1
|
Giannuzzi F, Picerno A, Maiullari S, Montenegro F, Cicirelli A, Stasi A, De Palma G, Di Lorenzo VF, Pertosa GB, Pontrelli P, Rossini M, Gallo N, Salvatore L, Di Leo V, Errede M, Tamma R, Ribatti D, Gesualdo L, Sallustio F. Unveiling spontaneous renal tubule-like structures from human adult renal progenitor cell spheroids derived from urine. Stem Cells Transl Med 2025; 14:szaf002. [PMID: 40156847 PMCID: PMC11954590 DOI: 10.1093/stcltm/szaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/05/2025] [Indexed: 04/01/2025] Open
Abstract
The rapidly developing field of renal spheroids and organoids has emerged as a valuable tool for modeling nephrotoxicity, kidney disorders, and kidney development. However, existing studies have relied on intricate and sophisticated differentiation protocols to generate organoids and tubuloids, necessitating the external administration of multiple growth factors within precise timeframes. In our study, we demonstrated that human adult renal progenitor cells (ARPCs) isolated from the urine of both healthy subjects and patients can form spheroids that naturally generated very long tubule-like structures. Importantly, the generation of these tubule-like structures is driven solely by ARPCs, without the need for the external use of chemokines or growth factors to artificially induce this process. These tubule-like structures exhibit the expression of structural and functional renal tubule markers and bear, in some cases, striking structural similarities to various nephron regions, including the distal convoluted tubule, the loop of Henle, and proximal convoluted tubules. Furthermore, ARPC spheroids express markers typical of pluripotent cells, such as stage-specific embryonic antigen 4 (SSEA4), secrete elevated levels of renin, and exhibit angiogenic properties. Notably, ARPCs isolated from the urine of patients with IgA nephropathy form spheroids capable of recapitulating the characteristic IgA1 deposition observed in this disease. These findings represent significant advancements in the field, opening up new avenues for regenerative medicine in the study of kidney development, mechanisms underlying renal disorders, and the development of regenerative therapies for kidney-related ailments.
Collapse
Affiliation(s)
- Francesca Giannuzzi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Angela Picerno
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Silvia Maiullari
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Francesca Montenegro
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Antonella Cicirelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Alessandra Stasi
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Giuseppe De Palma
- Institutional BioBank, Experimental Oncology and Biobank Management Unit, IRCCS Istituto Tumori “Giovanni Paolo II,”70124 Bari, Italia
| | | | - Giovanni Battista Pertosa
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Paola Pontrelli
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Michele Rossini
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
- Typeone Biomaterials Srl, 73021 Calimera, Lecce, Italy
| | - Luca Salvatore
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
- Typeone Biomaterials Srl, 73021 Calimera, Lecce, Italy
| | - Vincenzo Di Leo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Mariella Errede
- Department of Translational Biomedicine and Neuroscience “DiBraiN,” University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Roberto Tamma
- Department of Translational Biomedicine and Neuroscience “DiBraiN,” University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience “DiBraiN,” University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro,”70124 Bari, Italy
| |
Collapse
|
2
|
Sarami I, Hekman KE, Gupta AK, Snider JM, Ivancic D, Zec M, Kandpal M, Ben-Sahra I, Menon R, Otto EA, Chilton FH, Wertheim JA. Parallel multiOMIC analysis reveals glutamine deprivation enhances directed differentiation of renal organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640060. [PMID: 40060393 PMCID: PMC11888470 DOI: 10.1101/2025.02.27.640060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Metabolic pathways play a critical role in driving differentiation but remain poorly understood in the development of kidney organoids. In this study, parallel metabolite and transcriptome profiling of differentiating human pluripotent stem cells (hPSCs) to multicellular renal organoids revealed key metabolic drivers of the differentiation process. In the early stage, transitioning from hPSCs to nephron progenitor cells (NPCs), both the glutamine and the alanine-aspartate-glutamate pathways changed significantly, as detected by enrichment and pathway impact analyses. Intriguingly, hPSCs maintained their ability to generate NPCs, even when deprived of both glutamine and glutamate. Surprisingly, single cell RNA-Seq analysis detected enhanced maturation and enrichment for podocytes under glutamine-deprived conditions. Together, these findings illustrate a novel role of glutamine metabolism in regulating podocyte development.
Collapse
Affiliation(s)
- Iman Sarami
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Jesse Brown VA Medical Center, Chicago, IL
- Department of Hematopathology and Molecular Diagnostics Laboratory at the University of Texas MD, Anderson Cancer Center, Houston, TX
| | - Katherine E. Hekman
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Jesse Brown VA Medical Center, Chicago, IL
- Atlanta VA Healthcare System, Decatur, GA
- Department of Surgery, Emory University School of Medicine, Atlanta, GA
| | - Ashwani Kumar Gupta
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ
- Southern Arizona VA Healthcare System, Tucson, AZ
| | - Justin M. Snider
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ
| | - David Ivancic
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Jesse Brown VA Medical Center, Chicago, IL
| | - Manja Zec
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Manoj Kandpal
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Center for Clinical and Translational Science, Rockefeller University Hospital, New York, NY
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Rajasree Menon
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - Edgar A. Otto
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Floyd H. Chilton
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ
| | - Jason A. Wertheim
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Jesse Brown VA Medical Center, Chicago, IL
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ
- Southern Arizona VA Healthcare System, Tucson, AZ
| |
Collapse
|
3
|
Huang J, Wang X, Ge S, Lu X, Sun C. Organoids as Sophisticated Tools for Renal Cancer Research: Extensive Applications and Promising Prospects. Cell Mol Bioeng 2024; 17:527-548. [PMID: 39926385 PMCID: PMC11799493 DOI: 10.1007/s12195-024-00825-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/28/2024] [Indexed: 02/11/2025] Open
Abstract
Background Kidney cancer is a significant global health problem that affects nearly 1 in 25 of cancer patients. Prevalence, morbidity and mortality data associated with kidney cancer continue to increase every year, revealing a heavy economic and social burden. Organoid culture is a new research tool with great potential for many applications, particularly in cancer research. The integration of organoids with other emerging technologies has simultaneously expanded their potential applications. However, there is no thorough assessment of organoids in the field of renal cancer research. Objectives This paper presents a comprehensive review of the current development of renal cancer organoids and discusses the corresponding solutions and future directions of renal cancer organoids. Methods In this study, we have compared the operating procedures of different organoid culture protocols and proposed a summary of constituents in culture media. Extensive discussions of renal cancer organoids, including generation and maintenance approaches, application scenarios, current challenges and prospects, have also been made. The information required for this study is extracted from literature databases such as PubMed, SCOPUS and Web of Science. Results In this article, we systematically review thirteen successful methods for generating organoids to kidney cancer and provide practical guidelines for their construction as a reference. In addition, we also elucidate the clinical application of organoids, address the existing challenges and limitations, and highlight promising prospects. Conclusion Ultimately, we firmly believe that as kidney tumour organoids continue to develop and improve, they will become a crucial tool for treating kidney cancer.
Collapse
Affiliation(s)
- Jingqiang Huang
- Department of Urology Surgery, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing’an District, Shanghai, 200040 China
| | - Xianli Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Shengyang Ge
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
| | - Xiao Lu
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing’an District, Shanghai, 200040 China
| | - Chuanyu Sun
- Department of Urology Surgery, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing’an District, Shanghai, 200040 China
| |
Collapse
|
4
|
Wang R, Sui Y, Liu Q, Xiong Y, Li S, Guo W, Xu Y, Zhang S. Recent advances in extracellular matrix manipulation for kidney organoid research. Front Pharmacol 2024; 15:1472361. [PMID: 39568581 PMCID: PMC11576200 DOI: 10.3389/fphar.2024.1472361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024] Open
Abstract
The kidney plays a crucial role in maintaining the body's microenvironment homeostasis. However, current treatment options and therapeutic agents for chronic kidney disease (CKD) are limited. Fortunately, the advent of kidney organoids has introduced a novel in vitro model for studying kidney diseases and drug screening. Despite significant efforts has been leveraged to mimic the spatial-temporal dynamics of fetal renal development in various types of kidney organoids, there is still a discrepancy in cell types and maturity compared to native kidney tissue. The extracellular matrix (ECM) plays a crucial role in regulating cellular signaling, which ultimately affects cell fate decision. As a result, ECM can refine the microenvironment of organoids, promoting their efficient differentiation and maturation. This review examines the existing techniques for culturing kidney organoids, evaluates the strengths and weaknesses of various types of kidney organoids, and assesses the advancements and limitations associated with the utilization of the ECM in kidney organoid culture. Additionally, it presents a discussion on constructing specific physiological and pathological microenvironments using decellularized extracellular matrix during certain developmental stages or disease occurrences, aiding the development of kidney organoids and disease models.
Collapse
Affiliation(s)
- Ren Wang
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yufei Sui
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Qiuyan Liu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yucui Xiong
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Shanshan Li
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wu Guo
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yiwei Xu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Sheng Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Kim D, Lim H, Youn J, Park TE, Kim DS. Scalable production of uniform and mature organoids in a 3D geometrically-engineered permeable membrane. Nat Commun 2024; 15:9420. [PMID: 39482314 PMCID: PMC11528013 DOI: 10.1038/s41467-024-53073-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
The application of organoids has been limited by the lack of methods for producing uniformly mature organoids at scale. This study introduces an organoid culture platform, called UniMat, which addresses the challenges of uniformity and maturity simultaneously. UniMat is designed to not only ensure consistent organoid growth but also facilitate an unrestricted supply of soluble factors by a 3D geometrically-engineered, permeable membrane-based platform. Using UniMat, we demonstrate the scalable generation of kidney organoids with enhanced uniformity in both structure and function compared to conventional methods. Notably, kidney organoids within UniMat show improved maturation, showing increased expression of nephron transcripts, more in vivo-like cell-type balance, enhanced vascularization, and better long-term stability. Moreover, UniMat's design offers a more standardized organoid model for disease modeling and drug testing, as demonstrated by polycystic-kidney disease and acute kidney injury modeling. In essence, UniMat presents a valuable platform for organoid technology, with potential applications in organ development, disease modeling, and drug screening.
Collapse
Affiliation(s)
- Dohui Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Hyeonji Lim
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Jaeseung Youn
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea.
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
6
|
Der B, Bugacov H, Briantseva BM, McMahon AP. Cadherin adhesion complexes direct cell aggregation in the epithelial transition of Wnt-induced nephron progenitor cells. Development 2024; 151:dev202303. [PMID: 39344436 PMCID: PMC11463967 DOI: 10.1242/dev.202303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 06/24/2024] [Indexed: 10/01/2024]
Abstract
In the developing mammalian kidney, nephron formation is initiated by a subset of nephron progenitor cells (NPCs). Wnt input activates a β-catenin (Ctnnb1)-driven, transcriptional nephrogenic program and the mesenchymal to epithelial transition (MET) of NPCs. Using an in vitro mouse NPC culture model, we observed that activation of the Wnt pathway results in the aggregation of induced NPCs, which is an initiating step in the MET program. Genetic removal showed aggregation was dependent on β-catenin. Modulating extracellular Ca2+ levels showed cell-cell contacts were Ca2+ dependent, suggesting a role for cadherin (Cdh)-directed cell adhesion. Molecular analysis identified Cdh2, Cdh4 and Cdh11 in NPCs, and the β-catenin directed upregulation of Cdh3 and Cdh4 accompanying the MET of induced NPCs. Mutational analysis of β-catenin supported a role for a Lef/Tcf-β-catenin-mediated transcriptional response in the cell aggregation process. Genetic removal of all four cadherins, and independent removal of α-catenin or of β-catenin-α-catenin interactions, abolished aggregation, but not the inductive response to Wnt pathway activation. These findings, and data in an accompanying article highlight the role of β-catenin in linking transcriptional programs to the morphogenesis of NPCs in mammalian nephrogenesis.
Collapse
Affiliation(s)
- Balint Der
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles 90033, USA
- Department of Urology, Faculty of Medicine, Semmelweis University, Budapest 1082, Hungary
- Institute of Translational Medicine, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - Helena Bugacov
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles 90033, USA
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bohdana-Myroslava Briantseva
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles 90033, USA
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles 90033, USA
| |
Collapse
|
7
|
Dong L, Xie YL, Zhang RT, Hu QY. Models of sepsis-induced acute kidney injury. Life Sci 2024; 352:122873. [PMID: 38950643 DOI: 10.1016/j.lfs.2024.122873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Sepsis-induced acute kidney injury (S-AKI) is one of the most serious life-threatening complications of sepsis. The pathogenesis of S-AKI is complex and there is no effective specific treatment. Therefore, it is crucial to choose suitable preclinical models that are highly similar to human S-AKI to study the pathogenesis and drug treatment. In this review, we summarized recent advances in the development models of S-AKI, providing reference for the reasonable selection of experimental models as basic research and drug development of S-AKI.
Collapse
Affiliation(s)
- Liang Dong
- Department of Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Yi-Ling Xie
- Department of Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Ren-Tao Zhang
- Department of Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Qiong-Ying Hu
- Department of Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou 318000, Zhejiang, China.
| |
Collapse
|
8
|
Nishimura Y. Revolutionizing renal research: The future of kidney-on-a-chip in biotechnology. Regen Ther 2024; 26:275-280. [PMID: 38993536 PMCID: PMC11237358 DOI: 10.1016/j.reth.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/30/2024] [Accepted: 06/09/2024] [Indexed: 07/13/2024] Open
Abstract
In vitro models of kidneys have limited effectiveness owing to the complex structure and functions of the kidney when compared with other organs. Therefore many renal function evaluations are currently being carried out through animal experiments. In contrast, efforts are being made to apply biomimetic systems, such as organ-on-a-chip, which is based on microfluidic device technology, to serve as an in vitro model for the kidney. These systems aimed to recreate a physiological cultivation environment. This review has provided an overview of organ-on-a-chip research focused on glomeruli and tubules as in vitro models for the kidney and discusses future prospects.
Collapse
Affiliation(s)
- Yusuke Nishimura
- Department of Clinical Engineering, Faculty of Medical Science and Technology, Gunma Paz University, 3-3-4 Tonyamachi, Takasaki-shi, Gunma, 370-0006, Japan
| |
Collapse
|
9
|
Pode-Shakked N, Slack M, Sundaram N, Schreiber R, McCracken KW, Dekel B, Helmrath M, Kopan R. RAAS-deficient organoids indicate delayed angiogenesis as a possible cause for autosomal recessive renal tubular dysgenesis. Nat Commun 2023; 14:8159. [PMID: 38071212 PMCID: PMC10710424 DOI: 10.1038/s41467-023-43795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Autosomal Recessive Renal Tubular Dysgenesis (AR-RTD) is a fatal genetic disorder characterized by complete absence or severe depletion of proximal tubules (PT) in patients harboring pathogenic variants in genes involved in the Renin-Angiotensin-Aldosterone System. To uncover the pathomechanism of AR-RTD, differentiation of ACE-/- and AGTR1-/- induced pluripotent stem cells (iPSCs) and AR-RTD patient-derived iPSCs into kidney organoids is leveraged. Comprehensive marker analyses show that both mutant and control organoids generate indistinguishable PT in vitro under normoxic (21% O2) or hypoxic (2% O2) conditions. Fully differentiated (d24) AGTR1-/- and control organoids transplanted under the kidney capsule of immunodeficient mice engraft and mature well, as do renal vesicle stage (d14) control organoids. By contrast, d14 AGTR1-/- organoids fail to engraft due to insufficient pro-angiogenic VEGF-A expression. Notably, growth under hypoxic conditions induces VEGF-A expression and rescues engraftment of AGTR1-/- organoids at d14, as does ectopic expression of VEGF-A. We propose that PT dysgenesis in AR-RTD is primarily a non-autonomous consequence of delayed angiogenesis, starving PT at a critical time in their development.
Collapse
Affiliation(s)
- Naomi Pode-Shakked
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Megan Slack
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Nambirajan Sundaram
- Division of Pediatric Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Ruth Schreiber
- Department of Pediatrics, Soroka University Medical Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Kyle W McCracken
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Benjamin Dekel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Stem Cell Research Institute and division of pediatric nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat-Gan, Israel
| | - Michael Helmrath
- Division of Pediatric Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Raphael Kopan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
10
|
Tabibzadeh N, Satlin LM, Jain S, Morizane R. Navigating the kidney organoid: insights into assessment and enhancement of nephron function. Am J Physiol Renal Physiol 2023; 325:F695-F706. [PMID: 37767571 PMCID: PMC10878724 DOI: 10.1152/ajprenal.00166.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Kidney organoids are three-dimensional structures generated from pluripotent stem cells (PSCs) that are capable of recapitulating the major structures of mammalian kidneys. As this technology is expected to be a promising tool for studying renal biology, drug discovery, and regenerative medicine, the functional capacity of kidney organoids has emerged as a critical question in the field. Kidney organoids produced using several protocols harbor key structures of native kidneys. Here, we review the current state, recent advances, and future challenges in the functional characterization of kidney organoids, strategies to accelerate and enhance kidney organoid functions, and access to PSC resources to advance organoid research. The strategies to construct physiologically relevant kidney organoids include the use of organ-on-a-chip technologies that integrate fluid circulation and improve organoid maturation. These approaches result in increased expression of the major tubular transporters and elements of mechanosensory signaling pathways suggestive of improved functionality. Nevertheless, continuous efforts remain crucial to create kidney tissue that more faithfully replicates physiological conditions for future applications in kidney regeneration medicine and their ethical use in patient care.NEW & NOTEWORTHY Kidney organoids are three-dimensional structures derived from stem cells, mimicking the major components of mammalian kidneys. Although they show great promise, their functional capacity has become a critical question. This review explores the advancements and challenges in evaluating and enhancing kidney organoid function, including the use of organ-on-chip technologies, multiomics data, and in vivo transplantation. Integrating these approaches to further enhance their physiological relevance will continue to advance disease modeling and regenerative medicine applications.
Collapse
Affiliation(s)
- Nahid Tabibzadeh
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Sanjay Jain
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Ryuji Morizane
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
11
|
Chatterjee E, Rodosthenous RS, Kujala V, Gokulnath P, Spanos M, Lehmann HI, de Oliveira GP, Shi M, Miller-Fleming TW, Li G, Ghiran IC, Karalis K, Lindenfeld J, Mosley JD, Lau ES, Ho JE, Sheng Q, Shah R, Das S. Circulating extracellular vesicles in human cardiorenal syndrome promote renal injury in a kidney-on-chip system. JCI Insight 2023; 8:e165172. [PMID: 37707956 PMCID: PMC10721327 DOI: 10.1172/jci.insight.165172] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/08/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUNDCardiorenal syndrome (CRS) - renal injury during heart failure (HF) - is linked to high morbidity. Whether circulating extracellular vesicles (EVs) and their RNA cargo directly impact its pathogenesis remains unclear.METHODSWe investigated the role of circulating EVs from patients with CRS on renal epithelial/endothelial cells using a microfluidic kidney-on-chip (KOC) model. The small RNA cargo of circulating EVs was regressed against serum creatinine to prioritize subsets of functionally relevant EV-miRNAs and their mRNA targets investigated using in silico pathway analysis, human genetics, and interrogation of expression in the KOC model and in renal tissue. The functional effects of EV-RNAs on kidney epithelial cells were experimentally validated.RESULTSRenal epithelial and endothelial cells in the KOC model exhibited uptake of EVs from patients with HF. HF-CRS EVs led to higher expression of renal injury markers (IL18, LCN2, HAVCR1) relative to non-CRS EVs. A total of 15 EV-miRNAs were associated with creatinine, targeting 1,143 gene targets specifying pathways relevant to renal injury, including TGF-β and AMPK signaling. We observed directionally consistent changes in the expression of TGF-β pathway members (BMP6, FST, TIMP3) in the KOC model exposed to CRS EVs, which were validated in epithelial cells treated with corresponding inhibitors and mimics of miRNAs. A similar trend was observed in renal tissue with kidney injury. Mendelian randomization suggested a role for FST in renal function.CONCLUSIONPlasma EVs in patients with CRS elicit adverse transcriptional and phenotypic responses in a KOC model by regulating biologically relevant pathways, suggesting a role for EVs in CRS.TRIAL REGISTRATIONClinicalTrials.gov NCT03345446.FUNDINGAmerican Heart Association (AHA) (SFRN16SFRN31280008); National Heart, Lung, and Blood Institute (1R35HL150807-01); National Center for Advancing Translational Sciences (UH3 TR002878); and AHA (23CDA1045944).
Collapse
Affiliation(s)
- Emeli Chatterjee
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Rodosthenis S. Rodosthenous
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | | | - Priyanka Gokulnath
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michail Spanos
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Helge Immo Lehmann
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | | | | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ionita Calin Ghiran
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Katia Karalis
- Emulate, Inc., Boston, Massachusetts, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | - JoAnn Lindenfeld
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jonathan D. Mosley
- Department of Biomedical Informatics and
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Emily S. Lau
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jennifer E. Ho
- Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | - Ravi Shah
- Vanderbilt Translational and Clinical Research Center, Cardiology Division, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Tzeng YDT, Hsiao JH, Tseng LM, Hou MF, Li CJ. Breast cancer organoids derived from patients: A platform for tailored drug screening. Biochem Pharmacol 2023; 217:115803. [PMID: 37709150 DOI: 10.1016/j.bcp.2023.115803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Breast cancer stands as the most prevalent and heterogeneous malignancy affecting women globally, posing a substantial health concern. Enhanced comprehension of tumor pathology and the development of novel therapeutics are pivotal for advancing breast cancer treatment. Contemporary breast cancer investigation heavily leans on in vivo models and conventional cell culture techniques. Nonetheless, these approaches often encounter high failure rates in clinical trials due to species disparities and tissue structure variations. To address this, three-dimensional cultivation of organoids, resembling organ-like structures, has emerged as a promising alternative. Organoids represent innovative in vitro models that mirror in vivo tissue microenvironments. They retain the original tumor's diversity and facilitate the expansion of tumor samples from diverse origins, facilitating the representation of varying tumor stages. Optimized breast cancer organoid models, under precise culture conditions, offer benefits including convenient sample acquisition, abbreviated cultivation durations, and genetic stability. These attributes ensure a faithful replication of in vivo traits of breast cancer cells. As intricate cellular entities boasting spatial arrangements, breast cancer organoid models harbor substantial potential in precision medicine, organ transplantation, modeling intricate diseases, gene therapy, and drug innovation. This review delivers an overview of organoid culture techniques and outlines future prospects for organoid modeling.
Collapse
Affiliation(s)
- Yen-Dun Tony Tzeng
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Jui-Hu Hsiao
- Department of Surgery, Kaohsiung Municipal Minsheng Hospital, Kaohsiung, Taiwan
| | - Ling-Ming Tseng
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Ming-Feng Hou
- Division of Breast Surgery, Department of Surgery, Center for Cancer Research, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung 807, Taiwan.
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
13
|
Der B, Bugacov H, Briantseva BM, McMahon AP. Cadherin Adhesion Complexes Direct Cell Aggregation in the Epithelial Transition of Wnt-Induced Nephron Progenitor Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.27.555021. [PMID: 38654822 PMCID: PMC11037868 DOI: 10.1101/2023.08.27.555021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In the developing mammalian kidney, nephron formation is initiated by a subset of nephron progenitor cells (NPCs). Wnt input activates a β-catenin ( Ctnnb1 )-driven, transcriptional nephrogenic program. In conjunction, induced mesenchymal NPCs transition through a pre-tubular aggregate to an epithelial renal vesicle, the precursor for each nephron. How this critical mesenchymal-to-epithelial transition (MET) is regulated is unclear. In an in vitro mouse NPC culture model, activation of the Wnt pathway results in the aggregation of induced NPCs into closely-packed, cell clusters. Genetic removal of β-catenin resulted in a failure of both Wnt pathway-directed transcriptional activation and the formation of aggregated cell clusters. Modulating extracellular Ca 2+ levels showed cell-cell contacts were Ca 2+ -dependent, suggesting a role for cadherin (Cdh)-directed cell adhesion. Molecular analysis identified Cdh2 , Cdh4 and Cdh11 in uninduced NPCs and the up-regulation of Cdh3 and Cdh4 accompanying the Wnt pathway-induced MET. Genetic removal of all four cadherins, and independent removal of α-catenin, which couples Cdh-β-catenin membrane complexes to the actin cytoskeleton, abolished cell aggregation in response to Wnt pathway activation. However, the β-catenin driven inductive transcriptional program was unaltered. Together with the accompanying paper (Bugacov et al ., submitted), these data demonstrate that distinct cellular activities of β-catenin - transcriptional regulation and cell adhesion - combine in the mammalian kidney programs generating differentiated epithelial nephron precursors from mesenchymal nephron progenitors. Summary statement Our study highlights the role of Wnt-β-catenin pathway regulation of cadherin-mediated cell adhesion in the mesenchymal to epithelial transition of induced nephron progenitor cells.
Collapse
|
14
|
Lassé M, El Saghir J, Berthier CC, Eddy S, Fischer M, Laufer SD, Kylies D, Hutzfeldt A, Bonin LL, Dumoulin B, Menon R, Vega-Warner V, Eichinger F, Alakwaa F, Fermin D, Billing AM, Minakawa A, McCown PJ, Rose MP, Godfrey B, Meister E, Wiech T, Noriega M, Chrysopoulou M, Brandts P, Ju W, Reinhard L, Hoxha E, Grahammer F, Lindenmeyer MT, Huber TB, Schlüter H, Thiel S, Mariani LH, Puelles VG, Braun F, Kretzler M, Demir F, Harder JL, Rinschen MM. An integrated organoid omics map extends modeling potential of kidney disease. Nat Commun 2023; 14:4903. [PMID: 37580326 PMCID: PMC10425428 DOI: 10.1038/s41467-023-39740-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/27/2023] [Indexed: 08/16/2023] Open
Abstract
Kidney organoids are a promising model to study kidney disease, but their use is constrained by limited knowledge of their functional protein expression profile. Here, we define the organoid proteome and transcriptome trajectories over culture duration and upon exposure to TNFα, a cytokine stressor. Older organoids increase deposition of extracellular matrix but decrease expression of glomerular proteins. Single cell transcriptome integration reveals that most proteome changes localize to podocytes, tubular and stromal cells. TNFα treatment of organoids results in 322 differentially expressed proteins, including cytokines and complement components. Transcript expression of these 322 proteins is significantly higher in individuals with poorer clinical outcomes in proteinuric kidney disease. Key TNFα-associated protein (C3 and VCAM1) expression is increased in both human tubular and organoid kidney cell populations, highlighting the potential for organoids to advance biomarker development. By integrating kidney organoid omic layers, incorporating a disease-relevant cytokine stressor and comparing with human data, we provide crucial evidence for the functional relevance of the kidney organoid model to human kidney disease.
Collapse
Affiliation(s)
- Moritz Lassé
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jamal El Saghir
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Celine C Berthier
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Sean Eddy
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Matthew Fischer
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Sandra D Laufer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dominik Kylies
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arvid Hutzfeldt
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Bernhard Dumoulin
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rajasree Menon
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Virginia Vega-Warner
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Felix Eichinger
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Fadhl Alakwaa
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Damian Fermin
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Anja M Billing
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Akihiro Minakawa
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Phillip J McCown
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Michael P Rose
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Bradley Godfrey
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Elisabeth Meister
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Mercedes Noriega
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | | - Paul Brandts
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wenjun Ju
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Linda Reinhard
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elion Hoxha
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Grahammer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja T Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Laura H Mariani
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Victor G Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Kretzler
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Fatih Demir
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jennifer L Harder
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA.
| | - Markus M Rinschen
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Aarhus Institute of Advanced Studies (AIAS), Aarhus, Denmark.
| |
Collapse
|
15
|
Sieben CJ, Harris PC. Experimental Models of Polycystic Kidney Disease: Applications and Therapeutic Testing. KIDNEY360 2023; 4:1155-1173. [PMID: 37418622 PMCID: PMC10476690 DOI: 10.34067/kid.0000000000000209] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Polycystic kidney diseases (PKDs) are genetic disorders characterized by the formation and expansion of numerous fluid-filled renal cysts, damaging normal parenchyma and often leading to kidney failure. Although PKDs comprise a broad range of different diseases, with substantial genetic and phenotypic heterogeneity, an association with primary cilia represents a common theme. Great strides have been made in the identification of causative genes, furthering our understanding of the genetic complexity and disease mechanisms, but only one therapy so far has shown success in clinical trials and advanced to US Food and Drug Administration approval. A key step in understanding disease pathogenesis and testing potential therapeutics is developing orthologous experimental models that accurately recapitulate the human phenotype. This has been particularly important for PKDs because cellular models have been of limited value; however, the advent of organoid usage has expanded capabilities in this area but does not negate the need for whole-organism models where renal function can be assessed. Animal model generation is further complicated in the most common disease type, autosomal dominant PKD, by homozygous lethality and a very limited cystic phenotype in heterozygotes while for autosomal recessive PKD, mouse models have a delayed and modest kidney disease, in contrast to humans. However, for autosomal dominant PKD, the use of conditional/inducible and dosage models have resulted in some of the best disease models in nephrology. These have been used to help understand pathogenesis, to facilitate genetic interaction studies, and to perform preclinical testing. Whereas for autosomal recessive PKD, using alternative species and digenic models has partially overcome these deficiencies. Here, we review the experimental models that are currently available and most valuable for therapeutic testing in PKD, their applications, success in preclinical trials, advantages and limitations, and where further improvements are needed.
Collapse
Affiliation(s)
- Cynthia J Sieben
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
16
|
Uchimura K. Single-cell RNA sequencing and kidney organoid differentiation. Clin Exp Nephrol 2023:10.1007/s10157-023-02359-5. [PMID: 37209321 DOI: 10.1007/s10157-023-02359-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/08/2023] [Indexed: 05/22/2023]
Abstract
Since 2015, Japanese researchers have made great progress in developing a method to differentiate human pluripotent stem cells (hPSCs) into kidney organoids. Protocols have been established to produce increasingly complex three-dimensional (3D) structures, which are used as a human kidney disease model and adapted for high-throughput screening. During this period, single-cell RNA sequencing (scRNA-seq) technology was developed to perform a comprehensive analysis at the single-cell level. We have performed a comprehensive analysis using scRNA-seq to define how kidney organoids can be applied to understand kidney development and pathology. The structure of kidney organoids is complex and contains many cell types of varying maturity. Since only a few proteins and mRNAs can be identified by immunostaining and other techniques, we performed scRNA-seq, which is an unbiased technology that can comprehensively categorize all cell types present in organoids. The aim of this study is to review the problems of kidney organoids based on scRNA-seq and the efforts to address the problems and predict future applications with this powerful technique.
Collapse
Affiliation(s)
- Kohei Uchimura
- Division of Nephrology, University of Yamanashi, 1110 Shimokato, Chuo, 409-3898, Japan.
| |
Collapse
|
17
|
Banan Sadeghian R, Ueno R, Takata Y, Kawakami A, Ma C, Araoka T, Takasato M, Yokokawa R. Cells sorted off hiPSC-derived kidney organoids coupled with immortalized cells reliably model the proximal tubule. Commun Biol 2023; 6:483. [PMID: 37142732 PMCID: PMC10160057 DOI: 10.1038/s42003-023-04862-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
Of late, numerous microphysiological systems have been employed to model the renal proximal tubule. Yet there is lack of research on refining the functions of the proximal tubule epithelial layer-selective filtration and reabsorption. In this report, pseudo proximal tubule cells extracted from human-induced pluripotent stem cell-derived kidney organoids are combined and cultured with immortalized proximal tubule cells. It is shown that the cocultured tissue is an impervious epithelium that offers improved levels of certain transporters, extracellular matrix proteins collagen and laminin, and superior glucose transport and P-glycoprotein activity. mRNA expression levels higher than those obtained from each cell type were detected, suggesting an anomalous synergistic crosstalk between the two. Alongside, the improvements in morphological characteristics and performance of the immortalized proximal tubule tissue layer exposed, upon maturation, to human umbilical vein endothelial cells are thoroughly quantified and compared. Glucose and albumin reabsorption, as well as xenobiotic efflux rates through P-glycoprotein were all improved. The data presented abreast highlight the advantages of the cocultured epithelial layer and the non-iPSC-based bilayer. The in vitro models presented herein can be helpful in personalized nephrotoxicity studies.
Collapse
Affiliation(s)
| | - Ryohei Ueno
- Department of Micro Engineering, Kyoto University, Kyoto, 615-8540, Japan
| | - Yuji Takata
- Department of Micro Engineering, Kyoto University, Kyoto, 615-8540, Japan
| | - Akihiko Kawakami
- Department of Micro Engineering, Kyoto University, Kyoto, 615-8540, Japan
| | - Cheng Ma
- Department of Micro Engineering, Kyoto University, Kyoto, 615-8540, Japan
| | - Toshikazu Araoka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Minoru Takasato
- RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
- Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Kyoto, 615-8540, Japan.
| |
Collapse
|
18
|
Pushparaj K, Balasubramanian B, Pappuswamy M, Anand Arumugam V, Durairaj K, Liu WC, Meyyazhagan A, Park S. Out of Box Thinking to Tangible Science: A Benchmark History of 3D Bio-Printing in Regenerative Medicine and Tissues Engineering. Life (Basel) 2023; 13:954. [PMID: 37109483 PMCID: PMC10145662 DOI: 10.3390/life13040954] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
Advancements and developments in the 3D bioprinting have been promising and have met the needs of organ transplantation. Current improvements in tissue engineering constructs have enhanced their applications in regenerative medicines and other medical fields. The synergistic effects of 3D bioprinting have brought technologies such as tissue engineering, microfluidics, integrated tissue organ printing, in vivo bioprinted tissue implants, artificial intelligence and machine learning approaches together. These have greatly impacted interventions in medical fields, such as medical implants, multi-organ-on-chip models, prosthetics, drug testing tissue constructs and much more. This technological leap has offered promising personalized solutions for patients with chronic diseases, and neurodegenerative disorders, and who have been in severe accidents. This review discussed the various standing printing methods, such as inkjet, extrusion, laser-assisted, digital light processing, and stereolithographic 3D bioprinter models, adopted for tissue constructs. Additionally, the properties of natural, synthetic, cell-laden, dECM-based, short peptides, nanocomposite and bioactive bioinks are briefly discussed. Sequels of several tissue-laden constructs such as skin, bone and cartilage, liver, kidney, smooth muscles, cardiac and neural tissues are briefly analyzed. Challenges, future perspectives and the impact of microfluidics in resolving the limitations in the field, along with 3D bioprinting, are discussed. Certainly, a technology gap still exists in the scaling up, industrialization and commercialization of this technology for the benefit of stakeholders.
Collapse
Affiliation(s)
- Karthika Pushparaj
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641 043, Tamil Nadu, India;
| | | | - Manikantan Pappuswamy
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru 560 076, Karnataka, India
| | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Kaliannan Durairaj
- Department of Infection Biology, School of Medicine, Wonkwang University, lksan 54538, Republic of Korea
| | - Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Arun Meyyazhagan
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru 560 076, Karnataka, India
| | - Sungkwon Park
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea;
| |
Collapse
|
19
|
Susa K, Kobayashi K, Galichon P, Matsumoto T, Tamura A, Hiratsuka K, Gupta NR, Yazdi IK, Bonventre JV, Morizane R. ATP/ADP biosensor organoids for drug nephrotoxicity assessment. Front Cell Dev Biol 2023; 11:1138504. [PMID: 36936695 PMCID: PMC10017499 DOI: 10.3389/fcell.2023.1138504] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Drug nephrotoxicity is a common healthcare problem in hospitalized patients and a major limitation during drug development. Multi-segmented kidney organoids derived from human pluripotent stem cells may complement traditional cell culture and animal experiments for nephrotoxicity assessment. Here we evaluate the capability of kidney organoids to investigate drug toxicity in vitro. Kidney organoids express renal drug transporters, OAT1, OAT3, and OCT2, while a human proximal tubular cell line shows the absence of OAT1 and OAT3. Tenofovir and aristolochic acid (AA) induce proximal tubular injury in organoids which is ameliorated by an OAT inhibitor, probenecid, without damage to podocytes. Similarly, cisplatin causes proximal tubular damage that can be relieved by an OCT inhibitor, cimetidine, collectively suggesting the presence of functional OATs and OCTs in organoid proximal tubules. Puromycin aminonucleoside (PAN) induced segment-specific injury in glomerular podocytes in kidney organoids in the absence of tubular injury. Reporter organoids were generated with an ATP/ADP biosensor, which may be applicable to high-throughput screening in the future. In conclusion, the kidney organoid is a useful tool for toxicity assessment in the multicellular context and may contribute to nephrotoxicity assessment during drug development.
Collapse
Affiliation(s)
- Koichiro Susa
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Department of Nephrology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenichi Kobayashi
- Harvard Medical School, Boston, MA, United States
- Massachusetts General Hospital, Boston, MA, United States
| | - Pierre Galichon
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Takuya Matsumoto
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Akitoshi Tamura
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Ken Hiratsuka
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Massachusetts General Hospital, Boston, MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Navin R. Gupta
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Massachusetts General Hospital, Boston, MA, United States
| | - Iman K. Yazdi
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard-MIT Division of Health Sciences &Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Joseph V. Bonventre
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard-MIT Division of Health Sciences &Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ryuji Morizane
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Massachusetts General Hospital, Boston, MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
| |
Collapse
|
20
|
Zhu Y, Shi Z, Ding W, Li C. On-chip construction of a fully structured scaffold-free vascularized renal tubule. Biomed Microdevices 2023; 25:8. [PMID: 36826720 DOI: 10.1007/s10544-023-00648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2023] [Indexed: 02/25/2023]
Abstract
Renal tubule chips have emerged as a promising platform for drug nephrotoxicity testing. However, the reported renal tubule chips hardly replicate the unique structure of renal tubules with thick proximal and distal tubules and a thin loop of Henle. In this study, we developed a fully structured scaffold-free vascularized renal tubule on a microfluidic chip. On the chip, the renal epithelial cell-laden hollow calcium-polymerized alginate tube with thick segments at both ends and a thin middle segment was U-shaped embedded in collagen hydrogel, parallel to the endothelial cell-laden hollow calcium-polymerized alginate tube with uniform tube diameter. After the alginate tubes were on-chip degraded, the renal epithelial cells and endothelial cells automatically attached to the collagen hydrogel and proliferated to form the renal tubule with proximal tubule, loop of Henle and distal tubule as well as peritubular blood vessel. We evaluated the viability of cells on the hollow alginate tubes, characterized the distribution and morphology of cells before and after the degradation of the alginate tube, and confirmed the proliferation of cells and the metabolic function of cells in terms of ATP synthesis, fibronectin secretion and VEGFR2 expression on the chip. The enhanced metabolic functions of renal epithelial cells and endothelial cells were preliminarily demonstrated. This study provides new insights into designing a more biomimetic renal tubule on a microfluidic chip.
Collapse
Affiliation(s)
- Yuntian Zhu
- , Hefei No.1 High School, 230041, Hefei, Anhui, China
| | - Zhengdi Shi
- School of Information Science and Technology, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Weiping Ding
- School of Information Science and Technology, University of Science and Technology of China, 230027, Hefei, Anhui, China.
| | - Chengpan Li
- School of Information Science and Technology, University of Science and Technology of China, 230027, Hefei, Anhui, China. .,Center for Biomedical Imaging, University of Science and Technology of China, 230027, Hefei, Anhui, China.
| |
Collapse
|
21
|
The "3Ds" of Growing Kidney Organoids: Advances in Nephron Development, Disease Modeling, and Drug Screening. Cells 2023; 12:cells12040549. [PMID: 36831216 PMCID: PMC9954122 DOI: 10.3390/cells12040549] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
A kidney organoid is a three-dimensional (3D) cellular aggregate grown from stem cells in vitro that undergoes self-organization, recapitulating aspects of normal renal development to produce nephron structures that resemble the native kidney organ. These miniature kidney-like structures can also be derived from primary patient cells and thus provide simplified context to observe how mutations in kidney-disease-associated genes affect organogenesis and physiological function. In the past several years, advances in kidney organoid technologies have achieved the formation of renal organoids with enhanced numbers of specialized cell types, less heterogeneity, and more architectural complexity. Microfluidic bioreactor culture devices, single-cell transcriptomics, and bioinformatic analyses have accelerated the development of more sophisticated renal organoids and tailored them to become increasingly amenable to high-throughput experimentation. However, many significant challenges remain in realizing the use of kidney organoids for renal replacement therapies. This review presents an overview of the renal organoid field and selected highlights of recent cutting-edge kidney organoid research with a focus on embryonic development, modeling renal disease, and personalized drug screening.
Collapse
|
22
|
Singh NK, Kim JY, Lee JY, Lee H, Gao G, Jang J, Kim YK, Cho DW. Coaxial cell printing of a human glomerular model: an in vitroglomerular filtration barrier and its pathophysiology. Biofabrication 2023; 15. [PMID: 36538823 DOI: 10.1088/1758-5090/acad2c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Much effort has been expended in emulating the kidney's glomerular unit because of its limitless potential in the field of drug screening and nephrotoxicity testing in clinics. Herein, we fabricate a functional bilayer glomerular microvessel-on-a-chip that recapitulates the specific arrangement of the glomerular endothelial cell, podocyte layers, and the intervening glomerular basement membrane (GBM) in a single step. Our perfusable chip allows for the co-culture of monolayer glomerular endothelium and podocyte epithelium, which display mature functional markers of glomerular cells, and their proper interactions produce GBM proteins, which are the major components of the GBMin vivo. Furthermore, we test the selective permeability capacity, a representative hallmark function of the glomerular filtration barrier. Lastly, we evaluate the response of our glomerular model to Adriamycin- and hyperglycemia-induced injury to evaluate its applicability for drug screening and glomerular disease modeling.
Collapse
Affiliation(s)
- Narendra K Singh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.,Division of Biomaterials and Biomechanics, School of Dentistry, Oregon Health and Science University (OHSU), Portland, OR 97201, United States of America.,Cancer Early Detection Advanced Research Center (CEDAR), OHSU-Knight Cancer Institute, Portland, OR 97201, United States of America
| | - Jae Yun Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jae Yeon Lee
- Department of Companion Animal Health, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Hyungseok Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.,Department of Mechanical and Biomedical Engineering, Kangwon National University (KNU), Chuncheon, Republic of Korea.,Interdisciplinary Program in Biohealth-Machinery Convergence Engineering, Kangwon National University (KNU), Chuncheon, Republic of Korea
| | - Ge Gao
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.,Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.,Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.,Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, Republic of Korea
| | - Yong Kyun Kim
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Internal Medicine, College of Medicine, The Catholic University of Korea, St. Vincent's Hospital, Suwon, Republic of Korea.,POSTECH-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.,Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Arjmand B, Rabbani Z, Soveyzi F, Tayanloo-Beik A, Rezaei-Tavirani M, Biglar M, Adibi H, Larijani B. Advancement of Organoid Technology in Regenerative Medicine. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2023; 9:83-96. [PMID: 35968268 PMCID: PMC9360642 DOI: 10.1007/s40883-022-00271-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/25/2022]
Abstract
Purpose Organoids are three-dimensional cultures of stem cells in an environment similar to the body's extracellular matrix. This is also a novel development in the realm of regenerative medicine. Stem cells can begin to develop into 3D structures by modifying signaling pathways. To form organoids, stem cells are transplanted into the extracellular matrix. Organoids have provided the required technologies to reproduce human tissues. As a result, it might be used in place of animal models in scientific study. The key goals of these investigations are research into viral and genetic illnesses, malignancies, and extracellular vesicles, pharmaceutical discovery, and organ transplantation. Organoids can help pave the road for precision medicine through genetic editing, pharmaceutical development, and cell therapy. Methods PubMed, Google Scholar, and Scopus were used to search for all relevant papers written in English (1907-2021). The study abstracts were scrutinized. Studies on the use of stem-cell-derived organoids in regenerative medicine, organoids as 3D culture models for EVs analysis, and organoids for precision medicine were included. Articles with other irrelevant aims, meetings, letters, commentaries, congress and conference abstracts, and articles with no available full texts were excluded. Results According to the included studies, organoids have various origins, types, and applications in regenerative and precision medicine, as well as an important role in studying extracellular vesicles. Conclusion Organoids are considered a bridge that connects preclinical studies to clinical ones. However, the lack of a standardized protocol and other barriers addressed in this review, hinder the vast use of this technology. Lay Summary Organoids are 3D stem cell propagations in biological or synthetic scaffolds that mimic ECM to allow intercellular or matrix-cellular crosstalk. Because these structures are similar to organs in the body, they can be used as research models. Organoids are medicine's future hope for organ transplantation, tumor biobank formation, and the development of precision medicine. Organoid models can be used to study cell-to-cell interactions as well as effective factors like inflammation and aging. Bioengineering technologies are also used to define the size, shape, and composition of organoids before transforming them into precise structures. Finally, the importance of organoid applications in regenerative medicine has opened a new window for a better understanding of biological research, as discussed in this study.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Rabbani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Soveyzi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahmood Biglar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Adibi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Unagolla JM, Jayasuriya AC. Recent advances in organoid engineering: A comprehensive review. APPLIED MATERIALS TODAY 2022; 29:101582. [PMID: 38264423 PMCID: PMC10804911 DOI: 10.1016/j.apmt.2022.101582] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Organoid, a 3D structure derived from various cell sources including progenitor and differentiated cells that self-organize through cell-cell and cell-matrix interactions to recapitulate the tissue/organ-specific architecture and function in vitro. The advancement of stem cell culture and the development of hydrogel-based extracellular matrices (ECM) have made it possible to derive self-assembled 3D tissue constructs like organoids. The ability to mimic the actual physiological conditions is the main advantage of organoids, reducing the excessive use of animal models and variability between animal models and humans. However, the complex microenvironment and complex cellular structure of organoids cannot be easily developed only using traditional cell biology. Therefore, several bioengineering approaches, including microfluidics, bioreactors, 3D bioprinting, and organoids-on-a-chip techniques, are extensively used to generate more physiologically relevant organoids. In this review, apart from organoid formation and self-assembly basics, the available bioengineering technologies are extensively discussed as solutions for traditional cell biology-oriented problems in organoid cultures. Also, the natural and synthetic hydrogel systems used in organoid cultures are discussed when necessary to highlight the significance of the stem cell microenvironment. The selected organoid models and their therapeutic applications in drug discovery and disease modeling are also presented.
Collapse
Affiliation(s)
- Janitha M. Unagolla
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo OH, United States
| | - Ambalangodage C. Jayasuriya
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo OH, United States
- Department of Orthopaedic Surgery, College of Medicine and Life Sciences, The University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, United States
| |
Collapse
|
25
|
Sullivan KM, Ko E, Kim EM, Ballance WC, Ito JD, Chalifoux M, Kim YJ, Bashir R, Kong H. Extracellular Microenvironmental Control for Organoid Assembly. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:1209-1222. [PMID: 35451330 PMCID: PMC9836674 DOI: 10.1089/ten.teb.2021.0186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/04/2022] [Indexed: 01/22/2023]
Abstract
Organoids, which are multicellular clusters with similar physiological functions to living organs, have gained increasing attention in bioengineering. As organoids become more advanced, methods to form complex structures continue to develop. There is evidence that the extracellular microenvironment can regulate organoid quality. The extracellular microenvironment consists of soluble bioactive molecules, extracellular matrix, and biofluid flow. However, few efforts have been made to discuss the microenvironment optimal to engineer specific organoids. Therefore, this review article examines the extent to which engineered extracellular microenvironments regulate organoid quality. First, we summarize the natural tissue and organ's unique chemical and mechanical properties, guiding researchers to design an extracellular microenvironment used for organoid engineering. Then, we summarize how the microenvironments contribute to the formation and growth of the brain, lung, intestine, liver, retinal, and kidney organoids. The approaches to forming and evaluating the resulting organoids are also discussed in detail. Impact statement Organoids, which are multicellular clusters with similar physiological function to living organs, have been gaining increasing attention in bioengineering. As organoids become more advanced, methods to form complex structures continue to develop. This review article focuses on recent efforts to engineer the extracellular microenvironment in organoid research. We summarized the natural organ's microenvironment, which informs researchers of key factors that can influence organoid formation. Then, we summarize how these microenvironmental controls significantly contribute to the formation and growth of the corresponding brain, lung, intestine, liver, retinal, and kidney organoids. The approaches to forming and evaluating the resulting organoids are discussed in detail, including extracellular matrix choice and properties, culture methods, and the evaluation of the morphology and functionality through imaging and biochemical analysis.
Collapse
Affiliation(s)
- Kathryn M. Sullivan
- Department of Bioengineering, and University of Illinois at Urbana−Champaign, Urbana, Illinois, USA
| | - Eunkyung Ko
- Department of Bioengineering, and University of Illinois at Urbana−Champaign, Urbana, Illinois, USA
| | - Eun Mi Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois, USA
| | - William C. Ballance
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois, USA
| | - John D. Ito
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois, USA
| | - Madeleine Chalifoux
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois, USA
| | - Young Jun Kim
- Environmental Safety Group, Korea Institute of Science and Technology (KIST–Europe), Saarbrucken, Germany
| | - Rashid Bashir
- Department of Bioengineering, and University of Illinois at Urbana−Champaign, Urbana, Illinois, USA
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois, USA
| |
Collapse
|
26
|
Cable J, Arlotta P, Parker KK, Hughes AJ, Goodwin K, Mummery CL, Kamm RD, Engle SJ, Tagle DA, Boj SF, Stanton AE, Morishita Y, Kemp ML, Norfleet DA, May EE, Lu A, Bashir R, Feinberg AW, Hull SM, Gonzalez AL, Blatchley MR, Montserrat Pulido N, Morizane R, McDevitt TC, Mishra D, Mulero-Russe A. Engineering multicellular living systems-a Keystone Symposia report. Ann N Y Acad Sci 2022; 1518:183-195. [PMID: 36177947 PMCID: PMC9771928 DOI: 10.1111/nyas.14896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The ability to engineer complex multicellular systems has enormous potential to inform our understanding of biological processes and disease and alter the drug development process. Engineering living systems to emulate natural processes or to incorporate new functions relies on a detailed understanding of the biochemical, mechanical, and other cues between cells and between cells and their environment that result in the coordinated action of multicellular systems. On April 3-6, 2022, experts in the field met at the Keystone symposium "Engineering Multicellular Living Systems" to discuss recent advances in understanding how cells cooperate within a multicellular system, as well as recent efforts to engineer systems like organ-on-a-chip models, biological robots, and organoids. Given the similarities and common themes, this meeting was held in conjunction with the symposium "Organoids as Tools for Fundamental Discovery and Translation".
Collapse
Affiliation(s)
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kevin Kit Parker
- Wyss Institute for Biologically Inspired Engineering and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Alex J Hughes
- Department of Bioengineering, School of Engineering and Applied Science and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Christine L Mummery
- Department of Anatomy and Embryology and LUMC hiPSC Hotel, Leiden University Medical Center, Leiden, the Netherlands
| | - Roger D Kamm
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sandra J Engle
- Translational Biology, Biogen, Cambridge, Massachusetts, USA
| | - Danilo A Tagle
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Sylvia F Boj
- Hubrecht Organoid Technology (HUB), Utrecht, the Netherlands
| | - Alice E Stanton
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Yoshihiro Morishita
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) Program, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Melissa L Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Dennis A Norfleet
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Elebeoba E May
- Department of Biomedical Engineering and HEALTH Research Institute, University of Houston, Houston, Texas, USA
- Wisconsin Institute of Discovery and Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aric Lu
- Wyss Institute for Biologically Inspired Engineering and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Draper Laboratory, Biological Engineering Division, Cambridge, Massachusetts, USA
| | - Rashid Bashir
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Holonyak Micro & Nanotechnology Laboratory, Department of Electrical and Computer Engineering and Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Adam W Feinberg
- Department of Biomedical Engineering and Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Sarah M Hull
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
| | - Anjelica L Gonzalez
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Michael R Blatchley
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| | | | - Ryuji Morizane
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Todd C McDevitt
- The Gladstone Institutes and Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Deepak Mishra
- Department of Biological Engineering, Synthetic Biology Center, Cambridge, Massachusetts, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Adriana Mulero-Russe
- Parker H. Petit Institute for Bioengineering and Bioscience and School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
27
|
Creating a kidney organoid-vasculature interaction model using a novel organ-on-chip system. Sci Rep 2022; 12:20699. [PMID: 36450835 PMCID: PMC9712653 DOI: 10.1038/s41598-022-24945-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
Kidney organoids derived from human induced pluripotent stem cells (iPSCs) have proven to be a valuable tool to study kidney development and disease. However, the lack of vascularization of these organoids often leads to insufficient oxygen and nutrient supply. Vascularization has previously been achieved by implantation into animal models, however, the vasculature arises largely from animal host tissue. Our aim is to transition from an in vivo implantation model towards an in vitro model that fulfils the advantages of vascularization whilst being fully human-cell derived. Our chip system supported culturing of kidney organoids, which presented nephron structures. We also showed that organoids cultured on chip showed increased maturation of endothelial populations based on a colocalization analysis of endothelial markers. Moreover, we observed migration and proliferation of human umbilical vein endothelial cells (HUVECs) cultured in the channels of the chip inside the organoid tissue, where these HUVECs interconnected with endogenous endothelial cells and formed structures presenting an open lumen resembling vessels. Our results establish for the first-time vascularization of kidney organoids in HUVEC co-culture conditions using a microfluidic organ-on-chip. Our model therefore provides a useful insight into kidney organoid vascularization in vitro and presents a tool for further studies of kidney development and drug testing, both for research purposes and pre-clinical applications.
Collapse
|
28
|
Hotait ZS, Lo Cascio JN, Choos END, Shepard BD. The sugar daddy: the role of the renal proximal tubule in glucose homeostasis. Am J Physiol Cell Physiol 2022; 323:C791-C803. [PMID: 35912988 PMCID: PMC9448277 DOI: 10.1152/ajpcell.00225.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
Abstract
Renal blood flow represents >20% of total cardiac output and with this comes the great responsibility of maintaining homeostasis through the intricate regulation of solute handling. Through the processes of filtration, reabsorption, and secretion, the kidneys ensure that solutes and other small molecules are either returned to circulation, catabolized within renal epithelial cells, or excreted through the process of urination. Although this occurs throughout the renal nephron, one segment is tasked with the bulk of solute reabsorption-the proximal tubule. Among others, the renal proximal tubule is entirely responsible for the reabsorption of glucose, a critical source of energy that fuels the body. In addition, it is the only other site of gluconeogenesis outside of the liver. When these processes go awry, pathophysiological conditions such as diabetes and acidosis result. In this review, we highlight the recent advances made in understanding these processes that occur within the renal proximal tubule. We focus on the physiological mechanisms at play regarding glucose reabsorption and glucose metabolism, emphasize the conditions that occur under diseased states, and explore the emerging class of therapeutics that are responsible for restoring homeostasis.
Collapse
Affiliation(s)
- Zahraa S Hotait
- Department of Human Science, Georgetown University, Washington, District of Columbia
| | - Julia N Lo Cascio
- Department of Human Science, Georgetown University, Washington, District of Columbia
| | - Elijah N D Choos
- Department of Human Science, Georgetown University, Washington, District of Columbia
| | - Blythe D Shepard
- Department of Human Science, Georgetown University, Washington, District of Columbia
| |
Collapse
|
29
|
Han X, Sun Z. Adult Mouse Kidney Stem Cells Orchestrate the De Novo Assembly of a Nephron via Sirt2-Modulated Canonical Wnt/β-Catenin Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104034. [PMID: 35315252 PMCID: PMC9130916 DOI: 10.1002/advs.202104034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Generation of kidney organoids using autologous kidney stem cells represents an attractive strategy for treating and potentially replacing the failing kidneys. However, whether adult mammalian kidney stem cells have regenerative capacity remains unknown. Here, previously unidentified adult kidney Sca1+ Oct4+ stem/progenitor cells are isolated. Interestingly, culturing these cells leads to generation of kidney-like structures. First, the assembly of self-organizing 3D kidney-like structures is observed. These kidney organoids contain podocytes, proximal tubules, and endothelial cells that form networks of capillary loop-like structures. Second, the differentiation of kidney stem cells into functionally mature tubules and self-organizing kidney-shaped structures in monolayer culture that selectively endocytoses dextran, is shown. Finally, the de novo generation of an entire self-organizing nephron from monolayer cultures is observed. Mechanistically, it is demonstrated that Sirt2-mediated canonical Wnt/β-catenin signaling is critical for the development of kidney organoids. Thus, the first evidence is provided that the adult mouse kidney stem cells are capable of de novo generating kidney organoids.
Collapse
Affiliation(s)
- Xiaobin Han
- Department of PhysiologyUniversity of Tennessee Health Science CenterMemphisTN38163USA
| | - Zhongjie Sun
- Department of PhysiologyUniversity of Tennessee Health Science CenterMemphisTN38163USA
| |
Collapse
|
30
|
Valverde MG, Mille LS, Figler KP, Cervantes E, Li VY, Bonventre JV, Masereeuw R, Zhang YS. Biomimetic models of the glomerulus. Nat Rev Nephrol 2022; 18:241-257. [PMID: 35064233 PMCID: PMC9949601 DOI: 10.1038/s41581-021-00528-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 12/17/2022]
Abstract
The use of biomimetic models of the glomerulus has the potential to improve our understanding of the pathogenesis of kidney diseases and to enable progress in therapeutics. Current in vitro models comprise organ-on-a-chip, scaffold-based and organoid approaches. Glomerulus-on-a-chip designs mimic components of glomerular microfluidic flow but lack the inherent complexity of the glomerular filtration barrier. Scaffold-based 3D culture systems and organoids provide greater microenvironmental complexity but do not replicate fluid flows and dynamic responses to fluidic stimuli. As the available models do not accurately model the structure or filtration function of the glomerulus, their applications are limited. An optimal approach to glomerular modelling is yet to be developed, but the field will probably benefit from advances in biofabrication techniques. In particular, 3D bioprinting technologies could enable the fabrication of constructs that recapitulate the complex structure of the glomerulus and the glomerular filtration barrier. The next generation of in vitro glomerular models must be suitable for high(er)-content or/and high(er)-throughput screening to enable continuous and systematic monitoring. Moreover, coupling of glomerular or kidney models with those of other organs is a promising approach to enable modelling of partial or full-body responses to drugs and prediction of therapeutic outcomes.
Collapse
Affiliation(s)
- Marta G Valverde
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Department of Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Luis S Mille
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Kianti P Figler
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Ernesto Cervantes
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Vanessa Y Li
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Joseph V Bonventre
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA.
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Department of Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA.
| |
Collapse
|
31
|
Gupta N, Matsumoto T, Hiratsuka K, Saiz EG, Zhang C, Galichon P, Miyoshi T, Susa K, Tatsumoto N, Yamashita M, Morizane R. Modeling injury and repair in kidney organoids reveals that homologous recombination governs tubular intrinsic repair. Sci Transl Med 2022; 14:eabj4772. [PMID: 35235339 PMCID: PMC9161367 DOI: 10.1126/scitranslmed.abj4772] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Kidneys have the capacity for intrinsic repair, preserving kidney architecture with return to a basal state after tubular injury. When injury is overwhelming or repetitive, however, that capacity is exceeded and incomplete repair results in fibrotic tissue replacing normal kidney parenchyma. Loss of nephrons correlates with reduced kidney function, which defines chronic kidney disease (CKD) and confers substantial morbidity and mortality to the worldwide population. Despite the identification of pathways involved in intrinsic repair, limited treatments for CKD exist, partly because of the limited throughput and predictivity of animal studies. Here, we showed that kidney organoids can model the transition from intrinsic to incomplete repair. Single-nuclear RNA sequencing of kidney organoids after cisplatin exposure identified 159 differentially expressed genes and 29 signal pathways in tubular cells undergoing intrinsic repair. Homology-directed repair (HDR) genes including Fanconi anemia complementation group D2 (FANCD2) and RAD51 recombinase (RAD51) were transiently up-regulated during intrinsic repair but were down-regulated in incomplete repair. Single cellular transcriptomics in mouse models of obstructive and hemodynamic kidney injury and human kidney samples of immune-mediated injury validated HDR gene up-regulation during tubular repair. Kidney biopsy samples with tubular injury and varying degrees of fibrosis confirmed loss of FANCD2 during incomplete repair. Last, we performed targeted drug screening that identified the DNA ligase IV inhibitor, SCR7, as a therapeutic candidate that rescued FANCD2/RAD51-mediated repair to prevent the progression of CKD in the cisplatin-induced organoid injury model. Our findings demonstrate the translational utility of kidney organoids to identify pathologic pathways and potential therapies.
Collapse
Affiliation(s)
- Navin Gupta
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute (HSCI), Cambridge, MA, USA
- Nephrology Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Takuya Matsumoto
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Nephrology Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Ken Hiratsuka
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Nephrology Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Edgar Garcia Saiz
- Harvard Medical School, Boston, MA, USA
- Nephrology Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Chengcheng Zhang
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Pierre Galichon
- Harvard Stem Cell Institute (HSCI), Cambridge, MA, USA
- Nephrology Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Tomoya Miyoshi
- Nephrology Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Koichiro Susa
- Nephrology Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Narihito Tatsumoto
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Michifumi Yamashita
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Ryuji Morizane
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute (HSCI), Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Nephrology Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
32
|
Bejoy J, Qian ES, Woodard LE. Tissue Culture Models of AKI: From Tubule Cells to Human Kidney Organoids. J Am Soc Nephrol 2022; 33:487-501. [PMID: 35031569 PMCID: PMC8975068 DOI: 10.1681/asn.2021050693] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
AKI affects approximately 13.3 million people around the world each year, causing CKD and/or mortality. The mammalian kidney cannot generate new nephrons after postnatal renal damage and regenerative therapies for AKI are not available. Human kidney tissue culture systems can complement animal models of AKI and/or address some of their limitations. Donor-derived somatic cells, such as renal tubule epithelial cells or cell lines (RPTEC/hTERT, ciPTEC, HK-2, Nki-2, and CIHP-1), have been used for decades to permit drug toxicity screening and studies into potential AKI mechanisms. However, tubule cell lines do not fully recapitulate tubular epithelial cell properties in situ when grown under classic tissue culture conditions. Improving tissue culture models of AKI would increase our understanding of the mechanisms, leading to new therapeutics. Human pluripotent stem cells (hPSCs) can be differentiated into kidney organoids and various renal cell types. Injury to human kidney organoids results in renal cell-type crosstalk and upregulation of kidney injury biomarkers that are difficult to induce in primary tubule cell cultures. However, current protocols produce kidney organoids that are not mature and contain off-target cell types. Promising bioengineering techniques, such as bioprinting and "kidney-on-a-chip" methods, as applied to kidney nephrotoxicity modeling advantages and limitations are discussed. This review explores the mechanisms and detection of AKI in tissue culture, with an emphasis on bioengineered approaches such as human kidney organoid models.
Collapse
Affiliation(s)
- Julie Bejoy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eddie S. Qian
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lauren E. Woodard
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
33
|
|
34
|
Modeling oxidative injury response in human kidney organoids. Stem Cell Res Ther 2022; 13:76. [PMID: 35189973 PMCID: PMC8862571 DOI: 10.1186/s13287-022-02752-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Abstract
Background
Hemolysis occurs in many injury settings and can trigger disease processes. In the kidney, extracellular hemoglobin can induce damage via several mechanisms. These include oxidative stress, mitochondrial dysfunction, and inflammation, which promote fibrosis and chronic kidney disease. Understanding the pathophysiology of these injury pathways offers opportunities to develop new therapeutic strategies.
Methods
To model hemolysis-induced kidney injury, human kidney organoids were treated with hemin, an iron-containing porphyrin, that generates reactive oxygen species. In addition, we developed an induced pluripotent stem cell line expressing the biosensor, CytochromeC-GFP (CytoC-GFP), which provides a real-time readout of mitochondrial morphology, health, and early apoptotic events.
Results
We found that hemin-treated kidney organoids show oxidative damage, increased expression of injury markers, impaired functionality of organic anion and cation transport and undergo fibrosis. Injury could be detected in live CytoC-GFP organoids by cytoplasmic localization of fluorescence. Finally, we show that 4-(phenylthio)butanoic acid, an HDAC inhibitor with anti-fibrotic effects in vivo, reduces hemin-induced human kidney organoid fibrosis.
Conclusion
This work establishes a hemin-induced model of kidney organoid injury. This platform provides a new tool to study the injury and repair response pathways in human kidney tissue and will assist in the development of new therapeutics.
Collapse
|
35
|
Mitochondrial Pathophysiology on Chronic Kidney Disease. Int J Mol Sci 2022; 23:ijms23031776. [PMID: 35163697 PMCID: PMC8836100 DOI: 10.3390/ijms23031776] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
In healthy kidneys, interstitial fibroblasts are responsible for the maintenance of renal architecture. Progressive interstitial fibrosis is thought to be a common pathway for chronic kidney diseases (CKD). Diabetes is one of the boosters of CKD. There is no effective treatment to improve kidney function in CKD patients. The kidney is a highly demanding organ, rich in redox reactions occurring in mitochondria, making it particularly vulnerable to oxidative stress (OS). A dysregulation in OS leads to an impairment of the Electron transport chain (ETC). Gene deficiencies in the ETC are closely related to the development of kidney disease, providing evidence that mitochondria integrity is a key player in the early detection of CKD. The development of novel CKD therapies is needed since current methods of treatment are ineffective. Antioxidant targeted therapies and metabolic approaches revealed promising results to delay the progression of some markers associated with kidney disease. Herein, we discuss the role and possible origin of fibroblasts and the possible potentiators of CKD. We will focus on the important features of mitochondria in renal cell function and discuss their role in kidney disease progression. We also discuss the potential of antioxidants and pharmacologic agents to delay kidney disease progression.
Collapse
|
36
|
Research Priorities for Kidney-Related Research-An Agenda to Advance Kidney Care: A Position Statement From the National Kidney Foundation. Am J Kidney Dis 2022; 79:141-152. [PMID: 34627932 DOI: 10.1053/j.ajkd.2021.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 02/01/2023]
Abstract
Despite the high prevalence and economic burden of chronic kidney disease (CKD) in the United States, federal funding for kidney-related research, prevention, and education activities under the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) remains substantially lower compared to other chronic diseases. More federal support is needed to promote critical research that will expand knowledge of kidney health and disease, develop new and effective therapies, and reduce health disparities. In 2021, the National Kidney Foundation (NKF) convened 2 Research Roundtables (preclinical and clinical research), comprising nephrology leaders from prominent US academic institutions and the pharmaceutical industry, key bodies with expertise in research, and including individuals with CKD and their caregivers and kidney donors. The goal of these roundtables was to identify priorities for preclinical and clinical kidney-related research. The research priorities identified by the Research Roundtables and presented in this position statement outline attainable opportunities for groundbreaking and critically needed innovations that will benefit patients with kidney disease in the next 5-10 years. Research priorities fall within 4 preclinical science themes (expand data science capability, define kidney disease mechanisms and utilize genetic tools to identify new therapeutic targets, develop better models of human disease, and test cell-specific drug delivery systems and utilize gene editing) and 3 clinical science themes (expand number and inclusivity of clinical trials, develop and test interventions to reduce health disparities, and support implementation science). These priorities in kidney-related research, if supported by additional funding by federal agencies, will increase our understanding of the development and progression of kidney disease among diverse populations, attract additional industry investment, and lead to new and more personalized treatments.
Collapse
|
37
|
Perin L, Da Sacco S. Generation of a Glomerular Filtration Barrier on a Glomerulus-on-a-Chip Platform. Methods Mol Biol 2022; 2373:121-131. [PMID: 34520010 PMCID: PMC10148750 DOI: 10.1007/978-1-0716-1693-2_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Despite an enormous investment of clinical and financial resources, chronic kidney disease (CKD) remains a global health threat. The lack of reliable in vitro systems that can efficiently mimic the renal and glomerular environment has hampered our ability to successfully develop novel and more renal specific drugs. Even though some success in generating in vitro tubule analogues and kidney organoids has been described, a major challenge remains for the in vitro assembly of the filtration unit of the kidney, the glomerulus. We have recently developed a novel glomerulus-on-a-chip system that mimics the characteristic and functionality of the glomerular filtration barrier, including its response to injury. This system recapitulates the functions and structure of the in vivo glomerulus, including permselectivity; indeed, we have confirmed free diffusion of insulin as well as impermeability to physiological concentrations of albumin. Exposure to nephrotoxic agents like puromycin aminonucleoside leads to a significant increase in albumin leakage. When exposed to sera from patients with anti-podocyte autoantibodies, the chip shows albumin leakage to an extent proportional to in vivo clinical data, phenomenon not observed with sera from either healthy controls, confirming functional response to injury. We describe here the detailed procedure to obtain a glomerulus-on-a-chip system that replicates both phenotypically and functionally the in vivo glomerular microenvironment.
Collapse
Affiliation(s)
- Laura Perin
- Children Hospital Los Angeles, Los Angeles, CA, USA
| | | |
Collapse
|
38
|
Yu P, Duan Z, Liu S, Pachon I, Ma J, Hemstreet GP, Zhang Y. Drug-Induced Nephrotoxicity Assessment in 3D Cellular Models. MICROMACHINES 2021; 13:mi13010003. [PMID: 35056167 PMCID: PMC8780064 DOI: 10.3390/mi13010003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 12/19/2022]
Abstract
The kidneys are often involved in adverse effects and toxicity caused by exposure to foreign compounds, chemicals, and drugs. Early predictions of these influences are essential to facilitate new, safe drugs to enter the market. However, in current drug treatments, drug-induced nephrotoxicity accounts for 1/4 of reported serious adverse reactions, and 1/3 of them are attributable to antibiotics. Drug-induced nephrotoxicity is driven by multiple mechanisms, including altered glomerular hemodynamics, renal tubular cytotoxicity, inflammation, crystal nephropathy, and thrombotic microangiopathy. Although the functional proteins expressed by renal tubules that mediate drug sensitivity are well known, current in vitro 2D cell models do not faithfully replicate the morphology and intact renal tubule function, and therefore, they do not replicate in vivo nephrotoxicity. The kidney is delicate and complex, consisting of a filter unit and a tubular part, which together contain more than 20 different cell types. The tubular epithelium is highly polarized, and maintaining cellular polarity is essential for the optimal function and response to environmental signals. Cell polarity depends on the communication between cells, including paracrine and autocrine signals, as well as biomechanical and chemotaxis processes. These processes affect kidney cell proliferation, migration, and differentiation. For drug disposal research, the microenvironment is essential for predicting toxic reactions. This article reviews the mechanism of drug-induced kidney injury, the types of nephrotoxicity models (in vivo and in vitro models), and the research progress related to drug-induced nephrotoxicity in three-dimensional (3D) cellular culture models.
Collapse
Affiliation(s)
- Pengfei Yu
- Difficult & Complicated Liver Diseases and Artificial Liver Center, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (P.Y.); (Z.D.); (S.L.)
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Zhongping Duan
- Difficult & Complicated Liver Diseases and Artificial Liver Center, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (P.Y.); (Z.D.); (S.L.)
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Shuang Liu
- Difficult & Complicated Liver Diseases and Artificial Liver Center, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (P.Y.); (Z.D.); (S.L.)
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Ivan Pachon
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA;
| | - Jianxing Ma
- Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA;
| | | | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA;
- Correspondence: ; Tel.: +1-336-713-1189
| |
Collapse
|
39
|
Human induced pluripotent stem cell-derived kidney organoids toward clinical implementations. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Chen S, Huang H, Liu Y, Wang C, Chen X, Chang Y, Li Y, Guo Z, Han Z, Han ZC, Zhao Q, Chen XM, Li Z. Renal subcapsular delivery of PGE 2 promotes kidney repair by activating endogenous Sox9 + stem cells. iScience 2021; 24:103243. [PMID: 34746706 PMCID: PMC8554536 DOI: 10.1016/j.isci.2021.103243] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/19/2021] [Accepted: 10/05/2021] [Indexed: 01/20/2023] Open
Abstract
Prostaglandin E2 (PGE2) has recently been recognized to play a role in immune regulation and tissue regeneration. However, the short half-life of PGE2 limits its clinical application. Improving the delivery of PGE2 specifically to the target organ with a prolonged release method is highly desirable. Taking advantage of the adequate space and proximity of the renal parenchyma, renal subcapsular delivery allows minimally invasive and effective delivery to the entire kidney. Here, we report that by covalently cross-linking it to a collagen matrix, PGE2 exhibits an adequate long-term presence in the kidney with extensive intraparenchymal penetration through renal subcapsular delivery and significantly improves kidney function. Sox9 cell lineage tracing with intravital microscopy revealed that PGE2 could activate the endogenous renal progenitor Sox9+ cells through the Yap signaling pathway. Our results highlight the prospects of utilizing renal subcapsular-based drug delivery and facilitate new applications of PGE2-releasing matrices for regenerative therapy. PGE2 exhibits an adequate long-term release by being covalently cross-linked to collagen The renal subcapsular space serves as a reservoir for the delivery of PGE2 Sox9+ renal progenitor cells can be lineage traced intravitally by microscopy PGE2 activates the endogenous renal progenitor Sox9+ cells through the YAP pathway
Collapse
Affiliation(s)
- Shang Chen
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China.,The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Sciences, Tianjin, China
| | - Haoyan Huang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China.,The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Sciences, Tianjin, China
| | - Yue Liu
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Chen Wang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xiaoniao Chen
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yuqiao Chang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Yuhao Li
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Zhibo Han
- Jiangxi Engineering Research Center for Stem Cell, Shangrao, Jiangxi, China.,Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, National Engineering Research Center for Cell Products, AmCellGene Co., Ltd., Tianjin China
| | - Zhong-Chao Han
- Jiangxi Engineering Research Center for Stem Cell, Shangrao, Jiangxi, China.,Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, National Engineering Research Center for Cell Products, AmCellGene Co., Ltd., Tianjin China.,Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Health & Biotech Co., Beijing, China
| | - Qiang Zhao
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Sciences, Tianjin, China
| | - Xiang-Mei Chen
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100039, China
| | - Zongjin Li
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China.,The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Sciences, Tianjin, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China.,State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100039, China
| |
Collapse
|
41
|
Dissecting nephron morphogenesis using kidney organoids from human pluripotent stem cells. Curr Opin Genet Dev 2021; 72:22-29. [PMID: 34781071 DOI: 10.1016/j.gde.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/05/2021] [Accepted: 10/17/2021] [Indexed: 11/21/2022]
Abstract
During kidney development the emergence of complex multicellular shapes such as the nephron (the functional unit of the kidney) rely on spatiotemporally coordinated developmental programs. These involve gene regulatory networks, signaling pathways and mechanical forces, that work in concert to shape and form the nephron(s). The generation of kidney organoids from human pluripotent stem cells now represent an unprecedented experimental set up to study these processes. Here we discuss the potential applications of kidney organoids to advance our knowledge of how mechanical forces and cell fate specification spatiotemporally interact to orchestrate nephron patterning and morphogenesis in humans. Progress in innovative techniques for quantifying and perturbing these processes in a controlled manner will be crucial. A mechanistic understanding of the multicellular dynamic processes occurring during nephrogenesis will pave the way to unveil new mechanisms of human kidney disease.
Collapse
|
42
|
Yanofsky SM, Dugas CM, Katsurada A, Liu J, Saifudeen Z, El-Dahr SS, Satou R. Angiotensin II biphasically regulates cell differentiation in human iPSC-derived kidney organoids. Am J Physiol Renal Physiol 2021; 321:F559-F571. [PMID: 34448643 PMCID: PMC8616599 DOI: 10.1152/ajprenal.00134.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/09/2021] [Accepted: 08/25/2021] [Indexed: 12/28/2022] Open
Abstract
Human kidney organoid technology holds promise for novel kidney disease treatment strategies and utility in pharmacological and basic science. Given the crucial roles of the intrarenal renin-angiotensin system (RAS) and angiotensin II (ANG II) in the progression of kidney development and injury, we investigated the expression of RAS components and effects of ANG II on cell differentiation in human kidney organoids. Human induced pluripotent stem cell-derived kidney organoids were induced using a modified 18-day Takasato protocol. Gene expression analysis by digital PCR and immunostaining demonstrated the formation of renal compartments and expression of RAS components. The ANG II type 1 receptor (AT1R) was strongly expressed in the early phase of organoid development (around day 0), whereas ANG II type 2 receptor (AT2R) expression levels peaked on day 5. Thus, the organoids were treated with 100 nM ANG II in the early phase on days 0-5 (ANG II-E) or during the middle phase on days 5-10 (ANG II-M). ANG II-E was observed to decrease levels of marker genes for renal tubules and proximal tubules, and the downregulation of renal tubules was inhibited by an AT1R antagonist. In contrast, ANG II-M increased levels of markers for podocytes, the ureteric tip, and the nephrogenic mesenchyme, and an AT2R blocker attenuated the ANG II-M-induced augmentation of podocyte formation. These findings demonstrate RAS expression and ANG II exertion of biphasic effects on cell differentiation through distinct mediatory roles of AT1R and AT2R, providing a novel strategy to establish and further characterize the developmental potential of human induced pluripotent stem cell-derived kidney organoids.NEW & NOTEWORTHY This study demonstrates angiotensin II exertion of biphasic effects on cell differentiation through distinct mediatory roles of angiotensin II type 1 receptor and type 2 receptor in human induced pluripotent stem cell-derived kidney organoids, providing a novel strategy to establish and further characterize the developmental potential of the human kidney organoids.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Cell Differentiation/drug effects
- Cell Line
- Gene Expression Regulation, Developmental
- Humans
- Induced Pluripotent Stem Cells/drug effects
- Induced Pluripotent Stem Cells/metabolism
- Kidney/cytology
- Kidney/drug effects
- Kidney/metabolism
- Organoids/cytology
- Organoids/drug effects
- Organoids/metabolism
- Receptor, Angiotensin, Type 1/agonists
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/agonists
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Renin-Angiotensin System/drug effects
- Signal Transduction
- Time Factors
Collapse
Affiliation(s)
- Stacy M Yanofsky
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Courtney M Dugas
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Akemi Katsurada
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Jiao Liu
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana
| | - Zubaida Saifudeen
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana
| | - Samir S El-Dahr
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana
| | - Ryousuke Satou
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
43
|
Kidney development to kidney organoids and back again. Semin Cell Dev Biol 2021; 127:68-76. [PMID: 34627669 DOI: 10.1016/j.semcdb.2021.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/01/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022]
Abstract
Kidney organoid technology has led to a renaissance in kidney developmental biology. The complex underpinnings of mammalian kidney development have provided a framework for the generation of kidney cells and tissues from human pluripotent stem cells. Termed kidney organoids, these 3-dimensional structures contain kidney-specific cell types distributed similarly to in vivo architecture. The adult human kidney forms from the reciprocal induction of two disparate tissues, the metanephric mesenchyme (MM) and ureteric bud (UB), to form nephrons and collecting ducts, respectively. Although nephrons and collecting ducts are derived from the intermediate mesoderm (IM), their development deviates in time and space to impart distinctive inductive signaling for which separate differentiation protocols are required. Here we summarize the directed differentiation protocols which generate nephron kidney organoids and collecting duct kidney organoids, making note of similarities as much as differences. We discuss limitations of these present approaches and discuss future directions to improve kidney organoid technology, including a greater understanding of anterior IM and its derivatives to enable an improved differentiation protocol to collecting duct organoids for which historic and future developmental biology studies will be instrumental.
Collapse
|
44
|
Schumacher A, Rookmaaker MB, Joles JA, Kramann R, Nguyen TQ, van Griensven M, LaPointe VLS. Defining the variety of cell types in developing and adult human kidneys by single-cell RNA sequencing. NPJ Regen Med 2021; 6:45. [PMID: 34381054 PMCID: PMC8357940 DOI: 10.1038/s41536-021-00156-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/22/2021] [Indexed: 01/14/2023] Open
Abstract
The kidney is among the most complex organs in terms of the variety of cell types. The cellular complexity of human kidneys is not fully unraveled and this challenge is further complicated by the existence of multiple progenitor pools and differentiation pathways. Researchers disagree on the variety of renal cell types due to a lack of research providing a comprehensive picture and the challenge to translate findings between species. To find an answer to the number of human renal cell types, we discuss research that used single-cell RNA sequencing on developing and adult human kidney tissue and compares these findings to the literature of the pre-single-cell RNA sequencing era. We find that these publications show major steps towards the discovery of novel cell types and intermediate cell stages as well as complex molecular signatures and lineage pathways throughout development. The variety of cell types remains variable in the single-cell literature, which is due to the limitations of the technique. Nevertheless, our analysis approaches an accumulated number of 41 identified cell populations of renal lineage and 32 of non-renal lineage in the adult kidney, and there is certainly much more to discover. There is still a need for a consensus on a variety of definitions and standards in single-cell RNA sequencing research, such as the definition of what is a cell type. Nevertheless, this early-stage research already proves to be of significant impact for both clinical and regenerative medicine, and shows potential to enhance the generation of sophisticated in vitro kidney tissue.
Collapse
Affiliation(s)
- A Schumacher
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, The Netherlands
| | - M B Rookmaaker
- Department of Nephrology, University Medical Center, Utrecht, The Netherlands
| | - J A Joles
- Department of Nephrology, University Medical Center, Utrecht, The Netherlands
| | - R Kramann
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen, Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - T Q Nguyen
- Department of Pathology, University Medical Center, Utrecht, The Netherlands
| | - M van Griensven
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, The Netherlands
| | - V L S LaPointe
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
45
|
Lv T, Meng F, Yu M, Huang H, Lin X, Zhao B. Defense of COVID-19 by Human Organoids. PHENOMICS (CHAM, SWITZERLAND) 2021; 1:113-128. [PMID: 35233559 PMCID: PMC8277987 DOI: 10.1007/s43657-021-00015-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has created an immense menace to public health worldwide, exerting huge effects on global economic and political conditions. Understanding the biology and pathogenesis mechanisms of this novel virus, in large parts, relies on optimal physiological models that allow replication and propagation of SARS-CoV-2. Human organoids, derived from stem cells, are three-dimensional cell cultures that recapitulate the cellular organization, transcriptional and epigenetic signatures of their counterpart organs. Recent studies have indicated their great values as experimental virology platforms, making human organoid an ideal tool for investigating host-pathogen interactions. Here, we summarize research developments for SARS-CoV-2 infection of various human organoids involved in multiple systems, including lung, liver, brain, intestine, kidney and blood vessel organoids. These studies help us reveal the pathogenesis mechanism of COVID-19, and facilitate the development of effective vaccines and drugs as well as other therapeutic regimes.
Collapse
Affiliation(s)
- Ting Lv
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438 China
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Fanlu Meng
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023 China
| | - Meng Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438 China
| | - Haihui Huang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438 China
| | - Bing Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438 China
| |
Collapse
|
46
|
The mystery behind the nostrils - technical clues for successful nasal epithelial cell cultivation. Ann Anat 2021; 238:151748. [PMID: 33940117 DOI: 10.1016/j.aanat.2021.151748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Research involving the nose reveals important information regarding the morphology and physiology of the epithelium and its molecular response to agents. The role of nasal epithelial cells and other cell subsets within the nasal epithelium play an interesting translational split between experimental and clinical research studying respiratory disorders or pathogen reactions. With an additional technical manuscript including a detailed description of important technical aspects, tips, tricks, and nuances for a successful culturing of primary, human nasal epithelial cells (NAEPCs), we here aim to improve the process of communication between experimentalists and physicians, supporting the purpose of a fruitful work for future translational projects. METHODS Based on previous work on various complex culture models of subject-derived NAEPCs, this additional manuscript harmonizes previously published facts combined with own experiences for a trouble-free implementation in laboratories. RESULTS A well-designed experimental question is essential prior to the establishment of different NAEPCs culture models. The correct method of cell extraction from the nasal cavity is essential and represent an important basis for successful culture work. Prior enzymatic processing of biopsy specimens, cell culture materials, collagenization procedure, culture conditions, and choice of culture medium are some important practical notes that increase the quality of the culture. Moreover, protocols on imaging techniques including histologic and electron microscopy must be adapted for NAEPC culture. Adapted flow cytometric protocols and transepithelial electrical resistance measurements can add valuable information. OUTLOOK A successful culturing of NAEPCs can provide an important basis for genetic studies and the implementation of omics-science, which is increasingly receiving broad attention in the scientific community. The common aim of in vitro 'mini-noses' will be a breakthrough in laboratories aiming to perform research under in vivo conditions. Here, organoid models are interesting models presenting a basis for translational studies.
Collapse
|
47
|
Clinostat 3D Cell Culture: Protocols for the Preparation and Functional Analysis of Highly Reproducible, Large, Uniform Spheroids and Organoids. Methods Mol Biol 2021. [PMID: 33604843 DOI: 10.1007/978-1-0716-1246-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Growing cells as 3D structures need not be difficult. Often, it is not necessary to change cell type, additives or growth media used. All that needs to be changed is the geometry: cells (whether primary, induced pluripotent, transformed or immortal) simply have to be grown in conditions that promote cell-cell adhesion while allowing gas, nutrient, signal, and metabolite exchange. Downstream analysis can become more complicated because many assays (like phase contrast microscopy) cannot be used, but their replacements have been in use for many years. Most importantly, there is a huge gain in value in obtaining data that is more representative of the organism in vivo. It is the goal of the protocols presented here to make the transition to a new dimension as painless as possible. Grown optimally, most biopsy derived organoids will retain patient phenotypes, while cell (both stem cell, induced or otherwise or immortalized) derived organoids or spheroids will recover tissue functionality.
Collapse
|
48
|
Human reconstructed kidney models. In Vitro Cell Dev Biol Anim 2021; 57:133-147. [PMID: 33594607 DOI: 10.1007/s11626-021-00548-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
The human kidney, which consists of up to 2 million nephrons, is critical for blood filtration, electrolyte balance, pH regulation, and fluid balance in the body. Animal experiments, particularly mice and rats, combined with advances in genetically modified technology have been the primary mechanism to study kidney injury in recent years. Mouse or rat kidneys, however, differ substantially from human kidneys at the anatomical, histological, and molecular levels. These differences combined with increased regulatory hurdles and shifting attitudes towards animal testing by non-specialists have led scientists to develop new and more relevant models of kidney injury. Although in vitro tissue culture studies are a valuable tool to study kidney injury and have yielded a great deal of insight, they are not a perfect model. Perhaps, the biggest limitation of tissue culture is that it cannot replicate the complex architecture, consisting of multiple cell types, of the kidney, and the interplay between these cells. Recent studies have found that pluripotent stem cells (PSCs), which are capable of differentiation into any cell type, can be used to generate kidney organoids. Organoids recapitulate the multicellular relationships and microenvironments of complex organs like kidney. Kidney organoids have been used to successfully model nephrotoxin-induced tubular and glomerular disease as well as complex diseases such as chronic kidney disease (CKD), which involves multiple cell types. In combination with genetic engineering techniques, such as CRISPR-Cas9, genetic diseases of the kidney can be reproduced in organoids. Thus, organoid models have the potential to predict drug toxicity and enhance drug discovery for human disease more accurately than animal models.
Collapse
|
49
|
|
50
|
Ding B, Sun G, Liu S, Peng E, Wan M, Chen L, Jackson J, Atala A. Three-Dimensional Renal Organoids from Whole Kidney Cells: Generation, Optimization, and Potential Application in Nephrotoxicology In Vitro. Cell Transplant 2021; 29:963689719897066. [PMID: 32166969 PMCID: PMC7504083 DOI: 10.1177/0963689719897066] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The kidney function of patients with chronic kidney disease (CKD) is impaired
irreversibly. Organ transplantation is the only treatment to restore kidney function in
CKD patients. The assessment of new potential therapeutic procedures relies heavily on
experimental animal models, but it is limited by its human predictive capacity. In
addition, the frequently used two-dimensional in vitro human renal cell
models cannot replicate all the features of the in vivo situation. In this study, we
developed a three-dimensional (3D) in vitro human renal organoid model
from whole kidney cells as a promising drug screening tool. At present, the renal tissue
generated from human pluripotent stem cells (hPSCs) exhibits intrinsic tumorigenicity
properties. Here we first developed a 3D renal organoid culture system that originated
from adult differentiated cells without gene modification. Renal organoids composed of
multiple cell types were created under optimal experimental conditions and evaluated for
morphology, viability and erythropoietin production. As a novel screening tool for renal
toxicity, 3D organoids were exposed to three widely used drugs: aspirin, penicillin G and
cisplatin. The study results showed this 3D renal organoid model can be used as a drug
screening tool, a new in vitro 3D human kidney model, and provide hope
for potential regenerative therapies for CKD.
Collapse
Affiliation(s)
- Beichen Ding
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, HB, China.,Department of Urinary Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, HLJ, China
| | - Guoliang Sun
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, HB, China
| | - Shiliang Liu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, HB, China
| | - Ejun Peng
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, HB, China
| | - Meimei Wan
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Liang Chen
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, HB, China.,Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - John Jackson
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, USA
| |
Collapse
|