1
|
Liu M, Zhu Y, McIlwain SJ, Deng H, Brasier AR, Ge Y, Kimple ME, Baschnagel AM. Characterizing Plasma-Based Metabolomic Signatures for Metastasis in Non-Small Cell Lung Cancer. Metabolites 2025; 15:340. [PMID: 40422916 PMCID: PMC12113581 DOI: 10.3390/metabo15050340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 05/02/2025] [Accepted: 05/08/2025] [Indexed: 05/28/2025] Open
Abstract
Background/Objectives: The current staging of non-small cell lung cancer (NSCLC) relies on conventional imaging, which lacks the sensitivity to detect micrometastatic disease. The functional assessment of NSCLC progression may provide independent information to enhance the prediction of metastatic risk. The objective of this study was to determine if we could identify a metabolomic signature predictive of metastasis in patients with NSCLC treated with definitive radiation. Methods: Plasma samples were collected prospectively from patients enrolled in a clinical trial with non-metastatic NSCLC treated with definitive radiation. Metabolites were extracted, and mass spectrometry-based analysis was performed using a flow injection electrospray (FIE)-Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) method. Early metastasis was defined as metastasis within 1 year of radiation treatment. Results: The study cohort included 28 patients. FIE-FITCR produced highly reproducible profiles in technical replicates. A total of 51 metabolic features were identified to be different in patients with early metastasis compared to patients without early metastasis (all adjusted p-values < 0.05, Welch's t-test), including glycerophospholipids, sphingolipids, and fatty acyls. In the follow-up samples collected after the initiation of chemotherapy and radiation treatment, a total of 174 metabolic features were significantly altered in patients who developed early metastasis compared to those who did not. Conclusions: We identified several distinct changes in the metabolic profiles of patients with NSCLC who developed metastatic disease within 1 year of definitive radiation. These findings highlight the potential of metabolomic profiling as a predictive tool for assessing metastatic risk in NSCLC.
Collapse
Affiliation(s)
- Manlu Liu
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53726, USA;
| | - Yanlong Zhu
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53726, USA; (Y.Z.); (H.D.); (Y.G.)
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53726, USA;
| | - Sean J. McIlwain
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53726, USA;
| | - Haotian Deng
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53726, USA; (Y.Z.); (H.D.); (Y.G.)
| | - Allan R. Brasier
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53726, USA;
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53726, USA
| | - Ying Ge
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53726, USA; (Y.Z.); (H.D.); (Y.G.)
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53726, USA;
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michelle E. Kimple
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53726, USA; (Y.Z.); (H.D.); (Y.G.)
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53726, USA
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Andrew M. Baschnagel
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53726, USA;
- University of Wisconsin Carbone Cancer Center, Madison, WI 53792, USA
| |
Collapse
|
2
|
Akand SK, Rahman A, Masood M, Tabrez S, Saleem M, Ahmed MZ, Akhter Y, Haque MM, Rub A. hsa-miR-330-5p regulates serine palmitoyltransferase long chain base subunit 1 and augments host protective immune response against Leishmania donovani infection. Arch Microbiol 2025; 207:123. [PMID: 40237871 DOI: 10.1007/s00203-025-04325-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/09/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025]
Abstract
Leishmaniasis, caused by the protozoan parasites of the genus Leishmania, poses a significant global health challenge, particularly in the resource-limited regions where it causes high mortality. Regardless in the progress of treatment strategies, the emergence of drug resistance and limited efficacy requires the search of novel therapy and therapeutic targets. MicroRNAs, the crucial post-transcriptional regulators of gene expression, play critical roles in host-pathogen interactions. Here, we screened the miRNAs dysregulated during Leishmania donovani infection through literature search. hsa-miR-330-5p, one of the miRNAs which through human KEGG 2021 and Human Cyc 2016 analysis was found to be involved in multiple pathways including sphingolipid signaling pathway. Sphingolipids are important class of lipids involved in different cellular processes and therefore are the targets of many pathogens including Leishmania. hsa-miR-330-5p was found downregulated after 24 h of Leishmania donovani infection in THP-1 derived human macrophages. Target prediction of sphingolipid biosynthetic genes through in silico prediction tools showed 3/ UTR of serine palmitoyltransferase long chain base subunit 1 to be a target of hsa-miR-330-5p. The in silico target prediction of hsa-miR-330-5p was validated by cloning the 3/ UTR target sequence of gene, transfecting and performing luciferase assay in HEK 293 T cell line. Transfection of mimic of hsa-miR-330-5p reduced the luciferase activity which validated the in silico target prediction. Further, mimic of hsa-miR-330-5p inhibited the expression of the target gene, serine palmitoyltransferase long chain base subunit 1 and augmented the expression of pro-inflammatory cytokines in L. donovani infected THP-1 derived macrophages. Mimic of hsa-miR-330-5p also led to a significant reduction in the intracellular parasite burden in both THP-1 derived as well as primary human macrophages. This study has not only identified the sphingolipid biosynthesis regulatory miRNA but will also help in the development of novel and effective treatment strategy against leishmaniasis in future.
Collapse
Affiliation(s)
- Sajjadul Kadir Akand
- Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, 110025, India
| | - Areeba Rahman
- Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, 110025, India
| | - Mohammad Masood
- Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, 110025, India
| | - Shams Tabrez
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Mohammad Saleem
- Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Mohammad Z Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, 11451, Riyadh, Kingdom of Saudi Arabia
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
| | - Mohammad Mahfuzul Haque
- Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, 110025, India
| | - Abdur Rub
- Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, 110025, India.
| |
Collapse
|
3
|
Mao J, Li L, Sun H, Han J, Li J, Dong CS, Zhao H. Investigation of sphingolipid-related genes in lung adenocarcinoma. Front Mol Biosci 2025; 12:1548655. [PMID: 40182622 PMCID: PMC11966433 DOI: 10.3389/fmolb.2025.1548655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Background Lung adenocarcinoma (LUAD) is responsible for majority cases of lung cancer and considered to be the primary cause of cancer-related mortality. The imbalance of cellular proliferation and apoptosis is critically implicated in the pathogenesis and progression of LUAD. Sphingomyelin, a vital lipid component, is integral to the regulation of tumor cell growth and apoptosis, and has garnered significant attention as a target in novel anticancer therapies. The pivotal molecules involved in sphingomyelin metabolism are crucial in modulating tumor cell behavior, thereby influencing clinical outcomes. Methods A comprehensive consensus clustering analysis was conducted by collecting clinical LUAD figures from the TCGA and GEO databases. By employing Cox regression and Lasso regression analysis, a prognostic model for LUAD patients was established by identifying seven sphingolipid-related genes (SRGs), and validated in the GEO database. The study also delved into the clinical relevance, functional capabilities, and immune implications of prognostic signals associated with sphingolipid metabolism. Finally, experiments conducted in vitro confirmed the imbalance of sphingolipid-associated genes in LUAD. Results Using the prognostic model, lung adenocarcinoma (LUAD) patients can be divided into high-risk and low-risk groups. Meanwhile, we can observe marked disparities in survival times among these groups. Additionally, the model demonstrates high predictive accuracy in external validation cohorts. Research on the immune microenvironment and immunotherapy points to this risk stratification as a useful reference for immunotherapeutic strategies in LUAD. Finally, our hypothesis was corroborated through in vitro experiments. Conclusion This study demonstrates that sphingolipid-related gene prognostic characteristics correlate with tumor progression and recurrence, long-term prognosis, and immune infiltration in LUAD patients. The outcomes of our study could help shape innovative strategies for early intervention and prognosis prediction in lung adenocarcinoma.
Collapse
Affiliation(s)
- Jibin Mao
- Department of Radiation Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Li Li
- Department of Radiation Oncology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Hui Sun
- Department of Pathology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Jie Han
- Department of Radiation Oncology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Jinqiao Li
- Department of Radiation Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Chang-Sheng Dong
- Cancer Institute of Traditional Chinese Medicine/Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongyu Zhao
- Department of Radiation Oncology, The Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
4
|
Novi S, Caponigro V, Miranda MR, Aquino G, Carri MD, Salviati E, Franceschelli S, Sardo C, Basilicata MG, Vestuto V, Tecce MF, Marini F, Pepe G, Campiglia P, Manfra M. Metabolomics insights into the protective molecular mechanism of Vaccinium myrtillus against oxidative stress in intestinal cells. Sci Rep 2025; 15:8643. [PMID: 40082563 PMCID: PMC11906781 DOI: 10.1038/s41598-025-93722-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025] Open
Abstract
Blueberry (Vaccinium myrtillus L.) is a rich source of secondary metabolites known for their potent antioxidant, anti-inflammatory, and cytoprotective properties. These compounds are essential in neutralizing reactive oxygen species (ROS), which are implicated in oxidative stress-related diseases. In this study, we induced oxidative stress in IEC-6 small intestine cells using hydrogen peroxide (H2O2), creating a cellular model to investigate the biochemical response. The obtained results showed that a blueberry extract (BLUBE) significantly exhibited strong antioxidant capacity, as evidenced by DPPH, FRAP and ABTS in vitro tests. Additionally, BLUBE effectively inhibited the release of reactive species in cells and enhanced cytoprotective response, as indicated by improved wound healing and clonogenic potential reduction of stress fibers rearrangement and apoptosis. Metabolomic analysis, specifically High-Resolution Mass Spectrometry (HR-MS), was employed to elucidate the metabolic alterations associated with the protective activity of BLUBE against oxidative stress in IEC-6 cells. Chemometric approaches were applied to preprocess the data, explore variability, and identify systematic biases, ensuring the removal of batch effects and other experimental artifacts. A Partial Least Squares Discriminant Analysis classification model confirmed clear group stratifications with high accuracy (98.75 ± 2.31%), sensitivity, and specificity, aiding in the identification of significant metabolites for pathway enrichment analysis. Key metabolic pathways, including sphingolipid metabolism, taurine and hypotaurine metabolism, glycerophospholipid metabolism, and cysteine and methionine metabolism, were significantly modulated, supporting the biochemical basis of BLUBE's protective effects. In fact, BLUBE was able to partially reverse the downregulation of these pathways, effectively reducing oxidative stress and promoting cell survival. This study highlights the power of HR-MS-based metabolomics in uncovering the mechanisms of nutraceuticals and emphasizes the potential of BLUBE as a protective agent for oxidative stress-related diseases. It also underscores the growing significance of metabolomics in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Sara Novi
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084, Fisciano, Salerno, Italy
| | - Vicky Caponigro
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084, Fisciano, Salerno, Italy
| | - Maria Rosaria Miranda
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084, Fisciano, Salerno, Italy
- Drug Discovery and Development, University of Salerno, 84084, Fisciano, Salerno, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Giovanna Aquino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084, Fisciano, Salerno, Italy
- Drug Discovery and Development, University of Salerno, 84084, Fisciano, Salerno, Italy
| | - Matteo Delli Carri
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084, Fisciano, Salerno, Italy
- Drug Discovery and Development, University of Salerno, 84084, Fisciano, Salerno, Italy
| | - Emanuela Salviati
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084, Fisciano, Salerno, Italy
| | - Silvia Franceschelli
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084, Fisciano, Salerno, Italy
| | - Carla Sardo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084, Fisciano, Salerno, Italy
| | - Manuela Giovanna Basilicata
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084, Fisciano, Salerno, Italy.
| | - Mario Felice Tecce
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084, Fisciano, Salerno, Italy
| | - Federico Marini
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084, Fisciano, Salerno, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084, Fisciano, Salerno, Italy
| | - Michele Manfra
- Department Health Science, University of Basilicata, Viale dell'Ateneo Lucano, 85100, Potenza, Italy
| |
Collapse
|
5
|
Panda P, Ferreira CR, Cooper BR, Schaser AJ, Aryal UK. Multiplatform Lipid Analysis of the Brain of Aging Mice by Mass Spectrometry. J Proteome Res 2025; 24:1077-1091. [PMID: 39921647 DOI: 10.1021/acs.jproteome.4c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
Lipids are critical to brain structure and function, accounting for approximately 50% of its dry weight. However, the impact of aging on brain lipids remains poorly characterized. To address this, here we applied three complementary mass spectrometry techniques: multiple reaction monitoring (MRM) profiling, untargeted liquid chromatography tandem mass spectrometry (LC-MS/MS), and desorption electrospray ionization-MS imaging (DESI-MSI). We used brains from mice of three age groups: adult (3-4 months), middle-aged (10 months), and old (19-21 months). Phospholipids such as phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol were more abundant, while phosphatidylinositol and phosphatidylserine were reduced in old mice compared to adults or middle-aged mice. Key lipids such as polyunsaturated fatty acids, including DHA, AA, HexCer, SHexCer, and SM, were among the most abundant lipids in aged brains. DESI-MSI revealed spatial lipid distribution patterns consistent with findings from MRM profiling and LC-MS/MS. Integration of lipidomic data with the recently published proteomics data from the same tissues highlighted changes in proteins and phosphorylation levels of several proteins associated with Cer, HexCer, FA, PI, SM, and SHexCer metabolism, aligning with the multiplatform lipid surveillance. These findings shed insight into age-dependent brain lipid changes and their potential contribution to age-related cognitive decline.
Collapse
Affiliation(s)
- Punyatoya Panda
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christina R Ferreira
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Bruce R Cooper
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Allison J Schaser
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Uma K Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
Crotta Asis A, Asaro A, D'Angelo G. Single cell lipid biology. Trends Cell Biol 2025:S0962-8924(24)00255-1. [PMID: 39814618 DOI: 10.1016/j.tcb.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/18/2025]
Abstract
Lipids are major cell constituents endowed with astonishing structural diversity. The pathways responsible for the assembly and disposal of different lipid species are energetically demanding, and genes encoding lipid metabolic factors and lipid-related proteins comprise a sizable fraction of our coding genome. Despite the importance of lipids, the biological significance of lipid structural diversity remains largely obscure. Recent technological developments have enabled extensive lipid analysis at the single cell level, revealing unexpected cell-cell variability in lipid composition. This new evidence suggests that lipid diversity is exploited in multicellularity and that lipids have a role in the establishment and maintenance of cell identity. In this review, we highlight the emerging concepts and technologies in single cell lipid analysis and the implications of this research for future studies.
Collapse
Affiliation(s)
- Agostina Crotta Asis
- Institute of Bioengineering (IBI) and Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Antonino Asaro
- Institute of Bioengineering (IBI) and Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Giovanni D'Angelo
- Institute of Bioengineering (IBI) and Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
7
|
Luo S, Liu J, Shi K, Zhang J, Wang Z. Integrated transcriptomic and metabolomic analyses reveal that MsSPHK1 - A sphingosine kinase gene negatively regulates drought tolerance in alfalfa (Medicago sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 218:109302. [PMID: 39579717 DOI: 10.1016/j.plaphy.2024.109302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024]
Abstract
Alfalfa is a valuable forage crop but voluntarily affected by drought. Understanding the mechanisms of drought resistance in alfalfa is crucial for improving resilient cultivars. In our study, we used four distinct alfalfa accessions two drought-tolerance (DT) and two drought-sensitive (DS) and identified transcriptional modules and candidate genes associated with the drought tolerance in the DS from transcriptomic analyses. Our metabolic profiling of 520 metabolites revealed significant variations between the DS and DT groups, particularly in the levels of flavonoids and nucleotides and their derivatives. The integrated analysis of transcriptome and metabolome analysis revealed that the glycine, serine, and threonine metabolism and the sphingolipid metabolism are associated with the drought resistance. When drought stress occurs, MsSRR (MsG 0180002649.01) and MsSPHK1 (MsG 0280006618.01) are significantly up-regulated, L-serine and dihydrosphingosine (DHS) significantly down-regulated in DS. By silencing the MsSPHK1 gene we found the drought resistance was significantly improved. This was evidenced by a significant increase in the activity of antioxidant enzymes such as SOD, POD, and CAT, compared to the control group. Additionally, the photosynthetic rate, stomatal conductance, and efficiency of photosystem II measured by Fv/Fm, phi2 and qL, were significantly higher in the silenced plants than in the control group. In conclusion, our results suggest that the increased level of dihydrosphingosine improves alfalfa resistance to drought stress. Moreover, the negative regulatory role of MsSPHK1 in drought tolerance provides a promising target for genetic manipulation to enhance the resilience of alfalfa to drought stress.
Collapse
Affiliation(s)
- Shengze Luo
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jia Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Kun Shi
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinli Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zan Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Fraser K, James SC, Young W, Gearry RB, Heenan PE, Keenan JI, Talley NJ, McNabb WC, Roy NC. Characterisation of the Plasma and Faecal Metabolomes in Participants with Functional Gastrointestinal Disorders. Int J Mol Sci 2024; 25:13465. [PMID: 39769229 PMCID: PMC11677738 DOI: 10.3390/ijms252413465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
There is evidence of perturbed microbial and host processes in the gastrointestinal tract of individuals with functional gastrointestinal disorders (FGID) compared to healthy controls. The faecal metabolome provides insight into the metabolic processes localised to the intestinal tract, while the plasma metabolome highlights the overall perturbances of host and/or microbial responses. This study profiled the faecal (n = 221) and plasma (n = 206) metabolomes of individuals with functional constipation (FC), constipation-predominant irritable bowel syndrome (IBS-C), functional diarrhoea (FD), diarrhoea-predominant IBS (IBS-D) and healthy controls (identified using the Rome Criteria IV) using multimodal LC-MS technologies. Discriminant analysis separated patients with the 'all constipation' group (FC and IBS-C) from the healthy control group and 'all diarrhoea' group (FD and IBS-D) from the healthy control group in both sample types. In plasma, almost all multimodal metabolite analyses separated the 'all constipation' or 'all diarrhoea' group from the healthy controls, and the IBS-C or IBS-D group from the healthy control group. Plasma phospholipids and metabolites linked to several amino acid and nucleoside pathways differed (p < 0.05) between healthy controls and IBS-C. In contrast, metabolites involved in bile acid and amino acid metabolism were the key differentiating classes in the plasma of subjects with IBS-D from healthy controls. Faecal lipids, particularly ceramides, diglycerides, and triglycerides, varied (p < 0.05) between healthy controls and the 'all constipation' group and between healthy controls and 'all diarrhoea' group. The faecal and plasma metabolomes showed perturbations between constipation, diarrhoea and healthy control groups that may reflect processes and mechanisms linked to FGIDs.
Collapse
Affiliation(s)
- Karl Fraser
- AgResearch, Tennent Drive, Palmerston North 4442, New Zealand
- The Riddet Institute, Massey University, Palmerston North 4474, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Shanalee C. James
- AgResearch, Tennent Drive, Palmerston North 4442, New Zealand
- The Riddet Institute, Massey University, Palmerston North 4474, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
- School of Food and Advanced Technology, Massey University, Palmerston North 4472, New Zealand
| | - Wayne Young
- AgResearch, Tennent Drive, Palmerston North 4442, New Zealand
- The Riddet Institute, Massey University, Palmerston North 4474, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Richard B. Gearry
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
- Department of Medicine, University of Otago, Christchurch 8011, New Zealand
| | - Phoebe E. Heenan
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
- Department of Medicine, University of Otago, Christchurch 8011, New Zealand
| | | | - Nicholas J. Talley
- School of Medicine and Public Health, The University of Newcastle, Callaghan, Newcastle 2308, Australia
| | - Warren C. McNabb
- The Riddet Institute, Massey University, Palmerston North 4474, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Nicole C. Roy
- The Riddet Institute, Massey University, Palmerston North 4474, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
- Department of Human Nutrition, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
9
|
Rahman MM, Kraft C, Clark C, Nicholson RJ, Marchetti M, Williams E, Zhang C, Holland WL, Summers SA, Edgar BA. Bwa, an ortholog of alkaline ceramidase-ACER2, promotes intestinal stem cell proliferation through pro-inflammatory cytokine signaling in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.624044. [PMID: 39651270 PMCID: PMC11623631 DOI: 10.1101/2024.11.26.624044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Sphingolipids, including ceramides, are an important component of high-fat diets. These molecules can regulate fatty acid oxidation and intestinal stem cell proliferation, predisposing the gut to tumorigenesis. However, the molecular mechanisms involved in ceramide metabolism-mediated intestinal stem cell (ISC) proliferation and tumorigenesis are poorly understood. To understand how changes in sphingolipid metabolite flux affect intestinal stem cells, we manipulated the activities of each of the enzymes of the ceramide synthetic pathway using cell type-specific over-expression or depletion of the corresponding mRNAs in each intestinal cell type of the Drosophila midgut. We documented cell-autonomous and non-cell-autonomous effects, including alterations in cell size, number, differentiation, and proliferation. In our screen, the altered expression of several ceramide metabolism enzymes led to changes in ISC proliferation, cell sizes, and overall cellularity. Among other genes, over-expression of ceramidase homolog, Brain washing (bwa) in gut enteroblasts (EB) increased EB cell size and caused a non-cell-autonomous, 7-8-fold increase in ISC proliferation. Our analysis confirmed previous reports that bwa does not have ceramidase activity, and lipidomic studies indicated that bwa increases the saturation status of sphingolipids, free fatty acids, and other lipids. The pro-proliferative effects of bwa could be counter-acted by depleting a serine palmitoyltransferase, Lace , or a sphingosine acyltransferase, Schlank , which are needed for ceramide synthesis, or by co-expressing a ceramide desaturase enzyme, ifc , indicating that increased saturated ceramides were causal for ISC proliferation and the disruption of gut homeostasis. Accumulating saturated sphingolipids and fatty acids induced inflammatory signaling in the gut, and activated ISC proliferation through the pro-inflammatory cytokines, Upd3 and Upd2. We propose that saturated sphingolipids promote ISC proliferation through pro-inflammatory pathways.
Collapse
|
10
|
Erdoğan M, Comert Onder F. Synthesis, anticancer activity and molecular modeling study of novel substituted triazole linked tetrafluoronaphthalene hybrid derivatives. J Biomol Struct Dyn 2024; 42:9767-9786. [PMID: 37676264 DOI: 10.1080/07391102.2023.2252914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
To create some novel anticancer molecules, a library of novel series of various triazoles linked to the hydroxyl group of 5,6,7,8-tetrafluoronaphthalen-1-ol (3) was designed and synthesized via CuAAC reaction 'Click Chemistry' of tetrafluoronaphthalene based terminal alkyne with substituted organic azides. The structural characterizations of the targeted Click products 9-18 were confirmed by FTIR, 1H NMR, 19F NMR, 13C NMR and HRMS spectroscopy. Synthesized compounds were tested in two triple negative breast cancer (TNBC) cell lines to understand their anticancer potentials. According to our findings, compounds 14 and 13 showed high cytotoxicity in BT549 cells at 20 μM and 30 μM, respectively. Moreover, these compounds blocked the migration of BT549 cells. In the MDA-MB-231 cell line, compound 18 exhibited high cytotoxicity and can block cell migration for 24 h. Molecular docking study with synthesized novel compounds was performed by Glide/SP method against SphK1 drug target. Furthermore, molecular dynamics (MD) simulation was carried out for the compounds 12-14 and 18. The compounds 13 and 14 may be potential inhibitor candidates in place of a reference inhibitor. A pharmacophore model was generated with the most potent compound 14, and the approved drugs were screened using the modules of Discovery Studio to find similar drugs. Consequently, this comprehensive study encompassing design, synthesis, in vitro and in silico analyses were correlated with the structure-activity relationship between compounds. The findings have the potential to unveil promising drug candidates for future studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Musa Erdoğan
- Department of Food Engineering, Faculty of Engineering and Architecture, Kafkas University, Kars, Türkiye
| | - Ferah Comert Onder
- Department of Medical Biology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| |
Collapse
|
11
|
Bisht M, Kadian JP, Hooda T, Jain N, Lather A, Aggarwal N. Explore the Role of the Sphingosine-1-Phosphate Signalling as a Novel Promising Therapeutic Target for the Management of Parkinson's Disease. Drug Res (Stuttg) 2024; 74:365-378. [PMID: 39353579 DOI: 10.1055/a-2401-4578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Sphingosine-1-phosphate (S1P) is a cellular signalling molecule derived from sphingosine, which is a pro-apoptotic sphingolipid. Sphingolipids control various cellular actions like growth, homeostasis, and stress-related responses. The main sources of S1P in our body are erythrocytes. S1P controls both cellular mediators and other second messengers intracellularly. The S1P receptor also helps in inflammatory and neuroprotective effects (required to manage of Parkinson's). A large number of anti-Parkinson drugs are available, but still, there is a need for more effective and safer drugs. S1P and its receptors could be targeted as novel drugs due to their involvement in neuro-inflammation and Parkinson's. The present review effort to explore the biological role of S1P and related receptors, for their possible involvement in PD; furthermore. Overall, S1P and other related metabolizing enzymes have significant therapeutic opportunities for Parkinson's disease along with other neurological disorders.
Collapse
Affiliation(s)
- Manoj Bisht
- Devasthali Vidyapeeth College of Pharmacy, Rudrapur, Uttarakhand, India
| | - Jai Parkash Kadian
- Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh (Saharanpur)- UP India
| | - Tanuj Hooda
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India
| | - Neelam Jain
- Department of Pharmaceutical Education & Research, Bhagat Phool Singh Mahila Vishwavidyalaya, Khanpur Kalan, Sonepat, Haryana, India
| | - Amit Lather
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India
| | - Navidha Aggarwal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India
| |
Collapse
|
12
|
Xu F, Li G, He S, Zeng Z, Wang Q, Zhang H, Yan X, Hu Y, Tian H, Luo M. Sphingolipid inhibitor response gene GhMYB86 controls fiber elongation by regulating microtubule arrangement. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1898-1914. [PMID: 38995105 DOI: 10.1111/jipb.13740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
Although the cell membrane and cytoskeleton play essential roles in cellular morphogenesis, the interaction between the membrane and cytoskeleton is poorly understood. Cotton fibers are extremely elongated single cells, which makes them an ideal model for studying cell development. Here, we used the sphingolipid biosynthesis inhibitor, fumonisin B1 (FB1), and found that it effectively suppressed the myeloblastosis (MYB) transcription factor GhMYB86, thereby negatively affecting fiber elongation. A direct target of GhMYB86 is GhTUB7, which encodes the tubulin protein, the major component of the microtubule cytoskeleton. Interestingly, both the overexpression of GhMYB86 and GhTUB7 caused an ectopic microtubule arrangement at the fiber tips, and then leading to shortened fibers. Moreover, we found that GhMBE2 interacted with GhMYB86 and that FB1 and reactive oxygen species induced its transport into the nucleus, thereby enhancing the promotion of GhTUB7 by GhMYB86. Overall, we established a GhMBE2-GhMYB86-GhTUB7 regulation module for fiber elongation and revealed that membrane sphingolipids affect fiber elongation by altering microtubule arrangement.
Collapse
Affiliation(s)
- Fan Xu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Guiming Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Shengyang He
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Dianjiang No.1 Middle School of Chongqing, Chongqing, 408300, China
| | - Zhifeng Zeng
- Yushan No.1 Senior High School, Shangrao, 334700, China
| | - Qiaoling Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Hongju Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Xingying Yan
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Yulin Hu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Huidan Tian
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Ming Luo
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400715, China
| |
Collapse
|
13
|
Simphor E, Rognon A, Vignal E, Henry S, Allienne JF, Turtoi A, Chaparro C, Galinier R, Duval D, Gourbal B. Combining a transcriptomic approach and a targeted metabolomics approach for deciphering the molecular bases of compatibility phenotype in the snail Biomphalaria glabrata toward Schistosoma mansoni. Acta Trop 2024; 255:107212. [PMID: 38641222 DOI: 10.1016/j.actatropica.2024.107212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
Biomphalaria glabrata is a freshwater snail and the obligatory intermediate host of Schistosoma mansoni parasite, the etiologic agent of intestinal Schistosomiasis, in South America and Caribbean. Interestingly in such host-parasite interactions, compatibility varies between populations, strains or individuals. This observed compatibility polymorphism is based on a complex molecular-matching-phenotype, the molecular bases of which have been investigated in numerous studies, notably by comparing between different strains or geographical isolates or clonal selected snail lines. Herein we propose to decipher the constitutive molecular support of this interaction in selected non-clonal resistant and susceptible snail strain originating from the same natural population from Brazil and thus having the same genetic background. Thanks to a global RNAseq transcriptomic approach on whole snail, we identified a total of 328 differentially expressed genes between resistant and susceptible phenotypes among which 129 were up-regulated and 199 down-regulated. Metabolomic studies were used to corroborate the RNAseq results. The activation of immune genes and specific metabolic pathways in resistant snails might provide them with the capacity to better respond to parasite infection.
Collapse
Affiliation(s)
- Elodie Simphor
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan via Domitia, Perpignan, France
| | - Anne Rognon
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan via Domitia, Perpignan, France
| | - Emmanuel Vignal
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan via Domitia, Perpignan, France
| | - Sylvain Henry
- Platform for Translational Oncometabolomics, Biocampus, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | | | - Andrei Turtoi
- Platform for Translational Oncometabolomics, Biocampus, CNRS, INSERM, Université de Montpellier, Montpellier, France; Tumor Microenvironment and Resistance to Therapy Laboratory, Institut de Recherche en Cancérologie de Montpellier, Université de Montpellier, INSERM, U1194, Montpellier, France
| | - Cristian Chaparro
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan via Domitia, Perpignan, France
| | - Richard Galinier
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan via Domitia, Perpignan, France
| | - David Duval
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan via Domitia, Perpignan, France
| | - Benjamin Gourbal
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan via Domitia, Perpignan, France.
| |
Collapse
|
14
|
Hua H, Wang Y, Wang X, Wang S, Zhou Y, Liu Y, Liang Z, Ren H, Lu S, Wu S, Jiang Y, Pu Y, Zheng X, Tang C, Shen Z, Li C, Du Y, Deng H. Remodeling ceramide homeostasis promotes functional maturation of human pluripotent stem cell-derived β cells. Cell Stem Cell 2024; 31:850-865.e10. [PMID: 38697109 DOI: 10.1016/j.stem.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/21/2024] [Accepted: 04/12/2024] [Indexed: 05/04/2024]
Abstract
Human pluripotent stem cell-derived β cells (hPSC-β cells) show the potential to restore euglycemia. However, the immature functionality of hPSC-β cells has limited their efficacy in application. Here, by deciphering the continuous maturation process of hPSC-β cells post transplantation via single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq), we show that functional maturation of hPSC-β cells is an orderly multistep process during which cells sequentially undergo metabolic adaption, removal of negative regulators of cell function, and establishment of a more specialized transcriptome and epigenome. Importantly, remodeling lipid metabolism, especially downregulating the metabolic activity of ceramides, the central hub of sphingolipid metabolism, is critical for β cell maturation. Limiting intracellular accumulation of ceramides in hPSC-β cells remarkably enhanced their function, as indicated by improvements in insulin processing and glucose-stimulated insulin secretion. In summary, our findings provide insights into the maturation of human pancreatic β cells and highlight the importance of ceramide homeostasis in function acquisition.
Collapse
Affiliation(s)
- Huijuan Hua
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yaqi Wang
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China
| | | | - Shusen Wang
- Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Yunlu Zhou
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yinan Liu
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhen Liang
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Huixia Ren
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Sufang Lu
- Hangzhou Reprogenix Bioscience, Hangzhou, China
| | | | - Yong Jiang
- Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Yue Pu
- Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Xiang Zheng
- Hangzhou Repugene Technology, Hangzhou, China
| | - Chao Tang
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhongyang Shen
- Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Cheng Li
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China.
| | - Yuanyuan Du
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Hongkui Deng
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; Changping Laboratory, Beijing, China.
| |
Collapse
|
15
|
Zhu C, Sun J, Tian F, Tian X, Liu Q, Pan Y, Zhang Y, Luo Z. The Bbotf1 Zn(Ⅱ) 2Cys 6 transcription factor contributes to antioxidant response, fatty acid assimilation, peroxisome proliferation and infection cycles in insect pathogenic fungus Beauveria bassiana. J Invertebr Pathol 2024; 204:108083. [PMID: 38458350 DOI: 10.1016/j.jip.2024.108083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/30/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
The abilities to withstand oxidation and assimilate fatty acids are critical for successful infection by many pathogenic fungi. Here, we characterized a Zn(II)2Cys6 transcription factor Bbotf1 in the insect pathogenic fungus Beauveria bassiana, which links oxidative response and fatty acid assimilation via regulating peroxisome proliferation. The null mutant ΔBbotf1 showed impaired resistance to oxidants, accompanied by decreased activities of antioxidant enzymes including CATs, PODs and SODs, and down-regulated expression of many antioxidation-associated genes under oxidative stress condition. Meanwhile, Bbotf1 acts as an activator to regulate fatty acid assimilation, lipid and iron homeostasis as well as peroxisome proliferation and localization, and the expressions of some critical genes related to glyoxylate cycle and peroxins were down-regulated in ΔBbotf1 in presence of oleic acid. In addition, ΔBbotf1 was more sensitive to osmotic stressors, CFW, SDS and LDS. Insect bioassays revealed that insignificant changes in virulence were seen between the null mutant and parent strain when conidia produced on CZP plates were used for topical application. However, propagules recovered from cadavers killed by ΔBbotf1 exhibited impaired virulence as compared with counterparts of the parent strain. These data offer a novel insight into fine-tuned aspects of Bbotf1 concerning multi-stress responses, lipid catabolism and infection cycles.
Collapse
Affiliation(s)
- Chenhua Zhu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jingxin Sun
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Fangfang Tian
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Xinting Tian
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Qi Liu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yunxia Pan
- College of Engineering and Technology, Southwest University, Chongqing 400715, China
| | - Yongjun Zhang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Zhibing Luo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
16
|
Magalhães DM, Stewart NA, Mampay M, Rolle SO, Hall CM, Moeendarbary E, Flint MS, Sebastião AM, Valente CA, Dymond MK, Sheridan GK. The sphingosine 1-phosphate analogue, FTY720, modulates the lipidomic signature of the mouse hippocampus. J Neurochem 2024; 168:1113-1142. [PMID: 38339785 DOI: 10.1111/jnc.16073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/27/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
The small-molecule drug, FTY720 (fingolimod), is a synthetic sphingosine 1-phosphate (S1P) analogue currently used to treat relapsing-remitting multiple sclerosis in both adults and children. FTY720 can cross the blood-brain barrier (BBB) and, over time, accumulate in lipid-rich areas of the central nervous system (CNS) by incorporating into phospholipid membranes. FTY720 has been shown to enhance cell membrane fluidity, which can modulate the functions of glial cells and neuronal populations involved in regulating behaviour. Moreover, direct modulation of S1P receptor-mediated lipid signalling by FTY720 can impact homeostatic CNS physiology, including neurotransmitter release probability, the biophysical properties of synaptic membranes, ion channel and transmembrane receptor kinetics, and synaptic plasticity mechanisms. The aim of this study was to investigate how chronic FTY720 treatment alters the lipid composition of CNS tissue in adolescent mice at a key stage of brain maturation. We focused on the hippocampus, a brain region known to be important for learning, memory, and the processing of sensory and emotional stimuli. Using mass spectrometry-based lipidomics, we discovered that FTY720 increases the fatty acid chain length of hydroxy-phosphatidylcholine (PCOH) lipids in the mouse hippocampus. It also decreases PCOH monounsaturated fatty acids (MUFAs) and increases PCOH polyunsaturated fatty acids (PUFAs). A total of 99 lipid species were up-regulated in the mouse hippocampus following 3 weeks of oral FTY720 exposure, whereas only 3 lipid species were down-regulated. FTY720 also modulated anxiety-like behaviours in young mice but did not affect spatial learning or memory formation. Our study presents a comprehensive overview of the lipid classes and lipid species that are altered in the hippocampus following chronic FTY720 exposure and provides novel insight into cellular and molecular mechanisms that may underlie the therapeutic or adverse effects of FTY720 in the central nervous system.
Collapse
Affiliation(s)
- Daniela M Magalhães
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Lisboa, Portugal
- School of Applied Sciences, University of Brighton, Brighton, UK
| | | | - Myrthe Mampay
- School of Applied Sciences, University of Brighton, Brighton, UK
| | - Sara O Rolle
- Green Templeton College, University of Oxford, Oxford, UK
| | - Chloe M Hall
- School of Applied Sciences, University of Brighton, Brighton, UK
- Department of Mechanical Engineering, University College London, London, UK
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, London, UK
- 199 Biotechnologies Ltd, London, UK
| | - Melanie S Flint
- School of Applied Sciences, University of Brighton, Brighton, UK
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Lisboa, Portugal
| | - Cláudia A Valente
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Lisboa, Portugal
| | - Marcus K Dymond
- School of Applied Sciences, University of Brighton, Brighton, UK
| | | |
Collapse
|
17
|
Siemeling O, Slingerland S, van der Zee S, van Laar T. Study protocol of the GRoningen early-PD Ambroxol treatment (GREAT) trial: a randomized, double-blind, placebo-controlled, single center trial with ambroxol in Parkinson patients with a GBA mutation. BMC Neurol 2024; 24:146. [PMID: 38693511 PMCID: PMC11061939 DOI: 10.1186/s12883-024-03629-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/08/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND To date, no disease modifying therapies are available for Parkinson's disease (PD). Since PD is the second most prevalent neurodegenerative disorder, there is a high demand for such therapies. Both environmental and genetic risk factors play an important role in the etiology and progression of PD. The most common genetic risk factor for PD is a mutation in the GBA1(GBA)-gene, encoding the lysosomal enzyme glucocerebrosidase (GCase). The mucolytic ambroxol is a repurposed drug, which has shown the property to upregulate GCase activity in-vitro and in-vivo. Ambroxol therefore has the potency to become a disease modifying therapy in PD, which was the reason to design this randomized controlled trial with ambroxol in PD patients. METHODS This trial is a single-center, double-blind, randomized, placebo-controlled study, including 80 PD patients with a GBA mutation, receiving either ambroxol 1800 mg/day or placebo for 48 weeks. The primary outcome measure is the Unified Parkinson's Disease Rating Scale motor subscore (part III) of the Movement Disorder Society (MDS-UPDRSIII) in the practically defined off-state at 60 weeks (after a 12-week washout period). Secondary outcomes include a 3,4-dihydroxy-6-18F-fluoro-I-phenylalanine ([18F]FDOPA) PET-scan of the brain, Magnetic Resonance Imaging (with resting state f-MRI and Diffusion Tensor Imaging), GCase activity, both intra- and extracellularly, sphingolipid profiles in plasma, Montreal Cognitive Assessment (MoCA), quality of life (QoL) measured by the Parkinson's Disease Questionnaire (PDQ-39) and the Non-Motor Symptom Scale (NMSS) questionnaire. DISCUSSION Ambroxol up to 1200 mg/day has shown effects on human cerebrospinal fluid endpoints, which supports at least passage of the blood-brain-barrier. The dose titration in this trial up to 1800 mg/day will reveal if this dose level is safe and also effective in modifying the course of the disease. TRIAL REGISTRATION NCT05830396. Registration date: March 20, 2023.
Collapse
Affiliation(s)
- O Siemeling
- Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands.
- Parkinson Expertise Center Groningen, Groningen, The Netherlands.
| | - S Slingerland
- Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands
- Parkinson Expertise Center Groningen, Groningen, The Netherlands
| | - S van der Zee
- Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands
- Parkinson Expertise Center Groningen, Groningen, The Netherlands
| | - T van Laar
- Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands
- Parkinson Expertise Center Groningen, Groningen, The Netherlands
| |
Collapse
|
18
|
Iyer K, Yan Z, Ross SR. Entry inhibitors as arenavirus antivirals. Front Microbiol 2024; 15:1382953. [PMID: 38650890 PMCID: PMC11033450 DOI: 10.3389/fmicb.2024.1382953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Arenaviruses belonging to the Arenaviridae family, genus mammarenavirus, are enveloped, single-stranded RNA viruses primarily found in rodent species, that cause severe hemorrhagic fever in humans. With high mortality rates and limited treatment options, the search for effective antivirals is imperative. Current treatments, notably ribavirin and other nucleoside inhibitors, are only partially effective and have significant side effects. The high lethality and lack of treatment, coupled with the absence of vaccines for all but Junín virus, has led to the classification of these viruses as Category A pathogens by the Centers for Disease Control (CDC). This review focuses on entry inhibitors as potential therapeutics against mammarenaviruses, which include both New World and Old World arenaviruses. Various entry inhibition strategies, including small molecule inhibitors and neutralizing antibodies, have been explored through high throughput screening, genome-wide studies, and drug repurposing. Notable progress has been made in identifying molecules that target receptor binding, internalization, or fusion steps. Despite promising preclinical results, the translation of entry inhibitors to approved human therapeutics has faced challenges. Many have only been tested in in vitro or animal models, and a number of candidates showed efficacy only against specific arenaviruses, limiting their broader applicability. The widespread existence of arenaviruses in various rodent species and their potential for their zoonotic transmission also underscores the need for rapid development and deployment of successful pan-arenavirus therapeutics. The diverse pool of candidate molecules in the pipeline provides hope for the eventual discovery of a broadly effective arenavirus antiviral.
Collapse
Affiliation(s)
| | | | - Susan R. Ross
- Department of Microbiology and Immunology, University of Illinois, College of Medicine, Chicago, IL, United States
| |
Collapse
|
19
|
Chen Y, Wu J, Ma C, Zhang D, Zhou D, Zhang J, Yan M. Metabolome and transcriptome analyses reveal changes of rapeseed in response to ABA signal during early seedling development. BMC PLANT BIOLOGY 2024; 24:245. [PMID: 38575879 PMCID: PMC11000593 DOI: 10.1186/s12870-024-04918-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/17/2024] [Indexed: 04/06/2024]
Abstract
Seed germination is an important development process in plant growth. The phytohormone abscisic acid (ABA) plays a critical role during seed germination. However, the mechanism of rapeseed in response to ABA is still elusive. In order to understand changes of rapeseed under exogenous ABA treatment, we explored differentially expressed metabolites (DEMs) and the differentially expressed genes (DEGs) between mock- and ABA-treated seedlings. A widely targeted LC-MS/MS based metabolomics were used to identify and quantify metabolic changes in response to ABA during seed germination, and a total of 186 significantly DEMs were identified. There are many compounds which are involved in ABA stimuli, especially some specific ABA transportation-related metabolites such as starches and lipids were screened out. Meanwhile, a total of 4440 significantly DEGs were identified by transcriptomic analyses. There was a significant enrichment of DEGs related to phenylpropanoid and cell wall organization. It suggests that exogenous ABA mainly affects seed germination by regulating cell wall loosening. Finally, the correlation analysis of the key DEMs and DEGs indicates that many DEGs play a direct or indirect regulatory role in DEMs metabolism. The integrative analysis between DEGs and DEMs suggests that the starch and sucrose pathways were the key pathway in ABA responses. The two metabolites from starch and sucrose pathways, levan and cellobiose, both were found significantly down-regulated in ABA-treated seedlings. These comprehensive metabolic and transcript analyses provide useful information for the subsequent post-transcriptional modification and post germination growth of rapeseed in response to ABA signals and stresses.
Collapse
Affiliation(s)
- Yaqian Chen
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Jinfeng Wu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China.
- Yuelushan Laboratory, Changsha, 410125, China.
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Changrui Ma
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Dawei Zhang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China
- Yuelushan Laboratory, Changsha, 410125, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Dinggang Zhou
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China
- Yuelushan Laboratory, Changsha, 410125, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Jihong Zhang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Mingli Yan
- Yuelushan Laboratory, Changsha, 410125, China.
- Hunan Research Center of Heterosis Utilization in Rapeseed, Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| |
Collapse
|
20
|
Fougère L, Mongrand S, Boutté Y. The function of sphingolipids in membrane trafficking and cell signaling in plants, in comparison with yeast and animal cells. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159463. [PMID: 38281556 DOI: 10.1016/j.bbalip.2024.159463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Sphingolipids are essential membrane components involved in a wide range of cellular, developmental and signaling processes. Sphingolipids are so essential that knock-out mutation often leads to lethality. In recent years, conditional or weak allele mutants as well as the broadening of the pharmacological catalog allowed to decipher sphingolipid function more precisely in a less invasive way. This review intends to provide a discussion and point of view on the function of sphingolipids with a main focus on endomembrane trafficking, Golgi-mediated protein sorting, cell polarity, cell-to-cell communication and cell signaling at the plasma membrane. While our main angle is the plant field research, we will constantly refer to and compare with the advances made in the yeast and animal field. In this review, we will emphasize the role of sphingolipids not only as a membrane component, but also as a key player at a center of homeostatic regulatory networks involving direct or indirect interaction with other lipids, proteins and ion fluxes.
Collapse
Affiliation(s)
- Louise Fougère
- Laboratoire de Biogenèse Membranaire, Univ. Bordeaux, UMR 5200 CNRS, Villenave d'Ornon, France
| | - Sebastien Mongrand
- Laboratoire de Biogenèse Membranaire, Univ. Bordeaux, UMR 5200 CNRS, Villenave d'Ornon, France
| | - Yohann Boutté
- Laboratoire de Biogenèse Membranaire, Univ. Bordeaux, UMR 5200 CNRS, Villenave d'Ornon, France.
| |
Collapse
|
21
|
Xie T, Dong F, Han G, Wu X, Liu P, Zhang Z, Zhong J, Niranjanakumari S, Gable K, Gupta SD, Liu W, Harrison PJ, Campopiano DJ, Dunn TM, Gong X. Collaborative regulation of yeast SPT-Orm2 complex by phosphorylation and ceramide. Cell Rep 2024; 43:113717. [PMID: 38285738 DOI: 10.1016/j.celrep.2024.113717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/14/2023] [Accepted: 01/12/2024] [Indexed: 01/31/2024] Open
Abstract
The homeostatic regulation of serine palmitoyltransferase (SPT) activity in yeast involves N-terminal phosphorylation of Orm proteins, while higher eukaryotes lack these phosphorylation sites. Although recent studies have indicated a conserved ceramide-mediated feedback inhibition of the SPT-ORM/ORMDL complex in higher eukaryotes, its conservation and relationship with phosphorylation regulation in yeast remain unclear. Here, we determine the structure of the yeast SPT-Orm2 complex in a dephosphomimetic state and identify an evolutionarily conserved ceramide-sensing site. Ceramide stabilizes the dephosphomimetic Orm2 in an inhibitory conformation, facilitated by an intramolecular β-sheet between the N- and C-terminal segments of Orm2. Moreover, we find that a phosphomimetic mutant of Orm2, positioned adjacent to its intramolecular β-sheet, destabilizes the inhibitory conformation of Orm2. Taken together, our findings suggest that both Orm dephosphorylation and ceramide binding are crucial for suppressing SPT activity in yeast. This highlights a distinctive regulatory mechanism in yeast involving the collaborative actions of phosphorylation and ceramide.
Collapse
Affiliation(s)
- Tian Xie
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Feitong Dong
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Gongshe Han
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| | - Xinyue Wu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Peng Liu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zike Zhang
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jianlong Zhong
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Somashekarappa Niranjanakumari
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| | - Kenneth Gable
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| | - Sita D Gupta
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| | - Wenchen Liu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Peter J Harrison
- School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK
| | | | - Teresa M Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA.
| | - Xin Gong
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
22
|
Schuurman AR, Chouchane O, Butler JM, Peters-Sengers H, Joosten S, Brands X, Haak BW, Otto NA, Uhel F, Klarenbeek A, van Linge CC, van Kampen A, Pras-Raves M, van Weeghel M, van Eijk M, Ferraz MJ, Faber DR, de Vos A, Scicluna BP, Vaz FM, Wiersinga WJ, van der Poll T. The shifting lipidomic landscape of blood monocytes and neutrophils during pneumonia. JCI Insight 2024; 9:e164400. [PMID: 38385743 DOI: 10.1172/jci.insight.164400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
The lipidome of immune cells during infection has remained unexplored, although evidence of the importance of lipids in the context of immunity is mounting. In this study, we performed untargeted lipidomic analysis of blood monocytes and neutrophils from patients hospitalized for pneumonia and age- and sex-matched noninfectious control volunteers. We annotated 521 and 706 lipids in monocytes and neutrophils, respectively, which were normalized to an extensive set of internal standards per lipid class. The cellular lipidomes were profoundly altered in patients, with both common and distinct changes between the cell types. Changes involved every level of the cellular lipidome: differential lipid species, class-wide shifts, and altered saturation patterns. Overall, differential lipids were mainly less abundant in monocytes and more abundant in neutrophils from patients. One month after hospital admission, lipidomic changes were fully resolved in monocytes and partially in neutrophils. Integration of lipidomic and concurrently collected transcriptomic data highlighted altered sphingolipid metabolism in both cell types. Inhibition of ceramide and sphingosine-1-phosphate synthesis in healthy monocytes and neutrophils resulted in blunted cytokine responses upon stimulation with lipopolysaccharide. These data reveal major lipidomic remodeling in immune cells during infection, and link the cellular lipidome to immune functionality.
Collapse
Affiliation(s)
- Alex R Schuurman
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Osoul Chouchane
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Joe M Butler
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hessel Peters-Sengers
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Sebastiaan Joosten
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Xanthe Brands
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Bastiaan W Haak
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Natasja A Otto
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Fabrice Uhel
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Paris, France
- Médecine Intensive Réanimation, AP-HP, Hôpital Louis Mourier, DMU ESPRIT, Colombes, France
| | - Augustijn Klarenbeek
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Christine Ca van Linge
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Antoine van Kampen
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Mia Pras-Raves
- Core Facility Metabolomics, Amsterdam UMC, Amsterdam, Netherlands
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, Netherlands
| | - Michel van Weeghel
- Core Facility Metabolomics, Amsterdam UMC, Amsterdam, Netherlands
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, Netherlands
| | - Marco van Eijk
- Leiden Institute of Chemistry, University of Leiden, Netherlands
| | - Maria J Ferraz
- Leiden Institute of Chemistry, University of Leiden, Netherlands
| | - Daniël R Faber
- Department of Internal Medicine, BovenIJ Hospital, Amsterdam, Netherlands
| | - Alex de Vos
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Brendon P Scicluna
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Applied Biomedical Science, Faculty of Health Sciences, Mater Dei Hospital, and
- Center for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Frédéric M Vaz
- Core Facility Metabolomics, Amsterdam UMC, Amsterdam, Netherlands
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, Netherlands
| | - W Joost Wiersinga
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
23
|
Jin Y, Shi H, Zhao Y, Dai J, Zhang K. Organophosphate ester cresyl diphenyl phosphate disrupts lipid homeostasis in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123149. [PMID: 38097162 DOI: 10.1016/j.envpol.2023.123149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
As a new class of organophosphate ester, cresyl diphenyl phosphate (CDP) has been widely monitored in environmental matrices and human samples, nonetheless, its toxicity is not fully understood. Here we described an in-depth analysis of the disruptions in lipid homeostasis of zebrafish following exposure to CDP concentrations ranging from 2.0 to 313.0 μg/L. Nile red staining revealed significant alterations in lipid contents in 72 hpf zebrafish embryos at CDP concentrations of 5.3 μg/L and above. Lipidomic analysis unveiled substantial disruptions in lipid homeostasis. Notably, disruptive effects were detected in various lipid classes, including phospholipids (i.e. cardiolipin, lysophosphatidylcholine, and phosphatidylethanolamine), glycerolipids (triglycerides), and fatty acids (fatty acids (FA) and wax esters (WE)). These alterations were further supported by transcriptional changes, with remarkable shifts observed in genes associated with lipid synthesis, transport, and metabolism, encompassing phospholipids, glycerolipids, fatty acids, and sphingolipids. Furthermore, CDP exposure elicited a significant elevation in ATP content and swimming activity in embryos, signifying perturbed energy homeostasis. Taken together, the present findings underscore the disruptive effects of CDP on lipid homeostasis, thereby providing novel insights essential for advancing the health risk assessment of organophosphate flame retardants.
Collapse
Affiliation(s)
- Yiheng Jin
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Haochun Shi
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Kun Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
24
|
Jamjoum R, Majumder S, Issleny B, Stiban J. Mysterious sphingolipids: metabolic interrelationships at the center of pathophysiology. Front Physiol 2024; 14:1229108. [PMID: 38235387 PMCID: PMC10791800 DOI: 10.3389/fphys.2023.1229108] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Metabolic pathways are complex and intertwined. Deficiencies in one or more enzymes in a given pathway are directly linked with genetic diseases, most of them having devastating manifestations. The metabolic pathways undertaken by sphingolipids are diverse and elaborate with ceramide species serving as the hubs of sphingolipid intermediary metabolism and function. Sphingolipids are bioactive lipids that serve a multitude of cellular functions. Being pleiotropic in function, deficiency or overproduction of certain sphingolipids is associated with many genetic and chronic diseases. In this up-to-date review article, we strive to gather recent scientific evidence about sphingolipid metabolism, its enzymes, and regulation. We shed light on the importance of sphingolipid metabolism in a variety of genetic diseases and in nervous and immune system ailments. This is a comprehensive review of the state of the field of sphingolipid biochemistry.
Collapse
Affiliation(s)
- Rama Jamjoum
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Saurav Majumder
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Rockville, MD, United States
| | - Batoul Issleny
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| |
Collapse
|
25
|
Mohassel P, Abdullah M, Eichler FS, Dunn TM. Serine Palmitoyltransferase (SPT)-related Neurodegenerative and Neurodevelopmental Disorders. J Neuromuscul Dis 2024; 11:735-747. [PMID: 38788085 PMCID: PMC11307022 DOI: 10.3233/jnd-240014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Motor neuron diseases and peripheral neuropathies are heterogeneous groups of neurodegenerative disorders that manifest with distinct symptoms due to progressive dysfunction or loss of specific neuronal subpopulations during different stages of development. A few monogenic, neurodegenerative diseases associated with primary metabolic disruptions of sphingolipid biosynthesis have been recently discovered. Sphingolipids are a subclass of lipids that form critical building blocks of all cellular and subcellular organelle membranes including the membrane components of the nervous system cells. They are especially abundant within the lipid portion of myelin. In this review, we will focus on our current understanding of disease phenotypes in three monogenic, neuromuscular diseases associated with pathogenic variants in components of serine palmitoyltransferase, the first step in sphingolipid biosynthesis. These include hereditary sensory and autonomic neuropathy type 1 (HSAN1), a sensory predominant peripheral neuropathy, and two neurodegenerative disorders: juvenile amyotrophic lateral sclerosis affecting the upper and lower motor neurons with sparing of sensory neurons, and a complicated form of hereditary spastic paraplegia with selective involvement of the upper motor neurons and more broad CNS neurodegeneration. We will also review our current understanding of disease pathomechanisms, therapeutic approaches, and the unanswered questions to explore in future studies.
Collapse
Affiliation(s)
- Payam Mohassel
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meher Abdullah
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Florian S. Eichler
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Teresa M. Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
26
|
Antonisamy B, Shailesh H, Hani Y, Ahmed LHM, Noor S, Ahmed SY, Alfaki M, Muhayimana A, Jacob SS, Balayya SK, Soloviov O, Liu L, Mathew LS, Wang K, Tomei S, Al Massih A, Mathew R, Karim MY, Ramanjaneya M, Worgall S, Janahi IA. Sphingolipids in Childhood Asthma and Obesity (SOAP Study): A Protocol of a Cross-Sectional Study. Metabolites 2023; 13:1146. [PMID: 37999242 PMCID: PMC10673587 DOI: 10.3390/metabo13111146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
Asthma and obesity are two of the most common chronic conditions in children and adolescents. There is increasing evidence that sphingolipid metabolism is altered in childhood asthma and is linked to airway hyperreactivity. Dysregulated sphingolipid metabolism is also reported in obesity. However, the functional link between sphingolipid metabolism, asthma, and obesity is not completely understood. This paper describes the protocol of an ongoing study on sphingolipids that aims to examine the pathophysiology of sphingolipids in childhood asthma and obesity. In addition, this study aims to explore the novel biomarkers through a comprehensive multi-omics approach including genomics, genome-wide DNA methylation, RNA-Seq, microRNA (miRNA) profiling, lipidomics, metabolomics, and cytokine profiling. This is a cross-sectional study aiming to recruit 440 children from different groups: children with asthma and normal weight (n = 100), asthma with overweight or obesity (n = 100), overweight or obesity (n = 100), normal weight (n = 70), and siblings of asthmatic children with normal weight, overweight, or obesity (n = 70). These participants will be recruited from the pediatric pulmonology, pediatric endocrinology, and general pediatric outpatient clinics at Sidra Medicine, Doha, Qatar. Information will be obtained from self-reported questionnaires on asthma, quality of life, food frequency (FFQ), and a 3-day food diary that are completed by the children and their parents. Clinical measurements will include anthropometry, blood pressure, biochemistry, bioelectrical impedance, and pulmonary function tests. Blood samples will be obtained for sphingolipid analysis, serine palmitoyltransferase (SPT) assay, whole-genome sequencing (WGS), genome-wide DNA methylation study, RNA-Seq, miRNA profiling, metabolomics, lipidomics, and cytokine analysis. Group comparisons of continuous outcome variables will be carried out by a one-way analysis of variance or the Kruskal-Wallis test using an appropriate pairwise multiple comparison test. The chi-squared test or a Fisher's exact test will be used to test the associations between categorical variables. Finally, multivariate analysis will be carried out to integrate the clinical data with multi-omics data. This study will help us to understand the role of dysregulated sphingolipid metabolism in obesity and asthma. In addition, the multi-omics data from the study will help to identify novel genetic and epigenetic signatures, inflammatory markers, and mechanistic pathways that link asthma and obesity in children. Furthermore, the integration of clinical and multi-omics data will help us to uncover the potential interactions between these diseases and to offer a new paradigm for the treatment of pediatric obesity-associated asthma.
Collapse
Affiliation(s)
- Belavendra Antonisamy
- Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (B.A.); (H.S.); (Y.H.); (L.H.M.A.); (S.N.); (S.Y.A.); (M.A.); (A.M.)
| | - Harshita Shailesh
- Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (B.A.); (H.S.); (Y.H.); (L.H.M.A.); (S.N.); (S.Y.A.); (M.A.); (A.M.)
| | - Yahya Hani
- Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (B.A.); (H.S.); (Y.H.); (L.H.M.A.); (S.N.); (S.Y.A.); (M.A.); (A.M.)
| | - Lina Hayati M. Ahmed
- Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (B.A.); (H.S.); (Y.H.); (L.H.M.A.); (S.N.); (S.Y.A.); (M.A.); (A.M.)
| | - Safa Noor
- Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (B.A.); (H.S.); (Y.H.); (L.H.M.A.); (S.N.); (S.Y.A.); (M.A.); (A.M.)
| | - Salma Yahya Ahmed
- Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (B.A.); (H.S.); (Y.H.); (L.H.M.A.); (S.N.); (S.Y.A.); (M.A.); (A.M.)
| | - Mohamed Alfaki
- Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (B.A.); (H.S.); (Y.H.); (L.H.M.A.); (S.N.); (S.Y.A.); (M.A.); (A.M.)
| | - Abidan Muhayimana
- Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (B.A.); (H.S.); (Y.H.); (L.H.M.A.); (S.N.); (S.Y.A.); (M.A.); (A.M.)
| | - Shana Sunny Jacob
- Analytical Chemistry Core, Advanced Diagnostic Core Facilities, Sidra Medicine, Doha P.O. Box 26999, Qatar; (S.S.J.); (S.K.B.)
| | - Saroja Kotegar Balayya
- Analytical Chemistry Core, Advanced Diagnostic Core Facilities, Sidra Medicine, Doha P.O. Box 26999, Qatar; (S.S.J.); (S.K.B.)
| | - Oleksandr Soloviov
- Clinical Genomics Laboratory, Integrated Genomics Services, Sidra Medicine, Doha P.O. Box 26999, Qatar; (O.S.); (L.L.); (L.S.M.); (K.W.)
| | - Li Liu
- Clinical Genomics Laboratory, Integrated Genomics Services, Sidra Medicine, Doha P.O. Box 26999, Qatar; (O.S.); (L.L.); (L.S.M.); (K.W.)
| | - Lisa Sara Mathew
- Clinical Genomics Laboratory, Integrated Genomics Services, Sidra Medicine, Doha P.O. Box 26999, Qatar; (O.S.); (L.L.); (L.S.M.); (K.W.)
| | - Kun Wang
- Clinical Genomics Laboratory, Integrated Genomics Services, Sidra Medicine, Doha P.O. Box 26999, Qatar; (O.S.); (L.L.); (L.S.M.); (K.W.)
| | - Sara Tomei
- Omics Core, Integrated Genomics Services, Sidra Medicine, Doha P.O. Box 26999, Qatar; (S.T.); (A.A.M.); (R.M.)
| | - Alia Al Massih
- Omics Core, Integrated Genomics Services, Sidra Medicine, Doha P.O. Box 26999, Qatar; (S.T.); (A.A.M.); (R.M.)
| | - Rebecca Mathew
- Omics Core, Integrated Genomics Services, Sidra Medicine, Doha P.O. Box 26999, Qatar; (S.T.); (A.A.M.); (R.M.)
| | - Mohammed Yousuf Karim
- Department of Pathology, Sidra Medicine, Doha P.O. Box 26999, Qatar;
- College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar
| | - Manjunath Ramanjaneya
- Qatar Metabolic Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar;
- Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| | - Stefan Worgall
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10021, USA;
| | - Ibrahim A. Janahi
- Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (B.A.); (H.S.); (Y.H.); (L.H.M.A.); (S.N.); (S.Y.A.); (M.A.); (A.M.)
- Department of Pediatrics, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar
| |
Collapse
|
27
|
Zhou C, Yang MJ, Hu Z, Shi P, Li YR, Guo YJ, Zhang T, Song H. Molecular evidence for the adaptive evolution in euryhaline bivalves. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106240. [PMID: 37944349 DOI: 10.1016/j.marenvres.2023.106240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/26/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Marine bivalves inhabiting intertidal and estuarine areas are frequently exposed to salinity stress due to persistent rainfall and drought. Through prolonged adaptive evolution, numerous bivalves have developed eurysalinity, which are capable of tolerating a wide range of salinity fluctuations through the sophisticated regulation of physiological metabolism. Current research has predominantly focused on investigating the physiological responses of bivalves to salinity stress, leaving a significant gap in our understanding of the adaptive evolutionary characteristics in euryhaline bivalves. Here, comparative genomics analyses were performed in two groups of bivalve species, including 7 euryhaline species and 5 stenohaline species. We identified 24 significantly expanded gene families and 659 positively selected genes in euryhaline bivalves. A significant co-expansion of solute carrier family 23 (SLC23) facilitates the transmembrane transport of ascorbic acids in euryhaline bivalves. Positive selection of antioxidant genes, such as GST and TXNRD, augments the capacity of active oxygen species (ROS) scavenging under salinity stress. Additionally, we found that the positively selected genes were significantly enriched in KEGG pathways associated with carbohydrates, lipids and amino acids metabolism (ALDH, ADH, and GLS), as well as GO terms related to transmembrane transport and inorganic anion transport (SLC22, CLCND, and VDCC). Positive selection of MCT might contribute to prevent excessive accumulation of intracellular lactic acids during anaerobic metabolism. Positive selection of PLA2 potentially promote the removal of damaged membranes lipids under salinity stress. Our findings suggest that adaptive evolution has occurred in osmoregulation, ROS scavenging, energy metabolism, and membrane lipids adjustments in euryhaline bivalves. This study enhances our understanding of the molecular mechanisms underlying the remarkable salinity adaption of euryhaline bivalves.
Collapse
Affiliation(s)
- Cong Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China
| | - Mei-Jie Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China
| | - Zhi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China
| | - Pu Shi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China
| | - Yong-Ren Li
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China
| | - Yong-Jun Guo
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China
| | - Tao Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China.
| | - Hao Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China.
| |
Collapse
|
28
|
Heras A, Chambers R, Solomon Z, Blatt L, Martin CR. Nutrition-based implications and therapeutics in the development and recovery of bronchopulmonary dysplasia. Semin Perinatol 2023; 47:151818. [PMID: 37775366 DOI: 10.1016/j.semperi.2023.151818] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Premature births account for over 10% of live births worldwide. Bronchopulmonary dysplasia (BPD) represents a severe sequela in neonates born very prematurely and remains the most common chronic neonatal lung disease, often leading to serious adverse consequences in adulthood. Nutrition plays a crucial role in lung development and repair. Ongoing research has primarily focused on the pathogenesis and prevention of BPD in preterm birth. However, infants with established BPD need specialist medical care that persists throughout their hospitalization and continues after discharge. This manuscript aims to highlight the impact of growth and nutrition on BPD and highlight research gaps to provide direction for future studies. Protective practices include ensuring adequate early energy delivery through parenteral nutrition and enteral feedings while carefully monitoring total fluid intake and the use of breast milk over formula. These nutritional strategies remain the same for infants with established BPD with the addition of limiting the use of diuretics and steroids; but if employed, monitoring carefully without compromising total energy delivery. Functional nutrient supplements with a potential protective role against BPD are revisited, despite the limited evidence of their efficacy, including vitamins, trace elements, zinc, lipids, and sphingolipids. Planning post-intensive care and outpatient longitudinal nutrition support is critical in caring for an infant with established BPD.
Collapse
Affiliation(s)
- Andrea Heras
- Department of Pediatrics, Division of Pediatric Pulmonology, Weill Cornell Medicine, Komansky Children's Hospital, New York, NY, United States
| | - Rachel Chambers
- NewYork-Presbyterian Food& Nutrition Services, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY, United States
| | - Zenna Solomon
- Department of Pediatrics, Division of Pediatric Pulmonology, Weill Cornell Medicine, Komansky Children's Hospital, New York, NY, United States
| | - Lauren Blatt
- Department of Pediatrics, Division of Neonatology, Weill Cornell Medicine, Komansky Children's Hospital, New York, NY, United States
| | - Camilia R Martin
- Department of Pediatrics, Division of Neonatology, Weill Cornell Medicine, Komansky Children's Hospital, New York, NY, United States.
| |
Collapse
|
29
|
Usmani SA, Kumar M, Arya K, Ali B, Bhardwaj N, Gaur NA, Prasad R, Singh A. Beyond membrane components: uncovering the intriguing world of fungal sphingolipid synthesis and regulation. Res Microbiol 2023; 174:104087. [PMID: 37328042 DOI: 10.1016/j.resmic.2023.104087] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
Sphingolipids (SLs) are essential to fungal survival and represent a major class of structural and signaling lipids. Unique SL structures and their biosynthetic enzymes in filamentous fungi make them an ideal drug target. Several studies have contributed towards the functional characterization of specific SL metabolism genes, which have been complemented by advanced lipidomics methods which allow accurate identification and quantification of lipid structures and pathway mapping. These studies have provided a better understanding of SL biosynthesis, degradation and regulation networks in filamentous fungi, which are discussed and elaborated here.
Collapse
Affiliation(s)
- Sana Akhtar Usmani
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, 226024, India
| | - Mohit Kumar
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, India; International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Khushboo Arya
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, 226024, India
| | - Basharat Ali
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, India
| | - Nitin Bhardwaj
- Department of Zoology and Environmental Science, Gurukula Kangri Vishwavidyalaya, Haridwar, Uttarakhand 249404, India
| | - Naseem Akhtar Gaur
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Rajendra Prasad
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, India
| | - Ashutosh Singh
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, 226024, India.
| |
Collapse
|
30
|
Masuda-Kuroki K, Alimohammadi S, Di Nardo A. S. epidermidis Rescues Allergic Contact Dermatitis in Sphingosine 1-Phosphate Receptor 2-Deficient Skin. Int J Mol Sci 2023; 24:13190. [PMID: 37685997 PMCID: PMC10487941 DOI: 10.3390/ijms241713190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Recent studies have identified a subtype of the S1P-receptor family called sphingosine-1-phosphate receptor 2 (S1PR2), which plays a crucial role in maintaining the skin barrier. It has been observed that S1PR2 and Staphylococcus epidermidis (S. epidermidis) work together to regulate the skin barrier. However, the interaction between these two factors is still unclear. To investigate this, a study was conducted on healthy skin and allergic contact dermatitis (ACD) using 3,4-Dibutoxy-3-cyclobutene-1,2-dione (SADBE) on the ears of S1pr2fl/fl and S1pr2fl/flK14-Cre mice and using 1 × 106 CFU of S. epidermidis to examine its effects on the skin. The results showed that in S. epidermidis-conditioned ACD, the ear thickness of S1pr2fl/flK14-Cre mice was lower than that of S1pr2fl/fl mice, and mRNA expressions of Il-1β and Cxcl2 of S1pr2fl/flK14-Cre mice were lower than that of S1pr2fl/fl mice in ACD with S. epidermidis. Furthermore, the gene expression of Claudin-1 and Occludin in S1pr2fl/flK14-Cre mice was higher than that of S1pr2fl/fl mice in ACD with S. epidermidis. The study concludes that S. epidermidis colonization improves the skin barrier and prevents ACD even when S1P signaling malfunctions.
Collapse
Affiliation(s)
| | | | - Anna Di Nardo
- Department of Dermatology, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; (K.M.-K.); (S.A.)
| |
Collapse
|
31
|
Gutay-Tóth Z, Gellen G, Doan M, Eliason JF, Vincze J, Szente L, Fenyvesi F, Goda K, Vecsernyés M, Szabó G, Bacso Z. Cholesterol-Depletion-Induced Membrane Repair Carries a Raft Conformer of P-Glycoprotein to the Cell Surface, Indicating Enhanced Cholesterol Trafficking in MDR Cells, Which Makes Them Resistant to Cholesterol Modifications. Int J Mol Sci 2023; 24:12335. [PMID: 37569709 PMCID: PMC10419235 DOI: 10.3390/ijms241512335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The human P-glycoprotein (P-gp), a transporter responsible for multidrug resistance, is present in the plasma membrane's raft and non-raft domains. One specific conformation of P-gp that binds to the monoclonal antibody UIC2 is primarily associated with raft domains and displays heightened internalization in cells overexpressing P-gp, such as in NIH-3T3 MDR1 cells. Our primary objective was to investigate whether the trafficking of this particular P-gp conformer is dependent on cholesterol levels. Surprisingly, depleting cholesterol using cyclodextrin resulted in an unexpected increase in the proportion of raft-associated P-gp within the cell membrane, as determined by UIC2-reactive P-gp. This increase appears to be a compensatory response to cholesterol loss from the plasma membrane, whereby cholesterol-rich raft micro-domains are delivered to the cell surface through an augmented exocytosis process. Furthermore, this exocytotic event is found to be part of a complex trafficking mechanism involving lysosomal exocytosis, which contributes to membrane repair after cholesterol reduction induced by cyclodextrin treatment. Notably, cells overexpressing P-gp demonstrated higher total cellular cholesterol levels, an increased abundance of stable lysosomes, and more effective membrane repair following cholesterol modifications. These modifications encompassed exocytotic events that involved the transport of P-gp-carrying rafts. Importantly, the enhanced membrane repair capability resulted in a durable phenotype for MDR1 expressing cells, as evidenced by significantly improved viabilities of multidrug-resistant Pgp-overexpressing immortal NIH-3T3 MDR1 and MDCK-MDR1 cells compared to their parents when subjected to cholesterol alterations.
Collapse
Affiliation(s)
- Zsuzsanna Gutay-Tóth
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Gabriella Gellen
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, 1053 Budapest, Hungary
| | - Minh Doan
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
| | - James F. Eliason
- Great Lakes Stem Cell Innovation Center, Detroit, MI 48202, USA;
| | - János Vincze
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Lajos Szente
- CycloLab Cyclodextrin Research & Development Laboratory, Ltd., 1097 Budapest, Hungary;
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (F.F.); (M.V.)
| | - Katalin Goda
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (F.F.); (M.V.)
| | - Gábor Szabó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
| | - Zsolt Bacso
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (F.F.); (M.V.)
| |
Collapse
|
32
|
Zhu XM, Li L, Bao JD, Wang JY, Liang S, Zhao LL, Huang CL, Yan JY, Cai YY, Wu XY, Dong B, Liu XH, Klionsky DJ, Lin FC. MoVast2 combined with MoVast1 regulates lipid homeostasis and autophagy in Magnaporthe oryzae. Autophagy 2023; 19:2353-2371. [PMID: 36803211 PMCID: PMC10351449 DOI: 10.1080/15548627.2023.2181739] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Macroautophagy/autophagy is an evolutionarily conserved biological process among eukaryotes that degrades unwanted materials such as protein aggregates, damaged mitochondria and even viruses to maintain cell survival. Our previous studies have demonstrated that MoVast1 acts as an autophagy regulator regulating autophagy, membrane tension, and sterol homeostasis in rice blast fungus. However, the detailed regulatory relationships between autophagy and VASt domain proteins remain unsolved. Here, we identified another VASt domain-containing protein, MoVast2, and further uncovered the regulatory mechanism of MoVast2 in M. oryzae. MoVast2 interacted with MoVast1 and MoAtg8, and colocalized at the PAS and deletion of MoVAST2 results in inappropriate autophagy progress. Through TOR activity analysis, sterols and sphingolipid content detection, we found high sterol accumulation in the ΔMovast2 mutant, whereas this mutant showed low sphingolipids and low activity of both TORC1 and TORC2. In addition, MoVast2 colocalized with MoVast1. The localization of MoVast2 in the MoVAST1 deletion mutant was normal; however, deletion of MoVAST2 leads to mislocalization of MoVast1. Notably, the wide-target lipidomic analyses revealed significant changes in sterols and sphingolipids, the major PM components, in the ΔMovast2 mutant, which was involved in lipid metabolism and autophagic pathways. These findings confirmed that the functions of MoVast1 were regulated by MoVast2, revealing that MoVast2 combined with MoVast1 maintained lipid homeostasis and autophagy balance by regulating TOR activity in M. oryzae.
Collapse
Affiliation(s)
- Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jian-Dong Bao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jiao-Yu Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Shuang Liang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Li-Li Zhao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Chang-Li Huang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jiong-Yi Yan
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying-Ying Cai
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xi-Yu Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bo Dong
- Markey Cancer Center, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Xiao-Hong Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
33
|
Gehin C, Lone MA, Lee W, Capolupo L, Ho S, Adeyemi AM, Gerkes EH, Stegmann AP, López-Martín E, Bermejo-Sánchez E, Martínez-Delgado B, Zweier C, Kraus C, Popp B, Strehlow V, Gräfe D, Knerr I, Jones ER, Zamuner S, Abriata LA, Kunnathully V, Moeller BE, Vocat A, Rommelaere S, Bocquete JP, Ruchti E, Limoni G, Van Campenhoudt M, Bourgeat S, Henklein P, Gilissen C, van Bon BW, Pfundt R, Willemsen MH, Schieving JH, Leonardi E, Soli F, Murgia A, Guo H, Zhang Q, Xia K, Fagerberg CR, Beier CP, Larsen MJ, Valenzuela I, Fernández-Álvarez P, Xiong S, Śmigiel R, López-González V, Armengol L, Morleo M, Selicorni A, Torella A, Blyth M, Cooper NS, Wilson V, Oegema R, Herenger Y, Garde A, Bruel AL, Tran Mau-Them F, Maddocks AB, Bain JM, Bhat MA, Costain G, Kannu P, Marwaha A, Champaigne NL, Friez MJ, Richardson EB, Gowda VK, Srinivasan VM, Gupta Y, Lim TY, Sanna-Cherchi S, Lemaitre B, Yamaji T, Hanada K, Burke JE, Jakšić AM, McCabe BD, De Los Rios P, Hornemann T, D’Angelo G, Gennarino VA. CERT1 mutations perturb human development by disrupting sphingolipid homeostasis. J Clin Invest 2023; 133:e165019. [PMID: 36976648 PMCID: PMC10178846 DOI: 10.1172/jci165019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Neural differentiation, synaptic transmission, and action potential propagation depend on membrane sphingolipids, whose metabolism is tightly regulated. Mutations in the ceramide transporter CERT (CERT1), which is involved in sphingolipid biosynthesis, are associated with intellectual disability, but the pathogenic mechanism remains obscure. Here, we characterize 31 individuals with de novo missense variants in CERT1. Several variants fall into a previously uncharacterized dimeric helical domain that enables CERT homeostatic inactivation, without which sphingolipid production goes unchecked. The clinical severity reflects the degree to which CERT autoregulation is disrupted, and inhibiting CERT pharmacologically corrects morphological and motor abnormalities in a Drosophila model of the disease, which we call ceramide transporter (CerTra) syndrome. These findings uncover a central role for CERT autoregulation in the control of sphingolipid biosynthetic flux, provide unexpected insight into the structural organization of CERT, and suggest a possible therapeutic approach for patients with CerTra syndrome.
Collapse
Affiliation(s)
- Charlotte Gehin
- Institute of Bioengineering (IBI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Museer A. Lone
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Winston Lee
- Department of Genetics and Development and
- Department Ophthalmology, Columbia University Irving Medical Center, New York, New York, USA
| | - Laura Capolupo
- Institute of Bioengineering (IBI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sylvia Ho
- Institute of Bioengineering (IBI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Adekemi M. Adeyemi
- Department of Medical Genetics, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Erica H. Gerkes
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Alexander P.A. Stegmann
- Department of Clinical Genetics and School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, Netherlands
| | - Estrella López-Martín
- Institute of Rare Diseases Research (IIER), Instituto de Salud Carlos III, Madrid, Spain
| | - Eva Bermejo-Sánchez
- Institute of Rare Diseases Research (IIER), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Cornelia Kraus
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bernt Popp
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Center of Functional Genomics, Berlin, Germany
| | - Vincent Strehlow
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Daniel Gräfe
- Department of Pediatric Radiology, University Hospital Leipzig, Leipzig, Leipzig, Germany
| | - Ina Knerr
- National Centre for Inherited Metabolic Disorders, Children’s Health Ireland (CHI) at Temple Street, Dublin, Ireland
- UCD School of Medicine, Dublin, Ireland
| | - Eppie R. Jones
- Genuity Science, Cherrywood Business Park, Dublin, Ireland
| | - Stefano Zamuner
- Institute of Physics, School of Basic Sciences, École Polytechnique Féderale de Lausanne (EPFL), Lausanne, Switzerland
| | - Luciano A. Abriata
- Laboratory for Biomolecular Modeling and Protein Purification and Structure Facility, EPFL and Swiss Institute of Bioinformatics, Lausanne Switzerland
| | - Vidya Kunnathully
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Brandon E. Moeller
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Anthony Vocat
- Institute of Bioengineering (IBI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | | | - Evelyne Ruchti
- Brain Mind Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Greta Limoni
- Brain Mind Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | | | - Samuel Bourgeat
- Brain Mind Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Petra Henklein
- Berlin Institute of Health, Institut für Biochemie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Gilissen
- Radboud University Medical Center, Department of Human Genetics, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Bregje W. van Bon
- Radboud University Medical Center, Department of Human Genetics, Nijmegen, Netherlands
| | - Rolph Pfundt
- Radboud University Medical Center, Department of Human Genetics, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | | | - Jolanda H. Schieving
- Radboud University Medical Center, Department of Pediatric Neurology, Amalia Children’s Hospital and Donders Institute for Brain, Cognition and Behavior, Nijmegen, Netherlands
| | - Emanuela Leonardi
- Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica (IRP), Città della Speranza, Padova, Italy
| | - Fiorenza Soli
- Medical Genetics Department, APSS Trento, Trento, Italy
| | - Alessandra Murgia
- Fondazione Istituto di Ricerca Pediatrica (IRP), Città della Speranza, Padova, Italy
| | - Hui Guo
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qiumeng Zhang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Kun Xia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Christina R. Fagerberg
- Department of Neurology, Odense University Hospital, and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Christoph P. Beier
- Department of Neurology, Odense University Hospital, and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Martin J. Larsen
- Department of Neurology, Odense University Hospital, and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Irene Valenzuela
- Department of Clinical and Molecular Genetics, University Hospital Vall d′Hebron, Medicine Genetics Group, Valle Hebron Research Institute, Barcelona, Spain
| | - Paula Fernández-Álvarez
- Department of Clinical and Molecular Genetics, University Hospital Vall d′Hebron, Medicine Genetics Group, Valle Hebron Research Institute, Barcelona, Spain
| | - Shiyi Xiong
- Fetal Medicine Unit and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Robert Śmigiel
- Department of Family and Pediatric Nursing, Medical University, Wroclaw, Poland
| | - Vanesa López-González
- Sección de Genética Médica, Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, CIBERER-ISCIII, Murcia, Spain
| | - Lluís Armengol
- Quantitative Genomic Medicine Laboratories, S.L., CSO & CEO, Esplugues del Llobregat, Barcelona, Catalunya, Spain
| | - Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Angelo Selicorni
- Department of Pediatrics, ASST Lariana Sant’ Anna Hospital, San Fermo Della Battaglia, Como, Italy
| | - Annalaura Torella
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Moira Blyth
- North of Scotland Regional Genetics Service, Clinical Genetics Centre, Ashgrove House, Foresterhill, Aberdeen, United Kingdom
| | - Nicola S. Cooper
- W Midlands Clinical Genetics Service, Birmingham Women’s Hospital, Edgbaston Birmingham, United Kingdom
| | - Valerie Wilson
- Northern Regional Genetics Laboratory, Newcastle upon Tyne, United Kingdom
| | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Yvan Herenger
- Genetica AG, Humangenetisches Labor und Beratungsstelle, Zürich, Switzerland
| | - Aurore Garde
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Hôpital d’Enfants, CHU Dijon, Dijon, France
- UMR1231 GAD, INSERM – Université Bourgogne-Franche Comté, Dijon, France
| | - Ange-Line Bruel
- UMR1231 GAD, INSERM – Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Frederic Tran Mau-Them
- UMR1231 GAD, INSERM – Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Alexis B.R. Maddocks
- Department of Radiology at Columbia University Irving Medical Center, New York, New York, USA
| | - Jennifer M. Bain
- Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, Columbia University Medical Center, New York, New York, USA
| | - Musadiq A. Bhat
- Institute of Pharmacology and Toxicology University of Zürich, Zürich, Switzerland
| | - Gregory Costain
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Peter Kannu
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Ashish Marwaha
- Department of Medical Genetics, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Neena L. Champaigne
- Greenwood Genetic Center and the Medical University of South Carolina, Greenwood, South Carolina, USA
| | - Michael J. Friez
- Greenwood Genetic Center and the Medical University of South Carolina, Greenwood, South Carolina, USA
| | - Ellen B. Richardson
- Greenwood Genetic Center and the Medical University of South Carolina, Greenwood, South Carolina, USA
| | - Vykuntaraju K. Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | | | - Yask Gupta
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York, USA
| | - Tze Y. Lim
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York, USA
| | - Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York, USA
| | | | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - John E. Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ana Marjia Jakšić
- Brain Mind Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Brian D. McCabe
- Brain Mind Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Paolo De Los Rios
- Institute of Bioengineering (IBI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Physics, School of Basic Sciences, École Polytechnique Féderale de Lausanne (EPFL), Lausanne, Switzerland
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Giovanni D’Angelo
- Institute of Bioengineering (IBI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
- Global Health Institute, School of Life Sciences and
| | - Vincenzo A. Gennarino
- Department of Genetics and Development and
- Department of Pediatrics
- Department of Neurology
- Columbia Stem Cell Initiative, and
- Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
34
|
Boyd AE, Grizzard PJ, Hylton Rorie K, Lima S. Lipidomic Profiling Reveals Biological Differences between Tumors of Self-Identified African Americans and Non-Hispanic Whites with Cancer. Cancers (Basel) 2023; 15:2238. [PMID: 37190166 PMCID: PMC10136787 DOI: 10.3390/cancers15082238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
In the US, the incidence and mortality of many cancers are disproportionately higher in African Americans (AA). Yet, AA remain poorly represented in molecular studies investigating the roles that biological factors might play in the development, progression, and outcomes of many cancers. Given that sphingolipids, key components of mammalian cellular membranes, have well-established roles in the etiology of cancer progression, malignancy, and responses to therapy, we conducted a robust mass spectrometry analysis of sphingolipids in normal adjacent uninvolved tissues and tumors of self-identified AA and non-Hispanic White (NHW) males with cancers of the lung, colon, liver, and head and neck and of self-identified AA and NHW females with endometrial cancer. In these cancers, AA have worse outcomes than NHW. The goal of our study was to identify biological candidates to be evaluated in future preclinical studies targeting race-specific alterations in the cancers of AA. We have identified that various sphingolipids are altered in race-specific patterns, but more importantly, the ratios of 24- to 16-carbon fatty acyl chain-length ceramides and glucosylceramides are higher in the tumors of AA. As there is evidence that ceramides with 24-carbon fatty acid chain length promote cellular survival and proliferation, whereas 16-carbon chain length promote apoptosis, these results provide important support for future studies tailored to evaluate the potential roles these differences may play in the outcomes of AA with cancer.
Collapse
Affiliation(s)
- April E. Boyd
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Pamela J. Grizzard
- Tissue and Data Acquisition and Analysis Core, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | - Santiago Lima
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
- Massey Cancer Center, Richmond, VA 23298, USA
| |
Collapse
|
35
|
Liu P, Xie T, Wu X, Han G, Gupta SD, Zhang Z, Yue J, Dong F, Gable K, Niranjanakumari S, Li W, Wang L, Liu W, Yao R, Cahoon EB, Dunn TM, Gong X. Mechanism of sphingolipid homeostasis revealed by structural analysis of Arabidopsis SPT-ORM1 complex. SCIENCE ADVANCES 2023; 9:eadg0728. [PMID: 36989369 PMCID: PMC10058238 DOI: 10.1126/sciadv.adg0728] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
The serine palmitoyltransferase (SPT) complex catalyzes the first and rate-limiting step in sphingolipid biosynthesis in all eukaryotes. ORM/ORMDL proteins are negative regulators of SPT that respond to cellular sphingolipid levels. However, the molecular basis underlying ORM/ORMDL-dependent homeostatic regulation of SPT is not well understood. We determined the cryo-electron microscopy structure of Arabidopsis SPT-ORM1 complex, composed of LCB1, LCB2a, SPTssa, and ORM1, in an inhibited state. A ceramide molecule is sandwiched between ORM1 and LCB2a in the cytosolic membrane leaflet. Ceramide binding is critical for the ORM1-dependent SPT repression, and dihydroceramides and phytoceramides differentially affect this repression. A hybrid β sheet, formed by the amino termini of ORM1 and LCB2a and induced by ceramide binding, stabilizes the amino terminus of ORM1 in an inhibitory conformation. Our findings provide mechanistic insights into sphingolipid homeostatic regulation via the binding of ceramide to the SPT-ORM/ORMDL complex that may have implications for plant-specific processes such as the hypersensitive response for microbial pathogen resistance.
Collapse
Affiliation(s)
- Peng Liu
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Tian Xie
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xinyue Wu
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Gongshe Han
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Sita D. Gupta
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Zike Zhang
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jian Yue
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Feitong Dong
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kenneth Gable
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Somashekarappa Niranjanakumari
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Wanyuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Lin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Wenchen Liu
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ruifeng Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Edgar B. Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Teresa M. Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Xin Gong
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
36
|
Arumugam MK, Perumal SK, Rasineni K, Donohue TM, Osna NA, Kharbanda KK. Lipidomic Analysis of Liver Lipid Droplets after Chronic Alcohol Consumption with and without Betaine Supplementation. BIOLOGY 2023; 12:462. [PMID: 36979154 PMCID: PMC10045066 DOI: 10.3390/biology12030462] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023]
Abstract
The earliest manifestation of alcohol-associated liver disease is hepatic steatosis, which is characterized by fat accumulation in specialized organelles called lipid droplets (LDs). Our previous studies reported that alcohol consumption elevates the numbers and sizes of LDs in hepatocytes, which is attenuated by simultaneous treatment with the methyl group donor, betaine. Here, we examined changes in the hepatic lipidome with respect to LD size and dynamics in male Wistar rats fed for 6 weeks with control or ethanol-containing liquid diets that were supplemented with or without 10 mg betaine/mL. At the time of sacrifice, three hepatic LD fractions, LD1 (large droplets), LD2 (medium-sized droplets), and LD3 (small droplets) were isolated from each rat. Untargeted lipidomic analyses revealed that each LD fraction of ethanol-fed rats had higher phospholipids, cholesteryl esters, diacylglycerols, ceramides, and hexosylceramides compared with the corresponding fractions of pair-fed controls. Interestingly, the ratio of phosphatidylcholine to phosphatidylethanolamine (the two most abundant phospholipids on the LD surface) was lower in LD1 fraction compared with LD3 fraction, irrespective of treatment; however, this ratio was significantly lower in ethanol LD fractions compared with their respective control fractions. Betaine supplementation significantly attenuated the ethanol-induced lipidomic changes. These were mainly associated with the regulation of LD surface phospholipids, ceramides, and glycerolipid metabolism in different-sized LD fractions. In conclusion, our results show that ethanol-induced changes in the hepatic LD lipidome likely stabilizes larger-sized LDs during steatosis development. Furthermore, betaine supplementation could effectively reduce the size and dynamics of LDs to attenuate alcohol-associated hepatic steatosis.
Collapse
Affiliation(s)
- Madan Kumar Arumugam
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Center for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Sathish Kumar Perumal
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Karuna Rasineni
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Terrence M. Donohue
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
37
|
Pei S, Zhang P, Yang L, Kang Y, Chen H, Zhao S, Dai Y, Zheng M, Xia Y, Xie H. Exploring the role of sphingolipid-related genes in clinical outcomes of breast cancer. Front Immunol 2023; 14:1116839. [PMID: 36860848 PMCID: PMC9968761 DOI: 10.3389/fimmu.2023.1116839] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Background Despite tremendous advances in cancer research, breast cancer (BC) remains a major health concern and is the most common cancer affecting women worldwide. Breast cancer is a highly heterogeneous cancer with potentially aggressive and complex biology, and precision treatment for specific subtypes may improve survival in breast cancer patients. Sphingolipids are important components of lipids that play a key role in the growth and death of tumor cells and are increasingly the subject of new anti-cancer therapies. Key enzymes and intermediates of sphingolipid metabolism (SM) play an important role in regulating tumor cells and further influencing clinical prognosis. Methods We downloaded BC data from the TCGA database and GEO database, on which we performed in depth single-cell sequencing analysis (scRNA-seq), weighted co-expression network analysis, and transcriptome differential expression analysis. Then seven sphingolipid-related genes (SRGs) were identified using Cox regression, least absolute shrinkage, and selection operator (Lasso) regression analysis to construct a prognostic model for BC patients. Finally, the expression and function of the key gene PGK1 in the model were verified by in vitro experiments. Results This prognostic model allows for the classification of BC patients into high-risk and low-risk groups, with a statistically significant difference in survival time between the two groups. The model is also able to show high prediction accuracy in both internal and external validation sets. After further analysis of the immune microenvironment and immunotherapy, it was found that this risk grouping could be used as a guide for the immunotherapy of BC. The proliferation, migration, and invasive ability of MDA-MB-231 and MCF-7 cell lines were dramatically reduced after knocking down the key gene PGK1 in the model through cellular experiments. Conclusion This study suggests that prognostic features based on genes related to SM are associated with clinical outcomes, tumor progression, and immune alterations in BC patients. Our findings may provide insights for the development of new strategies for early intervention and prognostic prediction in BC.
Collapse
Affiliation(s)
- Shengbin Pei
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengpeng Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lili Yang
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yakun Kang
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huilin Chen
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuhan Zhao
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuhan Dai
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mingjie Zheng
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yiqin Xia
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Hui Xie, ; Yiqin Xia,
| | - Hui Xie
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Hui Xie, ; Yiqin Xia,
| |
Collapse
|
38
|
Lipidomic Analysis of Hand Skin Surface Lipids Reveals Smoking-Related Skin Changes. Metabolites 2023; 13:metabo13020254. [PMID: 36837873 PMCID: PMC9963340 DOI: 10.3390/metabo13020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Smoking contributes to the formation of skin wrinkles and reduces skin function, but the mechanism is not yet fully proven. This study aims to compare and analyze the effects of smoking on skin lipids and to further investigate the harmful effects of smoking on the skin. A total of 40 subjects (20 male smokers and 20 healthy control males) were recruited for this study. Measurement of hand skin-surface lipids (SSLs) in smoking and healthy control groups was undertaken using ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Multivariate data analysis was used to investigate the differences in SSLs between the two groups. There were 1230 lipids detected in the two groups and significant differences in SSLs' composition were observed between them. Under selected conditions, 26 types of lipid with significant differences were observed between the two groups (p < 0.05). Sphingolipids (SP) and glycerolipids (GL) were significantly increased, and sterol lipids (ST) were significantly reduced. Smoking causes changes in skin lipids that disrupt skin homeostasis, making the skin more fragile and more susceptible to skin aging and diseases.
Collapse
|
39
|
Changes in Plasma Metabolomic Profile Following Bariatric Surgery, Lifestyle Intervention or Diet Restriction-Insights from Human and Rat Studies. Int J Mol Sci 2023; 24:ijms24032354. [PMID: 36768676 PMCID: PMC9916678 DOI: 10.3390/ijms24032354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/28/2022] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Although bariatric surgery is known to change the metabolome, it is unclear if this is specific for the intervention or a consequence of the induced bodyweight loss. As the weight loss after Roux-en-Y Gastric Bypass (RYGB) can hardly be mimicked with an evenly effective diet in humans, translational research efforts might be helpful. A group of 188 plasma metabolites of 46 patients from the randomized controlled Würzburg Adipositas Study (WAS) and from RYGB-treated rats (n = 6) as well as body-weight-matched controls (n = 7) were measured using liquid chromatography tandem mass spectrometry. WAS participants were randomized into intensive lifestyle modification (LS, n = 24) or RYGB (OP, n = 22). In patients in the WAS cohort, only bariatric surgery achieved a sustained weight loss (BMI -34.3% (OP) vs. -1.2% (LS), p ≤ 0.01). An explicit shift in the metabolomic profile was found in 57 metabolites in the human cohort and in 62 metabolites in the rodent model. Significantly higher levels of sphingolipids and lecithins were detected in both surgical groups but not in the conservatively treated human and animal groups. RYGB leads to a characteristic metabolomic profile, which differs distinctly from that following non-surgical intervention. Analysis of the human and rat data revealed that RYGB induces specific changes in the metabolome independent of weight loss.
Collapse
|
40
|
Wang P, Wei Q, Li H, Wu ZY. Clinical feature difference between juvenile amyotrophic lateral sclerosis with SPTLC1 and FUS mutations. Chin Med J (Engl) 2023; 136:176-183. [PMID: 36801857 PMCID: PMC10106144 DOI: 10.1097/cm9.0000000000002495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Juvenile amyotrophic lateral sclerosis (JALS) is an uncommon form of amyotrophic lateral sclerosis whose age at onset (AAO) is defined as prior to 25 years. FUS mutations are the most common cause of JALS. SPTLC1 was recently identified as a disease-causative gene for JALS, which has rarely been reported in Asian populations. Little is known regarding the difference in clinical features between JALS patients carrying FUS and SPTLC1 mutations. This study aimed to screen mutations in JALS patients and to compare the clinical features between JALS patients with FUS and SPTLC1 mutations. METHODS Sixteen JALS patients were enrolled, including three newly recruited patients between July 2015 and August 2018 from the Second Affiliated Hospital, Zhejiang University School of Medicine. Mutations were screened by whole-exome sequencing. In addition, clinical features such as AAO, onset site and disease duration were extracted and compared between JALS patients carrying FUS and SPTLC1 mutations through a literature review. RESULTS A novel and de novo SPTLC1 mutation (c.58G>A, p.A20T) was identified in a sporadic patient. Among 16 JALS patients, 7/16 carried FUS mutations and 5/16 carried respective SPTLC1 , SETX , NEFH , DCTN1 , and TARDBP mutations. Compared with FUS mutation patients, those with SPTLC1 mutations had an earlier AAO (7.9 ± 4.6 years vs. 18.1 ± 3.9 years, P < 0.01), much longer disease duration (512.0 [416.7-607.3] months vs. 33.4 [21.6-45.1] months, P < 0.01), and no onset of bulbar. CONCLUSION Our findings expand the genetic and phenotypic spectrum of JALS and help to better understand the genotype-phenotype correlation of JALS.
Collapse
Affiliation(s)
- Peishan Wang
- Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Hangzhou, Zhejiang 310009, China
- Department of Medical Genetics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Qiao Wei
- Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Hangzhou, Zhejiang 310009, China
- Department of Medical Genetics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Hongfu Li
- Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Hangzhou, Zhejiang 310009, China
- Department of Medical Genetics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zhi-Ying Wu
- Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Hangzhou, Zhejiang 310009, China
- Department of Medical Genetics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
41
|
Aji G, Jiang S, Obulkasim H, Lu Z, Wang W, Xia P. Sphingosine kinase 2 regulates insulin receptor trafficking in hepatocytes. Exp Biol Med (Maywood) 2023; 248:44-51. [PMID: 36408724 PMCID: PMC9989153 DOI: 10.1177/15353702221131886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Disturbed insulin receptor (InsR) trafficking is associated with impaired insulin signaling and the development of diabetes. Sphingosine kinase (SphK), including SphK1 and SphK2, is a key enzyme of sphingolipid metabolism, which has been implicated in the regulation of membrane trafficking. More recently, we have reported that SphK2 is a key regulator of hepatic insulin signaling and glucose homeostasis. However, the role of SphK in InsR trafficking is still undefined. Huh7 cells were treated with specific SphK1 and SphK2 inhibitors or SphK1- and SphK2-specific small interfering RNA (siRNA) in the presence or absence of insulin. Flow cytometry and immunofluorescence assays were carried out to investigate the role of SphK in InsR trafficking. InsR endocytosis, recycling, and insulin signaling were analyzed. Inhibition of SphK2, but not SphK1, by either specific pharmaceutic inhibitors or siRNA, significantly suppressed InsR endocytosis and recycling following insulin stimulation. Consequently, the insulin-stimulated Akt activation was significantly attenuated by SphK2 inhibition in hepatocytes. Moreover, the effect of SphK2 on InsR trafficking was mediated via the clathrin-dependent mechanism. Thus, our results show that SphK2 is able to regulate InsR trafficking. These findings suggest that SphK2 may impinge on hepatic insulin signaling by regulating InsR trafficking, providing further mechanistic evidence that SphK2 could serve as a potential intervention target against insulin resistance and T2D (type 2 diabetes).
Collapse
Affiliation(s)
- Gulibositan Aji
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Endocrinology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China.,Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai 200032, China
| | - Sheng Jiang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Endocrinology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Halmurat Obulkasim
- Department of General Surgery, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
| | - Zhiqiang Lu
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai 200032, China
| | - Wei Wang
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai 200032, China
| | - Pu Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai 200032, China
| |
Collapse
|
42
|
Guzman G, Creek C, Farley S, Tafesse FG. Genetic Tools for Studying the Roles of Sphingolipids in Viral Infections. Methods Mol Biol 2022; 2610:1-16. [PMID: 36534277 DOI: 10.1007/978-1-0716-2895-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sphingolipids are a critical family of membrane lipids with diverse functions in eukaryotic cells, and a growing body of literature supports that these lipids play essential roles during the lifecycles of viruses. While small molecule inhibitors of sphingolipid synthesis and metabolism are widely used, the advent of CRISPR-based genomic editing techniques allows for nuanced exploration into the manners in which sphingolipids influence various stages of viral infections. Here we describe some of these critical considerations needed in designing studies utilizing genomic editing techniques for manipulating the sphingolipid metabolic pathway, as well as the current body of literature regarding how viruses depend on the products of this pathway. Here, we highlight the ways in which sphingolipids affect viruses as these pathogens interact with and influence their host cell and describe some of the many open questions remaining in the field.
Collapse
Affiliation(s)
- Gaelen Guzman
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Cameron Creek
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Scotland Farley
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Fikadu G Tafesse
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
43
|
Systematic Metabolic Profiling Identifies De Novo Sphingolipid Synthesis as Hypha Associated and Essential for Candida albicans Filamentation. mSystems 2022; 7:e0053922. [PMID: 36264075 PMCID: PMC9765226 DOI: 10.1128/msystems.00539-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The yeast-to-hypha transition is a key virulence attribute of the opportunistic human fungal pathogen Candida albicans, since it is closely tied to infection-associated processes such as tissue invasion and escape from phagocytes. While the nature of hypha-associated gene expression required for fungal virulence has been thoroughly investigated, potential morphotype-dependent activity of metabolic pathways remained unclear. Here, we combined global transcriptome and metabolome analyses for the wild-type SC5314 and the hypha-defective hgc1Δ and cph1Δefg1Δ strains under three hypha-inducing (human serum, N-acetylglucosamine, and alkaline pH) and two yeast-promoting conditions to identify metabolic adaptions that accompany the filamentation process. We identified morphotype-related activities of distinct pathways and a metabolic core signature of 26 metabolites with consistent depletion or enrichment during the yeast-to-hypha transition. Most strikingly, we found a hypha-associated activation of de novo sphingolipid biosynthesis, indicating a connection of this pathway and filamentous growth. Consequently, pharmacological inhibition of this partially fungus-specific pathway resulted in strongly impaired filamentation, verifying the necessity of de novo sphingolipid biosynthesis for proper hypha formation. IMPORTANCE The reversible switch of Candida albicans between unicellular yeast and multicellular hyphal growth is accompanied by a well-studied hypha-associated gene expression, encoding virulence factors like adhesins, toxins, or nutrient scavengers. The investigation of this gene expression consequently led to fundamental insights into the pathogenesis of this fungus. In this study, we applied this concept to hypha-associated metabolic adaptations and identified morphotype-dependent activities of distinct pathways and a stimulus-independent metabolic signature of hyphae. Most strikingly, we found the induction of de novo sphingolipid biosynthesis as hypha associated and essential for the filamentation of C. albicans. These findings verified the presence of morphotype-specific metabolic traits in the fungus, which appear connected to the fungal virulence. Furthermore, the here-provided comprehensive description of the fungal metabolome will help to foster future research and lead to a better understanding of fungal physiology.
Collapse
|
44
|
Ashaiba A, Arun AB, Prasad KS, Tellis RC. Leptospiral sphingomyelinase Sph2 as a potential biomarker for diagnosis of leptospirosis. J Microbiol Methods 2022; 203:106621. [PMID: 36375539 DOI: 10.1016/j.mimet.2022.106621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Leptospirosis is an underestimated infectious tropical disease caused by the spirochetes belonging to the genus Leptospira. Leptospirosis is grossly underdiagnosed due to its myriad symptoms, varying from mild febrile illness to severe haemorrhage. Laboratory tests for leptospirosis is an extremely important and potent way for disease diagnosis, as the clinical manifestations are very similar to other febrile diseases. Currently available diagnostic techniques are time-consuming, require expertise and sophisticated instruments, and cannot identify the disease at an early phase of infection. Early diagnosis of leptospirosis is the need of the hour while considering the severe complications after the infection and the rate of mortality after misdiagnosis. Secretion of Leptospira-specific sphingomyelinases in leptospirosis patient's urine within a few days of the onset of infection is quite common and is a virulence factor present only in pathogenic Leptospira species. Herein, the structural and functional importance of leptospiral sphingomyelinase Sph2 in leptospirosis pathogenesis, as well as the potential of screening urinary Sph2 for diagnosis and the scope for developing a rapid and easily affordable point-of-care test for urinary leptospiral sphingomyelinase Sph2 as an alternative to current diagnostic methods are discussed.
Collapse
Affiliation(s)
- A Ashaiba
- Department of Microbiology, Yenepoya Medical College, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India; Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India
| | - A B Arun
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India
| | - K Sudhakara Prasad
- Nano Materials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India; Centre for Nutrition Studies, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India.
| | - Rouchelle C Tellis
- Department of Microbiology, Yenepoya Medical College, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India.
| |
Collapse
|
45
|
Ivanova MM, Agoulnik IU, LLeonart ME. Editorial: Sphingolipid metabolism and cancer. Front Oncol 2022; 12:1049494. [DOI: 10.3389/fonc.2022.1049494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
|
46
|
Thorner J. TOR complex 2 is a master regulator of plasma membrane homeostasis. Biochem J 2022; 479:1917-1940. [PMID: 36149412 PMCID: PMC9555796 DOI: 10.1042/bcj20220388] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
As first demonstrated in budding yeast (Saccharomyces cerevisiae), all eukaryotic cells contain two, distinct multi-component protein kinase complexes that each harbor the TOR (Target Of Rapamycin) polypeptide as the catalytic subunit. These ensembles, dubbed TORC1 and TORC2, function as universal, centrally important sensors, integrators, and controllers of eukaryotic cell growth and homeostasis. TORC1, activated on the cytosolic surface of the lysosome (or, in yeast, on the cytosolic surface of the vacuole), has emerged as a primary nutrient sensor that promotes cellular biosynthesis and suppresses autophagy. TORC2, located primarily at the plasma membrane, plays a major role in maintaining the proper levels and bilayer distribution of all plasma membrane components (sphingolipids, glycerophospholipids, sterols, and integral membrane proteins). This article surveys what we have learned about signaling via the TORC2 complex, largely through studies conducted in S. cerevisiae. In this yeast, conditions that challenge plasma membrane integrity can, depending on the nature of the stress, stimulate or inhibit TORC2, resulting in, respectively, up-regulation or down-regulation of the phosphorylation and thus the activity of its essential downstream effector the AGC family protein kinase Ypk1. Through the ensuing effect on the efficiency with which Ypk1 phosphorylates multiple substrates that control diverse processes, membrane homeostasis is maintained. Thus, the major focus here is on TORC2, Ypk1, and the multifarious targets of Ypk1 and how the functions of these substrates are regulated by their Ypk1-mediated phosphorylation, with emphasis on recent advances in our understanding of these processes.
Collapse
Affiliation(s)
- Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, U.S.A
| |
Collapse
|
47
|
Palladino END, Bernas T, Green CD, Weigel C, Singh SK, Senkal CE, Martello A, Kennelly JP, Bieberich E, Tontonoz P, Ford DA, Milstien S, Eden ER, Spiegel S. Sphingosine kinases regulate ER contacts with late endocytic organelles and cholesterol trafficking. Proc Natl Acad Sci U S A 2022; 119:e2204396119. [PMID: 36122218 PMCID: PMC9522378 DOI: 10.1073/pnas.2204396119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022] Open
Abstract
Membrane contact sites (MCS), close membrane apposition between organelles, are platforms for interorganellar transfer of lipids including cholesterol, regulation of lipid homeostasis, and co-ordination of endocytic trafficking. Sphingosine kinases (SphKs), two isoenzymes that phosphorylate sphingosine to the bioactive sphingosine-1-phosphate (S1P), have been implicated in endocytic trafficking. However, the physiological functions of SphKs in regulation of membrane dynamics, lipid trafficking and MCS are not known. Here, we report that deletion of SphKs decreased S1P with concomitant increases in its precursors sphingosine and ceramide, and markedly reduced endoplasmic reticulum (ER) contacts with late endocytic organelles. Expression of enzymatically active SphK1, but not catalytically inactive, rescued the deficit of these MCS. Although free cholesterol accumulated in late endocytic organelles in SphK null cells, surprisingly however, cholesterol transport to the ER was not reduced. Importantly, deletion of SphKs promoted recruitment of the ER-resident cholesterol transfer protein Aster-B (also called GRAMD1B) to the plasma membrane (PM), consistent with higher accessible cholesterol and ceramide at the PM, to facilitate cholesterol transfer from the PM to the ER. In addition, ceramide enhanced in vitro binding of the Aster-B GRAM domain to phosphatidylserine and cholesterol liposomes. Our study revealed a previously unknown role for SphKs and sphingolipid metabolites in governing diverse MCS between the ER network and late endocytic organelles versus the PM to control the movement of cholesterol between distinct cell membranes.
Collapse
Affiliation(s)
- Elisa N. D. Palladino
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Tytus Bernas
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Christopher D. Green
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Cynthia Weigel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Sandeep K. Singh
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Can E. Senkal
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Andrea Martello
- UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - John P. Kennelly
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky and Veteran Affairs Medical Center, Lexington, KY 40536
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095
| | - David A. Ford
- Edward A. Doisy Department of Biochemistry and Molecular Biology, and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Emily R. Eden
- UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| |
Collapse
|
48
|
Lansbury P. The Sphingolipids Clearly Play a Role in Parkinson's Disease, but Nature Has Made it Complicated. Mov Disord 2022; 37:1985-1989. [PMID: 36087026 DOI: 10.1002/mds.29204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Peter Lansbury
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
49
|
Huang L, Li G, Wang Q, Meng Q, Xu F, Chen Q, Liu F, Hu Y, Luo M. GhCYP710A1 Participates in Cotton Resistance to Verticillium Wilt by Regulating Stigmasterol Synthesis and Plasma Membrane Stability. Int J Mol Sci 2022; 23:ijms23158437. [PMID: 35955570 PMCID: PMC9368853 DOI: 10.3390/ijms23158437] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
Cotton is an important economic crop. Cotton Verticillium wilt caused by Verticillium dahliae seriously damages production. Phytosterols play roles in plant-pathogen interaction. To explore the function and related mechanism of phytosterols in the interaction between Verticillium dahliae and cotton plants, and the resistance to Verticillium wilt, in this study, we analyzed the changes of sterol composition and content in cotton roots infected by Verticillium dahliae, and identified the sterol C22-desaturase gene GhCYP710A1 from upland cotton. Through overexpressing and silencing the gene in cotton plant, and ectopically expressing the gene in Arabidopsis, we characterized the changes of sterol composition and the resistance to Verticillium wilt in transgenic plants. The infection of Verticillium dahliae resulted in the content of total sterol and each sterol category decreasing in cotton root. The ratio of stigmasterol to sitosterol (St/Si) increased, indicating that the conversion of sitosterol to stigmasterol was activated. Consistently, the expression level of GhCYP710A1 was upregulated after infection. The GhCYP710A1 has the conservative domain that is essential for sterol C22-desaturase in plant and is highly expressed in root and stem, and its subcellular location is in the endoplasmic reticulum. The ectopic expression of GhCYP710A1 gene promoted the synthesis of stigmasterol in Arabidopsis. The St/Si value is dose-dependent with the expression level of GhCYP710A1 gene. Meanwhile, the resistance to Verticillium wilt of transgenic Arabidopsis increased and the permeability of cell membrane decreased, and the content of ROS decreased after V991 (a strain of Verticillium dahliae) infection. Consistently, the resistance to Verticillium wilt significantly increased in the transgenic cotton plants overexpressing GhCYP710A1. The membrane permeability and the colonization of V991 strain in transgenic roots were decreased. On the contrary, silencing GhCYP710A1 resulted in the resistance to Verticillium wilt being decreased. The membrane permeability and the colonization of V991 were increased in cotton roots. The expression change of GhCYP710A1 and the content alteration of stigmasterol lead to changes in JA signal transduction, hypersensitivity and ROS metabolism in cotton, which might be a cause for regulating the Verticillium wilt resistance of cotton plant. These results indicated that GhCYP710A1 might be a target gene in cotton resistance breeding.
Collapse
Affiliation(s)
- Li Huang
- Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture/Biotechnology Research Center of Southwest University, Chongqing 400716, China; (L.H.); (G.L.); (Q.W.); (Q.M.); (F.X.); (Q.C.); (F.L.); (Y.H.)
| | - Guiming Li
- Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture/Biotechnology Research Center of Southwest University, Chongqing 400716, China; (L.H.); (G.L.); (Q.W.); (Q.M.); (F.X.); (Q.C.); (F.L.); (Y.H.)
| | - Qiaoling Wang
- Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture/Biotechnology Research Center of Southwest University, Chongqing 400716, China; (L.H.); (G.L.); (Q.W.); (Q.M.); (F.X.); (Q.C.); (F.L.); (Y.H.)
| | - Qian Meng
- Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture/Biotechnology Research Center of Southwest University, Chongqing 400716, China; (L.H.); (G.L.); (Q.W.); (Q.M.); (F.X.); (Q.C.); (F.L.); (Y.H.)
| | - Fan Xu
- Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture/Biotechnology Research Center of Southwest University, Chongqing 400716, China; (L.H.); (G.L.); (Q.W.); (Q.M.); (F.X.); (Q.C.); (F.L.); (Y.H.)
| | - Qian Chen
- Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture/Biotechnology Research Center of Southwest University, Chongqing 400716, China; (L.H.); (G.L.); (Q.W.); (Q.M.); (F.X.); (Q.C.); (F.L.); (Y.H.)
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400716, China
| | - Fang Liu
- Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture/Biotechnology Research Center of Southwest University, Chongqing 400716, China; (L.H.); (G.L.); (Q.W.); (Q.M.); (F.X.); (Q.C.); (F.L.); (Y.H.)
| | - Yulin Hu
- Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture/Biotechnology Research Center of Southwest University, Chongqing 400716, China; (L.H.); (G.L.); (Q.W.); (Q.M.); (F.X.); (Q.C.); (F.L.); (Y.H.)
| | - Ming Luo
- Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture/Biotechnology Research Center of Southwest University, Chongqing 400716, China; (L.H.); (G.L.); (Q.W.); (Q.M.); (F.X.); (Q.C.); (F.L.); (Y.H.)
- Correspondence:
| |
Collapse
|
50
|
Wang L, Lin G, Zuo Z, Li Y, Byeon SK, Pandey A, Bellen HJ. Neuronal activity induces glucosylceramide that is secreted via exosomes for lysosomal degradation in glia. SCIENCE ADVANCES 2022; 8:eabn3326. [PMID: 35857503 PMCID: PMC9278864 DOI: 10.1126/sciadv.abn3326] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/27/2022] [Indexed: 05/06/2023]
Abstract
Recessive variants in GBA1 cause Gaucher disease, a prevalent form of lysosome storage disease. GBA1 encodes a lysosomal enzyme that hydrolyzes glucosylceramide (GlcCer) into glucose and ceramide. Its loss causes lysosomal dysfunction and increased levels of GlcCer. We generated a null allele of the Drosophila ortholog Gba1b by inserting the Gal4 using CRISPR-Cas9. Here, we show that Gba1b is expressed in glia but not in neurons. Glial-specific knockdown recapitulates the defects found in Gba1b mutants, and these can be rescued by glial expression of human GBA1. We show that GlcCer is synthesized upon neuronal activity, and it is transported from neurons to glia through exosomes. Furthermore, we found that glial TGF-β/BMP induces the transfer of GlcCer from neurons to glia and that the White protein, an ABCG transporter, promotes GlcCer trafficking to glial lysosomes for degradation.
Collapse
Affiliation(s)
- Liping Wang
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Guang Lin
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhongyuan Zuo
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yarong Li
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Seul Kee Byeon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| | - Hugo J. Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|