1
|
Zhou P, Yang G, Wang Y, Peng Y, Xu L, Jiang T, Ma J, Dong W, Chen CP. Development of indole derivatives as inhibitors targeting STING-dependent inflammation. Bioorg Med Chem 2025; 126:118216. [PMID: 40327997 DOI: 10.1016/j.bmc.2025.118216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/10/2025] [Accepted: 04/25/2025] [Indexed: 05/08/2025]
Abstract
Constant activation of stimulator of interferon genes (STING), resulting from aberrant metabolism or mutations in STING1, can initiate inflammatory damage or autoimmune disease. STING antagonists have the potential to be used as therapeutics for inflammatory and autoimmune diseases. Based on the structures of the covalent STING inhibitor H151 and C178, we designed, synthesized, and evaluated a novel series of indole derivatives for STING inhibition. Several compounds exhibited efficacious STING inhibitory activity. One of these novel chemical entities, 4dc, was more potent than H151, with IC50 values of 0.14 μM in RAW-LuciaTM ISG cells and 0.39 μM in THP1-Dual™ cells. The compound effectively relieved the symptoms of renal injury in a cisplatin-induced acute kidney injury mouse model. Compound 4dc represents a new chemotype of STING inhibitor that deserves further investigation as anti-inflammatory agent.
Collapse
Affiliation(s)
- Peng Zhou
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Gen Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yan Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yaya Peng
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Lingyun Xu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Tao Jiang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Jinliang Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China.
| | - Wenpei Dong
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China.
| | - Chang-Po Chen
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China.
| |
Collapse
|
2
|
Ren KX, Feng L, Wu P, Liu Y, Ren HM, Jin XW, Zhong CB, Zhou XQ, Jiang WD. Mitigation of the toxic effects of nitrite: Role and mechanism of isoleucine in mitigating mitochondrial DNA leakage-induced inflammation in grass carp (Ctenopharyngodon idella) under nitrite exposure. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:138016. [PMID: 40147124 DOI: 10.1016/j.jhazmat.2025.138016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
The physiological and growth processes of fish are closely associated with their surrounding environment. This study investigated the role and underlying mechanisms of isoleucine (Ile) in alleviating mitochondrial DNA (mtDNA) leakage-induced inflammation in grass carp under nitrite exposure. Grass carp were fed six experimental diets containing different Ile levels (0.00, 3.00, 6.00, 9.00, 12.00 and 15.00 g/kg) for 9 weeks, followed by a 96-hour nitrite exposure trial. Ile supplementation mitigated the deterioration of blood parameters including glutamic oxaloacetic transaminase (GOT), glutamic alanine transaminase (GPT), glucose, cortisol and lactate dehydrogenase (LDH) induced by nitrite exposure. Additionally, Ile enhanced its transport to the liver and mitochondria, as well as increased metabolism of Ile in mitochondria. Histological analyses revealed that Ile mitigated nitrite exposure-induced liver damage and mitochondrial cristae disruption. Furthermore, Ile preserved the mitochondrial cristae homeostasis by upregulating key proteins involved in mitochondrial structure maintenance, while inhibiting mtDNA leakage. Mechanistically, Ile attenuated mtDNA leakage-induced inflammation under nitrite exposure associated with the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-Stimulator of Interferon Genes (STING) and NOD-like receptor thermal protein domain associated protein 3 (NLRP3) pathways. These findings highlight the protective role of Ile in reducing inflammation triggered by environmental nitrite exposure, offering new insights into aquatic toxicology, and determined that Ile concentration of 11.13 g/kg diet could be optimal for mitigating nitrite-induced stress in grass carp, providing a theoretical basis for formulating anti- nitrite stress diets in aquaculture.
Collapse
Affiliation(s)
- Kai-Xuan Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Wan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Cheng-Bo Zhong
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co.Ltd, Chengdu 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China.
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China.
| |
Collapse
|
3
|
Qu S, Dai H. Conjugated STING agonists. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102530. [PMID: 40291379 PMCID: PMC12032345 DOI: 10.1016/j.omtn.2025.102530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
An innate immune system is the first line of defense and prevents the host from infection and attacks the invading pathogens. Stimulator of interferon genes (STING) plays a vital role in the innate immune system. STING activation by STING agonists leads to phosphorylation of TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3) with the release of type I interferons and proinflammatory cytokines, further promoting the adaptive immune response and activating T cells by increased antigen presentation. Natural STING agonist cyclic dinucleotides (CDNs) encounter many defects such as high polarity by negative charges, low stability and circulative half-life, off-target systemic toxicity, and low response efficacy in clinical trials. To overcome these challenges, massive efforts have addressed chemical modifications of CDNs, development of non-CDN STING agonists, and delivery of these STING agonists either by conjugation or liposomes/nanoparticles. Considering there have been a great number of reports regarding nanosystem-aided delivery, here, we examine the development of STING agonists, especially for non-CDNs and their delivery specifically by conjugation strategy, with a focus on the STING agonists in clinical trials and current challenges of their potential in cancer immunotherapy.
Collapse
Affiliation(s)
- Shuhao Qu
- School of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Hong Dai
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
4
|
Mishra Y, Kumar A, Kaundal RK. Mitochondrial Dysfunction is a Crucial Immune Checkpoint for Neuroinflammation and Neurodegeneration: mtDAMPs in Focus. Mol Neurobiol 2025; 62:6715-6747. [PMID: 39115673 DOI: 10.1007/s12035-024-04412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 01/03/2025]
Abstract
Neuroinflammation is a pivotal factor in the progression of both age-related and acute neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, and stroke. Mitochondria, essential for neuronal health due to their roles in energy production, calcium buffering, and oxidative stress regulation, become increasingly susceptible to dysfunction under conditions of metabolic stress, aging, or injury. Impaired mitophagy in aged or injured neurons leads to the accumulation of dysfunctional mitochondria, which release mitochondrial-derived damage-associated molecular patterns (mtDAMPs). These mtDAMPs act as immune checkpoints, activating pattern recognition receptors (PRRs) and triggering innate immune signaling pathways. This activation initiates inflammatory responses in neurons and brain-resident immune cells, releasing cytokines and chemokines that damage adjacent healthy neurons and recruit peripheral immune cells, further amplifying neuroinflammation and neurodegeneration. Long-term mitochondrial dysfunction perpetuates a chronic inflammatory state, exacerbating neuronal injury and contributing additional immunogenic components to the extracellular environment. Emerging evidence highlights the critical role of mtDAMPs in initiating and sustaining neuroinflammation, with circulating levels of these molecules potentially serving as biomarkers for disease progression. This review explores the mechanisms of mtDAMP release due to mitochondrial dysfunction, their interaction with PRRs, and the subsequent activation of inflammatory pathways. We also discuss the role of mtDAMP-triggered innate immune responses in exacerbating both acute and chronic neuroinflammation and neurodegeneration. Targeting dysfunctional mitochondria and mtDAMPs with pharmacological agents presents a promising strategy for mitigating the initiation and progression of neuropathological conditions.
Collapse
Affiliation(s)
- Yogesh Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - SAS Nagar, SAS Nagar, Punjab, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - SAS Nagar, SAS Nagar, Punjab, India.
| | - Ravinder Kumar Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
5
|
Zhang X, Du H, Qiu T, Fu H, Dai J, Lian Q, Yan F, Guo D, Lin J, Xu S, Li D, Chen Q, Huang Z. Tanshinone IIA alleviates myocarditis in Trex1-D18N lupus-like mice by inhibiting the interaction between STING and SEC24C. Int Immunopharmacol 2025; 156:114659. [PMID: 40252465 DOI: 10.1016/j.intimp.2025.114659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/21/2025]
Abstract
The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway serves as a crucial component of the innate immune defense, playing a vital role in combating pathogen invasion. However, its dysregulation or abnormal activation can trigger the development of autoimmune diseases. This study demonstrated that Tanshinone IIA, a major lipid-soluble component of Salvia miltiorrhiza Bunge, can effectively inhibit the activation of the cGAS-STING signaling pathway. Mechanistically, Tanshinone IIA inhibits the transport of STING from the ER to the Golgi apparatus by weakening the interaction between STING and SEC24C, thereby preventing the activation of the cGAS-STING signaling pathway. Furthermore, Tanshinone IIA significantly ameliorated myocardial inflammation in WT and Trex1D18N/D18N mice. Our research indicates that Tanshinone IIA shows potential therapeutic value in alleviating autoimmune diseases by effectively inhibiting the abnormal activation of the cGAS-STING pathway.
Collapse
Affiliation(s)
- Xiaoxiong Zhang
- Department of Integrative Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province 350117, China; Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Hekang Du
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China; Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
| | - Tao Qiu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Honggao Fu
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350005, China
| | - Jiawei Dai
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200030, China
| | - Qiying Lian
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Fang Yan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Dong Guo
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Jinpei Lin
- Department of Integrative Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province 350117, China
| | - Shan Xu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Daliang Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China.
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China.
| | - Zhengrong Huang
- Department of Integrative Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province 350117, China.
| |
Collapse
|
6
|
Paulsen K, Chan R, Gay L, Ma Z. KSHV miRNAs target STING to evade innate immunity and facilitate KSHV lytic reactivation from latency. Cell Rep 2025; 44:115741. [PMID: 40413741 DOI: 10.1016/j.celrep.2025.115741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/10/2025] [Accepted: 05/05/2025] [Indexed: 05/27/2025] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) employs various strategies to evade host immune surveillance and maintain lifelong latency. The cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) DNA sensing pathway is a key innate immunity pathway that detects viral DNA and restricts KSHV lytic replication upon reactivation from latency. Here, we identify three KSHV microRNAs (miRNAs), miR-K12-6-3p, miR-K12-7-3p, and miR-K12-11-3p, that directly bind to STING1 mRNA to repress its translation and inhibit downstream immune signaling. Exogenous delivery of these KSHV miRNAs led to decreased STING expression and attenuated cGAS/STING signaling in response to STING agonist stimulation. Conversely, genetic deletion of these KSHV miRNAs rescued STING and interferon-stimulated gene expression in latent KSHV cell lines, delaying KSHV lytic reactivation and reducing KSHV lytic gene expression. These findings shed light on the immune evasion strategy of KSHV miRNA-mediated STING repression, representing the discovery of viral miRNAs that target STING.
Collapse
Affiliation(s)
- Kimberly Paulsen
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Rosenna Chan
- Department of Microbiology & Cell Science, University of Florida, Gainesville, FL, USA
| | - Lauren Gay
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Zhe Ma
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA; UF Health Cancer Center, Gainesville, FL, USA.
| |
Collapse
|
7
|
Moosavi Zenooz A, Eterafi M, Azarmi Giglou S, Safarzadeh E. Embracing cancer immunotherapy with manganese particles. Cell Oncol (Dordr) 2025:10.1007/s13402-025-01070-9. [PMID: 40397376 DOI: 10.1007/s13402-025-01070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 05/05/2025] [Indexed: 05/22/2025] Open
Abstract
A substance integral to the sustenance and functionality of virtually all forms of life is manganese (Mn), classified as an essential trace metal. Its significance lies in its pivotal role in facilitating metabolic processes crucial for survival. Additionally, Mn exerts influence over various biological functions including bone formation and maintenance, as well as regulation within systems governing immunity, nervous signaling, and digestion. Manganese nanoparticles (Mn-NP) stand out as a beacon of promise within the realm of immunotherapy, their focus honed on intricate mechanisms such as triggering immune pathways, igniting inflammasomes, inducing immunogenic cell death (ICD), and sculpting the nuances of the tumor microenvironment. These minuscule marvels have dazzled researchers with their potential in reshaping the landscape of cancer immunotherapy - serving as potent vaccine enhancers, efficient drug couriers, and formidable allies when paired with immune checkpoint inhibitors (ICIs) or cutting-edge photodynamic/photothermal therapies. Herein, we aim to provide a comprehensive review of recent advances in the application of Mn and Mn-NP in the immunotherapy of cancer. We hope that this review will display an insightful view of Mn-NPs and provide guidance for design and application of them in immune-based cancer therapies.
Collapse
Affiliation(s)
- Ali Moosavi Zenooz
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Majid Eterafi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Soheil Azarmi Giglou
- Students Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Department of Microbiology, Parasitology and Immunology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, 5166614711, Iran.
| |
Collapse
|
8
|
Krüger P, Schroll M, Fenzl FQ, Hartinger R, Lederer EM, Görlach A, Gordon LB, Cavalcante P, Iacomino N, Rathkolb B, Pimentel JAA, Östereicher M, Spielmann N, Wolf CM, de Angelis MH, Djabali K. Baricitinib and Lonafarnib Synergistically Target Progerin and Inflammation, Improving Lifespan and Health in Progeria Mice. Int J Mol Sci 2025; 26:4849. [PMID: 40429989 PMCID: PMC12112389 DOI: 10.3390/ijms26104849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare, fatal, and premature aging disorder caused by progerin, a truncated form of lamin A that disrupts nuclear architecture, induces systemic inflammation, and accelerates senescence. While the farnesyltransferase inhibitor lonafarnib extends the lifespan by limiting progerin farnesylation, it does not address the chronic inflammation or the senescence-associated secretory phenotype (SASP), which worsens disease progression. In this study, we investigated the combined effects of baricitinib (BAR), a JAK1/2 inhibitor, and lonafarnib (FTI) in a LmnaG609G/G609G mouse model of HGPS. BAR + FTI therapy synergistically extended the lifespan by 25%, surpassing the effects of either monotherapy. Treated mice showed improved health, as evidenced by reduced kyphosis, better fur quality, decreased incidence of cataracts, and less severe dysgnathia. Histological analyses indicated reduced fibrosis in the dermal, hepatic, and muscular tissues, restored cellularity and thickness in the aortic media, and improved muscle fiber integrity. Mechanistically, BAR decreased the SASP and inflammatory markers (e.g., IL-6 and PAI-1), complementing the progerin-targeting effects of FTI. This preclinical study demonstrates the synergistic potential of BAR + FTI therapy in addressing HGPS systemic and tissue-specific pathologies, offering a promising strategy for enhancing both lifespan and health.
Collapse
Affiliation(s)
- Peter Krüger
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine and Health, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany; (P.K.)
| | - Moritz Schroll
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine and Health, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany; (P.K.)
| | - Felix Quirin Fenzl
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine and Health, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany; (P.K.)
| | - Ramona Hartinger
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine and Health, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany; (P.K.)
| | - Eva-Maria Lederer
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine and Health, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany; (P.K.)
| | - Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich, Technical University Hospital, TUM School of Medicine and Health, 80636 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80636 Munich, Germany
| | - Leslie B. Gordon
- Department of Anesthesia, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatrics, Hasbro Children’s Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02912, USA
| | - Paola Cavalcante
- Neurology 4-Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Nicola Iacomino
- Neurology 4-Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Birgit Rathkolb
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Juan Antonio Aguilar Pimentel
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Manuela Östereicher
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Nadine Spielmann
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Cordula Maria Wolf
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich, Technical University Hospital, TUM School of Medicine and Health, 80636 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80636 Munich, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Experimental Genetics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Karima Djabali
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine and Health, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany; (P.K.)
| |
Collapse
|
9
|
Mills EL, Suptela SR, Key MK, Marriott I, Johnson MB. RIG-I and cGAS mediate antimicrobial and inflammatory responses of primary osteoblasts and osteoclasts to Staphylococcus aureus. mBio 2025; 16:e0397124. [PMID: 40135931 PMCID: PMC12077190 DOI: 10.1128/mbio.03971-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Staphylococcus aureus is the primary causative agent of osteomyelitis, and it is now apparent that osteoblasts and osteoclasts play a significant role in the pathogenesis of such infections. Their responses can either be protective or exacerbate inflammatory bone loss and are mediated by the recognition of microbial motifs by various pattern recognition receptors. We have recently reported that osteoblasts can respond to S. aureus challenge with the production of the type I interferon, interferon-beta, which can reduce the number of viable bacteria harbored within infected cells. In the present study, we demonstrate that S. aureus viability and internalization are necessary for maximal inflammatory cytokine and type I interferon responses of primary bone cells to this pathogen. Importantly, we show that primary murine and human bone cells constitutively express the cytosolic nucleic acid sensors, retinoic acid inducible gene I (RIG-I) and cyclic GMP-AMP synthase (cGAS), and demonstrate that such expression is markedly upregulated following S. aureus infection. The functional status of RIG-I and cGAS in osteoblasts and osteoclasts was confirmed by showing that specific ligands for each can also elevate their expression and induce cytokine responses. We have verified the specificity of such responses using siRNA knockdown or pharmacological inhibition and used these approaches to demonstrate that both sensors play a pivotal role in bone cell responses to infection with clinically relevant strains of S. aureus. Finally, we have begun to establish the biological significance of RIG-I- and cGAS-mediated bone cell responses with the demonstration that their attenuation increases S. aureus burden in infected cells, suggesting a potentially protective role for these sensors in osteomyelitis.IMPORTANCEStaphylococcal osteomyelitis is a severe infection that is often recalcitrant to current treatment strategies. We and others have demonstrated that resident bone cells are not merely passive victims but can respond to bacteria with the production of an array of immune mediators, including type I interferons, that could serve to limit such infections. Here, we demonstrate the functional expression of two cytosolic nucleic acid sensors, retinoic acid inducible gene I and cyclic GMP-AMP synthase, in primary murine and human osteoblasts and murine osteoclasts. We show that these pattern recognition receptors mediate potentially protective bone cell type I interferon responses to Staphylococcus aureus infection.
Collapse
Affiliation(s)
- Erin L. Mills
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Samantha R. Suptela
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Mary-Kate Key
- Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, USA
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - M. Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
10
|
Zhu Z, Cao S, Li H, Zhang Z, Lu Q, Li H, Shen L, Wang Z, Yang N, Yu J, Li J, Zheng M, Nie C, Tong A, Shao B. Myeloid-derived suppressor cell-targeted virus-like particles synergistically activate innate immune response for cancer immunotherapy. J Control Release 2025; 381:113603. [PMID: 40049520 DOI: 10.1016/j.jconrel.2025.113603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/12/2025] [Accepted: 03/02/2025] [Indexed: 03/17/2025]
Abstract
The importance of the tumor microenvironment in dynamically modulating neoplastic process, fostering proliferation, survival and migration is now widely appreciated. Therapeutics directed to various components of tumor microenvironment, especially tumor-associated macrophages and myeloid-derived suppressor cells (MDSCs), have become an attractive avenue for cancer immunotherapy. Virus-like particles (VLPs) derived from cowpea chlorotic mottle viruses (CCMV) have been used extensively in biotechnology and are ideal platforms for the targeted delivery of therapeutic drugs for cancer immunotherapy. Here, oxidative dsDNAs, which have excellent immunostimulatory effects, are encapsulated into CCMV (CPD VLPs). CPD VLPs could be effectively taken up by macrophages and subsequently trigger Cyclic GMP-AMP synthase-stimulator of interferon genes pathway and NLRP3/Caspase-1/Gasdermin D -dependent pyroptosis pathway. To increase tumor-targeting specificity and reduce toxicity in bystander healthy tissues, peptides targeting MDSCs are conjugated to the exterior surfaces of the CPD VLPs named CPD-TP VLPs. CPD-TP VLPs can home to tumor side and induce a robust antitumor response by reprogramming tumor microenvironment. Notably, CPD-TP VLPs administration is also efficacious against lung metastasis from breast cancer. Moreover, the combination of CPD-TP VLPs with programmed cell death protein 1 (PD-1) blockade could improve therapeutic response of PD-1 antibody treatment in "immune-cold" mouse tumor models. Therefore, this study presents a novel design for VLP-based cancer vaccine.
Collapse
Affiliation(s)
- Zhixiong Zhu
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuqin Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hanwen Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zongliang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qizhong Lu
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hexian Li
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Luxuan Shen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zeng Wang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nian Yang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiayun Yu
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianshu Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Meijun Zheng
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan province, China
| | - Chunlai Nie
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China.
| | - Bin Shao
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Cardiovascular Surgery and Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
11
|
Gamir J, Vega-Muñoz I, Rassizadeh L, Heil M. On the quest for undiscovered plant DNA receptors. TRENDS IN PLANT SCIENCE 2025:S1360-1385(25)00110-4. [PMID: 40348629 DOI: 10.1016/j.tplants.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025]
Abstract
The presence of unexpected DNA in cellular compartments acts as a danger signal that activates immune responses. In mammals, delocalized self-DNA triggers strong inflammatory responses crucial for antiviral immunity and cancer control. In plants, application of exogenous self-DNA increases resistance to pathogens and herbivores. Although several mammalian DNA receptors have been identified with distinct subcellular localizations and mechanisms to discriminate between microbial and mitochondrial DNA, no DNA receptors have been identified in plants. Here, we show current evidence for different potential response mechanisms for DNA perception and consider several hypothetical mechanisms for its recognition in plants. Finally, we provide a potential framework for finding plant self-DNA receptors in the future.
Collapse
Affiliation(s)
- Jordi Gamir
- Plant Immunity and Biochemistry Group, Department of Biology Biochemistry and Natural Sciences, Universitat Jaume I, Avd. Vicente Sos Baynat s/n, 12071 Castelló, Spain.
| | - Isaac Vega-Muñoz
- Plant Ecology Laboratory, CINVESTAV-Irapuato, Genetic Engineering Department, 36824 Irapuato, Mexico
| | - Leila Rassizadeh
- Plant Immunity and Biochemistry Group, Department of Biology Biochemistry and Natural Sciences, Universitat Jaume I, Avd. Vicente Sos Baynat s/n, 12071 Castelló, Spain
| | - Martin Heil
- Plant Ecology Laboratory, CINVESTAV-Irapuato, Genetic Engineering Department, 36824 Irapuato, Mexico
| |
Collapse
|
12
|
Alwithenani A, Hengswat P, Chiocca EA. Oncolytic viruses as cancer therapeutics: From mechanistic insights to clinical translation. Mol Ther 2025; 33:2217-2228. [PMID: 40143547 DOI: 10.1016/j.ymthe.2025.03.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 03/28/2025] Open
Abstract
Oncolytic virotherapy is a therapeutic approach that leverages genetically engineered or naturally occurring viruses to selectively target and destroy cancer cells while sparing normal tissues. This review provides an overview of the mechanisms of action by oncolytic viruses (OVs), including direct oncolysis, immune activation, and tumor microenvironment (TME) modulation. Despite significant progress, challenges such as immune resistance, tumor evasion mechanisms, and delivery barriers continue to limit the efficacy of OVs. To address these obstacles, recent advances in OV engineering have focused on arming viruses with immunomodulatory molecules, utilizing tumor-specific promoters, and employing CRISPR-based genome editing. Emerging strategies, such as dual-targeting OVs and viral enhancer drugs, have demonstrated promising potential in preclinical and clinical settings. This review also highlights findings from recent clinical trials, underscoring the translational challenges in scaling OVs for widespread therapeutic application. By exploring these innovations and their implications, we aim to shed light on the future directions of oncolytic virotherapy and its transformative potential in cancer treatment.
Collapse
Affiliation(s)
- Akram Alwithenani
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Mass General Brigham, Harvard Medical School, Boston, MA, USA
| | - Pranaidej Hengswat
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Mass General Brigham, Harvard Medical School, Boston, MA, USA
| | - E Antonio Chiocca
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Mass General Brigham, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Chen L, Hu L, Chang H, Mao J, Ye M, Jin X. DNA-RNA hybrids in inflammation: sources, immune response, and therapeutic implications. J Mol Med (Berl) 2025; 103:511-529. [PMID: 40131443 DOI: 10.1007/s00109-025-02533-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025]
Abstract
Cytoplasmic DNA-RNA hybrids are emerging as important immunogenic nucleic acids, that were previously underappreciated. DNA-RNA hybrids, formed during cellular processes like transcription and replication, or by exogenous pathogens, are recognized by pattern recognition receptors (PRRs), including cGAS, DDX41, and TLR9, which trigger immune responses. Post-translational modifications (PTMs) including ubiquitination, phosphorylation, acetylation, and palmitoylation regulate the activity of PRRs and downstream signaling molecules, fine-tuning the immune response. Targeting enzymes involved in DNA-RNA hybrid metabolism and PTMs regulation offers therapeutic potential for inflammatory diseases. Herein, we discuss the sources, immune response, and therapeutic implications of DNA-RNA hybrids in inflammation, highlighting the significance of DNA-RNA hybrids as potential targets for the treatment of inflammation.
Collapse
Affiliation(s)
- Litao Chen
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Lechen Hu
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Han Chang
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jianing Mao
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
14
|
He L, Zhao T, Leong WZ, Sharda A, Mayerhofer C, Mei S, Bonilla GM, Menendez-Gonzalez JB, Gustafsson K, Fukushima T, Kristiansen TA, Lee JW, Xu Y, Chen L, Xia J, Orozco LA, Budnik B, Sadreyev R, Dou Z, Sykes DB, Scadden DT. PSTK inhibition activates cGAS-STING, precipitating ferroptotic cell death in leukemic stem cells. Blood 2025; 145:1903-1914. [PMID: 39912669 DOI: 10.1182/blood.2024026040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 02/07/2025] Open
Abstract
ABSTRACT Differentiation arrest and dependence on oxidative metabolism are features shared among genetically diverse acute myeloid leukemias (AMLs). A phenotypic CRISPR-CRISPR-associated protein 9 screen in AML identified dependence on phosphoseryl-transfer RNA kinase (PSTK), an atypical kinase required for the biosynthesis of all selenoproteins. In vivo, PSTK inhibition (PSTKi) impaired AML cell growth and leukemic stem cell self-renewal. Notably, timed pharmacologic PSTKi effectively targeted chemotherapy-resistant AML in murine and patient-derived xenograft models, showing selectivity for malignant cells over normal hematopoietic cells. Mechanistically, PSTKi-induced reactive oxygen species (ROS) triggering mitochondrial DNA release into the cytosol and activated cyclic GMP-AMP Synthase-Stimulator of interferon genes (cGAS-STING). This activation, in turn, disrupted iron metabolism, augmenting ROS generation, and amplifying ferroptosis. Together, these findings reveal a self-reinforcing PSTK-cGAS-STING-ROS loop, culminating in an oxidative crisis and ferroptotic cell death of leukemic stem cells. These data highlight the potential for augmenting standard cancer chemotherapies using timed metabolic intervention to eliminate chemotherapy-persisting cells and thereby impede disease relapse.
Collapse
Affiliation(s)
- Lingli He
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Ting Zhao
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Wei Zhong Leong
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Azeem Sharda
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Christina Mayerhofer
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Shenglin Mei
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Gracia M Bonilla
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Juan Bautista Menendez-Gonzalez
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Karin Gustafsson
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Tsuyoshi Fukushima
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Trine A Kristiansen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Ji-Won Lee
- Harvard Stem Cell Institute, Cambridge, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Yanxin Xu
- Harvard Stem Cell Institute, Cambridge, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Lei Chen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Jun Xia
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Luis Angel Orozco
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Bogdan Budnik
- Mass Spectrometry and Proteomics Research Laboratory, Faculty of Art and Science, Harvard University, Cambridge, MA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Zhixun Dou
- Harvard Stem Cell Institute, Cambridge, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - David B Sykes
- Harvard Stem Cell Institute, Cambridge, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - David T Scadden
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
15
|
Rao K, Zhang X, Luo Y, Xia Q, Jin Y, He J. Lactylation orchestrates ubiquitin-independent degradation of cGAS and promotes tumor growth. Cell Rep 2025; 44:115441. [PMID: 40106438 DOI: 10.1016/j.celrep.2025.115441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/06/2025] [Accepted: 02/26/2025] [Indexed: 03/22/2025] Open
Abstract
Lactate extensively associates with metabolic reprogramming, signal transduction, and immune modulation. Nevertheless, the regulatory role of lactate in immune sensing of cytosolic DNA remains uncertain. Here, we report that lactate serves as an initiator to facilitate proteasomal degradation of cyclic GMP-AMP synthase (cGAS) independent of ubiquitin, thus repressing the production of interferon and contributing to tumor growth. Mechanistically, lactylation of K21 stimulates cGAS translocation from the nucleus to the proteasome for degradation, which is compromised by phosphorylation of PSMA4 S188 via disrupting its association with cGAS. Concurrently, lactylation of K415 rewires PIK3CB activity and impairs ULK1-driven phosphorylation of PSMA4 S188. Physiologically, lactylation of cGAS sustains tumor growth. Expression of cGAS correlates with the antitumor effect of the LDHA inhibitor FX11. Finally, the lactate-cGAS axis indicates a prognostic outcome of lung adenocarcinoma. Collectively, these findings not only put forth a mechanism of cGAS degradation but also unravel the clinical relevance of cGAS lactylation.
Collapse
Affiliation(s)
- Keqiang Rao
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; Shanghai Institute of Transplantation, Shanghai 200120, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai 200120, China
| | - Xinchao Zhang
- Department of Pathology, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi Luo
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; Shanghai Institute of Transplantation, Shanghai 200120, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai 200120, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; Shanghai Institute of Transplantation, Shanghai 200120, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai 200120, China.
| | - Yuting Jin
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; Shanghai Institute of Transplantation, Shanghai 200120, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai 200120, China.
| | - Jing He
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
16
|
Du H, Cui D, Hu S, Zhou X, Lin X, Fu X, Feng S, Xu S, Jian W, Guo Y, Zhang S, Chen Q. The induction of type I interferonopathy in Trex1-P212fs mice is mediated by activation of the cGAS-STING pathway. Int J Biol Macromol 2025; 310:143414. [PMID: 40268028 DOI: 10.1016/j.ijbiomac.2025.143414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 04/03/2025] [Accepted: 04/20/2025] [Indexed: 04/25/2025]
Abstract
The cGAS-STING pathway is crucial for immune tolerance, pathogen resistance, and tumor immunity. Knocking out the cGAS gene can reverse the type I interferonopathy seen in Trex1-/- and Trex1D18N/D18N mice. TREX1, a key DNA-specific exonuclease in mammalian cells, degrades cytoplasmic DNA to prevent excessive immune activation. Mutations in TREX1 are linked to various autoimmune diseases. In prior research, we generated a Trex1-P212fs mouse model associated with systemic lupus erythematosus (SLE) using CRISPR-Cas9 gene editing. This model displays systemic inflammation that mirrors numerous characteristics of both Aicardi-Goutières syndrome (AGS) and SLE in humans. In this study, we found that the TREX1-P212fs mutation resulted in reduced dsDNA enzyme activity. DNA accumulation was present in the cytoplasm of Trex1P212fs/P212fs MEFs. Nonetheless, the role of the cGAS-STING pathway in mediating the disease phenotype in Trex1-P212fs mice associated with SLE has yet to be elucidated. We observed that cGas knockout mitigated systemic inflammation, lymphocyte proliferation, vasculitis, renal disease, and spontaneous T cell activation in Trex1-P212fs mice. Similarly, inhibition of STING with C-176 treatment ameliorated the disease phenotype in Trex1-P212fs mice. These findings elucidate the pathogenesis of TREX1-P212fs-associated type I interferonopathy and offer potential therapeutic targets for their treatment.
Collapse
Affiliation(s)
- Hekang Du
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China; Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China.; Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou 350212, China
| | - Dongya Cui
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Shun Hu
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China; Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou 350212, China
| | - Xueyuan Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Xiaofang Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Xiaodan Fu
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China; Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou 350212, China
| | - Sisi Feng
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China; Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou 350212, China
| | - Shan Xu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Wentin Jian
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China; Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou 350212, China
| | - Yuanli Guo
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China; Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou 350212, China
| | - Sheng Zhang
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China; Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou 350212, China..
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China..
| |
Collapse
|
17
|
Yan X, Wang E, Zhao M, Ma G, Xu XX, Zhao JB, Li X, Zeng J, Ma X. Microbial infection instigates tau-related pathology in Alzheimer's disease via activating neuroimmune cGAS-STING pathway. Neuroscience 2025; 572:122-133. [PMID: 40064364 DOI: 10.1016/j.neuroscience.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 01/28/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
Microbial infection, the strong trigger to directly induce inflammation in brain, is long considered a risk factor of Alzheimer's disease (AD), but how these infections contribute to neurodegeneration remains underexplored. To examine the effect of herpes simplex virus type 1 (HSV-1) infection on tauopathy in local hippocampus of P301S mice, we utilized a modified HSV-1 strain (mHSV-1) potentially relevant to AD, we found that its infection promotes tau-related pathology in part via activating neuroimmune cGAS-STING pathway in the tau mouse model. Specifically, Sting ablation causes the detectable improvement of neuronal dysfunction and loss in P301S mice, which is causally linked to lowered proinflammatory status in the brain. Administration of STING inhibitor H-151 alleviates neuroinflammation and tau-related pathology in P301S mice. These results jointly suggest that herpesviral infection, as the vital environmental risk factor, could induce tau-related pathology in AD pathogenesis partially via neuroinflammatory cGAS-STING pathway.
Collapse
Affiliation(s)
- Xiaoxu Yan
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Erlin Wang
- Songjiang Research Institute, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Meng Zhao
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Guanqin Ma
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xiang-Xiong Xu
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jie-Bin Zhao
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xiaohong Li
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jianxiong Zeng
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Songjiang Research Institute, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Yunnan Key Laboratory of Biodiversity Information, Kunming, Yunnan 650201, China.
| | - Xueling Ma
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
18
|
Zhang Q, Song X, Liu J, Zhou X. Prospects of engineered bacteria-assisted CAR T Cell therapy in gastrointestinal cancers. Oncol Rev 2025; 19:1581856. [PMID: 40297102 PMCID: PMC12034723 DOI: 10.3389/or.2025.1581856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 04/03/2025] [Indexed: 04/30/2025] Open
Abstract
The high incidence and mortality rates associated with gastrointestinal cancers represent a significant global health challenge. In recent years, CAR T cell therapy has emerged as a promising immunotherapeutic approach, demonstrating favorable clinical outcomes. However, the application of traditional CAR T cell therapy in gastrointestinal cancers faces numerous challenges, including the suppressive tumor microenvironment and limitations in anti-tumor efficacy. The application of engineered bacteria offers a novel strategy to enhance CAR T cell therapy by modulating the tumor microenvironment and boosting immune responses, potentially leading to improved therapeutic outcomes. This review synthesizes the current research advancements related to engineered bacteria-assisted CAR T cell therapy in gastrointestinal cancers, exploring its underlying mechanisms, clinical applications, and future developmental directions.
Collapse
Affiliation(s)
- Qingqing Zhang
- Reproductive Medicine, Weifang People’s Hospital, Weifang, Shandong, China
| | - Xiao Song
- Department of Gastroenterology, Weifang People’s Hospital, Weifang, Shandong, China
| | - Junhong Liu
- The Third Department of Geriatrics, Weifang People’s Hospital, Weifang, Shandong, China
| | - Xuejiao Zhou
- Hospital Preparation Center, Weifang People’s Hospital, Weifang, Shandong, China
| |
Collapse
|
19
|
Liu C, Liu M, Li X, Hu Y, Zhang L, You FM, Fan G, Ge Y. Unique advantages and applications of polysaccharide microneedles as drug delivery materials and in treatment of skin diseases. NANOSCALE ADVANCES 2025:d4na01083c. [PMID: 40417161 PMCID: PMC12096177 DOI: 10.1039/d4na01083c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 04/11/2025] [Indexed: 05/27/2025]
Abstract
Owing to its non-invasive nature, painless drug delivery, and controlled drug loading capacity, the microneedle (MN) technology has recently garnered significant attention in clinical practice. For instance, it has been pervasively employed as an innovative transdermal delivery method in skin disease therapy. However, traditional MN techniques have been associated with challenges regarding biocompatibility, biodegradability, and drug release precision, limiting their clinical efficacy and increasing the risk of side effects resulting from uneven drug distribution. To address these issues, polysaccharide materials have been proposed as viable alternatives to be used in MN technologies. In addition to their excellent biocompatibility and biodegradability, polysaccharide materials such as alginate, chitosan, and Hyaluronic Acid (HA), among other Traditional Chinese Medicine (TCM)-extracted polysaccharides (such as Bletilla and notoginseng), could also exert anti-inflammatory and antibacterial effects, promoting tissue regeneration. These attributes enable polysaccharide-based MNs to improve the local drug concentration, reduce systemic side effects, minimize patient discomfort, and lower treatment risks, making them particularly suitable for treating skin conditions such as eczema, psoriasis, and acne. This article systematically reviews the properties of various polysaccharide materials, as well as the preparation methods of polysaccharide-based MNs and their therapeutic effects as reported in animal models and clinical trials. Our findings could lay a solid theoretical foundation for developing polysaccharide-based MN technologies and fostering their widespread clinical application.
Collapse
Affiliation(s)
- Chao Liu
- Hospital of Chengdu University of Traditional Chinese Medicine Chengdu 610072 China
- Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine China
| | - Meng Liu
- Hospital of Chengdu University of Traditional Chinese Medicine Chengdu 610072 China
- Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| | - Xin Li
- Hospital of Chengdu University of Traditional Chinese Medicine Chengdu 610072 China
- Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| | - Yimei Hu
- Hospital of Chengdu University of Traditional Chinese Medicine Chengdu 610072 China
- Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| | - Lingling Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine Chengdu 610072 China
| | - Feng-Ming You
- Hospital of Chengdu University of Traditional Chinese Medicine Chengdu 610072 China
- Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| | - Gang Fan
- Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| | - Yiman Ge
- Hospital of Chengdu University of Traditional Chinese Medicine Chengdu 610072 China
- Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| |
Collapse
|
20
|
Chen S, Ye J, Lin Y, Chen W, Huang S, Yang Q, Qian H, Gao S, Hua C. Crucial Roles of RSAD2/viperin in Immunomodulation, Mitochondrial Metabolism and Autoimmune Diseases. Inflammation 2025; 48:520-540. [PMID: 38909344 DOI: 10.1007/s10753-024-02076-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/24/2024]
Abstract
Autoimmune diseases are typically characterized by aberrant activation of immune system that leads to excessive inflammatory reactions and tissue damage. Nevertheless, precise targeted and efficient therapies are limited. Thus, studies into novel therapeutic targets for the management of autoimmune diseases are urgently needed. Radical S-adenosyl methionine domain-containing 2 (RSAD2) is an interferon-stimulated gene (ISG) renowned for the antiviral properties of the protein it encodes, named viperin. An increasing number of studies have underscored the new roles of RSAD2/viperin in immunomodulation and mitochondrial metabolism. Previous studies have shown that there is a complex interplay between RSAD2/vipeirn and mitochondria and that binding of the iron-sulfur (Fe-S) cluster is necessary for the involvement of viperin in mitochondrial metabolism. Viperin influences the proliferation and development of immune cells as well as inflammation via different signaling pathways. However, the function of RSAD2/viperin varies in different studies and a comprehensive overview of this emerging theme is lacking. This review will describe the characteristics of RSAD2/viperin, decipher its function in immunometabolic processes, and clarify the crosstalk between RSAD2/viperin and mitochondria. Furthermore, we emphasize the crucial roles of RSAD2 in autoimmune diseases and its potential application value.
Collapse
Affiliation(s)
- Siyan Chen
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Jiani Ye
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Yinfang Lin
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Wenxiu Chen
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Shenghao Huang
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Qianru Yang
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Hengrong Qian
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| |
Collapse
|
21
|
Huang J, Bao C, Yang C, Qu Y. Dual-tDCS Ameliorates Cerebral Injury and Promotes Motor Function Recovery via cGAS-STING Signaling Pathway in a Rat Model of Ischemic Stroke. Mol Neurobiol 2025; 62:4484-4498. [PMID: 39455539 DOI: 10.1007/s12035-024-04574-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Ischemic stroke is one of the leading causes of death and disability. Dual transcranial direct current stimulation (dual-tDCS) is a promising intervention to treat ischemic stroke, but its efficacy and underlying mechanism remain to be verified. Cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has recently emerged as a key mediator in cerebral injury. However, little is known about the effect of cGAS-STING on neuronal damage in ischemic stroke, and it remains to be studied whether the cGAS-STING pathway is involved in tDCS intervention for ischemic stroke. Therefore, we aimed to investigate whether dual-tDCS can alleviate ischemic brain injury in a rat model of ischemic stroke and if so, whether via cGAS-STING pathway. Middle cerebral artery occlusion (MCAO) was employed to induce a rat model of ischemic stroke. Male SD rats weighing 250-280 g were randomly assigned to the Sham, MCAO, Dual-tDCS, Dual-tDCS + RU.521, and Dual-tDCS + 2'3'-cGAMP groups, with 10 rats in each group completing the experiment. Behavioral, morphological, MRI, and molecular biological methods were performed. We found that the cGAS-STING pathway was activated and expressed in neurons after MCAO. Dual-tDCS improved motor function and infarct volume, inhibited neuronal apoptosis, promoted the expression of neurotrophins (BDNF and NGF), CD31, and VEGF, and suppressed inflammation reaction after MCAO via the cGAS-STING pathway. Taken together, dual-tDCS may improve MCAO-induced brain injury and promote the recovery of motor function, resulting from the inhibition of neuronal apoptosis and inflammation reaction, as well as promotion of the expression of nerve plasticity- and angiogenesis-related proteins, via cGAS-STING pathway.
Collapse
Affiliation(s)
- Jiapeng Huang
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuncha Bao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chunlan Yang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yun Qu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
22
|
Zhang J, Wu Y, Wang Y, Wang J, Ye Y, Yin H, Sun N, Qin B, Sun N. TRIM35 Negatively Regulates the cGAS-STING-Mediated Signaling Pathway by Attenuating K63-Linked Ubiquitination of STING. Inflammation 2025; 48:855-869. [PMID: 39088122 DOI: 10.1007/s10753-024-02093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024]
Abstract
The cGAS-STING-mediated antiviral response plays an important role in the defense against DNA virus infection. Tripartite motif protein 35 (TRIM35), an E3 ubiquitin ligase, was identified as a positive regulator of RLR-mediated antiviral signaling in our previous study, but the effect of TRIM35 on the cGAS-STING signaling pathway has not been elucidated. Herein, we showed that TRIM35 negatively regulates the cGAS-STING signaling pathway by directly targeting STING. TRIM35 overexpression significantly inhibited the cGAMP-triggered phosphorylation of TBK1 and IRF3, attenuating IFN-β expression and the downstream antiviral response. Mechanistically, TRIM35 colocalized and directly interacted with STING in the cytoplasm. TRM35 removed K63-linked ubiquitin from STING through the C36 and C44 sites in the RING domain, which impaired the interaction of STING with TBK1 or IKKε. In addition, we demonstrated that the RING domain is a key region for the antiviral effects of TIRM35. These results collectively indicate that TRIM35 negatively regulates type I interferon (IFN-I) production by targeting and deubiquitinating STING. TRIM35 may be a potential therapeutic target for controlling viral infection.
Collapse
Affiliation(s)
- Jikai Zhang
- Xuzhou Medical University, Xuzhou, China
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yuhao Wu
- Xuzhou Medical University, Xuzhou, China
| | - Yiwen Wang
- Xuzhou Medical University, Xuzhou, China
| | - Jing Wang
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yinlin Ye
- Xuzhou Medical University, Xuzhou, China
| | - Hang Yin
- Xuzhou Medical University, Xuzhou, China
| | - Ningye Sun
- Xuzhou Medical University, Xuzhou, China
| | | | - Nan Sun
- Xuzhou Medical University, Xuzhou, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
23
|
Wu X, Song Y, Yuan Z, Wu S. Preclinical insights into the potential of itaconate and its derivatives for liver disease therapy. Metabolism 2025; 165:156152. [PMID: 39909101 DOI: 10.1016/j.metabol.2025.156152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/12/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
Annually, approximately 3.5 % of the world's population dies of cirrhosis or liver cancer, and the burden of liver disease is steadily expanding owing to multiple factors such as alcohol consumption, irrational diets, viral transmission, and exposure to drugs and toxins. However, the lack of effective therapies and the adverse effects of some medications remain a threat to the management of liver disease. Recently, immunometabolism, as an emerging discipline, appears to be the focus of unprecedented research. As a natural metabolite that regulates cellular functions, itaconate is a crucial bridge connecting metabolism and immune response. Remodeling immune function through metabolic modulation may be a promising alternative for disease intervention strategies. In this review, we first briefly describe the historical origin of itaconate and the development of its derivatives. This was followed by a review of the molecular mechanisms by which itaconate regulated immune-metabolic responses. Furthermore, we analyzed the effects of itaconate regulation on immune cells of the hepatic system. Finally, we summarized the experimental evidence for itaconate and its derivatives in the therapeutic application of liver diseases. Itaconate is potentially an invaluable component of emerging therapeutic strategies for liver disease.
Collapse
Affiliation(s)
- Xiaodong Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanhong Song
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Shuodong Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
24
|
Hou J, Zheng S, Zhang X, Zhuang M, Zhao X, Deng J, Yang H, Xia X, Gao C, Wang PH, Zheng Y. IDR-driven TOLLIP condensates antagonize the innate antiviral immunity by promoting the deSUMOylation of MAVS. Cell Rep 2025; 44:115348. [PMID: 40022729 DOI: 10.1016/j.celrep.2025.115348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/04/2024] [Accepted: 02/04/2025] [Indexed: 03/04/2025] Open
Abstract
Mitochondrial antiviral signaling protein (MAVS) is a central adaptor protein in retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) signaling against RNA viral infection. Posttranslational modifications (PTMs) play a critical role in modulating the activity of MAVS. However, how phase separation regulates the PTMs to fine-tune MAVS activation remains to be elucidated. In this study, we identify Toll-interacting protein (TOLLIP) as a negative regulator of RLR signaling. A deficiency of TOLLIP leads to an enhanced type I interferon response upon RNA viral infection. Mice with the deletion of TOLLIP are more resistant to lethal vesicular stomatitis virus (VSV) infection than wild-type counterparts. Mechanistically, TOLLIP forms condensates that rely on its intrinsically disordered region (IDR). TOLLIP condensates interact with SENP1, promote the aggregation of SENP1, and enhance the interaction between SENP1 and MAVS, consequently leading to deSUMOylation and less aggregation of MAVS. Overall, our study reveals the critical role of TOLLIP condensation in regulating the activation of MAVS, emphasizing the complexity of MAVS activity modulation.
Collapse
Affiliation(s)
- Jinxiu Hou
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Shengnan Zheng
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xuejing Zhang
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Mengwei Zhuang
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xianghe Zhao
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Jian Deng
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Huiyu Yang
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Pei-Hui Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Yi Zheng
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
25
|
Kalamvoki M. HSV-1 virions and related particles: biogenesis and implications in the infection. J Virol 2025; 99:e0107624. [PMID: 39898651 PMCID: PMC11915793 DOI: 10.1128/jvi.01076-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Virion formation and egress are sophisticated processes that rely on the spatial and temporal organization of host cell membranes and the manipulation of host machineries involved in protein sorting, membrane bending, fusion, and fission. These processes result in the formation of infectious virions, defective particles, and various vesicle-like structures. In herpes simplex virus 1 (HSV-1) infections, virions and capsid-less particles, known as light (L)-particles, are formed. HSV-1 infection also stimulates the release of particles that resemble extracellular vesicles (EVs). In productively infected cells, most EVs are generated through the CD63 tetraspanin biogenesis pathway and lack viral components. A smaller subset of EVs, generated through the endosomal sorting complexes required for transport (ESCRT) pathway, contains both viral and host factors. Viral mechanisms tightly regulate EV biogenesis, including the inhibition of autophagy-a process critical for increased production of CD63+ EVs during HSV-1 infection. Mutant viruses that fail to suppress autophagy instead promote microvesicle production from the plasma membrane. Additionally, the viral protein ICP0 (Infected Cell Protein 0) enhances EV biogenesis during HSV-1 infection. The different types of particles can be separated by density gradients due to their distinct biophysical properties. L-particles and ESCRT+ EVs display a pro-viral role, supporting viral replication, whereas CD63+ EVs exhibit antiviral effects. Overall, these studies highlight that HSV-1 infection yields numerous and diverse particles, with their type and composition shaped by the ability of the virus to evade host responses. These particles likely shape the infectious microenvironment and determine disease outcomes.
Collapse
Affiliation(s)
- Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
26
|
Duarte LF, Carbone-Schellman J, Bueno SM, Kalergis AM, Riedel CA, González PA. Tackling cutaneous herpes simplex virus disease with topical immunomodulators-a call to action. Clin Microbiol Rev 2025; 38:e0014724. [PMID: 39982077 PMCID: PMC11917526 DOI: 10.1128/cmr.00147-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025] Open
Abstract
SUMMARYAntivirals play important roles in restricting viral diseases. Nevertheless, they act on a relatively limited number of viruses and occasionally display partial effectiveness in some tissues or against escape variants. Although vaccination remains the most cost-effective approach for preventing microbial diseases, developing prophylactic or therapeutic solutions for pathogens, such as herpes simplex viruses (HSVs), that effectively reduce their clinical manifestations in the skin has proven exceptionally challenging despite extensive research. Alternatively, a less explored approach for tackling HSV skin infection involves using topical immunomodulatory molecules to potentiate the host's innate antiviral immune responses. When applied directly to herpetic skin lesions where viral antigen is present, this strategy has the potential to elicit virus-specific adaptive immunity. Based on currently available data, we foresee substantial potential for this approach in addressing HSV skin infections, along with additional prospects to advance understanding of skin biology and apply relevant new findings to other dermatological conditions. However, due to the limited number of case studies evaluating this method and its safety profile, particularly in immunocompromised individuals and pregnant women, further research is crucial, especially to assess the effects of immunomodulators in these vulnerable populations. Here, we revisit and discuss the use of immunomodulatory molecules for potentiating the host immune response against HSV skin infection and call for action for increased research and clinical trials regarding the possible benefits of this latter strategy for treating HSV cutaneous disease and recurrences. We also revisit and discuss antivirals and vaccine candidates against HSVs.
Collapse
Affiliation(s)
- Luisa F. Duarte
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana – Universidad del Desarrollo, Santiago, Chile
| | - Javier Carbone-Schellman
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Centro de Investigación para la Resilencia a Pandemias, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
27
|
Marcantonio E, Burger AD, Chang KH, Hoffmann FW, Fu Y, Khadka VS, Smagghe BJ, Deng Y, Hoffmann PR, Prisic S. Zinc-limited Mycobacterium tuberculosis stimulate distinct responses in macrophages compared with standard zinc-replete bacteria. Infect Immun 2025; 93:e0057824. [PMID: 39903447 PMCID: PMC11895486 DOI: 10.1128/iai.00578-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 02/06/2025] Open
Abstract
Tuberculosis (TB) is notoriously difficult to treat, likely due to the complex host-pathogen interactions driven by pathogen heterogeneity. An understudied area of TB pathogenesis is host responses to Mycobacterium tuberculosis bacteria (Mtb) that are limited in zinc ions. This distinct population resides in necrotic granulomas and sputum and could be the key player in tuberculosis pathogenicity. In this study, we tested the hypothesis that macrophages differentiate between Mtb grown under zinc limitation or in the standard zinc-replete medium. Using several macrophage infection models, such as murine RAW 264.7 and murine bone marrow-derived macrophages (BMDMs), as well as human THP-1-derived macrophages, we show that macrophages infected with zinc-limited Mtb have increased bacterial burden compared with macrophages infected with zinc-replete Mtb. We further demonstrate that macrophage infection with zinc-limited Mtb trigger higher production of reactive oxygen species (ROS) and cause more macrophage death. Furthermore, the increased ROS production is linked to the increased phagocytosis of zinc-limited Mtb, whereas cell death is not. Finally, transcriptional analysis of RAW 264.7 macrophages demonstrates that macrophages have more robust pro-inflammatory responses when infected with zinc-limited Mtb than zinc-replete Mtb. Together, our findings suggest that Mtb's access to zinc affects their interaction with macrophages and that zinc-limited Mtb may be influencing TB progression. Therefore, zinc availability in bacterial growth medium should be considered in TB drug and vaccine developments.
Collapse
Affiliation(s)
- Endrei Marcantonio
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Allexa D. Burger
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Kelly H. Chang
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Fukun W. Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Yuanyuan Fu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Vedbar S. Khadka
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Benoit J. Smagghe
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Peter R. Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Sladjana Prisic
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| |
Collapse
|
28
|
An Y, Yao Y, Liu H, Xi Y, Pi M, Xu R, Huang Y, Li S, Gu X. The role of the CCL5-CCR5 axis in microglial activation leading to postoperative cognitive dysfunction. Exp Neurol 2025; 385:115114. [PMID: 39667654 DOI: 10.1016/j.expneurol.2024.115114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication following surgeries involving general anesthesia. Although the CCL5-CCR5 axis is implicated in various neurological conditions, its role in POCD remains unclear. In our POCD model, we observed an increase in CCL5 and CCR5 levels concurrent with microglial activation and significant upregulation of inflammatory cytokines IL-6 and IL-1β. Administration of MVC, a CCR5 antagonist, alleviated neuroinflammation, prevented dendritic spine loss, and improved cognitive deficits by inhibiting the CCR5/CREB/NLRP1 pathway. However, the cognitive benefits of MVC were reversed by the CREB inhibitor 666-15. Our findings highlight the potential of targeting the CCL5-CCR5 axis as a therapeutic strategy for preventing and treating POCD.
Collapse
Affiliation(s)
- Yuanyuan An
- Department of Anesthesiology, Nanjing Drum Tower Clinical College of Xuzhou Medical University, Nanjing, China; Department of Anesthesiology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Yao
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Huan Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuqing Xi
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Mengying Pi
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Rui Xu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yulin Huang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shuming Li
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing Drum Tower Clinical College of Xuzhou Medical University, Nanjing, China; Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
29
|
di Flora DC, Lara JPZ, Dionizio A, Buzalaf MAR. The Dual Role of cGAS-STING Signaling in COVID-19: Implications for Therapy. Cells 2025; 14:362. [PMID: 40072090 PMCID: PMC11899623 DOI: 10.3390/cells14050362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/06/2025] [Accepted: 02/25/2025] [Indexed: 03/15/2025] Open
Abstract
The progression of COVID-19 involves a sophisticated and intricate interplay between the SARS-CoV-2 virus and the host's immune response. The immune system employs both innate and adaptive mechanisms to combat infection. Innate immunity initiates the release of interferons (IFNs) and pro-inflammatory cytokines, while the adaptive immune response involves CD4+ Th lymphocytes, B lymphocytes, and CD8+ Tc cells. Pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPS) and damage-associated molecular patterns (DAMPs), activating the cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) signaling pathway, a crucial component of the innate immune response to SARS-CoV-2. This pathway fulfills a dual function during infection. In the early phase of infection, the virus can suppress cGAS-STING signaling to avoid immune detection. However, in the late stages, the activation of this pathway may trigger excessive inflammation and tissue damage, exacerbating disease severity. Modulating the cGAS-STING pathway, whether through agonists like dimeric amidobenzimidazole (diABZI) or inhibitors targeting viral proteins, such as 3CLpro, for example, offers a promising approach for personalized therapy to control the immune response and mitigate severe inflammation, ultimately improving clinical outcomes in patients with severe COVID-19.
Collapse
Affiliation(s)
| | | | | | - Marília Afonso Rabelo Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil; (D.C.d.F.); (J.P.Z.L.); (A.D.)
| |
Collapse
|
30
|
Wu CJ. NEMO Family of Proteins as Polyubiquitin Receptors: Illustrating Non-Degradative Polyubiquitination's Roles in Health and Disease. Cells 2025; 14:304. [PMID: 39996775 PMCID: PMC11854354 DOI: 10.3390/cells14040304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
The IκB kinase (IKK) complex plays a central role in many signaling pathways that activate NF-κB, which turns on a battery of genes important for immune response, inflammation, and cancer development. Ubiquitination is one of the most prevalent post-translational modifications of proteins and is best known for targeting substrates for proteasomal degradation. The investigations of NF-κB signaling pathway primed the unveiling of the non-degradative roles of protein ubiquitination. The NF-κB-essential modulator (NEMO) is the IKK regulatory subunit that is essential for IKK activation by diverse intrinsic and extrinsic stimuli. The studies centered on NEMO as a polyubiquitin-binding protein have remarkably advanced understandings of how NEMO transmits signals to NF-κB activation and have laid a foundation for determining the molecular events demonstrating non-degradative ubiquitination as a major driving element in IKK activation. Furthermore, these studies have largely solved the enigma that IKK can be activated by diverse pathways that employ distinct sets of intermediaries in transmitting signals. NEMO and NEMO-related proteins that include optineurin, ABIN1, ABIN2, ABIN3, and CEP55, as non-degradative ubiquitin chain receptors, play a key role in sensing and transmitting ubiquitin signals embodied in different topologies of polyubiquitin chains for a variety of cellular processes and body responses. Studies of these multifaceted proteins in ubiquitin sensing have promoted understanding about the functions of non-degradative ubiquitination in intracellular signaling, protein trafficking, proteostasis, immune response, DNA damage response, and cell cycle control. In this review, I will also discuss how dysfunction in the NEMO family of protein-mediated non-degradative ubiquitin signaling is associated with various diseases, including immune disorders, neurodegenerative diseases, and cancer, and how microbial virulence factors target NEMO to induce pathogenesis or manipulate host response. A profound understanding of the molecular bases for non-degradative ubiquitin signaling will be valuable for developing tailored approaches for therapeutic purposes.
Collapse
Affiliation(s)
- Chuan-Jin Wu
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
31
|
Enya T, Ross SR. Innate Sensing of Viral Nucleic Acids and Their Use in Antiviral Vaccine Development. Vaccines (Basel) 2025; 13:193. [PMID: 40006739 PMCID: PMC11860339 DOI: 10.3390/vaccines13020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/23/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Viruses pose a significant threat to humans by causing numerous infectious and potentially fatal diseases. Understanding how the host's innate immune system recognizes viruses is essential to understanding pathogenesis and ways to control viral infection. Innate immunity also plays a critical role in shaping adaptive immune responses induced by vaccines. Recently developed adjuvants often include nucleic acids that stimulate pattern recognition receptors which are essential components of innate immunity necessary for activating antigen-presentation cells and thereby bridging innate and adaptive immunity. Therefore, understanding viral nucleic acid sensing by cytosolic sensors is essential, as it provides the potential means for developing new vaccine strategies, including effective adjuvants.
Collapse
Affiliation(s)
| | - Susan R. Ross
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA;
| |
Collapse
|
32
|
Zhang X, You Y, Xiong T, Zhang X, Wang H, Geng J, Wang M, Xu Y, Gao S, Wu X, Zheng Y, Wen X, Yang H, Wang Y, Wen X, Zhao C. Frk positively regulates innate antiviral immunity by phosphorylating TBK1. Front Microbiol 2025; 16:1525648. [PMID: 40012791 PMCID: PMC11861356 DOI: 10.3389/fmicb.2025.1525648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/24/2025] [Indexed: 02/28/2025] Open
Abstract
Type I interferons (IFN-I) are crucial for the initial defense against viral infections. TBK1 serves as a key regulator in the production of IFN-I, with its phosphorylation being essential for the regulation of its activity. However, the regulatory mechanisms governing its activation remain incompletely elucidated. In this study, we validated the function of Fyn-related kinase (Frk) in the antiviral innate immune response and identified the direct target molecule of Frk in the IFN-β signaling pathway. Furthermore, we elucidated the mechanism by which Frk phosphorylates TBK1 during infection and the role of Frk in IFN-β production. We discovered that Frk enhances the activation of the IFN-I production pathway by targeting TBK1. Mechanistically, Frk promotes the K63 ubiquitination of TBK1 and subsequent activation of the transcription factor IRF3 by phosphorylating TBK1 at tyrosine residues 174 and 179, thereby enhancing the production of IFN-β in macrophages. Employing both in vivo and in vitro viral infection assays, we demonstrated that IFN-β mediated by Frk inhibits the replication of VSV or HSV-1 and alleviates lung lesions. Our findings indicate that Frk functions as a key regulator of TBK1 to strengthen antiviral immunity and represents a promising target for the development of antiviral drugs.
Collapse
Affiliation(s)
- Xiaomei Zhang
- Department of Medical Engineering, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ying You
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Tingrong Xiong
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xiaokai Zhang
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Haibo Wang
- Department of Basic Courses, Non Commissioned Officer School, Third Military Medical University, Shijiazhuang, China
| | - Jinxia Geng
- Department of Basic Courses, Non Commissioned Officer School, Third Military Medical University, Shijiazhuang, China
| | - Miao Wang
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yanyan Xu
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Shanshan Gao
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xiaoyan Wu
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yue Zheng
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xianhua Wen
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Haoyu Yang
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yu Wang
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
- Department of Basic Courses, Non Commissioned Officer School, Third Military Medical University, Shijiazhuang, China
| | - Xiaohua Wen
- Department of Health Medicine, The 980th Hospital of People’s Liberation Army Joint Logistics Support Forces, Shijiazhuang, China
| | - Congcong Zhao
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
33
|
Xing F, Lv H, Xiang W, Wang L, Zong Q, Lv G, Liu C, Feng Q, Wang H, Yang W. Traditional medicine Bazi Bushen potentiates immunosurveillance of senescent liver cancer cells via cGAS-STING signaling activation in macrophages. Cancer Lett 2025; 627:217544. [PMID: 39929434 DOI: 10.1016/j.canlet.2025.217544] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/31/2025] [Accepted: 02/08/2025] [Indexed: 05/19/2025]
Abstract
Senescent cancer cells often evade immune clearance to exert profound effects on cancer progression and therapy resistance. Improving immunosurveillance to eliminate senescent cancer cells is a crucial measure to enhance anti-cancer therapy. Bazi Bushen (BZBS) is a traditional medicine with the function of relieving fatigue and delaying ageing, but its role in tumor treatment remains poorly understood. Herein, we find that BZBS promotes immunosurveillance of both chemotherapy- and oncogene-induced senescent liver cancer cells, further leading to enhanced chemotherapy efficacy and dramatic tumor repression in mice. Mechanistically, BZBS induces mitochondrial DNA leakage by mitochondrial damage to further activate cGAS-STING signaling in macrophages. Subsequently, cGAS-STING signaling activation in macrophages recruits CD8+ T cells into tumor and promotes the anti-tumor activity of CD8+ T cells to eradicate senescent cancer cells. Furthermore, host STING is responsible for BZBS-mediated immunosurveillance of senescent liver cancer cells in mice. Therefore, our findings unveil the role of traditional medicine BZBS in activating cGAS-STING signaling and potentiating senescence immunosurveillance to enhance anti-cancer therapy.
Collapse
Affiliation(s)
- Fuxue Xing
- Department of Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Hongwei Lv
- Department of Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China; National Center for Liver Cancer, Naval Medical University, Shanghai, 201805, China; International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Naval Medical University, Shanghai, 200438, China; Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Shanghai, 200438, China; Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, 200438, China
| | - Wei Xiang
- Department of Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Liang Wang
- National Center for Liver Cancer, Naval Medical University, Shanghai, 201805, China; International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Naval Medical University, Shanghai, 200438, China
| | - Qianni Zong
- National Center for Liver Cancer, Naval Medical University, Shanghai, 201805, China; International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Naval Medical University, Shanghai, 200438, China
| | - Guishuai Lv
- National Center for Liver Cancer, Naval Medical University, Shanghai, 201805, China; International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Naval Medical University, Shanghai, 200438, China
| | - Chunying Liu
- National Center for Liver Cancer, Naval Medical University, Shanghai, 201805, China; International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Naval Medical University, Shanghai, 200438, China
| | - Qiyu Feng
- Department of Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Hongyang Wang
- Department of Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China; National Center for Liver Cancer, Naval Medical University, Shanghai, 201805, China; International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Naval Medical University, Shanghai, 200438, China; Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Shanghai, 200438, China; Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, 200438, China.
| | - Wen Yang
- Department of Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China; National Center for Liver Cancer, Naval Medical University, Shanghai, 201805, China; International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Naval Medical University, Shanghai, 200438, China; Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Shanghai, 200438, China; Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, 200438, China.
| |
Collapse
|
34
|
Paganelli F, Poli A, Truocchio S, Martelli AM, Palumbo C, Lattanzi G, Chiarini F. At the nucleus of cancer: how the nuclear envelope controls tumor progression. MedComm (Beijing) 2025; 6:e70073. [PMID: 39866838 PMCID: PMC11758262 DOI: 10.1002/mco2.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025] Open
Abstract
Historically considered downstream effects of tumorigenesis-arising from changes in DNA content or chromatin organization-nuclear alterations have long been seen as mere prognostic markers within a genome-centric model of cancer. However, recent findings have placed the nuclear envelope (NE) at the forefront of tumor progression, highlighting its active role in mediating cellular responses to mechanical forces. Despite significant progress, the precise interplay between NE components and cancer progression remains under debate. In this review, we provide a comprehensive and up-to-date overview of how changes in NE composition affect nuclear mechanics and facilitate malignant transformation, grounded in the latest molecular and functional studies. We also review recent research that uses advanced technologies, including artificial intelligence, to predict malignancy risk and treatment outcomes by analyzing nuclear morphology. Finally, we discuss how progress in understanding nuclear mechanics has paved the way for mechanotherapy-a promising cancer treatment approach that exploits the mechanical differences between cancerous and healthy cells. Shifting the perspective on NE alterations from mere diagnostic markers to potential therapeutic targets, this review calls for further investigation into the evolving role of the NE in cancer, highlighting the potential for innovative strategies to transform conventional cancer therapies.
Collapse
Affiliation(s)
- Francesca Paganelli
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Alessandro Poli
- IFOM ETS ‐ The AIRC Institute of Molecular OncologyMilanItaly
| | - Serena Truocchio
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Carla Palumbo
- Department of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli‐Sforza”Unit of BolognaBolognaItaly
- IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Francesca Chiarini
- Department of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
35
|
Vanpouille-Box C. Recent Mechanistic Insight into the Immunogenic Properties of Radiation-Induced Micronuclei. Int J Radiat Oncol Biol Phys 2025; 121:283-286. [PMID: 39824567 DOI: 10.1016/j.ijrobp.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 11/03/2024] [Indexed: 01/20/2025]
Affiliation(s)
- Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medicine, New York; Sandra and Edward Meyer Cancer Center, New York.
| |
Collapse
|
36
|
Arora K, Sheehy TL, Schulman JA, Kimmel BR, McAtee C, Bharti V, Weaver AM, Wilson JT. Macromolecular Diamidobenzimidazole Conjugates Activate STING. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634206. [PMID: 39896685 PMCID: PMC11785100 DOI: 10.1101/2025.01.21.634206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Pharmacologic activation of the stimulator of interferon genes (STING) pathway has broad potential applications, including the treatment of cancer and viral infections, which has motivated the synthesis and testing of a diversity of STING agonists as next generation immunotherapeutics. A promising class of STING agonists are the non-nucleotide, small molecule, dimeric-amidobenzimidazoles (diABZI), which have been recently used in the synthesis of polymer- and antibody-drug conjugates to improve pharmacokinetics, modulate biodistribution, and to confer other favorable properties for specific disease applications. These approaches have leveraged diABZI variants functionalized with reactive handles and enzyme-cleavable linkers at the 7-position of the benzimidazole for conjugation to and tunable drug release from carriers. However, since this position does not interact with STING and is exposed from the binding pocket when bound in an "open lid" configuration, we sought to evaluate the activity of macromolecular diABZI conjugates that lack enzymatic release and are instead conjugated to polymers via a stable linker. By covalently ligating diABZI to 5 or 20 kDa mPEG chains via an amide bond, we surprisingly found that these conjugates could activate STING in vitro. To further evaluate this phenomenon, we designed a diABZI-functionalized RAFT chain transfer agent that provided an enabling tool for synthesis of large, hydrophilic, dimethylacrylamide (DMA) polymers directly from a single agonist and we found that these conjugates also elicited STING activation in vitro with similar kinetics to highly potent small molecule analogs. We further demonstrated the in vivo activity of these macromolecular diABZI platforms, which inhibited tumor growth to a similar extent as small molecule variants. Using flow cytometry and fluorescence microscopy to evaluate intracellular uptake and distribution of Cy5-labeled analogs, our data indicate that although diABZI-DMA conjugates enter cells via endocytosis, they can still colocalize with the ER, suggesting that intracellular trafficking processes can promote delivery of endocytosed macromolecular diABZI compounds to STING. In conclusion, we have described new chemical strategies for the synthesis of stable macromolecular diABZI conjugates with unexpectedly high immunostimulatory potency, findings with potential implications for the design of polymer-drug conjugates for STING agonist delivery that also further motivate investigation of endosomal and intracellular trafficking as an alternative route for achieving STING activation.
Collapse
|
37
|
Zhang Z, Zhang C. Regulation of cGAS-STING signalling and its diversity of cellular outcomes. Nat Rev Immunol 2025:10.1038/s41577-024-01112-7. [PMID: 39774812 DOI: 10.1038/s41577-024-01112-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 01/11/2025]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signalling pathway, which recognizes both pathogen DNA and host-derived DNA, has emerged as a crucial component of the innate immune system, having important roles in antimicrobial defence, inflammatory disease, ageing, autoimmunity and cancer. Recent work suggests that the regulation of cGAS-STING signalling is complex and sophisticated. In this Review, we describe recent insights from structural studies that have helped to elucidate the molecular mechanisms of the cGAS-STING signalling cascade and we discuss how the cGAS-STING pathway is regulated by both activating and inhibitory factors. Furthermore, we summarize the newly emerging understanding of crosstalk between cGAS-STING signalling and other signalling pathways and provide examples to highlight the wide variety of cellular processes in which cGAS-STING signalling is involved, including autophagy, metabolism, ageing, inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Zhengyin Zhang
- School of Pharmaceutical Sciences, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Conggang Zhang
- School of Pharmaceutical Sciences, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
38
|
Wang D, Li K. Emerging Roles of TRIM56 in Antiviral Innate Immunity. Viruses 2025; 17:72. [PMID: 39861861 PMCID: PMC11768893 DOI: 10.3390/v17010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
The tripartite-motif protein 56 (TRIM56) is a RING-type E3 ubiquitin ligase whose functions were recently beginning to be unveiled. While the physiological role(s) of TRIM56 remains unclear, emerging evidence suggests this protein participates in host innate defense mechanisms that guard against viral infections. Interestingly, TRIM56 has been shown to pose a barrier to viruses of distinct families by utilizing its different domains. Apart from exerting direct, restrictive effects on viral propagation, TRIM56 is implicated in regulating innate immune signaling pathways that orchestrate type I interferon response or autophagy, through which it indirectly impacts viral fitness. Remarkably, depending on viral infection settings, TRIM56 either operates in a canonical, E3 ligase-dependent fashion or adopts an enzymatically independent, non-canonical mechanism to bolster innate immune signaling. Moreover, the recent revelation that TRIM56 is an RNA-binding protein sheds new light on its antiviral mechanisms against RNA viruses. This review summarizes recent advances in the emerging roles of TRIM56 in innate antiviral immunity. We focus on its direct virus-restricting effects and its influence on innate immune signaling through two critical pathways: the endolysosome-initiated, double-stranded RNA-sensing TLR3-TRIF pathway and the cytosolic DNA-sensing, cGAS-STING pathway. We discuss the underpinning mechanisms of action and the questions that remain. Further studies understanding the complexity of TRIM56 involvement in innate immunity will add to critical knowledge that could be leveraged for developing antiviral therapeutics.
Collapse
Affiliation(s)
| | - Kui Li
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
39
|
Shen Y, Zhao X, Zheng C, Chen Q. CRISPR-Mediated Construction of Gene-Knockout Mice for Investigating Antiviral Innate Immunity. Methods Mol Biol 2025; 2854:61-74. [PMID: 39192119 DOI: 10.1007/978-1-0716-4108-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
With the rapid development of CRISPR-Cas9 technology, gene editing has become a powerful tool for studying gene function. Specifically, in the study of the mechanisms by which natural immune responses combat viral infections, gene knockout mouse models have provided an indispensable platform. This article describes a detailed protocol for constructing gene knockout mice using the CRISPR-Cas9 system. This field focuses on the design of single-guide RNAs (sgRNAs) targeting the antiviral immune gene cGAS, embryo microinjection, and screening and verification of gene editing outcomes. Furthermore, this study provides methods for using cGAS gene knockout mice to analyze the role of specific genes in natural immune responses. Through this protocol, researchers can efficiently generate specific gene knockout mouse models, which not only helps in understanding the functions of the immune system but also offers a powerful experimental tool for exploring the mechanisms of antiviral innate immunity.
Collapse
Affiliation(s)
- Yangkun Shen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Xiangqian Zhao
- The Cancer Center, Union Hospital, Fujian Medical University, Fu Zhou, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology & Infection Diseases, University of Calgary, Calgary, AB, Canada
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
40
|
Modica G, Tejeda-Valencia L, Sauvageau E, Yasa S, Maes J, Skorobogata O, Lefrancois S. Phosphorylation on serine 72 modulates Rab7A palmitoylation and retromer recruitment. J Cell Sci 2025; 138:jcs262177. [PMID: 39584231 PMCID: PMC11828465 DOI: 10.1242/jcs.262177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024] Open
Abstract
Rab7A has a key role in regulating membrane trafficking at late endosomes. By interacting with several different effectors, this small GTPase controls late endosome mobility, orchestrates fusion events between late endosomes and lysosomes, and participates in the formation of and regulates the fusion between autophagosomes and lysosomes. Rab7A is also responsible for the spatiotemporal recruitment of retromer, which is required for the endosome-to-trans-Golgi network retrieval of cargo receptors such as sortilin (SORT1) and CI-MPR (also known as IGF2R). Recently, several post-translational modifications have been shown to modulate Rab7A functions, including palmitoylation, ubiquitination and phosphorylation. Here, we show that phosphorylation of Rab7A at serine 72 is important to modulate its interaction with retromer, as the non-phosphorylatable Rab7AS72A mutant is not able to interact with and recruit retromer to late endosomes. We have previously shown that Rab7A palmitoylation is also required for efficient retromer recruitment. We found that palmitoylation of Rab7AS72A is reduced compared to that of the wild-type protein, suggesting an interplay between S72 phosphorylation and palmitoylation in regulating the Rab7A-retromer interaction. Finally, we identify NEK7 as a kinase required to phosphorylate Rab7A to promote retromer binding and recruitment.
Collapse
Affiliation(s)
- Graziana Modica
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Québec H7V 1B7, Canada
| | - Laura Tejeda-Valencia
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Québec H7V 1B7, Canada
| | - Etienne Sauvageau
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Québec H7V 1B7, Canada
| | - Seda Yasa
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Québec H7V 1B7, Canada
| | - Juliette Maes
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Québec H7V 1B7, Canada
| | - Olga Skorobogata
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Québec H7V 1B7, Canada
| | - Stephane Lefrancois
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Québec H7V 1B7, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal H3A 0C7, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal H2X 3Y7, Canada
| |
Collapse
|
41
|
Chen H, Li Y, Shen Q, Guo G, Wang Z, Pan H, Wu M, Yan X, Yang G. Reduced irradiation exposure areas enhanced anti-tumor effect by inducing DNA damage and preserving lymphocytes. Mol Med 2024; 30:284. [PMID: 39736508 DOI: 10.1186/s10020-024-01037-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/08/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Partial stereotactic body radiation therapy (SBRT) targeting hypoxic regions of large tumors (SBRT-PATHY) has been shown to enhance the efficacy of tumor radiotherapy by harnessing the radiation-induced immune response. This approach suggests that reducing the irradiation target volume not only achieves effective anti-tumor effects but also minimizes damage to surrounding normal tissues. In this study, we evaluated the antitumor efficacy of reduced-tumour-area radiotherapy (RTRT) , and explored the relationship between tumor control and immune preservation and the molecular mechanisms underlying of them. METHODS In mouse breast cancer models, we compared the anti-tumor effects of RTRT and conventional radiotherapy (CNRT) by assessing tumor growth, metastasis, and survival rates. Additionally, we evaluated the peritumoral tissue damage and the immune microenvironment. The maturation of dendritic cells (DCs) and DNA damage induced by irradiated tumor cells were also assessed in vitro. RESULTS In pre-clinical models, both RTRT and CNRT significantly inhibited primary tumor growth when compared to non-irradiated controls, with no significant difference between RTRT and CNRT. However, RTRT significantly extended survival times in mice, and increased the likelihood of inducing abscopal effects, thereby providing potential for better control of distant metastases. Further investigations revealed that the enhanced efficacy of RTRT may be attributed to the preservation of lymphocytes within the peritumoral tissue, as well as reduced damage to the surrounding skin and circulating lymphocytes. In vitro assays demonstrated that RTRT induced DNA damage and dsDNA in tumor cells, activating the cGAS-STING pathway. RTRT also triggered the release of damage-associated molecular patterns (DAMPs), which synergistically amplified the anti-tumor immune response. CONCLUSIONS Our findings suggested that appropriately narrowing the irradiation target volume effectively killed tumor cells while reducing damage to surrounding tissues, and preserving peritumoral lymphocytes. This approach improved the safety of radiotherapy while maintaining its efficacy in tumor control and provided an opportunity for combining high-dose radiotherapy with immunotherapy.
Collapse
Affiliation(s)
- Huiqin Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou, 325014, China
| | - Yuan Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China
| | - Qiaofeng Shen
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Guanqun Guo
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Zhigang Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, Wenzhou, 325035, China
| | - Hanyu Pan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Min Wu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Xueqing Yan
- Oncology Discipline Group, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325003, China
| | - Gen Yang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China.
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
42
|
Ben Kacem M, Bright SJ, Moran E, Flint DB, Martinus DKJ, Turner BX, Qureshi I, Kolachina R, Manandhar M, Marinello PC, Shaitelman SF, Sawakuchi GO. PARP inhibition radiosensitizes BRCA1 wildtype and mutated breast cancer to proton therapy. Sci Rep 2024; 14:30897. [PMID: 39730675 DOI: 10.1038/s41598-024-81914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
Aggressive breast cancers often fail or acquire resistance to radiotherapy. To develop new strategies to improve the outcome of aggressive breast cancer patients, we studied how PARP inhibition radiosensitizes breast cancer models to proton therapy, which is a radiotherapy modality that generates more DNA damage in the tumor than standard radiotherapy using photons. Two human BRCA1-mutated breast cancer cell lines and their isogenic BRCA1-recovered pairs were treated with a PARP inhibitor and irradiated with photons or protons. Protons (9.9 and 3.85 keV/µm) induced higher cell kill independent of BRCA1 status. PARP inhibition amplified the cell kill effect to both photons and protons (9.9 and 3.85 keV/µm) independent of BRCA1 status. Numbers of γH2AX foci, micronuclei, and cGAS-positive micronuclei were significantly higher in BRCA1-mutated cells. Cell cycle distribution and stress-induced senescence were not affected by PARP inhibition in our cell lines. In vivo, the combination of protons (3.99 keV/µm) and PARP inhibition induced the greatest tumor growth delay and the highest survival. We found that PARP inhibition increases radiosensitization independent of BRCA1 status for both protons and photons. The combination of protons and PARP inhibition was the most effective in decreasing clonogenic cell survival, increasing DNA damage, and delaying tumor growth.
Collapse
Affiliation(s)
- Mariam Ben Kacem
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Scott J Bright
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Emma Moran
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David B Flint
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David K J Martinus
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Broderick X Turner
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ilsa Qureshi
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Rishab Kolachina
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Mandira Manandhar
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Poliana C Marinello
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Simona F Shaitelman
- Division of Radiation Oncology, Department of Breast Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Gabriel O Sawakuchi
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
43
|
Xu X, Huang Z, Huang Z, Lv X, Jiang D, Huang Z, Han B, Lin G, Liu G, Li S, Fan J, Lv X. Butyrate attenuates intestinal inflammation in Crohn's disease by suppressing pyroptosis of intestinal epithelial cells via the cGSA-STING-NLRP3 axis. Int Immunopharmacol 2024; 143:113305. [PMID: 39426229 DOI: 10.1016/j.intimp.2024.113305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/21/2024] [Accepted: 09/29/2024] [Indexed: 10/21/2024]
Abstract
Butyrate can strengthen the intestinal epithelial barrier. However, the mechanisms by which butyrate affects intestinal epithelial cells (IECs) pyroptosis in Crohn's disease (CD) remain unclear. In this study, we collected colonic biopsy samples from CD patients and healthy controls to assess pyroptosis levels. Our findings indicated elevated expression of pyroptosis markers in CD patients, alongside distinct morphological evidence of pyroptosis in IECs. We further investigated the effects of tributyrin on pyroptosis and the cGAS-STING pathway in a trinitrobenzene sulfonic acid-induced colitis rat model. Tributyrin significantly mitigated intestinal inflammation, reduced pathological progression, and inhibited pyroptosis and cGAS-STING pathway activation in the colitis rat model. Similarly, in an in vitro model of IECs pyroptosis, sodium butyrate inhibited pyroptosis and cGAS-STING pathway activation in HT-29 cells. Co-treatment with a cGAS-STING pathway activator and butyrate demonstrated that the activator reversed the inhibitory effects of butyrate on pyroptosis and cGAS-STING pathway activation in both the colitis rat model and HT-29 cells. Mechanistically, the cGAS-STING pathway was found to interact with NLRP3. Taken together, butyrate may mitigate intestinal inflammation in CD by suppressing cGAS-STING-NLRP3 axis-mediated IECs pyroptosis. These findings offer new insights into potential therapeutic strategies for managing CD.
Collapse
Affiliation(s)
- Xiaofang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhou Huang
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhixi Huang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaodan Lv
- Department of Clinical Experimental Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dan Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ziqian Huang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bing Han
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guangfu Lin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gengfeng Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shiquan Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Junhua Fan
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoping Lv
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
44
|
Qin Y, Gao Y, Wu D, Liu QQ, Su C, Liu G, Yang L, Zhao MG, Yao JY. Ailanthone blocks mitophagy to promote mtDNA leakage through BAX-BAK1 pores and suppress hepatocellular carcinoma cell proliferation. Front Pharmacol 2024; 15:1509482. [PMID: 39723259 PMCID: PMC11668963 DOI: 10.3389/fphar.2024.1509482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Hepatocellular carcinoma (HCC), the third leading cancer mortality worldwide, shows rising incidence. The mitochondria in HCC cells are prone to damage from metabolic stress and oxidative stress, necessitating heightened mitophagy for mitochondrial homeostasis and cell survival. Thus, mitophagy inhibition is a promising HCC therapy. The traditional Chinese medicinal herb ailanthone have proved promote mitochondrial dysfunction and inhibits HCC. However, the underlying mechanism remains unclear. Methods CCK8 assay was applied to detect the proliferation. JC-1, MitoTracker Red/Green and MitoSOX staining were applied to detect the mitochondrial homeostasis. Inflammatory factors were analysed via ELISA and WB assay. Mitochondria and cytoplasm separation, genome extraction and qPCR were used to detect mitochondrial DNA (mtDNA) leakage. Mitochondria ultrastructure was detected by transmission electron microscopy. WB and IHC experiments were applied to detect protein expression. Protein-protein interactions detected by immunoprecipitation and immunofluorescence imaging. The in vivo antitumor effect was validated by the xenograft mouse model. Results In this study, we demonstrated the potent anti-HCC properties of ailanthone and revealed its molecular mechanism. In vitro studies demonstrated that ailanthone effectively inhibited PINK1-PRKN mediated mitophagy and promoted BAX-BAK1 mitochondrial pores formation through PRKN inhibition. This process led to the mitochondrial mtDNA leakage into the cytoplasm, which subsequently triggered the induction of inflammatory factors. The inhibition of mitophagy and the activation of inflammatory response ultimately led to HCC proliferation inhibition. In vivo studies demonstrated that ailanthone exhibited stronger anti-HCC activity than 5-Fluorouracil (5-FU), with no significant adverse effects on animal body weight or the physiological functions of vital organs. Conclusion This study highlighted the efficacy of ailanthone against HCC and elucidated its underlying molecular mechanisms, suggesting the promising therapeutic potential of ailanthone for HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Le Yang
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Ming-Gao Zhao
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Jing-Yue Yao
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
45
|
Wang W, Li Q, Jia M, Wang C, Liang W, Liu Y, Kong H, Qin Y, Zhao C, Zhao W, Song H. RNF39 facilitates antiviral immune responses by promoting K63-linked ubiquitination of STING. Int Immunopharmacol 2024; 142:113091. [PMID: 39255680 DOI: 10.1016/j.intimp.2024.113091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
The cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS)-dependent pathway is a key DNA-sensing pathway that recognizes cytosolic DNA and plays a crucial role in initiating innate immune responses against pathogenic microbes and cancer. Various molecules have been identified as regulators of the cGAS-dependent pathway that controls innate immune responses. However, despite the important roles of Stimulator-of-interferon genes (STING) in the cGAS-dependent pathway, the regulation of its activation has not been elucidated. Here, we show that the E3 ubiquitin ligase, RING finger protein 39 (RNF39), interacts with STING in macrophages and HERK293T cells. Moreover, RNF39 accelerates DNA-sensing pathways by promoting lysine (K)63-linked ubiquitination of STING, and then facilitating the formation of STING-TBK1 complex. Concordantly, Rnf39 deficiency inhibits innate immune responses triggered by DNA viral infection and accelerates viral replication. Furthermore, herpes simplex virus-1 (HSV-1) infection induces RNF39 expression in an IFN-I-dependent manner. Thus, we outline a novel mechanism for controlling STING activation and a feedback mechanism for controlling antiviral immune responses. RNF39 could be a priming intervention target for the prevention and treatment of viral diseases, especially DNA viral infections.
Collapse
Affiliation(s)
- Wenwen Wang
- Department of Pathogenic Biology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Department of Clinical Laboratory, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Qi Li
- Department of Pathogenic Biology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Mutian Jia
- Department of Pathogenic Biology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Caiwei Wang
- Department of Pathogenic Biology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Wenbo Liang
- Department of Pathogenic Biology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yinlong Liu
- Department of Pathogenic Biology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hongyi Kong
- Department of Pathogenic Biology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ying Qin
- Department of Pathogenic Biology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Chunyuan Zhao
- Department of Cell Biology, School of Basic Medical Science, Shandong University, Jinan, Shandong, 250012, China
| | - Wei Zhao
- Department of Pathogenic Biology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hui Song
- Department of Pathogenic Biology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
46
|
Chu F, Hou P, Zhu H, Gao Y, Wang X, He W, Ren J, Li M, Liu Y, Chang He D, Wang H, Gao Y, He H. PBLD enhances antiviral innate immunity by promoting the p53-USP4-MAVS signaling axis. Proc Natl Acad Sci U S A 2024; 121:e2401174121. [PMID: 39589880 PMCID: PMC11626120 DOI: 10.1073/pnas.2401174121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/22/2024] [Indexed: 11/28/2024] Open
Abstract
Phenazine biosynthesis-like domain-containing protein (PBLD) has been reported to be involved in the development of many cancers. However, whether PBLD regulates innate immune responses and viral replication is unclear. In this study, although it was found that the activity of PBLD extends to other PRRs, we focused on the RLR pathway activated via the p53-USP4-MAVS axis in response to virus infections. We found that PBLD deubiquitinates and stabilizes MAVS through ubiquitin-specific protease 4 (USP4) to promote antiviral innate immunity. Mechanistically, PBLD activates the transcription of USP4 via the upregulation of p53. USP4, which is a MAVS-interacting protein, substantially stabilizes the MAVS protein by deconjugating K48-linked ubiquitination chains from the MAVS protein at Lys461 during RNA virus infection. Most intriguingly, RNA virus-infected primary macrophages (peritoneal macrophages, PMs, and bone marrow-derived macrophages, BMDMs) and internal organ cells (lung and liver) from PBLD-deficient mice suppress the IFN-I response and promote viral replication. Notably, PBLD-deficient mice are more susceptible to RNA virus infection than their wild-type littermates. Our findings highlight a unique function of PBLD in antiviral innate immunity through the p53-USP4-MAVS signaling, providing a preliminary basis for research on PBLD as a target molecule for treating RNA virus infection.
Collapse
Affiliation(s)
- Fengyun Chu
- Ruminant Diseases Research Center, Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan250358, People’s Republic of China
| | - Peili Hou
- Ruminant Diseases Research Center, Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan250358, People’s Republic of China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian271018, People’s Republic of China
| | - Hongchao Zhu
- Ruminant Diseases Research Center, Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan250358, People’s Republic of China
| | - Yan Gao
- Ruminant Diseases Research Center, Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan250358, People’s Republic of China
| | - Xiaomeng Wang
- Ruminant Diseases Research Center, Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan250358, People’s Republic of China
| | - Wenqi He
- State Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun130062, People’s Republic of China
| | - Juan Ren
- Ruminant Diseases Research Center, Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan250358, People’s Republic of China
| | - Min Li
- Ruminant Diseases Research Center, Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan250358, People’s Republic of China
| | - Yu Liu
- Ruminant Diseases Research Center, Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan250358, People’s Republic of China
| | - Daniel Chang He
- The College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Hongmei Wang
- Ruminant Diseases Research Center, Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan250358, People’s Republic of China
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun130122, People’s Republic of China
| | - Hongbin He
- Ruminant Diseases Research Center, Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan250358, People’s Republic of China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian271018, People’s Republic of China
| |
Collapse
|
47
|
Chen Q, Liu Y, Chen Q, Li M, Xu L, Lin B, Tan Y, Liu Z. DNA Nanostructures: Advancing Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405231. [PMID: 39308253 DOI: 10.1002/smll.202405231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/28/2024] [Indexed: 12/06/2024]
Abstract
Cancer immunotherapy is a groundbreaking medical revolution and a paradigm shift from traditional cancer treatments, harnessing the power of the immune system to target and destroy cancer cells. In recent years, DNA nanostructures have emerged as prominent players in cancer immunotherapy, exhibiting immense potential due to their controllable structure, surface addressability, and biocompatibility. This review provides an overview of the various applications of DNA nanostructures, including scaffolded DNA, DNA hydrogels, tetrahedral DNA nanostructures, DNA origami, spherical nucleic acids, and other DNA-based nanostructures in cancer immunotherapy. These applications explore their roles in vaccine development, immune checkpoint blockade therapies, adoptive cellular therapies, and immune-combination therapies. Through rational design and optimization, DNA nanostructures significantly bolster the immunogenicity of the tumor microenvironment by facilitating antigen presentation, T-cell activation, tumor infiltration, and precise immune-mediated tumor killing. The integration of DNA nanostructures with cancer therapies ushers in a new era of cancer immunotherapy, offering renewed hope and strength in the battle against this formidable foe of human health.
Collapse
Affiliation(s)
- Qianqian Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, P. R. China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, P. R. China
| | - Qiwen Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, P. R. China
| | - Mingfeng Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan Province, 410013, P. R. China
| | - Lishang Xu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan Province, 410013, P. R. China
| | - Bingyu Lin
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, P. R. China
| | - Yifu Tan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan Province, 410013, P. R. China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan Province, 410013, P. R. China
| |
Collapse
|
48
|
Xue JL, Ji JL, Zhou Y, Zhang Y, Liu BC, Ma RX, Li ZL. The multifaceted effects of mitochondria in kidney diseases. Mitochondrion 2024; 79:101957. [PMID: 39270830 DOI: 10.1016/j.mito.2024.101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria serve as the primary site for aerobic respiration within cells, playing a crucial role in maintaining cellular homeostasis. To maintain homeostasis and meet the diverse demands of the cells, mitochondria have evolved intricate systems of quality control, mainly including mitochondrial dynamics, mitochondrial autophagy (mitophagy) and mitochondrial biogenesis. The kidney, characterized by its high energy requirements, is particularly abundant in mitochondria. Interestingly, the mitochondria display complex behaviors and functions. When the kidney is suffered from obstructive, ischemic, hypoxic, oxidative, or metabolic insults, the dysfunctional mitochondrial derived from the defects in the mitochondrial quality control system contribute to cellular inflammation, cellular senescence, and cell death, posing a threat to the kidney. However, in addition to causing injury to the kidney in several cases, mitochondria also exhibit protective effect on the kidney. In recent years, accumulating evidence indicated that mitochondria play a crucial role in adaptive repair following kidney diseases caused by various etiologies. In this article, we comprehensively reviewed the current understanding about the multifaceted effects of mitochondria on kidney diseases and their therapeutic potential.
Collapse
Affiliation(s)
- Jia-Le Xue
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jia-Ling Ji
- Department of Pediatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Zhou
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yao Zhang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Rui-Xia Ma
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Zuo-Lin Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
49
|
Feng S, Marhon SA, Sokolowski DJ, D'Costa A, Soares F, Mehdipour P, Ishak C, Loo Yau H, Ettayebi I, Patel PS, Chen R, Liu J, Zuzarte PC, Ho KC, Ho B, Ning S, Huang A, Arrowsmith CH, Wilson MD, Simpson JT, De Carvalho DD. Inhibiting EZH2 targets atypical teratoid rhabdoid tumor by triggering viral mimicry via both RNA and DNA sensing pathways. Nat Commun 2024; 15:9321. [PMID: 39472584 PMCID: PMC11522499 DOI: 10.1038/s41467-024-53515-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 10/12/2024] [Indexed: 11/02/2024] Open
Abstract
Inactivating mutations in SMARCB1 confer an oncogenic dependency on EZH2 in atypical teratoid rhabdoid tumors (ATRTs), but the underlying mechanism has not been fully elucidated. We found that the sensitivity of ATRTs to EZH2 inhibition (EZH2i) is associated with the viral mimicry response. Unlike other epigenetic therapies targeting transcriptional repressors, EZH2i-induced viral mimicry is not triggered by cryptic transcription of endogenous retroelements, but rather mediated by increased expression of genes enriched for intronic inverted-repeat Alu (IR-Alu) elements. Interestingly, interferon-stimulated genes (ISGs) are highly enriched for dsRNA-forming intronic IR-Alu elements, suggesting a feedforward loop whereby these activated ISGs may reinforce dsRNA formation and viral mimicry. EZH2i also upregulates the expression of full-length LINE-1s, leading to genomic instability and cGAS/STING signaling in a process dependent on reverse transcriptase activity. Co-depletion of dsRNA sensing and cytoplasmic DNA sensing completely rescues the viral mimicry response to EZH2i in SMARCB1-deficient tumors.
Collapse
Affiliation(s)
- Shengrui Feng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- The First Affiliated Hospital of University of South China, Hengyang, Hunan, China.
| | - Sajid A Marhon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Dustin J Sokolowski
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Alister D'Costa
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Fraser Soares
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Parinaz Mehdipour
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Charles Ishak
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Helen Loo Yau
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Ilias Ettayebi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Parasvi S Patel
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Raymond Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Jiming Liu
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | | | - King Ching Ho
- Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON, Canada
| | - Ben Ho
- Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Shiyao Ning
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Annie Huang
- The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
- Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON, Canada
- Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Cheryl H Arrowsmith
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Michael D Wilson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Jared T Simpson
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
50
|
Li Y, Ji L, Liu C, Li J, Wen D, Li Z, Yu L, Guo M, Zhang S, Duan W, Yi L, Bi Y, Bu H, Li C, Liu Y. TBK1 is involved in M-CSF-induced macrophage polarization through mediating the IRF5/IRF4 axis. FEBS J 2024. [PMID: 39434428 DOI: 10.1111/febs.17297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/16/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
TANK binding kinase 1 (TBK1) is an important kinase that is involved in innate immunity and tumor development. Macrophage colony-stimulating factor (M-CSF) regulates the differentiation and function of macrophages towards the immunosuppressive M2 phenotype in the glioblastoma multiforme microenvironment. The role of TBK1 in macrophages, especially in regulating macrophage polarization in response to M-CSF stimulation, remains unclear. Here, we found high TBK1 expression in human glioma-infiltrating myeloid cells and that phosphorylated TBK1 was highly expressed in M-CSF-stimulated macrophages but not in granulocyte-macrophage CSF-induced macrophages (granulocyte-macrophage-CSF is involved in the polarization of M1 macrophages). Conditional deletion of TBK1 in myeloid cells induced M-CSF-stimulated bone marrow-derived macrophages to exhibit a proinflammatory M1-like phenotype with increased protein expression of CD86, interleukin-1β and tumor necrosis factor-α, as well as decreased expression of arginase 1. Mechanistically, TBK1 deletion or inhibition by amlexanox or GSK8612 reduced the expression of the transcription factor interferon-regulatory factor (IRF)4 and increased the level of IRF5 activation in macrophages stimulated with M-CSF, leading to an M1-like profile with highly proinflammatory factors. IRF5 deletion reversed the effect of TBK1 inhibition on M-CSF-mediated macrophage polarization. Our findings suggest that TBK1 contributes to the regulation of macrophage polarization in response to M-CSF stimulation partly through the IRF5/IRF4 axis.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Le Ji
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chang Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Juanjuan Li
- Department of Ultrasound, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Di Wen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Zhongyao Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Lishuang Yu
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Moran Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Shaoran Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Weisong Duan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Le Yi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Yue Bi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Hui Bu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Chunyan Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Yakun Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| |
Collapse
|