- 1 The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,3 The Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada.,6 Department of Physiology.,7 Department of Anesthesia, and.,8 Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Frese KS, Meder B, Keller A, Just S, Haas J, Vogel B, Fischer S, Backes C, Matzas M, Köhler D, Benes V, Katus HA, Rottbauer W. RNA splicing regulated by RBFOX1 is essential for cardiac function in zebrafish. J Cell Sci 2015; 128:3030-40. [PMID: 26116573 PMCID: PMC4541041 DOI: 10.1242/jcs.166850] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 05/10/2015] [Indexed: 12/21/2022] Open
Abstract
Alternative splicing is one of the major mechanisms through which the proteomic and functional diversity of eukaryotes is achieved. However, the complex nature of the splicing machinery, its associated splicing regulators and the functional implications of alternatively spliced transcripts are only poorly understood. Here, we investigated the functional role of the splicing regulator rbfox1 in vivo using the zebrafish as a model system. We found that loss of rbfox1 led to progressive cardiac contractile dysfunction and heart failure. By using deep-transcriptome sequencing and quantitative real-time PCR, we show that depletion of rbfox1 in zebrafish results in an altered isoform expression of several crucial target genes, such as actn3a and hug. This study underlines that tightly regulated splicing is necessary for unconstrained cardiac function and renders the splicing regulator rbfox1 an interesting target for investigation in human heart failure and cardiomyopathy. Summary: The zebrafish splicing regulator rbfox1 is necessary for tightly regulated splicing and unconstrained cardiac function, making it an interesting candidate for targeting during human cardiomyopathy.
Collapse
Affiliation(s)
- Karen S Frese
- Department of Medicine III, University of Heidelberg, D-69120 Heidelberg, Germany German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, D-69120 Heidelberg, Germany
| | - Benjamin Meder
- Department of Medicine III, University of Heidelberg, D-69120 Heidelberg, Germany German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, D-69120 Heidelberg, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, D-66123 Saarbrücken, Germany Department of Human Genetics, Saarland University, D-66123 Saarbrücken, Germany
| | - Steffen Just
- Department of Medicine II, University of Ulm, D-89081 Ulm, Germany
| | - Jan Haas
- Department of Medicine III, University of Heidelberg, D-69120 Heidelberg, Germany German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, D-69120 Heidelberg, Germany
| | - Britta Vogel
- Department of Medicine III, University of Heidelberg, D-69120 Heidelberg, Germany German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, D-69120 Heidelberg, Germany
| | - Simon Fischer
- Department of Medicine III, University of Heidelberg, D-69120 Heidelberg, Germany German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, D-69120 Heidelberg, Germany
| | - Christina Backes
- Department of Human Genetics, Saarland University, D-66123 Saarbrücken, Germany
| | - Mark Matzas
- Comprehensive Biomarker Center, D-69120 Heidelberg, Germany
| | - Doreen Köhler
- Department of Medicine III, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Vladimir Benes
- EMBL, European Molecular Biology Laboratory, Genomics Core Facility, D-69117 Heidelberg, Germany
| | - Hugo A Katus
- Department of Medicine III, University of Heidelberg, D-69120 Heidelberg, Germany German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, D-69120 Heidelberg, Germany
| | | |
Collapse
|
38
|
Forward Programming of Cardiac Stem Cells by Homogeneous Transduction with MYOCD plus TBX5. PLoS One 2015; 10:e0125384. [PMID: 26047103 PMCID: PMC4457652 DOI: 10.1371/journal.pone.0125384] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/23/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Adult cardiac stem cells (CSCs) express many endogenous cardiogenic transcription factors including members of the Gata, Hand, Mef2, and T-box family. Unlike its DNA-binding targets, Myocardin (Myocd)-a co-activator not only for serum response factor, but also for Gata4 and Tbx5-is not expressed in CSCs. We hypothesised that its absence was a limiting factor for reprogramming. Here, we sought to investigate the susceptibility of adult mouse Sca1+ side population CSCs to reprogramming by supplementing the triad of GATA4, MEF2C, and TBX5 (GMT), and more specifically by testing the effect of the missing co-activator, Myocd. Exogenous factors were expressed via doxycycline-inducible lentiviral vectors in various combinations. High throughput quantitative RT-PCR was used to test expression of 29 cardiac lineage markers two weeks post-induction. GMT induced more than half the analysed cardiac transcripts. However, no protein was detected for the induced sarcomeric genes Actc1, Myh6, and Myl2. Adding MYOCD to GMT affected only slightly the breadth and level of gene induction, but, importantly, triggered expression of all three proteins examined (α-cardiac actin, atrial natriuretic peptide, sarcomeric myosin heavy chains). MYOCD + TBX was the most effective pairwise combination in this system. In clonal derivatives homogenously expressing MYOCD + TBX at high levels, 93% of cardiac transcripts were up-regulated and all five proteins tested were visualized. IN SUMMARY (1) GMT induced cardiac genes in CSCs, but not cardiac proteins under the conditions used. (2) Complementing GMT with MYOCD induced cardiac protein expression, indicating a more complete cardiac differentiation program. (3) Homogeneous transduction with MYOCD + TBX5 facilitated the identification of differentiating cells and the validation of this combinatorial reprogramming strategy. Together, these results highlight the pivotal importance of MYOCD in driving CSCs toward a cardiac muscle fate.
Collapse
|
39
|
Mofarrahi M, McClung JM, Kontos CD, Davis EC, Tappuni B, Moroz N, Pickett AE, Huck L, Harel S, Danialou G, Hussain SNA. Angiopoietin-1 enhances skeletal muscle regeneration in mice. Am J Physiol Regul Integr Comp Physiol 2015; 308:R576-89. [PMID: 25608750 DOI: 10.1152/ajpregu.00267.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 01/07/2015] [Indexed: 12/27/2022]
Abstract
Activation of muscle progenitor cell myogenesis and endothelial cell angiogenesis is critical for the recovery of skeletal muscle from injury. Angiopoietin-1 (Ang-1), a ligand of Tie-2 receptors, enhances angiogenesis and skeletal muscle satellite cell survival; however, its role in skeletal muscle regeneration after injury is unknown. We assessed the effects of Ang-1 on fiber regeneration, myogenesis, and angiogenesis in injured skeletal muscle (tibialis anterior, TA) in mice. We also assessed endogenous Ang-1 levels and localization in intact and injured TA muscles. TA fiber injury was triggered by cardiotoxin injection. Endogenous Ang-1 mRNA levels immediately decreased in response to cardiotoxin then increased during the 2 wk. Ang-1 protein was expressed in satellite cells, both in noninjured and recovering TA muscles. Positive Ang-1 staining was present in blood vessels but not in nerve fibers. Four days after the initiation of injury, injection of adenoviral Ang-1 into injured muscles resulted in significant increases in in situ TA muscle contractility, muscle fiber regeneration, and capillary density. In cultured human skeletal myoblasts, recombinant Ang-1 protein increased survival, proliferation, migration, and differentiation into myotubes. The latter effect was associated with significant upregulation of the expression of the myogenic regulatory factors MyoD and Myogenin and certain genes involved in cell cycle regulation. We conclude that Ang-1 strongly enhances skeletal muscle regeneration in response to fiber injury and that this effect is mediated through induction of the myogenesis program in muscle progenitor cells and the angiogenesis program in endothelial cells.
Collapse
Affiliation(s)
- Mahroo Mofarrahi
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, Quebec, Canada; Department of Critical Care, McGill University Health Centre, Royal Victoria Hospital, Montréal, Quebec, Canada
| | - Joseph M McClung
- Department of Pharmacology and Cancer Biology, Duke University Medical Center and the Duke University School of Medicine, Durham, North Carolina
| | - Christopher D Kontos
- Department of Pharmacology and Cancer Biology, Duke University Medical Center and the Duke University School of Medicine, Durham, North Carolina
| | - Elaine C Davis
- Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec, Canada; and
| | - Bassman Tappuni
- Department of Critical Care, McGill University Health Centre, Royal Victoria Hospital, Montréal, Quebec, Canada
| | - Nicolay Moroz
- Department of Critical Care, McGill University Health Centre, Royal Victoria Hospital, Montréal, Quebec, Canada
| | - Amy E Pickett
- Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec, Canada; and
| | - Laurent Huck
- Department of Critical Care, McGill University Health Centre, Royal Victoria Hospital, Montréal, Quebec, Canada
| | - Sharon Harel
- Department of Critical Care, McGill University Health Centre, Royal Victoria Hospital, Montréal, Quebec, Canada
| | - Gawiyou Danialou
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, Quebec, Canada; Département des sciences de la nature, Collège militaire royal de Saint-Jean, Saint-Jean-sur-Richelieu, Quebec, Canada
| | - Sabah N A Hussain
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, Quebec, Canada; Department of Critical Care, McGill University Health Centre, Royal Victoria Hospital, Montréal, Quebec, Canada;
| |
Collapse
|
40
|
Abstract
Myocardin (MYOCD) is a potent transcriptional coactivator that functions primarily in cardiac muscle and smooth muscle through direct contacts with serum response factor (SRF) over cis elements known as CArG boxes found near a number of genes encoding for contractile, ion channel, cytoskeletal, and calcium handling proteins. Since its discovery more than 10 years ago, new insights have been obtained regarding the diverse isoforms of MYOCD expressed in cells as well as the regulation of MYOCD expression and activity through transcriptional, post-transcriptional, and post-translational processes. Curiously, there are a number of functions associated with MYOCD that appear to be independent of contractile gene expression and the CArG-SRF nucleoprotein complex. Further, perturbations in MYOCD gene expression are associated with an increasing number of diseases including heart failure, cancer, acute vessel disease, and diabetes. This review summarizes the various biological and pathological processes associated with MYOCD and offers perspectives to several challenges and future directions for further study of this formidable transcriptional coactivator.
Collapse
Affiliation(s)
- Joseph M Miano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
41
|
Abstract
Arp5 suppresses myocardin activity through both direct binding to myocardin and binding to SRF to prevent transcriptional activation of myogenic genes by the myocardin–SRF complex. Myocardin (Myocd) and Myocd-related transcription factors (MRTFs) are robust coactivators of serum response factor (SRF). RPEL motifs are monomeric globular actin (G-actin) binding elements that regulate MRTF localization and activity. However, the function of the RPEL motif in Myocd is largely unknown because of its low affinity for G-actin. Here, we demonstrated that the Myocd RPEL motif bound to actin-related protein 5 (Arp5) instead of conventional actin, resulting in a significant suppression of Myocd activity. In addition, Arp5 bound to a DNA binding domain of SRF via its C-terminal sequence and prevented the association of the Myocd–SRF complex with the promoter regions of smooth muscle genes. Well-differentiated smooth muscle cells mainly expressed a specific splicing variant of arp5; therefore, the protein level of Arp5 was markedly reduced by partial messenger RNA decay and translational suppression. In dedifferentiated smooth muscle cells, Arp5 knockdown restored the differentiated phenotype via Myocd activation. Thus, Arp5 is a key regulator of Myocd activity.
Collapse
Affiliation(s)
- Tsuyoshi Morita
- Department of Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
42
|
Zheng XL. Myocardin and smooth muscle differentiation. Arch Biochem Biophys 2014; 543:48-56. [DOI: 10.1016/j.abb.2013.12.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/15/2013] [Accepted: 12/18/2013] [Indexed: 01/08/2023]
|
43
|
Heidersbach A, Saxby C, Carver-Moore K, Huang Y, Ang YS, de Jong PJ, Ivey KN, Srivastava D. microRNA-1 regulates sarcomere formation and suppresses smooth muscle gene expression in the mammalian heart. eLife 2013; 2:e01323. [PMID: 24252873 PMCID: PMC3833424 DOI: 10.7554/elife.01323] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
microRNA-1 (miR-1) is an evolutionarily conserved, striated muscle-enriched miRNA. Most mammalian genomes contain two copies of miR-1, and in mice, deletion of a single locus, miR-1-2, causes incompletely penetrant lethality and subtle cardiac defects. Here, we report that deletion of miR-1-1 resulted in a phenotype similar to that of the miR-1-2 mutant. Compound miR-1 knockout mice died uniformly before weaning due to severe cardiac dysfunction. miR-1-null cardiomyocytes had abnormal sarcomere organization and decreased phosphorylation of the regulatory myosin light chain-2 (MLC2), a critical cytoskeletal regulator. The smooth muscle-restricted inhibitor of MLC2 phosphorylation, Telokin, was ectopically expressed in the myocardium, along with other smooth muscle genes. miR-1 repressed Telokin expression through direct targeting and by repressing its transcriptional regulator, Myocardin. Our results reveal that miR-1 is required for postnatal cardiac function and reinforces the striated muscle phenotype by regulating both transcriptional and effector nodes of the smooth muscle gene expression network. DOI:http://dx.doi.org/10.7554/eLife.01323.001 MicroRNAs are tiny RNAs that do not encode proteins. Instead, they regulate the expression of genes by preventing protein-encoding messenger RNAs from being translated into protein. MicroRNAs are expressed throughout the body, including the heart, where the most abundant microRNA is called miR-1. This is encoded by two nearly identical genes: miR-1-1 and miR-1-2. Mice that lack the miR-1-2 gene have various heart abnormalities, but generally survive because they still produce some miR-1 from their remaining miR-1-1 gene. Now, Heidersbach et al. have generated the first mice that specifically lack both miR-1 genes, and shown that these animals die before weaning. When viewed under the electron microscope, heart muscle from miR-1 double knockout mice lacks the characteristic ‘striped’, or striated, appearance of normal heart muscle. Additionally, miR-1 double knockout hearts have some gene expression characteristics more similar to the smooth muscle found in the gut and in the walls of blood vessels. Smooth muscle differs from striated muscle in that it lacks sarcomeres: these are bands of fibrous proteins, such as myosin, that are essential for muscle contraction. In normal mice, an enzyme called MLCK contributes to the formation and function of sarcomeres by adding phosphate groups to myosin molecules. By contrast, in smooth muscle an enzyme called Telokin promotes phosphate group removal, and thus affects the function of sarcomeres. Heidersbach et al. showed that miR-1 interacts directly with Telokin mRNA to prevent its expression in the heart, and simultaneously represses a protein called Myocardin, which directly activates transcription of Telokin. However, when miR-1 is absent, as in the miR-1 double knockout mice, Telokin is expressed in heart muscle, along with many other genes characteristic of smooth muscle. As well as improving our understanding of the development and functioning of the heart, these findings should shed new light on the role of microRNAs in maintaining the patterns of gene expression that characterize unique cell fates. DOI:http://dx.doi.org/10.7554/eLife.01323.002
Collapse
Affiliation(s)
- Amy Heidersbach
- Gladstone Institute of Cardiovascular Disease, San Francisco, United States
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Wystub K, Besser J, Bachmann A, Boettger T, Braun T. miR-1/133a clusters cooperatively specify the cardiomyogenic lineage by adjustment of myocardin levels during embryonic heart development. PLoS Genet 2013; 9:e1003793. [PMID: 24068960 PMCID: PMC3777988 DOI: 10.1371/journal.pgen.1003793] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/29/2013] [Indexed: 11/19/2022] Open
Abstract
miRNAs are small RNAs directing many developmental processes by posttranscriptional regulation of protein-coding genes. We uncovered a new role for miR-1-1/133a-2 and miR-1-2/133a-1 clusters in the specification of embryonic cardiomyocytes allowing transition from an immature state characterized by expression of smooth muscle (SM) genes to a more mature fetal phenotype. Concomitant knockout of miR-1-1/133a-2 and miR-1-2/133a-1 released suppression of the transcriptional co-activator myocardin, a major regulator of SM gene expression, but not of its binding partner SRF. Overexpression of myocardin in the embryonic heart essentially recapitulated the miR-1/133a mutant phenotype at the molecular level, arresting embryonic cardiomyocytes in an immature state. Interestingly, the majority of postulated miR-1/133a targets was not altered in double mutant mice, indicating that the ability of miR-1/133a to suppress target molecules strongly depends on the cellular context. Finally, we show that myocardin positively regulates expression of miR-1/133a, thus constituting a negative feedback loop that is essential for early cardiac development.
Collapse
Affiliation(s)
- Katharina Wystub
- Max-Planck-Institut für Herz- und Lungenforschung, Department of Cardiac Development and Remodelling, Bad Nauheim, Germany
| | - Johannes Besser
- Max-Planck-Institut für Herz- und Lungenforschung, Department of Cardiac Development and Remodelling, Bad Nauheim, Germany
| | - Angela Bachmann
- Max-Planck-Institut für Herz- und Lungenforschung, Department of Cardiac Development and Remodelling, Bad Nauheim, Germany
| | - Thomas Boettger
- Max-Planck-Institut für Herz- und Lungenforschung, Department of Cardiac Development and Remodelling, Bad Nauheim, Germany
| | - Thomas Braun
- Max-Planck-Institut für Herz- und Lungenforschung, Department of Cardiac Development and Remodelling, Bad Nauheim, Germany
| |
Collapse
|
45
|
Ishikawa M, Shiota J, Ishibashi Y, Hakamata T, Shoji S, Fukuchi M, Tsuda M, Shirao T, Sekino Y, Ohtsuka T, Baraban JM, Tabuchi A. Identification, expression and characterization of rat isoforms of the serum response factor (SRF) coactivator MKL1. FEBS Open Bio 2013; 3:387-93. [PMID: 24251100 PMCID: PMC3821035 DOI: 10.1016/j.fob.2013.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/21/2013] [Accepted: 09/04/2013] [Indexed: 11/25/2022] Open
Abstract
Megakaryoblastic leukemia 1 (MKL1) is a member of the MKL family of serum response factor (SRF) coactivators. Here we have identified three rat MKL1 transcripts: two are homologues of mouse MKL1 transcripts, full-length MKL1 (FLMKL1) and basic, SAP, and coiled-coil domains (BSAC), the third is a novel transcript, MKL1-elongated derivative of yield (MELODY). These rat MKL1 transcripts are differentially expressed in a wide variety of tissues with highest levels in testis and brain. During brain development, these transcripts display differential patterns of expression. The FLMKL1 transcript encodes two isoforms that utilize distinct translation start sites. The longer form possesses three actin-binding RPXXXEL (RPEL) motifs and the shorter form, MKL1met only has two RPEL motifs. All four rat MKL1 isoforms, FLMKL1, BSAC, MKL1met and MELODY increased SRF-mediated transcription, but not CREB-mediated transcription. Accordingly, the differential expression of MKL1 isoforms may help fine-tune gene expression during brain development. Megakaryoblastic leukemia 1 (MKL1) is a serum response factor (SRF) coactivator. We have identified multiple rat MKL1 isoforms, including a novel one named MELODY. Rat MKL1 isoforms are enriched in testis and brain. Expression of rat MKL1 isoforms is regulated during brain development. All rat MKL1 isoforms act as SRF transcriptional coactivators.
Collapse
Key Words
- Alternative promoter
- BSAC, basic, SAP, and coiled-coil domains
- DAPI, 4′, 6-diamidino-2-phenylindole
- GFP, green fluorescent protein
- MAL, megakaryocytic acute leukemia
- MELODY, MKL1-elongated derivative of yield
- MKL1, megakaryoblastic leukemia 1
- Megakaryoblastic leukemia
- RPEL, arginine proline XXX glutamate leucine
- SRF, serum response factor
- Serum response factor
- Transcript
- Transcriptional coactivator
Collapse
Affiliation(s)
- Mitsuru Ishikawa
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
van der Veer EP, de Bruin RG, Kraaijeveld AO, de Vries MR, Bot I, Pera T, Segers FM, Trompet S, van Gils JM, Roeten MK, Beckers CM, van Santbrink PJ, Janssen A, van Solingen C, Swildens J, de Boer HC, Peters EA, Bijkerk R, Rousch M, Doop M, Kuiper J, Schalij MJ, van der Wal AC, Richard S, van Berkel TJC, Pickering JG, Hiemstra PS, Goumans MJ, Rabelink TJ, de Vries AAF, Quax PHA, Jukema JW, Biessen EAL, van Zonneveld AJ. Quaking, an RNA-binding protein, is a critical regulator of vascular smooth muscle cell phenotype. Circ Res 2013; 113:1065-75. [PMID: 23963726 DOI: 10.1161/circresaha.113.301302] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
RATIONALE RNA-binding proteins are critical post-transcriptional regulators of RNA and can influence pre-mRNA splicing, RNA localization, and stability. The RNA-binding protein Quaking (QKI) is essential for embryonic blood vessel development. However, the role of QKI in the adult vasculature, and in particular in vascular smooth muscle cells (VSMCs), is currently unknown. OBJECTIVE We sought to determine the role of QKI in regulating adult VSMC function and plasticity. METHODS AND RESULTS We identified that QKI is highly expressed by neointimal VSMCs of human coronary restenotic lesions, but not in healthy vessels. In a mouse model of vascular injury, we observed reduced neointima hyperplasia in Quaking viable mice, which have decreased QKI expression. Concordantly, abrogation of QKI attenuated fibroproliferative properties of VSMCs, while potently inducing contractile apparatus protein expression, rendering noncontractile VSMCs with the capacity to contract. We identified that QKI localizes to the spliceosome, where it interacts with the myocardin pre-mRNA and regulates the splicing of alternative exon 2a. This post-transcriptional event impacts the Myocd_v3/Myocd_v1 mRNA balance and can be modulated by mutating the quaking response element in exon 2a of myocardin. Furthermore, we identified that arterial damage triggers myocardin alternative splicing and is tightly coupled with changes in the expression levels of distinct QKI isoforms. CONCLUSIONS We propose that QKI is a central regulator of VSMC phenotypic plasticity and that intervention in QKI activity can ameliorate pathogenic, fibroproliferative responses to vascular injury.
Collapse
|
47
|
The alternative heart: impact of alternative splicing in heart disease. J Cardiovasc Transl Res 2013; 6:945-55. [PMID: 23775418 DOI: 10.1007/s12265-013-9482-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/04/2013] [Indexed: 01/16/2023]
Abstract
Alternative splicing is the main driver of protein diversity and allows the production of different proteins from each gene in the genome. Changes in exon exclusion, intron retention or the use of alternative splice sites can alter protein structure, localisation, regulation and function. In the heart, alternative splicing of sarcomeric genes, ion channels and cell signalling proteins can lead to cardiomyopathies, arrhythmias and other pathologies. Also, a number of inherited conditions and heart-related diseases develop as a result of mutations affecting splicing. Here, we review the impact that changes in alternative splicing have on individual genes and on whole biological processes associated with heart disease. We also discuss promising therapeutic tools based on the manipulation of alternative splicing.
Collapse
|
48
|
Hayashi K, Morita T. Differences in the nuclear export mechanism between myocardin and myocardin-related transcription factor A. J Biol Chem 2013; 288:5743-55. [PMID: 23283978 PMCID: PMC3581383 DOI: 10.1074/jbc.m112.408120] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 12/09/2012] [Indexed: 02/05/2023] Open
Abstract
Myocardin (Mycd), a key factor in smooth muscle cell differentiation, is constitutively located in the nucleus, whereas myocardin-related transcription factors A and B (MRTF-A/B) reside mostly in the cytoplasm and translocate to the nucleus in a Rho-dependent manner. Here, we investigated the nuclear export of Mycd family members. They possess two leucine-rich sequences: L1 in the N terminus and L2 in the Gln-rich domain. Although L2 (but not L1) served as a CRM1-binding site for Mycd, CRM1-mediated nuclear export did not affect its subcellular localization. Serum response factor (SRF) competitively inhibited Mycd/CRM1 interaction. Furthermore, such interaction was autonomously inhibited. The N terminus of Mycd bound intramolecularly to Mycd, resulting in masking L2. In contrast, the CRM1-binding affinity of MRTF-A was much higher than that of Mycd because both L1 and L2 of MRTF-A served as functional CRM1-binding sites, and the autoinhibition observed in the Mycd/CRM1 interaction was absent in the MRTF-A/CRM1 interaction. Additionally, because the SRF-binding affinity of MRTF-A was lower than that of Mycd, the inhibitory effect of SRF on the MRTF-A/CRM1 interaction was weak. Thus, MRTF-A is much more likely to be exported from the nucleus. These differences could be the reason for the distinct subcellular localization of Mycd and MRTF-A.
Collapse
Affiliation(s)
- Ken'ichiro Hayashi
- Department of Neuroscience (D13), Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
49
|
Abstract
The field of heart transplantation has seen significant progress in the past 40 years. However, the breakthroughs in long-term outcome have seen stagnation in the past decade. Through advances in genomics and transcriptomics, there is hope that an era of personalized transplant therapy lies in the future. To see where heart transplantation truly fits into the long term, searching for and understanding the alternative approaches for heart failure therapy is both important and inevitable. The application of mechanical circulatory support has contributed to the largest advancement in treatment of end stage heart failure. It has already been approved for destination therapy of heart failure, and greater portability and ease of use of the device will be the future trend. Although it is still not prime time for stem cell therapy, clinical experiences have already suggested its potential therapeutic effects. And finally, whole organ engineering is on the horizon as new techniques have opened the way for this to proceed. In the end, progress on alternative therapies largely depends on our deeper understanding of the mechanisms of heart failure and how to prevent it.
Collapse
|
50
|
Ye J, Cardona M, Llovera M, Comella JX, Sanchis D. Translation of Myocyte Enhancer Factor-2 is induced by hypertrophic stimuli in cardiomyocytes through a Calcineurin-dependent pathway. J Mol Cell Cardiol 2012; 53:578-87. [DOI: 10.1016/j.yjmcc.2012.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 10/28/2022]
|