1
|
Yao L, Ling B, Zhao S, Yu F, Liu H, Wang S, Xiao J. Versatile Self-Assembly of Triblock Peptides into Stable Collagen Mimetic Heterotrimers. Int J Mol Sci 2024; 25:6550. [PMID: 38928256 PMCID: PMC11203499 DOI: 10.3390/ijms25126550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
The construction of peptides to mimic heterogeneous proteins such as type I collagen plays a pivotal role in deciphering their function and pathogenesis. However, progress in the field has been severely hampered by the lack of capability to create stable heterotrimers with desired functional sequences and without the effect of homotrimers. We have herein developed a set of triblock peptides that can assemble into collagen mimetic heterotrimers with desired amino acids and are free from the interference of homotrimers. The triblock peptides comprise a central collagen-like block and two oppositely charged N-/C-terminal blocks, which display inherent incompetency of homotrimer formation. The favorable electrostatic attraction between two paired triblock peptides with complementary terminal charged sequences promptly leads to stable heterotrimers with controlled chain composition. The independence of the collagen-like block from the two terminal blocks endows this system with the adaptability to incorporate desired amino acid sequences while maintaining the heterotrimer structure. The triblock peptides provide a versatile and robust tool to mimic the composition and function of heterotrimer collagen and may have great potential in the design of innovative peptides mimicking heterogeneous proteins.
Collapse
Affiliation(s)
- Linyan Yao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Biyang Ling
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Sha Zhao
- College of Chemistry and Molecular Engineering, Beijing NMR Center, Peking University, Beijing 100871, China
| | - Fansen Yu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Shenlin Wang
- College of Chemistry and Molecular Engineering, Beijing NMR Center, Peking University, Beijing 100871, China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Chang P, Guo K, Li S, Wang H, Tang M. In Situ Sodium Chloride Cross-Linked Fish Skin Collagen Scaffolds for Functional Hemostasis Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2208001. [PMID: 37936312 DOI: 10.1002/smll.202208001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 10/30/2023] [Indexed: 11/09/2023]
Abstract
Current fish collagen hemostasis for wound healing products is commonly obtained by electrospinning or artificial cross-linking fish collagen fibers which lacks mechanical properties, and biofunctions. Here, a new bio-active fish skin scaffold (FSS) is shown using in situ cross-linked scaleless freshwater fish skin adding adipose-derived stem cells (ASCs)-produced exosomes for hemostasis and wound healing. The structure, pore size, and the thickness of FSS is studied by swelling test, Fourier-transform infrared (FT-IR) spectra, scanning electron microscope (SEM) images, and histological analysis. The biofunctions of the FSS are also tested in vitro and in vivo. FSS keeps two functional layers: The dermis layer collagen forms a sponge like structure after swelling and in situ cross-linking treatments. The pore size of the FSS is ≈152 ± 23.54 µm, which is suitable for cells growing, angiogenesis and ASCs exosomes accelerate wound healing. The fat-rich epidermis layer can keep the wound moisty and clean before completely healed. In vitro and in vivo experimental results indicate that FSS+Exosomes enhances rat skin cavity wound healing. In situ sodium chloride cross-linked FSS+Exosomes provides a new strategy as functional hemostatic dressing scaffold for wound healing.
Collapse
Affiliation(s)
- Peng Chang
- Department of Plastic and Cosmetic Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Kai Guo
- Shenyang Institute of Automation, Chinese Academy of Sciences Shenyang, Liaoning, 110000, China
| | - Shijie Li
- Shenyang Institute of Automation, Chinese Academy of Sciences Shenyang, Liaoning, 110000, China
| | - Hongtao Wang
- Shenyang Elite Blue Medical Technology (EBG) Co., Ltd., Shenyang, 110004, China
| | - Mingqiang Tang
- Shenyang Elite Blue Medical Technology (EBG) Co., Ltd., Shenyang, 110004, China
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
3
|
Stølen Ugelvik M, Mennerat A, Mæhle S, Dalvin S. Repeated exposure affects susceptibility and responses of Atlantic salmon ( Salmo salar) towards the ectoparasitic salmon lice ( Lepeophtheirus salmonis). Parasitology 2023; 150:990-1005. [PMID: 37705306 PMCID: PMC10941223 DOI: 10.1017/s0031182023000847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Atlantic salmon (Salmo salar) is repeatedly exposed to and infected with ectoparasitic salmon lice (Lepeophtheirus salmonis) both in farms and in nature. However, this is not reflected in laboratory experiments where fish typically are infected only once. To investigate if a previous lice infection affects host response to subsequent infections, fish received 4 different experimental treatments; including 2 groups of fish that had previously been infected either with adult or infective salmon lice larvae (copepodids). Thereafter, fish in all treatment groups were infected with either a double or a single dose of copepodids originating from the same cohort. Fish were sampled when lice had developed into the chalimus, the pre-adult and the adult stage, respectively. Both the specific growth rate and cortisol levels (i.e. a proxy for stress) of the fish differed between treatments. Lice success (i.e. ability to infect and survive on the host) was higher in naïve than in previously infected fish (pre-adult stage). The expression of immune and wound healing transcripts in the skin also differed between treatments, and most noticeable was a higher upregulation early in the infection in the group previously infected with copepodids. However, later in the infection, the least upregulation was observed in this group, suggesting that previous exposure to salmon lice affects the response of Atlantic salmon towards subsequent lice infections.
Collapse
Affiliation(s)
- Mathias Stølen Ugelvik
- Institute of Marine Research, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Adele Mennerat
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Stig Mæhle
- Institute of Marine Research, Bergen, Norway
| | | |
Collapse
|
4
|
Trossmann VT, Scheibel T. Design of Recombinant Spider Silk Proteins for Cell Type Specific Binding. Adv Healthc Mater 2023; 12:e2202660. [PMID: 36565209 PMCID: PMC11468868 DOI: 10.1002/adhm.202202660] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/19/2022] [Indexed: 12/25/2022]
Abstract
Cytophilic (cell-adhesive) materials are very important for tissue engineering and regenerative medicine. However, for engineering hierarchically organized tissue structures comprising different cell types, cell-specific attachment and guidance are decisive. In this context, materials made of recombinant spider silk proteins are promising scaffolds, since they exhibit high biocompatibility, biodegradability, and the underlying proteins can be genetically functionalized. Here, previously established spider silk variants based on the engineered Araneus diadematus fibroin 4 (eADF4(C16)) are genetically modified with cell adhesive peptide sequences from extracellular matrix proteins, including IKVAV, YIGSR, QHREDGS, and KGD. Interestingly, eADF4(C16)-KGD as one of 18 tested variants is cell-selective for C2C12 mouse myoblasts, one out of 11 tested cell lines. Co-culturing with B50 rat neuronal cells confirms the cell-specificity of eADF4(C16)-KGD material surfaces for C2C12 mouse myoblast adhesion.
Collapse
Affiliation(s)
- Vanessa Tanja Trossmann
- Chair of BiomaterialsEngineering FacultyUniversity of BayreuthProf.‐Rüdiger‐Bormann‐Straße 195447BayreuthGermany
| | - Thomas Scheibel
- Chair of BiomaterialsEngineering FacultyUniversity of BayreuthProf.‐Rüdiger‐Bormann‐Straße 195447BayreuthGermany
- Bayreuth Center for Colloids and Interfaces (BZKG)Bavarian Polymer Institute (BPI)Bayreuth Center for Molecular Biosciences (BZMB)Bayreuth Center for Material Science (BayMAT)University of BayreuthUniversitätsstraße 3095447BayreuthGermany
| |
Collapse
|
5
|
Wang L, Qu Y, Li W, Wang K, Qin S. Effects and metabolism of fish collagen sponge in repairing acute wounds of rat skin. Front Bioeng Biotechnol 2023; 11:1087139. [PMID: 36911203 PMCID: PMC9992718 DOI: 10.3389/fbioe.2023.1087139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Objective: Study the repair effect of tilapia collagen on acute wounds, and the effect on the expression level of related genes and its metabolic direction in the repair process. Materials and methods: After the full-thickness skin defect model was constructed in standard deviation rats, the wound healing effect was observed and evaluated by means of characterization, histology, and immunohistochemistry. RT-PCR, fluorescence tracer, frozen section and other techniques were used to observe the effect of fish collagen on the expression of related genes and its metabolic direction in the process of wound repair. Results: After implantation, there was no immune rejection reaction, fish collagen fused with new collagen fibers in the early stage of wound repair, and was gradually degraded and replaced by new collagen in the later stage. It has excellent performance in inducing vascular growth, promoting collagen deposition and maturation, and re-epithelialization. The results of fluorescent tracer showed that fish collagen was decomposed, and the decomposition products were involved in the wound repair process and remained at the wound site as a part of the new tissue. RT-PCR results showed that, without affecting collagen deposition, the expression level of collagen-related genes was down-regulated due to the implantation of fish collagen. Conclusion: Fish collagen has good biocompatibility and wound repair ability. It is decomposed and utilized in the process of wound repair to form new tissues.
Collapse
Affiliation(s)
- Lei Wang
- The Affiliated Hospital of Weifang Medical University, Weifang, China.,Key Laboratory of Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,University of Chinese Academy of Sciences, Yantai, China
| | - Yan Qu
- The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Wenjun Li
- Key Laboratory of Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Kai Wang
- Department of Orthopedics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Song Qin
- Key Laboratory of Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| |
Collapse
|
6
|
Król M, Kupnicka P, Bosiacki M, Chlubek D. Mechanisms Underlying Anti-Inflammatory and Anti-Cancer Properties of Stretching-A Review. Int J Mol Sci 2022; 23:ijms231710127. [PMID: 36077525 PMCID: PMC9456560 DOI: 10.3390/ijms231710127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 02/07/2023] Open
Abstract
Stretching is one of the popular elements in physiotherapy and rehabilitation. When correctly guided, it can help minimize or slow down the disabling effects of chronic health conditions. Most likely, the benefits are associated with reducing inflammation; recent studies demonstrate that this effect from stretching is not just systemic but also local. In this review, we present the current body of knowledge on the anti-inflammatory properties of stretching at a molecular level. A total of 22 papers, focusing on anti-inflammatory and anti-cancer properties of stretching, have been selected and reviewed. We show the regulation of oxidative stress, the expression of pro- and anti-inflammatory genes and mediators, and remodeling of the extracellular matrix, expressed by changes in collagen and matrix metalloproteinases levels, in tissues subjected to stretching. We point out that a better understanding of the anti-inflammatory properties of stretching may result in increasing its importance in treatment and recovery from diseases such as osteoarthritis, systemic sclerosis, and cancer.
Collapse
Affiliation(s)
- Małgorzata Król
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Correspondence:
| | - Mateusz Bosiacki
- Chair and Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University, Żołnierska 54, 71-210 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
7
|
Adipose-Derived Stem Cell Sheets Promote Meniscus Regeneration Regardless of Whether the Defect Involves the Inner Half or the Whole Width of the Anterior Half of the Medial Meniscus in a Rabbit Model. Arthroscopy 2022; 38:2672-2683. [PMID: 35248702 DOI: 10.1016/j.arthro.2022.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 02/02/2023]
Abstract
PURPOSE To investigate the regenerative effect of adipose-derived stem cell (ADSC) sheets in two different rabbit models of meniscal defects. METHODS Forty-two rabbits were randomly divided into two groups: the whole (Group 1) or the inner half (Group 2) of anterior half of the medial meniscus was removed from both knees. The ADSC sheets were transplanted into one knee, whereas in the other knee the meniscal defect was left untreated (self-control). The histological score and expression of genes encoding collagen type I and II (COL1/2), SRY-box transcription factor 9 (SOX9), and aggrecan (ACAN) were compared between the ADSC sheet-treated and untreated menisci at 4 and 12 weeks. The ADSC sheet-treated menisci at 12 weeks were also analyzed immunohistochemically to assess the collagen component. RESULTS The histological score was significantly higher in the treated side than in the control side at 4 and 12 weeks in both groups (Group 1; P = .016 and .032; Group 2; P = .030 and .016, respectively). All genes evaluated showed significantly higher expression in the treated side than in the control side in both groups, except COL2 and SOX9 at 4 weeks and COL2 at 12 weeks in Group 1, and COL1 in Group 2 at 4 weeks. The ADSC sheet-treated meniscus in Group 1 contained mostly COL1, whereas the Group 2 had less COL1, but was rich in COL2. CONCLUSIONS ADSC sheets can promote meniscal regeneration regardless of whether the defect involves the inner half or whole width of the anterior half of the medial meniscus. However, the collagen component of the ADSC sheet-treated tissue differs depending on the defect site. CLINICAL RELEVANCE ADSCs may help meniscal regeneration due to meniscal defects after meniscectomy. This study suggests longer-term follow-up and mechanical analysis as next steps.
Collapse
|
8
|
Ugelvik MS, Dalvin S. The effect of different intensities of the ectoparasitic salmon lice (Lepeophtheirus salmonis) on Atlantic salmon (Salmo salar). JOURNAL OF FISH DISEASES 2022; 45:1133-1147. [PMID: 35612902 PMCID: PMC9544591 DOI: 10.1111/jfd.13649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 06/01/2023]
Abstract
The effect of different intensities of the ectoparasitic salmon lice (Lepeophtheirus salmonis) on stress, growth and the expression of immune and wound healing transcripts in the skin of Atlantic salmon (Salmo salar) was investigated. Lice infection success and survival were similar at the chalimus and preadult stage in the low and high dose group, but infection success and survival were significantly lower in the high than in the low dose group at the adult stage. The expression of investigated transcripts was not correlated to lice intensities, but several of them were significantly differently expressed locally in the skin at the site of lice attachment in infected fish compared to controls. This included an up-regulation of pro-inflammatory markers at the site of lice attachment (e.g., interleukin 1-beta, interleukin 8 and the acute phase protein serum amyloid A), a reduction of markers of adaptive immunity (cluster of differentiation 8-alpha and immunoglobulin M) and decreased expression of the anti-inflammatory cytokine interleukin 10.
Collapse
|
9
|
Ugelvik MS, Mæhle S, Dalvin S. Temperature affects settlement success of ectoparasitic salmon lice (Lepeophtheirus salmonis) and impacts the immune and stress response of Atlantic salmon (Salmo salar). JOURNAL OF FISH DISEASES 2022; 45:975-990. [PMID: 35397139 PMCID: PMC9320951 DOI: 10.1111/jfd.13619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 06/01/2023]
Abstract
In this study, the effect of temperature on Atlantic salmon (Salmo salar) stress and immune response to the ectoparasitic salmon lice (Lepeophtheirus salmonis) was investigated. We found that infestation affected the expression of several immune and wound healing transcripts in the skin especially at the site of lice attachment compared to un-infested control fish. Moreover, expression patterns in the skin of infested fish suggest that host immune responses towards salmon lice are impaired at low temperatures. However, reduced lice infestation success and survival at the lowest investigated temperatures suggest that cold water temperatures are more detrimental to the lice than their fish hosts. Finally, temperature affected the stress response of the fish and infected fish had a higher increase in cortisol levels in response to handling (a stressor) than un-infested controls.
Collapse
Affiliation(s)
| | - Stig Mæhle
- Institute of Marine ResearchBergenNorway
| | | |
Collapse
|
10
|
Yamada S, Yamamoto K, Nakazono A, Matsuura T, Yoshimura A. Functional roles of fish collagen peptides on bone regeneration. Dent Mater J 2021; 40:1295-1302. [PMID: 34334505 DOI: 10.4012/dmj.2020-446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fish collagen peptides (FCP) derived from the skin, bones and scales are commercially used as a functional food or dietary supplement for hypertension and diabetes. However, there is limited evidence on the effects of FCP on the osteoblast function in contrast to evidence of the effects on wound healing, diabetes and bone regeneration, which have been obtained from animal studies. In this narrative review, we expound on the availability of FCP by basic research using osteoblasts. Low-concentration FCP upregulates the expression of osteoblast proliferation, differentiation and collagen modifying enzyme-related genes. Furthermore, it could accelerate matrix mineralization. FCP may have potential utility as a biomaterial to improve collagen quality and promote mineralization through the mitogen-activated protein kinase and Smad cascades. However, there are few clinical studies on bone regeneration in human subjects. It is desirable to be applied clinically through clinical study as soon as possible, based on the results from basic research.
Collapse
Affiliation(s)
- Shizuka Yamada
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| | - Kohei Yamamoto
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| | - Ayako Nakazono
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| | - Takashi Matsuura
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| | - Atsutoshi Yoshimura
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| |
Collapse
|
11
|
Sivaraman K, Shanthi C. Role of fish collagen hydrolysate in attenuating inflammation-An in vitro study. J Food Biochem 2021; 45:e13876. [PMID: 34309035 DOI: 10.1111/jfbc.13876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/20/2021] [Accepted: 07/08/2021] [Indexed: 12/01/2022]
Abstract
Collagen hydrolysate, an extensively used protein obtained from different sources, has various beneficial effects on human health and diseases. The benefits of collagen hydrolysate are well known and presently varied sources for the preparation of hydrolysate are being investigated. Food as a therapy to combat inflammation is presently a much-focused field of research. The present study aims at screening the anti-inflammatory property of collagen hydrolysate from the skin of Cypselurus melanurus, Catla catla, Indian mackerel, Clarias batrachus (Cb), and Pangasius pangasius (Pp) in activated RAW 264.7 macrophage cells. The fractions, Cb (C2) and Pp (P2) with anti-inflammatory property obtained after two-step chromatographic purification contained peptides in the range of 1-3 kDa molecular weight. The active fractions C2 and P2 showed a reduction in gene expression of TNF-α to 1.6- and 1-fold difference, whereas IL6 expression to 30- and 40-fold difference, respectively, in comparison to LPS treatment. The suppression of inflammatory proteins (TNF-α, IL6, NFκB, and p-IκB) by fractions C2 and P2 confirmed the anti-inflammatory activity. PRACTICAL APPLICATIONS: Collagen hydrolysate and its derived low molecular weight peptides are of great interest in the field of nutraceuticals and biomedical applications. The purified peptide fraction of fish skin hydrolysate displayed a promising anti-inflammatory property. The collagen hydrolysate of Cb and Pp can be a functional food or its purified fraction used as a nutraceutical supplementation due to their anti-inflammatory property in the cellular microenvironment.
Collapse
Affiliation(s)
- K Sivaraman
- Department of Biotechnology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamilnadu, India
| | - C Shanthi
- Department of Biotechnology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamilnadu, India
| |
Collapse
|
12
|
Initial proteomic characterization of IMMODIN, commercially available dialysable leukocytes extract. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01467-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Baratta RO, Schlumpf E, Buono BJD, DeLorey S, Calkins DJ. Corneal collagen as a potential therapeutic target in dry eye disease. Surv Ophthalmol 2021; 67:60-67. [PMID: 33882269 DOI: 10.1016/j.survophthal.2021.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 01/15/2023]
Abstract
Dry eye disease (DED) is a major cause of ocular discomfort, inflammation and dysfunction worldwide. Tear film instability in DED both causes and is exacerbated by disruption of the corneal epithelium. This tandem leads to a cycle of inflammation at the corneal surface involving immune cell dysregulation and increased chemokines and cytokines, which activate mitogen-activated protein kinases in the epithelium and elevates matrix metalloproteinases (MMPs). We review evidence suggesting that corneal collagen might be highly susceptible in DED to MMP-induced disruption, digestion, and thinning. We also summarize that collagen is far from inert and contains binding sites that serve as ligands for multiple inflammatory and immune regulators. Fragmented collagen not only challenges these receptor-ligand binding relationships, but also can promote recruitment and motility of pro-inflammatory immune cells. Current physician-directed therapies for DED focus on reducing inflammation, but do not directly ameliorate the underlying corneal damage that could exacerbate surface inflammation. We argue that an important gap in practice is lack of a direct therapeutic reparative for damaged corneal collagen, which is slow to heal, and likely amplifies sight-threatening inflammation. Healing fragmented collagen in the cornea may represent a more effective means to interrupt the "vicious cycle" of inflammation in DED and other conditions that damages, sometimes irreversibly, the ocular surface.
Collapse
Affiliation(s)
- Robert O Baratta
- Stuart Therapeutics, Inc., 411 SE Osceola St., Suite 203, Stuart, FL 34994
| | - Eric Schlumpf
- Stuart Therapeutics, Inc., 411 SE Osceola St., Suite 203, Stuart, FL 34994
| | - Brian J Del Buono
- Stuart Therapeutics, Inc., 411 SE Osceola St., Suite 203, Stuart, FL 34994
| | - Shawn DeLorey
- Stuart Therapeutics, Inc., 411 SE Osceola St., Suite 203, Stuart, FL 34994
| | - David J Calkins
- The Vanderbilt Eye Institute and Vanderbilt Vision Research Center, AA7100 MCN, 1161 21st Ave S. Nashville, TN 37232-2279.
| |
Collapse
|
14
|
Type II Collagen from Cartilage of Acipenser baerii Promotes Wound Healing in Human Dermal Fibroblasts and in Mouse Skin. Mar Drugs 2020; 18:md18100511. [PMID: 33050593 PMCID: PMC7601416 DOI: 10.3390/md18100511] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/23/2020] [Accepted: 10/07/2020] [Indexed: 12/21/2022] Open
Abstract
Type II collagen is an important component of cartilage; however, little is known about its effect on skin wound healing. In this study, type II collagen was extracted from the cartilage of Acipenser baerii and its effect on in vitro and in vivo wound healing was compared to type I collagen derived from tilapia skin. Sturgeon cartilage collagen (SCC) was composed of α1 chains and with a thermal denaturation (Td) at 22.5 and melting temperature (Tm) at 72.5 °C. Coating SCC potentiated proliferation, migration, and invasion of human dermal fibroblast adult (HDFa) cells. Furthermore, SCC upregulated the gene expression of extracellular matrix (ECM) components (col Iα1, col IIIα1, elastin, and Has2) and epithelial-mesenchymal transition (EMT) molecules (N-cadherin, Snail, and MMP-1) in HDFa. Pretreatment with Akt and mitogen-activated protein kinase (MAPK) inhibitors significantly attenuated the HDFa invasion caused by SCC. In mice, the application of SCC on dorsal wounds effectively facilitated wound healing as evidenced by 40–59% wound contraction, whereas the untreated wounds were 18%. We observed that SCC reduced inflammation, promoted granulation, tissue formation, and ECM deposition, as well as re-epithelialization in skin wounds. In addition, SCC markedly upregulated the production of growth factors in the dermis, and dermal and subcutaneous white adipose tissue; in contrast, the administration of tilapia skin collagen (TSC) characterized by typical type I collagen was mainly expressed in the epidermis. Collectively, these findings indicate SCC accelerated wound healing by targeting fibroblast in vitro and in vivo.
Collapse
|
15
|
Naomi R, Ardhani R, Hafiyyah OA, Fauzi MB. Current Insight of Collagen Biomatrix for Gingival Recession: An Evidence-Based Systematic Review. Polymers (Basel) 2020; 12:E2081. [PMID: 32933133 PMCID: PMC7570157 DOI: 10.3390/polym12092081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022] Open
Abstract
Collagen (Col) is a naturally available material and is widely used in the tissue engineering and medical field owing to its high biocompatibility and malleability. Promising results on the use of Col were observed in the periodontal application and many attempts have been carried out to inculcate Col for gingival recession (GR). Col is found to be an excellent provisional bioscaffold for the current treatment in GR. Therefore, the aim of this paper is to scrutinize an overview of the reported Col effect focusing on in vitro, in vivo, and clinical trials in GR application. A comprehensive literature search was performed using EBSCOhost, Science Direct, Springer Link, and Medline & Ovid databases to identify the potential articles on particular topics. The search query was accomplished based on the Boolean operators involving keywords such as (1) collagen OR scaffold OR hybrid scaffold OR biomaterial AND (2) gingiva recession OR tissue regeneration OR dental tissue OR healing mechanism OR gingiva. Only articles published from 2015 onwards were selected for further analysis. This review includes the physicochemical properties of Col scaffold and the outcome for GR. The comprehensive literature search retrieved a total of 3077 articles using the appropriate keywords. However, on the basis of the inclusion and exclusion criteria, only 15 articles were chosen for further review. The results from these articles indicated that Col promoted gingival tissue regeneration for GR healing. Therefore, this systematic review recapitulated that Col enhances regeneration of gingival tissue either through a slow or rapid process with no sign of cytotoxicity or adverse effect.
Collapse
Affiliation(s)
- Ruth Naomi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Retno Ardhani
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Jl Denta Sekip Utara, Yogyakarta 55281, Indonesia;
| | - Osa Amila Hafiyyah
- Department of Periodontics, Faculty of Dentistry, Universitas Gadjah Mada, Jl Denta Sekip Utara, Yogyakarta 55281, Indonesia;
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
16
|
Nyambat B, Manga YB, Chen CH, Gankhuyag U, Pratomo WP A, Kumar Satapathy M, Chuang EY. New Insight into Natural Extracellular Matrix: Genipin Cross-Linked Adipose-Derived Stem Cell Extracellular Matrix Gel for Tissue Engineering. Int J Mol Sci 2020; 21:E4864. [PMID: 32660134 PMCID: PMC7402347 DOI: 10.3390/ijms21144864] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 07/01/2020] [Indexed: 01/04/2023] Open
Abstract
The cell-derived extracellular matrix (ECM) is associated with a lower risk of pathogen transfer, and it possesses an ideal niche with growth factors and complex fibrillar proteins for cell attachment and growth. However, the cell-derived ECM is found to have poor biomechanical properties, and processing of cell-derived ECM into gels is scarcely studied. The gel provides platforms for three-dimensional cell culture, as well as injectable biomaterials, which could be delivered via a minimally invasive procedure. Thus, in this study, an adipose-derived stem cell (ADSC)-derived ECM gel was developed and cross-linked by genipin to address the aforementioned issue. The genipin cross-linked ADSC ECM gel was fabricated via several steps, including rabbit ADSC culture, cell sheets, decellularization, freeze-thawing, enzymatic digestion, neutralization of pH, and cross-linking. The physicochemical characteristics and cytocompatibility of the gel were evaluated. The results demonstrated that the genipin cross-linking could significantly enhance the mechanical properties of the ADSC ECM gel. Furthermore, the ADSC ECM was found to contain collagen, fibronectin, biglycan, and transforming growth factor (TGF)-β1, which could substantially maintain ADSC, skin, and ligament fibroblast cell proliferation. This cell-derived natural material could be suitable for future regenerative medicine and tissue engineering application.
Collapse
Affiliation(s)
- Batzaya Nyambat
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
| | - Yankuba B. Manga
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
| | - Chih-Hwa Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
- International Master/Ph.D. Program in Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Research Center of Biomedical Device, Taipei Medical University, Taipei 11031, Taiwan
- Department of Orthopedics, Taipei Medical University–Shuang Ho Hospital, 291 Zhongzheng Rd., Zhonghe District, New Taipei City 11031, Taiwan
| | - Uuganbayar Gankhuyag
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
| | - Andi Pratomo WP
- International Master/Ph.D. Program in Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Mantosh Kumar Satapathy
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
- Cell Physiology and Molecular Image Research Center, Taipei Medical University–Wan Fang Hospital, 111, Sec. 3, Xinglong 11 Road, Wenshan District, Taipei 116, Taiwan
| |
Collapse
|
17
|
Wallace RG, Kenealy MR, Brady AJ, Twomey L, Duffy E, Degryse B, Caballero-Lima D, Moyna NM, Custaud MA, Meade-Murphy G, Morrin A, Murphy RP. Development of dynamic cell and organotypic skin models, for the investigation of a novel visco-elastic burns treatment using molecular and cellular approaches. Burns 2020; 46:1585-1602. [PMID: 32475797 DOI: 10.1016/j.burns.2020.04.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND Burn injuries are a major cause of morbidity and mortality worldwide. Despite advances in therapeutic strategies for the management of patients with severe burns, the sequelae are pathophysiologically profound, up to the systemic and metabolic levels. Management of patients with a severe burn injury is a long-term, complex process, with treatment dependent on the degree and location of the burn and total body surface area (TBSA) affected. In adverse conditions with limited resources, efficient triage, stabilisation, and rapid transfer to a specialised intensive care burn centre is necessary to provide optimal outcomes. This initial lag time and the form of primary treatment initiated, from injury to specialist care, is crucial for the burn patient. This study aims to investigate the efficacy of a novel visco-elastic burn dressing with a proprietary bio-stimulatory marine mineral complex (MXC) as a primary care treatment to initiate a healthy healing process prior to specialist care. METHODS A new versatile emergency burn dressing saturated in a >90% translucent water-based, sterile, oil-free gel and carrying a unique bio-stimulatory marine mineral complex (MXC) was developed. This dressing was tested using LabSkin as a burn model platform. LabSkin a novel cellular 3D-dermal organotypic full thickness human skin equivalent, incorporating fully-differentiated dermal and epidermal components that functionally models skin. Cell and molecular analysis was carried out by in vitro Real-Time Cellular Analysis (RTCA), thermal analysis, and focused transcriptomic array profiling for quantitative gene expression analysis, interrogating both wound healing and fibrosis/scarring molecular pathways. In vivo analysis was also performed to assess the bio-mechanical and physiological effects of this novel dressing on human skin. RESULTS This hybrid emergency burn dressing (EBD) with MXC was hypoallergenic, and improved the barrier function of skin resulting in increased hydration up to 24 h. It was demonstrated to effectively initiate cooling upon application, limiting the continuous burn effect and preventing local tissue from damage and necrosis. xCELLigence RTCA® on primary human dermal cells (keratinocyte, fibroblast and micro-vascular endothelial) demonstrated improved cellular function with respect to tensegrity, migration, proliferation and cell-cell contact (barrier formation) [1]. Quantitative gene profiling supported the physiological and cellular function finding. A beneficial quid pro quo regulation of genes involved in wound healing and fibrosis formation was observed at 24 and 48 h time points. CONCLUSION Utilisation of this EBD + MXC as a primary treatment is an effective and easily applicable treatment in cases of burn injury, proving both a cooling and hydrating environment for the wound. It regulates inflammation and promotes healing in preparation for specialised secondary burn wound management. Moreover, it promotes a healthy remodelling phenotype that may potentially mitigate scarring. Based on our findings, this EBD + MXC is ideal for use in all pre-hospital, pre-surgical and resource limited settings.
Collapse
Affiliation(s)
- Robert G Wallace
- Center for Preventive Medicine, School of Health & Human Performance, Dublin City University, Dublin 9, Ireland
| | - Mary-Rose Kenealy
- Center for Preventive Medicine, School of Health & Human Performance, Dublin City University, Dublin 9, Ireland
| | - Aidan J Brady
- Center for Preventive Medicine, School of Health & Human Performance, Dublin City University, Dublin 9, Ireland
| | - Laura Twomey
- Center for Preventive Medicine, School of Health & Human Performance, Dublin City University, Dublin 9, Ireland; Technological University Dublin, Ireland
| | - Emer Duffy
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Bernard Degryse
- Center for Preventive Medicine, School of Health & Human Performance, Dublin City University, Dublin 9, Ireland; Integrative Cell & Molecular Physiology Group, School of Health & Human Performance, Dublin City University, Dublin 9, Ireland
| | | | - Niall M Moyna
- Center for Preventive Medicine, School of Health & Human Performance, Dublin City University, Dublin 9, Ireland
| | | | | | - Aoife Morrin
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Ronan P Murphy
- Center for Preventive Medicine, School of Health & Human Performance, Dublin City University, Dublin 9, Ireland; Integrative Cell & Molecular Physiology Group, School of Health & Human Performance, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
18
|
Liu X, Yu Y, Maha IF, Kong J, Xie X, Yin F. Label-free quantitative proteomics analysis of skin of yellow drum (Nibea albiflora) reveals immune mechanism against Cryptocaryon irritans. FISH & SHELLFISH IMMUNOLOGY 2020; 101:284-290. [PMID: 32276037 DOI: 10.1016/j.fsi.2020.03.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
To explore the resistance mechanism of locally infected skin of yellow drum (Nibea albiflora) against Cryptocaryon irritans infection, N. albiflora were infected with C. irritans at a median lethal concentration of 2050 theronts/g fish. Then, the skin of the infected group (24 hT and 72 hT) and the control group (24 hC and 72 hC) were sampled at 24 h and 72 h for quantitative proteomics analysis. A total of 643 proteins were identified, of which 61 proteins were significantly affected by interaction between time and infection, 83 and 119 proteins were significantly affected by the infection and time, respectively. In addition, 17, 61, 81 and 45 differentially expressed proteins (DEPs) were obtained from pairwise comparison (24 hT vs 24 hC, 72 hT vs 72 hC, 72 hT vs 24 hT and 72 hC vs 24 hC), respectively. DEPs in 24 hT vs 24 hC and 72 hT vs 72 hC were mainly enriched in Gene Ontology terms (transferase activity, protein folding and isomerase activity) and Kyoto Encyclopedia of Genes and Genomes pathways (biosynthesis of antibiotics, carbon metabolism and Citrate cycle). Among them, enriched DEPs were malate dehydrogenase 2 (MDH2), malate dehydrogenase 1 ab (MDH 1 ab), citrate synthase, etc. Immune-related DEPs such as complement component C3 and Cell division cycle 42 were involved in response to stimulus and signal transduction, etc. Also, DEPs such as collagen, heat shock protein 75 and MDH2 play a role in helping fish skin wounds to heal and provide energy. Furthermore, protein-protein interaction analysis indicated that 18 proteins such as MDH2, MDH 1 ab, complement C3 and collagen were interrelated. In conclusion, this study found that many proteins in N. albiflora contribute to resist against C. irritans and promote fish recovery.
Collapse
Affiliation(s)
- Xiao Liu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China
| | - Youbin Yu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China
| | - Ivon F Maha
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China
| | - Jindong Kong
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China
| | - Xiao Xie
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China.
| | - Fei Yin
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China.
| |
Collapse
|
19
|
Biomimetic Properties of Force-Spun PHBV Membranes Functionalised with Collagen as Substrates for Biomedical Application. COATINGS 2019. [DOI: 10.3390/coatings9060350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The force-spinning process parameters (i.e., spin speed, spinneret-collector distance, and polymer concentration), optimised and characterised in previous work by this group, allowed the rapid fabrication of large quantities of high surface area poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) polymeric fibre membranes. This paper examined the potential application for force-spun PHBV fibres functionalised with type I collagen for tissue regeneration applications. PHBV fibre scaffolds provide a biologically suitable substrate to guide the regeneration of dermal tissues, however, have poor cellular adhesion properties. The grafting of collagen type-I to PHBV fibres demonstrated improved cell adhesion and growth in Neo-NHDF (neonatal human dermal fibroblasts) fibroblasts. The examination of fibre morphology, thermal properties, collagen content, and degradability was used to contrast the physicochemical properties of the PHBV and PHBV-Collagen fibres. Biodegradation models using phosphate buffered saline determined there was no appreciable change in mass over the course of 6 weeks; a Sirius Red assay was performed on degraded samples, showing no change in the quantity of collagen. Cell metabolism studies showed an increase in cell metabolism on conjugated samples after three and 7 days. In addition, in vitro cytocompatibility studies demonstrated superior cell activity and adhesion on conjugated samples over 7 days.
Collapse
|
20
|
Lin X, Chen Y, Jin H, Zhao Q, Liu C, Li R, Yu F, Chen Y, Huang F, Yang Z, Ding G, Tang Y. Collagen Extracted from Bigeye Tuna ( Thunnus obesus) Skin by Isoelectric Precipitation: Physicochemical Properties, Proliferation, and Migration Activities. Mar Drugs 2019; 17:E261. [PMID: 31052462 PMCID: PMC6562556 DOI: 10.3390/md17050261] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 01/16/2023] Open
Abstract
Collagen was extracted from bigeye tuna (Thunnus obesus) skins by salting-out (PSC-SO) and isoelectric precipitation (PSC-IP) methods. The yield of the PSC-IP product was approximately 17.17% (dry weight), which was greater than the yield obtained from PSC-SO (14.14% dry weight). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis indicated that collagen from bigeye tuna skin belongs to collagen type I. Inductively coupled plasma mass spectrometry results indicate that the heavy metal abundance in PSC-IP was lower than the maximum acceptable amounts according to Chinese regulatory standards. In addition, results from a methylthiazolyldiphenyl-tetrazolium bromide assay and an in vitro scratch assay demonstrated that PSC-IP could promote the proliferation and migration of NIH-3T3 fibroblasts. Overall, results suggest PSC-IP could be used to rapidly extract collagen from marine by-products instead of traditional salting-out methods. Collagen from bigeye tuna skin may also have strong potential for cosmetic and biomedical applications.
Collapse
Affiliation(s)
- Xinhui Lin
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yinyue Chen
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Huoxi Jin
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Qiaoling Zhao
- Zhoushan Institute for Food and Drug Control, Zhoushan 316000, China.
| | - Chenjuan Liu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Renwei Li
- Zhejiang Ocean Family CO., LTD, Zhoushan 316022, China.
| | - Fangmiao Yu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yan Chen
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Fangfang Huang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Zuisu Yang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Guofang Ding
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yunping Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
- Zhejiang Changxing Pharmaceutical CO., LTD, Huzhou 313108, China.
| |
Collapse
|
21
|
Fish Collagen Surgical Compress Repairing Characteristics on Wound Healing Process In Vivo. Mar Drugs 2019; 17:md17010033. [PMID: 30625985 PMCID: PMC6357035 DOI: 10.3390/md17010033] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022] Open
Abstract
The development of biomaterials with the potential to accelerate wound healing is a great challenge in biomedicine. In this study, four types of samples including pepsin soluble collagen sponge (PCS), acid soluble collagen sponge (ACS), bovine collagen electrospun I (BCE I) and bovine collagen electrospun II (BCE II) were used as wound dressing materials. We showed that the PCS, ACS, BCE I and BCE II treated rats increased the percentage of wound contraction, reduced the inflammatory infiltration, and accelerated the epithelization and healing. PCS, ACS, BCE I, and BCE II significantly enhanced the total protein and hydroxyproline level in rats. ACS could induce more fibroblasts proliferation and differentiation than PCS, however, both PCS and ACS had a lower effect than BCE I and BCE II. PCS, ACS, BCE I, and BCE II could regulate deposition of collagen, which led to excellent alignment in the wound healing process. There were similar effects on inducing the level of cytokines including EGF, FGF, and vascular endothelial marker CD31 among these four groups. Accordingly, this study disclosed that collagens (PCS and ACS) from tilapia skin and bovine collagen electrospun (BCE I and BCE II) have significant bioactivity and could accelerate wound healing rapidly and effectively in rat model.
Collapse
|
22
|
Nam GH, Mishra A, Gim JA, Lee HE, Jo A, Yoon D, Kim A, Kim WJ, Ahn K, Kim DH, Kim S, Cha HJ, Choi YH, Park CI, Kim HS. Gene expression profiles alteration after infection of virus, bacteria, and parasite in the Olive flounder (Paralichthys olivaceus). Sci Rep 2018; 8:18065. [PMID: 30584247 PMCID: PMC6305387 DOI: 10.1038/s41598-018-36342-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/14/2018] [Indexed: 01/25/2023] Open
Abstract
Olive flounder (Paralichthys olivaceus) is one of economically valuable fish species in the East Asia. In comparison with its economic importance, available genomic information of the olive flounder is very limited. The mass mortality caused by variety of pathogens (virus, bacteria and parasites) is main problem in aquaculture industry, including in olive flounder culture. In this study, we carried out transcriptome analysis using the olive flounder gill tissues after infection of three types of pathogens (Virus; Viral hemorrhagic septicemia virus, Bacteria; Streptococcus parauberis, and Parasite; Miamiensis avidus), respectively. As a result, we identified total 12,415 differentially expressed genes (DEG) from viral infection, 1,754 from bacterial infection, and 795 from parasite infection, respectively. To investigate the effects of pathogenic infection on immune response, we analyzed Gene ontology (GO) enrichment analysis with DEGs and sorted immune-related GO terms per three pathogen groups. Especially, we verified various GO terms, and genes in these terms showed down-regulated expression pattern. In addition, we identified 67 common genes (10 up-regulated and 57 down-regulated) present in three pathogen infection groups. Our goals are to provide plenty of genomic knowledge about olive flounder transcripts for further research and report genes, which were changed in their expression after specific pathogen infection.
Collapse
Affiliation(s)
- Gyu-Hwi Nam
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Anshuman Mishra
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jeong-An Gim
- Center for Convergence Approaches in Drug Development (CCADD), Graduate School of Convergence Science and Technology, Seoul National University, Suwon, 16229, Republic of Korea
| | - Hee-Eun Lee
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Ara Jo
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Dahye Yoon
- Department of Chemistry, Center for Proteome Biophysics and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Ahran Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, Republic of Korea
| | - Woo-Jin Kim
- Biotechnology Research Division, National Fisheries Research and Development Institute, 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Kung Ahn
- Theragen ETEX Bio Institute, Suwon, 16229, Republic of Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry, Center for Proteome Biophysics and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, 49267, Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan, 47227, Korea
| | - Chan-Il Park
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong, 53064, Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea.
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
23
|
Chen Y, Huang P, Chen H, Wang S, Wang H, Guo J, Zhang X, Zhang S, Yan J, Xia J, Xu Z. Assessment of the Biocompatibility and Biological Effects of Biodegradable Pure Zinc Material in the Colorectum. ACS Biomater Sci Eng 2018; 4:4095-4103. [PMID: 33418809 DOI: 10.1021/acsbiomaterials.8b00957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Little attention has been paid to the biocompatibility and biological effects of zinc as a material. Here, we therefore investigated the biocompatibility and anti-inflammatory and collagen-promoting effects of pure zinc material in the colorectum. Our in vitro results indicated that zinc toxicity and concentration were closely related. Low concentrations of zinc ions and pure zinc material extract had only minor effects on the viability of primary rectal mucosal epithelial cells; however, cytotoxicity was observed at concentrations greater than 0.017 μg/μL and 60%, respectively. In vivo experiments demonstrated that zinc pins degraded slowly in the colorectum (their volume decreasing by approximately 7.79% over 1 month) and did not cause serious adverse reactions. Pure zinc material was found to inhibit acute inflammation through increased expression of ENA-78 and F4/80. Moreover, zinc material heightened expression of collagen and VEGF, factors conducive to wound healing, in surrounding colorectal tissues. These preliminary results suggest that zinc shows great promise as an implant material for medical applications involving colorectal surgery.
Collapse
Affiliation(s)
| | | | - Hui Chen
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Jiangsu 210000, People's Republic of China
| | | | | | | | - Xiaonong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Shaoxiang Zhang
- Suzhou Origin Medical Technology Co. Ltd., 2 Haicheng Road, Changshu Economic and Technology Development Zone, Jiangsu 215513, People's Republic of China
| | - Jun Yan
- Department of General Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | | | | |
Collapse
|
24
|
Dorso-ventral skin characterization of the farmed fish gilthead seabream (Sparus aurata). PLoS One 2017; 12:e0180438. [PMID: 28666033 PMCID: PMC5493399 DOI: 10.1371/journal.pone.0180438] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 06/15/2017] [Indexed: 12/27/2022] Open
Abstract
The skin is the first barrier of defence in fish, protecting against any external stressor and preserving the integrity and homeostasis of the fish body. The aim of this study was to characterise gilthead seabream skin by isolating cells and studying the cell cycle by flow cytometry, to study the skin histology by scanning electron microscopy and the transcription level of some immune-relevant genes by RT-PCR. Furthermore, the results obtained from samples taken from the dorsal and the ventral part of the specimens are compared. No differences were observed in the cell cycle of cells isolated from the dorsal and ventral zones of the skin or in the gene expression of the genes studied in both epidermal zones. However, the epidermis thickness of the ventral skin was higher than that of the dorsal skin, as demonstrated by image analysis using light microscopy. Besides, scanning electron microscopy pointed to a greater cell size and area of microridges in the apical part of the dorsal epidermal cells compared with ventral skin epidermal cells. This study represents a step forward in our knowledge of the skin structure of an important farmed teleost, gilthead seabream, one of the most commonly farmed fish worldwide. Furthermore, for functional characterization, experimental wounds were carried out comparing the wound healing rate between the dorsal and ventral regions of skin over the time. The results showed higher ratio of wound healing in the ventral region, whose wounds were closed after 15 days, compared to dorsal region of skin. Taking into account all together, this study represents a step forward in our knowledge of the skin structure and skin regeneration of an important farmed teleost, gilthead seabream, one of the most commonly farmed fish worldwide.
Collapse
|
25
|
Mohsenikia M, Khakpour S, Azizian Z, Ashkani-Esfahani S, Razavipour ST, Toghiani P. Wound Healing Effect of Arnebia euchroma gel on Excisional Wounds in Rats. Adv Biomed Res 2017; 6:2. [PMID: 28217647 PMCID: PMC5309439 DOI: 10.4103/2277-9175.199260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Wound healing is a complex process leading to regeneration of damaged skin tissue. Arnebia euchroma (AE) have many effective activities such as anti-inflammatory, antimicrobial, antioxidative, and anti-tumoral effects. The extract of AE has positive effects on burn wounds. This study is designed to investigate the healing effects of AE on excisional wounds in rats. MATERIALS AND METHODS Thirty six rats with the age of 8 weeks divided into three groups. One group (E1) was treated with AE gel at a concentration of 10%. Control group (C1) received normal saline and the vehicle group (C2) was treated with carboxymethyl cellulose gel as the vehicle for 14 days. Stereological analysis was done to investigate the collagen bundle and hair follicale synthesis, vascularization, fibroblast proliferation. Pathological evaluation was also conducted. RESULTS In this study, pathological evaluation showed severe acute inflammation in C2 group, chronic and acute inflammation in C1 and also more wound contraction in E1 in comparison with other groups. There was a meaningful difference between E1 and C1 regarding fibroblast proliferation (P < 0.05). CONCLUSION Results of this study revealed the healing effect of AE on excisional wounds and recommend its administration after further clinical investigations.
Collapse
Affiliation(s)
- Maryam Mohsenikia
- Young Researchers and Elit Club, Tehran Medial Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Shahrzad Khakpour
- Department of Physiology, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Azizian
- Department of Dermatology, Dermatological Research Center, Rasul Akram Dermatological Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Pooya Toghiani
- Islamic Azad University, Shahrekord Branch, Shahrekord, Iran
| |
Collapse
|
26
|
Dezfuli BS, Manera M, Bosi G, DePasquale JA, D'Amelio S, Castaldelli G, Giari L. Anguilla anguilla intestinal immune response to natural infection with Contracaecum rudolphii A larvae. JOURNAL OF FISH DISEASES 2016; 39:1187-1200. [PMID: 26814373 DOI: 10.1111/jfd.12455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/03/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
The European eel, Anguilla anguilla, is a major warm-water fish species cultured in North and South Europe. Seventy-one A. anguilla collected between 2010 and 2015 from the Comacchio lagoons were examined. Fish were infected and damaged by larvae (L3) of the nematode Contracaecum rudolphii A, which were encapsulated within the thickness of the intestinal wall and within the external visceral peritoneum (serosa). Conspicuous granulomas, visible at sites of infection, were arranged in a trilayer, formed by a series of concentric whorls. The cells involved in the immune response and their distribution in the granuloma layers were assessed by immunohistochemical, immunofluorescence, and ultrastructural techniques. The outer part of the granuloma contained macrophages, macrophage aggregates, and mast cells (MCs) scattered among fibroblasts. This layer was vascularized, with degranulation of MCs occurring in close proximity to the capillaries. The middle layer was rich in MCs and fibroblasts. The inner layer, closest to the parasite larva, consisted mainly of dark epithelioid cells, some of which were necrotic. Non-necrotic epithelioid cells formed desmosomes between themselves or with fibroblasts. Within the granulomas, numerous cells of different types were positive to proliferative cell nuclear antigen antibody, indicating a high degree of cellular proliferation around the larvae.
Collapse
Affiliation(s)
- B S Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - M Manera
- Faculty of Biosciences, Food and Environmental Technologies, University of Teramo, Teramo, Italy
| | - G Bosi
- Department of Veterinary Sciences and Technologies for Food Safety, Università degli Studi di Milano, Milan, Italy
| | | | - S D'Amelio
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - G Castaldelli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - L Giari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
27
|
Zanuzzo FS, Zaiden SF, Senhorini JA, Marzocchi-Machado CM, Urbinati EC. Aloe vera bathing improved physical and humoral protection in breeding stock after induced spawning in matrinxã (Brycon amazonicus). FISH & SHELLFISH IMMUNOLOGY 2015; 45:132-140. [PMID: 25703714 DOI: 10.1016/j.fsi.2015.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/23/2014] [Accepted: 02/10/2015] [Indexed: 06/04/2023]
Abstract
In this study, we show that induced spawning causes stress, an intense loss of epithelia and immunosuppression, decreasing physical and humoral protection in fish, effects that were prevented or improved in fish bathed with Aloe vera. A. vera has several medicinal properties, including wound healing and immunostimulatory effects, which we observed in this study. Fish bathed with A. vera had a higher number of epidermal goblet cells and, in general, an improved wound healing rate compared with the control after induced spawning. These effects might be related to (1) the stimulation of leukocyte activity, represented here by the increased leukocyte respiratory activity triggered by A. vera (leukocytes are recognized as playing an important role in wound repair); (2) the antimicrobial properties of A. vera, which decrease wound infection and accelerate the healing process; and (3) several mechanisms that explain the healing effect of A. vera (increased collagen synthesis, rate of epithelialization, and anti-inflammatory and moisturizing effects). Our results also suggest that caution is necessary during the induced spawning process, especially during stripping, and A. vera bathing is recommended after intensive aquaculture operations.
Collapse
Affiliation(s)
- Fábio S Zanuzzo
- Centro de Aquicultura da Unesp, UNESP - Univ Estadual Paulista, Via de Acesso Prof. Paulo Donato Castelane, 14884-900 Jaboticabal, SP, Brazil; Departamento de Fisiologia, Instituto de Biociências, Campus de Botucatu, UNESP - Univ Estadual Paulista, Rubião Jr., 18618-970 Botucatu, SP, Brazil.
| | - Sérgio F Zaiden
- Universidade de Rio Verde - FESURV, Campus Universitário, s/n. Rio Verde, CEP: 75901-970 Goiás, Brazil.
| | - José A Senhorini
- Centro Nacional de Pesquisa e Conservação de Peixes Continentais (CEPTA/ICMBio), Rodovia Euberto Pereira de Godoy, km 6,5, Pirassununga, 13630-000 São Paulo, Brazil.
| | - Cleni M Marzocchi-Machado
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Via do Café, Monte Alegre, 14040-903 Ribeirão Preto, SP, Brazil.
| | - Elisabeth C Urbinati
- Centro de Aquicultura da Unesp, UNESP - Univ Estadual Paulista, Via de Acesso Prof. Paulo Donato Castelane, 14884-900 Jaboticabal, SP, Brazil; Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista - UNESP, Via de Acesso Prof. Paulo Donato Castelane, 14884-900 Jaboticabal, SP, Brazil
| |
Collapse
|
28
|
Dezfuli BS, Manera M, Lorenzoni M, Pironi F, Shinn AP, Giari L. Histopathology and the inflammatory response of European perch, Perca fluviatilis muscle infected with Eustrongylides sp. (Nematoda). Parasit Vectors 2015; 8:227. [PMID: 25889096 PMCID: PMC4404125 DOI: 10.1186/s13071-015-0838-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 03/31/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The European perch, Perca fluviatilis L. is a common paratenic host of dioctophymatid nematodes belonging to the genus Eustrongylides. In this host, once infected oligochaetes, which serve as the first intermediate host, are ingested, Eustrongylides migrates through the intestine and is frequently encountered within the musculature, free within the body cavity, or encapsulated on the viscera. The current study details the first Italian record of Eustrongylides sp. with larvae reported in the muscle of P. fluviatilis. METHODS Uninfected and nematode-infected muscle tissues of perch were fixed and prepared for histological evaluation and electron microscopy. Some sections were subjected to an indirect immunohistochemical method using anti-PCNA, anti-piscidin 3 and anti-piscidin 4 antibodies. RESULTS A total of 510 P. fluviatilis (TL range 15-25 cm) from Lake Trasimeno, Perugia were post-mortemed; 31 individuals had encysted nematode larvae within their musculature (1-2 worms fish(-1)). Histologically, larvae were surrounded by a capsule with an evident acute inflammatory reaction. Muscle degeneration and necrosis extending throughout the sarcoplasm, sarcolemmal basal lamina, endomysial connective tissue cells and capillaries was frequently observed. Within the encapsulating reaction, macrophage aggregates (MAs) were seen. Immunohistochemical staining with the proliferating cell nuclear antigen (PCNA) revealed numerous PCNA-positive cells within the thickness of the capsule and in the immediate vicinity surrounding Eustrongylides sp. larvae (i.e. fibroblasts and satellite cells), suggesting a host response had been initiated to repair the nematode-damaged muscle. Mast cells (MCs) staining positively for piscidin 3, were demonstrated for the first time in response to a muscle-infecting nematode. The piscidin 3 positive MC's were seen principally in the periphery of the capsule surrounding the Eustrongylides sp. larva. CONCLUSIONS A host tissue response to Eustrongylides sp. larvae infecting the musculature of P. fluviatilis was observed. Numerous fibroblasts, MAs and MCs were seen throughout the thick fibroconnectival layer of the capsule enclosing larvae. PCNA positive cells within the capsule suggest that host repair of nematode damaged muscle does occur, while the presence of the antimicrobial peptide piscidin 3 is shown for the first time. This is first report of Eustrongylides sp. in an Italian population of P. fluviatilis.
Collapse
Affiliation(s)
- Bahram S Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121, Ferrara, Italy.
| | - Maurizio Manera
- Faculty of Biosciences, Agro-Alimentary and Environmental Technologies, University of Teramo, St. Crispi 212, I-64100, Teramo, Italy.
| | - Massimo Lorenzoni
- Department of Cellular and Environmental Biology, University of Perugia, St. Elce di sotto 5, 06123, Perugia, Italy.
| | - Flavio Pironi
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121, Ferrara, Italy.
| | - Andrew P Shinn
- Fish Vet Group Asia Limited, 99/386, Chaengwattana Building, Chaengwattana Rd., Kwaeng Toongsonghong, Khet Laksi, Bangkok, 10210, Thailand.
| | - Luisa Giari
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121, Ferrara, Italy.
| |
Collapse
|
29
|
Trapani A, Mandracchia D, Di Franco C, Cordero H, Morcillo P, Comparelli R, Cuesta A, Esteban MA. In vitro characterization of 6-Coumarin loaded solid lipid nanoparticles and their uptake by immunocompetent fish cells. Colloids Surf B Biointerfaces 2015; 127:79-88. [DOI: 10.1016/j.colsurfb.2015.01.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/22/2014] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
|
30
|
Braden LM, Koop BF, Jones SRM. Signatures of resistance to Lepeophtheirus salmonis include a TH2-type response at the louse-salmon interface. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:178-91. [PMID: 25453579 DOI: 10.1016/j.dci.2014.09.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 09/26/2014] [Accepted: 09/26/2014] [Indexed: 05/08/2023]
Abstract
Disease outbreaks with the salmon louse Lepeophtheirus salmonis cause significant economic losses in mariculture operations worldwide. Variable innate immune responses at the louse-attachment site contribute to differences in susceptibility among species such that members of Salmo spp. are more susceptible to infection than those of some Oncorhynchus spp. Relatively little is known about the mechanisms that contribute to disease resistance or susceptibility to L. salmonis in salmon. Here, we utilize histochemistry and transcriptomics in a comparative infection model with susceptible (Atlantic, sockeye) and resistant (coho) salmon. At least three cell populations (MHIIβ+, IL1β+, TNFα+) were activated in coho salmon skin during L. salmonis infection. Locally elevated expression of several pro-inflammatory mediators (e.g. IL1β, IL8, TNFα, COX2, C/EBPβ), and tissue repair enzymes (MMP9, MMP13) were detected in susceptible and resistant species. However, responses specific to coho salmon (e.g. IL4, IL6, TGFβ) or responses shared among susceptible salmon (e.g. SAP, TRF, Cath in Atlantic and sockeye salmon) provide evidence for species-specific pathways contributing to resistance or susceptibility, respectively. Our results confirm the importance of an early pro-inflammatory TH1-type pathway as an initial host response during infection with Pacific sea lice, and demonstrate subsequent regulatory TH2-type processes as candidate defense mechanisms in the skin of resistant coho salmon.
Collapse
Affiliation(s)
- Laura M Braden
- Centre for Biomedical Research, Department of Biology, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Ben F Koop
- Centre for Biomedical Research, Department of Biology, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Simon R M Jones
- Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, British Columbia V9T 6N7, Canada.
| |
Collapse
|
31
|
Chaisri P, Chingsungnoen A, Siri S. Repetitive Gly-Leu-Lys-Gly-Glu-Asn-Arg-Gly-Asp Peptide Derived from Collagen and Fibronectin for Improving Cell–Scaffold Interaction. Appl Biochem Biotechnol 2014; 175:2489-500. [DOI: 10.1007/s12010-014-1388-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 11/10/2014] [Indexed: 11/29/2022]
|
32
|
Fast MD. Fish immune responses to parasitic copepod (namely sea lice) infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:300-312. [PMID: 24001580 DOI: 10.1016/j.dci.2013.08.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/22/2013] [Accepted: 08/22/2013] [Indexed: 06/02/2023]
Abstract
Parasitic copepods, in particular sea lice, have considerable impacts upon global freshwater and marine fisheries, with major economic consequences recognized primarily in aquaculture. Sea lice have been a contentious issue with regards to interactions between farmed and wild populations of fish, in particular salmonids, and their potential for detrimental effects at a population level. The following discussion will pertain to aquatic parasitic copepod species for which we have significant information on the host-parasite interaction and host response to infection (Orders Cyclopoida, Poecilostomatoida and Siphonostomatoida). This review evaluates prior research in terms of contributions to understanding parasite stage specific responses by the host, and in many cases draws upon model organisms like Lepeophtheirus salmonis and Atlantic salmon to convey important concepts in fish responses to parasitic copepod infection. The article discusses TH1 and TH2-like host responses in light of parasite immunomodulation of the host, current methods of immunological stimulation and where the current and future work in this field is heading.
Collapse
Affiliation(s)
- Mark D Fast
- Department of Pathology and Microbiology, Atlantic Veterinary College - University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI, Canada.
| |
Collapse
|
33
|
Tovar-Carrillo KL, Tagaya M, Kobayashi T. Biohydrogels Interpenetrated with Hydroxyethyl Cellulose and Wooden Pulp for Biocompatible Materials. Ind Eng Chem Res 2014. [DOI: 10.1021/ie403257a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Karla Lizette Tovar-Carrillo
- Department
of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
- Biomedical
Science Institute, Universidad Autonoma de Cd. Juárez, Estocolmo y anillo envolvente del PRONAF, Juárez Chih. CP 32315, Mexico
| | - Motohiro Tagaya
- Department
of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Takaomi Kobayashi
- Department
of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| |
Collapse
|
34
|
Wu YS, Chen SN. Apoptotic cell: linkage of inflammation and wound healing. Front Pharmacol 2014; 5:1. [PMID: 24478702 PMCID: PMC3896898 DOI: 10.3389/fphar.2014.00001] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/03/2014] [Indexed: 12/13/2022] Open
Abstract
We consider that from the wound to the healing process, the physiology point key to linkage of the process is still unclear. The process from inflammation to the wound healing is divided into three phases: (1) inflammation process, (2) tissue formation, and (3) tissue remodeling. The inflammation program includes cell produced related factors and immune cells infiltration. We thought the inflammation factors that may be also involved in the followed healing process. But the question is "what kind of factor is the major key involved in the end of the inflammation then to initiate the healing." We suspect that the apoptosis of immune cell may be the major key to end of inflammation and to initiate the healing.
Collapse
Affiliation(s)
| | - Shiu-Nan Chen
- College of Life Science, National Taiwan UniversityTaipei, Taiwan
| |
Collapse
|
35
|
Picchietti S, Bernini C, Belardinelli MC, Ovidi E, Taddei AR, Guerra L, Abelli L, Fausto AM. Immune modulatory effects of Aloe arborescens extract on the piscine SAF-1 cell line. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1335-1344. [PMID: 23470814 DOI: 10.1016/j.fsi.2013.02.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 02/07/2013] [Accepted: 02/22/2013] [Indexed: 06/01/2023]
Abstract
The pharmacological potential of Aloe arborescens Miller leaf components was investigated, with special attention deserved to immune modulatory effects on the Sparus aurata fibroblast cell line SAF-1. The cells were treated with Aloe extract at different concentrations (1.2-4.8 mg ml(-1)) for various times (24-72 h). The lowest concentration did not provoke any cellular damage observable by SEM and did not affect ATP amounts after 24 and 48 h, while even induced a significant increase over controls after 72 h. We next examined the transcription kinetics of different immune-related genes (IL-1β, TGF-β, TNF-α, COX-2, IFN-I, Mx and MHCI-α) in SAF-1 cells stimulated with LPS or poly I:C. The Aloe extract (1.2 mg ml(-1)) acted as a powerful immune stimulant in LPS- or poly I:C-activated SAF-1 cells, inducing a synergic effect on interconnected genes that are expected to be involved in different aspects of the immune responses. These reports provide a new perspective for the use of A. arborescens to prevent or oppose bacterial and viral fish diseases and to face, as an alternative strategy based on natural plant extracts, the growing unwillingness to rely upon standard solutions involving antibiotics or antimicrobial chemicals.
Collapse
Affiliation(s)
- S Picchietti
- Dep. for Innovation in Biological, Agro-food and Forest systems, Tuscia University, Viterbo, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Computational design of self-assembling register-specific collagen heterotrimers. Nat Commun 2012; 3:1087. [DOI: 10.1038/ncomms2084] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 08/22/2012] [Indexed: 01/13/2023] Open
|
37
|
Grover CN, Gwynne JH, Pugh N, Hamaia S, Farndale RW, Best SM, Cameron RE. Crosslinking and composition influence the surface properties, mechanical stiffness and cell reactivity of collagen-based films. Acta Biomater 2012; 8:3080-90. [PMID: 22588074 PMCID: PMC3396844 DOI: 10.1016/j.actbio.2012.05.006] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 03/22/2012] [Accepted: 05/07/2012] [Indexed: 11/30/2022]
Abstract
This study focuses on determining the effect of varying the composition and crosslinking of collagen-based films on their physical properties and interaction with myoblasts. Films composed of collagen or gelatin and crosslinked with a carbodiimide were assessed for their surface roughness and stiffness. These samples are significant because they allow variation of physical properties as well as offering different recognition motifs for cell binding. Cell reactivity was determined by the ability of myoblastic C2C12 and C2C12-α2+ cell lines (with different integrin expression) to adhere to and spread on the films. Significantly, crosslinking reduced the cell reactivity of all films, irrespective of their initial composition, stiffness or roughness. Crosslinking resulted in a dramatic increase in the stiffness of the collagen film and also tended to reduce the roughness of the films (Rq = 0.417 ± 0.035 μm, E = 31 ± 4.4 MPa). Gelatin films were generally smoother and more compliant than comparable collagen films (Rq = 7.9 ± 1.5 nm, E = 15 ± 3.1 MPa). The adhesion of α2-positive cells was enhanced relative to the parental C2C12 cells on collagen compared with gelatin films. These results indicate that the detrimental effect of crosslinking on cell response may be due to the altered physical properties of the films as well as a reduction in the number of available cell binding sites. Hence, although crosslinking can be used to enhance the mechanical stiffness and reduce the roughness of films, it reduces their capacity to support cell activity and could potentially limit the effectiveness of the collagen-based films and scaffolds.
Collapse
Affiliation(s)
- Chloe N Grover
- Department of Materials Science and Metallurgy, Cambridge Centre for Medical Materials, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK.
| | | | | | | | | | | | | |
Collapse
|
38
|
Hamaia SW, Pugh N, Raynal N, Némoz B, Stone R, Gullberg D, Bihan D, Farndale RW. Mapping of potent and specific binding motifs, GLOGEN and GVOGEA, for integrin α1β1 using collagen toolkits II and III. J Biol Chem 2012; 287:26019-28. [PMID: 22654115 PMCID: PMC3406685 DOI: 10.1074/jbc.m112.353144] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Integrins are well characterized cell surface receptors for extracellular matrix proteins. Mapping integrin-binding sites within the fibrillar collagens identified GFOGER as a high affinity site recognized by α2β1, but with lower affinity for α1β1. Here, to identify specific ligands for α1β1, we examined binding of the recombinant human α1 I domain, the rat pheochromocytoma cell line (PC12), and the rat glioma Rugli cell line to our collagen Toolkit II and III peptides using solid-phase and real-time label-free adhesion assays. We observed Mg2+-dependent binding of the α1 I domain to the peptides in the following rank order: III-7 (GLOGEN), II-28 (GFOGER), II-7 and II-8 (GLOGER), II-18 (GAOGER), III-4 (GROGER). PC12 cells showed a similar profile. Using antibody blockade, we confirmed that binding of PC12 cells to peptide III-7 was mediated by integrin α1β1. We also identified a new α1β1-binding activity within peptide II-27. The sequence GVOGEA bound weakly to PC12 cells and strongly to activated Rugli cells or to an activated α1 I domain, but not to the α2 I domain or to C2C12 cells expressing α2β1 or α11β1. Thus, GVOGEA is specific for α1β1. Although recognized by both α2β1 and α11β1, GLOGEN is a better ligand for α1β1 compared with GFOGER. Finally, using biosensor assays, we show that although GLOGEN is able to compete for the α1 I domain from collagen IV (IC50 ∼3 μm), GFOGER is much less potent (IC50 ∼90 μm), as shown previously. These data confirm the selectivity of GFOGER for α2β1 and establish GLOGEN as a high affinity site for α1β1.
Collapse
Affiliation(s)
- Samir W Hamaia
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Jarvis GE, Bihan D, Hamaia S, Pugh N, Ghevaert CJG, Pearce AC, Hughes CE, Watson SP, Ware J, Rudd CE, Farndale RW. A role for adhesion and degranulation-promoting adapter protein in collagen-induced platelet activation mediated via integrin α(2) β(1). J Thromb Haemost 2012; 10:268-77. [PMID: 22103309 PMCID: PMC3791415 DOI: 10.1111/j.1538-7836.2011.04567.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Collagen-induced platelet activation is a key step in the development of arterial thrombosis via its interaction with the receptors glycoprotein (GP)VI and integrin α(2) β(1) . Adhesion and degranulation-promoting adapter protein (ADAP) regulates α(IIb) β(3) in platelets and α(L) β(2) in T cells, and is phosphorylated in GPVI-deficient platelets activated by collagen. OBJECTIVES To determine whether ADAP plays a role in collagen-induced platelet activation and in the regulation and function of α(2) β(1). METHODS Using ADAP(-/-) mice and synthetic collagen peptides, we investigated the role of ADAP in platelet aggregation, adhesion, spreading, thromboxane synthesis, and tyrosine phosphorylation. RESULTS AND CONCLUSIONS Platelet aggregation and phosphorylation of phospholipase Cγ2 induced by collagen were attenuated in ADAP(-/-) platelets. However, aggregation and signaling induced by collagen-related peptide (CRP), a GPVI-selective agonist, were largely unaffected. Platelet adhesion to CRP was also unaffected by ADAP deficiency. Adhesion to the α(2) β(1) -selective ligand GFOGER and to a peptide (III-04), which supports adhesion that is dependent on both GPVI and α(2) β(1), was reduced in ADAP(-/-) platelets. An impedance-based label-free detection technique, which measures adhesion and spreading of platelets, indicated that, in the absence of ADAP, spreading on GFOGER was also reduced. This was confirmed with non-fluorescent differential-interference contrast microscopy, which revealed reduced filpodia formation in ADAP(-/-) platelets adherent to GFOGER. This indicates that ADAP plays a role in mediating platelet activation via the collagen-binding integrin α(2) β(1). In addition, we found that ADAP(-/-) mice, which are mildly thrombocytopenic, have enlarged spleens as compared with wild-type animals. This may reflect increased removal of platelets from the circulation.
Collapse
Affiliation(s)
- G E Jarvis
- School of Pharmacy, Queen's University Belfast, Belfast, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bella A, Ray S, Shaw M, Ryadnov MG. Arbitrary Self-Assembly of Peptide Extracellular Microscopic Matrices. Angew Chem Int Ed Engl 2011; 51:428-31. [DOI: 10.1002/anie.201104647] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/12/2011] [Indexed: 01/07/2023]
|
41
|
Bella A, Ray S, Shaw M, Ryadnov MG. Arbitrary Self-Assembly of Peptide Extracellular Microscopic Matrices. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201104647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|