1
|
Madarász K, Mótyán JA, Chang Chien YC, Bedekovics J, Csoma SL, Méhes G, Mokánszki A. BCOR-rearranged sarcomas: In silico insights into altered domains and BCOR interactions. Comput Biol Med 2025; 191:110144. [PMID: 40228447 DOI: 10.1016/j.compbiomed.2025.110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/16/2025]
Abstract
BCOR (BCL-6 corepressor) rearranged small round cell sarcoma (BRS) represents an uncommon soft tissue malignancy, frequently characterized by the BCOR::CCNB3 fusion. Other noteworthy fusions include BCOR::MAML3, BCOR::CLGN, BCOR::MAML1, ZC3H7B::BCOR, KMT2D::BCOR, CIITA::BCOR, RTL9::BCOR, and AHR::BCOR. The BCOR gene plays a pivotal role in the Polycomb Repressive Complex 1 (PRC1), essential for histone modification and gene silencing. It interfaces with the Polycomb group RING finger homolog (PCGF1). This study employed comprehensive in silico methodologies to investigate the structural and functional effects of BCOR fusion events in BRS. The analysis revealed significant alterations in the domain architecture of BCOR, which resulted in the loss of BCL6-regulated transcriptional repression. Furthermore, IUPred3 prediction indicated a significant increase in disorder in the C-terminal regions of the BCOR in the fusion proteins. A detailed analysis of the physicochemical properties by ProtParam revealed a decrease in isoelectric point, stability, and hydrophobicity. The analysis of protein structures predicted by AlphaFold3 using the PRODIGY algorithm revealed statistically significant deviations in binding affinities for BCOR-PCGF1 dimers and a non-canonical PRC1 variant tetramer compared to the wild-type BCOR. The findings provide a comprehensive summary and elucidation of the fusion proteome associated with BRS, suggesting a substantial impact on the stability and functionality of the fusion proteins, thereby contributing to the oncogenic mechanisms underlying BRS. In this study, we provide the first compilation and comparative analysis of the known BCOR fusions of BRS and introduce a new in silico approach to enhance a better understanding of the molecular basis of BRS.
Collapse
Affiliation(s)
- Kristóf Madarász
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary.
| | - János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary.
| | - Yi-Che Chang Chien
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary.
| | - Judit Bedekovics
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary.
| | - Szilvia Lilla Csoma
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary.
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary.
| | - Attila Mokánszki
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary.
| |
Collapse
|
2
|
Dong S, Wang L, Liu X, Hou D, Liu Q, Zheng J, Wang H. CELF2 inhibits bladder cancer progression by decreasing the stability of CXCL5. Life Sci 2025; 370:123585. [PMID: 40154776 DOI: 10.1016/j.lfs.2025.123585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/12/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
AIMS CUGBP Elav-like family (CELF), an RNA-binding protein group, has been implicated in numerous diseases, including cancer. The role of CELF2 in bladder cancer is still not well understood. This study aims to investigate the role of CELF2 in bladder cancer in vitro and in vivo using bioinformatics, biochemical, and functional methods. MATERIALS AND METHODS We explored CELF2 and CELFs expression patterns and their association with bladder cancer by analyzing The Cancer Genome Atlas, University of California, Santa Cruz XENA, and Cancer Cell Line Encyclopedia databases using various computational and statistical analyses, including unsupervised clustering, Kaplan-Meier analysis, and correlation assessments. We utilized the bladder cancer cell lines T24 and J82 for functional analyses. We performed in vitro and in vivo experiments to investigate the impact of CELF2 expression levels on bladder cancer cell proliferation and migration. KEY FINDINGS CELF2 expression was downregulated in bladder cancer and positively correlated with the progression-free interval in patients. Increased CELF2 expression suppressed the proliferation and migration of bladder cancer cells. Furthermore, CELF2 was bound to AU-rich motifs in the 3'-UTR of CXCL5, reducing its stability, inhibiting CXCL5/CXCR2/AKT signaling, and repressing bladder cancer progression. Finally, we developed a prognostic model that revealed CELF2 and CXCL5 as independent prognostic factors for progression-free intervals in patients with bladder cancer. SIGNIFICANCE CELF2 reduced the stability of CXCL5 and suppressed the proliferation and migration of bladder cancer cells by inhibiting p-AKT expression. The findings of this study highlight CELF2 as a potential therapeutic target for bladder cancer treatment.
Collapse
Affiliation(s)
- Shiqiang Dong
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China; Department of Oncology, Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases, Tianjin 300211, China
| | - Lili Wang
- Department of Oncology, Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases, Tianjin 300211, China; Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300211, China
| | - Xinyu Liu
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Dingkun Hou
- Department of Oncology, Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases, Tianjin 300211, China
| | - Qing Liu
- Department of Oncology, Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases, Tianjin 300211, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China.
| | - Haitao Wang
- Department of Oncology, Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases, Tianjin 300211, China.
| |
Collapse
|
3
|
Rynard KM, Han K, Wainberg M, Calarco JA, Lee HO, Lipshitz HD, Smibert CA, Tripathy SJ. ASiDentify (ASiD): a machine learning model to predict new autism spectrum disorder risk genes. Genetics 2025; 230:iyaf040. [PMID: 40088463 DOI: 10.1093/genetics/iyaf040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects nearly 3% of children and has a strong genetic component. While hundreds of ASD risk genes have been identified through sequencing studies, the genetic heterogeneity of ASD makes identifying additional risk genes using these methods challenging. To predict candidate ASD risk genes, we developed a simple machine learning model, ASiDentify (ASiD), using human genomic, RNA- and protein-based features. ASiD identified over 1,300 candidate ASD risk genes, over 300 of which have not been previously predicted. ASiD made accurate predictions of ASD risk genes using 6 features predictive of ASD risk gene status, including mutational constraint, synapse localization and gene expression in neurons, astrocytes and non-brain tissues. Particular functional groups of proteins found to be strongly implicated in ASD include RNA-binding proteins (RBPs) and chromatin regulators. We constructed additional logistic regression models to make predictions and assess informative features specific to RBPs, including mutational constraint, or chromatin regulators, for which both expression level in excitatory neurons and mutational constraint were informative. The fact that RBPs and chromatin regulators had informative features distinct from all protein-coding genes suggests that specific biological pathways connect risk genes with different molecular functions to ASD.
Collapse
Affiliation(s)
- Katherine M Rynard
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kara Han
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Krembil Institute for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Michael Wainberg
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Krembil Institute for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - John A Calarco
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Craig A Smibert
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shreejoy J Tripathy
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Krembil Institute for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
4
|
Ren X, Yang W, Yan X, Zhang H. Exploring RNA binding proteins in hepatocellular carcinoma: insights into mechanisms and therapeutic potential. J Exp Clin Cancer Res 2025; 44:130. [PMID: 40275278 PMCID: PMC12020288 DOI: 10.1186/s13046-025-03395-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
Hepatocellular carcinoma (HCC), the most prevalent type of primary liver cancer, is linked to elevated global incidence and mortality rates. Elucidating the intricate molecular pathways that drive the progression of HCC is imperative for devising targeted and effective therapeutic interventions. RNA-binding proteins (RBPs) serve as pivotal regulators of post-transcriptional processes, influencing various cellular functions. This review endeavors to provide a comprehensive analysis of the expression, function, and potential implications of RBPs in HCC. We discuss the classification and diverse roles of RBPs, with a particular focus on key RBPs implicated in HCC and their association with disease progression. Additionally, we explore the mechanisms by which RBPs contribute to HCC, including their impact on gene expression, cell proliferation, cell metastasis, angiogenesis, signaling pathways, and post-transcriptional modifications. Importantly, we examine the potential of RBPs as therapeutic targets and prognostic biomarkers, offering insights into their relevance in HCC treatment. Finally, we outline future research directions, emphasizing the need for further investigation into the functional mechanisms of RBPs and their clinical translation for personalized HCC therapy. This comprehensive review highlights the pivotal role of RBPs in HCC and their potential as novel therapeutic avenues to improve patient outcomes.
Collapse
Affiliation(s)
- Xing Ren
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wenna Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiuli Yan
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Hui Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
5
|
Kim H, Lee YY, Kim VN. The biogenesis and regulation of animal microRNAs. Nat Rev Mol Cell Biol 2025; 26:276-296. [PMID: 39702526 DOI: 10.1038/s41580-024-00805-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/21/2024]
Abstract
MicroRNAs (miRNAs) are small, yet profoundly influential, non-coding RNAs that base-pair with mRNAs to induce RNA silencing. Although the basic principles of miRNA biogenesis and function have been established, recent breakthroughs have yielded important new insights into the molecular mechanisms of miRNA biogenesis. In this Review, we discuss the metazoan miRNA biogenesis pathway step-by-step, focusing on the key biogenesis machinery, including the Drosha-DGCR8 complex (Microprocessor), exportin-5, Dicer and Argonaute. We also highlight newly identified cis-acting elements and their impact on miRNA maturation, informed by advanced high-throughput and structural studies, and discuss recently discovered mechanisms of clustered miRNA processing, target recognition and target-directed miRNA decay (TDMD). Lastly, we explore multiple regulatory layers of miRNA biogenesis, mediated by RNA-protein interactions, miRNA tailing (uridylation or adenylation) and RNA modifications.
Collapse
Affiliation(s)
- Haedong Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Young-Yoon Lee
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Bangru S, Chen J, Baker N, Das D, Chembazhi UV, Derham JM, Chorghade S, Arif W, Alencastro F, Duncan AW, Carstens RP, Kalsotra A. ESRP2-microRNA-122 axis promotes the postnatal onset of liver polyploidization and maturation. Genes Dev 2025; 39:325-347. [PMID: 39794125 PMCID: PMC11874994 DOI: 10.1101/gad.352129.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025]
Abstract
Hepatocyte polyploidy and maturity are critical to acquiring specialized liver functions. Multiple intracellular and extracellular factors influence ploidy, but how they cooperate temporally to steer liver polyploidization and maturation or how post-transcriptional mechanisms integrate into these paradigms is unknown. Here, we identified an important regulatory hierarchy in which postnatal activation of epithelial splicing regulatory protein 2 (ESRP2) stimulates processing of liver-specific microRNA (miR-122) to facilitate polyploidization, maturation, and functional competence of hepatocytes. By determining transcriptome-wide protein-RNA interactions in vivo and integrating them with single-cell and bulk hepatocyte RNA-seq data sets, we delineated an ESRP2-driven RNA processing program that drives sequential replacement of fetal-to-adult transcript isoforms. Specifically, ESRP2 binds the primary miR-122 host gene transcript to promote its processing/biogenesis. Combining constitutive and inducible ESRP2 gain- and loss-of-function mouse models with miR-122 rescue experiments, we demonstrated that timed activation of ESRP2 augments the miR-122-driven program of cytokinesis failure, ensuring the proper onset and extent of hepatocyte polyploidization.
Collapse
Affiliation(s)
- Sushant Bangru
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jackie Chen
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Nicholas Baker
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Diptatanu Das
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Chan Zuckerberg Biohub, Chicago, Illinois 60642, USA
| | - Ullas V Chembazhi
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jessica M Derham
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Chan Zuckerberg Biohub, Chicago, Illinois 60642, USA
| | - Sandip Chorghade
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Waqar Arif
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Frances Alencastro
- Department of Pathology, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Andrew W Duncan
- Department of Pathology, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Russ P Carstens
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA;
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Chan Zuckerberg Biohub, Chicago, Illinois 60642, USA
| |
Collapse
|
7
|
Zhou H, Xu J, Pan L. Functions of the Muscleblind-like protein family and their role in disease. Cell Commun Signal 2025; 23:97. [PMID: 39966885 PMCID: PMC11837677 DOI: 10.1186/s12964-025-02102-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
Conserved proteins are characterized by their functions remaining nearly constant throughout evolutionary history, both vertically through time and horizontally across species. In this review, we focus on a class of conserved proteins known as the Muscleblind-like (MBNL) family. As RNA-binding proteins, MBNL family members interact with pre-mRNAs through evolutionarily conserved tandem zinc finger domains and play critical roles in various RNA metabolic processes, including alternative splicing, mRNA stability, trafficking, regulation of subcellular localization, and alternative polyadenylation. Dysregulation of MBNL proteins can lead to severe consequences. Initially, research primarily associated MBNL proteins with myotonic dystrophy. However, recent studies have revealed their involvement in a broad spectrum of physiological and pathological processes, such as embryonic tissue differentiation and circulatory disorders. Furthermore, the emerging role of MBNL proteins in cancer sheds light on a novel aspect of these evolutionarily ancient proteins. This review provides a comprehensive overview of the MBNL family, emphasizing its structure, the mechanisms underlying its biological functions, and its roles in various diseases.Subject terms: Muscleblind-like-like protein, RNA-binding proteins, Alternative splicing, Tumor, Myotonic dystrophy.
Collapse
Affiliation(s)
- Hui Zhou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiachi Xu
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China.
| | - Liusheng Pan
- Department of anesthesiology, Yuexi Hospital of the Sixth Affiliated Hospital, Sun Yat-sen University, Xinyi, China.
| |
Collapse
|
8
|
Dharmadhikari AV, Abad MA, Khan S, Maroofian R, Sands TT, Ullah F, Samejima I, Shen Y, Wear MA, Moore KE, Kondakova E, Mitina N, Schaub T, Lee GK, Umandap CH, Berger SM, Iglesias AD, Popp B, Abou Jamra R, Gabriel H, Rentas S, Rippert AL, Gray C, Izumi K, Conlin LK, Koboldt DC, Mosher TM, Hickey SE, Albert DVF, Norwood H, Lewanda AF, Dai H, Liu P, Mitani T, Marafi D, Eker HK, Pehlivan D, Posey JE, Lippa NC, Vena N, Heinzen EL, Goldstein DB, Mignot C, de Sainte Agathe JM, Al-Sannaa NA, Zamani M, Sadeghian S, Azizimalamiri R, Seifia T, Zaki MS, Abdel-Salam GMH, Abdel-Hamid MS, Alabdi L, Alkuraya FS, Dawoud H, Lofty A, Bauer P, Zifarelli G, Afzal E, Zafar F, Efthymiou S, Gossett D, Towne MC, Yeneabat R, Perez-Duenas B, Cazurro-Gutierrez A, Verdura E, Cantarin-Extremera V, Marques ADV, Helwak A, Tollervey D, Wontakal SN, Aggarwal VS, Rosenfeld JA, Tarabykin V, Ohta S, Lupski JR, Houlden H, Earnshaw WC, Davis EE, Jeyaprakash AA, Liao J. RNA methyltransferase SPOUT1/CENP-32 links mitotic spindle organization with the neurodevelopmental disorder SpADMiSS. Nat Commun 2025; 16:1703. [PMID: 39962046 PMCID: PMC11833075 DOI: 10.1038/s41467-025-56876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
SPOUT1/CENP-32 encodes a putative SPOUT RNA methyltransferase previously identified as a mitotic chromosome associated protein. SPOUT1/CENP-32 depletion leads to centrosome detachment from the spindle poles and chromosome misalignment. Aided by gene matching platforms, here we identify 28 individuals with neurodevelopmental delays from 21 families with bi-allelic variants in SPOUT1/CENP-32 detected by exome/genome sequencing. Zebrafish spout1/cenp-32 mutants show reduction in larval head size with concomitant apoptosis likely associated with altered cell cycle progression. In vivo complementation assays in zebrafish indicate that SPOUT1/CENP-32 missense variants identified in humans are pathogenic. Crystal structure analysis of SPOUT1/CENP-32 reveals that most disease-associated missense variants are located within the catalytic domain. Additionally, SPOUT1/CENP-32 recurrent missense variants show reduced methyltransferase activity in vitro and compromised centrosome tethering to the spindle poles in human cells. Thus, SPOUT1/CENP-32 pathogenic variants cause an autosomal recessive neurodevelopmental disorder: SpADMiSS (SPOUT1 Associated Development delay Microcephaly Seizures Short stature) underpinned by mitotic spindle organization defects and consequent chromosome segregation errors.
Collapse
Affiliation(s)
- Avinash V Dharmadhikari
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Maria Alba Abad
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Sheraz Khan
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
- Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Human Molecular Genetics Lab, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Reza Maroofian
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, WC1N 3BG, London, UK
| | - Tristan T Sands
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Farid Ullah
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
- Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Itaru Samejima
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Yanwen Shen
- Translational Research Center for the Nervous System, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, Guangdong, China
- Faculty of Life and Health sciences, Shenzhen University of Advanced Technology, 518055, Shenzhen, Guangdong, China
- Department of Pediatrics, Chinese PLA General Hospital, Medical School of Chinese People's Liberation Army, 100853, Beijing, China
- Department of Pediatrics, Fujian Medical University Union Hospital, 350001, Fuzhou, China
| | - Martin A Wear
- Edinburgh Protein Production Facility (EPPF), University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Kiara E Moore
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
- Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Elena Kondakova
- Institute of Neuroscience, Laboratory of Genetics of Brain Development, National Research Lobachevsky State University of Nizhny Novgorod, 603022, 23 Gagarin avenue, Nizhny, Novgorod, Russia
| | - Natalia Mitina
- Institute of Neuroscience, Laboratory of Genetics of Brain Development, National Research Lobachevsky State University of Nizhny Novgorod, 603022, 23 Gagarin avenue, Nizhny, Novgorod, Russia
| | - Theres Schaub
- Institute of Cell and Neurobiology, Charité Universitätsmedizin Berlin, 10117, Berlin, Charitéplatz 1, Germany
| | - Grace K Lee
- Personalized Care (PCARE) Program, Department of Pathology and Laboratory Medicine; The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Christine H Umandap
- Medical Genetics, DMG Children's Rehabilitative Services, Phoenix, AZ, 85013, USA
- Division of Clinical Genetics, Department of Pediatrics, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Sara M Berger
- Division of Clinical Genetics, Department of Pediatrics, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Alejandro D Iglesias
- Division of Clinical Genetics, Department of Pediatrics, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Bernt Popp
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | | | - Stefan Rentas
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Alyssa L Rippert
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Christopher Gray
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kosuke Izumi
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laura K Conlin
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Daniel C Koboldt
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | | | - Scott E Hickey
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Division of Genetic & Genomic Medicine, Nationwide Children's Hospital, Columbus, OH 43205, OH, USA
| | - Dara V F Albert
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Division of Neurology, Nationwide Children's Hospital, Columbus, OH 43205, OH, USA
| | | | | | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | | | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Natalie C Lippa
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Natalie Vena
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Erin L Heinzen
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Cyril Mignot
- Département de Génétique, APHP Sorbonne Université, 75013, Paris, France
| | | | | | - Mina Zamani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
| | - Saeid Sadeghian
- Department of Pediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Azizimalamiri
- Department of Pediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Tahere Seifia
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, 12622, Cairo, Egypt
| | - Ghada M H Abdel-Salam
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, 12622, Cairo, Egypt
| | - Mohamed S Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, 12622, Cairo, Egypt
| | - Lama Alabdi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan Sami Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Heba Dawoud
- Pediatrics Department, Faculty of Medicine, Tanta University, El-Geesh Street, Tanta, 31527, Egypt
| | - Aya Lofty
- Pediatrics Department, Faculty of Medicine, Tanta University, El-Geesh Street, Tanta, 31527, Egypt
| | - Peter Bauer
- CENTOGENE GmbH, Am Strande 7, 18055, Rostock, Germany
| | | | - Erum Afzal
- Department of Development Pediatrics, The Children's Hospital and The Institute of Child Health, Multan, Pakistan
| | - Faisal Zafar
- Department of Development Pediatrics, The Children's Hospital and The Institute of Child Health, Multan, Pakistan
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, WC1N 3BG, London, UK
| | - Daniel Gossett
- Texas Child Neurology, Plano, TX, 75024, USA
- Neurology Consultants of Dallas, Dallas, TX, 75243, USA
| | | | - Raey Yeneabat
- Departments of Pathology and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Belen Perez-Duenas
- Department of Paediatric Neurology, Hospital Vall d'Hebron, Barcelona, Spain
- Vall d'Hebron Research Institute, Barcelona, Spain
- Department of Paediatrics, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Cazurro-Gutierrez
- Vall d'Hebron Research Institute, Barcelona, Spain
- Department of Paediatrics, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Edgard Verdura
- Vall d'Hebron Research Institute, Barcelona, Spain
- Molecular Biology CORE, Biomedical Diagnostic Center (CDB), Hospital, l Clínic de Barcelona, Barcelona, Spain
| | - Veronica Cantarin-Extremera
- Department of Paediatric Neurology, Hospital Infantil Niño Jesús, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER (GCV23/ER/3)), ISCIII, Madrid, Spain
| | - Ana do Vale Marques
- Gene Center, Department of Biochemistry, Ludwig-Maximilians Universität, Munich, Germany
| | - Aleksandra Helwak
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - David Tollervey
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Sandeep N Wontakal
- Departments of Pathology and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Vimla S Aggarwal
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Victor Tarabykin
- Institute of Neuroscience, Laboratory of Genetics of Brain Development, National Research Lobachevsky State University of Nizhny Novgorod, 603022, 23 Gagarin avenue, Nizhny, Novgorod, Russia
- Institute of Cell and Neurobiology, Charité Universitätsmedizin Berlin, 10117, Berlin, Charitéplatz 1, Germany
| | - Shinya Ohta
- Institute for Genetic Medicine Pathophysiology, Hokkaido University, Sapporo, Japan
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Henry Houlden
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, WC1N 3BG, London, UK
| | - William C Earnshaw
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Erica E Davis
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA.
- Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - A Arockia Jeyaprakash
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom.
- Molecular Biology CORE, Biomedical Diagnostic Center (CDB), Hospital, l Clínic de Barcelona, Barcelona, Spain.
| | - Jun Liao
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
9
|
Hanelt TN, Treiber N, Treiber T, Lehmann G, Eichner N, Rothmeier T, Schmid G, Reichelt R, Zambelli F, Pavesi G, Grohmann D, Meister G. Endo-bind-n-seq: identifying RNA motifs of RNA binding proteins isolated from endogenous sources. Life Sci Alliance 2025; 8:e202402782. [PMID: 39622621 PMCID: PMC11612968 DOI: 10.26508/lsa.202402782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024] Open
Abstract
RNA binding proteins (RBPs) are crucial regulators of gene expression and critically depend on the specific recognition of their target RNAs. Accordingly, a selection of methods to analyze RBP specificities has been developed, including protein-RNA crosslinking and sequencing (CLIP) and in vitro selection methods such as SELEX, RNA compete or RNA bind-n-seq. However, limitations like the availability for purified recombinant proteins and custom microarray platforms (RNAcompete) or extensive sequencing depth and sophisticated bioinformatic data processing (CLIP) may limit a broader implementation of these methods. Here, we present an RNA bind-n-seq method that uses short random RNA pools and enables multiple rounds of selection. This results in strong motif enrichment with low positional variance thus reducing sequencing depth requirements. Furthermore, we have coupled our protocol to immunoprecipitation of tagged or endogenous RBPs from cultured cells or tissue samples, eliminating the need for recombinant proteins. Our method also allows for the identification of indirect RNA motifs of proteins that are integral parts of multiprotein RNPs and result in physically more relevant RNA motifs.
Collapse
Affiliation(s)
- Tiana Nicole Hanelt
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Nora Treiber
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Thomas Treiber
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Gerhard Lehmann
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Norbert Eichner
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Tamara Rothmeier
- Regensburg Center for Biochemistry (RCB), Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, Regensburg, Germany
| | - Georg Schmid
- Regensburg Center for Biochemistry (RCB), Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, Regensburg, Germany
| | - Robert Reichelt
- Regensburg Center for Biochemistry (RCB), Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, Regensburg, Germany
| | | | - Giulio Pavesi
- Dipartimento di Bioscienze, Università di Milano, Milan, Italy
| | - Dina Grohmann
- Regensburg Center for Biochemistry (RCB), Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, Regensburg, Germany
| | - Gunter Meister
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
- Cluster for Nucleic Acid Therapeutics Munich (CNATM), Munich, Germany
| |
Collapse
|
10
|
Li Y, Chen S, Rao H, Cui S, Chen G. MicroRNA Gets a Mighty Award. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414625. [PMID: 39836690 PMCID: PMC11831481 DOI: 10.1002/advs.202414625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/29/2024] [Indexed: 01/23/2025]
Abstract
Recent advancements in microRNAs (miRNAs) research have revealed their key roles in both normal physiological processes and pathological conditions, leading to potential applications in diagnostics and therapeutics. However, the path forward is fraught with several scientific and technical challenges. This review article briefly explores the milestones of the discovery, biogenesis, functions, and application for clinical diagnostic and therapeutic strategies of miRNAs. The potential challenges and future directions are also discussed to fully harness their capabilities.
Collapse
Affiliation(s)
- Yu Li
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong‐Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Sijie Chen
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong‐Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Hai Rao
- Department of BiochemistryKey University Laboratory of Metabolism and Health of GuangdongSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Shengjin Cui
- Clinical LaboratoryThe University of Hong Kong‐Shenzhen HospitalShenzhenGuangdong518053China
| | - Guoan Chen
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong‐Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518055China
| |
Collapse
|
11
|
Csaholczi B, Csuth AR, Korponay-Szabó IR, Fésüs L, Király R. Transglutaminase 2 is an RNA-binding protein: experimental verification and characterisation of a novel transglutaminase feature. FEBS J 2025; 292:915-928. [PMID: 39716381 DOI: 10.1111/febs.17373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/19/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024]
Abstract
Transglutaminase 2 (TG2) is a uniquely versatile protein with diverse catalytic activities, such as transglutaminase, protein disulfide isomerase, GTPase and protein kinase, and participates in several biological processes. According to information available in the RBP2GO database, TG2 can act as an RNA-binding protein (RBP). RBPs participate in posttranscriptional gene expression regulation, therefore influencing the function of RNA, whereas RNA molecules can also modulate the biological activity of RBPs. The present study aimed to confirm this novel characteristic of TG2 in human umbilical cord vein endothelial cells (HUVEC), which physiologically express TG2. First, UV cross-linked RNA-protein complexes were isolated from immortalised HUVECs using orthogonal organic phase separation. Compared with the RBP2GO database, mass spectrometry identified 392 potential RBPs, including TG2 and 20 previously undescribed, endothelium-related RBPs. Recombinant human TG2 was also pulled down by magnetic bead-immobilised total RNA from HUVEC. Complex formation between TG2 and a 43-mer RNA molecule with a secondary structure as well as a homo-oligomeric single-stranded poly(dG), but not poly(dA), could be observed in magnetic RNA-protein pull-down experiments. Experiments with TG2 inhibitors NC9 and GTPγS, which stabilise its open and closed conformation, respectively, revealed that the open conformation of the enzyme favoured RNA-binding. Biolayer interferometry revealed a high binding affinity between TG2 and RNA with a KD value of 88 nm. Based on modelling and site-directed mutagenesis studies, we propose that superficial residues on the catalytic core domain (173-177 amino acids), present in a hidden position in the closed TG2 conformation, are involved in RNA binding. The present study demonstrates the previously uncharacterised RNA-binding ability of TG2, opening new avenues for understanding its multifunctionality.
Collapse
Affiliation(s)
- Bianka Csaholczi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Hungary
| | - Anna Renáta Csuth
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
| | | | - László Fésüs
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Róbert Király
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
| |
Collapse
|
12
|
Rayêe D, Hwang DW, Chang WK, Karp IN, Zhao Y, Bowman T, Lachke SA, Singer RH, Eliscovich C, Cvekl A. Identification and classification of abundant RNA-binding proteins in the mouse lens and interactions of Carhsp1, Igf2bp1/ZBP1, and Ybx1 with crystallin and β-actin mRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632466. [PMID: 39829794 PMCID: PMC11741318 DOI: 10.1101/2025.01.10.632466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
RNA-binding proteins (RBPs) are critical regulators of mRNAs controlling all processes such as RNA transcription, transport, localization, translation, mRNA:ncRNA interactions, and decay. Cellular differentiation is driven by tissue-specific and/or tissue-preferred expression of proteins needed for the optimal function of mature cells, tissues and organs. Lens fiber cell differentiation is marked by high levels of expression of crystallin genes encoding critical proteins for lens transparency and light refraction. Herein we performed proteomic and transcriptomic analyses of RBPs in differentiating mouse lenses to identify the most abundant RBPs and establish dynamic changes of their expression in differentiating lens. Expression analyses include highly abundant RBPs, including Carhsp1, Igf2bp1/ZBP1, Ybx1, Pabpc1, Ddx39, and Rbm38. Binding sites of Carhsp1, Ybx1, and Igf2bp1/ZBP1 were predicted in various crystallin and β-actin mRNAs. Immunoprecipitations using antibodies against Carhsp1, Igf2bp1/ZBP1, and Ybx1 confirmed their interactions with αA-, αB-, and γA-crystallin mRNAs. A combination of single molecule RNA FISH (smFISH) and immunofluorescence was used to probe in vivo interactions of these RBPs with αA-, αB-crystallin, and β-actin mRNAs in cytoplasm and nucleoplasm of cultured mouse lens epithelial cells. Together, these results open new avenues to perform comprehensive genetic, cell, and molecular biology studies of individual RBPs in the lens.
Collapse
|
13
|
Lu R, Zhang Y, Chen R, Li L, Huang C, Zhou Z, Cao Y, Li H, Li J, Zhang Y, Wang Y, Huang J, Zhao X, Feng J, Yu J, Du C. A novel regulatory axis of MSI2-AGO2/miR-30a-3p-CGRRF1 drives cancer chemoresistance by upregulating the KRAS/ERK pathway. Neoplasia 2025; 59:101082. [PMID: 39522321 PMCID: PMC11585711 DOI: 10.1016/j.neo.2024.101082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/19/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The KRAS/ERK pathway is crucial in cancer progression and chemotherapy resistance, yet its upstream regulatory mechanism remains elusive. We identified MSI2 as a new promoter of chemotherapy resistance in cancers. MSI2 directly binds to a specific class of mature miRNAs by recognizing the 'UAG' motif and interacts with the essential effector AGO2, highlighting MSI2 as a novel regulatory factor within the miRNA pathway. Specifically, MSI2 recruits UAG-miRNA miR-30a-3p to facilitate its loading onto AGO2, efficiently inhibiting the expression of CGRRF1. Further analysis reveals that CGRRF1 functions as a new ubiquitin E3 ligase for KRAS, mediating the ubiquitination and proteasome degradation of KRAS. Consequently, a novel regulatory axis involving MSI2-AGO2/miR-30a-3p-CGRRF1 positively regulates the KRAS/ERK pathway. Remarkably, platinum-based chemotherapy drugs significantly enhance the levels of phosphorylated ERK1/2 (p-ERK1/2) in cancer cells, and the EGFR inhibitor Gefitinib also increases p-ERK1/2 levels in Gefitinib-resistant cancer cells. Combining small-molecule inhibitors targeting MSI2, such as Ro 08-2750, efficiently alleviated chemoresistance in tumor cells exposed to Platinum and Gefitinib. These findings suggest that MSI2 could be a novel therapeutic target for developing strategies to counteract cancer resistance to treatment.
Collapse
Affiliation(s)
- Runhui Lu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yafan Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ran Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lian Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Respiratory and Critical Care Medicine, QingPu Branch of Zhongshan Hospital Affiliated To Fudan University, Shanghai 201700, China
| | - Caihu Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zihan Zhou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yingting Cao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hongyan Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Junya Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yixin Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanli Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Feng
- Department of Laboratory Medicine,The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China.
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Respiratory and Critical Care Medicine, QingPu Branch of Zhongshan Hospital Affiliated To Fudan University, Shanghai 201700, China.
| | - Chunling Du
- Department of Respiratory and Critical Care Medicine, QingPu Branch of Zhongshan Hospital Affiliated To Fudan University, Shanghai 201700, China.
| |
Collapse
|
14
|
Liu W, Gao K, Du X, Wen S, Yan H, Wang J, Wang Y, Song C, Lin L, Ji T, Gu W, Jiang Y. SPOUT1 variants associated with autosomal-recessive developmental and epileptic encephalopathy. ACTA EPILEPTOLOGICA 2024; 6:42. [PMID: 40217412 PMCID: PMC11960386 DOI: 10.1186/s42494-024-00185-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/12/2024] [Indexed: 01/05/2025] Open
Abstract
BACKGROUND Developmental and epileptic encephalopathy (DEE) is a group of neurodevelopmental disorders characterized by early-onset seizures predominantly attributed to genetic causes. Nevertheless, numerous patients remain without identification of a genetic cause. METHODS We present four unrelated Chinese patients with SPOUT1 compound heterozygous variants, all of whom were diagnosed with DEE. We also investigated functions of SPOUT1 using the spout1 knockout zebrafish model. RESULTS The four unrelated DEE patients with SPOUT1 compound heterozygous variants were all males. Their onset age of seizure ranged from 3 months to 6 months (median age 5 months). All patients had epileptic spasms, and were diagnosed with infantile epileptic spasms syndrome (IESS). Three patients had microcephaly during infancy. Brain MRI in three patients showed white matter hypomyelination and bilaterally widened frontotemporal subarachnoid space. At the last follow-up, two patients exhibited drug-resistant epilepsy, one achieved seizure freedom following vigabatrin treatment, and one died at the age of 4 years and 5 months from probable sudden unexpected death in epilepsy. Seven different SPOUT1 variants were identified in the four patients, including six missense variants and one deletion variant. AlphaFold2 prediction indicated that all variants alternated the number or the length of bonds between animo acids in protein SPOUT1. Neurophysiological results from spout1 knockout zebrafish revealed the presence of epileptiform signals in 9 out of 63 spout1 knockout zebrafishes (P = 0.009). Transcriptome sequencing revealed 21 differentially expressed genes between spout1 knockout and control groups, including 13 up-regulated and 8 down-regulated genes. Two axonal transport-related genes, kif3a and ap3d1, were most prominently involved in enriched Gene Ontology (GO) terms. CONCLUSIONS This study identified SPOUT1 as a novel candidate gene of DEE, which follows the autosomal-recessive inheritance pattern. IESS is the most common epilepsy syndrome. Downregulation of axonal transport-related genes, KIF3A and AP3D1, may play a crucial role in the pathogenesis of DEE.
Collapse
Affiliation(s)
- Wenwei Liu
- Children's Medical Center, Peking University First Hospital, Beijing, 100176, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, 100009, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, 100176, China
| | - Kai Gao
- Children's Medical Center, Peking University First Hospital, Beijing, 100176, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, 100009, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, 100176, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, 100009, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, 100176, China
| | - Xilong Du
- Beijing Chigene Translational Medical Research Center Co. Ltd, Beijing, 101121, China
| | - Sijia Wen
- Children's Medical Center, Peking University First Hospital, Beijing, 100176, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, 100009, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, 100176, China
| | - Huifang Yan
- Children's Medical Center, Peking University First Hospital, Beijing, 100176, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, 100009, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, 100176, China
| | - Jingmin Wang
- Children's Medical Center, Peking University First Hospital, Beijing, 100176, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, 100009, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, 100176, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, 100009, China
| | - Yong Wang
- Department of Pediatrics, Fujian Medical University Union Hospital, Fujian, 350001, China
| | - Conglei Song
- Department of Neurology, Anhui Children's Hospital, Anhui, 230051, China
| | - Li Lin
- Department of Neurology, Anhui Children's Hospital, Anhui, 230051, China
| | - Taoyun Ji
- Children's Medical Center, Peking University First Hospital, Beijing, 100176, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, 100009, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, 100176, China
| | - Weiyue Gu
- Beijing Chigene Translational Medical Research Center Co. Ltd, Beijing, 101121, China
| | - Yuwu Jiang
- Children's Medical Center, Peking University First Hospital, Beijing, 100176, China.
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, 100009, China.
- Children Epilepsy Center, Peking University First Hospital, Beijing, 100176, China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, 100009, China.
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, 100176, China.
| |
Collapse
|
15
|
Chen J, Bai Y, Huang Y, Cui M, Wang Y, Gu Z, Wu X, Li Y, Rong YS. The Ptch/SPOUT1 methyltransferase deposits an m 3U modification on 28 S rRNA for normal ribosomal function in flies and humans. SCIENCE ADVANCES 2024; 10:eadr1743. [PMID: 39671501 PMCID: PMC11641110 DOI: 10.1126/sciadv.adr1743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/05/2024] [Indexed: 12/15/2024]
Abstract
The ribosomal RNA (rRNA) is one of the most heavily modified RNA species in nature. Although we have advanced knowledge of the sites, functions, and the enzymology of many of the rRNA modifications from all kingdoms of life, we lack basic understanding of many of those that are not universally present. A single N3 modified uridine base (m3U) was identified to be present on the 28S rRNA from humans and frogs but absent in bacteria or yeast. Here, we show that the equivalent m3U is present in Drosophila and that the Ptch/CG12128 enzyme and its human homolog SPOUT1 are both necessary and sufficient for carrying out the modification. The Ptch-modified U is at a functional center of the large ribosomal subunit, and, consistently, ptch-mutant cells suffer loss of ribosomal functions. SPOUT1, suggested to be the most druggable RNA methyltransferases in humans, represents a unique target where ribosomal functions could be specifically compromised in cancer cells.
Collapse
Affiliation(s)
- Jie Chen
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Yaofu Bai
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
| | - Yuantai Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Min Cui
- School of Public Health, Hengyang College of Medicine, University of South China, Hengyang, China
| | - Yiqing Wang
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
| | - Zhenqi Gu
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
| | - Xiaolong Wu
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
| | - Yubin Li
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yikang S. Rong
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
| |
Collapse
|
16
|
Yan T, Sun J, Zheng J, Yang J. An analysis combining proteomics and transcriptomics revealed a regulation target of sea cucumber autolysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101274. [PMID: 38906042 DOI: 10.1016/j.cbd.2024.101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024]
Abstract
Sea cucumber is a valuable seafood product and autolysis is the main concern for the aquaculture industry. This study employed proteomics and transcriptomics to investigate the autolysis mechanism of sea cucumbers. The fresh sea cucumber was exposed to UV light to induce autolysis. The body wall samples were cut off to analyze by proteomics and transcriptomics. The angiotensin-converting enzyme (ACE) inhibitor of teprotide and the activator of imatinib were gastric gavage to live sea cucumbers, respectively, to identify the regulation target. Autolysis occurrence was evaluated by appearance, soluble peptide, and hydroxyproline content. Four gene-protein pairs were ACE, AJAP10923, Heme-binding protein 2-like, and Ficolin-2-like. Only the ACE protein and gene changed synchronously and a significant down-regulation of ACE occurred in the autolysis sea cucumbers. Teprotide led to a 1.58-fold increase in the TCA-soluble protein content and a 1.57-fold increase in hydroxyproline content. No significant differences were observed between imatinib-treated sea cucumbers and fresh ones regarding TCA-soluble protein content or hydroxyproline levels (P > 0.05). ACE inhibitor accelerated the autolysis of sea cucumber, but ACE activator inhibited the autolysis. Therefore, ACE can serve as a regulatory target for autolysis in sea cucumbers.
Collapse
Affiliation(s)
- Tingting Yan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jinghe Sun
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Zheng
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Jingfeng Yang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
17
|
Glossop M, Chelysheva I, Ketley R, Alagia A, Gullerova M. TIRR regulates mRNA export and association with P-bodies in response to DNA damage. Nucleic Acids Res 2024; 52:12633-12649. [PMID: 39119906 PMCID: PMC11551748 DOI: 10.1093/nar/gkae688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
To ensure the integrity of our genetic code, a coordinated network of signalling and repair proteins, known as the DNA damage response (DDR), detects and repairs DNA insults, the most toxic being double-strand breaks (DSBs). Tudor interacting repair regulator (TIRR) is a key factor in DSB repair, acting through its interaction with p53 binding protein 1 (53BP1). TIRR is also an RNA binding protein, yet its role in RNA regulation during the DDR remains elusive. Here, we show that TIRR selectively binds to a subset of messenger RNAs (mRNAs) in response to DNA damage. Upon DNA damage, TIRR interacts with the nuclear export protein Exportin-1 through a nuclear export signal. Furthermore, TIRR plays a crucial role in the modulation of RNA processing bodies (PBs). TIRR itself and TIRR-bound RNA co-localize with PBs, and TIRR depletion results in nuclear RNA retention and impaired PB formation. We also suggest a potential link between TIRR-regulated RNA export and efficient DDR. This work reveals intricate involvement of TIRR in orchestrating mRNA nuclear export and storage within PBs, emphasizing its significance in the regulation of RNA-mediated DDR.
Collapse
Affiliation(s)
- Michelle S Glossop
- Sir William Dunn School of Pathology, Medical Sciences Division, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Irina Chelysheva
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Ruth F Ketley
- Sir William Dunn School of Pathology, Medical Sciences Division, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Adele Alagia
- Sir William Dunn School of Pathology, Medical Sciences Division, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Monika Gullerova
- Sir William Dunn School of Pathology, Medical Sciences Division, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
18
|
Min KW, Choi KM, Mun H, Ko S, Lee JW, Sagum CA, Bedford MT, Kim YK, Delaney JR, Cho JH, Dawson TM, Dawson VL, Twal W, Kim DC, Panganiban CH, Lang H, Zhou X, Shin S, Hu J, Heise T, Kwon SH, Kim D, Kim YH, Kang SU, Kim K, Lewis S, Eroglu A, Ryu S, Kim D, Chang JH, Jung J, Yoon JH. Mature microRNA-binding protein QKI suppresses extracellular microRNA let-7b release. J Cell Sci 2024; 137:jcs261575. [PMID: 39308343 PMCID: PMC11574364 DOI: 10.1242/jcs.261575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Argonaute (AGO), a component of RNA-induced silencing complexes (RISCs), is a representative RNA-binding protein (RBP) known to bind with mature microRNAs (miRNAs) and is directly involved in post-transcriptional gene silencing. However, despite the biological significance of miRNAs, the roles of other miRNA-binding proteins (miRBPs) remain unclear in the regulation of miRNA loading, dissociation from RISCs and extracellular release. In this study, we performed protein arrays to profile miRBPs and identify 118 RBPs that directly bind to miRNAs. Among those proteins, the RBP quaking (QKI) inhibits extracellular release of the mature microRNA let-7b by controlling the loading of let-7b into extracellular vesicles via additional miRBPs such as AUF1 (also known as hnRNPD) and hnRNPK. The enhanced extracellular release of let-7b after QKI depletion activates Toll-like receptor 7 (TLR7) and promotes the production of proinflammatory cytokines in recipient cells, leading to brain inflammation in the mouse cortex. Thus, this study reveals the contribution of QKI to the inhibition of brain inflammation via regulation of extracellular let-7b release.
Collapse
Affiliation(s)
- Kyung-Won Min
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Biology, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Kyoung-Min Choi
- Department of Oncology Science, College of Medicine, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Hyejin Mun
- Department of Oncology Science, College of Medicine, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Seungbeom Ko
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ji Won Lee
- Department of Biology, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Cari A Sagum
- Department of Epigenetics and Molecular Carcinogenesis, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Joe R Delaney
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jung-Hyun Cho
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Waleed Twal
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Dong-Chan Kim
- R&D center, NOSQUEST Inc., Seongnam, Gyeonggi 13494, Republic of Korea
| | - Clarisse H Panganiban
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Xin Zhou
- Department of Cancer Biology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Seula Shin
- Department of Cancer Biology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian Hu
- Department of Cancer Biology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tilman Heise
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany
| | - Sang-Ho Kwon
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Dongsan Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Young Hwa Kim
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung-Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kyungmin Kim
- Department of Biology, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Sydney Lewis
- Department of Oncology Science, College of Medicine, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Ahmet Eroglu
- Department of Oncology Science, College of Medicine, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Seonghyun Ryu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health, Sciences Center, Oklahoma City, OK 73117, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health, Sciences Center, Oklahoma City, OK 73117, USA
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Oncology Science, College of Medicine, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Pathology, College of Medicine, University of Oklahoma, Oklahoma City, OK 73104, USA
| |
Collapse
|
19
|
Piasecka A, Szcześniak M, Sekrecki M, Kajdasz A, Sznajder Ł, Baud A, Sobczak K. MBNL splicing factors regulate the microtranscriptome of skeletal muscles. Nucleic Acids Res 2024; 52:12055-12073. [PMID: 39258536 PMCID: PMC11514471 DOI: 10.1093/nar/gkae774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
Muscleblind like splicing regulators (MBNLs) govern various RNA-processing steps, including alternative splicing, polyadenylation, RNA stability and mRNA intracellular localization. In myotonic dystrophy type 1 (DM1), the most common muscular dystrophy in adults, MBNLs are sequestered on toxic RNA containing expanded CUG repeats, which leads to disruption of MBNL-regulated processes and disease features of DM1. Herein, we show the significance of MBNLs in regulating microtranscriptome dynamics during the postnatal development of skeletal muscles and in microRNA (miRNA) misregulation observed in mouse models and patients with DM1. We identify multiple miRNAs sensitive to MBNL proteins insufficiency and reveal that many of them were postnatally regulated, which correlates with increases in the activity of these proteins during this process. In adult Mbnl1-knockout mice, miRNA expression exhibited an adult-to-newborn shift. We hypothesize that Mbnl1 deficiency influences miRNA levels through a combination of mechanisms. First, the absence of Mbnl1 protein results in alterations to the levels of pri-miRNAs. Second, MBNLs affect miRNA biogenesis by regulating the alternative splicing of miRNA primary transcripts. We propose that the expression of miR-23b, miR-27b and miR-24-1, produced from the same cluster, depends on the MBNL-sensitive inclusion of alternative exons containing miRNA sequences. Our findings suggest that MBNL sequestration in DM1 is partially responsible for altered miRNA activity. This study provides new insights into the biological roles and functions of MBNL proteins as regulators of miRNA expression in skeletal muscles.
Collapse
Affiliation(s)
- Agnieszka Piasecka
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
| | - Michał W Szcześniak
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
| | - Michał Sekrecki
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
| | - Arkadiusz Kajdasz
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
- Laboratory of Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704Poznań, Poland
| | - Łukasz J Sznajder
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89154, USA
| | - Anna Baud
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
| | - Krzysztof Sobczak
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
20
|
Fischer SN, Claussen ER, Kourtis S, Sdelci S, Orchard S, Hermjakob H, Kustatscher G, Drew K. hu.MAP3.0: Atlas of human protein complexes by integration of > 25,000 proteomic experiments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617930. [PMID: 39464102 PMCID: PMC11507723 DOI: 10.1101/2024.10.11.617930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Macromolecular protein complexes carry out most functions in the cell including essential functions required for cell survival. Unfortunately, we lack the subunit composition for all human protein complexes. To address this gap we integrated >25,000 mass spectrometry experiments using a machine learning approach to identify > 15,000 human protein complexes. We show our map of protein complexes is highly accurate and more comprehensive than previous maps, placing ~75% of human proteins into their physical contexts. We globally characterize our complexes using protein co-variation data (ProteomeHD.2) and identify co-varying complexes suggesting common functional associations. Our map also generates testable functional hypotheses for 472 uncharacterized proteins which we support using AlphaFold modeling. Additionally, we use AlphaFold modeling to identify 511 mutually exclusive protein pairs in hu.MAP3.0 complexes suggesting complexes serve different functional roles depending on their subunit composition. We identify expression as the primary way cells and organisms relieve the conflict of mutually exclusive subunits. Finally, we import our complexes to EMBL-EBI's Complex Portal (https://www.ebi.ac.uk/complexportal/home) as well as provide complexes through our hu.MAP3.0 web interface (https://humap3.proteincomplexes.org/). We expect our resource to be highly impactful to the broader research community.
Collapse
Affiliation(s)
- Samantha N. Fischer
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607
| | - Erin R. Claussen
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607
| | - Savvas Kourtis
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sara Sdelci
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sandra Orchard
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Henning Hermjakob
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Georg Kustatscher
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Kevin Drew
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607
| |
Collapse
|
21
|
Ma X, Yue Q, Fu S, Liu C, Luan J. Decellularized adipose-derived matrix from Superficial layers of abdominal adipose tissue exhibits superior capacity of adipogenesis compared to deep layers. Mater Today Bio 2024; 28:101235. [PMID: 39318374 PMCID: PMC11421347 DOI: 10.1016/j.mtbio.2024.101235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 09/26/2024] Open
Abstract
The adipogenic property of decellularized adipose-derived matrix (DAM) varies widely across reports, making it difficult to make a horizontal comparison between reports and posing challenges for the stable clinical translation of DAM. It is possibly due to differences in donor characteristics, but the exact relationship remains unclear. Despite extensive research on the differences between superficial and deep layers of abdominal subcutaneous fat, a main donor of DAM, little is known about their extracellular matrix (ECM) which is promising in regenerative medicine. In this study, we first confirmed the distinct compositional profiles and adipogenic potential between superficial and deep DAM (S-DAM and D-DAM). Both in vitro and in vivo assays confirmed superior adipogenic induction potential in S-DAM over D-DAM. Total amounts of ECM proteins like collagen and laminin were similar, however, the predominant types differed, with collagen I dominating S-DAM and collagen XIV prevailing in D-DAM. S-DAM was enriched with mitochondrial and immunological proteins, whereas D-DAM featured more neuronal, vascular, muscular, and endocrine-related proteins. More proteins involved in mRNA processing were found in D-DAM, with Protein-Protein Interaction (PPI) analysis revealing HNRNPA2B1, HNRNPA1, and HNRNPC as the most tightly interacting members. These findings not only deepen our comprehension of the structural and functional heterogeneity of adipose tissues but also become one of the reason for the large variability between batches of DAM products, providing guidance for constructing more efficient and stable bio-scaffolds.
Collapse
Affiliation(s)
- Xiaomu Ma
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 10014, China
| | - Qiang Yue
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 10014, China
| | - Su Fu
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 10014, China
| | - Chunjun Liu
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 10014, China
| | - Jie Luan
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 10014, China
| |
Collapse
|
22
|
Meshcheryakova A, Bohdan S, Zimmermann P, Jaritz M, Pietschmann P, Mechtcheriakova D. RNA-Binding Proteins as Novel Effectors in Osteoblasts and Osteoclasts: A Systems Biology Approach to Dissect the Transcriptional Landscape. Int J Mol Sci 2024; 25:10417. [PMID: 39408753 PMCID: PMC11476634 DOI: 10.3390/ijms251910417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Bone health is ensured by the coordinated action of two types of cells-the osteoblasts that build up bone structure and the osteoclasts that resorb the bone. The loss of balance in their action results in pathological conditions such as osteoporosis. Central to this study is a class of RNA-binding proteins (RBPs) that regulates the biogenesis of miRNAs. In turn, miRNAs represent a critical level of regulation of gene expression and thus control multiple cellular and biological processes. The impact of miRNAs on the pathobiology of various multifactorial diseases, including osteoporosis, has been demonstrated. However, the role of RBPs in bone remodeling is yet to be elucidated. The aim of this study is to dissect the transcriptional landscape of genes encoding the compendium of 180 RBPs in bone cells. We developed and applied a multi-modular integrative analysis algorithm. The core methodology is gene expression analysis using the GENEVESTIGATOR platform, which is a database and analysis tool for manually curated and publicly available transcriptomic data sets, and gene network reconstruction using the Ingenuity Pathway Analysis platform. In this work, comparative insights into gene expression patterns of RBPs in osteoblasts and osteoclasts were obtained, resulting in the identification of 24 differentially expressed genes. Furthermore, the regulation patterns upon different treatment conditions revealed 20 genes as being significantly up- or down-regulated. Next, novel gene-gene associations were dissected and gene networks were reconstructed. Additively, a set of osteoblast- and osteoclast-specific gene signatures were identified. The consolidation of data and information gained from each individual analytical module allowed nominating novel promising candidate genes encoding RBPs in osteoblasts and osteoclasts and will significantly enhance the understanding of potential regulatory mechanisms directing intracellular processes in the course of (patho)physiological bone turnover.
Collapse
Affiliation(s)
- Anastasia Meshcheryakova
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Serhii Bohdan
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Markus Jaritz
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Peter Pietschmann
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Diana Mechtcheriakova
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
23
|
Fujiwara Y, Takahashi RU, Saito M, Umakoshi M, Shimada Y, Koyama K, Yatabe Y, Watanabe SI, Koyota S, Minamiya Y, Tahara H, Kono K, Shiraishi K, Kohno T, Goto A, Tsuchiya N. Oncofetal IGF2BP3-mediated control of microRNA structural diversity in the malignancy of early-stage lung adenocarcinoma. Proc Natl Acad Sci U S A 2024; 121:e2407016121. [PMID: 39196622 PMCID: PMC11388381 DOI: 10.1073/pnas.2407016121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
The nature of microRNA (miRNA) dysfunction in carcinogenesis remains controversial because of the complex connection between miRNA structural diversity and biological processes. Here, we found that oncofetal IGF2BP3 regulates the selective production of a subset of 3'-isoforms (3'-isomiRs), including miR-21-5p and Let-7 family, which induces significant changes in their cellular seed occupancy and structural components, establishing a cancer-specific gene expression profile. The D-score, reflecting dominant production of a representative miR-21-5p+C (a 3'-isomiR), discriminated between clinical early-stage lung adenocarcinoma (LUAD) cases with low and high recurrence risks, and was associated with molecular features of cell cycle progression, epithelial-mesenchymal transition pressure, and immune evasion. We found that IGF2BP3 controls the production of miR-21-5p+C by directing the nuclear Drosha complex to select the cleavage site. IGF2BP3 was also involved in the production of 3'-isomiRs of miR-425-5p and miR-454-3p. IGF2BP3-regulated these three miRNAs are suggested to be associated with the regulation of p53, TGF-β, and TNF pathways in LUAD. Knockdown of IGF2BP3 also induced a selective upregulation of Let-7 3'-isomiRs, leading to increased cellular Let-7 seed occupancy and broad repression of its target genes encoding cell cycle regulators. The D-score is an index that reflects this cellular situation. Our results suggest that the aberrant regulation of miRNA structural diversity is a critical component for controlling cellular networks, thus supporting the establishment of a malignant gene expression profile in early stage LUAD.
Collapse
Affiliation(s)
- Yuko Fujiwara
- Laboratory of Molecular Carcinogenesis, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Ryou-U Takahashi
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Motonobu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Michinobu Umakoshi
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita 010-8543, Japan
| | - Yoko Shimada
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Kei Koyama
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita 010-8543, Japan
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Shun-Ichi Watanabe
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Souichi Koyota
- Molecular Medicine Laboratory, Bioscience Education and Research Support Center, Akita University, Akita 010-8543, Japan
| | - Yoshihiro Minamiya
- Department of Thoracic Surgery, Akita University Hospital, Akita 010-8543, Japan
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita 010-8543, Japan
| | - Naoto Tsuchiya
- Laboratory of Molecular Carcinogenesis, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| |
Collapse
|
24
|
Downie Ruiz Velasco A, Parsons A, Heatley M, Martin AG, Smart A, Shah N, Jopling C. MicroRNA biogenesis is broadly disrupted by inhibition of the splicing factor SF3B1. Nucleic Acids Res 2024; 52:9210-9229. [PMID: 38884273 PMCID: PMC11347158 DOI: 10.1093/nar/gkae505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/03/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024] Open
Abstract
In animals, microRNA (miRNA) biogenesis begins with cotranscriptional cleavage of the primary (pri-)miRNA by the Microprocessor complex. Cotranscriptional splicing has been shown to influence Microprocessor cleavage when miRNAs are hosted in introns of protein-coding pri-miRNAs, but the impact of splicing on production of miRNAs hosted in long non-coding (lnc)RNAs is largely unknown. Here, we investigated the role of splicing in the biogenesis of miR-122, an lncRNA-hosted, highly expressed, medically important, liver-specific miRNA. We found that splicing inhibition by the SF3B1 inhibitor pladienolide B (PlaB) led to strong and rapid reduction in transcription of endogenous, but not plasmid-encoded, pri-miR-122, resulting in reduced production of mature miR-122. To allow detection of rapid changes in miRNA biogenesis despite the high stability of mature miRNAs, we used SLAMseq to globally quantify the effects of short-term splicing inhibition on miRNA synthesis. We observed an overall decrease in biogenesis of mature miRNAs following PlaB treatment. Surprisingly, miRNAs hosted in exons and introns were similarly affected. Together, this study provides new insights into the emerging role of splicing in transcription, demonstrating novel biological importance in promotion of miR-122 biogenesis from an lncRNA, and shows that SF3B1 is important for global miRNA biogenesis.
Collapse
Affiliation(s)
| | - Aimee L Parsons
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Matthew C Heatley
- The Digital Research Service, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Athena R G Martin
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alfredo D Smart
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Niraj Shah
- The Digital Research Service, University of Nottingham, Nottingham, NG7 2RD, UK
| | | |
Collapse
|
25
|
Lin L, Chu J, An S, Liu X, Tan R. The Biological Mechanisms and Clinical Roles of RNA-Binding Proteins in Cardiovascular Diseases. Biomolecules 2024; 14:1056. [PMID: 39334823 PMCID: PMC11430443 DOI: 10.3390/biom14091056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
RNA-binding proteins (RBPs) have pivotal roles in cardiovascular biology, influencing various molecular mechanisms underlying cardiovascular diseases (CVDs). This review explores the significant roles of RBPs, focusing on their regulation of RNA alternative splicing, polyadenylation, and RNA editing, and their impact on CVD pathogenesis. For instance, RBPs are crucial in myocardial injury, contributing to disease progression and repair mechanisms. This review systematically analyzes the roles of RBPs in myocardial injury, arrhythmias, myocardial infarction, and heart failure, revealing intricate interactions that influence disease outcomes. Furthermore, the potential of RBPs as therapeutic targets for cardiovascular dysfunction is explored, highlighting the advances in drug development and clinical research. This review also discusses the emerging role of RBPs as biomarkers for cardiovascular diseases, offering insights into their diagnostic and prognostic potential. Despite significant progress, current research faces several limitations, which are critically examined. Finally, this review identifies the major challenges and outlines future research directions to advance the understanding and application of RBPs in cardiovascular medicine.
Collapse
Affiliation(s)
- Lizhu Lin
- Department of Anaesthesiology, The First People’s Hospital of Qinzhou, The Tenth Affiliated Hospital of Guangxi Medical University, Qinzhou 535000, China;
| | - Jiemei Chu
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China; (J.C.); (S.A.)
| | - Sanqi An
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China; (J.C.); (S.A.)
| | - Xinli Liu
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China; (J.C.); (S.A.)
| | - Runxian Tan
- Department of Laboratory Medicine, The First People’s Hospital of Qinzhou, The Tenth Affiliated Hospital of Guangxi Medical University, Qinzhou 535000, China
| |
Collapse
|
26
|
Shanley HT, Taki AC, Nguyen N, Wang T, Byrne JJ, Ang CS, Leeming MG, Williamson N, Chang BCH, Jabbar A, Sleebs BE, Gasser RB. Comparative structure activity and target exploration of 1,2-diphenylethynes in Haemonchus contortus and Caenorhabditis elegans. Int J Parasitol Drugs Drug Resist 2024; 25:100534. [PMID: 38554597 PMCID: PMC10992699 DOI: 10.1016/j.ijpddr.2024.100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/01/2024]
Abstract
Infections and diseases caused by parasitic nematodes have a major adverse impact on the health and productivity of animals and humans worldwide. The control of these parasites often relies heavily on the treatment with commercially available chemical compounds (anthelmintics). However, the excessive or uncontrolled use of these compounds in livestock animals has led to major challenges linked to drug resistance in nematodes. Therefore, there is a need to develop new anthelmintics with novel mechanism(s) of action. Recently, we identified a small molecule, designated UMW-9729, with nematocidal activity against the free-living model organism Caenorhabditis elegans. Here, we evaluated UMW-9729's potential as an anthelmintic in a structure-activity relationship (SAR) study in C. elegans and the highly pathogenic, blood-feeding Haemonchus contortus (barber's pole worm), and explored the compound-target relationship using thermal proteome profiling (TPP). First, we synthesised and tested 25 analogues of UMW-9729 for their nematocidal activity in both H. contortus (larvae and adults) and C. elegans (young adults), establishing a preliminary nematocidal pharmacophore for both species. We identified several compounds with marked activity against either H. contortus or C. elegans which had greater efficacy than UMW-9729, and found a significant divergence in compound bioactivity between these two nematode species. We also identified a UMW-9729 analogue, designated 25, that moderately inhibited the motility of adult female H. contortus in vitro. Subsequently, we inferred three H. contortus proteins (HCON_00134350, HCON_00021470 and HCON_00099760) and five C. elegans proteins (F30A10.9, F15B9.8, B0361.6, DNC-4 and UNC-11) that interacted directly with UMW-9729; however, no conserved protein target was shared between the two nematode species. Future work aims to extend the SAR investigation in these and other parasitic nematode species, and validate individual proteins identified here as possible targets of UMW-9729. Overall, the present study evaluates this anthelmintic candidate and highlights some challenges associated with early anthelmintic investigation.
Collapse
Affiliation(s)
- Harrison T Shanley
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia; Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Aya C Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Nghi Nguyen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Joseph J Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Ching-Seng Ang
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Michael G Leeming
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Nicholas Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Bill C H Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Brad E Sleebs
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia; Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
27
|
Duan H, Zhang J, Gui R, Lu Y, Pang A, Chen B, Shen L, Yu H, Li J, Xu T, Wang Y, Yao X, Zhang B, Lin N, Dong X, Zhou Y, Che J. Discovery of a Highly Potent and Selective BRD9 PROTAC Degrader Based on E3 Binder Investigation for the Treatment of Hematological Tumors. J Med Chem 2024; 67:11326-11353. [PMID: 38913763 DOI: 10.1021/acs.jmedchem.4c00883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
BRD9 is a pivotal epigenetic factor involved in cancers and inflammatory diseases. Still, the limited selectivity and poor phenotypic activity of targeted agents make it an atypically undruggable target. PROTAC offers an alternative strategy for overcoming the issue. In this study, we explored diverse E3 ligase ligands for the contribution of BRD9 PROTAC degradation. Through molecular docking, binding affinity analysis, and structure-activity relationship study, we identified a highly potent PROTAC E5, with excellent BRD9 degradation (DC50 = 16 pM) and antiproliferation in MV4-11 cells (IC50 = 0.27 nM) and OCI-LY10 cells (IC50 = 1.04 nM). E5 can selectively degrade BRD9 and induce cell cycle arrest and apoptosis. Moreover, the therapeutic efficacy of E5 was confirmed in xenograft tumor models, accompanied by further RNA-seq analysis. Therefore, these results may pave the way and provide the reference for the discovery and investigation of highly effective PROTAC degraders.
Collapse
Affiliation(s)
- Haiting Duan
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jingyu Zhang
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Cancer Center of Zhejiang University, Hangzhou 310006, P. R. China
- Department of Clinical Pharmacology, Hangzhou Geriatric Hospital, Hangzhou, Zhejiang 310022, P. R. China
| | - Renzhao Gui
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Tsuihang New District, Zhongshan, Guangdong 528400, P. R. China
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, P. R. China
| | - Yang Lu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Ao Pang
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Beijing Chen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Tsuihang New District, Zhongshan, Guangdong 528400, P. R. China
| | - Liteng Shen
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Hengyuan Yu
- State Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jia Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Tsuihang New District, Zhongshan, Guangdong 528400, P. R. China
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, P. R. China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, P. R. China
| | - Tengfei Xu
- State Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuwei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712000, P. R. China
| | - Xiaojun Yao
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, P. R. China
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Cancer Center of Zhejiang University, Hangzhou 310006, P. R. China
- Department of Clinical Pharmacology, Hangzhou Geriatric Hospital, Hangzhou, Zhejiang 310022, P. R. China
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Cancer Center of Zhejiang University, Hangzhou 310006, P. R. China
- Department of Clinical Pharmacology, Hangzhou Geriatric Hospital, Hangzhou, Zhejiang 310022, P. R. China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- State Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yubo Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Tsuihang New District, Zhongshan, Guangdong 528400, P. R. China
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, P. R. China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- State Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
28
|
Bangru S, Chen J, Baker N, Das D, Chembazhi UV, Derham JM, Chorghade S, Arif W, Alencastro F, Duncan AW, Carstens RP, Kalsotra A. ESRP2-microRNA-122 axis directs the postnatal onset of liver polyploidization and maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602336. [PMID: 39026848 PMCID: PMC11257421 DOI: 10.1101/2024.07.06.602336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Hepatocyte polyploidy and maturity are critical to acquiring specialized liver functions. Multiple intra- and extracellular factors influence ploidy, but how they cooperate temporally to steer liver polyploidization and maturation or how post-transcriptional mechanisms integrate into these paradigms is unknown. Here, we identified an important regulatory hierarchy in which postnatal activation of Epithelial-Splicing-Regulatory-Protein-2 (ESRP2) stimulates biogenesis of liver-specific microRNA (miR-122), thereby facilitating polyploidization, maturation, and functional competence of hepatocytes. By determining transcriptome-wide protein-RNA interactions in vivo and integrating them with single-cell and bulk hepatocyte RNA-seq datasets, we delineate an ESRP2-driven RNA processing program that drives sequential replacement of fetal-to-adult transcript isoforms. Specifically, ESRP2 binds the primary miR-122 host gene transcript to promote its processing/biogenesis. Combining constitutive and inducible ESRP2 gain- and loss-of-function mice models with miR-122 rescue experiments, we demonstrate that timed activation of ESRP2 augments miR-122-driven program of cytokinesis failure, ensuring proper onset and extent of hepatocyte polyploidization.
Collapse
|
29
|
Chang JJS, Lin T, Jhang XY, Chan SP. hnRNP Q/SYNCRIP interacts with LIN28B and modulates the LIN28B/let-7 axis in human hepatoma cells. PLoS One 2024; 19:e0304947. [PMID: 38976670 PMCID: PMC11230530 DOI: 10.1371/journal.pone.0304947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/21/2024] [Indexed: 07/10/2024] Open
Abstract
The RNA-binding protein LIN28B represses the biogenesis of the tumor suppressor let-7. The LIN28B/let-7 axis regulates cell differentiation and is associated with various cancers. The RNA-binding protein Q (hnRNP Q) or SYNCRIP (Synaptotagmin Binding Cytoplasmic RNA Interacting Protein) has been implicated in mRNA splicing, mRNA transport, translation, and miRNAs biogenesis as well as metabolism in cancer. To determine whether hnRNP Q plays a role in the LIN28B/let-7 axis, we tested for interactions between hnRNP Q and LIN28B. We demonstrated that hnRNP Q interacts with LIN28B in an RNA-dependent manner. Knockdown of hnRNP Q caused reduced expression of a well-known let-7 target TRIM71, an E3 ubiquitin ligase that belongs to the RBCC/TRIM family, and also LIN28B, whose mRNA itself is down-regulated by let-7. In addition, hnRNP Q knockdown increased let-7 family miRNA levels and reduced the activity of luciferase reporters fused with the TRIM71 3'UTR or a synthetic 3'UTR carrying 8X let-7 complementary sites. Finally, depletion of hnRNP Q inhibited the proliferation of a hepatocellular carcinoma cell line, Huh7. This observation is consistent with the survival curve for liver cancer patients from the TCGA database, which indicates that high expression of hnRNP Q is a prognostic marker for a poor outcome in individuals afflicted with hepatocellular carcinoma. Together, our findings suggest that hnRNP Q interacts with LIN28B and modulates the LIN28B/let-7 axis in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jason Jei-Sheng Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ti Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Xin-Yue Jhang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Peng Chan
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
30
|
Skerrett-Byrne DA, Stanger SJ, Trigg NA, Anderson AL, Sipilä P, Bernstein IR, Lord T, Schjenken JE, Murray HC, Verrills NM, Dun MD, Pang TY, Nixon B. Phosphoproteomic analysis of the adaption of epididymal epithelial cells to corticosterone challenge. Andrology 2024; 12:1038-1057. [PMID: 38576152 DOI: 10.1111/andr.13636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND The epididymis has long been of interest owing to its role in promoting the functional maturation of the male germline. More recent evidence has also implicated the epididymis as an important sensory tissue responsible for remodeling of the sperm epigenome, both under physiological conditions and in response to diverse forms of environmental stress. Despite this knowledge, the intricacies of the molecular pathways involved in regulating the adaptation of epididymal tissue to paternal stressors remains to be fully resolved. OBJECTIVE The overall objective of this study was to investigate the direct impact of corticosterone challenge on a tractable epididymal epithelial cell line (i.e., mECap18 cells), in terms of driving adaptation of the cellular proteome and phosphoproteome signaling networks. MATERIALS AND METHODS The newly developed phosphoproteomic platform EasyPhos coupled with sequencing via an Orbitrap Exploris 480 mass spectrometer, was applied to survey global changes in the mECap18 cell (phospho)proteome resulting from sub-chronic (10-day) corticosterone challenge. RESULTS The imposed corticosterone exposure regimen elicited relatively subtle modifications of the global mECap18 proteome (i.e., only 73 out of 4171 [∼1.8%] proteins displayed altered abundance). By contrast, ∼15% of the mECap18 phosphoproteome was substantially altered following corticosterone challenge. In silico analysis of the corresponding parent proteins revealed an activation of pathways linked to DNA damage repair and oxidative stress responses as well as a reciprocal inhibition of pathways associated with organismal death. Corticosterone challenge also induced the phosphorylation of several proteins linked to the biogenesis of microRNAs. Accordingly, orthogonal validation strategies confirmed an increase in DNA damage, which was ameliorated upon selective kinase inhibition, and an altered abundance profile of a subset of microRNAs in corticosterone-treated cells. CONCLUSIONS Together, these data confirm that epididymal epithelial cells are reactive to corticosterone challenge, and that their response is tightly coupled to the opposing action of cellular kinases and phosphatases.
Collapse
Affiliation(s)
- David A Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Simone J Stanger
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Natalie A Trigg
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Amanda L Anderson
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Petra Sipilä
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Ilana R Bernstein
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Tessa Lord
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - John E Schjenken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Heather C Murray
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Terence Y Pang
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| |
Collapse
|
31
|
Koralewska N, Corradi E, Milewski MC, Masante L, Szczepanska A, Kierzek R, Figlerowicz M, Baudet ML, Kurzynska-Kokorniak A. Short 2'-O-methyl/LNA oligomers as highly-selective inhibitors of miRNA production in vitro and in vivo. Nucleic Acids Res 2024; 52:5804-5824. [PMID: 38676942 PMCID: PMC11162791 DOI: 10.1093/nar/gkae284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
MicroRNAs (miRNAs) that share identical or near-identical sequences constitute miRNA families and are predicted to act redundantly. Yet recent evidence suggests that members of the same miRNA family with high sequence similarity might have different roles and that this functional divergence might be rooted in their precursors' sequence. Current knock-down strategies such as antisense oligonucleotides (ASOs) or miRNA sponges cannot distinguish between identical or near identical miRNAs originating from different precursors to allow exploring unique functions of these miRNAs. We here develop a novel strategy based on short 2'-OMe/LNA-modified oligonucleotides to selectively target specific precursor molecules and ablate the production of individual members of miRNA families in vitro and in vivo. Leveraging the highly conserved Xenopus miR-181a family as proof-of-concept, we demonstrate that 2'-OMe/LNA-ASOs targeting the apical region of pre-miRNAs achieve precursor-selective inhibition of mature miRNA-5p production. Furthermore, we extend the applicability of our approach to the human miR-16 family, illustrating its universality in targeting precursors generating identical miRNAs. Overall, our strategy enables efficient manipulation of miRNA expression, offering a powerful tool to dissect the functions of identical or highly similar miRNAs derived from different precursors within miRNA families.
Collapse
Affiliation(s)
- Natalia Koralewska
- Department of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Eloina Corradi
- Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Trento 38123, Italy
| | - Marek C Milewski
- Department of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Linda Masante
- Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Trento 38123, Italy
| | - Agnieszka Szczepanska
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Ryszard Kierzek
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Marek Figlerowicz
- Department of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Marie-Laure Baudet
- Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Trento 38123, Italy
| | - Anna Kurzynska-Kokorniak
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| |
Collapse
|
32
|
Gu T, Guo R, Fang Y, Xiao Y, Chen L, Li N, Ge XK, Shi Y, Wu J, Yan M, Yu J, Li Z. METTL3-mediated pre-miR-665/DLX3 m 6A methylation facilitates the committed differentiation of stem cells from apical papilla. Exp Mol Med 2024; 56:1426-1438. [PMID: 38825638 PMCID: PMC11263550 DOI: 10.1038/s12276-024-01245-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/16/2024] [Accepted: 03/11/2024] [Indexed: 06/04/2024] Open
Abstract
Methyltransferase-like 3 (METTL3) is a crucial element of N6-methyladenosine (m6A) modifications and has been extensively studied for its involvement in diverse biological and pathological processes. In this study, we explored how METTL3 affects the differentiation of stem cells from the apical papilla (SCAPs) into odonto/osteoblastic lineages through gain- and loss-of-function experiments. The m6A modification levels were assessed using m6A dot blot and activity quantification experiments. In addition, we employed Me-RIP microarray experiments to identify specific targets modified by METTL3. Furthermore, we elucidated the molecular mechanism underlying METTL3 function through dual-luciferase reporter gene experiments and rescue experiments. Our findings indicated that METTL3+/- mice exhibited significant root dysplasia and increased bone loss. The m6A level and odonto/osteoblastic differentiation capacity were affected by the overexpression or inhibition of METTL3. This effect was attributed to the acceleration of pre-miR-665 degradation by METTL3-mediated m6A methylation in cooperation with the "reader" protein YTHDF2. Additionally, the targeting of distal-less homeobox 3 (DLX3) by miR-665 and the potential direct regulation of DLX3 expression by METTL3, mediated by the "reader" protein YTHDF1, were demonstrated. Overall, the METTL3/pre-miR-665/DLX3 pathway might provide a new target for SCAP-based tooth root/maxillofacial bone tissue regeneration.
Collapse
Affiliation(s)
- Tingjie Gu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Rong Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yuxin Fang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ya Xiao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Luyao Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Na Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Xingyun Kelesy Ge
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong SAR, China
| | - Yijia Shi
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jintao Wu
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ming Yan
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jinhua Yu
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| | - Zehan Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China.
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
33
|
Cox RM, Papoulas O, Shril S, Lee C, Gardner T, Battenhouse AM, Lee M, Drew K, McWhite CD, Yang D, Leggere JC, Durand D, Hildebrandt F, Wallingford JB, Marcotte EM. Ancient eukaryotic protein interactions illuminate modern genetic traits and disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.26.595818. [PMID: 38853926 PMCID: PMC11160598 DOI: 10.1101/2024.05.26.595818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
All eukaryotes share a common ancestor from roughly 1.5 - 1.8 billion years ago, a single-celled, swimming microbe known as LECA, the Last Eukaryotic Common Ancestor. Nearly half of the genes in modern eukaryotes were present in LECA, and many current genetic diseases and traits stem from these ancient molecular systems. To better understand these systems, we compared genes across modern organisms and identified a core set of 10,092 shared protein-coding gene families likely present in LECA, a quarter of which are uncharacterized. We then integrated >26,000 mass spectrometry proteomics analyses from 31 species to infer how these proteins interact in higher-order complexes. The resulting interactome describes the biochemical organization of LECA, revealing both known and new assemblies. We analyzed these ancient protein interactions to find new human gene-disease relationships for bone density and congenital birth defects, demonstrating the value of ancestral protein interactions for guiding functional genetics today.
Collapse
Affiliation(s)
- Rachael M Cox
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ophelia Papoulas
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Shirlee Shril
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Chanjae Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Tynan Gardner
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Anna M Battenhouse
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Muyoung Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kevin Drew
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Claire D McWhite
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - David Yang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Janelle C Leggere
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Dannie Durand
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Avenue Pittsburgh, PA 15213, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - John B Wallingford
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
34
|
Hutarew G, Alinger-Scharinger B, Sotlar K, Kraus TFJ. Genome-Wide Methylation Analysis in Two Wild-Type Non-Small Cell Lung Cancer Subgroups with Negative and High PD-L1 Expression. Cancers (Basel) 2024; 16:1841. [PMID: 38791918 PMCID: PMC11119885 DOI: 10.3390/cancers16101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
We conducted a pilot study to analyze the differential methylation status of 20 primary acinar adenocarcinomas of the lungs. These adenocarcinomas had to be wild type in mutation analysis and had either high (TPS > 50%; n = 10) or negative (TPS < 1%; n = 10) PD-L1 status to be integrated into our study. To examine the methylation of 866,895 specific sites, we utilized the Illumina Infinium EPIC bead chip array. Both hypermethylation and hypomethylation play significant roles in tumor development, progression, and metastasis. They also impact the formation of the tumor microenvironment, which plays a decisive role in tumor differentiation, epigenetics, dissemination, and immune evasion. The gained methylation patterns were correlated with PD-L1 expression. Our analysis has identified distinct methylation patterns in lung adenocarcinomas with high and negative PD-L1 expression. After analyzing the correlation between the methylation results of genes and promoters with their pathobiology, we found that tumors with high expression of PD-L1 tend to exhibit oncogenic effects through hypermethylation. On the other hand, tumors with negative PD-L1 expression show loss of their suppressor functions through hypomethylation. The suppressor functions of hypermethylated genes and promoters are ineffective compared to simultaneously activated dominant oncogenic mechanisms. The tumor microenvironment supports tumor growth in both groups.
Collapse
Affiliation(s)
- Georg Hutarew
- Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, Müllner Hauptstr. 48, A-5020 Salzburg, Austria; (B.A.-S.); (K.S.); (T.F.J.K.)
| | | | | | | |
Collapse
|
35
|
Forcella P, Ifflander N, Rolando C, Balta EA, Lampada A, Giachino C, Mukhtar T, Bock T, Taylor V. SAFB regulates hippocampal stem cell fate by targeting Drosha to destabilize Nfib mRNA. eLife 2024; 13:e74940. [PMID: 38722021 PMCID: PMC11149935 DOI: 10.7554/elife.74940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Abstract
Neural stem cells (NSCs) are multipotent and correct fate determination is crucial to guarantee brain formation and homeostasis. How NSCs are instructed to generate neuronal or glial progeny is not well understood. Here, we addressed how murine adult hippocampal NSC fate is regulated and described how scaffold attachment factor B (SAFB) blocks oligodendrocyte production to enable neuron generation. We found that SAFB prevents NSC expression of the transcription factor nuclear factor I/B (NFIB) by binding to sequences in the Nfib mRNA and enhancing Drosha-dependent cleavage of the transcripts. We show that increasing SAFB expression prevents oligodendrocyte production by multipotent adult NSCs, and conditional deletion of Safb increases NFIB expression and oligodendrocyte formation in the adult hippocampus. Our results provide novel insights into a mechanism that controls Drosha functions for selective regulation of NSC fate by modulating the post-transcriptional destabilization of Nfib mRNA in a lineage-specific manner.
Collapse
Affiliation(s)
- Pascal Forcella
- Department of Biomedicine, University of BaselBaselSwitzerland
| | | | - Chiara Rolando
- Department of Biomedicine, University of BaselBaselSwitzerland
- Department of Biosciences, University of MilanMilanItaly
| | - Elli-Anna Balta
- Department of Biomedicine, University of BaselBaselSwitzerland
| | | | | | - Tanzila Mukhtar
- Department of Biomedicine, University of BaselBaselSwitzerland
| | - Thomas Bock
- Proteomics Core Facility, Biozentrum, University of BaselBaselSwitzerland
| | - Verdon Taylor
- Department of Biomedicine, University of BaselBaselSwitzerland
| |
Collapse
|
36
|
Yang Y, Li Y, Sears RC, Sun XX, Dai MS. SUMOylation regulation of ribosome biogenesis: Emerging roles for USP36. FRONTIERS IN RNA RESEARCH 2024; 2:1389104. [PMID: 38764604 PMCID: PMC11101209 DOI: 10.3389/frnar.2024.1389104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Ribosome biogenesis is essential for cell growth, proliferation, and animal development. Its deregulation leads to various human disorders such as ribosomopathies and cancer. Thus, tight regulation of ribosome biogenesis is crucial for normal cell homeostasis. Emerging evidence suggests that posttranslational modifications such as ubiquitination and SUMOylation play a crucial role in regulating ribosome biogenesis. Our recent studies reveal that USP36, a nucleolar deubiquitinating enzyme (DUB), acts also as a SUMO ligase to regulate nucleolar protein group SUMOylation, thereby being essential for ribosome biogenesis. Here, we provide an overview of the current understanding of the SUMOylation regulation of ribosome biogenesis and discuss the role of USP36 in nucleolar SUMOylation.
Collapse
Affiliation(s)
- Yunhan Yang
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Yanping Li
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Rosalie C. Sears
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Xiao-Xin Sun
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Mu-Shui Dai
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
37
|
Hynes C, Kakumani PK. Regulatory role of RNA-binding proteins in microRNA biogenesis. Front Mol Biosci 2024; 11:1374843. [PMID: 38567098 PMCID: PMC10985210 DOI: 10.3389/fmolb.2024.1374843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that silence gene expression through their interaction with complementary sequences in the 3' untranslated regions (UTR) of target mRNAs. miRNAs undergo a series of steps during their processing and maturation, which are tightly regulated to fine-tune their abundance and ability to function in post-transcriptional gene silencing. miRNA biogenesis typically involves core catalytic proteins, namely, Drosha and Dicer, and several other RNA-binding proteins (RBPs) that recognize and interact with miRNA precursors and/or their intermediates, and mature miRNAs along with their interacting proteins. The series of RNA-protein and protein-protein interactions are critical to maintaining miRNA expression levels and their function, underlying a variety of cellular processes. Throughout this article, we review RBPs that play a role in miRNA biogenesis and focus on their association with components of the miRNA pathway with functional consequences in the processing and generation of mature miRNAs.
Collapse
Affiliation(s)
| | - Pavan Kumar Kakumani
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
38
|
Diener C, Keller A, Meese E. The miRNA-target interactions: An underestimated intricacy. Nucleic Acids Res 2024; 52:1544-1557. [PMID: 38033323 PMCID: PMC10899768 DOI: 10.1093/nar/gkad1142] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/23/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
MicroRNAs (miRNAs) play indispensable roles in posttranscriptional gene regulation. Their cellular regulatory impact is determined not solely by their sheer number, which likely amounts to >2000 individual miRNAs in human, than by the regulatory effectiveness of single miRNAs. Although, one begins to develop an understanding of the complex mechanisms underlying miRNA-target interactions (MTIs), the overall knowledge of MTI functionality is still rather patchy. In this critical review, we summarize key features of mammalian MTIs. We especially highlight latest insights on (i) the dynamic make-up of miRNA binding sites including non-canonical binding sites, (ii) the cooperativity between miRNA binding sites, (iii) the adaptivity of MTIs through sequence modifications, (iv) the bearing of intra-cellular miRNA localization changes and (v) the role of cell type and cell status specific miRNA interaction partners. The MTI biology is discussed against the background of state-of-the-art approaches with particular emphasis on experimental strategies for evaluating miRNA functionality.
Collapse
Affiliation(s)
- Caroline Diener
- Saarland University (USAAR), Institute of Human Genetics, 66421 Homburg, Germany
| | - Andreas Keller
- Saarland University (USAAR), Chair for Clinical Bioinformatics, 66123 Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)–Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany
| | - Eckart Meese
- Saarland University (USAAR), Institute of Human Genetics, 66421 Homburg, Germany
| |
Collapse
|
39
|
Luo Y, Li C. Advances in Research Related to MicroRNA for Diabetic Retinopathy. J Diabetes Res 2024; 2024:8520489. [PMID: 38375094 PMCID: PMC10876316 DOI: 10.1155/2024/8520489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/21/2023] [Accepted: 01/27/2024] [Indexed: 02/21/2024] Open
Abstract
Diabetic retinopathy (DR) is a severe microvascular complication of diabetes and is one of the primary causes of blindness in the working-age population in Europe and the United States. At present, no cure is available for DR, but early detection and timely intervention can prevent the rapid progression of the disease. Several treatments for DR are known, primarily ophthalmic treatment based on glycemia, blood pressure, and lipid control, which includes laser photocoagulation, glucocorticoids, vitrectomy, and antivascular endothelial growth factor (anti-VEGF) medications. Despite the clinical efficacy of the aforementioned therapies, none of them can entirely shorten the clinical course of DR or reverse retinopathy. MicroRNAs (miRNAs) are vital regulators of gene expression and participate in cell growth, differentiation, development, and apoptosis. MicroRNAs have been shown to play a significant role in DR, particularly in the molecular mechanisms of inflammation, oxidative stress, and neurodegeneration. The aim of this review is to systematically summarize the signaling pathways and molecular mechanisms of miRNAs involved in the occurrence and development of DR, mainly from the pathogenesis of oxidative stress, inflammation, and neovascularization. Meanwhile, this article also discusses the research progress and application of miRNA-specific therapies for DR.
Collapse
Affiliation(s)
- Yahan Luo
- Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunxia Li
- Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Shanghai, China
| |
Collapse
|
40
|
Sun Y, Wang Y, Wang L, Zou M, Peng X. STAT5-mediated transcription of miR-33-5p in Mycoplasma gallisepticum-infected DF-1 cells. Avian Pathol 2024; 53:68-79. [PMID: 37855868 DOI: 10.1080/03079457.2023.2272617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
RESEARCH HIGHLIGHTS MG-HS regulates the expression of transcription factor STAT5.Transcription factor STAT5 can target miR-33-5p promoter element.MG-influenced STAT5 regulates miR-33-5p and its target gene expression.
Collapse
Affiliation(s)
- Yingfei Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yingjie Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Lulu Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Mengyun Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
41
|
Tzur Y, Dubnov S, Madrer N, Bar A, Nadorp B, Mishra N, Heppenstall P, Bennett ER, Greenberg DS, Winek K, Soreq H. Ribosomal protein L24 mediates mammalian microRNA processing in an evolutionarily conserved manner. Cell Mol Life Sci 2024; 81:55. [PMID: 38261097 PMCID: PMC10805976 DOI: 10.1007/s00018-023-05088-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024]
Abstract
To investigate the mechanism(s) underlying the expression of primate-specific microRNAs (miRs), we sought DNA regulatory elements and proteins mediating expression of the primate-specific hsa-miR-608 (miR-608), which is located in the SEMA4G gene and facilitates the cholinergic blockade of inflammation by targeting acetylcholinesterase mRNA. 'Humanized' mice carrying pre-miR-608 flanked by 250 bases of endogenous sequences inserted into the murine Sema4g gene successfully expressed miR-608. Moreover, by flanking miR-608 by shortened fragments of its human genome region we identified an active independent promoter within the 150 nucleotides 5' to pre-miR-608, which elevated mature miR-608 levels by 100-fold in transfected mouse- and human-originated cells. This highlighted a regulatory role of the 5' flank as enabling miR-608 expression. Moreover, pull-down of the 150-base 5' sequence revealed its interaction with ribosomal protein L24 (RPL24), implicating an additional mechanism controlling miR-608 levels. Furthermore, RPL24 knockdown altered the expression of multiple miRs, and RPL24 immunoprecipitation indicated that up- or down-regulation of the mature miRs depended on whether their precursors bind RPL24 directly. Finally, further tests showed that RPL24 interacts directly with DDX5, a component of the large microprocessor complex, to inhibit miR processing. Our findings reveal that RPL24, which has previously been shown to play a role in miR processing in Arabidopsis thaliana, has a similar evolutionarily conserved function in miR biogenesis in mammals. We thus characterize a novel extra-ribosomal role of RPL24 in primate miR regulation.
Collapse
Affiliation(s)
- Yonat Tzur
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel
| | - Serafima Dubnov
- The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat Ram, Jerusalem, Israel
| | - Nimrod Madrer
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel
| | - Adi Bar
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel
| | - Bettina Nadorp
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel
- , New York City, USA
| | - Nibha Mishra
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel
- , Waltham, USA
| | | | - Estelle R Bennett
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel
| | - David S Greenberg
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel
| | - Katarzyna Winek
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel.
- The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat Ram, Jerusalem, Israel.
- Leibniz Institute on Aging, Fritz Lipmann Institute, Beutenbergstraße 11, 07745, Jena, Germany.
| | - Hermona Soreq
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel.
- The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat Ram, Jerusalem, Israel.
| |
Collapse
|
42
|
Dharmadhikari AV, Abad MA, Khan S, Maroofian R, Sands TT, Ullah F, Samejima I, Wear MA, Moore KE, Kondakova E, Mitina N, Schaub T, Lee GK, Umandap CH, Berger SM, Iglesias AD, Popp B, Jamra RA, Gabriel H, Rentas S, Rippert AL, Izumi K, Conlin LK, Koboldt DC, Mosher TM, Hickey SE, Albert DVF, Norwood H, Lewanda AF, Dai H, Liu P, Mitani T, Marafi D, Pehlivan D, Posey JE, Lippa N, Vena N, Heinzen EL, Goldstein DB, Mignot C, de Sainte Agathe JM, Al-Sannaa NA, Zamani M, Sadeghian S, Azizimalamiri R, Seifia T, Zaki MS, Abdel-Salam GMH, Abdel-Hamid M, Alabdi L, Alkuraya FS, Dawoud H, Lofty A, Bauer P, Zifarelli G, Afzal E, Zafar F, Efthymiou S, Gossett D, Towne MC, Yeneabat R, Wontakal SN, Aggarwal VS, Rosenfeld JA, Tarabykin V, Ohta S, Lupski JR, Houlden H, Earnshaw WC, Davis EE, Jeyaprakash AA, Liao J. RNA methyltransferase SPOUT1/CENP-32 links mitotic spindle organization with the neurodevelopmental disorder SpADMiSS. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.09.23300329. [PMID: 38260255 PMCID: PMC10802637 DOI: 10.1101/2024.01.09.23300329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
SPOUT1/CENP-32 encodes a putative SPOUT RNA methyltransferase previously identified as a mitotic chromosome associated protein. SPOUT1/CENP-32 depletion leads to centrosome detachment from the spindle poles and chromosome misalignment. Aided by gene matching platforms, we identified 24 individuals with neurodevelopmental delays from 18 families with bi-allelic variants in SPOUT1/CENP-32 detected by exome/genome sequencing. Zebrafish spout1/cenp-32 mutants showed reduction in larval head size with concomitant apoptosis likely associated with altered cell cycle progression. In vivo complementation assays in zebrafish indicated that SPOUT1/CENP-32 missense variants identified in humans are pathogenic. Crystal structure analysis of SPOUT1/CENP-32 revealed that most disease-associated missense variants mapped to the catalytic domain. Additionally, SPOUT1/CENP-32 recurrent missense variants had reduced methyltransferase activity in vitro and compromised centrosome tethering to the spindle poles in human cells. Thus, SPOUT1/CENP-32 pathogenic variants cause an autosomal recessive neurodevelopmental disorder: SpADMiSS ( SPOUT1 Associated Development delay Microcephaly Seizures Short stature) underpinned by mitotic spindle organization defects and consequent chromosome segregation errors.
Collapse
|
43
|
Verbeeren J, Teixeira J, Garcia SMDA. The Muscleblind-like protein MBL-1 regulates microRNA expression in Caenorhabditis elegans through an evolutionarily conserved autoregulatory mechanism. PLoS Genet 2023; 19:e1011109. [PMID: 38134228 PMCID: PMC10773944 DOI: 10.1371/journal.pgen.1011109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/08/2024] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The Muscleblind-like (MBNL) family is a highly conserved set of RNA-binding proteins (RBPs) that regulate RNA metabolism during the differentiation of various animal tissues. Functional insufficiency of MBNL affects muscle and central nervous system development, and contributes to the myotonic dystrophies (DM), a set of incurable multisystemic disorders. Studies on the regulation of MBNL genes are essential to provide insight into the gene regulatory networks controlled by MBNL proteins and to understand how dysregulation within these networks causes disease. In this study, we demonstrate the evolutionary conservation of an autoregulatory mechanism that governs the function of MBNL proteins by generating two distinct protein isoform types through alternative splicing. Our aim was to further our understanding of the regulatory principles that underlie this conserved feedback loop in a whole-organismal context, and to address the biological significance of the respective isoforms. Using an alternative splicing reporter, our studies show that, during development of the Caenorhabditis elegans central nervous system, the orthologous mbl-1 gene shifts production from long protein isoforms that localize to the nucleus to short isoforms that also localize to the cytoplasm. Using isoform-specific CRISPR/Cas9-generated strains, we showed that expression of short MBL-1 protein isoforms is required for healthy neuromuscular function and neurodevelopment, while expression of long MBL-1 protein isoforms is dispensable, emphasizing a key role for cytoplasmic functionalities of the MBL-1 protein. Furthermore, RNA-seq and lifespan analyses indicated that short MBL-1 isoforms are crucial regulators of miRNA expression and, in consequence, required for normal lifespan. In conclusion, this study provides support for the disruption of cytoplasmic RNA metabolism as a contributor in myotonic dystrophy and paves the way for further exploration of miRNA regulation through MBNL proteins during development and in disease models.
Collapse
Affiliation(s)
- Jens Verbeeren
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Joana Teixeira
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
44
|
Shang R, Lee S, Senavirathne G, Lai EC. microRNAs in action: biogenesis, function and regulation. Nat Rev Genet 2023; 24:816-833. [PMID: 37380761 PMCID: PMC11087887 DOI: 10.1038/s41576-023-00611-y] [Citation(s) in RCA: 318] [Impact Index Per Article: 159.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 06/30/2023]
Abstract
Ever since microRNAs (miRNAs) were first recognized as an extensive gene family >20 years ago, a broad community of researchers was drawn to investigate the universe of small regulatory RNAs. Although core features of miRNA biogenesis and function were revealed early on, recent years continue to uncover fundamental information on the structural and molecular dynamics of core miRNA machinery, how miRNA substrates and targets are selected from the transcriptome, new avenues for multilevel regulation of miRNA biogenesis and mechanisms for miRNA turnover. Many of these latest insights were enabled by recent technological advances, including massively parallel assays, cryogenic electron microscopy, single-molecule imaging and CRISPR-Cas9 screening. Here, we summarize the current understanding of miRNA biogenesis, function and regulation, and outline challenges to address in the future.
Collapse
Affiliation(s)
- Renfu Shang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Seungjae Lee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Gayan Senavirathne
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| |
Collapse
|
45
|
Ding S, Pang X, Luo S, Gao H, Li B, Yue J, Chen J, Hu S, Tu Z, He D, Kuang Y, Dong Z, Zhang M. Dynamic RBM47 ISGylation confers broad immunoprotection against lung injury and tumorigenesis via TSC22D3 downregulation. Cell Death Discov 2023; 9:430. [PMID: 38036512 PMCID: PMC10689852 DOI: 10.1038/s41420-023-01736-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023] Open
Abstract
ISGylation is a well-established antiviral mechanism, but its specific function in immune and tissue homeostasis regulation remains elusive. Here, we reveal that the RNA-binding protein RBM47 undergoes phosphorylation-dependent ISGylation at lysine 329 to regulate immune activation and maintain lung homeostasis. K329R knockin (KI) mice with defective RBM47-ISGylation display heightened susceptibility to LPS-induced acute lung injury and lung tumorigenesis, accompanied with multifaceted immunosuppression characterized by elevated pro-inflammatory factors, reduced IFNs/related chemokines, increased myeloid-derived suppressor cells, and impaired tertiary lymphoid structures. Mechanistically, RBM47-ISGylation regulation of the expression of TSC22D3 mRNA, a glucocorticoid-inducible transcription factor, partially accounts for the effects of RBM47-ISGylation deficiency due to its broad immunosuppressive activity. We further demonstrate the direct inhibitory effect of RBM47-ISGylation on TSC22D3 expression in human cells using a nanobody-targeted E3 ligase to induce site-specific ISGylation. Furthermore, epinephrine-induced S309 phosphorylation primes RBM47-ISGylation, with epinephrine treatment exacerbating dysregulated cytokine expression and ALI induction in K329R KI mice. Our findings provide mechanistic insights into the dynamic regulation of RBM47-ISGylation in supporting immune activation and maintaining lung homeostasis.
Collapse
Affiliation(s)
- Shihui Ding
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xiquan Pang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Huili Gao
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Li
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junqiu Yue
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Pathology, Hubei Cancer Hospital, Tongji Medical College, 430079, Wuhan, China
| | - Jian Chen
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Head and Neck Surgery, Hubei Cancer Hospital, Tongji Medical College, 430079, Wuhan, China
| | - Sheng Hu
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Oncology, Hubei Cancer Hospital, Tongji Medical College, Wuhan, 430079, China
| | - Zepeng Tu
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dong He
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Youyi Kuang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, No. 232, Hesong Street, Daoli District, Harbin, 150070, China
| | - Zhiqiang Dong
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Min Zhang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
46
|
Ho WY, Chak LL, Hor JH, Liu F, Diaz-Garcia S, Chang JC, Sanford E, Rodriguez MJ, Alagappan D, Lim SM, Cho YL, Shimizu Y, Sun AX, Tyan SH, Koo E, Kim SH, Ravits J, Ng SY, Okamura K, Ling SC. FUS-dependent microRNA deregulations identify TRIB2 as a druggable target for ALS motor neurons. iScience 2023; 26:108152. [PMID: 37920668 PMCID: PMC10618709 DOI: 10.1016/j.isci.2023.108152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
MicroRNAs (miRNAs) modulate mRNA expression, and their deregulation contributes to various diseases including amyotrophic lateral sclerosis (ALS). As fused in sarcoma (FUS) is a causal gene for ALS and regulates biogenesis of miRNAs, we systematically analyzed the miRNA repertoires in spinal cords and hippocampi from ALS-FUS mice to understand how FUS-dependent miRNA deregulation contributes to ALS. miRNA profiling identified differentially expressed miRNAs between different central nervous system (CNS) regions as well as disease states. Among the up-regulated miRNAs, miR-1197 targets the pro-survival pseudokinase Trib2. A reduced TRIB2 expression was observed in iPSC-derived motor neurons from ALS patients. Pharmacological stabilization of TRIB2 protein with a clinically approved cancer drug rescues the survival of iPSC-derived human motor neurons, including those from a sporadic ALS patient. Collectively, our data indicate that miRNA profiling can be used to probe the molecular mechanisms underlying selective vulnerability, and TRIB2 is a potential therapeutic target for ALS.
Collapse
Affiliation(s)
- Wan Yun Ho
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
- Programs in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Li-Ling Chak
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
- Temasek Lifesciences Laboratory, Singapore 117604, Singapore
| | - Jin-Hui Hor
- Institute of Molecular and Cellular Biology, A∗STAR Research Entities, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Fujia Liu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Sandra Diaz-Garcia
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jer-Cherng Chang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Emma Sanford
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Maria J. Rodriguez
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Durgadevi Alagappan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Su Min Lim
- Department of Neurology, Biomedical Research Institute, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Yik-Lam Cho
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Yuji Shimizu
- Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Alfred Xuyang Sun
- Programs in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Sheue-Houy Tyan
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Edward Koo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Seung Hyun Kim
- Department of Neurology, Biomedical Research Institute, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - John Ravits
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shi-Yan Ng
- Institute of Molecular and Cellular Biology, A∗STAR Research Entities, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Katsutomo Okamura
- Temasek Lifesciences Laboratory, Singapore 117604, Singapore
- Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Shuo-Chien Ling
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
- Programs in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| |
Collapse
|
47
|
Schreiber S, Daum P, Danzer H, Hauke M, Jäck HM, Wittmann J. Identification of miR-128 Target mRNAs That Are Expressed in B Cells Using a Modified Dual Luciferase Vector. Biomolecules 2023; 13:1517. [PMID: 37892199 PMCID: PMC10605364 DOI: 10.3390/biom13101517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
MicroRNAs (miRNAs) are 21-25 nucleotide long non-coding ribonucleic acids that modulate gene expression by degrading transcripts or inhibiting translation. The miRNA miR-128, originally thought to be brain-specific, was later also found in immune cells. To identify a valuable immune cell model system to modulate endogenous miR-128 amounts and to validate predicted miR-128 target mRNAs in B cells, we first investigated miR-128 expression using Northern blot analysis in several cell lines representing different stages of B cell development. The results showed that only primary brain cells showed significant levels of mature miR-128. To study the function of miR-128 in immune cells, we modified dual luciferase vectors to allow easy transfer of 3' UTR fragments with predicted miR-128 binding sites from widely used single to dual luciferase vectors. Comparison of in silico predicted miR-128-regulated mRNAs in single and dual luciferase constructs yielded similar results, validating the dual luciferase vector for miRNA target analysis. Furthermore, we confirmed miR-128-regulated mRNAs identified in silico and in vivo using the Ago HITS-CLIP technique and known to be expressed in B cells using the dual luciferase assay. In conclusion, this study provides new insights into the expression and function of miR-128 by validating novel target mRNAs expressed in B cells and identifying additional pathways likely controlled by this miRNA in the immune system.
Collapse
Affiliation(s)
| | | | | | | | | | - Jürgen Wittmann
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center of Molecular Medicine (NFZ), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glückstraße 6, D-91054 Erlangen, Germany
| |
Collapse
|
48
|
Asghariazar V, Kadkhodayi M, Sarailoo M, Jolfayi AG, Baradaran B. MicroRNA-143 as a potential tumor suppressor in cancer: An insight into molecular targets and signaling pathways. Pathol Res Pract 2023; 250:154792. [PMID: 37689002 DOI: 10.1016/j.prp.2023.154792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/25/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
MicroRNAs (MiRNAs), which are highly conserved and small noncoding RNAs, negatively regulate gene expression and influence signaling pathways involved in essential biological activities, including cell proliferation, differentiation, apoptosis, and cell invasion. MiRNAs have received much attention in the past decade due to their significant roles in cancer development. In particular, microRNA-143 (miR-143) is recognized as a tumor suppressor and is downregulated in most cancers. However, it seems that miR-143 is upregulated in rare cases, such as prostate cancer stem cells, and acts as an oncogene. The present review will outline the current studies illustrating the impact of miR-143 expression levels on cancer progression and discuss its target genes and their relevant signaling pathways to discover a potential therapeutic way for cancer.
Collapse
Affiliation(s)
- Vahid Asghariazar
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Deputy of Research and Technology, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mahtab Kadkhodayi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Animal Biology, Faculty of Natural Sciences, The University of Tabriz, Tabriz, Iran
| | - Mehdi Sarailoo
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amir Ghaffari Jolfayi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
49
|
Ma S, Kotar A, Hall I, Grote S, Rouskin S, Keane SC. Structure of pre-miR-31 reveals an active role in Dicer-TRBP complex processing. Proc Natl Acad Sci U S A 2023; 120:e2300527120. [PMID: 37725636 PMCID: PMC10523476 DOI: 10.1073/pnas.2300527120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/01/2023] [Indexed: 09/21/2023] Open
Abstract
As an essential posttranscriptional regulator of gene expression, microRNA (miRNA) levels must be strictly maintained. The biogenesis of many miRNAs is mediated by trans-acting protein partners through a variety of mechanisms, including remodeling of the RNA structure. miR-31 functions as an oncogene in numerous cancers, and interestingly, its biogenesis is not known to be regulated by protein-binding partners. Therefore, the intrinsic structural properties of the precursor element of miR-31 (pre-miR-31) can provide a mechanism by which its biogenesis is regulated. We determined the solution structure of pre-miR-31 to investigate the role of distinct structural elements in regulating processing by the Dicer-TRBP complex. We found that the presence or absence of mismatches within the helical stem does not strongly influence Dicer-TRBP processing of the pre-miRNAs. However, both the apical loop size and structure at the Dicing site are key elements for discrimination by the Dicer-TRBP complex. Interestingly, our NMR-derived structure reveals the presence of a triplet of base pairs that link the Dicer cleavage site and the apical loop. Mutational analysis in this region suggests that the stability of the junction region strongly influences processing by the Dicer-TRBP complex. Our results enrich our understanding of the active role that RNA structure plays in regulating miRNA biogenesis, which has direct implications for the control of gene expression.
Collapse
Affiliation(s)
- Sicong Ma
- Biophysics Program, University of Michigan, Ann Arbor, MI48109
| | - Anita Kotar
- Biophysics Program, University of Michigan, Ann Arbor, MI48109
| | - Ian Hall
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Scott Grote
- Department of Microbiology, Harvard Medical School,Boston, MA02115
| | - Silvi Rouskin
- Department of Microbiology, Harvard Medical School,Boston, MA02115
| | - Sarah C. Keane
- Biophysics Program, University of Michigan, Ann Arbor, MI48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
50
|
Huntzinger E, Sinteff J, Morlet B, Séraphin B. HELZ2: a new, interferon-regulated, human 3'-5' exoribonuclease of the RNB family is expressed from a non-canonical initiation codon. Nucleic Acids Res 2023; 51:9279-9293. [PMID: 37602378 PMCID: PMC10516660 DOI: 10.1093/nar/gkad673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/27/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023] Open
Abstract
Proteins containing a RNB domain, originally identified in Escherichia coli RNase II, are widely present throughout the tree of life. Many RNB proteins have 3'-5' exoribonucleolytic activity but some have lost catalytic activity during evolution. Database searches identified a new RNB domain-containing protein in human: HELZ2. Analysis of genomic and expression data combined with evolutionary information suggested that the human HELZ2 protein is produced from an unforeseen non-canonical initiation codon in Hominidae. This unusual property was confirmed experimentally, extending the human protein by 247 residues. Human HELZ2 was further shown to be an active ribonuclease despite the substitution of a key residue in its catalytic center. HELZ2 RNase activity is lost in cells from some cancer patients as a result of somatic mutations. HELZ2 harbors also two RNA helicase domains and several zinc fingers and its expression is induced by interferon treatment. We demonstrate that HELZ2 is able to degrade structured RNAs through the coordinated ATP-dependent displacement of duplex RNA mediated by its RNA helicase domains and its 3'-5' ribonucleolytic action. The expression characteristics and biochemical properties of HELZ2 support a role for this factor in response to viruses and/or mobile elements.
Collapse
Affiliation(s)
- Eric Huntzinger
- Institut de Génétique et de Biologie Moléculaire et cellulaire (IGBMC), Centre National de Recherche scientifique (CNRS) UMR 7104 - Institut National de santé et de Recherche Médicale (Inserm) U1258 - Université de Strasbourg, 1 rue Laurent Fries, Illkirch, France
| | - Jordan Sinteff
- Institut de Génétique et de Biologie Moléculaire et cellulaire (IGBMC), Centre National de Recherche scientifique (CNRS) UMR 7104 - Institut National de santé et de Recherche Médicale (Inserm) U1258 - Université de Strasbourg, 1 rue Laurent Fries, Illkirch, France
| | - Bastien Morlet
- Institut de Génétique et de Biologie Moléculaire et cellulaire (IGBMC), Centre National de Recherche scientifique (CNRS) UMR 7104 - Institut National de santé et de Recherche Médicale (Inserm) U1258 - Université de Strasbourg, 1 rue Laurent Fries, Illkirch, France
| | - Bertrand Séraphin
- Institut de Génétique et de Biologie Moléculaire et cellulaire (IGBMC), Centre National de Recherche scientifique (CNRS) UMR 7104 - Institut National de santé et de Recherche Médicale (Inserm) U1258 - Université de Strasbourg, 1 rue Laurent Fries, Illkirch, France
| |
Collapse
|