1
|
Ouyang WO, Lv H, Liu W, Lei R, Mou Z, Pholcharee T, Talmage L, Tong M, Wang Y, Dailey KE, Gopal AB, Choi D, Ardagh MR, Rodriguez LA, Dai X, Wu NC. High-throughput synthesis and specificity characterization of natively paired antibodies using oPool + display. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.30.610421. [PMID: 39257766 PMCID: PMC11383711 DOI: 10.1101/2024.08.30.610421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Antibody discovery is crucial for developing therapeutics and vaccines as well as understanding adaptive immunity. However, the lack of approaches to synthesize antibodies with defined sequences in a high-throughput manner represents a major bottleneck in antibody discovery. Here, we presented oPool+ display, a high-throughput cell-free platform that combined oligo pool synthesis and mRNA display to rapidly construct and characterize many natively paired antibodies in parallel. As a proof-of-concept, we applied oPool+ display to probe the binding specificity of >300 uncommon influenza hemagglutinin (HA) antibodies against 9 HA variants through 16 different screens. Over 5,000 binding tests were performed in 3-5 days with further scaling potential. Follow-up structural analysis of two HA stem antibodies revealed the previously unknown versatility of IGHD3-3 gene segment in recognizing the HA stem. Overall, this study established an experimental platform that not only accelerate antibody characterization, but also enable unbiased discovery of antibody molecular signatures.
Collapse
Affiliation(s)
- Wenhao O Ouyang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Huibin Lv
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wenkan Liu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ruipeng Lei
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zongjun Mou
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Tossapol Pholcharee
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Logan Talmage
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Meixuan Tong
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yiquan Wang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Katrine E Dailey
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Akshita B Gopal
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Danbi Choi
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Madison R Ardagh
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lucia A Rodriguez
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xinghong Dai
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Nicholas C Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Chen Y, Liu X, Li J, Liu X. Development of a Sensitive Enzyme Immunoassay Using Phage-Displayed Antigen-Binding Fragments for Zearalenone Detection in Cereal Samples. Foods 2025; 14:746. [PMID: 40077448 PMCID: PMC11898766 DOI: 10.3390/foods14050746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Zearalenone (ZEN), a non-steroidal estrogenic mycotoxin, contaminates animal feed and grain crops, thereby entering the food chain and posing a significant threat to human health. Consequently, there is an urgent need for a sensitive and rapid method for detecting trace levels of ZEN. In this study, we developed a phage-displayed antigen-binding fragment (Fab-phage) and established a Fab-phage-based enzyme-linked immunosorbent assay (Fab-pELISA) for ZEN detection. Under optimal conditions, this method exhibits a half-maximal inhibitory concentration of 0.36 ng/mL, with a linear range from 0.07 to 3.89 ng/mL and a detection limit of 0.03 ng/mL. The method demonstrates high selectivity towards ZEN and good recovery rates of 97.35-122.66% with relative standard deviations not exceeding 3.5%. Furthermore, the detection results obtained using Fab-pELISA on real cereal samples are consistent with those from high-performance liquid chromatography, meeting practical application requirements. Therefore, the Fab-phage serves as a valuable biochemical reagent, and the established Fab-pELISA represents a promising analytical strategy for detecting ZEN and other trace toxic contaminants in cereals.
Collapse
Affiliation(s)
| | | | | | - Xing Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China (X.L.); (J.L.)
| |
Collapse
|
3
|
Chorpunkul A, Boonyuen U, Limkittikul K, Saengseesom W, Phongphaew W, Putchong I, Chankeeree P, Theerawatanasirikul S, Hajitou A, Benjathummarak S, Pitaksajjakul P, Lekcharoensuk P, Ramasoota P. Development of novel canine phage display-derived neutralizing monoclonal antibody fragments against rabies virus from immunized dogs. Sci Rep 2024; 14:22939. [PMID: 39358469 PMCID: PMC11447112 DOI: 10.1038/s41598-024-73339-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Animal rabies is a potentially fatal infectious disease in mammals, especially dogs. Currently, the number of rabies cases in pet dogs is increasing in several regions of Thailand. However, no passive postexposure prophylaxis (PEP) has been developed to combat rabies infection in animals. As monoclonal antibodies (MAbs) are promising biological therapies for postinfection, we developed a canine-neutralizing MAb against rabies virus (RABV) via the single-chain variable fragment (scFv) platform. Immunized phage-displaying scFv libraries were constructed from PBMCs via the pComb3XSS system. Diverse canine VHVLκ and VHVLλ libraries containing 2.4 × 108 and 1.3 × 106 clones, respectively, were constructed. Five unique clones that show binding affinity with the RABV glycoprotein were then selected, of which K9RABVscFv1 and K9RABVscFv16 showed rapid fluorescent foci inhibition test (RFFIT) neutralizing titers above the human protective level of 0.5 IU/ml. Finally, in silico docking predictions revealed that the residues on the CDRs of these neutralizing clones interact mainly with similar antigenic sites II and III on the RABV glycoprotein. These candidates may be used to develop complete anti-RABV MAbs as a novel PEP protocol in pet dogs and other animals.
Collapse
Affiliation(s)
- Apidsada Chorpunkul
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Kriengsak Limkittikul
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Wachiraporn Saengseesom
- Queen Saovabha Memorial Institute (WHO Collaborating Center for Research on Rabies), Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Wallaya Phongphaew
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Iyarath Putchong
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Penpitcha Chankeeree
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Sirin Theerawatanasirikul
- Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Amin Hajitou
- Cancer Phage Therapy Group, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Surachet Benjathummarak
- Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Pannamthip Pitaksajjakul
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Porntippa Lekcharoensuk
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Pongrama Ramasoota
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
- Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
4
|
Lu RM, Hsu HE, Perez SJLP, Kumari M, Chen GH, Hong MH, Lin YS, Liu CH, Ko SH, Concio CAP, Su YJ, Chang YH, Li WS, Wu HC. Current landscape of mRNA technologies and delivery systems for new modality therapeutics. J Biomed Sci 2024; 31:89. [PMID: 39256822 PMCID: PMC11389359 DOI: 10.1186/s12929-024-01080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Realizing the immense clinical potential of mRNA-based drugs will require continued development of methods to safely deliver the bioactive agents with high efficiency and without triggering side effects. In this regard, lipid nanoparticles have been successfully utilized to improve mRNA delivery and protect the cargo from extracellular degradation. Encapsulation in lipid nanoparticles was an essential factor in the successful clinical application of mRNA vaccines, which conclusively demonstrated the technology's potential to yield approved medicines. In this review, we begin by describing current advances in mRNA modifications, design of novel lipids and development of lipid nanoparticle components for mRNA-based drugs. Then, we summarize key points pertaining to preclinical and clinical development of mRNA therapeutics. Finally, we cover topics related to targeted delivery systems, including endosomal escape and targeting of immune cells, tumors and organs for use with mRNA vaccines and new treatment modalities for human diseases.
Collapse
Affiliation(s)
- Ruei-Min Lu
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Hsiang-En Hsu
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | | | - Monika Kumari
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Taipei, 11529, Taiwan
| | - Guan-Hong Chen
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Ming-Hsiang Hong
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Yin-Shiou Lin
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Ching-Hang Liu
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Shih-Han Ko
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | | | - Yi-Jen Su
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Taipei, 11529, Taiwan
| | - Yi-Han Chang
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Wen-Shan Li
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan.
- Institute of Chemistry, Academia Sinica, No. 128, Academia Road, Section 2, Taipei, 11529, Taiwan.
| | - Han-Chung Wu
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Taipei, 11529, Taiwan.
| |
Collapse
|
5
|
Adame M, Vázquez H, Juárez-López D, Corzo G, Amezcua M, López D, González Z, Schcolnik-Cabrera A, Morales-Martínez A, Villegas E. Expression and characterization of scFv-6009FV in Pichia pastoris with improved ability to neutralize the neurotoxin Cn2 from Centruroides noxius. Int J Biol Macromol 2024; 275:133461. [PMID: 38945343 DOI: 10.1016/j.ijbiomac.2024.133461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Small single-chain variable fragments (scFv) are promising biomolecules to inhibit and neutralize toxins and to act as antivenoms. In this work, we aimed to produce a functional scFv-6009FV in the yeast Pichia pastoris, which inhibits the pure Cn2 neurotoxin and the whole venom of Centruroides noxius. We were able to achieve yields of up to 31.6 ± 2 mg/L in flasks. Furthermore, the protein showed a structure of 6.1 % α-helix, 49.1 % β-sheet, and 44.8 % of random coil by CD. Mass spectrometry confirmed the amino acid sequence and showed no glycosylation profile for this molecule. Purified scFv-6009FV allowed us to develop anti-scFvs in rabbits, which were then used in affinity columns to purify other scFvs. Determination of its half-maximal inhibitory concentration value (IC50) was 40 % better than the scFvs produced by E. coli as a control. Finally, we found that scFv-6009FV was able to inhibit ex vivo the pure Cn2 toxin and the whole venom from C. noxius in murine rescue experiments. These results demonstrated that under the conditions assayed here, P. pastoris is suited to produce scFv-6009FV that, compared to scFvs produced by E. coli, maintains the characteristics of an antibody and neutralizes the Cn2 toxin more effectively.
Collapse
Affiliation(s)
- Mariel Adame
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Hilda Vázquez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Daniel Juárez-López
- Instituto de Investigaciones Biomédicas, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Mónica Amezcua
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Daniela López
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Zuriel González
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | | | - Adriana Morales-Martínez
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Elba Villegas
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México.
| |
Collapse
|
6
|
McConnell SA, Casadevall A. Immunoglobulin constant regions provide stabilization to the paratope and enforce epitope specificity. J Biol Chem 2024; 300:107397. [PMID: 38763332 PMCID: PMC11215335 DOI: 10.1016/j.jbc.2024.107397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024] Open
Abstract
Constant domains in antibody molecules at the level of the Fab (CH1 and CL) have long been considered to be simple scaffolding elements that physically separate the paratope-defining variable (V) region from the effector function-mediating constant (C) regions. However, due to recent findings that C domains of different isotypes can modulate the fine specificity encoded in the V region, elucidating the role of C domains in shaping the paratope and influencing specificity is a critical area of interest. To dissect the relative contributions of each C domain to this phenomenon, we generated antibody fragments with different C regions omitted, using a set of antibodies targeting capsular polysaccharides from the fungal pathogen, Cryptococcus neoformans. Antigen specificity mapping and functional activity measurements revealed that V region-only antibody fragments exhibited poly-specificity to antigenic variants and extended to recognition of self-antigens, while measurable hydrolytic activity of the capsule was greatly attenuated. To better understand the mechanistic origins of the remarkable loss of specificity that accompanies the removal of C domains from identical paratopes, we performed molecular dynamics simulations which revealed increased paratope plasticity in the scFv relative to the corresponding Fab. Together, our results provide insight into how the remarkable specificity of immunoglobulins is governed and maintained at the level of the Fab through the enforcement of structural restrictions on the paratope by CH1 domains.
Collapse
Affiliation(s)
- Scott A McConnell
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
| |
Collapse
|
7
|
Kim M, McCann JJ, Fortner J, Randall E, Chen C, Chen Y, Yaari Z, Wang Y, Koder RL, Heller DA. Quantum Defect Sensitization via Phase-Changing Supercharged Antibody Fragments. J Am Chem Soc 2024; 146:12454-12462. [PMID: 38687180 PMCID: PMC11498269 DOI: 10.1021/jacs.4c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Quantum defects in single-walled carbon nanotubes promote exciton localization, which enables potential applications in biodevices and quantum light sources. However, the effects of local electric fields on the emissive energy states of quantum defects and how they can be controlled are unexplored. Here, we investigate quantum defect sensitization by engineering an intrinsically disordered protein to undergo a phase change at a quantum defect site. We designed a supercharged single-chain antibody fragment (scFv) to enable a full ligand-induced folding transition from an intrinsically disordered state to a compact folded state in the presence of a cytokine. The supercharged scFv was conjugated to a quantum defect to induce a substantial local electric change upon ligand binding. Employing the detection of a proinflammatory biomarker, interleukin-6, as a representative model system, supercharged scFv-coupled quantum defects exhibited robust fluorescence wavelength shifts concomitant with the protein folding transition. Quantum chemical simulations suggest that the quantum defects amplify the optical response to the localization of charges produced upon the antigen-induced folding of the proteins, which is difficult to achieve in unmodified nanotubes. These findings portend new approaches to modulate quantum defect emission for biomarker sensing and protein biophysics and to engineer proteins to modulate binding signal transduction.
Collapse
Affiliation(s)
- Mijin Kim
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - James J. McCann
- Department of Physics, City College of New York, New York, NY 10031, USA
| | - Jacob Fortner
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Ewelina Randall
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Chen Chen
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-institutional PhD Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Yu Chen
- Department of Physics, City College of New York, New York, NY 10031, USA
| | - Zvi Yaari
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA
- School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9190500, Israel
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Ronald L. Koder
- Department of Physics, City College of New York, New York, NY 10031, USA
- Graduate Programs of Physics, Biology, Chemistry, and Biochemistry, The Graduate Center of City College of New York, New York, NY 10016, USA
| | - Daniel A. Heller
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-institutional PhD Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
8
|
Das PK, Sahoo A, Veeranki VD. Recombinant monoclonal antibody production in yeasts: Challenges and considerations. Int J Biol Macromol 2024; 266:131379. [PMID: 38580014 DOI: 10.1016/j.ijbiomac.2024.131379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Monoclonal antibodies (mAbs) are laboratory-based engineered protein molecules with a monovalent affinity or multivalent avidity towards a specific target or antigen, which can mimic natural antibodies that are produced in the human immune systems to fight against detrimental pathogens. The recombinant mAb is one of the most effective classes of biopharmaceuticals produced in vitro by cloning and expressing synthetic antibody genes in a suitable host. Yeast is one of the potential hosts among others for the successful production of recombinant mAbs. However, there are very few yeast-derived mAbs that got the approval of the regulatory agencies for direct use for treatment purposes. Certain challenges encountered by yeasts for recombinant antibody productions need to be overcome and a few considerations related to antibody structure, host engineering, and culturing strategies should be followed for the improved production of mAbs in yeasts. In this review, the drawbacks related to the metabolic burden of the host, culturing conditions including induction mechanism and secretion efficiency, solubility and stability, downstream processing, and the pharmacokinetic behavior of the antibody are discussed, which will help in developing the yeast hosts for the efficient production of recombinant mAbs.
Collapse
Affiliation(s)
- Prabir Kumar Das
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ansuman Sahoo
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Venkata Dasu Veeranki
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
9
|
Yoshikawa M, Senda M, Nakamura H, Oda-Ueda N, Ueda T, Senda T, Ohkuri T. Stabilization of adalimumab Fab through the introduction of disulfide bonds between the variable and constant domains. Biochem Biophys Res Commun 2024; 700:149592. [PMID: 38295648 DOI: 10.1016/j.bbrc.2024.149592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/17/2024]
Abstract
Fab is a promising format for antibody drug. Therefore, efforts have been made to improve its thermal stability for therapeutic and commercial use. So far, we have attempted to introduce a disulfide bond into the Fab fragment to improve its thermal stability and demonstrated that it is possible to do this without sacrificing its biochemical function. In this study, to develop a novel stabilization strategy for Fab, we attempted to introduce a disulfide bond between the variable and constant domains and prepared three variants of Fab; H:G10C + H:P210C, L:P40C + L:E165C, and H:G10C + H:P210C + L:P40C + L:E165C. Differential scanning calorimetry measurements showed that each of these variants had improved thermal stability. In addition, the variants with two disulfide bonds demonstrated a 6.5 °C increase in their denaturation temperatures compared to wild-type Fab. The introduction of disulfide bonds was confirmed by X-ray crystallography, and the variants retained their antigen-binding activity. The variants were also found to be less aggregative than the wild type. Our results demonstrate that the introduction of a disulfide bond between the variable and constant domains significantly improves the thermal stability of Fab.
Collapse
Affiliation(s)
| | - Miki Senda
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Japan
| | | | - Naoko Oda-Ueda
- Faculty of Pharmaceutical Sciences, Sojo University, Japan
| | - Tadashi Ueda
- Graduate School of Pharmaceutical Sciences, Kyushu University, Japan
| | - Toshiya Senda
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Japan; Department of Accelerator Science, School of High Energy Accelerator Science, SOKENDAI, Japan; Faculty of Pure and Applied Sciences, University of Tsukuba, Japan
| | | |
Collapse
|
10
|
Dübel S. Can antibodies be "vegan"? A guide through the maze of today's antibody generation methods. MAbs 2024; 16:2343499. [PMID: 38634488 PMCID: PMC11028021 DOI: 10.1080/19420862.2024.2343499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
There is no doubt that today's life sciences would look very different without the availability of millions of research antibody products. Nevertheless, the use of antibody reagents that are poorly characterized has led to the publication of false or misleading results. The use of laboratory animals to produce research antibodies has also been criticized. Surprisingly, both problems can be addressed with the same technology. This review charts today's maze of different antibody formats and the various methods for antibody production and their interconnections, ultimately concluding that sequence-defined recombinant antibodies offer a clear path to both improved quality of experimental data and reduced use of animals.
Collapse
Affiliation(s)
- Stefan Dübel
- Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
11
|
Zhang M, Lam KP, Xu S. Natural Killer Cell Engagers (NKCEs): a new frontier in cancer immunotherapy. Front Immunol 2023; 14:1207276. [PMID: 37638058 PMCID: PMC10450036 DOI: 10.3389/fimmu.2023.1207276] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/03/2023] [Indexed: 08/29/2023] Open
Abstract
Natural Killer (NK) cells are a type of innate lymphoid cells that play a crucial role in immunity by killing virally infected or tumor cells and secreting cytokines and chemokines. NK cell-mediated immunotherapy has emerged as a promising approach for cancer treatment due to its safety and effectiveness. NK cell engagers (NKCEs), such as BiKE (bispecific killer cell engager) or TriKE (trispecific killer cell engager), are a novel class of antibody-based therapeutics that exhibit several advantages over other cancer immunotherapies harnessing NK cells. By bridging NK and tumor cells, NKCEs activate NK cells and lead to tumor cell lysis. A growing number of NKCEs are currently undergoing development, with some already in clinical trials. However, there is a need for more comprehensive studies to determine how the molecular design of NKCEs affects their functionality and manufacturability, which are crucial for their development as off-the-shelf drugs for cancer treatment. In this review, we summarize current knowledge on NKCE development and discuss critical factors required for the production of effective NKCEs.
Collapse
Affiliation(s)
- Minchuan Zhang
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Kong-Peng Lam
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore, Singapore
| | - Shengli Xu
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Okazaki K, Kobashigawa Y, Morita H, Yamauchi S, Fukuda N, Liu C, Toyota Y, Sato T, Morioka H. Molecular Dynamics-Based Design and Biophysical Evaluation of Thermostable Single-Chain Fv Antibody Mutants Derived from Pharmaceutical Antibodies. ACS OMEGA 2023; 8:22945-22954. [PMID: 37396255 PMCID: PMC10308585 DOI: 10.1021/acsomega.3c01948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023]
Abstract
Antibody drugs are denatured under physical stress, e.g., friction, heat, and freezing, which triggers formation of aggregates and resultant allergic reactions. Design of a stable antibody is thus critical for the development of antibody drugs. Here, we obtained a thermostable single-chain Fv (scFv) antibody clone by rigidifying the flexible region. We first conducted a short molecular dynamics (MD) simulation (3 runs of 50 ns) to search for weak spots in the scFv antibody, i.e., flexible regions located outside the CDR (complementarity determining region) and the interface between the heavy-chain and light-chain variable regions. We then designed a thermostable mutant and evaluated it by means of a short MD simulation (3 runs of 50 ns) based on reductions in the root-mean-square fluctuation (RMSF) values and formation of new hydrophilic interactions around the weak spot. Finally, we designed the VL-R66G mutant by applying our strategy to scFv derived from trastuzumab. Trastuzumab scFv variants were prepared by using an Escherichia coli expression system, and the melting temperature-measured as a thermostability index-was 5 °C higher than that of the wild-type trastuzumab scFv, while the antigen-binding affinity was unchanged. Our strategy required few computational resources, and would be applicable to antibody drug discovery.
Collapse
|
13
|
Alonso Villela SM, Kraïem-Ghezal H, Bouhaouala-Zahar B, Bideaux C, Aceves Lara CA, Fillaudeau L. Production of recombinant scorpion antivenoms in E. coli: current state and perspectives. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12578-1. [PMID: 37199752 DOI: 10.1007/s00253-023-12578-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Scorpion envenomation is a serious health problem in tropical and subtropical zones. The access to scorpion antivenom is sometimes limited in availability and specificity. The classical production process is cumbersome, from the hyper-immunization of the horses to the IgG digestion and purification of the F(ab)'2 antibody fragments. The production of recombinant antibody fragments in Escherichia coli is a popular trend due to the ability of this microbial host to produce correctly folded proteins. Small recombinant antibody fragments, such as single-chain variable fragments (scFv) and nanobodies (VHH), have been constructed to recognize and neutralize the neurotoxins responsible for the envenomation symptoms in humans. They are the focus of interest of the most recent studies and are proposed as potentially new generation of pharmaceuticals for their use in immunotherapy against scorpion stings of the Buthidae family. This literature review comprises the current status on the scorpion antivenom market and the analyses of cross-reactivity of commercial scorpion anti-serum against non-specific scorpion venoms. Recent studies on the production of new recombinant scFv and nanobodies will be presented, with a focus on the Androctonus and Centruroides scorpion species. Protein engineering-based technology could be the key to obtaining the next generation of therapeutics capable of neutralizing and cross-reacting against several types of scorpion venoms. KEY POINTS: • Commercial antivenoms consist of predominantly purified equine F(ab)'2fragments. • Nanobody-based antivenom can neutralize Androctonus venoms and have a low immunogenicity. • Affinity maturation and directed evolution are used to obtain potent scFv families against Centruroides scorpions.
Collapse
Affiliation(s)
| | - Hazar Kraïem-Ghezal
- Laboratoire Des Venins Et Molécules Thérapeutiques, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur BP74, 1002, Tunis, Tunisia
| | - Balkiss Bouhaouala-Zahar
- Laboratoire Des Venins Et Molécules Thérapeutiques, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur BP74, 1002, Tunis, Tunisia.
- Faculté de Médecine de Tunis, Université de Tunis El Manar, Tunis, Tunisia.
| | - Carine Bideaux
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | | | - Luc Fillaudeau
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
14
|
Chang MR, Ke H, Losada Miguéns L, Coherd C, Nguyen K, Kamkaew M, Johnson R, Storm N, Honko A, Zhu Q, Griffiths A, Marasco WA. The variable conversion of neutralizing anti-SARS-CoV-2 single-chain antibodies to IgG provides insight into RBD epitope accessibility. Protein Eng Des Sel 2023; 36:gzad008. [PMID: 37561410 PMCID: PMC10505556 DOI: 10.1093/protein/gzad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 08/11/2023] Open
Abstract
Monoclonal antibody (mAb) therapies have rapidly become a powerful class of therapeutics with applications covering a diverse range of clinical indications. Though most widely used for the treatment of cancer, mAbs are also playing an increasing role in the defense of viral infections, most recently with palivizumab for prevention and treatment of severe RSV infections in neonatal and pediatric populations. In addition, during the COVID-19 pandemic, mAbs provided a bridge to the rollout of vaccines; however, their continued role as a therapeutic option for those at greatest risk of severe disease has become limited due to the emergence of neutralization resistant Omicron variants. Although there are many techniques for the identification of mAbs, including single B cell cloning and immunization of genetically engineered mice, the low cost, rapid throughput and technological simplicity of antibody phage display has led to its widespread adoption in mAb discovery efforts. Here we used our 27-billion-member naïve single-chain antibody (scFv) phage library to identify a panel of neutralizing anti-SARS-CoV-2 scFvs targeting diverse epitopes on the receptor binding domain (RBD). Although typically a routine process, we found that upon conversion to IgG, a number of our most potent clones failed to maintain their neutralization potency. Kinetic measurements confirmed similar affinity to the RBD; however, mechanistic studies provide evidence that the loss of neutralization is a result of structural limitations likely arising from initial choice of panning antigen. Thus this work highlights a risk of scFv-phage panning to mAb conversion and the importance of initial antigen selection.
Collapse
Affiliation(s)
- Matthew R Chang
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Hanzhong Ke
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Laura Losada Miguéns
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Christian Coherd
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Katrina Nguyen
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Maliwan Kamkaew
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Rebecca Johnson
- Department of Virology, Immunology, and Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA
| | - Nadia Storm
- Department of Virology, Immunology, and Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA
| | - Anna Honko
- Department of Virology, Immunology, and Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA
| | - Quan Zhu
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Anthony Griffiths
- Department of Virology, Immunology, and Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA
| | - Wayne A Marasco
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
15
|
An effective strategy for the humanization of antibody fragments under an accelerated timeline. Int J Biol Macromol 2022; 216:465-474. [PMID: 35803408 DOI: 10.1016/j.ijbiomac.2022.06.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/22/2022]
Abstract
The use of monoclonal antibodies (mAbs) in therapy is gradually advancing and discussions entail its safety, rentability and effectiveness. To this date, around a hundred mAbs have been approved by the FDA for the treatment of various diseases. Aiming for their large-scale production, recombinant DNA technology is mainly employed, and antibodies can be expressed in various eukaryotic and prokaryotic systems. Moreover, considering their heterologous origin and potential immunogenicity, various strategies have been developed for mAb humanization, considering that around 50 % of commercial mAbs are humanized. Hence, we introduce LimAb7, a mouse mAb capable of binding and neutralizing brown spider's Loxosceles intermedia dermonecrotic toxins in vivo/in vitro. This antibody has been produced in mouse and humanized scFv and diabody formats, however results indicated losses in antigen-binding affinity, stability, and neutralizing ability. Intending to develop evolved, stable, and neutralizing antibody fragments, we report for the first time the design of humanized antibody V-domains produced as Fab fragments, against spider venom toxins. Improvements in constructs were observed regarding their physicochemical stability, target binding and binding pattern maintenance. As their neutralizing features remain to be characterized, we believe this data sheds new light on antibody humanization by producing a parental molecule in different recombinant formats.
Collapse
|
16
|
Ledsgaard L, Ljungars A, Rimbault C, Sørensen CV, Tulika T, Wade J, Wouters Y, McCafferty J, Laustsen AH. Advances in antibody phage display technology. Drug Discov Today 2022; 27:2151-2169. [PMID: 35550436 DOI: 10.1016/j.drudis.2022.05.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/24/2022] [Accepted: 05/04/2022] [Indexed: 01/06/2023]
Abstract
Phage display technology can be used for the discovery of antibodies for research, diagnostic, and therapeutic purposes. In this review, we present and discuss key parameters that can be optimized when performing phage display selection campaigns, including the use of different antibody formats and advanced strategies for antigen presentation, such as immobilization, liposomes, nanodiscs, virus-like particles, and whole cells. Furthermore, we provide insights into selection strategies that can be used for the discovery of antibodies with complex binding requirements, such as targeting a specific epitope, cross-reactivity, or pH-dependent binding. Lastly, we provide a description of specialized phage display libraries for the discovery of bispecific antibodies and pH-sensitive antibodies. Together, these methods can be used to improve antibody discovery campaigns against all types of antigen. Teaser: This review provides an overview of the different strategies that can be exploited to improve the success rate of antibody phage display discovery campaigns, addressing key parameters, such as antigen presentation, selection methodologies, and specialized libraries.
Collapse
Affiliation(s)
- Line Ledsgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Charlotte Rimbault
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Christoffer V Sørensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Tulika Tulika
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Jack Wade
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Yessica Wouters
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - John McCafferty
- Department of Medicine, Addenbrookes Hospital, Box 157, Hills Road, Cambridge, CB2 0QQ, UK; Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
17
|
Geddie ML, Kirpotin DB, Kohli N, Kornaga T, Boll B, Razlog M, Drummond DC, Lugovskoy AA. Development of disulfide-stabilized Fabs for targeting of antibody-directed nanotherapeutics. MAbs 2022; 14:2083466. [PMID: 35708974 PMCID: PMC9225506 DOI: 10.1080/19420862.2022.2083466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibody-directed nanotherapeutics (ADNs) represent a promising delivery platform for selective delivery of an encapsulated drug payload to the site of disease that improves the therapeutic index. Although both single-chain Fv (scFv) and Fab antibody fragments have been used for targeting, no platform approach applicable to any target has emerged. scFv can suffer from intrinsic instability, and the Fabs are challenging to use due to native disulfide over-reduction and resulting impurities at the end of the conjugation process. This occurs because of the close proximity of the disulfide bond connecting the heavy and light chain to the free cysteine at the C-terminus, which is commonly used as the conjugation site. Here we show that by engineering an alternative heavy chain-light chain disulfide within the Fab, we can maintain efficient conjugation while eliminating the process impurities and retaining stability. We have demonstrated the utility of this technology for efficient ADN delivery and internalization for a series of targets, including EphA2, EGFR, and ErbB2. We expect that this technology will be broadly applicable for targeting of nanoparticle encapsulated payloads, including DNA, mRNA, and small molecules.
Collapse
Affiliation(s)
- Melissa L Geddie
- Discovery, Merrimack Pharmaceuticals, Inc, Cambridge, Massachusetts, USA.,Research & Development, Diagonal Therapeutics, Cambridge, Massachusetts, USA
| | - Dmitri B Kirpotin
- Discovery, Merrimack Pharmaceuticals, Inc, Cambridge, Massachusetts, USA.,Research & Development, Akagera Medicines, San Francisco, CA, USA
| | - Neeraj Kohli
- Discovery, Merrimack Pharmaceuticals, Inc, Cambridge, Massachusetts, USA.,Janssen Research & Development, Spring House, Pennsylvania, USA
| | - Tad Kornaga
- Discovery, Merrimack Pharmaceuticals, Inc, Cambridge, Massachusetts, USA
| | - Bjoern Boll
- Discovery, Merrimack Pharmaceuticals, Inc, Cambridge, Massachusetts, USA.,Drug Product Design, ten23 Health, Basel, Switzerland
| | - Maja Razlog
- Discovery, Merrimack Pharmaceuticals, Inc, Cambridge, Massachusetts, USA.,Research, Verseau Therapeutics, Bedford, Massachusetts, USA
| | - Daryl C Drummond
- Discovery, Merrimack Pharmaceuticals, Inc, Cambridge, Massachusetts, USA.,Research & Development, Akagera Medicines, San Francisco, CA, USA
| | - Alexey A Lugovskoy
- Discovery, Merrimack Pharmaceuticals, Inc, Cambridge, Massachusetts, USA.,Research & Development, Diagonal Therapeutics, Cambridge, Massachusetts, USA
| |
Collapse
|
18
|
Asaadi Y, Jouneghani FF, Janani S, Rahbarizadeh F. A comprehensive comparison between camelid nanobodies and single chain variable fragments. Biomark Res 2021; 9:87. [PMID: 34863296 PMCID: PMC8642758 DOI: 10.1186/s40364-021-00332-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
By the emergence of recombinant DNA technology, many antibody fragments have been developed devoid of undesired properties of natural immunoglobulins. Among them, camelid heavy-chain variable domains (VHHs) and single-chain variable fragments (scFvs) are the most favored ones. While scFv is used widely in various applications, camelid antibodies (VHHs) can serve as an alternative because of their superior chemical and physical properties such as higher solubility, stability, smaller size, and lower production cost. Here, these two counterparts are compared in structure and properties to identify which one is more suitable for each of their various therapeutic, diagnosis, and research applications.
Collapse
Affiliation(s)
- Yasaman Asaadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Fazlollahi Jouneghani
- Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Sara Janani
- Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
19
|
Non-Antibody-Based Binders for the Enrichment of Proteins for Analysis by Mass Spectrometry. Biomolecules 2021; 11:biom11121791. [PMID: 34944435 PMCID: PMC8698613 DOI: 10.3390/biom11121791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 02/07/2023] Open
Abstract
There is often a need to isolate proteins from body fluids, such as plasma or serum, prior to further analysis with (targeted) mass spectrometry. Although immunoglobulin or antibody-based binders have been successful in this regard, they possess certain disadvantages, which stimulated the development and validation of alternative, non-antibody-based binders. These binders are based on different protein scaffolds and are often selected and optimized using phage or other display technologies. This review focuses on several non-antibody-based binders in the context of enriching proteins for subsequent liquid chromatography-mass spectrometry (LC-MS) analysis and compares them to antibodies. In addition, we give a brief introduction to approaches for the immobilization of binders. The combination of non-antibody-based binders and targeted mass spectrometry is promising in areas, like regulated bioanalysis of therapeutic proteins or the quantification of biomarkers. However, the rather limited commercial availability of these binders presents a bottleneck that needs to be addressed.
Collapse
|
20
|
Enhancing Antibodies' Binding Capacity through Oriented Functionalization of Plasmonic Surfaces. NANOMATERIALS 2021; 11:nano11102620. [PMID: 34685056 PMCID: PMC8538552 DOI: 10.3390/nano11102620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 11/29/2022]
Abstract
Protein A has long been used in different research fields due to its ability to specifically recognize immunoglobulins (Ig). The protein derived from Staphylococcus aureus binds Ig through the Fc region of the antibody, showing its strongest binding in immunoglobulin G (IgG), making it the most used protein in its purification and detection. The research presented here integrates, for the first time, protein A to a silicon surface patterned with gold nanoparticles for the oriented binding of IgG. The signal detection is conveyed through a metal enhanced fluorescence (MEF) system. Orienting immunoglobulins allows the exposition of the fragment antigen-binding (Fab) region for the binding to its antigen, substantially increasing the binding capacity per antibody immobilized. Antibodies orientation is of crucial importance in many diagnostics devices, particularly when either component is in limited quantities.
Collapse
|
21
|
Facile Generation of Potent Bispecific Fab via Sortase A and Click Chemistry for Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13184540. [PMID: 34572769 PMCID: PMC8467688 DOI: 10.3390/cancers13184540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The formats of bispecific antibody have been investigated for many years to enhance the stability of the structure and anti-tumor efficacy. One of the formats combining two Fabs at their C termini provides unmodified variable region and comparable activity to other fragment-based bispecific antibodies that are usually combined in a head-to-tail manner. However, the current strategy to produce the BiFab molecule is limited to a semisynthetic method that introduces unnatural amino acid to antibodies’ sequences during production. To improve the application of BiFab format in investigational biodrugs, we have applied sortase A-mediated “bio-click” chemistry to generate BiFab, for facile assembly of Fab molecules that have been expressed and stored as BiFab module candidates. The BiFabs made by our method stimulate T cell proliferation and activation with favorable in vitro and in vivo anti-tumor activit. Our results indicate that BiFab made by sortase A-mediated click chemistry could be used to efficiently generate various BiFabs with high potency, which further supports personalized tumor immunotherapy in the future. Abstract Bispecific antibodies (BsAbs) for T cell engagement have shown great promise in cancer immunotherapy, and their clinical applications have been proven in treating hematological malignance. Bispecific antibody binding fragment (BiFab) represents a promising platform for generating non-Fc bispecific antibodies. However, the generation of BiFab is still challenging, especially by means of chemical conjugation. More conjugation strategies, e.g., enzymatic conjugation and modular BiFab preparation, are needed to improve the robustness and flexibility of BiFab preparation. We successfully used chemo-enzymatic conjugation approach to generate bispecific antibody (i.e., BiFab) with Fabs from full-length antibodies. Paired click handles (e.g., N3 and DBCO) was introduced to the C-terminal LPETG tag of Fabs via sortase A mediated transpeptidation, followed by site-specific conjugation between two click handle-modified Fabs for BiFab generation. Both BiFabCD20/CD3 (EC50 = 0.26 ng/mL) and BiFabHer2/CD3 exhibited superior efficacy in mediating T cells, from either PBMC or ATC, to kill target tumor cell lines while spared antigen-negative tumor cells in vitro. The BiFabCD20/CD3 also efficiently inhibited CD20-positive tumor growth in mouse xenograft model. We have established a facile sortase A-mediated click handle installation to generate homogeneous and functional BiFabs. The exemplary BiFabs against different targets showed superior efficacy in redirecting and activating T cells to specifically kill target tumor cells, demonstrating the robustness of sortase A-mediated “bio-click” chemistry in generating various potent BiFabs. This approach also holds promise for further efficient construction of a Fab derivative library for personalized tumor immunotherapy in the future.
Collapse
|
22
|
Ma H, Cassedy A, O'Kennedy R. The role of antibody-based troponin detection in cardiovascular disease: A critical assessment. J Immunol Methods 2021; 497:113108. [PMID: 34329690 PMCID: PMC8412434 DOI: 10.1016/j.jim.2021.113108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/13/2021] [Accepted: 07/24/2021] [Indexed: 01/19/2023]
Abstract
Cardiovascular disease has remained the world's biggest killer for 30 years. To aid in the diagnosis and prognosis of patients suffering cardiovascular-related disease accurate detection methods are essential. For over 20 years, the cardiac-specific troponins, I (cTnI) and T (cTnT), have acted as sensitive and specific biomarkers to assist in the diagnosis of various types of heart diseases. Various cardiovascular complications were commonly detected in patients with COVID-19, where cTn elevation is detectable, which suggested potential great prognostic value of cTn in COVID-19-infected patients. Detection of these biomarkers circulating in the bloodstream is generally facilitated by immunoassays employing cTnI- and/or cTnT-specific antibodies. While several anti-troponin assays are commercially available, there are still obstacles to overcome to achieve optimal troponin detection. Such obstacles include the proteolytic degradation of N and C terminals on cTnI, epitope occlusion of troponin binding-sites by the cTnI/cTnT complex, cross reactivity of antibodies with skeletal troponins or assay interference caused by human anti-species antibodies. Therefore, further research into multi-antibody based platforms, multi-epitope targeting and rigorous validation of immunoassays is required to ensure accurate measurements. Moreover, with combination and modification of various latest technical (e.g. microfluidics), antibody-based troponin detection systems can be more specific, sensitive and rapid which could be incorporated into portable biosensor systems to be used at point-of care.
Collapse
Affiliation(s)
- Hui Ma
- School of Biotechnology, Dublin City University, Dublin 9 D09 V2O9, Ireland
| | - Arabelle Cassedy
- School of Biotechnology, Dublin City University, Dublin 9 D09 V2O9, Ireland
| | - Richard O'Kennedy
- School of Biotechnology, Dublin City University, Dublin 9 D09 V2O9, Ireland; Qatar Foundation and Hamad Bin Khalifa University, Research Complex, Education City, Doha, Qatar.
| |
Collapse
|
23
|
Fernández-Taboada G, Riaño-Umbarila L, Olvera-Rodríguez A, Gómez-Ramírez IV, Losoya-Uribe LF, Becerril B. The venom of the scorpion Centruroides limpidus, which causes the highest number of stings in Mexico, is neutralized by two recombinant antibody fragments. Mol Immunol 2021; 137:247-255. [PMID: 34298407 DOI: 10.1016/j.molimm.2021.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022]
Abstract
Phage display and directed evolution have made it possible to generate recombinant antibodies in the format of single chain variable fragments (scFvs) capable of neutralizing different toxins and venoms of Mexican scorpions. Despite having managed to neutralize a significant number of venoms, some others have not yet been completely neutralized, due to the diversity of the toxic components present in them. An example is the venom of the scorpion Centruroides limpidus, which contains three toxins of medical importance, called Cll1, Cll2 and Cl13. The first two are neutralized by scFv 10FG2, while Cl13, due to its sequence divergence, was not even recognized. For this reason, the aim of the present work was the generation of a new scFv capable of neutralizing Cl13 toxin and thereby helping to neutralize the whole venom of this scorpion. By hybridoma technology, a monoclonal antibody (mAb B7) was generated, which was able to recognize and partially neutralize Cl13 toxin. From mAb B7, its scFv format was obtained, named scFv B7 and subjected to three cycles of directed evolution. At the end of these processes, scFv 11F which neutralized Cl13 toxin was obtained. This scFv, administered in conjunction with scFv 10FG2, allowed to fully neutralize the whole venom of Centruroides limpidus scorpion.
Collapse
Affiliation(s)
- Guillermo Fernández-Taboada
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico.
| | - Lidia Riaño-Umbarila
- Cátedra CONACYT, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico.
| | - Alejandro Olvera-Rodríguez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico.
| | - Ilse Viridiana Gómez-Ramírez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico.
| | - Luis Fernando Losoya-Uribe
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico.
| | - Baltazar Becerril
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico.
| |
Collapse
|
24
|
Enderle L, Shalaby KH, Gorelik M, Weiss A, Blazer LL, Paduch M, Cardarelli L, Kossiakoff A, Adams JJ, Sidhu SS. A T cell redirection platform for co-targeting dual antigens on solid tumors. MAbs 2021; 13:1933690. [PMID: 34190031 PMCID: PMC8253144 DOI: 10.1080/19420862.2021.1933690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
In order to direct T cells to specific features of solid cancer cells, we engineered a bispecific antibody format, named Dual Antigen T cell Engager (DATE), by fusing a single-chain variable fragment targeting CD3 to a tumor-targeting antigen-binding fragment. In this format, multiple novel paratopes against different tumor antigens were able to recruit T-cell cytotoxicity to tumor cells in vitro and in an in vivo pancreatic ductal adenocarcinoma xenograft model. Since unique surface antigens in solid tumors are limited, in order to enhance selectivity, we further engineered “double-DATEs” targeting two tumor antigens simultaneously. The double-DATE contains an additional autonomous variable heavy-chain domain, which binds a second tumor antigen without itself eliciting a cytotoxic response. This novel modality provides a strategy to enhance the selectivity of immune redirection through binary targeting of native tumor antigens. The modularity and use of a common, stable human framework for all components enables a pipeline approach to rapidly develop a broad repertoire of tailored DATEs and double-DATEs with favorable biophysical properties and high potencies and selectivities.
Collapse
Affiliation(s)
- Leonie Enderle
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Karim H Shalaby
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Maryna Gorelik
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Alexander Weiss
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Levi L Blazer
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Marcin Paduch
- Institute for Biophysical Dynamics, Gordon Center for Integrative Science, Chicago, USA
| | - Lia Cardarelli
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Anthony Kossiakoff
- Institute for Biophysical Dynamics, Gordon Center for Integrative Science, Chicago, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, USA
| | - Jarrett J Adams
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Sachdev S Sidhu
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
25
|
Elter A, Bogen JP, Hinz SC, Fiebig D, Macarrón Palacios A, Grzeschik J, Hock B, Kolmar H. Humanization of Chicken-Derived scFv Using Yeast Surface Display and NGS Data Mining. Biotechnol J 2020; 16:e2000231. [PMID: 33078896 DOI: 10.1002/biot.202000231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/06/2020] [Indexed: 01/17/2023]
Abstract
Generation of high-affinity monoclonal antibodies by immunization of chickens is a valuable strategy, particularly for obtaining antibodies directed against epitopes that are conserved in mammals. A generic procedure is established for the humanization of chicken-derived antibodies. To this end, high-affinity binders of the epidermal growth factor receptor extracellular domain are isolated from immunized chickens using yeast surface display. Complementarity determining regions (CDRs) of two high-affinity binders are grafted onto a human acceptor framework. Simultaneously, Vernier zone residues, responsible for spatial CDR arrangement, are partially randomized. A yeast surface display library comprising ≈300 000 variants is screened for high-affinity binders in the scFv and Fab formats. Next-generation sequencing discloses humanized antibody variants with restored affinity and improved protein characteristics compared to the parental chicken antibodies. Furthermore, the sequencing data give new insights into the importance of antibody format, used during the humanization process. Starting from the antibody repertoire of immunized chickens, this work features an effective and fast high-throughput approach for the generation of multiple humanized antibodies with potential therapeutic relevance.
Collapse
Affiliation(s)
- Adrian Elter
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany.,Merck Lab @ Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany
| | - Jan P Bogen
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany.,Ferring Darmstadt Laboratory, Biologics Technology and Development, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany
| | - Steffen C Hinz
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany.,Merck Lab @ Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany
| | - David Fiebig
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany.,Ferring Darmstadt Laboratory, Biologics Technology and Development, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany
| | - Arturo Macarrón Palacios
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany
| | - Julius Grzeschik
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany
| | - Björn Hock
- Ferring International Center S.A., Chemin de la Vergognausaz 50, Saint-Prex, 1162, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany.,Merck Lab @ Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany
| |
Collapse
|
26
|
Ma H, Ó'Fágáin C, O'Kennedy R. Antibody stability: A key to performance - Analysis, influences and improvement. Biochimie 2020; 177:213-225. [PMID: 32891698 DOI: 10.1016/j.biochi.2020.08.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 02/01/2023]
Abstract
An antibody's stability greatly influences its performance (i.e. its specificity and affinity). Thus, stability is a major issue for researchers and manufacturers, especially with the increasing use of antibodies in therapeutics, diagnostics and rapid analytical platforms. Here we review antibody stability under five headings: (i) measurement techniques; (ii) stability issues in expression and production (expression, proteolysis, aggregation); (iii) effects of antibody format and engineering on stability and (iv) formulation, drying and storage conditions. We consider more than 100 sources, including patents, and conclude with (v) recommendations to promote antibody stability.
Collapse
Affiliation(s)
- Hui Ma
- School of Biotechnology, Dublin City University, Dublin 9, D09 V2O9, Ireland
| | - Ciarán Ó'Fágáin
- School of Biotechnology, Dublin City University, Dublin 9, D09 V2O9, Ireland.
| | - Richard O'Kennedy
- School of Biotechnology, Dublin City University, Dublin 9, D09 V2O9, Ireland; Qatar Foundation, Research Complex, And Hamad Bin Khalifa University, Education City, Doha, Qatar
| |
Collapse
|
27
|
Loxoscelism: Advances and Challenges in the Design of Antibody Fragments with Therapeutic Potential. Toxins (Basel) 2020; 12:toxins12040256. [PMID: 32316084 PMCID: PMC7232456 DOI: 10.3390/toxins12040256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 01/08/2023] Open
Abstract
Envenoming due to Loxosceles spider bites still remains a neglected disease of particular medical concern in the Americas. To date, there is no consensus for the treatment of envenomed patients, yet horse polyclonal antivenoms are usually infused to patients with identified severe medical conditions. It is widely known that venom proteins in the 30–35 kDa range with sphingomyelinase D (SMasesD) activity, reproduce most of the toxic effects observed in loxoscelism. Hence, we believe that monoclonal antibody fragments targeting such toxins might pose an alternative safe and effective treatment. In the present study, starting from the monoclonal antibody LimAb7, previously shown to target SMasesD from the venom of L. intermedia and neutralize its dermonecrotic activity, we designed humanized antibody V-domains, then produced and purified as recombinant single-chain antibody fragments (scFvs). These molecules were characterized in terms of humanness, structural stability, antigen-binding activity, and venom-neutralizing potential. Throughout this process, we identified some blocking points that can impact the Abs antigen-binding activity and neutralizing capacity. In silico analysis of the antigen/antibody amino acid interactions also contributed to a better understanding of the antibody’s neutralization mechanism and led to reformatting the humanized antibody fragment which, ultimately, recovered the functional characteristics for efficient in vitro venom neutralization.
Collapse
|
28
|
Chockalingam K, Peng Z, Vuong CN, Berghman LR, Chen Z. Golden Gate assembly with a bi-directional promoter (GBid): A simple, scalable method for phage display Fab library creation. Sci Rep 2020; 10:2888. [PMID: 32076016 PMCID: PMC7031318 DOI: 10.1038/s41598-020-59745-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/03/2020] [Indexed: 11/09/2022] Open
Abstract
Fabs offer an attractive platform for monoclonal antibody discovery/engineering, but library construction can be cumbersome. We report a simple method – Golden Gate assembly with a bi-directional promoter (GBid) – for constructing phage display Fab libraries. In GBid, the constant domains of the Fabs are located in the backbone of the phagemid vector and the library insert comprises only the variable regions of the antibodies and a central bi-directional promoter. This vector design reduces the process of Fab library construction to “scFv-like” simplicity and the double promoter ensures robust expression of both constituent chains. To maximize the library size, the 3 fragments comprising the insert – two variable chains and one bi-directional promoter – are assembled via a 3-fragment overlap extension PCR and the insert is incorporated into the vector via a high-efficiency one-fragment, one-pot Golden Gate assembly. The reaction setup requires minimal preparatory work and enzyme quantities, making GBid highly scalable. Using GBid, we constructed a chimeric chicken-human Fab phage display library comprising 1010 variants targeting the multi-transmembrane protein human CD20 (hCD20). Selection/counter-selection on transfected whole cells yielded hCD20-specific antibodies in four rounds of panning. The simplicity and scalability of GBid makes it a powerful tool for the discovery/engineering of Fabs and IgGs.
Collapse
Affiliation(s)
- Karuppiah Chockalingam
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, 77843, USA
| | - Zeyu Peng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, 77843, USA.,Biosion, Inc., Nanjing, 210061, China
| | - Christine N Vuong
- Department of Poultry Science, Texas A&M University, College Station, Texas, 77843, USA.,Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, 72703, USA
| | - Luc R Berghman
- Department of Poultry Science, Texas A&M University, College Station, Texas, 77843, USA
| | - Zhilei Chen
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, 77843, USA.
| |
Collapse
|
29
|
King HAD, Gonelli CA, Tullett KM, Lahoud MH, Purcell DFJ, Drummer HE, Poumbourios P, Center RJ. Conjugation of an scFab domain to the oligomeric HIV envelope protein for use in immune targeting. PLoS One 2019; 14:e0220986. [PMID: 31430333 PMCID: PMC6701830 DOI: 10.1371/journal.pone.0220986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/28/2019] [Indexed: 11/19/2022] Open
Abstract
A promising strategy for the enhancement of vaccine-mediated immune responses is by directly targeting protein antigens to immune cells. Targeting of antigens to the dendritic cell (DC) molecule Clec9A has been shown to enhance antibody affinity and titers for model antigens, and influenza and enterovirus antigens, and may be advantageous for immunogens that otherwise fail to elicit antibodies with sufficient titers and breadth for broad protection, such as the envelope protein (Env) of HIV. Previously employed targeting strategies often utilize receptor-specific antibodies, however it is impractical to conjugate a bivalent IgG antibody to oligomeric antigens, including HIV Env trimers. Here we designed single chain variable fragment (scFv) and single chain Fab (scFab) constructs of a Clec9A-targeting antibody, expressed as genetically fused conjugates with the soluble ectodomain of Env, gp140. This conjugation did not affect the presentation of Env neutralising antibody epitopes. The scFab moiety was shown to be more stable than scFv, and in the context of gp140 fusions, was able to mediate better binding to recombinant and cell surface-expressed Clec9A, although the level of binding to cell-surface Clec9A was lower than that of the anti-Clec9A IgG. However, binding to Clec9A on the surface of DCs was not detected. Mouse immunization experiments suggested that the Clec9A-binding activity of the scFab-gp140 conjugate was insufficient to enhance Env-specific antibody responses. This is an important first proof of principle study demonstrating the conjugation of a scFab to an oligomeric protein antigen, and that an scFab displays better antigen binding than the corresponding scFv. Future developments of this technique that increase the scFab affinity will provide a valuable means to target oligomeric proteins to cell surface antigens of interest, improving vaccine-generated immune responses.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- Antibodies, Neutralizing/immunology
- Antibody Affinity
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Epitopes/immunology
- Female
- HEK293 Cells
- HIV Antibodies/immunology
- HIV Infections/immunology
- HIV Infections/therapy
- HIV Infections/virology
- Humans
- Immunogenicity, Vaccine
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Mice
- Proof of Concept Study
- Protein Domains/genetics
- Protein Domains/immunology
- Receptors, Mitogen/immunology
- Receptors, Mitogen/metabolism
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Single-Chain Antibodies/administration & dosage
- Single-Chain Antibodies/genetics
- Single-Chain Antibodies/immunology
- Vaccination/methods
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- env Gene Products, Human Immunodeficiency Virus/administration & dosage
- env Gene Products, Human Immunodeficiency Virus/genetics
- env Gene Products, Human Immunodeficiency Virus/immunology
Collapse
Affiliation(s)
- Hannah A. D. King
- Disease Elimination, Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher A. Gonelli
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Kirsteen M. Tullett
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Mireille H. Lahoud
- Disease Elimination, Burnet Institute, Melbourne, Victoria, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Damian F. J. Purcell
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Heidi E. Drummer
- Disease Elimination, Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Pantelis Poumbourios
- Disease Elimination, Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Rob J. Center
- Disease Elimination, Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
30
|
Richter F, Seifert O, Herrmann A, Pfizenmaier K, Kontermann RE. Improved monovalent TNF receptor 1-selective inhibitor with novel heterodimerizing Fc. MAbs 2019; 11:653-665. [PMID: 30929560 DOI: 10.1080/19420862.2019.1596512] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The development of alternative therapeutic strategies to tumor necrosis factor (TNF)-blocking antibodies for the treatment of inflammatory diseases has generated increasing interest. In particular, selective inhibition of TNF receptor 1 (TNFR1) promises a more precise intervention, tackling only the pro-inflammatory responses mediated by TNF while leaving regenerative and pro-survival signals transduced by TNFR2 untouched. We recently generated a monovalent anti-TNFR1 antibody fragment (Fab 13.7) as an efficient inhibitor of TNFR1. To improve the pharmacokinetic properties of Fab 13.7, the variable domains of the heavy and light chains were fused to the N-termini of newly generated heterodimerizing Fc chains. This novel Fc heterodimerization technology, designated "Fc-one/kappa" (Fc1κ) is based on interspersed constant Ig domains substituting the CH3 domains of a γ1 Fc. The interspersed immunoglobulin (Ig) domains originate from the per se heterodimerizing constant CH1 and CLκ domains and contain sequence stretches of an IgG1 CH3 domain, destined to enable interaction with the neonatal Fc receptor, and thus promote extended serum half-life. The resulting monovalent Fv-Fc1κ fusion protein (Atrosimab) retained strong binding to TNFR1 as determined by enzyme-linked immunosorbent assay and quartz crystal microbalance, and potently inhibited TNF-induced activation of TNFR1. Atrosimab lacks agonistic activity for TNFR1 on its own and in the presence of anti-human IgG antibodies and displays clearly improved pharmacokinetic properties.
Collapse
Affiliation(s)
- Fabian Richter
- a Institute of Cell Biology and Immunology , University of Stuttgart , Stuttgart , Germany.,b Stuttgart Research Center Systems Biology , University of Stuttgart , Stuttgart , Germany
| | - Oliver Seifert
- a Institute of Cell Biology and Immunology , University of Stuttgart , Stuttgart , Germany.,b Stuttgart Research Center Systems Biology , University of Stuttgart , Stuttgart , Germany
| | | | - Klaus Pfizenmaier
- a Institute of Cell Biology and Immunology , University of Stuttgart , Stuttgart , Germany.,b Stuttgart Research Center Systems Biology , University of Stuttgart , Stuttgart , Germany
| | - Roland E Kontermann
- a Institute of Cell Biology and Immunology , University of Stuttgart , Stuttgart , Germany.,b Stuttgart Research Center Systems Biology , University of Stuttgart , Stuttgart , Germany
| |
Collapse
|
31
|
Ma H, Ó'Fágáin C, O'Kennedy R. Unravelling enhancement of antibody fragment stability – Role of format structure and cysteine modification. J Immunol Methods 2019; 464:57-63. [DOI: 10.1016/j.jim.2018.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/11/2018] [Accepted: 10/22/2018] [Indexed: 01/08/2023]
|
32
|
Yusakul G, Sakamoto S, Tanaka H, Morimoto S. Improvement of heavy and light chain assembly by modification of heavy chain constant region 1 (CH1): Application for the construction of an anti-paclitaxel fragment antigen-binding (Fab) antibody. J Biotechnol 2018; 288:41-47. [DOI: 10.1016/j.jbiotec.2018.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/09/2018] [Accepted: 10/29/2018] [Indexed: 11/15/2022]
|
33
|
Shali A, Hasannia S, Gashtasbi F, Abdous M, Shahangian SS, Jalili S. Generation and screening of efficient neutralizing single domain antibodies (VHHs) against the critical functional domain of anthrax protective antigen (PA). Int J Biol Macromol 2018. [DOI: 10.1016/j.ijbiomac.2018.03.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Sivelle C, Sierocki R, Ferreira-Pinto K, Simon S, Maillere B, Nozach H. Fab is the most efficient format to express functional antibodies by yeast surface display. MAbs 2018; 10:720-729. [PMID: 29708852 DOI: 10.1080/19420862.2018.1468952] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Multiple formats are available for engineering of monoclonal antibodies (mAbs) by yeast surface display, but they do not all lead to efficient expression of functional molecules. We therefore expressed four anti-tumor necrosis factor and two anti-IpaD mAbs as single-chain variable fragment (scFv), antigen-binding fragment (Fab) or single-chain Fabs and compared their expression levels and antigen-binding efficiency. Although the scFv and scFab formats are widely used in the literature, 2 of 6 antibodies were either not or weakly expressed. In contrast, all 6 antibodies expressed as Fab revealed strong binding and high affinity, comparable to that of the soluble form. We also demonstrated that the variations in expression did not affect Fab functionality and were due to variations in light chain display and not to misfolded dimers. Our results suggest that Fab is the most versatile format for the engineering of mAbs.
Collapse
Affiliation(s)
- Coline Sivelle
- a Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA, Université Paris-Saclay , Gif/Yvette , France
| | - Raphaël Sierocki
- a Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA, Université Paris-Saclay , Gif/Yvette , France
| | - Kelly Ferreira-Pinto
- a Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA, Université Paris-Saclay , Gif/Yvette , France
| | - Stéphanie Simon
- b Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Laboratoire d'Etudes et de Recherches en Immunoanalyse, Université Paris-Saclay , Gif/Yvette , France
| | - Bernard Maillere
- a Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA, Université Paris-Saclay , Gif/Yvette , France
| | - Hervé Nozach
- a Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA, Université Paris-Saclay , Gif/Yvette , France
| |
Collapse
|
35
|
Nelson B, Adams J, Kuglstatter A, Li Z, Harris SF, Liu Y, Bohini S, Ma H, Klumpp K, Gao J, Sidhu SS. Structure-Guided Combinatorial Engineering Facilitates Affinity and Specificity Optimization of Anti-CD81 Antibodies. J Mol Biol 2018; 430:2139-2152. [PMID: 29778602 DOI: 10.1016/j.jmb.2018.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 12/12/2022]
Abstract
Hepatitis C viral infection is the major cause of chronic hepatitis that affects as many as 71 million people worldwide. Rather than target the rapidly shifting viruses and their numerous serotypes, four independent antibodies were made to target the host antigen CD81 and were shown to block hepatitis C viral entry. The single-chain variable fragment of each antibody was crystallized in complex with the CD81 large extracellular loop in order to guide affinity maturation of two distinct antibodies by phage display. Affinity maturation of antibodies using phage display has proven to be critical to therapeutic antibody development and typically involves modification of the paratope for increased affinity, improved specificity, enhanced stability or a combination of these traits. One antibody was engineered for increased affinity for human CD81 large extracellular loop that equated to increased efficacy, while the second antibody was engineered for cross-reactivity with cynomolgus CD81 to facilitate animal model testing. The use of structures to guide affinity maturation library design demonstrates the utility of combining structural analysis with phage display technologies.
Collapse
Affiliation(s)
- Bryce Nelson
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Jarrett Adams
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | | | - Zhijian Li
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | | | - Yang Liu
- Hoffmann-La Roche Inc., Palo Alto, 94304, CA, USA
| | | | - Han Ma
- Hoffmann-La Roche Inc., Palo Alto, 94304, CA, USA
| | - Klaus Klumpp
- Hoffmann-La Roche Inc., Palo Alto, 94304, CA, USA
| | - Junjun Gao
- Hoffmann-La Roche Inc., Palo Alto, 94304, CA, USA.
| | - Sachdev S Sidhu
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
36
|
Adler AS, Mizrahi RA, Spindler MJ, Adams MS, Asensio MA, Edgar RC, Leong J, Leong R, Roalfe L, White R, Goldblatt D, Johnson DS. Rare, high-affinity anti-pathogen antibodies from human repertoires, discovered using microfluidics and molecular genomics. MAbs 2017; 9:1282-1296. [PMID: 28846502 PMCID: PMC5680809 DOI: 10.1080/19420862.2017.1371383] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Affinity-matured, functional anti-pathogen antibodies are present at low frequencies in natural human repertoires. These antibodies are often excellent candidates for therapeutic monoclonal antibodies. However, mining natural human antibody repertoires is a challenge. In this study, we demonstrate a new method that uses microfluidics, yeast display, and deep sequencing to identify 247 natively paired anti-pathogen single-chain variable fragments (scFvs), which were initially as rare as 1 in 100,000 in the human repertoires. Influenza A vaccination increased the frequency of influenza A antigen-binding scFv within the peripheral B cell repertoire from <0.1% in non-vaccinated donors to 0.3-0.4% in vaccinated donors, whereas pneumococcus vaccination did not increase the frequency of antigen-binding scFv. However, the pneumococcus scFv binders from the vaccinated library had higher heavy and light chain Replacement/Silent mutation (R/S) ratios, a measure of affinity maturation, than the pneumococcus binders from the corresponding non-vaccinated library. Thus, pneumococcus vaccination may increase the frequency of affinity-matured antibodies in human repertoires. We synthesized 10 anti-influenza A and nine anti-pneumococcus full-length antibodies that were highly abundant among antigen-binding scFv. All 10 anti-influenza A antibodies bound the appropriate antigen at KD<10 nM and neutralized virus in cellular assays. All nine anti-pneumococcus full-length antibodies bound at least one polysaccharide serotype, and 71% of the anti-pneumococcus antibodies that we tested were functional in cell killing assays. Our approach has future application in a variety of fields, including the development of therapeutic antibodies for emerging viral diseases, autoimmune disorders, and cancer.
Collapse
Affiliation(s)
- Adam S Adler
- a GigaGen Inc. , 407 Cabot Road, South San Francisco , CA , USA
| | - Rena A Mizrahi
- a GigaGen Inc. , 407 Cabot Road, South San Francisco , CA , USA
| | | | - Matthew S Adams
- a GigaGen Inc. , 407 Cabot Road, South San Francisco , CA , USA
| | | | - Robert C Edgar
- a GigaGen Inc. , 407 Cabot Road, South San Francisco , CA , USA
| | - Jackson Leong
- a GigaGen Inc. , 407 Cabot Road, South San Francisco , CA , USA
| | - Renee Leong
- a GigaGen Inc. , 407 Cabot Road, South San Francisco , CA , USA
| | - Lucy Roalfe
- b Immunobiology Section , Great Ormond Street Institute of Child Health, University College London , London , England, United Kingdom
| | - Rebecca White
- b Immunobiology Section , Great Ormond Street Institute of Child Health, University College London , London , England, United Kingdom
| | - David Goldblatt
- b Immunobiology Section , Great Ormond Street Institute of Child Health, University College London , London , England, United Kingdom
| | - David S Johnson
- a GigaGen Inc. , 407 Cabot Road, South San Francisco , CA , USA
| |
Collapse
|
37
|
Adler AS, Mizrahi RA, Spindler MJ, Adams MS, Asensio MA, Edgar RC, Leong J, Leong R, Johnson DS. Rare, high-affinity mouse anti-PD-1 antibodies that function in checkpoint blockade, discovered using microfluidics and molecular genomics. MAbs 2017; 9:1270-1281. [PMID: 28846506 PMCID: PMC5680806 DOI: 10.1080/19420862.2017.1371386] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Conventionally, mouse hybridomas or well-plate screening are used to identify therapeutic monoclonal antibody candidates. In this study, we present an alternative to hybridoma-based discovery that combines microfluidics, yeast single-chain variable fragment (scFv) display, and deep sequencing to rapidly interrogate and screen mouse antibody repertoires. We used our approach on six wild-type mice to identify 269 molecules that bind to programmed cell death protein 1 (PD-1), which were present at an average of 1 in 2,000 in the pre-sort scFv libraries. Two rounds of fluorescence-activated cell sorting (FACS) produced populations of PD-1-binding scFv with a mean enrichment of 800-fold, whereas most scFv present in the pre-sort mouse repertoires were de-enriched. Therefore, our work suggests that most of the antibodies present in the repertoires of immunized mice are not strong binders to PD-1. We observed clusters of related antibody sequences in each mouse following FACS, suggesting evolution of clonal lineages. In the pre-sort repertoires, these putative clonal lineages varied in both the complementary-determining region (CDR)3K and CDR3H, while the FACS-selected PD-1-binding subsets varied primarily in the CDR3H. PD-1 binders were generally not highly diverged from germline, showing 98% identity on average with germline V-genes. Some CDR3 sequences were discovered in more than one animal, even across different mouse strains, suggesting convergent evolution. We synthesized 17 of the anti-PD-1 binders as full-length monoclonal antibodies. All 17 full-length antibodies bound recombinant PD-1 with KD < 500 nM (average = 62 nM). Fifteen of the 17 full-length antibodies specifically bound surface-expressed PD-1 in a FACS assay, and nine of the antibodies functioned as checkpoint inhibitors in a cellular assay. We conclude that our method is a viable alternative to hybridomas, with key advantages in comprehensiveness and turnaround time.
Collapse
Affiliation(s)
- Adam S Adler
- a GigaGen Inc. , 407 Cabot Road, South San Francisco , CA , USA
| | - Rena A Mizrahi
- a GigaGen Inc. , 407 Cabot Road, South San Francisco , CA , USA
| | | | - Matthew S Adams
- a GigaGen Inc. , 407 Cabot Road, South San Francisco , CA , USA
| | | | - Robert C Edgar
- a GigaGen Inc. , 407 Cabot Road, South San Francisco , CA , USA
| | - Jackson Leong
- a GigaGen Inc. , 407 Cabot Road, South San Francisco , CA , USA
| | - Renee Leong
- a GigaGen Inc. , 407 Cabot Road, South San Francisco , CA , USA
| | - David S Johnson
- a GigaGen Inc. , 407 Cabot Road, South San Francisco , CA , USA
| |
Collapse
|
38
|
Chan SK, Lim TS. Immune Human Antibody Libraries for Infectious Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1053:61-78. [PMID: 29549635 DOI: 10.1007/978-3-319-72077-7_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The incident of two children in Europe who died of diphtheria due to a shortage of anti-toxin drugs has highlighted the need for alternative anti-toxins. Historically, antiserum produced from immunised horses have been used to treat diphtheria. Despite the potential of antiserum, the economical and medial concerns associated with the use of animal antiserum has led to its slow market demise. Over the years, new and emerging infectious diseases have grown to be a major global health threat. The emergence of drug-resistant superbugs has also pushed the boundaries of available therapeutics to deal with new infectious diseases. Antibodies have emerged as a possible alternative to combat the continuous onslaught of various infectious agents. The isolation of antibodies against pathogens of infectious diseases isolated from immune libraries utilising phage display has yielded promising results in terms of affinities and neutralizing activities. This chapter focuses on the concept of immune antibody libraries and highlights the application of immune antibody libraries to generate antibodies for various infectious diseases.
Collapse
Affiliation(s)
- Soo Khim Chan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Minden, 11800, Penang, Malaysia.
| |
Collapse
|
39
|
Considerations in producing preferentially reduced half-antibody fragments. J Immunol Methods 2016; 429:50-6. [DOI: 10.1016/j.jim.2016.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/24/2015] [Accepted: 01/04/2016] [Indexed: 11/24/2022]
|
40
|
Phage display aided improvement of a unique prostate-specific antigen (PSA) antibody unreactive with Lys145–Lys146 internally cleaved forms. J Immunol Methods 2015; 422:72-9. [DOI: 10.1016/j.jim.2015.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/07/2015] [Accepted: 04/07/2015] [Indexed: 11/22/2022]
|
41
|
Abstract
The development of immunotherapies for multiple myeloma is critical to provide new treatment strategies to combat drug resistance. We report a bispecific antibody against B cell maturation antigen (BiFab-BCMA), which potently and specifically redirects T cells to lyse malignant multiple myeloma cells. BiFab-BCMA lysed target BCMA-positive cell lines up to 20-fold more potently than a CS1-targeting bispecific antibody (BiFab-CS1) developed in an analogous fashion. Further, BiFab-BCMA robustly activated T cells in vitro and mediated rapid tumor regression in an orthotopic xenograft model of multiple myeloma. The in vitro and in vivo activities of BiFab-BCMA are comparable to those of anti-BCMA chimeric antigen receptor T cell therapy (CAR-T-BCMA), for which two clinical trials have recently been initiated. A BCMA-targeted bispecific antibody presents a promising treatment option for multiple myeloma.
Collapse
|
42
|
Shahangian SS, H Sajedi R, Hasannia S, Jalili S, Mohammadi M, Taghdir M, Shali A, Mansouri K, Sariri R. A conformation-based phage-display panning to screen neutralizing anti-VEGF VHHs with VEGFR2 mimicry behavior. Int J Biol Macromol 2015; 77:222-34. [PMID: 25748850 DOI: 10.1016/j.ijbiomac.2015.02.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 12/24/2022]
Abstract
The potency of VEGF-based anti-angiogenic strategies in cancer therapy and the brilliant characteristics of VHHs motivated us to directly block VEGF binding to its receptor with neutralizing single domain antibodies, thereby fading away the VEGF signaling pathway. Considering with high resolution crystal structure of VEGF-RBD/VEGFR2 complex, we could adopt a combinatorial screening strategy: stringent panning and competition ELISA, to direct the panning procedure to dominantly screen the favorable binders that bind and block the key functional regions of VEGF. Based on competition assay, the majority of the screened clones (82%) showed the VEGFR2 mimicry behavior for binding to VEGF molecule. The phage pool gets enriched in favor of sequences that bind the receptor binding sites of VEGF. Different immunoassays and molecular docking simulation verified that all selected VHHs could bind and cover the receptor binding sites of VEGF. Consequently, some modifications in panning procedure with considering the structural features and detailed information of functional regions of a protein antigen, led us to successfully trap the high-affinity specific binders against its hot functional regions. Since the selected VHHs could cover the receptor binding site of VEGF and block VEGF binding to the receptor, they might be promising candidates for anti-angiogenic therapies.
Collapse
Affiliation(s)
- S Shirin Shahangian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Sadegh Hasannia
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shirin Jalili
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Mohammadi
- Department of Biology, Faculty of Basic Science, Shahid Chamran University, Ahvaz, Iran
| | - Majid Taghdir
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abbas Shali
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reyhaneh Sariri
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
43
|
Toporkiewicz M, Meissner J, Matusewicz L, Czogalla A, Sikorski AF. Toward a magic or imaginary bullet? Ligands for drug targeting to cancer cells: principles, hopes, and challenges. Int J Nanomedicine 2015; 10:1399-414. [PMID: 25733832 PMCID: PMC4337502 DOI: 10.2147/ijn.s74514] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
There are many problems directly correlated with the systemic administration of drugs and how they reach their target site. Targeting promises to be a hopeful strategy as an improved means of drug delivery, with reduced toxicity and minimal adverse side effects. Targeting exploits the high affinity of cell-surface-targeted ligands, either directly or as carriers for a drug, for specific retention and uptake by the targeted diseased cells. One of the most important parameters which should be taken into consideration in the selection of an appropriate ligand for targeting is the binding affinity (K D). In this review we focus on the importance of binding affinities of monoclonal antibodies, antibody derivatives, peptides, aptamers, DARPins, and small targeting molecules in the process of selection of the most suitable ligand for targeting of nanoparticles. In order to provide a critical comparison between these various options, we have also assessed each technology format across a range of parameters such as molecular size, immunogenicity, costs of production, clinical profiles, and examples of the level of selectivity and toxicity of each. Wherever possible, we have also assessed how incorporating such a targeted approach compares with, or is superior to, original treatments.
Collapse
Affiliation(s)
- Monika Toporkiewicz
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Justyna Meissner
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Lucyna Matusewicz
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Aleksander Czogalla
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Aleksander F Sikorski
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
44
|
Therapeutic efficacy of three bispecific antibodies on collagen-induced arthritis mouse model. Int Immunopharmacol 2014; 21:119-27. [PMID: 24800661 DOI: 10.1016/j.intimp.2014.04.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/08/2014] [Accepted: 04/21/2014] [Indexed: 01/08/2023]
Abstract
Interleukin-1β (IL-1β) and interleukin-17A (IL-17A) are inducible factors and important cytokines in the pathogenesis of rheumatoid arthritis (RA). In the present study, three bispecific and neutralizing antibodies (BsAB-1, BsAB-2 and BsAB-3) against both hIL-1β and hIL-17A were constructed, their therapeutic efficacy was compared on collagen induced arthritis (CIA) model mice. In vitro assays demonstrated that the three antibodies could simultaneously bind to target both hIL-1β and hIL-17A. Mice with CIA were subcutaneously administered with one of three antibodies every two days for 29 days, we noticed that, compared with the BsAB-2 and BsAB-3, BsAB-1 antibody therapy resulted in more significant effect on alleviating the severity of arthritis by preventing bone damage and cartilage destruction and substantially decreasing production of CII-specific antibodies. In addition, BsAB-1 antibody was more potent in the inhibition of mRNA expression of IL-2, IL-1β, IL-17A, TNF-α and MMP-3 in the spleen of CIA mice compared to the other two. In summary, BsAB-1 is superior over BsAB-2 and BsAB-3 for the treatment of RA model mice, and may be chosen as an ideal candidate for further development of therapeutic drugs for treatment of RA.
Collapse
|
45
|
PURE ribosome display and its application in antibody technology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1925-1932. [PMID: 24747149 DOI: 10.1016/j.bbapap.2014.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/03/2014] [Accepted: 04/10/2014] [Indexed: 11/23/2022]
Abstract
Ribosome display utilizes formation of the mRNA-ribosome-polypeptide ternary complex in a cell-free protein synthesis system to link genotype (mRNA) to phenotype (polypeptide). However, the presence of intrinsic components, such as nucleases in the cell-extract-based cell-free protein synthesis system, reduces the stability of the ternary complex, which would prevent attainment of reliable results. We have developed an efficient and highly controllable ribosome display system using the PURE (Protein synthesis Using Recombinant Elements) system. The mRNA-ribosome-polypeptide ternary complex is highly stable in the PURE system, and the selected mRNA can be easily recovered because activities of nucleases and other inhibitory factors are very low in the PURE system. We have applied the PURE ribosome display to antibody engineering approaches, such as epitope mapping and affinity maturation of antibodies, and obtained results showing that the PURE ribosome display is more efficient than the conventional method. We believe that the PURE ribosome display can contribute to the development of useful antibodies. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
|
46
|
Matsuda Y, Itaya H, Kitahara Y, Theresia NM, Kutukova EA, Yomantas YAV, Date M, Kikuchi Y, Wachi M. Double mutation of cell wall proteins CspB and PBP1a increases secretion of the antibody Fab fragment from Corynebacterium glutamicum. Microb Cell Fact 2014; 13:56. [PMID: 24731213 PMCID: PMC4021378 DOI: 10.1186/1475-2859-13-56] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 03/17/2014] [Indexed: 12/16/2022] Open
Abstract
Background Among other advantages, recombinant antibody-binding fragments (Fabs) hold great clinical and commercial potential, owing to their efficient tissue penetration compared to that of full-length IgGs. Although production of recombinant Fab using microbial expression systems has been reported, yields of active Fab have not been satisfactory. We recently developed the Corynebacterium glutamicum protein expression system (CORYNEX®) and demonstrated improved yield and purity for some applications, although the system has not been applied to Fab production. Results The Fab fragment of human anti-HER2 was successfully secreted by the CORYNEX® system using the conventional C. glutamicum strain YDK010, but the productivity was very low. To improve the secretion efficiency, we investigated the effects of deleting cell wall-related genes. Fab secretion was increased 5.2 times by deletion of pbp1a, encoding one of the penicillin-binding proteins (PBP1a), mediating cell wall peptidoglycan (PG) synthesis. However, this Δpbp1a mutation did not improve Fab secretion in the wild-type ATCC13869 strain. Because YDK010 carries a mutation in the cspB gene encoding a surface (S)-layer protein, we evaluated the effect of ΔcspB mutation on Fab secretion from ATCC13869. The Δpbp1a mutation showed a positive effect on Fab secretion only in combination with the ΔcspB mutation. The ΔcspBΔpbp1a double mutant showed much greater sensitivity to lysozyme than either single mutant or the wild-type strain, suggesting that these mutations reduced cell wall resistance to protein secretion. Conclusion There are at least two crucial permeability barriers to Fab secretion in the cell surface structure of C. glutamicum, the PG layer, and the S-layer. The ΔcspBΔpbp1a double mutant allows efficient Fab production using the CORYNEX® system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Masaaki Wachi
- Department of Bioengineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
47
|
Qi J, Ye X, Ren G, Kan F, Zhang Y, Guo M, Zhang Z, Li D. Pharmacological efficacy of anti-IL-1β scFv, Fab and full-length antibodies in treatment of rheumatoid arthritis. Mol Immunol 2014; 57:59-65. [DOI: 10.1016/j.molimm.2013.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/02/2013] [Accepted: 08/04/2013] [Indexed: 10/26/2022]
|
48
|
Frenzel A, Hust M, Schirrmann T. Expression of recombinant antibodies. Front Immunol 2013; 4:217. [PMID: 23908655 PMCID: PMC3725456 DOI: 10.3389/fimmu.2013.00217] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/15/2013] [Indexed: 12/15/2022] Open
Abstract
Recombinant antibodies are highly specific detection probes in research, diagnostics, and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines, and transgenic plants are promising to obtain antibodies with "human-like" post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications.
Collapse
Affiliation(s)
- André Frenzel
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Hust
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Thomas Schirrmann
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
49
|
Site-directed antibody immobilization techniques for immunosensors. Biosens Bioelectron 2013; 50:460-71. [PMID: 23911661 DOI: 10.1016/j.bios.2013.06.060] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/14/2013] [Accepted: 06/26/2013] [Indexed: 02/07/2023]
Abstract
Immunosensor sensitivity, regenerability, and stability directly depend on the type of antibodies used for the immunosensor design, quantity of immobilized molecules, remaining activity upon immobilization, and proper orientation on the sensing interface. Although sensor surfaces prepared with antibodies immobilized in a random manner yield satisfactory results, site-directed immobilization of the sensing molecules significantly improves the immunosensor sensitivity, especially when planar supports are employed. This review focuses on the three most conventional site-directed antibody immobilization techniques used in immunosensor design. One strategy of immobilizing antibodies on the sensor surface is via affinity interactions with a pre-formed layer of the Fc binding proteins, e.g., protein A, protein G, Fc region specific antibodies or various recombinant proteins. Another immobilization strategy is based on the use of chemically or genetically engineered antibody fragments that can be attached to the sensor surface covered in gold or self-assembled monolayer via the sulfhydryl groups present in the hinge region. The third most common strategy is antibody immobilization via an oxidized oligosaccharide moiety present in the Fc region of the antibody. The principles, advantages, applications, and arising problems of these most often applied immobilization techniques are reviewed.
Collapse
|
50
|
Optimization and modification of anti-rhTNF-α single chain variable fragment antibody: Effective in vitro affinity maturation and functional expression of chimeric Fab. Biomed Pharmacother 2013; 67:437-44. [DOI: 10.1016/j.biopha.2013.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/04/2013] [Indexed: 11/21/2022] Open
|