1
|
Ateya NH, Al-Taie SF, Jasim SA, Uthirapathy S, Chaudhary K, Rani P, Kundlas M, Naidu KS, Amer NA, Ahmed JK. Histone Deacetylation in Alzheimer's Diseases (AD); Hope or Hype. Cell Biochem Biophys 2025; 83:1537-1553. [PMID: 39825060 DOI: 10.1007/s12013-025-01670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2025] [Indexed: 01/20/2025]
Abstract
Histone acetylation is the process by which histone acetyltransferases (HATs) add an acetyl group to the N-terminal lysine residues of histones, resulting in a more open chromatin structure. Histone acetylation tends to increase gene expression more than methylation does. In the central nervous system (CNS), histone acetylation is essential for controlling the expression of genes linked to cognition and learning. Histone deacetylases (HDACs), "writing" enzymes (HATs), and "reading" enzymes with bromodomains that identify and localize to acetylated lysine residues are responsible for maintaining histone acetylation. By giving animals HDAC inhibitors (HDACis), it is possible to intentionally control the ratios of "writer" and "eraser" activity, which will change the acetylation of histones. In addition to making the chromatin more accessible, these histone acetylation alterations re-allocate the targeting of "readers," including the transcriptional co-activators, cAMP response element-binding protein (CBP), and bromodomain-containing protein 4 (Brd4) in the CNS. Conclusive evidence has shown that HDACs slow down the progression of Alzheimer's disease (AD) by reducing the amount of histone acetylation, decreasing the activity of genes linked to memory, supporting cognitive decline and Amyloid beta (Aβ) protein accumulation, influencing aberrant tau phosphorylation, and promoting the emergence of neurofibrillary tangles (NFTs). In this review, we have covered the therapeutic targets and functions of HDACs that might be useful in treating AD.
Collapse
Affiliation(s)
- Nabaa Hisham Ateya
- Biotechnology Department, College of Applied Science, Fallujah University, Al-Fallujah, Iraq
| | - Sarah F Al-Taie
- University of Baghdad, College of Science, Department of Biotechnology, Baghdad, Iraq
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques department, College of Health and Medical Technology, University of Al-maarif, Anbar, Ramadi, Iraq.
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University Erbil, Kurdistan Region, Erbil, Iraq
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Pooja Rani
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Mayank Kundlas
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Nevin Adel Amer
- Nursing Department, College of Applied Medical Sciences, Jouf University, Sakakah, Saudi Arabia
- Medical Surgical Nursing Department, Faculty of Nursing, Menofia University, Shibin el Kom, Saudi Arabia
| | - Jawad Kadhim Ahmed
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| |
Collapse
|
2
|
Bellver‐Sanchis A, Ribalta‐Vilella M, Irisarri A, Gehlot P, Choudhary BS, Jana A, Vyas VK, Banerjee DR, Pallàs M, Guerrero A, Griñán‐Ferré C. G9a an Epigenetic Therapeutic Strategy for Neurodegenerative Conditions: From Target Discovery to Clinical Trials. Med Res Rev 2025; 45:985-1015. [PMID: 39763018 PMCID: PMC11976383 DOI: 10.1002/med.22096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 04/09/2025]
Abstract
This review provides a comprehensive overview of the role of G9a/EHMT2, focusing on its structure and exploring the impact of its pharmacological and/or gene inhibition in various neurological diseases. In addition, we delve into the advancements in the design and synthesis of G9a/EHMT2 inhibitors, which hold promise not only as a treatment for neurodegeneration diseases but also for other conditions, such as cancer and malaria. Besides, we presented the discovery of dual therapeutic approaches based on G9a inhibition and different epigenetic enzymes like histone deacetylases, DNA methyltransferases, and other lysine methyltransferases. Hence, findings offer valuable insights into developing novel and promising therapeutic strategies targeting G9a/EHMT2 for managing these neurological conditions.
Collapse
Affiliation(s)
- Aina Bellver‐Sanchis
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Marta Ribalta‐Vilella
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Alba Irisarri
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Pinky Gehlot
- Department of Pharmaceutical ChemistryInstitute of PharmacyNirma UniversityAhmedabadIndia
| | - Bhanwar Singh Choudhary
- Department of PharmacyCentral University of RajasthanAjmerIndia
- Drug Discovery and Development Centre (H3D)University of Cape TownRondeboschSouth Africa
| | - Abhisek Jana
- Department of ChemistryNational Institute of Technology DurgapurDurgapurIndia
| | - Vivek Kumar Vyas
- Department of Pharmaceutical ChemistryInstitute of PharmacyNirma UniversityAhmedabadIndia
| | - Deb Ranjan Banerjee
- Department of ChemistryNational Institute of Technology DurgapurDurgapurIndia
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
- Instituto de Salud Carlos III, Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Ana Guerrero
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Christian Griñán‐Ferré
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
- Instituto de Salud Carlos III, Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| |
Collapse
|
3
|
Catanese MC, Klingl YE, Gilbert TM, Strebl-Bantillo MG, Hartigan CR, Schenone M, Hooker JM. Chemoproteomics Sheds Light on Epigenetic Targets of [ 11C]Martinostat in the Human Brain. ACS Chem Neurosci 2025; 16:723-731. [PMID: 39912892 DOI: 10.1021/acschemneuro.4c00781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Initiation of research programs to investigate binding specificity based on in vivo positron emission tomography (PET) imaging results can provide rich opportunities to improve data interpretation, gain biological insight, and inform hypothesis development. Here, we profile the binding specificity of the neuroepigenetic imaging probe, [11C]Martinostat. In vivo neuroimaging studies using [11C]Martinostat have uncovered differential regional uptake in relation to age and biological sex and in patients with schizophrenia, bipolar disorder, Alzheimer's disease, and low-back pain compared to healthy controls. Previous studies using recombinant proteins and thermal shift assays in postmortem tissue indicate that [11C]Martinostat engages class I and putatively class IIb histone deacetylases (HDACs). While HDACs serve multiple functions, including regulation of chromatin remodeling and gene transcription, it is not known how differences in HDAC expression may arise across brain regions. HDACs functionally interact with a diverse array of multisubunit complexes, and engagement with associated binding partners may contribute to these differences. To further assess target engagement of [11C]Martinostat, we designed a synthetic probe based on the inhibitor structural scaffold for use in competition experiments followed by proteomic analysis in postmortem tissue. The synthetic probe, called Compound 4, appears to interact with the class I HDAC paralog HDAC2 and the class IIb paralog HDAC6 in a robust manner. We also uncovered unique interacting partners, including synaptic proteins from the synaptotagmin (SYT) family of proteins and neuronal pentraxin 2 (NPTX2). Further work to investigate HDAC associations with interacting proteins across regions of the human brain is needed to better understand neuroepigenetic dysregulation in psychiatric and neurological conditions.
Collapse
Affiliation(s)
- Mary C Catanese
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Yvonne E Klingl
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Tonya M Gilbert
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Martin G Strebl-Bantillo
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Christina R Hartigan
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Monica Schenone
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
4
|
van Zundert B, Montecino M. Epigenetics in Neurodegenerative Diseases. Subcell Biochem 2025; 108:73-109. [PMID: 39820861 DOI: 10.1007/978-3-031-75980-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Healthy brain functioning requires a continuous fine-tuning of gene expression, involving changes in the epigenetic landscape and 3D chromatin organization. Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD) are three multifactorial neurodegenerative diseases (NDDs) that are partially explained by genetics (gene mutations and genetic risk factors) and influenced by non-genetic factors (i.e., aging, lifestyle, and environmental conditions). Examining comprehensive studies of global and locus-specific (epi)genomic and transcriptomic alterations in human and mouse brain samples at the cell-type resolution has uncovered important phenomena associated with AD. First, DNA methylation and histone marks at promoters contribute to transcriptional dysregulation of genes that are directly implicated in AD pathogenesis (i.e., APP), neuroplasticity and cognition (i.e., PSD95), and microglial activation (i.e., TREM2). Second, the presence of AD genetic risk variants in cell-type-specific distal enhancers (i.e., BIN1 in microglia) alters transcription, presumably by disrupting associated enhancer-promoter interactions and chromatin looping. Third, epigenomic erosion is associated with widespread transcriptional disruption and cell identity loss. And fourth, aging, high cholesterol, air pollution, and pesticides have emerged as potential drivers of AD by inducing locus-specific and global epigenetic modifications that impact key AD-related pathways. Epigenetic studies in ALS/FTD also provide evidence that genetic and non-genetic factors alter gene expression profiles in neurons and astrocytes through aberrant epigenetic mechanisms. We additionally overview the recent development of potential new therapeutic strategies involving (epi)genetic editing and the use of small chromatin-modifying molecules (epidrugs).
Collapse
Affiliation(s)
- Brigitte van Zundert
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile.
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile.
- Department of Neurology, University of Massachusetts Chan Medical School (UMMS), Worcester, MA, USA.
| | - Martin Montecino
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile.
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile.
| |
Collapse
|
5
|
Rahman AFMT, Bulbule S, Belayet JB, Benko A, Gottschalk CG, Frick DN, Arnold LA, Hossain MM, Roy A. JRM-28, a Novel HDAC2 Inhibitor, Upregulates Plasticity-Associated Proteins in Hippocampal Neurons and Enhances Morphological Plasticity via Activation of CREB: Implications for Alzheimer's Disease. Cells 2024; 13:1964. [PMID: 39682714 PMCID: PMC11640089 DOI: 10.3390/cells13231964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Enhancement of neuronal plasticity by small-molecule therapeutics protects cognitive skills and also ameliorates progressive neurodegenerative pathologies like Alzheimer's disease (AD) and dementia. One such compound, a novel histone deacetylase 2 (HDAC2) inhibitor named JRM-28, was shown here to enhance dendritic strength, augment spine density, and upregulate post-synaptic neurotransmission in hippocampal neurons. The molecular basis for this effect correlates with JRM-28-induced upregulation of the transcription of cAMP response element-binding protein(CREB), induction of its transcriptional activity, and subsequent stimulation of expressions of CREB-dependent plasticity-associated genes, such as those encoding N-methyl-D-aspartate (NMDA) receptor subunit NR2A and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluR1. Specifically, JRM-28 stimulated the NMDA- and AMPA-receptor-sensitive ionotropic calcium influx in hippocampal neurons. Interestingly, JRM-28 did not induce NMDA- and AMPA-sensitive calcium influx in hippocampal neurons once the expression of CREB was knocked down by creb siRNA, suggesting the critical role of CREB in JRM-28-mediated upregulation of synaptic plasticity. Finally, JRM-28 upregulated CREB mRNA, CREB-dependent plasticity-associated markers, and ionotropic calcium influx in iPSC-derived AD human neurons, indicating its therapeutic implications in the amelioration of AD pathologies.
Collapse
Affiliation(s)
- A. F. M. Towheedur Rahman
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA.; (A.F.M.T.R.); (S.B.); (J.B.B.); (A.B.); (C.G.G.); (D.N.F.); (L.A.A.)
| | - Sarojini Bulbule
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA.; (A.F.M.T.R.); (S.B.); (J.B.B.); (A.B.); (C.G.G.); (D.N.F.); (L.A.A.)
- Simmaron Research Institute, 948 Incline Way, Incline Village, NV 89451, USA
| | - Jawad Bin Belayet
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA.; (A.F.M.T.R.); (S.B.); (J.B.B.); (A.B.); (C.G.G.); (D.N.F.); (L.A.A.)
| | - Anna Benko
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA.; (A.F.M.T.R.); (S.B.); (J.B.B.); (A.B.); (C.G.G.); (D.N.F.); (L.A.A.)
- Milwaukee Institute for Drug Discovery, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA
| | - Carl Gunnar Gottschalk
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA.; (A.F.M.T.R.); (S.B.); (J.B.B.); (A.B.); (C.G.G.); (D.N.F.); (L.A.A.)
- Simmaron Research Institute, 948 Incline Way, Incline Village, NV 89451, USA
| | - David N. Frick
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA.; (A.F.M.T.R.); (S.B.); (J.B.B.); (A.B.); (C.G.G.); (D.N.F.); (L.A.A.)
- Milwaukee Institute for Drug Discovery, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA
| | - Leggy A. Arnold
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA.; (A.F.M.T.R.); (S.B.); (J.B.B.); (A.B.); (C.G.G.); (D.N.F.); (L.A.A.)
- Milwaukee Institute for Drug Discovery, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA
| | - M. Mahmun Hossain
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA.; (A.F.M.T.R.); (S.B.); (J.B.B.); (A.B.); (C.G.G.); (D.N.F.); (L.A.A.)
- Milwaukee Institute for Drug Discovery, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA
| | - Avik Roy
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA.; (A.F.M.T.R.); (S.B.); (J.B.B.); (A.B.); (C.G.G.); (D.N.F.); (L.A.A.)
- Simmaron Research Institute, 948 Incline Way, Incline Village, NV 89451, USA
- Milwaukee Institute for Drug Discovery, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA
- Simmaron Research and Development Laboratory, University of Wisconsin-Milwaukee, Chemistry Building, 2000 E Kenwood Blvd, Suite # 320, Milwaukee, WI 53211, USA
| |
Collapse
|
6
|
Crombie EM, Cleverley K, Timmers HTM, Fisher EMC. The roles of TAF1 in neuroscience and beyond. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240790. [PMID: 39323550 PMCID: PMC11423858 DOI: 10.1098/rsos.240790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/27/2024]
Abstract
The transcriptional machinery is essential for gene expression and regulation; dysregulation of transcription can result in a range of pathologies, including neurodegeneration, cancer, developmental disorders and cardiovascular disease. A key component of RNA polymerase II-mediated transcription is the basal transcription factor IID, which is formed of the TATA box-binding protein (TBP) and 14 TBP-associated factors (TAFs), the largest of which is the TAF1 protein, encoded on the X chromosome (Xq13.1). TAF1 is dysregulated in X-linked dystonia-parkinsonism and congenital mutations in the gene are causative for neurodevelopmental phenotypes; TAF1 dysfunction is also associated with cardiac anomalies and cancer. However, how TAF1 contributes to pathology is unclear. Here, we highlight the key aspects of the TAF1 gene and protein function that may link transcriptional regulation with disorders of development, growth and adult-onset disorders of motor impairment. We highlight the need to experimentally investigate the full range of TAF1 messenger RNA variants and protein isoforms in human and mouse to aid our understanding of TAF1 biology. Furthermore, the X-linked nature of TAF1-related diseases adds complexity to understanding phenotypes. Overall, we shed light on the aspects of TAF1 biology that may contribute to disease and areas that could be addressed for future research and targeted therapeutics.
Collapse
Affiliation(s)
- Elisa M Crombie
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Karen Cleverley
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - H T Marc Timmers
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between the DKFZ, Germany
- Department of Urology, Medical Center-University of Freiburg, Breisacher Straße 66, Freiburg, 79106, Germany
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
7
|
McClarty BM, Rodriguez G, Dong H. Class 1 histone deacetylases differentially modulate memory and synaptic genes in a spatial and temporal manner in aged and APP/PS1 mice. Brain Res 2024; 1837:148951. [PMID: 38642789 PMCID: PMC11182336 DOI: 10.1016/j.brainres.2024.148951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Epigenetics plays a vital role in aging and Alzheimer's disease (AD); however, whether epigenetic alterations during aging can initiate AD and exacerbate AD progression remains unclear. In this study, using 3-, 12- and 18- month-old APP/PS1 mice and age matched WT littermates, we conducted a series of memory tests, measured synapse-related gene expression, class 1 histone deacetylases (HDACs) abundance, and H3K9ac levels at target gene promoters in the hippocampus and prefrontal cortex (PFC). Our results showed impaired recognition and long-term spatial memory in 18-month-old WT mice and impaired recognition, short-term working, and long-term spatial reference memory in 12-and 18- month-old APP/PS1 mice. These memory impairments are associated with changes of synapse-related gene (nr2a, glur1, glur2, psd95) expression, HDAC abundance, and H3K9ac levels; more specifically, increased HDAC2 was associated with synapse-related gene expression changes through modulation of H3K9ac at the gene promoters during aging and AD progression in the hippocampus. Conversely, increased HDAC3 was associated with synapse-related gene expression changes through modulation of H3K9ac at the gene promoters during AD progression in the PFC. These findings suggest memory impairments in aging and AD may associated with a differential HDAC modulation of synapse-related gene expression in the brain.
Collapse
Affiliation(s)
- Bryan M McClarty
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 7-103, Chicago, IL 60611, USA
| | - Guadalupe Rodriguez
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 7-103, Chicago, IL 60611, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 7-103, Chicago, IL 60611, USA.
| |
Collapse
|
8
|
Yang J, Xiao Y, Zhao N, Pei G, Sun Y, Sun X, Yu K, Miao C, Liu R, Lv J, Chu H, Zhou L, Wang B, Yao Z, Wang Q. PIM1-HDAC2 axis modulates intestinal homeostasis through epigenetic modification. Acta Pharm Sin B 2024; 14:3049-3067. [PMID: 39027246 PMCID: PMC11252454 DOI: 10.1016/j.apsb.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 07/20/2024] Open
Abstract
The mucosal barrier is crucial for intestinal homeostasis, and goblet cells are essential for maintaining the mucosal barrier integrity. The proviral integration site for Moloney murine leukemia virus-1 (PIM1) kinase regulates multiple cellular functions, but its role in intestinal homeostasis during colitis is unknown. Here, we demonstrate that PIM1 is prominently elevated in the colonic epithelia of both ulcerative colitis patients and murine models, in the presence of intestinal microbiota. Epithelial PIM1 leads to decreased goblet cells, thus impairing resistance to colitis and colitis-associated colorectal cancer (CAC) in mice. Mechanistically, PIM1 modulates goblet cell differentiation through the Wnt and Notch signaling pathways. Interestingly, PIM1 interacts with histone deacetylase 2 (HDAC2) and downregulates its level via phosphorylation, thereby altering the epigenetic profiles of Wnt signaling pathway genes. Collectively, these findings investigate the unknown function of the PIM1-HDAC2 axis in goblet cell differentiation and ulcerative colitis/CAC pathogenesis, which points to the potential for PIM1-targeted therapies of ulcerative colitis and CAC.
Collapse
Affiliation(s)
- Jianming Yang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Yawen Xiao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Ningning Zhao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Geng Pei
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center of Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center of Cancer, Tianjin 30060, China
| | - Yan Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center of Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center of Cancer, Tianjin 30060, China
| | - Xinyu Sun
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Kaiyuan Yu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Chunhui Miao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Ran Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Junqiang Lv
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Hongyu Chu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Zhi Yao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Quan Wang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
9
|
Kubat Oktem E. Biomarkers of Alzheimer's Disease Associated with Programmed Cell Death Reveal Four Repurposed Drugs. J Mol Neurosci 2024; 74:51. [PMID: 38700745 DOI: 10.1007/s12031-024-02228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/21/2024] [Indexed: 07/20/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and the most common cause of dementia. Programmed cell death (PCD) is mainly characterized by unique morphological features and energy-dependent biochemical processes. The predominant pathway leading to cell death in AD has not been thoroughly analyzed, although there is evidence of neuron loss in AD and numerous pathways of PCD have been associated with this process. A better understanding of the systems biology underlying the relationship between AD and PCD could lead to the development of new therapeutic approaches. To this end, publicly available transcriptome data were examined using bioinformatic methods such as differential gene expression and weighted gene coexpression network analysis (WGCNA) to find PCD-related AD biomarkers. The diagnostic significance of these biomarkers was evaluated using a logistic regression-based predictive model. Using these biomarkers, a multifactorial regulatory network was developed. Last, a drug repositioning study was conducted to propose new drugs for the treatment of AD targeting PCD. The development of 3PM (predictive, preventive, and personalized) drugs for the treatment of AD would be enabled by additional research on the effects of these drugs on this disease.
Collapse
Affiliation(s)
- Elif Kubat Oktem
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, North Campus, Istanbul, 34700, Turkey.
| |
Collapse
|
10
|
Li W, Wan P, Qiao J, Liu Y, Peng Q, Zhang Z, Shu X, Xia Y, Sun B. Current and further outlook on the protective potential of Antrodia camphorata against neurological disorders. Front Pharmacol 2024; 15:1372110. [PMID: 38694913 PMCID: PMC11061445 DOI: 10.3389/fphar.2024.1372110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Prevalent neurological disorders such as Alzheimer's disease, Parkinson's disease, and stroke are increasingly becoming a global burden as society ages. It is well-known that degeneration and loss of neurons are the fundamental underlying processes, but there are still no effective therapies for these neurological diseases. In recent years, plenty of studies have focused on the pharmacology and feasibility of natural products as new strategies for the development of drugs that target neurological disorders. Antrodia camphorata has become one of the most promising candidates, and the crude extracts and some active metabolites of it have been reported to play various pharmacological activities to alleviate neurological symptoms at cellular and molecular levels. This review highlights the current evidence of Antrodia camphorata against neurological disorders, including safety evaluation, metabolism, blood-brain barrier penetration, neuroprotective activities, and the potential on regulating the gut-microbiome-brain axis. Furthermore, potential strategies to resolve problematic issues identified in previous studies are also discussed. We aim to provide an overview for the ongoing development and utilization of Antrodia camphorata in cerebral neuropathology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yiyuan Xia
- Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Binlian Sun
- Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
11
|
Kodi T, Sankhe R, Gopinathan A, Nandakumar K, Kishore A. New Insights on NLRP3 Inflammasome: Mechanisms of Activation, Inhibition, and Epigenetic Regulation. J Neuroimmune Pharmacol 2024; 19:7. [PMID: 38421496 PMCID: PMC10904444 DOI: 10.1007/s11481-024-10101-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/06/2023] [Indexed: 03/02/2024]
Abstract
Inflammasomes are important modulators of inflammation. Dysregulation of inflammasomes can enhance vulnerability to conditions such as neurodegenerative diseases, autoinflammatory diseases, and metabolic disorders. Among various inflammasomes, Nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) is the best-characterized inflammasome related to inflammatory and neurodegenerative diseases. NLRP3 is an intracellular sensor that recognizes pathogen-associated molecular patterns and damage-associated patterns resulting in the assembly and activation of NLRP3 inflammasome. The NLRP3 inflammasome includes sensor NLRP3, adaptor apoptosis-associated speck-like protein (ASC), and effector cysteine protease procaspase-1 that plays an imperative role in caspase-1 stimulation which further initiates a secondary inflammatory response. Regulation of NLRP3 inflammasome ameliorates NLRP3-mediated diseases. Much effort has been invested in studying the activation, and exploration of specific inhibitors and epigenetic mechanisms controlling NLRP3 inflammasome. This review gives an overview of the established NLRP3 inflammasome assembly, its brief molecular mechanistic activations as well as a current update on specific and non-specific NLRP3 inhibitors that could be used in NLRP3-mediated diseases. We also focused on the recently discovered epigenetic mechanisms mediated by DNA methylation, histone alterations, and microRNAs in regulating the activation and expression of NLRP3 inflammasome, which has resulted in a novel method of gaining insight into the mechanisms that modulate NLRP3 inflammasome activity and introducing potential therapeutic strategies for CNS disorders.
Collapse
Affiliation(s)
- Triveni Kodi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Runali Sankhe
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Adarsh Gopinathan
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
12
|
Mansour HM. The interference between SARS-COV-2 and Alzheimer's disease: Potential immunological and neurobiological crosstalk from a kinase perspective reveals a delayed pandemic. Ageing Res Rev 2024; 94:102195. [PMID: 38244862 DOI: 10.1016/j.arr.2024.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
Coronavirus disease 2019 (COVID-19) has infected over 700 million people, with up to 30% developing neurological manifestations, including dementias. However, there is a lack of understanding of common molecular brain markers causing Alzheimer's disease (AD). COVID-19 has etiological cofactors with AD, making patients with AD a vulnerable population at high risk of experiencing more severe symptoms and worse consequences. Both AD and COVID-19 have upregulated several shared kinases, leading to the repositioning of kinase inhibitors (KIs) for the treatment of both diseases. This review provides an overview of the interactions between the immune system and the nervous system in relation to receptor tyrosine kinases, including epidermal growth factor receptors, vascular growth factor receptors, and non-receptor tyrosine kinases such as Bruton tyrosine kinase, spleen tyrosine kinase, c-ABL, and JAK/STAT. We will discuss the promising results of kinase inhibitors in pre-clinical and clinical studies for both COVID-19 and Alzheimer's disease (AD), as well as the challenges in repositioning KIs for these diseases. Understanding the shared kinases between AD and COVID-19 could help in developing therapeutic approaches for both.
Collapse
Affiliation(s)
- Heba M Mansour
- General Administration of Innovative Products, Central Administration of Biological, Innovative Products, and Clinical Studies (Bio-INN), Egyptian Drug Authority (EDA), Giza, Egypt.
| |
Collapse
|
13
|
Kubat Oktem E. BMP4, SGSH, and SLC11A2 are Predicted to Be Biomarkers of Aging Associated with Programmed Cell Death. J Mol Neurosci 2023; 73:713-723. [PMID: 37632651 DOI: 10.1007/s12031-023-02148-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/10/2023] [Indexed: 08/28/2023]
Abstract
Most neurodegenerative diseases are exacerbated by aging, with symptoms often worsening over time. Programmed cell death (PCD) is a controlled cell suicide mechanism that is essential for the stability, growth, and homeostasis of organisms. Understanding the effects of aging at the level of systems biology could lead to new therapeutic approaches for a broad spectrum of neurodegenerative diseases. In the absence of comprehensive functional studies on the relationship between PCD and aging of the prefrontal cortex, this study provides prefrontal brain biomarkers of aging associated with PCD that could open the way for improved therapeutic techniques for age-related neurodegenerative diseases. To this end, publicly available transcriptome data were subjected to bioinformatic analyses such as differential gene expression, functional enrichment, and the weighted gene coexpression network analysis (WGCNA). The diagnostic utility of the biomarkers was tested using a logistic regression-based prediction model. Three genes, namely BMP4, SGSH, and SLC11A2, were found to be aging biomarkers associated with PCD. Finally, a multifactorial regulatory network with interacting proteins, transcription factors (TFs), competing endogenous RNAs (ceRNAs), and microRNAs (miRNAs) was constructed around these biomarkers. The elements of this multifactorial regulatory network were mainly enriched in BMP signaling. Further exploration of these three biomarkers and their regulatory elements would enable the development of 3PM (predictive, preventive, and personalized) medicine for the treatment of age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Elif Kubat Oktem
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Kuzey Yerleşkesi H Blok, Ünalan Mah. Ünalan Sk. D100 Karayolu Yanyol 34700, Üsküdar, Istanbul, Turkey.
| |
Collapse
|
14
|
Motaln H, Rogelj B. The Role of c-Abl Tyrosine Kinase in Brain and Its Pathologies. Cells 2023; 12:2041. [PMID: 37626851 PMCID: PMC10453230 DOI: 10.3390/cells12162041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Differentiated status, low regenerative capacity and complex signaling make neuronal tissues highly susceptible to translating an imbalance in cell homeostasis into cell death. The high rate of neurodegenerative diseases in the elderly population confirms this. The multiple and divergent signaling cascades downstream of the various stress triggers challenge researchers to identify the central components of the stress-induced signaling pathways that cause neurodegeneration. Because of their critical role in cell homeostasis, kinases have emerged as one of the key regulators. Among kinases, non-receptor tyrosine kinase (Abelson kinase) c-Abl appears to be involved in both the normal development of neural tissue and the development of neurodegenerative pathologies when abnormally expressed or activated. However, exactly how c-Abl mediates the progression of neurodegeneration remains largely unexplored. Here, we summarize recent findings on the involvement of c-Abl in normal and abnormal processes in nervous tissue, focusing on neurons, astrocytes and microglial cells, with particular reference to molecular events at the interface between stress signaling, DNA damage, and metabolic regulation. Because inhibition of c-Abl has neuroprotective effects and can prevent neuronal death, we believe that an integrated view of c-Abl signaling in neurodegeneration could lead to significantly improved treatment of the disease.
Collapse
Affiliation(s)
- Helena Motaln
- Department of Biotechnology, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Boris Rogelj
- Department of Biotechnology, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia;
| |
Collapse
|
15
|
León R, Gutiérrez DA, Pinto C, Morales C, de la Fuente C, Riquelme C, Cortés BI, González-Martin A, Chamorro D, Espinosa N, Fuentealba P, Cancino GI, Zanlungo S, Dulcey AE, Marugan JJ, Álvarez Rojas A. c-Abl tyrosine kinase down-regulation as target for memory improvement in Alzheimer's disease. Front Aging Neurosci 2023; 15:1180987. [PMID: 37358955 PMCID: PMC10289333 DOI: 10.3389/fnagi.2023.1180987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
Background Growing evidence suggests that the non-receptor tyrosine kinase, c-Abl, plays a significant role in the pathogenesis of Alzheimer's disease (AD). Here, we analyzed the effect of c-Abl on the cognitive performance decline of APPSwe/PSEN1ΔE9 (APP/PS1) mouse model for AD. Methods We used the conditional genetic ablation of c-Abl in the brain (c-Abl-KO) and pharmacological treatment with neurotinib, a novel allosteric c-Abl inhibitor with high brain penetrance, imbued in rodent's chow. Results We found that APP/PS1/c-Abl-KO mice and APP/PS1 neurotinib-fed mice had improved performance in hippocampus-dependent tasks. In the object location and Barnes-maze tests, they recognized the displaced object and learned the location of the escape hole faster than APP/PS1 mice. Also, APP/PS1 neurotinib-fed mice required fewer trials to reach the learning criterion in the memory flexibility test. Accordingly, c-Abl absence and inhibition caused fewer amyloid plaques, reduced astrogliosis, and preserved neurons in the hippocampus. Discussion Our results further validate c-Abl as a target for AD, and the neurotinib, a novel c-Abl inhibitor, as a suitable preclinical candidate for AD therapies.
Collapse
Affiliation(s)
- Rilda León
- Cell Signaling Laboratory, Department of Cellular and Molecular Biology, Biological Sciences Faculty, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela A. Gutiérrez
- Cell Signaling Laboratory, Department of Cellular and Molecular Biology, Biological Sciences Faculty, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudio Pinto
- Cell Signaling Laboratory, Department of Cellular and Molecular Biology, Biological Sciences Faculty, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristian Morales
- Laboratory for Brain-Machine Interfaces and Neuromodulation, Facultad de Ingeniería, Instituto de Ingeniería Biológica y Médica, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory of Neural Circuits, Department of Psychiatry, Neuroscience Interdisciplinary Centre, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina de la Fuente
- Cell Signaling Laboratory, Department of Cellular and Molecular Biology, Biological Sciences Faculty, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristóbal Riquelme
- Cell Signaling Laboratory, Department of Cellular and Molecular Biology, Biological Sciences Faculty, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bastián I. Cortés
- Department of Cellular and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Adrián González-Martin
- Cell Signaling Laboratory, Department of Cellular and Molecular Biology, Biological Sciences Faculty, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David Chamorro
- Cell Signaling Laboratory, Department of Cellular and Molecular Biology, Biological Sciences Faculty, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nelson Espinosa
- Laboratory of Neural Circuits, Department of Psychiatry, Neuroscience Interdisciplinary Centre, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Fuentealba
- Laboratory of Neural Circuits, Department of Psychiatry, Neuroscience Interdisciplinary Centre, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gonzalo I. Cancino
- Department of Cellular and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Silvana Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Andrés E. Dulcey
- Early Translation Branch, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD, United States
| | - Juan J. Marugan
- Early Translation Branch, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD, United States
| | - Alejandra Álvarez Rojas
- Cell Signaling Laboratory, Department of Cellular and Molecular Biology, Biological Sciences Faculty, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
16
|
Ghosh D, Singh G, Mishra P, Singh A, Kumar A, Sinha N. Alteration in mitochondrial dynamics promotes the proinflammatory response of microglia and is involved in cerebellar dysfunction of young and aged mice following LPS exposure. Neurosci Lett 2023; 807:137262. [PMID: 37116576 DOI: 10.1016/j.neulet.2023.137262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023]
Abstract
Cerebellar dysfunction is implicated in impaired motor coordination and balance, thus disturbing the dynamics of sensorimotor integration. Neuroinflammation and aging could be prominent contributors to cerebellar aberration. Additionally, changes in mitochondrial dynamics may precede microglia activation in several chronic neurodegenerative diseases; however, the underlying mechanism remains largely unknown.Here using LPS (1 mg/kg i.p. for four consecutive days) stimulation in both young (3 months old) and aged (12 months old) mice, followed by molecular analysis on the 21st day, we have explored the correlation between aging and mitochondrial dynamic alteration in the backdrop of chronic neuroinflammation. Following LPS stimulation, we observed microglia activation and subsequent elevation in proinflammatory cytokines (M1; TNF-α, IFN-γ) with NLRP3 activationand a concomitant reduction in the expression of anti-inflammatory markers (M2; YM1, TGF-β1) in the cerebellar tissue of aged mice compared with the young LPS and aged controls. Remarkably, senescence (p21, p27, p53) and epigenetic (HDAC2) markers were found upregulated in the cerebellum tissue of the aged LPS group, suggesting their crucial role in LPS-induced cerebellar deficit. Further, we demonstrated alteration in the antagonistic forces of mitochondrial fusion and fission with increased expression of the mitochondrial fission-related gene [FIS1] and decreased fusion-related genes [MFN1 and MFN2]. We noted increased mtDNA copy number, microglia activation, and inflammatory response of IL1β and IFN-γ post-chronic neuroinflammation in aged LPS group. Our results suggest that the crosstalk between mitochondrial dynamics and altered microglial activation paradigm in chronic neuroinflammatory conditions may be the key to understanding the cerebellar molecular mechanism.
Collapse
Affiliation(s)
- Devlina Ghosh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomti Nagar Extension, Lucknow 226028, India; Centre of Biomedical Research, SGPGIMS-Campus, Raibareli Road, Lucknow 226014, India.
| | - Gajendra Singh
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Prabhaker Mishra
- Department of Biostatistics and Health Informatics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226 014, Uttar Pradesh, India
| | - Aditi Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomti Nagar Extension, Lucknow 226028, India
| | - Alok Kumar
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS-Campus, Raibareli Road, Lucknow 226014, India.
| |
Collapse
|
17
|
Jin J, Ren P, Li X, Zhang Y, Yang W, Ma Y, Lai M, Yu C, Zhang S, Zhang YL. Ovulatory signal-triggered chromatin remodeling in ovarian granulosa cells by HDAC2 phosphorylation activation-mediated histone deacetylation. Epigenetics Chromatin 2023; 16:11. [PMID: 37076890 PMCID: PMC10116676 DOI: 10.1186/s13072-023-00485-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/07/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Epigenetic reprogramming is involved in luteinizing hormone (LH)-induced ovulation; however, the underlying mechanisms are largely unknown. RESULTS We here observed a rapid histone deacetylation process between two waves of active transcription mediated by the follicle-stimulating hormone (FSH) and the LH congener human chorionic gonadotropin (hCG), respectively. Analysis of the genome-wide H3K27Ac distribution in hCG-treated granulosa cells revealed that a rapid wave of genome-wide histone deacetylation remodels the chromatin, followed by the establishment of specific histone acetylation for ovulation. HDAC2 phosphorylation activation coincides with histone deacetylation in mouse preovulatory follicles. When HDAC2 was silenced or inhibited, histone acetylation was retained, leading to reduced gene transcription, retarded cumulus expansion, and ovulation defect. HDAC2 phosphorylation was associated with CK2α nuclear translocation, and inhibition of CK2α attenuated HDAC2 phosphorylation, retarded H3K27 deacetylation, and inactivated the ERK1/2 signaling cascade. CONCLUSIONS This study demonstrates that the ovulatory signal erases histone acetylation through activation of CK2α-mediated HDAC2 phosphorylation in granulosa cells, which is an essential prerequisite for subsequent successful ovulation.
Collapse
Affiliation(s)
- Jiamin Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Peipei Ren
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Xiang Li
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Yinyi Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Weijie Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Yerong Ma
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Mengru Lai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Chao Yu
- College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China.
| | - Yin-Li Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China.
| |
Collapse
|
18
|
Jiang D, Li T, Guo C, Tang TS, Liu H. Small molecule modulators of chromatin remodeling: from neurodevelopment to neurodegeneration. Cell Biosci 2023; 13:10. [PMID: 36647159 PMCID: PMC9841685 DOI: 10.1186/s13578-023-00953-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
The dynamic changes in chromatin conformation alter the organization and structure of the genome and further regulate gene transcription. Basically, the chromatin structure is controlled by reversible, enzyme-catalyzed covalent modifications to chromatin components and by noncovalent ATP-dependent modifications via chromatin remodeling complexes, including switch/sucrose nonfermentable (SWI/SNF), inositol-requiring 80 (INO80), imitation switch (ISWI) and chromodomain-helicase DNA-binding protein (CHD) complexes. Recent studies have shown that chromatin remodeling is essential in different stages of postnatal and adult neurogenesis. Chromatin deregulation, which leads to defects in epigenetic gene regulation and further pathological gene expression programs, often causes a wide range of pathologies. This review first gives an overview of the regulatory mechanisms of chromatin remodeling. We then focus mainly on discussing the physiological functions of chromatin remodeling, particularly histone and DNA modifications and the four classes of ATP-dependent chromatin-remodeling enzymes, in the central and peripheral nervous systems under healthy and pathological conditions, that is, in neurodegenerative disorders. Finally, we provide an update on the development of potent and selective small molecule modulators targeting various chromatin-modifying proteins commonly associated with neurodegenerative diseases and their potential clinical applications.
Collapse
Affiliation(s)
- Dongfang Jiang
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Tingting Li
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Caixia Guo
- grid.9227.e0000000119573309Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Tie-Shan Tang
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Hongmei Liu
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| |
Collapse
|
19
|
Álvarez A, Gutiérrez D, Chandía-Cristi A, Yáñez M, Zanlungo S. c-Abl kinase at the crossroads of healthy synaptic remodeling and synaptic dysfunction in neurodegenerative diseases. Neural Regen Res 2023; 18:237-243. [PMID: 35900397 PMCID: PMC9396477 DOI: 10.4103/1673-5374.346540] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Our ability to learn and remember depends on the active formation, remodeling, and elimination of synapses. Thus, the development and growth of synapses as well as their weakening and elimination are essential for neuronal rewiring. The structural reorganization of synaptic complexes, changes in actin cytoskeleton and organelle dynamics, as well as modulation of gene expression, determine synaptic plasticity. It has been proposed that dysregulation of these key synaptic homeostatic processes underlies the synaptic dysfunction observed in many neurodegenerative diseases. Much is known about downstream signaling of activated N-methyl-D-aspartate and α-amino-3-hydroxy-5-methyl-4-isoazolepropionate receptors; however, other signaling pathways can also contribute to synaptic plasticity and long-lasting changes in learning and memory. The non-receptor tyrosine kinase c-Abl (ABL1) is a key signal transducer of intra and extracellular signals, and it shuttles between the cytoplasm and the nucleus. This review focuses on c-Abl and its synaptic and neuronal functions. Here, we discuss the evidence showing that the activation of c-Abl can be detrimental to neurons, promoting the development of neurodegenerative diseases. Nevertheless, c-Abl activity seems to be in a pivotal balance between healthy synaptic plasticity, regulating dendritic spines remodeling and gene expression after cognitive training, and synaptic dysfunction and loss in neurodegenerative diseases. Thus, c-Abl genetic ablation not only improves learning and memory and modulates the brain genetic program of trained mice, but its absence provides dendritic spines resiliency against damage. Therefore, the present review has been designed to elucidate the common links between c-Abl regulation of structural changes that involve the actin cytoskeleton and organelles dynamics, and the transcriptional program activated during synaptic plasticity. By summarizing the recent discoveries on c-Abl functions, we aim to provide an overview of how its inhibition could be a potentially fruitful treatment to improve degenerative outcomes and delay memory loss.
Collapse
|
20
|
van Zundert B, Montecino M. Epigenetic Changes and Chromatin Reorganization in Brain Function: Lessons from Fear Memory Ensemble and Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms232012081. [PMID: 36292933 PMCID: PMC9602769 DOI: 10.3390/ijms232012081] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Healthy brain functioning in mammals requires a continuous fine-tuning of gene expression. Accumulating evidence over the last three decades demonstrates that epigenetic mechanisms and dynamic changes in chromatin organization are critical components during the control of gene transcription in neural cells. Recent genome-wide analyses show that the regulation of brain genes requires the contribution of both promoter and long-distance enhancer elements, which must functionally interact with upregulated gene expression in response to physiological cues. Hence, a deep comprehension of the mechanisms mediating these enhancer–promoter interactions (EPIs) is critical if we are to understand the processes associated with learning, memory and recall. Moreover, the onset and progression of several neurodegenerative diseases and neurological alterations are found to be strongly associated with changes in the components that support and/or modulate the dynamics of these EPIs. Here, we overview relevant discoveries in the field supporting the role of the chromatin organization and of specific epigenetic mechanisms during the control of gene transcription in neural cells from healthy mice subjected to the fear conditioning paradigm, a relevant model to study memory ensemble. Additionally, special consideration is dedicated to revising recent results generated by investigators working with animal models and human postmortem brain tissue to address how changes in the epigenome and chromatin architecture contribute to transcriptional dysregulation in Alzheimer’s disease, a widely studied neurodegenerative disease. We also discuss recent developments of potential new therapeutic strategies involving epigenetic editing and small chromatin-modifying molecules (or epidrugs).
Collapse
Affiliation(s)
- Brigitte van Zundert
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
- CARE Biomedical Research Center, Santiago 8330005, Chile
- Correspondence: (B.v.Z.); (M.M.)
| | - Martin Montecino
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
- Millennium Institute Center for Genome Regulation CRG, Santiago 8370186, Chile
- Correspondence: (B.v.Z.); (M.M.)
| |
Collapse
|
21
|
Arévalo NB, Lamaizon CM, Cavieres VA, Burgos PV, Álvarez AR, Yañez MJ, Zanlungo S. Neuronopathic Gaucher disease: Beyond lysosomal dysfunction. Front Mol Neurosci 2022; 15:934820. [PMID: 35992201 PMCID: PMC9381931 DOI: 10.3389/fnmol.2022.934820] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
Gaucher disease (GD) is an inherited disorder caused by recessive mutations in the GBA1 gene that encodes the lysosomal enzyme β-glucocerebrosidase (β-GC). β-GC hydrolyzes glucosylceramide (GluCer) into glucose and ceramide in the lysosome, and the loss of its activity leads to GluCer accumulation in different tissues. In severe cases, enzymatic deficiency triggers inflammation, organomegaly, bone disease, and neurodegeneration. Neuronopathic Gaucher disease (nGD) encompasses two different forms of the disease, characterized by chronic or acute damage to the central nervous system (CNS). The cellular and molecular studies that uncover the pathological mechanisms of nGD mainly focus on lysosomal dysfunction since the lysosome is the key organelle affected in GD. However, new studies show alterations in other organelles that contribute to nGD pathology. For instance, abnormal accumulation of GluCer in lysosomes due to the loss of β-GC activity leads to excessive calcium release from the endoplasmic reticulum (ER), activating the ER-associated degradation pathway and the unfolded protein response. Recent evidence indicates mitophagy is altered in nGD, resulting in the accumulation of dysfunctional mitochondria, a critical factor in disease progression. Additionally, nGD patients present alterations in mitochondrial morphology, membrane potential, ATP production, and increased reactive oxygen species (ROS) levels. Little is known about potential dysfunction in other organelles of the secretory pathway, such as the Golgi apparatus and exosomes. This review focuses on collecting evidence regarding organelle dysfunction beyond lysosomes in nGD. We briefly describe cellular and animal models and signaling pathways relevant to uncovering the pathological mechanisms and new therapeutic targets in GD.
Collapse
Affiliation(s)
- Nohela B. Arévalo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Cell and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica, Santiago, Chile
| | - Cristian M. Lamaizon
- Department of Cell and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica, Santiago, Chile
| | - Viviana A. Cavieres
- Facultad de Medicina y Ciencia, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago, Chile
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica, Santiago, Chile
| | - Patricia V. Burgos
- Facultad de Medicina y Ciencia, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago, Chile
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica, Santiago, Chile
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Alejandra R. Álvarez
- Department of Cell and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica, Santiago, Chile
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica, Santiago, Chile
| | - María J. Yañez
- Faculty of Medicine and Science, School of Medical Technology, Universidad San Sebastian, Concepción, Chile
- *Correspondence: María J. Yañez
| | - Silvana Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Silvana Zanlungo
| |
Collapse
|
22
|
Pascoal TA, Chamoun M, Lax E, Wey HY, Shin M, Ng KP, Kang MS, Mathotaarachchi S, Benedet AL, Therriault J, Lussier FZ, Schroeder FA, DuBois JM, Hightower BG, Gilbert TM, Zürcher NR, Wang C, Hopewell R, Chakravarty M, Savard M, Thomas E, Mohaddes S, Farzin S, Salaciak A, Tullo S, Cuello AC, Soucy JP, Massarweh G, Hwang H, Kobayashi E, Hyman BT, Dickerson BC, Guiot MC, Szyf M, Gauthier S, Hooker JM, Rosa-Neto P. [ 11C]Martinostat PET analysis reveals reduced HDAC I availability in Alzheimer's disease. Nat Commun 2022; 13:4171. [PMID: 35853847 PMCID: PMC9296476 DOI: 10.1038/s41467-022-30653-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 05/04/2022] [Indexed: 11/26/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by the brain accumulation of amyloid-β and tau proteins. A growing body of literature suggests that epigenetic dysregulations play a role in the interplay of hallmark proteinopathies with neurodegeneration and cognitive impairment. Here, we aim to characterize an epigenetic dysregulation associated with the brain deposition of amyloid-β and tau proteins. Using positron emission tomography (PET) tracers selective for amyloid-β, tau, and class I histone deacetylase (HDAC I isoforms 1–3), we find that HDAC I levels are reduced in patients with AD. HDAC I PET reduction is associated with elevated amyloid-β PET and tau PET concentrations. Notably, HDAC I reduction mediates the deleterious effects of amyloid-β and tau on brain atrophy and cognitive impairment. HDAC I PET reduction is associated with 2-year longitudinal neurodegeneration and cognitive decline. We also find HDAC I reduction in the postmortem brain tissue of patients with AD and in a transgenic rat model expressing human amyloid-β plus tau pathology in the same brain regions identified in vivo using PET. These observations highlight HDAC I reduction as an element associated with AD pathophysiology. The link between amyloid and tau proteins with Alzheimer’s disease progression remains unclear. Here, the authors propose HDACs I downregulation as an element linking the deleterious effects of brain proteinopathies with disease progression.
Collapse
Affiliation(s)
- Tharick A Pascoal
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada.,Departments of Psychiatry and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Departments of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Mira Chamoun
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Elad Lax
- Department of Molecular Biology, Ariel University, Ariel, Israel.,Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Hsiao-Ying Wey
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Monica Shin
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Kok Pin Ng
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Min Su Kang
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada.,Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Sulantha Mathotaarachchi
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Andrea L Benedet
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Firoza Z Lussier
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Frederick A Schroeder
- Neurology Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jonathan M DuBois
- Neurology Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Baileigh G Hightower
- Neurology Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Tonya M Gilbert
- Neurology Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Nicole R Zürcher
- Neurology Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Changning Wang
- Neurology Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Robert Hopewell
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Mallar Chakravarty
- Departments of Biological and Biomedical Engineering and Psychiatry, Douglas Mental Health University Institute, Brain Imaging Centre, Montreal, QC, Canada
| | - Melissa Savard
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Emilie Thomas
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Sara Mohaddes
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Sarah Farzin
- Departments of Biological and Biomedical Engineering and Psychiatry, Douglas Mental Health University Institute, Brain Imaging Centre, Montreal, QC, Canada
| | - Alyssa Salaciak
- Departments of Biological and Biomedical Engineering and Psychiatry, Douglas Mental Health University Institute, Brain Imaging Centre, Montreal, QC, Canada
| | - Stephanie Tullo
- Departments of Biological and Biomedical Engineering and Psychiatry, Douglas Mental Health University Institute, Brain Imaging Centre, Montreal, QC, Canada
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Jean-Paul Soucy
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Gassan Massarweh
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Heungsun Hwang
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Eliane Kobayashi
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bradford C Dickerson
- Neurology Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Department of Psychology, McGill University, Montreal, QC, Canada
| | | | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Jacob M Hooker
- Neurology Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada. .,Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
23
|
Abstract
Histone deacetylases (HDACs) have been implicated in learning and memory, and their dysregulation has been linked to cognitive impairment in brain aging and neurodegenerative diseases. In this review, we focus on HDAC1 and HDAC2, highlighting recent progress on their roles in regulating brain function through distinct mechanisms, including gene repression and DNA repair pathways. Moreover, we discuss evidence demonstrating how HDAC1 and HDAC2 could be modulated and their potential as targets to combat memory deficits.
Collapse
Affiliation(s)
- Ping-Chieh Pao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
24
|
Marín T, Dulcey AE, Campos F, de la Fuente C, Acuña M, Castro J, Pinto C, Yañez MJ, Cortez C, McGrath DW, Sáez PJ, Gorshkov K, Zheng W, Southall N, Carmo-Fonseca M, Marugán J, Alvarez AR, Zanlungo S. c-Abl Activation Linked to Autophagy-Lysosomal Dysfunction Contributes to Neurological Impairment in Niemann-Pick Type A Disease. Front Cell Dev Biol 2022; 10:844297. [PMID: 35399514 PMCID: PMC8985125 DOI: 10.3389/fcell.2022.844297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/25/2022] [Indexed: 12/05/2022] Open
Abstract
Niemann-Pick type A (NPA) disease is a fatal lysosomal neurodegenerative disorder caused by the deficiency in acid sphingomyelinase (ASM) activity. NPA patients present severe and progressive neurodegeneration starting at an early age. Currently, there is no effective treatment for this disease and NPA patients die between 2 and 3 years of age. NPA is characterized by an accumulation of sphingomyelin in lysosomes and dysfunction in the autophagy-lysosomal pathway. Recent studies show that c-Abl tyrosine kinase activity downregulates autophagy and the lysosomal pathway. Interestingly, this kinase is also activated in other lysosomal neurodegenerative disorders. Here, we describe that c-Abl activation contributes to the mechanisms of neuronal damage and death in NPA disease. Our data demonstrate that: 1) c-Abl is activated in-vitro as well as in-vivo NPA models; 2) imatinib, a clinical c-Abl inhibitor, reduces autophagy-lysosomal pathway alterations, restores autophagy flux, and lowers sphingomyelin accumulation in NPA patient fibroblasts and NPA neuronal models and 3) chronic treatment with nilotinib and neurotinib, two c-Abl inhibitors with differences in blood-brain barrier penetrance and target binding mode, show further benefits. While nilotinib treatment reduces neuronal death in the cerebellum and improves locomotor functions, neurotinib decreases glial activation, neuronal disorganization, and loss in hippocampus and cortex, as well as the cognitive decline of NPA mice. Our results support the participation of c-Abl signaling in NPA neurodegeneration and autophagy-lysosomal alterations, supporting the potential use of c-Abl inhibitors for the clinical treatment of NPA patients.
Collapse
Affiliation(s)
- Tamara Marín
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrés E. Dulcey
- Early Translation Branch, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD, United States
| | - Fabián Campos
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina de la Fuente
- Laboratory of Cell Signaling, Center for Aging and Regeneration (CARE), Millennium Institute on Immunology and Immunotherapy (IMII), Department of Cellular and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariana Acuña
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Juan Castro
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudio Pinto
- Laboratory of Cell Signaling, Center for Aging and Regeneration (CARE), Millennium Institute on Immunology and Immunotherapy (IMII), Department of Cellular and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María José Yañez
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastián, Santiago, Chile
| | - Cristian Cortez
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Santiago, Chile
| | - David W. McGrath
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pablo J. Sáez
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kirill Gorshkov
- Early Translation Branch, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD, United States
| | - Wei Zheng
- Early Translation Branch, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD, United States
| | - Noel Southall
- Early Translation Branch, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD, United States
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular Joȧo Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Juan Marugán
- Early Translation Branch, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD, United States
- *Correspondence: Juan Marugán, ; Alejandra R. Alvarez, ; Silvana Zanlungo,
| | - Alejandra R. Alvarez
- Laboratory of Cell Signaling, Center for Aging and Regeneration (CARE), Millennium Institute on Immunology and Immunotherapy (IMII), Department of Cellular and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Juan Marugán, ; Alejandra R. Alvarez, ; Silvana Zanlungo,
| | - Silvana Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Juan Marugán, ; Alejandra R. Alvarez, ; Silvana Zanlungo,
| |
Collapse
|
25
|
Wu Z, Wang J, Feng J, Ying L. MicroRNA-122-5p prevents proliferation and promotes apoptosis of hepatic stellate cells by suppressing the cellular-Abelsongene/histone deacetylases 2 pathway. Hum Exp Toxicol 2022; 41:9603271221084672. [PMID: 35303413 DOI: 10.1177/09603271221084672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Liver fibrosis is a wound-healing response and the activation of the hepatic stellate cell (HSC) is the core of hepatic fibrosis. MicroRNAs (miRNAs) participate in the development of fibrosis. It is reported that histone deacetylases (HDAC2) tyrosine phosphorylation by cellular-Abelsongene (c-Abl) induces malignant growth of cells. Here, we investigated the effect of miR-122-5p on the proliferation and apoptosis of HSCs. Normal human HSC line LX-2 and LX-2 cells stimulated by transforming growth factor (TGF)-β1 for 24 h were cultured and assigned into the blank group and the TGF-β1 group. The miR-122-5p inhibitor and its negative control were transfected into LX-2 cells and miR-122-5p mimic and its negative control were transfected into LX-2 cells stimulated by TGF-β1. The result showed that miR-122-5p expression was decreased in TGF-β1-stimulated LX-2 cells. miR-122-5p overexpression reduced the mRNA and protein levels of collagen I and α-smooth muscle actin, inhibited cell proliferation, and accelerated cell apoptosis. miR-122-5p targeted c-Abl. Meanwhile, miR-122-5p overexpression inhibited HSC activation by suppressing the c-Abl/HDAC2 pathway. In summary, miR-122-5p overexpression exerted anti-fibrosis effect and inhibited HSC activation by suppressing the c-Abl/HDAC2 pathway.
Collapse
Affiliation(s)
- ZongYang Wu
- Department of Hepatobiliary and Pancreatic Surgery, 11797The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - JinBo Wang
- Department of Hepatobiliary and Pancreatic Surgery, 11797The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - JiYe Feng
- Department of Hepatobiliary and Pancreatic Surgery, 11797The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - LiPing Ying
- Department of Hepatobiliary and Pancreatic Surgery, 11797The Affiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
26
|
Nakatsuka D, Izumi T, Tsukamoto T, Oyama M, Nishitomi K, Deguchi Y, Niidome K, Yamakawa H, Ito H, Ogawa K. Histone Deacetylase 2 Knockdown Ameliorates Morphological Abnormalities of Dendritic Branches and Spines to Improve Synaptic Plasticity in an APP/PS1 Transgenic Mouse Model. Front Mol Neurosci 2021; 14:782375. [PMID: 34899185 PMCID: PMC8652290 DOI: 10.3389/fnmol.2021.782375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022] Open
Abstract
Disease-modifying therapies, such as neuroprotective and neurorestorative interventions, are strongly desired for Alzheimer’s disease (AD) treatment. Several studies have suggested that histone deacetylase 2 (HDAC2) inhibition can exhibit disease-modifying effects in AD patients. However, whether HDAC2 inhibition shows neuroprotective and neurorestorative effects under neuropathic conditions, such as amyloid β (Aβ)-elevated states, remains poorly understood. Here, we performed HDAC2-specific knockdown in CA1 pyramidal cells and showed that HDAC2 knockdown increased the length of dendrites and the number of mushroom-like spines of CA1 basal dendrites in APP/PS1 transgenic mouse model. Furthermore, HDAC2 knockdown also ameliorated the deficits in hippocampal CA1 long-term potentiation and memory impairment in contextual fear conditioning tests. Taken together, our results support the notion that specific inhibition of HDAC2 has the potential to slow the disease progression of AD through ameliorating Aβ-induced neuronal impairments.
Collapse
|
27
|
Abstract
Neuroepigenetics, a new branch of epigenetics, plays an important role in the regulation of gene expression. Neuroepigenetics is associated with holistic neuronal function and helps in formation and maintenance of memory and learning processes. This includes neurodevelopment and neurodegenerative defects in which histone modification enzymes appear to play a crucial role. These modifications, carried out by acetyltransferases and deacetylases, regulate biologic and cellular processes such as apoptosis and autophagy, inflammatory response, mitochondrial dysfunction, cell-cycle progression and oxidative stress. Alterations in acetylation status of histone as well as non-histone substrates lead to transcriptional deregulation. Histone deacetylase decreases acetylation status and causes transcriptional repression of regulatory genes involved in neural plasticity, synaptogenesis, synaptic and neural plasticity, cognition and memory, and neural differentiation. Transcriptional deactivation in the brain results in development of neurodevelopmental and neurodegenerative disorders. Mounting evidence implicates histone deacetylase inhibitors as potential therapeutic targets to combat neurologic disorders. Recent studies have targeted naturally-occurring biomolecules and micro-RNAs to improve cognitive defects and memory. Multi-target drug ligands targeting HDAC have been developed and used in cell-culture and animal-models of neurologic disorders to ameliorate synaptic and cognitive dysfunction. Herein, we focus on the implications of histone deacetylase enzymes in neuropathology, their regulation of brain function and plausible involvement in the pathogenesis of neurologic defects.
Collapse
|
28
|
Logan RW, Ozburn AR, Arey RN, Ketchesin KD, Winquist A, Crain A, Tobe BTD, Becker-Krail D, Jarpe MB, Xue X, Zong W, Huo Z, Parekh PK, Zhu X, Fitzgerald E, Zhang H, Oliver-Smith J, DePoy LM, Hildebrand MA, Snyder EY, Tseng GC, McClung CA. Valproate reverses mania-like behaviors in mice via preferential targeting of HDAC2. Mol Psychiatry 2021; 26:4066-4084. [PMID: 33235333 PMCID: PMC8141541 DOI: 10.1038/s41380-020-00958-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/20/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022]
Abstract
Valproate (VPA) has been used in the treatment of bipolar disorder since the 1990s. However, the therapeutic targets of VPA have remained elusive. Here we employ a preclinical model to identify the therapeutic targets of VPA. We find compounds that inhibit histone deacetylase proteins (HDACs) are effective in normalizing manic-like behavior, and that class I HDACs (e.g., HDAC1 and HDAC2) are most important in this response. Using an RNAi approach, we find that HDAC2, but not HDAC1, inhibition in the ventral tegmental area (VTA) is sufficient to normalize behavior. Furthermore, HDAC2 overexpression in the VTA prevents the actions of VPA. We used RNA sequencing in both mice and human induced pluripotent stem cells (iPSCs) derived from bipolar patients to further identify important molecular targets. Together, these studies identify HDAC2 and downstream targets for the development of novel therapeutics for bipolar mania.
Collapse
Affiliation(s)
- Ryan W. Logan
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Angela R. Ozburn
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR 97239, USA.,VA Portland Health Care System, Portland, OR 97239, USA
| | - Rachel N. Arey
- Department of Molecular and Cellular Biology and Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kyle D. Ketchesin
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Alicia Winquist
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Andrew Crain
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Brian T. D. Tobe
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA.,Department of Psychiatry, Veterans Administration Medical Center, La Jolla, CA 92037, USA
| | - Darius Becker-Krail
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Matthew B. Jarpe
- Regenacy Pharmaceuticals, 303 Wyman St, Suite 300, Waltham, MA, 02451, USA
| | - Xiangning Xue
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Wei Zong
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Zhiguang Huo
- Department of Biostatistics, University of Florida, Gainesville, FL, 32611, USA
| | - Puja K. Parekh
- Brain and Mind Research Institute, Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Xiyu Zhu
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.,Department of Neuroscience, University of Pittsburgh, PA, 15260, USA
| | - Ethan Fitzgerald
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Hui Zhang
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.,Peking Union Medical College Hospital, Beijing, China 100730
| | - Jeffrey Oliver-Smith
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Lauren M. DePoy
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Mariah A. Hildebrand
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Evan Y. Snyder
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA.,Department of Pediatrics, University of California San Diego, La Jolla, CA, 92037, USA
| | - George C. Tseng
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA.,Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Colleen A. McClung
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.,Corresponding Author: Colleen A. McClung, Ph.D., Department of Psychiatry, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, , 412-624-5547
| |
Collapse
|
29
|
González-Martín A, Moyano T, Gutiérrez DA, Carvajal FJ, Cerpa W, Hanley JG, Gutiérrez RA, Álvarez AR. c-Abl regulates a synaptic plasticity-related transcriptional program involved in memory and learning. Prog Neurobiol 2021; 205:102122. [PMID: 34284000 DOI: 10.1016/j.pneurobio.2021.102122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 11/20/2022]
Abstract
Memory consolidation requires activation of a gene expression program that allows de novo protein synthesis. But the molecular mechanisms that favour or restrict that program are poorly understood. The kinase c-Abl can modulate gene expression through transcription factors and chromatin modifiers. Here, we show that c-Abl ablation in the brain improves learning acquisition and memory consolidation in mice. Its absence also affects gene expression profiles in the mouse hippocampus. We found that genes involved in synaptic plasticity and actin cytoskeleton dynamics, such as Arp2 and Thorase, are up-regulated at the mRNA and protein levels in trained c-Abl KO mice and by a chemical-LTP stimulus. Trained c-Abl KO mice also show that dendritic spines are larger than in wild-type mice and present at a higher density. These results indicate that c-Abl kinase is an important part of the mechanism that limits or restricts signalling of relevant gene programs involved in morphological and functional spine changes upon neuronal stimulation.
Collapse
Affiliation(s)
- Adrián González-Martín
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile; Centre for Aging and Regeneration (CARE-UC), Chile
| | - Tomás Moyano
- FONDAP Center for Genome Regulation, Millennium Institute for Integrative Biology (iBio), Department of Molecular Genetics and Microbiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile
| | - Daniela A Gutiérrez
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile; Centre for Aging and Regeneration (CARE-UC), Chile
| | - Franciso J Carvajal
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile; Center of Excellence in Biomedicine of Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Waldo Cerpa
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile; Centre for Aging and Regeneration (CARE-UC), Chile; Center of Excellence in Biomedicine of Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Jonathan G Hanley
- Centre for Synaptic Plasticity and School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Rodrigo A Gutiérrez
- FONDAP Center for Genome Regulation, Millennium Institute for Integrative Biology (iBio), Department of Molecular Genetics and Microbiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile
| | - Alejandra R Álvarez
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile; Centre for Aging and Regeneration (CARE-UC), Chile.
| |
Collapse
|
30
|
Gediya P, Parikh PK, Vyas VK, Ghate MD. Histone deacetylase 2: A potential therapeutic target for cancer and neurodegenerative disorders. Eur J Med Chem 2021; 216:113332. [PMID: 33714914 DOI: 10.1016/j.ejmech.2021.113332] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 10/22/2022]
Abstract
Histone deacetylases (HDACs) have been implicated in a number of diseases including cancer, cardiovascular disorders, diabetes mellitus, neurodegenerative disorders and inflammation. For the treatment of epigenetically altered diseases such as cancer, HDAC inhibitors have made a significant progress in terms of development of isoform selective inhibitiors. Isoform specific HDAC inhibitors have less adverse events and better safety profile. A HDAC isoform i.e., HDAC2 demonstrated significant role in the development of variety of diseases, mainly involved in the cancer and neurodegenerative disorders. Discovery and development of selective HDAC2 inhibitors have a great potential for the treatment of target diseases. In the present compilation, we have reviewed the role of HDAC2 in progression of cancer and neurodegenerative disorders, and information on the drug development opportunities for selective HDAC2 inhibition.
Collapse
Affiliation(s)
- Piyush Gediya
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Palak K Parikh
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India; Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Manjunath D Ghate
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India.
| |
Collapse
|
31
|
c-Abl activates RIPK3 signaling in Gaucher disease. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166089. [PMID: 33549745 DOI: 10.1016/j.bbadis.2021.166089] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 01/11/2023]
Abstract
Gaucher disease (GD) is caused by homozygous mutations in the GBA1 gene, which encodes the lysosomal β-glucosidase (GBA) enzyme. GD affects several organs and tissues, including the brain in certain variants of the disease. Heterozygous GBA1 variants are a major genetic risk factor for developing Parkinson's disease. The RIPK3 kinase is relevant in GD and its deficiency improves the neurological and visceral symptoms in a murine GD model. RIPK3 mediates necroptotic-like cell death: it is unknown whether the role of RIPK3 in GD is the direct induction of necroptosis or if it has a more indirect function by mediating necrosis-independent. Also, the mechanisms that activate RIPK3 in GD are currently unknown. In this study, we show that c-Abl tyrosine kinase participates upstream of RIPK3 in GD. We found that the active, phosphorylated form of c-Abl is increased in several GD models, including patient's fibroblasts and GBA null mice. Furthermore, its pharmacological inhibition with the FDA-approved drug Imatinib decreased RIPK3 signaling. We found that c-Abl interacts with RIPK3, that RIPK3 is phosphorylated at a tyrosine site, and that this phosphorylation is reduced when c-Abl is inhibited. Genetic ablation of c-Abl in neuronal GD and GD mice models significantly reduced RIPK3 activation and MLKL downstream signaling. These results showed that c-Abl signaling is a new upstream pathway that activates RIPK3 and that its inhibition is an attractive therapeutic approach for the treatment of GD.
Collapse
|
32
|
Timely Inhibitory Circuit Formation Controlled by Abl1 Regulates Innate Olfactory Behaviors in Mouse. Cell Rep 2021; 30:187-201.e4. [PMID: 31914386 DOI: 10.1016/j.celrep.2019.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 10/16/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022] Open
Abstract
More than one-half of the interneurons in a mouse olfactory bulb (OB) develop during the first week after birth and predominantly connect to excitatory tufted cells near the superficial granule cell layer (sGCL), unlike late-born interneurons. However, the molecular mechanisms underlying the temporal specification are yet to be identified. In this study, we determined the role of Abelson tyrosine-protein kinase 1 (Abl1) in the temporal development of early-born OB interneurons. Lentiviral knockdown of Abl1 disrupts the sGCL circuit of early-born interneurons through defects in function and circuit integration, resulting in olfactory hyper-sensitivity. We show that doublecortin (Dcx) is phosphorylated by Abl1, which contributes to the stabilization of Dcx, thereby regulating microtubule dynamics. Finally, Dcx overexpression rescues Abl1 knockdown-induced anatomic or functional defects. In summary, specific signaling by Abl1-Dcx in early-born interneurons facilitates the temporal development of the sGCL circuit to regulate innate olfactory functions, such as detection and sensitivity.
Collapse
|
33
|
Elsner VR, Trevizol L, de Leon I, da Silva M, Weiss T, Braga M, Pochmann D, Blembeel AS, Dani C, Boggio E. Therapeutic effectiveness of a single exercise session combined with WalkAide functional electrical stimulation in post-stroke patients: a crossover design study. Neural Regen Res 2021; 16:805-812. [PMID: 33229713 PMCID: PMC8178791 DOI: 10.4103/1673-5374.297078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A growing body of evidence has suggested that the imbalance of epigenetic markers and oxidative stress appears to be involved in the pathophysiology and progression of stroke. Thus, strategies that modulate these biomarkers might be considered targets for neuroprotection and novel therapeutic opportunities for these patients. Physical exercise has been reported to induce changes in these epigenetic markers and improve clinical outcomes in different populations. However, little is reported on this in post-stroke patients. The purpose of this study was to investigate the effect of a single exercise session with WalkAide functional electrical stimulation (FES) on cognitive performance, clinical functional parameters, oxidative stress and epigenetic modulation in post-stroke individuals. In this crossover design study, 12 post-stroke individuals aged 54–72 years of either sexes were included and subjected to a single session of exercise (45 minutes) without WalkAide functional electrical stimulation (EXE alone group), followed by another single session of exercise (45 minutes) with WalkAide functional electrical stimulation (EXE + FES group). The clinical functional outcome measures, cognitive performance and blood collections for biomarker measurements were assessed pre- and post-intervention. After intervention, higher Berg Balance Scale scores were obtained in the EXE + FES group than in the EXE alone group. There was no significant difference in the Timed Up and Go test results post-intervention between EXE alone and EXE + FES groups. After intervention, a better cognitive performance was found in both groups compared with before the intervention. After intervention, the Timed Up and Go test scores were higher in the EXE + FES group than in the EXE alone group. In addition, the intervention induced lower levels of lipid peroxidation. After intervention, carbonyl level was lower, superoxide dismutase activity and superoxide dismutase/catalase activity ratio were higher in the EXE + FES group, compared with the EXE group alone. In each group, both histone deacetylase (HDAC2) and histone acetyltransferase activities were increased after intervention compared with before the intervention. These findings suggest that a single exercise session with WalkAide FES is more effective on balance ability and cognitive performance compared with conventional exercise alone in post-stroke patients. This is likely to be related to the regulation of oxidative stress markers. The present study was approved by the Research Ethics Committee of the Methodist University Center-IPA (approval No. 2.423.376) on December 7, 2017 and registered in the Brazilian Registry of Clinical Trials—ReBEC (RBR-9phj2q) on February 11, 2019.
Collapse
Affiliation(s)
- Viviane Rostirola Elsner
- Curso de Fisioterapia do Centro Universitário Metodista-IPA; Programa de Pós-Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Lucieli Trevizol
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Isadora de Leon
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Marcos da Silva
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Thayná Weiss
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Milena Braga
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Daniela Pochmann
- Programa de Pós-Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Amanda Stolzenberg Blembeel
- Programa de Pós-Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Caroline Dani
- Programa de Pós-Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Elenice Boggio
- Programa de Pós-Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| |
Collapse
|
34
|
Ijomone OM, Ijomone OK, Iroegbu JD, Ifenatuoha CW, Olung NF, Aschner M. Epigenetic influence of environmentally neurotoxic metals. Neurotoxicology 2020; 81:51-65. [PMID: 32882300 PMCID: PMC7708394 DOI: 10.1016/j.neuro.2020.08.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
Continuous globalization and industrialization have ensured metals are an increasing aspect of daily life. Their usefulness in manufacturing has made them vital to national commerce, security and global economy. However, excess exposure to metals, particularly as a result of environmental contamination or occupational exposures, has been detrimental to overall health. Excess exposure to several metals is considered environmental risk in the aetiology of several neurological and neurodegenerative diseases. Metal-induced neurotoxicity has been a major health concern globally with intensive research to unravel the mechanisms associated with it. Recently, greater focus has been directed at epigenetics to better characterize the underlying mechanisms of metal-induced neurotoxicity. Epigenetic changes are those modifications on the DNA that can turn genes on or off without altering the DNA sequence. This review discusses how epigenetic changes such as DNA methylation, post translational histone modification and noncoding RNA-mediated gene silencing mediate the neurotoxic effects of several metals, focusing on manganese, arsenic, nickel, cadmium, lead, and mercury.
Collapse
Affiliation(s)
- Omamuyovwi M Ijomone
- The Neuro- Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.
| | - Olayemi K Ijomone
- The Neuro- Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria; Department of Anatomy, University of Medical Sciences, Ondo, Nigeria
| | - Joy D Iroegbu
- The Neuro- Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Chibuzor W Ifenatuoha
- The Neuro- Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Nzube F Olung
- The Neuro- Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Michael Aschner
- Departments of Molecular Pharmacology and Neurosciences, Albert Einstein College of Medicine, NY, USA.
| |
Collapse
|
35
|
Atlante A, Amadoro G, Bobba A, Latina V. Functional Foods: An Approach to Modulate Molecular Mechanisms of Alzheimer's Disease. Cells 2020; 9:E2347. [PMID: 33114170 PMCID: PMC7690784 DOI: 10.3390/cells9112347] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
A new epoch is emerging with intense research on nutraceuticals, i.e., "food or food product that provides medical or health benefits including the prevention and treatment of diseases", such as Alzheimer's disease. Nutraceuticals act at different biochemical and metabolic levels and much evidence shows their neuroprotective effects; in particular, they are able to provide protection against mitochondrial damage, oxidative stress, toxicity of β-amyloid and Tau and cell death. They have been shown to influence the composition of the intestinal microbiota significantly contributing to the discovery that differential microorganisms composition is associated with the formation and aggregation of cerebral toxic proteins. Further, the routes of interaction between epigenetic mechanisms and the microbiota-gut-brain axis have been elucidated, thus establishing a modulatory role of diet-induced epigenetic changes of gut microbiota in shaping the brain. This review examines recent scientific literature addressing the beneficial effects of some natural products for which mechanistic evidence to prevent or slowdown AD are available. Even if the road is still long, the results are already exceptional.
Collapse
Affiliation(s)
- Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via G. Amendola 122/O, 70126 Bari, Italy;
| | - Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT)-CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy;
| | - Antonella Bobba
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via G. Amendola 122/O, 70126 Bari, Italy;
| | - Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy;
| |
Collapse
|
36
|
Contreras PS, Tapia PJ, González-Hódar L, Peluso I, Soldati C, Napolitano G, Matarese M, Heras ML, Valls C, Martinez A, Balboa E, Castro J, Leal N, Platt FM, Sobota A, Winter D, Klein AD, Medina DL, Ballabio A, Alvarez AR, Zanlungo S. c-Abl Inhibition Activates TFEB and Promotes Cellular Clearance in a Lysosomal Disorder. iScience 2020; 23:101691. [PMID: 33163944 PMCID: PMC7607485 DOI: 10.1016/j.isci.2020.101691] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/11/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
The transcription factor EB (TFEB) has emerged as a master regulator of lysosomal biogenesis, exocytosis, and autophagy, promoting the clearance of substrates stored in cells. c-Abl is a tyrosine kinase that participates in cellular signaling in physiological and pathophysiological conditions. In this study, we explored the connection between c-Abl and TFEB. Here, we show that under pharmacological and genetic c-Abl inhibition, TFEB translocates into the nucleus promoting the expression of its target genes independently of its well-known regulator, mammalian target of rapamycin complex 1. Active c-Abl induces TFEB phosphorylation on tyrosine and the inhibition of this kinase promotes lysosomal biogenesis, autophagy, and exocytosis. c-Abl inhibition in Niemann-Pick type C (NPC) models, a neurodegenerative disease characterized by cholesterol accumulation in lysosomes, promotes a cholesterol-lowering effect in a TFEB-dependent manner. Thus, c-Abl is a TFEB regulator that mediates its tyrosine phosphorylation, and the inhibition of c-Abl activates TFEB promoting cholesterol clearance in NPC models. c-Abl is a TFEB regulator that mediates its tyr phosphorylation c-Abl inhibition promotes TFEB activity independently of mTORC1 c-Abl inhibition reduces cholesterol accumulation in NPC1 models
Collapse
Affiliation(s)
- Pablo S Contreras
- Department of Cell & Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331010, Chile.,CARE UC Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331010, Chile
| | - Pablo J Tapia
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331010, Chile
| | - Lila González-Hódar
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331010, Chile
| | - Ivana Peluso
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Chiara Soldati
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Gennaro Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Maria Matarese
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Macarena Las Heras
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331010, Chile
| | - Cristian Valls
- Department of Cell & Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331010, Chile.,CARE UC Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis Martinez
- Department of Cell & Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331010, Chile.,CARE UC Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Elisa Balboa
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331010, Chile
| | - Juan Castro
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331010, Chile
| | - Nancy Leal
- Department of Cell & Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331010, Chile.,CARE UC Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Andrzej Sobota
- Department of Cell Biology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Rheinische-Friedrich-Wilhelms-University, Bonn, Germany
| | - Andrés D Klein
- Centro de Genética y Genómica, Universidad Del Desarrollo Clínica Alemana de Santiago, Chile
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy.,Medical Genetics, Department of Pediatrics, Federico II University, Via Pansini 5, 80131 Naples, Italy.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Alejandra R Alvarez
- Department of Cell & Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331010, Chile.,CARE UC Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Silvana Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331010, Chile
| |
Collapse
|
37
|
Zhou R, Zhao J, Li D, Chen Y, Xiao Y, Fan A, Chen XT, Wang HL. Combined exposure of lead and cadmium leads to the aggravated neurotoxicity through regulating the expression of histone deacetylase 2. CHEMOSPHERE 2020; 252:126589. [PMID: 32234630 DOI: 10.1016/j.chemosphere.2020.126589] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/10/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
Lead (Pb) and cadmium (Cd) are common heavy metals in the environment, exerting detrimental effects on central nervous system. Although increasing evidence demonstrated the Pb and Cd-induced neurotoxicity, the exact epigenetic mechanisms induced by combined exposure (co-exposure) of Pb and Cd are still unclear. In this study, the neurotoxicity of individual exposure and co-exposure to Pb and Cd in vivo (150 ppm and 5 ppm respectively) and in vitro (10 μM and 0.1 μM respectively) was investigated. The results showed that neurite outgrowth was inhibited by either individual or combined exposure to Pb/Cd, whereas the co-exposure aggravated the inhibitory effect in PC12 cells. The results of Morris Water Maze (MWM), Y maze and Golgi-Cox staining showed that either Pb or Cd alone exposure damaged the ability of learning and memory and decreased the dendritic spine density in both the hippocampal CA1 and DG area of Sprague---Dawley (SD) rats, and that the co-exposure aggravated the damages. Subsequently, histone deacetylase (HDAC) 2 was significantly increased in both hippocampal tissues and PC12 cells co-exposed to Pb and Cd, and the treatment of trichostatin A (TSA) and HDAC2-knocking down construct (shHDAC2) could markedly prevent neurite outgrowth impairment in PC12 cells. In summary, HDAC2 plays essential regulatory roles in neurotoxicity induced by the co-exposure to Pb and Cd, providing a potential molecular target for neurological intervention.
Collapse
Affiliation(s)
- Ruiqing Zhou
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China
| | - Jing Zhao
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China
| | - Danyang Li
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China
| | - Yao Chen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230031, PR China
| | - Yanyan Xiao
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230031, PR China
| | - Anni Fan
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China
| | - Xiang-Tao Chen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230031, PR China.
| | - Hui-Li Wang
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China.
| |
Collapse
|
38
|
Regulation of histone deacetylase activities and functions by phosphorylation and its physiological relevance. Cell Mol Life Sci 2020; 78:427-445. [PMID: 32683534 DOI: 10.1007/s00018-020-03599-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 12/31/2022]
Abstract
Histone deacetylases (HDACs) are conserved enzymes that regulate many cellular processes by catalyzing the removal of acetyl groups from lysine residues on histones and non-histone proteins. As appropriate for proteins that occupy such an essential biological role, HDAC activities and functions are in turn highly regulated. Overwhelming evidence suggests that the dysregulation of HDACs plays a major role in many human diseases. The regulation of HDACs is achieved by multiple different mechanisms, including posttranslational modifications. One of the most common posttranslational modifications on HDACs is reversible phosphorylation. Many HDAC phosphorylations are context-dependent, occurring in specific tissues or as a consequence of certain stimuli. Additionally, whereas phosphorylation can regulate some HDACs in a non-specific manner, many HDAC phosphorylations result in specific consequences. Although some of these modifications support normal HDAC function, aberrations can contribute to disease development. Here we review and critically evaluate how reversible phosphorylation activates or deactivates HDACs and, thereby, regulates their many functions under various cellular and physiological contexts.
Collapse
|
39
|
Yañez MJ, Marín T, Balboa E, Klein AD, Alvarez AR, Zanlungo S. Finding pathogenic commonalities between Niemann-Pick type C and other lysosomal storage disorders: Opportunities for shared therapeutic interventions. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165875. [PMID: 32522631 DOI: 10.1016/j.bbadis.2020.165875] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/06/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Lysosomal storage disorders (LSDs) are diseases characterized by the accumulation of macromolecules in the late endocytic system and are caused by inherited defects in genes that encode mainly lysosomal enzymes or transmembrane lysosomal proteins. Niemann-Pick type C disease (NPCD), a LSD characterized by liver damage and progressive neurodegeneration that leads to early death, is caused by mutations in the genes encoding the NPC1 or NPC2 proteins. Both proteins are involved in the transport of cholesterol from the late endosomal compartment to the rest of the cell. Loss of function of these proteins causes primary cholesterol accumulation, and secondary accumulation of other lipids, such as sphingolipids, in lysosomes. Despite years of studying the genetic and molecular bases of NPCD and related-lysosomal disorders, the pathogenic mechanisms involved in these diseases are not fully understood. In this review we will summarize the pathogenic mechanisms described for NPCD and we will discuss their relevance for other LSDs with neurological components such as Niemann- Pick type A and Gaucher diseases. We will particularly focus on the activation of signaling pathways that may be common to these three pathologies with emphasis on how the intra-lysosomal accumulation of lipids leads to pathology, specifically to neurological impairments. We will show that although the primary lipid storage defect is different in these three LSDs, there is a similar secondary accumulation of metabolites and activation of signaling pathways that can lead to common pathogenic mechanisms. This analysis might help to delineate common pathological mechanisms and therapeutic targets for lysosomal storage diseases.
Collapse
Affiliation(s)
- M J Yañez
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - T Marín
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - E Balboa
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A D Klein
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - A R Alvarez
- Laboratory of Cell Signaling, Department of Cellular and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago, Chile; CARE UC, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - S Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
40
|
Schueller E, Paiva I, Blanc F, Wang XL, Cassel JC, Boutillier AL, Bousiges O. Dysregulation of histone acetylation pathways in hippocampus and frontal cortex of Alzheimer's disease patients. Eur Neuropsychopharmacol 2020; 33:101-116. [PMID: 32057591 DOI: 10.1016/j.euroneuro.2020.01.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/18/2019] [Accepted: 01/26/2020] [Indexed: 12/29/2022]
Abstract
Memory impairment is the main feature of Alzheimer's disease (AD). Initial impairments originate in the temporal lobe area and propagate throughout the brain in a sequential manner. Epigenetic mechanisms, especially histone acetylation, regulate plasticity and memory processes. These may be dismantled during the disease. The aim of this work was to establish changes in the acetylation-associated pathway in two key brain regions affected in AD: the hippocampus and the F2 area of frontal cortex in end-stage AD patients and age-matched controls. We found that the F2 area was more affected than the hippocampus. Indeed, CREB-Binding Protein (CBP), P300/CBP-associated protein (PCAF), Histone Deacetylase 1 (HDAC1) and HDAC2 (but not HDAC3) levels were strongly decreased in F2 area of AD compared to controls patients, whereas only HDAC1 was decreased and CBP showed a downward trend in the hippocampus. At the histone level, we detected a substantial increase in total (H3 and H2B) histone levels in the frontal cortex, but these were decreased in nuclear extracts, pointing to a dysregulation in histone trafficking/catabolism in this brain region. Histone H3 acetylation levels were increased in cell nuclei mainly in the frontal cortex. These findings provide evidence for acetylation dysfunctions at the level of associated enzymes and of histones in AD brains, which may underlie transcriptional dysregulations and AD-related cognitive impairments. They further point to stronger dysregulations in the F2 area of the frontal cortex than in the hippocampus at an end-stage of the disease, suggesting a differential vulnerability and/or compensatory mechanisms efficiency towards epigenetic alterations.
Collapse
Affiliation(s)
- Estelle Schueller
- Université de Strasbourg, UMR 7364 CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 Rue Goethe, Strasbourg 67000, France
| | - Isabel Paiva
- Université de Strasbourg, UMR 7364 CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 Rue Goethe, Strasbourg 67000, France
| | - Frédéric Blanc
- Neuropsychology Unit, Neurology Service, and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS/Neurocrypto, and CMRR (Memory Resources and Research Centre), and Geriatrics Day Hospital, Geriatrics Service, University Hospital of Strasbourg, Strasbourg, France
| | - Xiao-Lan Wang
- Université de Strasbourg, UMR 7364 CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 Rue Goethe, Strasbourg 67000, France; Department of Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Jean-Christophe Cassel
- Université de Strasbourg, UMR 7364 CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 Rue Goethe, Strasbourg 67000, France
| | - Anne-Laurence Boutillier
- Université de Strasbourg, UMR 7364 CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 Rue Goethe, Strasbourg 67000, France.
| | - Olivier Bousiges
- Université de Strasbourg, UMR 7364 CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 Rue Goethe, Strasbourg 67000, France; Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, Hôpital de Hautepierre, Avenue Molière, Strasbourg, France.
| |
Collapse
|
41
|
Selected microRNAs Increase Synaptic Resilience to the Damaging Binding of the Alzheimer's Disease Amyloid Beta Oligomers. Mol Neurobiol 2020; 57:2232-2243. [PMID: 31997075 PMCID: PMC7170988 DOI: 10.1007/s12035-020-01868-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/06/2020] [Indexed: 01/30/2023]
Abstract
Alzheimer’s disease (AD) is marked by synaptic loss (at early stages) and neuronal death (at late stages). Amyloid beta (Aβ) and tau oligomers can target and disrupt synapses thus driving cognitive decay. Non-demented individuals with Alzheimer’s neuropathology (NDAN) are capable of withstanding Aβ and tau toxicity, thus remaining cognitively intact despite presence of AD neuropathology. Understanding the involved mechanism(s) would lead to development of novel effective therapeutic strategies aimed at promoting synaptic resilience to amyloid toxicity. NDAN have a unique hippocampal post-synaptic proteome when compared with AD and control individuals. Potential upstream modulators of such unique proteomic profile are miRNA-485, miRNA-4723 and miRNA-149, which we found differentially expressed in AD and NDAN vs. control. We thus hypothesized that these miRNAs play an important role in promoting either synaptic resistance or sensitization to Aβ oligomer binding. Using an in vivo mouse model, we found that administration of these miRNAs affected key synaptic genes and significantly decreased Aβ binding to the synapses. Our findings suggest that miRNA regulation and homeostasis are crucial for Aβ interaction with synaptic terminals and support that a unique miRNA regulation could be driving synaptic resistance to Aβ toxicity in NDAN, thus contributing to their preserved cognitive abilities.
Collapse
|
42
|
D'Mello SR. Regulation of Central Nervous System Development by Class I Histone Deacetylases. Dev Neurosci 2020; 41:149-165. [PMID: 31982872 PMCID: PMC7263453 DOI: 10.1159/000505535] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
Neurodevelopment is a highly complex process composed of several carefully regulated events starting from the proliferation of neuroepithelial cells and culminating with and refining of neural networks and synaptic transmission. Improper regulation of any of these neurodevelopmental events often results in severe brain dysfunction. Accumulating evidence indicates that epigenetic modifications of chromatin play a key role in neurodevelopmental regulation. Among these modifications are histone acetylation and deacetylation, which control access of transcription factors to DNA, thereby regulating gene transcription. Histone deacetylation, which restricts access of transcription factor repressing gene transcription, involves the action of members of a family of 18 enzymes, the histone deacetylases (HDAC), which are subdivided in 4 subgroups. This review focuses on the Group 1 HDACs - HDAC 1, 2, 3, and 8. Although much of the evidence for HDAC involvement in neurodevelopment has come from the use of pharmacological inhibitors, because these agents are generally nonselective with regard to their effects on individual members of the HDAC family, this review is limited to evidence garnered from the use of molecular genetic approaches. Our review describes that Class I HDACs play essential roles in all phases of neurodevelopment. Modulation of the activity of individual HDACs could be an important therapeutic approach for neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Santosh R D'Mello
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas, USA,
| |
Collapse
|
43
|
Atluri VSR, Tiwari S, Rodriguez M, Kaushik A, Yndart A, Kolishetti N, Yatham M, Nair M. Inhibition of Amyloid-Beta Production, Associated Neuroinflammation, and Histone Deacetylase 2-Mediated Epigenetic Modifications Prevent Neuropathology in Alzheimer's Disease in vitro Model. Front Aging Neurosci 2020; 11:342. [PMID: 32009938 PMCID: PMC6974446 DOI: 10.3389/fnagi.2019.00342] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022] Open
Abstract
Alzheimer’s disease (AD) is a growing global threat to healthcare in the aging population. In the USA alone, it is estimated that one in nine persons over the age of 65 years is living with AD. The pathology is marked by the accumulation of amyloid-beta (Aβ) deposition in the brain, which is further enhanced by the neuroinflammatory process. Nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing 3 (NLRP3) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) are the major neuroinflammatory pathways that intensify AD pathogenesis. Histone deacetylase 2 (HDAC2)-mediated epigenetic mechanisms play a major role in the genesis and neuropathology of AD. Therefore, therapeutic drugs, which can target Aβ production, NLRP3 activation, and HDAC2 levels, may play a major role in reducing Aβ levels and the prevention of associated neuropathology of AD. In this study, we demonstrate that withaferin A (WA), an extract from Withania somnifera plant, significantly inhibits the Aβ production and NF-κB associated neuroinflammatory molecules’ gene expression. Furthermore, we demonstrate that cytokine release inhibitory drug 3 (CRID3), an inhibitor of NLRP3, significantly prevents inflammasome-mediated gene expression in our in vitro AD model system. We have also observed that mithramycin A (MTM), an HDAC2 inhibitor, significantly upregulated the synaptic plasticity gene expression and downregulated HDAC2 in SH-SY5Y cells overexpressing amyloid precursor protein (SH-APP cells). Therefore, the introduction of these agents targeting Aβ production, NLRP3-mediated neuroinflammation, and HDAC2 levels will have a translational significance in the prevention of neuroinflammation and associated neurodegeneration in AD patients.
Collapse
Affiliation(s)
- Venkata Subba Rao Atluri
- Department of Immunology and Nano-Medicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Sneham Tiwari
- Department of Immunology and Nano-Medicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Melisa Rodriguez
- Department of Immunology and Nano-Medicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Ajeet Kaushik
- Division of Sciences, Art, & Mathematics, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL, United States
| | - Adriana Yndart
- Department of Immunology and Nano-Medicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Nagesh Kolishetti
- Department of Immunology and Nano-Medicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Mohan Yatham
- Department of Immunology and Nano-Medicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Madhavan Nair
- Department of Immunology and Nano-Medicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
44
|
Zhao H, Li G, Wang R, Tao Z, Ma Q, Zhang S, Han Z, Yan F, Li F, Liu P, Ma S, Ji X, Luo Y. Silencing of microRNA-494 inhibits the neurotoxic Th1 shift via regulating HDAC2-STAT4 cascade in ischaemic stroke. Br J Pharmacol 2020; 177:128-144. [PMID: 31465536 PMCID: PMC6976789 DOI: 10.1111/bph.14852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE T helper cell 1 (Th1)-skewed neurotoxicity contributes to the poor outcome of stroke in rodents. Here, we have elucidated the mechanism of the Th1/Th2 shift in acute ischaemic stroke (AIS) patients at hyperacute phase and have looked for a miRNA-based therapeutic target. EXPERIMENTAL APPROACH MiR-494 levels in blood from AIS patients and controls were measured by real-time PCR. C57BL/6J mice were subjected to transient middle cerebral artery occlusion, and cortical neurons were subjected to oxygen-glucose deprivation. Luciferase reporter system, chromatin immunoprecipitation sequencing (ChIP-Seq), and ChIP-PCR were used to uncover possible mechanisms. KEY RESULTS In lymphocytes from AIS patients, there was a Th1/Th2 shift and histone deacetylase 2 (HDAC2) was markedly down-regulated. ChIP-seq showed that HDAC2 binding sites were enriched in regulation of Th1 cytokine production, and ChIP-PCR confirmed that HDAC2 binding was changed at the intron of STAT4 and the promoter of T-box transcription factor 21 (T-bet) in lymphocytes from AIS patients. MiR-494 was the most significantly increased miRNA in lymphocytes from AIS patients, and miR-494-3p directly targeted HDAC2. A strong association existed between miR-494 and Th1 cytokines, and neurological deficit as measured by the National Institute of Health Stroke Scale (NIHSS) in AIS patients. In vitro and in vivo experiments showed that antagomir-494 reduced Th1 shift-mediated neuronal and sensorimotor functional damage in the mouse model of ischaemic stroke, via the HDAC2-STAT4 pathway. CONCLUSION AND IMPLICATIONS We demonstrated that miR-494 inhibition prevented Th1-skewed neurotoxicity through regulation of the HDAC2-STAT4 cascade.
Collapse
Affiliation(s)
- Haiping Zhao
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Guangwen Li
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Rongliang Wang
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Zhen Tao
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Qingfeng Ma
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Sijia Zhang
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Ziping Han
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Feng Yan
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Fangfang Li
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Ping Liu
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Shubei Ma
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Xunming Ji
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
- Beijing Institute for Brain DisordersCapital Medical UniversityBeijingChina
| |
Collapse
|
45
|
Gutierrez DA, Vargas LM, Chandia-Cristi A, de la Fuente C, Leal N, Alvarez AR. c-Abl Deficiency Provides Synaptic Resiliency Against Aβ-Oligomers. Front Cell Neurosci 2019; 13:526. [PMID: 31849613 PMCID: PMC6902026 DOI: 10.3389/fncel.2019.00526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
Spine pathology has been implicated in the early onset of Alzheimer’s disease (AD), where Aβ-Oligomers (AβOs) cause synaptic dysfunction and loss. Previously, we described that pharmacological inhibition of c-Abl prevents AβOs-induced synaptic alterations. Hence, this kinase seems to be a key element in AD progression. Here, we studied the role of c-Abl on dendritic spine morphological changes induced by AβOs using c-Abl null neurons (c-Abl-KO). First, we characterized the effect of c-Abl deficiency on dendritic spine density and found that its absence increases dendritic spine density. While AβOs-treatment reduces the spine number in both wild-type (WT) and c-Abl-KO neurons, AβOs-driven spine density loss was not affected by c-Abl. We then characterized AβOs-induced morphological changes in dendritic spines of c-Abl-KO neurons. AβOs induced a decrease in the number of mushroom spines in c-Abl-KO neurons while preserving the populations of immature stubby, thin, and filopodia spines. Furthermore, synaptic contacts evaluated by PSD95/Piccolo clustering and cell viability were preserved in AβOs-exposed c-Abl-KO neurons. In conclusion, our results indicate that in the presence of AβOs c-Abl participates in synaptic contact removal, increasing susceptibility to AβOs damage. Its deficiency increases the immature spine population reducing AβOs-induced synapse elimination. Therefore, c-Abl signaling could be a relevant actor in the early stages of AD.
Collapse
Affiliation(s)
- Daniela A Gutierrez
- Cell Signaling Laboratory, Faculty of Biological Science, Department of Cell and Molecular Biology, Center for Aging and Regeneration (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lina M Vargas
- Cell Signaling Laboratory, Faculty of Biological Science, Department of Cell and Molecular Biology, Center for Aging and Regeneration (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - América Chandia-Cristi
- Cell Signaling Laboratory, Faculty of Biological Science, Department of Cell and Molecular Biology, Center for Aging and Regeneration (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina de la Fuente
- Cell Signaling Laboratory, Faculty of Biological Science, Department of Cell and Molecular Biology, Center for Aging and Regeneration (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nancy Leal
- Cell Signaling Laboratory, Faculty of Biological Science, Department of Cell and Molecular Biology, Center for Aging and Regeneration (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandra R Alvarez
- Cell Signaling Laboratory, Faculty of Biological Science, Department of Cell and Molecular Biology, Center for Aging and Regeneration (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
46
|
Guo S, Zhen Y, Zhu Z, Zhou G, Zheng X. Cinnamic acid rescues behavioral deficits in a mouse model of traumatic brain injury by targeting miR-455-3p/HDAC2. Life Sci 2019; 235:116819. [PMID: 31473194 DOI: 10.1016/j.lfs.2019.116819] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/17/2019] [Accepted: 08/28/2019] [Indexed: 10/26/2022]
Abstract
AIMS Traumatic brain injury (TBI) not only induces physiological disabilities but also leads to cognitive impairment. However, no effective therapeutic approach for TBI-related memory decline exists. In this study, we treated TBI mice with cinnamic acid (CNA) to detect whether CNA is able to rescue the memory deficits induced by TBI and to explore the potential mechanisms. MAIN METHODS Mice were divided into the following groups: the sham group, the TBI group, the TBI + CNA group and the CNA group. Basic physiological parameters, neurological severity score and brain water content were analyzed. The Morris water maze and inhibitory avoidance step-down task were used to determine learning and memory. Golgi staining was used to measure alterations in dendritic spines. Western blot analysis and a commercial kit were used to detect the content and activity of HDAC2. qPCR was used to detect the relative level of miR-455. KEY FINDINGS CNA did not affect physiological function but effectively restored neurological function and brain edema. CNA alleviated the memory impairments induced by TBI in both the Morris water maze and step-down task. CNA also recovered abnormalities in the synapses of TBI mice by suppressing the activity of HDAC2. Furthermore, CNA did not alter HDAC mRNA because it promoted the expression of miR-455-3p, a miRNA that regulates HDAC2 at the posttranscriptional level. SIGNIFICANCE The application of CNA effectively treats TBI-induced memory deficits by increasing miR-455-3p and by inhibiting HDAC2.
Collapse
Affiliation(s)
- Shewei Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China.
| | - Yingwei Zhen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zhiqiang Zhu
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Guosheng Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiangyu Zheng
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW In the quest for understanding the pathophysiological processes underlying degeneration of nervous systems, synapses are emerging as sites of great interest as synaptic dysfunction is thought to play a role in the initiation and progression of neuronal loss. In particular, the synapse is an interesting target for the effects of epigenetic mechanisms in neurodegeneration. Here, we review the recent advances on epigenetic mechanisms driving synaptic compromise in major neurodegenerative disorders. RECENT FINDINGS Major developments in sequencing technologies enabled the mapping of transcriptomic patterns in human postmortem brain tissues in various neurodegenerative diseases, and also in cell and animal models. These studies helped identify changes in classical neurodegeneration pathways and discover novel targets related to synaptic degeneration. Identifying epigenetic patterns indicative of synaptic defects prior to neuronal degeneration may provide the basis for future breakthroughs in the field of neurodegeneration.
Collapse
Affiliation(s)
- Mary Xylaki
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Benedict Atzler
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany.
- Max Planck Institute for Experimental Medicine, 37075, Göttingen, Germany.
- Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
48
|
Abstract
Dementia is an overarching term which describes a group of symptoms that result in long-term decline in cognitive functioning that is significant enough to affect daily function. It is caused by a number of different diseases, the most common of which is Alzheimer's disease. Currently, there are no definitive biomarkers for preclinical or diagnostic use, or which differentiate between underlying disease types. The purpose of this review is to highlight several important areas of research on blood-based biomarkers of dementia, with a specific focus on epigenetic biomarkers. A systematic search of the literature identified 77 studies that compared blood DNA methylation between individuals with dementia and controls and 45 studies that measured microRNA. Very few studies were identified that focused on histone modifications. There were many promising findings from studies in the field of blood-based epigenetic biomarkers of dementia, however, a lack of consistency in study design, technologies, and platforms used for the biomarker measurement, as well as statistical analysis methods, have hampered progress. To date, there are very few findings that have been independently replicated across more than one study, indicating a preponderance of false-positive findings and the field has likely been plagued by positive publication bias. Here, we highlight and discuss several of the limitations of existing studies and provide recommendations for how these could be overcome in future research. A robust framework should be followed to enable development of the most valid and reproducible biomarkers with the strongest clinical utility. Defining a series of biomarkers that may be complimentary to each other could permit a stronger multifactorial biomarker to be developed that would allow for not only accurate dementia diagnosis but preclinical detection.
Collapse
Affiliation(s)
- Peter D Fransquet
- Department of Epidemiology and Preventive Medicine, Monash University , Melbourne , Australia.,Disease Epigenetics, Murdoch Children's Research Institute , Parkville , Australia
| | - Joanne Ryan
- Department of Epidemiology and Preventive Medicine, Monash University , Melbourne , Australia.,Disease Epigenetics, Murdoch Children's Research Institute , Parkville , Australia
| |
Collapse
|
49
|
Zusso M, Barbierato M, Facci L, Skaper SD, Giusti P. Neuroepigenetics and Alzheimer's Disease: An Update. J Alzheimers Dis 2019; 64:671-688. [PMID: 29991138 DOI: 10.3233/jad-180259] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epigenetics is the study of changes in gene expression which may be triggered by both genetic and environmental factors, and independent from changes to the underlying DNA sequence-a change in phenotype without a change in genotype-which in turn affects how cells read genes. Epigenetic changes represent a regular and natural occurrence but can be influenced also by factors such as age, environment, and disease state. Epigenetic modifications can manifest themselves not only as the manner in which cells terminally differentiate, but can have also deleterious effects, resulting in diseases such as cancer. At least three systems including DNA methylation, histone modification, and non-coding RNA (ncRNA)-associated gene silencing are thought to initiate and sustain epigenetic change. For example, in Alzheimer's disease (AD), both genetic and non-genetic factors contribute to disease etiopathology. While over 250 gene mutations have been related to familial AD, less than 5% of AD cases are explained by known disease genes. More than likely, non-genetic factors, probably triggered by environmental factors, are causative factors of late-onset AD. AD is associated with dysregulation of DNA methylation, histone modifications, and ncRNAs. Among the classes of ncRNA, microRNAs (miRNAs) have a well-established regulatory relevance. MicroRNAs are highly expressed in CNS neurons, where they play a major role in neuron differentiation, synaptogenesis, and plasticity. MicroRNAs impact higher cognitive functions, as their functional impairment is involved in the etiology of neurological diseases, including AD. Alterations in the miRNA network contribute to AD disease processes, e.g., in the regulation of amyloid peptides, tau, lipid metabolism, and neuroinflammation. MicroRNAs, both as biomarkers for AD and therapeutic targets, are in the early stages of exploration. In addition, emerging data suggest that altered transcription of long ncRNAs, endogenous, ncRNAs longer than 200 nucleotides, may be involved in an elevated risk for AD.
Collapse
Affiliation(s)
- Morena Zusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, Padua, Italy
| | - Massimo Barbierato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, Padua, Italy
| | - Laura Facci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, Padua, Italy
| | - Stephen D Skaper
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, Padua, Italy
| | - Pietro Giusti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, Padua, Italy
| |
Collapse
|
50
|
Epigenetic Modulation on Tau Phosphorylation in Alzheimer's Disease. Neural Plast 2019; 2019:6856327. [PMID: 31093272 PMCID: PMC6481020 DOI: 10.1155/2019/6856327] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022] Open
Abstract
Tau hyperphosphorylation is a typical pathological change in Alzheimer's disease (AD) and is involved in the early onset and progression of AD. Epigenetic modification refers to heritable alterations in gene expression that are not caused by direct changes in the DNA sequence of the gene. Epigenetic modifications, such as noncoding RNA regulation, DNA methylation, and histone modification, can directly or indirectly affect the regulation of tau phosphorylation, thereby participating in AD development and progression. This review summarizes the current research progress on the mechanisms of epigenetic modification associated with tau phosphorylation.
Collapse
|