1
|
Neale DA, Morris JC, Verrills NM, Ammit AJ. Understanding the regulatory landscape of protein phosphatase 2A (PP2A): Pharmacological modulators and potential therapeutics. Pharmacol Ther 2025; 269:108834. [PMID: 40023321 DOI: 10.1016/j.pharmthera.2025.108834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/20/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Protein phosphatase 2A (PP2A) is a ubiquitously expressed serine/threonine phosphatase with a diverse and integral role in cellular signalling pathways. Consequently, its dysfunction is frequently observed in disease states such as cancer, inflammation and Alzheimer's disease. A growing understanding of both PP2A and its endogenous regulatory proteins has presented numerous targets for therapeutic intervention. This provides important context for the dynamic control and dysregulation of PP2A function in disease states. Understanding the intricate regulation of PP2A signalling in disease has resulted in the development of novel pharmacological agents aimed at restoring cellular homeostasis. Herein we review the structure and function of PP2A together with pharmacological modulators, both endogenous (proteins) and exogenous (small molecules and peptides), with relevance to targeting PP2A as a future pharmacotherapeutic strategy.
Collapse
Affiliation(s)
- David A Neale
- School of Chemistry, UNSW Sydney, NSW 2052, Australia
| | | | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, NSW 2308, Australia; Precision Medicine Program, Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, Macquarie University, NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia.
| |
Collapse
|
2
|
Li W, Liu T, Chen Y, Sun Y, Li C, Dong Y. Regulation and therapeutic potential of NLRP3 inflammasome in intestinal diseases. J Leukoc Biol 2025; 117:qiaf014. [PMID: 40276926 DOI: 10.1093/jleuko/qiaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Indexed: 04/26/2025] Open
Abstract
The NOD-like receptor family, particularly the protein 3 that contains the pyrin domain (NLRP3), is an intracellular sensing protein complex responsible for detecting patterns associated with pathogens and injuries. NLRP3 plays a crucial role in the innate immune response. Currently, a wide range of research has indicated the crucial importance of NLRP3 in various inflammatory conditions. Similarly, the NLRP3 inflammasome plays a significant role in preserving intestinal balance and impacting the advancement of diseases. In addition, several randomized trials have demonstrated the safety and efficacy of targeting NLRP3 in the treatment of colitis, colorectal cancer, and related diseases. This review explores the mechanisms of NLRP3 assembly and activation in the gut. We describe its pathological significance in intestinal diseases. Finally, we summarize current and future therapeutic approaches targeting NLRP3 for intestinal diseases.
Collapse
Affiliation(s)
- Wenxue Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Tianya Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yan Sun
- Department of Horticulture and Landscape Architecture, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Chengzhong Li
- Department of Horticulture and Landscape Architecture, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Yulan Dong
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| |
Collapse
|
3
|
Qian W, Xu CY, Hong W, Li ZM, Xu DG. Transmembrane protein 176B promotes epithelial-mesenchymal transition in colorectal cancer through inflammasome inhibition. World J Gastrointest Oncol 2025; 17:97673. [PMID: 40092936 PMCID: PMC11866255 DOI: 10.4251/wjgo.v17.i3.97673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/30/2024] [Accepted: 12/04/2024] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Activation of the epithelial-mesenchymal transition (EMT), a pivotal process in tumor metastasis and evasion, as well as the NLRP3 inflammasome, both promote colorectal cancer (CRC) progression. Recent studies have shown that Transmembrane protein 176B (TMEM176B) regulates NLRP3 and promotes CRC malignant phenotypes. AIM To investigate the role of TMEM176B in modulating NLRP3 inflammasome and its implications on EMT and tumor progression in CRC. METHODS CRC in situ mouse and co-cultured cell models were established using CT26 cells, BALB/c mice, and primary cultured mouse natural killer (NK) cells. Short hairpin RNA knocked down TMEM176B and NLRP3 expression in CT26 cells. Fluorescence imaging, Terminal deoxynucleotidyl transferase dUTP nick end labeling assays, immunohistochemistry staining, flow cytometry, and molecular assays were used to investigate the effects of TMEM176B knockdown on the NLRP3 inflammasome in NK cells to assess tumor metastasis, apoptosis, and EMT indicators. RESULTS Silencing TMEM176B in CRC mice significantly reduced tumor metastasis, proliferation, and EMT, while activating apoptosis, NLRP3 inflammasome, and NK cell activity. Furthermore, silencing TMEM176B in co-cultured cell models inhibited cell migration and invasion, and promoted apoptosis. The interference of NLRP3 reversed these effects by modulating key proteins such as phosphorylated nuclear factor kappa B subunit 1 p65, matrix metallopeptidase 9, and transforming growth factor-β. CONCLUSION This study highlights the critical role of TMEM176B/NLRP3 in CRC progression and provides a basis for targeting this axis as a novel therapeutic approach to manage CRC progression and metastasis.
Collapse
Affiliation(s)
- Wei Qian
- Department of Proctology, Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Wenling 317500, Zhejiang Province, China
| | - Chong-Yi Xu
- Department of Proctology, Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Wenling 317500, Zhejiang Province, China
| | - Wei Hong
- Department of Proctology, Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Wenling 317500, Zhejiang Province, China
| | - Zhe-Ming Li
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang Province, China
| | - Dao-Gun Xu
- Department of Proctology, Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Wenling 317500, Zhejiang Province, China
| |
Collapse
|
4
|
Chen Y, Liu J, Zhong S, Zhang T, Yuan J, Zhang J, Chen Y, Liang J, Chen Y, Hou S, Huang H, Gao J. Monotropein inhibits epithelial-mesenchymal transition in chronic colitis via the mTOR/P70S6K pathway. Front Pharmacol 2025; 16:1536091. [PMID: 40041493 PMCID: PMC11876156 DOI: 10.3389/fphar.2025.1536091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/21/2025] [Indexed: 03/06/2025] Open
Abstract
Introduction Patients with chronic colitis are at risk of developing intestinal fibrosis through epithelial-mesenchymal transition (EMT). Monotropein (MON) is the main active ingredient in the traditional Chinese medicine Morinda officinalis How. It has been reported that monotropein can improve ulcerative colitis, but the mechanism remains unclear. However, whether monotropein can improve chronic colitis-associated intestinal fibrosis remains unknown. The study aimed to investigate the effect of monotropein on EMT in chronic colitis and its underlying mechanism. Methods The mice chronic colitis model was induced by dextran sodium sulfate (DSS). Cytokines were detected by ELISA. Concentrations of fluorescein isothiocyanate dextran (FITC-Dextran) in serum were detected using a fluorescein microplate analyzer. Intestinal tight junction proteins were detected by immunofluorescence. EMT marker proteins were detected by immunohistochemistry. Transforming growth factor-β1 (TGF-β1) was used to induce EMT in IEC-6 cells. Western blot, real-time quantitative PCR, and immunofluorescence were used to test the inhibitory effect of monotropein on the development of EMT and explore its mechanism. Results Results showed that monotropein significantly improved colonic injury and inhibited the expression of colonic tissue EMT marker protein. In addition, molecular docking and molecular dynamics (MD) simulation, cellular thermal shift assay (CETSA), and drug affinity responsive target stability (DARTS) assay validated monotropein targeting of mTOR. Monotropein inhibited TGF-β1-induced EMT in IEC-6 cells, inhibited the phosphorylation of mTOR and its downstream proteins, and increased the autophagy activity in chronic colitis mice and IEC-6 cells. Discussion The study indicates that monotropein inhibits the development of EMT in DSS-induced chronic colitis mice and TGF-β1-induced IEC-6 cells. Its inhibitory effect on EMT is associated with the mTOR/P70S6K pathway.
Collapse
Affiliation(s)
- Yuanfan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- College of Education, Guangzhou Huali Science and Technology Vocational College, Guangzhou, Guangdong, China
- College of Education, University of Visayas, Cebu, Philippines
| | - Jiaying Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shaowen Zhong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Tianwu Zhang
- Pu’er Hospital of Traditional Chinese Medicine, Puer, Kunming, Yunnan, China
| | - Jin Yuan
- Pu’er Hospital of Traditional Chinese Medicine, Puer, Kunming, Yunnan, China
| | - Jing Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ying Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jian Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yonger Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- School of Basic Medical Sciences, State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shaozhen Hou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Haiyang Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Development Planning Department, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jie Gao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Gutzeit O, Gulati A, Izadifar Z, Stejskalova A, Rhbiny H, Cotton J, Budnik B, Shahriar S, Goyal G, Junaid A, Ingber DE. Cervical mucus in linked human Cervix and Vagina Chips modulates vaginal dysbiosis. NPJ WOMEN'S HEALTH 2025; 3:5. [PMID: 39896100 PMCID: PMC11779628 DOI: 10.1038/s44294-025-00054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
This study explores the protective role of cervicovaginal mucus in maintaining vaginal health, particularly in relation to bacterial vaginosis (BV), using organ chip technology. By integrating human Cervix and Vagina Chips, we demonstrated that cervical mucus significantly reduces inflammation and epithelial damage caused by a dysbiotic microbiome commonly associated with BV. Proteomic analysis of the Vagina Chip, following exposure to mucus from the Cervix Chip, revealed differentially abundant proteins, suggesting potential biomarkers and therapeutic targets for BV management. Our findings highlight the essential function of cervical mucus in preserving vaginal health and underscore the value of organ chip models for studying complex interactions within the female reproductive tract. This research provides new insights into the mechanisms underlying vaginal dysbiosis and opens avenues for developing targeted therapies and diagnostic tools to enhance women's reproductive health.
Collapse
Affiliation(s)
- Ola Gutzeit
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
- Department of Obstetrics and Gynecology, IVF Unit, Rambam Medical Center, Haifa, Israel
- Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa, Israel
| | - Aakanksha Gulati
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
| | - Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
| | - Anna Stejskalova
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
| | - Hassan Rhbiny
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
| | - Justin Cotton
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
| | - Bogdan Budnik
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
| | - Sanjid Shahriar
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
| | - Girija Goyal
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
| | - Abidemi Junaid
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
| | - Donald E. Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA USA
| |
Collapse
|
6
|
Ouyang XM, Lin JH, Lin Y, Zhao XL, Huo YN, Liang LY, Huang YD, Xie GJ, Mi P, Ye ZY, Guleng B. The SERPINB4 gene mutation identified in twin patients with Crohn's disease impaires the intestinal epithelial cell functions. Sci Rep 2025; 15:2638. [PMID: 39838210 PMCID: PMC11751486 DOI: 10.1038/s41598-025-87280-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/17/2025] [Indexed: 01/23/2025] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory autoimmune disease of unknown etiology. To identify new targets related to the initiation of CD, we screened a pair of twins with CD, which is a rare phenomenon in the Chinese population, for genetic susceptibility factors. Whole-exome sequencing (WES) of these patients revealed a mutation in their SERPINB4 gene. Therefore, we studied a wider clinical cohort of patients with CD or ulcerous colitis (UC), healthy individuals, and those with a family history of CD for this mutation by Sanger sequencing. The single-nucleotide difference in the SERPINB4 gene, which was unique to the twin patients with CD, led to the substitution of lysine by a glutamic acid residue. Functional analysis indicated that this mutation of SERPINB4 inhibited the proliferation, colony formation, wound healing, and migration of intestinal epithelial cells (IECs). Furthermore, mutation of SERPINB4 induced apoptosis and activated apoptosis-related proteins in IECs, and a caspase inhibitor significantly reduced these effects. Transcriptome sequencing revealed that the expression of genes encoding proinflammatory proteins (IL1B, IL6, IL17, IL24, CCL2, and CXCR2) and key proteins in the immune response (S100A9, MMP3, and MYC) was significantly upregulated during SERPINB4 mutant-induced apoptosis. Thus, the heterozygous SERPINB4 gene mutation causes the dysfunction of IECs, which would disrupt the intestinal epithelial barrier and contribute to the development of intestinal inflammation. The activation of SERPINB4 might represent a novel therapeutic target for inflammatory bowel disease.
Collapse
Affiliation(s)
- Xiao-Mei Ouyang
- Department of Gastroenterology, The National Key Clinical Specialty, Clinical Research Center for Gut Microbiota and Digestive Diseases of Fujian Province, Key Laboratory for Intestinal Microbiome and Human Health of Xiamen, Zhongshan Hospital of Xiamen University, Xiamen, 361004, China
| | - Jun-Hui Lin
- Department of Gastroenterology, The National Key Clinical Specialty, Clinical Research Center for Gut Microbiota and Digestive Diseases of Fujian Province, Key Laboratory for Intestinal Microbiome and Human Health of Xiamen, Zhongshan Hospital of Xiamen University, Xiamen, 361004, China
| | - Ying Lin
- Department of Gastroenterology, The National Key Clinical Specialty, Clinical Research Center for Gut Microbiota and Digestive Diseases of Fujian Province, Key Laboratory for Intestinal Microbiome and Human Health of Xiamen, Zhongshan Hospital of Xiamen University, Xiamen, 361004, China
| | - Xian-Ling Zhao
- Department of Gastroenterology, The National Key Clinical Specialty, Clinical Research Center for Gut Microbiota and Digestive Diseases of Fujian Province, Key Laboratory for Intestinal Microbiome and Human Health of Xiamen, Zhongshan Hospital of Xiamen University, Xiamen, 361004, China
| | - Ya-Ni Huo
- Department of Gastroenterology, The National Key Clinical Specialty, Clinical Research Center for Gut Microbiota and Digestive Diseases of Fujian Province, Key Laboratory for Intestinal Microbiome and Human Health of Xiamen, Zhongshan Hospital of Xiamen University, Xiamen, 361004, China
| | - Lai-Ying Liang
- Department of Gastroenterology, The National Key Clinical Specialty, Clinical Research Center for Gut Microbiota and Digestive Diseases of Fujian Province, Key Laboratory for Intestinal Microbiome and Human Health of Xiamen, Zhongshan Hospital of Xiamen University, Xiamen, 361004, China
| | - Yong-Dong Huang
- Department of Gastroenterology, The National Key Clinical Specialty, Clinical Research Center for Gut Microbiota and Digestive Diseases of Fujian Province, Key Laboratory for Intestinal Microbiome and Human Health of Xiamen, Zhongshan Hospital of Xiamen University, Xiamen, 361004, China
| | - Gui-Jing Xie
- Department of Gastroenterology, The National Key Clinical Specialty, Clinical Research Center for Gut Microbiota and Digestive Diseases of Fujian Province, Key Laboratory for Intestinal Microbiome and Human Health of Xiamen, Zhongshan Hospital of Xiamen University, Xiamen, 361004, China
| | - Peng Mi
- Department of Gastroenterology, The National Key Clinical Specialty, Clinical Research Center for Gut Microbiota and Digestive Diseases of Fujian Province, Key Laboratory for Intestinal Microbiome and Human Health of Xiamen, Zhongshan Hospital of Xiamen University, Xiamen, 361004, China
| | - Zhen-Yu Ye
- Department of Gastroenterology, The National Key Clinical Specialty, Clinical Research Center for Gut Microbiota and Digestive Diseases of Fujian Province, Key Laboratory for Intestinal Microbiome and Human Health of Xiamen, Zhongshan Hospital of Xiamen University, Xiamen, 361004, China
| | - Bayasi Guleng
- Department of Gastroenterology, The National Key Clinical Specialty, Clinical Research Center for Gut Microbiota and Digestive Diseases of Fujian Province, Key Laboratory for Intestinal Microbiome and Human Health of Xiamen, Zhongshan Hospital of Xiamen University, Xiamen, 361004, China.
- Cancer Research Center, Department of Digestive Disease and Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361004, China.
| |
Collapse
|
7
|
Grinat J, Shriever NP, Christophorou MA. Fantastic proteins and where to find them - histones, in the nucleus and beyond. J Cell Sci 2024; 137:jcs262071. [PMID: 39704565 PMCID: PMC11827605 DOI: 10.1242/jcs.262071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
Animal genomes are packaged into chromatin, a highly dynamic macromolecular structure of DNA and histone proteins organised into nucleosomes. This accommodates packaging of lengthy genomic sequences within the physical confines of the nucleus while also enabling precise regulation of access to genetic information. However, histones existed before chromatin and have lesser-known functions beyond genome regulation. Most notably, histones are potent antimicrobial agents, and the release of chromatin to the extracellular space is a defence mechanism nearly as ancient and widespread as chromatin itself. Histone sequences have changed very little throughout evolution, suggesting the possibility that some of their 'non-canonical' functions are at play in parallel or in concert with their genome regulatory functions. In this Review, we take an evolutionary perspective of histone, nuclear chromatin and extracellular chromatin biology and describe the known extranuclear and extracellular functions of histones. We detail molecular mechanisms of chromatin release and extracellular chromatin sensing, and we discuss their roles in physiology and disease. Finally, we present evidence and give a perspective on the potential of extracellular histones to act as bioactive, cell modulatory factors.
Collapse
|
8
|
Tang F, Xiao D, Li X, Qiao L. The roles of lactate and the interplay with m 6A modification in diseases. Cell Biol Toxicol 2024; 40:107. [PMID: 39617813 PMCID: PMC11609124 DOI: 10.1007/s10565-024-09951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/20/2024] [Indexed: 12/13/2024]
Abstract
Lactate exhibits various biological functions, including the mediation of histone and non-histone lactylation to regulate gene transcription, influencing the activity of T lymphocytes, NK cells, and macrophages in immune suppression, activating G protein-coupled receptor 81 for signal transduction, and serving as an energy substrate. The m6A modification represents the most prevalent post-transcriptional epigenetic alteration. It is regulated by m6A-related regulatory enzymes (including methyltransferases, demethylases, and recognition proteins) that control the transcription, splicing, stability, and translation of downstream target RNAs. Lactate-mediated lactylation at histone H3K18 can modulate downstream target m6A modifications by enhancing the transcriptional expression levels of m6A-related regulatory enzymes. These enzymes play a crucial role in the progression of diseases such as cancer, fibrosis (in both liver and lung), myocardial ischemia, cerebral hemorrhage, and sepsis. Furthermore, m6A-related regulatory enzymes are also subject to lactylation by lactate. In turn, these regulatory enzymes can influence key glycolytic pathway enzymes or modify lactate transporter MCT4 via m6A alterations to impact lactate levels and subsequently affect lactylation processes.
Collapse
Affiliation(s)
- Fajuan Tang
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - Dongqiong Xiao
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - Xihong Li
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - Lina Qiao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China.
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Qiang X, Liang S, Lv Y, Wang X, Zhang H, Zhan J. Advanced glycation end products (AGEs) impair the intestinal epithelial barrier via STAT3 activation mediated by macrophages. Food Chem Toxicol 2024; 192:114966. [PMID: 39197527 DOI: 10.1016/j.fct.2024.114966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Advanced glycation end products (AGEs) are a spectrum of complex compounds widely found in processed foods and frequently consumed by humans. AGEs are implicated in impairing the intestinal barrier, but the underlying mechanisms remain unclear. This study investigated the effects of three types of AGEs on gene expression of tight junctions (TJs) in colorectal epithelial HT-29 cells, and observed minimal alterations in TJs expression. Given the important role of subepithelial macrophages in regulating the intestinal barrier, we explored whether AGEs affect the intestinal barrier via the involvement of macrophages. Notably, a significant downregulation of TJs expression was observed when supernatants from AGEs-treated RAW264.7 macrophage cells were transferred to HT-29 cells. Further investigations indicated that AGEs increased IL-6 levels in RAW264.7 cells, subsequently triggering STAT3 activation and suppressing TJs expression in HT-29 cells. The role of STAT3 activation was confirmed by observing enhanced TJs expression in HT-29 cells following pretreatment with an inhibitor of STAT3 activation prior to the transfer of the conditioned medium. These findings demonstrated that AGEs impaired the intestinal barrier via macrophage-mediated STAT3 activation, shedding light on the mechanisms underlying AGEs-induced intestinal barrier injury and related food safety risks.
Collapse
Affiliation(s)
- Xin Qiang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Shumin Liang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Yinchuan Lv
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Xiaoyuan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Hao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jing Zhan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
10
|
Zhao Z, Yi S, E H, Jiang L, Zhou C, Zhao X, Yang L. α-amanitin induce inflammatory response by activating ROS/NF-κB-NLRP3 signaling pathway in human hepatoma HepG2 cells. CHEMOSPHERE 2024; 364:143157. [PMID: 39178962 DOI: 10.1016/j.chemosphere.2024.143157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
α-amanitin (AMA) is a hepatotoxic mushroom toxin responsible for over 90% of mushroom poisoning fatalities worldwide, seriously endangering human life and health. Few evidences have indicated that AMA leads to inflammatory responses and inflammatory infiltration in vitro and in vivo. However, the molecular mechanism remains unknown. In this study, human hepatocellular carcinomas cells (HepG2) were exposed to AMA at various concentrations for short period of times. Results revealed that AMA increased ROS production and elevated the releases of malondialdehyde (MDA) and lactate dehydrogenase (LDH), resulting in oxidative damage in HepG2 cells. Also, AMA exposure significantly increased the secreted levels of inflammatory cytokines and activated the NLRP3 inflammasome. The inflammatory responses were reversed by NLRP3 inhibitor MCC950 and NF-κB inhibitor Bay11-7082. Additionally, N-acetylcysteine (NAC) blocked the upregulation of the NF-κB/NLRP3 signaling pathway and remarkably alleviated the inflammatory response. These results demonstrated that AMA could induce inflammation through activating the NLRP3 inflammasome triggered by ROS/NF-κB signaling pathway. Our research provides new insights into the molecular mechanism of AMA-induced inflammation damage and may contribute to establish new prevention strategies for AMA hepatotoxicity.
Collapse
Affiliation(s)
- Zhiyong Zhao
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality & Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, No.1000 Jinqi Road, Shanghai, 201403, PR China; Shanghai Guosen Biotechnology Co., Ltd., Shanghai, 201400, PR China.
| | - Siliang Yi
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality & Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, No.1000 Jinqi Road, Shanghai, 201403, PR China; College of Veterinary Medicine, Hunan Agricultural University, No.1 Nongda Road, Changsha, 410128, PR China
| | - Hengchao E
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality & Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, No.1000 Jinqi Road, Shanghai, 201403, PR China
| | - Lihuang Jiang
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality & Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, No.1000 Jinqi Road, Shanghai, 201403, PR China; College of Veterinary Medicine, Hunan Agricultural University, No.1 Nongda Road, Changsha, 410128, PR China
| | - Changyan Zhou
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality & Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, No.1000 Jinqi Road, Shanghai, 201403, PR China
| | - Xiaoyan Zhao
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality & Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, No.1000 Jinqi Road, Shanghai, 201403, PR China.
| | - Lingchen Yang
- College of Veterinary Medicine, Hunan Agricultural University, No.1 Nongda Road, Changsha, 410128, PR China.
| |
Collapse
|
11
|
Filippelli A, Ciccone V, Loppi S, Morbidelli L. Promising Support Coming from Nature: Antioxidant and Anti-Inflammatory Potential of Castanea sativa Wood Distillate on Skin Cells. Curr Issues Mol Biol 2024; 46:9386-9400. [PMID: 39329908 PMCID: PMC11429965 DOI: 10.3390/cimb46090556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 09/28/2024] Open
Abstract
Tissue homeostasis, function recovery, and protection mechanisms are boosted by the balanced and timely control of inflammation and oxidative stress. Nowadays, many natural products and bio-derivates exhibit antioxidant and anti-inflammatory activity, supporting medical care and tissue wellness against inflammation, oxidative stress, and inflammaging. Castanea sativa wood distillate (WD) is a bio-derivative used as a corroborant and biofertilizer in agriculture. Based on the safety profile of low concentrations of WD on human cells, the present study aims to assess the anti-inflammatory and antioxidant activity of WD on different cell types in the integumentary system. Human keratinocytes, mucosal epithelium, dermal fibroblasts, and endothelial cells were exposed to WD, and the concentrations devoid of pro-apoptotic potential were profiled. Then, the effect of nontoxic doses of WD revealed an anti-inflammatory effect, observed through the immunodetection of prostanoid cascade markers in experimentally induced inflammation. A reduction in endothelial hyperpermeability was evidenced by the immunofluorescence analysis of cell-cell adhesion proteins, VE-cadherin and ZO-1. In addition, WD buffered the exogenously produced oxidative stress. On the whole, WD showed both anti-inflammatory and antioxidant activities on the various cell types, preserving endothelial barrier integrity. Overall, this study supports the involvement of this bio-derivative in novel exploitable fields, such as therapeutic dermatological applications for human and animal medical care.
Collapse
Affiliation(s)
- Arianna Filippelli
- Laboratory of Pharmacology of Angiogenesis and Microcirculation, Department Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Valerio Ciccone
- Laboratory of Pharmacology of Angiogenesis and Microcirculation, Department Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Stefano Loppi
- BioAgry Laboratory, Department Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), 80055 Naples, Italy
| | - Lucia Morbidelli
- Laboratory of Pharmacology of Angiogenesis and Microcirculation, Department Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), 80055 Naples, Italy
| |
Collapse
|
12
|
Li Y, Qiang R, Cao Z, Wu Q, Wang J, Lyu W. NLRP3 Inflammasomes: Dual Function in Infectious Diseases. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:407-417. [PMID: 39102612 PMCID: PMC11299487 DOI: 10.4049/jimmunol.2300745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/11/2024] [Indexed: 08/07/2024]
Abstract
The Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome has been the most distinctive polymer protein complex. After recognizing the endogenous and exogenous danger signals, NLRP3 can cause inflammation by pyroptosis and secretion of mature, bioactive forms of IL-1β and IL-18. The NLRP3 inflammasome is essential in the genesis and progression of infectious illnesses. Herein, we provide a comprehensive review of the NLRP3 inflammasome in infectious diseases, focusing on its two-sided effects. As an essential part of host defense with a protective impact, abnormal NLRP3 inflammasome activation, however, result in a systemic high inflammatory response, leading to subsequent damage. In addition, scientific evidence of small molecules, biologics, and phytochemicals acting on the NLRP3 inflammasome has been reviewed. We believe that the NLRP3 inflammasome helps us understand the pathological mechanism of different stages of infectious diseases and that inhibitors targeting the NLRP3 inflammasome will become a new and valuable research direction for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Yanbo Li
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing
| | - Rui Qiang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine Shunyi Hospital, Beijing, China
| | - Zhengmin Cao
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing
| | - Qingjuan Wu
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing
| | - Jiuchong Wang
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing
| | - Wenliang Lyu
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing
| |
Collapse
|
13
|
Kaur G, Devi S, Sharma A, Sood P. Pharmacological insights and role of bufalin (bufadienolides) in inflammation modulation: a narrative review. Inflammopharmacology 2024:10.1007/s10787-024-01517-9. [PMID: 39012431 DOI: 10.1007/s10787-024-01517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Bufadienolides, specifically bufalin, have garnered attention for their potential therapeutic application in modulating inflammatory pathways. Bufalin is derived from toad venom and exhibits promising anti-inflammatory properties. Its anti-inflammatory effects have been demonstrated by influencing crucial signaling pathways like NF-B, MAPK, and JAK-STAT, resulting in the inhibition of pro-inflammatory substances like cytokines, chemokines, and adhesion molecules. Bufalin blocks inflammasome activation and reduces oxidative stress, hence increasing its anti-inflammatory properties. Bufalin has shown effectiveness in reducing inflammation-related diseases such as cancer, cardiovascular problems, and autoimmune ailments in preclinical investigations. Furthermore, producing new approaches of medication delivery and combining therapies with bufalin shows potential for improving its effectiveness and reducing adverse effects. This review explores the pharmacological effects and mechanistic approaches of bufalin as an anti-inflammatory agent, which further highlights its potential for therapy and offers the basis for further study on its therapeutic application in inflammation-related disorders.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Chitkara University School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Akhil Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Parul Sood
- Chitkara University School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| |
Collapse
|
14
|
Zhao Y, Hu ZY, Lou M, Jiang FW, Huang YF, Chen MS, Wang JX, Liu S, Shi YS, Zhu HM, Li JL. AQP1 Deficiency Drives Phthalate-Induced Epithelial Barrier Disruption through Intestinal Inflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15334-15344. [PMID: 38916549 DOI: 10.1021/acs.jafc.4c03764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Di-2-ethylhexyl phthalate (DEHP) is frequently used as a plasticizer to enhance the plasticity and durability of agricultural products, which pose adverse effects to human health and the environment. Aquaporin 1 (AQP1) is a main water transport channel protein and is involved in the maintenance of intestinal integrity. However, the impact of DEHP exposure on gut health and its potential mechanisms remain elusive. Here, we determined that DEHP exposure induced a compromised duodenum structure, which was concomitant with mitochondrial structural injury of epithelial cells. Importantly, DEHP exposure caused duodenum inflammatory epithelial cell damage and strong inflammatory response accompanied by activating the TLR4/MyD88/NF-κB signaling pathway. Mechanistically, DEHP exposure directly inhibits the expression of AQP1 and thus leads to an inflammatory response, ultimately disrupting duodenum integrity and barrier function. Collectively, our findings uncover the role of AQP1 in phthalate-induced intestinal disorders, and AQP1 could be a promising therapeutic approach for treating patients with intestinal disorders or inflammatory diseases.
Collapse
Affiliation(s)
- Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Zi-Yan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Ming Lou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Fu-Wei Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yi-Feng Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Ming-Shan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jia-Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Shuo Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yu-Sheng Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Hong-Mei Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| |
Collapse
|
15
|
Chen X, Deng G, Chen K, Chen Y, Ye W, Sun P. Targeting the NLRP3 inflammasome in psoriasis. Int J Dermatol 2024; 63:844-851. [PMID: 38345734 DOI: 10.1111/ijd.17073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 07/05/2024]
Abstract
The NLRP3 inflammasome, a complex consisting of the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing protein 3, has emerged as a critical mediator of pathological inflammation and a significant therapeutic target for various inflammatory diseases. Psoriasis, a chronic inflammatory skin condition without a definitive cure, has shown promising results in animal models through the inhibition of the NLRP3 inflammasome. This review aims to explore the development of the NLRP3 inflammasome in psoriasis and the molecular mechanisms responsible for its inhibition by natural products and small molecules currently being developed for psoriasis treatment. Furthermore, we are examining clinical trials using agents that block the NLRP3 pathway for the treatment of psoriasis. This study is timely to provide a new perspective on managing psoriasis.
Collapse
Affiliation(s)
- Xiuhui Chen
- Key Laboratory of Precision Pharmacy and Pharmaceutical Basic Research, Dongguan, China
- Department of Pharmacy, Dongguan Eighth People's Hospital, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan, China
| | - Guoliang Deng
- Key Laboratory of Precision Pharmacy and Pharmaceutical Basic Research, Dongguan, China
- Department of Pharmacy, Dongguan Eighth People's Hospital, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan, China
| | - Kaifeng Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yanhong Chen
- Department of Pharmacy, Baoan Central Hospital of Shenzhen, Shenzhen, China
| | - Weijun Ye
- Key Laboratory of Precision Pharmacy and Pharmaceutical Basic Research, Dongguan, China
- Department of Pharmacy, Dongguan Eighth People's Hospital, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan, China
| | - Ping Sun
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
16
|
Speciale A, Molonia MS, Muscarà C, Cristani M, Salamone FL, Saija A, Cimino F. An overview on the cellular mechanisms of anthocyanins in maintaining intestinal integrity and function. Fitoterapia 2024; 175:105953. [PMID: 38588905 DOI: 10.1016/j.fitote.2024.105953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
Structural and functional changes of the intestinal barrier, as a consequence of a number of (epi)genetic and environmental causes, have a main role in penetrations of pathogens and toxic agents, and lead to the development of inflammation-related pathological conditions, not only at the level of the GI tract but also in other extra-digestive tissues and organs. Anthocyanins (ACNs), a subclass of polyphenols belonging to the flavonoid group, are well known for their health-promoting properties and are widely distributed in the human diet. There is large evidence about the correlation between the human intake of ACN-rich products and a reduction of intestinal inflammation and dysfunction. Our review describes the more recent advances in the knowledge of cellular and molecular mechanisms through which ACNs can modulate the main mechanisms involved in intestinal dysfunction and inflammation, in particular the inhibition of the NF-κB, JNK, MAPK, STAT3, and TLR4 proinflammatory pathways, the upregulation of the Nrf2 transcription factor and the expression of tight junction proteins and mucins.
Collapse
Affiliation(s)
- Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Maria Sofia Molonia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy; "Prof. Antonio Imbesi" Foundation, University of Messina, Messina 98100, Italy.
| | - Claudia Muscarà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Mariateresa Cristani
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Federica Lina Salamone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Antonella Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| |
Collapse
|
17
|
Wang X, Huang J, Liu J, Sun Y, Feng X, Jin Y, Zhou W. Silencing ANGPT2 alleviates ulcerative colitis by regulating autophagy-mediated NLRP3 inflammasome inactivation via the mTOR signaling pathway. Braz J Med Biol Res 2024; 57:e13379. [PMID: 38808888 PMCID: PMC11136490 DOI: 10.1590/1414-431x2024e13379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/09/2024] [Indexed: 05/30/2024] Open
Abstract
Ulcerative colitis (UC) is a difficult intestinal disease characterized by inflammation, and its mechanism is complex and diverse. Angiopoietin-like protein 2 (ANGPT2) plays an important regulatory role in inflammatory diseases. However, the role of ANGPT2 in UC has not been reported so far. After exploring the expression level of ANGPT2 in serum of UC patients, the reaction mechanism of ANGPT2 was investigated in dextran sodium sulfate (DSS)-induced UC mice. After ANGPT2 expression was suppressed, the clinical symptoms and pathological changes of UC mice were detected. Colonic infiltration, oxidative stress, and colonic mucosal barrier in UC mice were evaluated utilizing immunohistochemistry, immunofluorescence, and related kits. Finally, western blot was applied for the estimation of mTOR signaling pathway and NLRP3 inflammasome-related proteins. ANGPT2 silencing improved clinical symptoms and pathological changes, alleviated colonic inflammatory infiltration and oxidative stress, and maintained the colonic mucosal barrier in DSS-induced UC mice. The regulatory effect of ANGPT2 on UC disease might occur by regulating the mTOR signaling pathway and thus affecting autophagy-mediated NLRP3 inflammasome inactivation. ANGPT2 silencing alleviated UC by regulating autophagy-mediated NLRP3 inflammasome inactivation via the mTOR signaling pathway.
Collapse
Affiliation(s)
- Xiaojun Wang
- Department of Laboratory Medicine, Suzhou Wuzhong People's Hospital, Suzhou, Jiangsu, China
| | - Jian Huang
- Suzhou Key Laboratory for Medical Biotechnology, Suzhou Vocational Health College, Suzhou, Jiangsu, China
| | - Jia Liu
- Department of Gastroenterology, Suzhou Wuzhong People's Hospital, Suzhou, Jiangsu, China
| | - Yujie Sun
- Department of Gastroenterology, Suzhou Wuzhong People's Hospital, Suzhou, Jiangsu, China
| | - Xinyi Feng
- Department of Gastroenterology, Suzhou Wuzhong People's Hospital, Suzhou, Jiangsu, China
| | - Yansheng Jin
- Department of Laboratory Medicine, Suzhou Wuzhong People's Hospital, Suzhou, Jiangsu, China
| | - Weigang Zhou
- Department of Laboratory Medicine, Suzhou Wuzhong People's Hospital, Suzhou, Jiangsu, China
| |
Collapse
|
18
|
Fang Y, Li Z, Yang L, Li W, Wang Y, Kong Z, Miao J, Chen Y, Bian Y, Zeng L. Emerging roles of lactate in acute and chronic inflammation. Cell Commun Signal 2024; 22:276. [PMID: 38755659 PMCID: PMC11097486 DOI: 10.1186/s12964-024-01624-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/20/2024] [Indexed: 05/18/2024] Open
Abstract
Traditionally, lactate has been considered a 'waste product' of cellular metabolism. Recent findings have shown that lactate is a substance that plays an indispensable role in various physiological cellular functions and contributes to energy metabolism and signal transduction during immune and inflammatory responses. The discovery of lactylation further revealed the role of lactate in regulating inflammatory processes. In this review, we comprehensively summarize the paradoxical characteristics of lactate metabolism in the inflammatory microenvironment and highlight the pivotal roles of lactate homeostasis, the lactate shuttle, and lactylation ('lactate clock') in acute and chronic inflammatory responses from a molecular perspective. We especially focused on lactate and lactate receptors with either proinflammatory or anti-inflammatory effects on complex molecular biological signalling pathways and investigated the dynamic changes in inflammatory immune cells in the lactate-related inflammatory microenvironment. Moreover, we reviewed progress on the use of lactate as a therapeutic target for regulating the inflammatory response, which may provide a new perspective for treating inflammation-related diseases.
Collapse
Affiliation(s)
- Yunda Fang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhengjun Li
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- College of Health Economics Management, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lili Yang
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wen Li
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Acupuncture-Moxibustion and Tuina, ·School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yutong Wang
- School of Acupuncture-Moxibustion and Tuina, ·School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ziyang Kong
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Acupuncture-Moxibustion and Tuina, ·School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jia Miao
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanqi Chen
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yaoyao Bian
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- School of Acupuncture-Moxibustion and Tuina, ·School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- TCM Rehabilitation Center, Jiangsu Second Chinese Medicine Hospital, Nanjing, 210023, China.
| | - Li Zeng
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, 999078, China.
| |
Collapse
|
19
|
Zanini G, Bertani G, Di Tinco R, Pisciotta A, Bertoni L, Selleri V, Generali L, Marconi A, Mattioli AV, Pinti M, Carnevale G, Nasi M. Dental Pulp Stem Cells Modulate Inflammasome Pathway and Collagen Deposition of Dermal Fibroblasts. Cells 2024; 13:836. [PMID: 38786058 PMCID: PMC11120068 DOI: 10.3390/cells13100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Fibrosis is a pathological condition consisting of a delayed deposition and remodeling of the extracellular matrix (ECM) by fibroblasts. This deregulation is mostly triggered by a chronic stimulus mediated by pro-inflammatory cytokines, such as TNF-α and IL-1, which activate fibroblasts. Due to their anti-inflammatory and immunosuppressive potential, dental pulp stem cells (DPSCs) could affect fibrotic processes. This study aims to clarify if DPSCs can affect fibroblast activation and modulate collagen deposition. We set up a transwell co-culture system, where DPSCs were seeded above the monolayer of fibroblasts and stimulated with LPS or a combination of TNF-α and IL-1β and quantified a set of genes involved in inflammasome activation or ECM deposition. Cytokines-stimulated co-cultured fibroblasts, compared to unstimulated ones, showed a significant increase in the expression of IL-1β, IL-6, NAIP, AIM2, CASP1, FN1, and TGF-β genes. At the protein level, IL-1β and IL-6 release as well as FN1 were increased in stimulated, co-cultured fibroblasts. Moreover, we found a significant increase of MMP-9 production, suggesting a role of DPSCs in ECM remodeling. Our data seem to suggest a crosstalk between cultured fibroblasts and DPSCs, which seems to modulate genes involved in inflammasome activation, ECM deposition, wound healing, and fibrosis.
Collapse
Affiliation(s)
- Giada Zanini
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.)
| | - Giulia Bertani
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.B.); (R.D.T.); (A.P.); (L.B.); (L.G.); (A.M.); (G.C.); (M.N.)
| | - Rosanna Di Tinco
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.B.); (R.D.T.); (A.P.); (L.B.); (L.G.); (A.M.); (G.C.); (M.N.)
| | - Alessandra Pisciotta
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.B.); (R.D.T.); (A.P.); (L.B.); (L.G.); (A.M.); (G.C.); (M.N.)
| | - Laura Bertoni
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.B.); (R.D.T.); (A.P.); (L.B.); (L.G.); (A.M.); (G.C.); (M.N.)
| | - Valentina Selleri
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.)
- National Institute for Cardiovascular Research—INRC, 40126 Bologna, Italy;
| | - Luigi Generali
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.B.); (R.D.T.); (A.P.); (L.B.); (L.G.); (A.M.); (G.C.); (M.N.)
| | - Alessandra Marconi
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.B.); (R.D.T.); (A.P.); (L.B.); (L.G.); (A.M.); (G.C.); (M.N.)
| | - Anna Vittoria Mattioli
- National Institute for Cardiovascular Research—INRC, 40126 Bologna, Italy;
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.)
| | - Gianluca Carnevale
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.B.); (R.D.T.); (A.P.); (L.B.); (L.G.); (A.M.); (G.C.); (M.N.)
| | - Milena Nasi
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.B.); (R.D.T.); (A.P.); (L.B.); (L.G.); (A.M.); (G.C.); (M.N.)
| |
Collapse
|
20
|
Feng M, Zhou Y, Gao Z, Huang W, Xie W, Xie W, Liu Z, Tang S, Xiong X, Chen Y, Zhou X, Liu C. Timosaponin BⅡ reduces colonic inflammation and alleviates DSS-induced ulcerative colitis by inhibiting NLRP3. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117885. [PMID: 38331123 DOI: 10.1016/j.jep.2024.117885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Timosaponin BⅡ (TBⅡ) is one of the main active components of the traditional Chinese medicine Anemarrhena asphodeloides, and it is a steroidal saponin with various pharmacological activities such as anti-oxidation, anti-inflammatory and anti-apoptosis. However, its role in acute ulcerative colitis remains unexplored thus far. AIM OF THE STUDY This study aims to investigate the protective effect of TBⅡ against dextran sulfate sodium (DSS)-induced ulcerative colitis in mice and elucidate its underlying mechanisms. METHODS Wild-type (WT) and NLRP3 knockout (NLRP3-/-) mice were applied to evaluate the protective effect of TBⅡ in DSS-induced mice colitis. Pharmacological inhibition of NLRP3 or adenovirus-mediated NLRP3 overexpression in bone marrow-derived macrophages (BMDM) from WT mice and colonic epithelial HCoEpiC cells was used to assess the role of TBⅡ in LPS + ATP-induced cell model. RNA-seq, ELISA, western blots, immunofluorescence staining, and expression analysis by qPCR were performed to examine the alterations of colonic NLRP3 expression in DSS-induced colon tissues and LPS + ATP-induced cells, respectively. RESULTS In mice with DSS-induced ulcerative colitis, TBⅡ treatment attenuated clinical symptoms, repaired the intestinal mucosal barrier, reduced inflammatory infiltration, and alleviated colonic inflammation. RNA-seq analysis and protein expression levels demonstrated that TBⅡ could prominently inhibit NLRP3 signaling. TBⅡ-mediated NLRP3 inhibition was associated with alleviating intestinal permeability and inflammatory response via the blockage of communication between epithelial cells and macrophages, probably in an NLRP3 inhibition mechanism. However, pharmacological inhibition of NLRP3 by MCC950 or Ad-NLRP3 mediated NLRP3 overexpression significantly impaired the TBⅡ-mediated anti-inflammatory effect. Mechanistically, TBⅡ-mediated NLRP3 inhibition may be partly associated with the suppression of NF-κB, a master pro-inflammatory factor for transcriptional regulation of NLRP3 expression in the priming step. Moreover, co-treatment TBⅡ with NF-κB inhibitor BAY11-7082 partly impaired TBⅡ-mediated NLRP3 inhibition, and consequently affected the IL-1β mature and secretion. Importantly, TBⅡ-mediated amelioration was not further enhanced in NLPR3-/- mice. CONCLUSION TBⅡ exerted a prominent protective effect against DSS-induced colitis via regulation of alleviation of intestinal permeability and inflammatory response via the blockage of crosstalk between epithelial cells and macrophages in an NLRP3-mediated inhibitory mechanism. These beneficial effects could make TBⅡ a promising drug for relieving colitis.
Collapse
Affiliation(s)
- Meng Feng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Yingya Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Zhenyu Gao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Wenni Huang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Wenmin Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Wanlin Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Zhenyv Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Shengzhao Tang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Xuejun Xiong
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Yijun Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China.
| | - Xinxin Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China.
| | - Changhui Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China.
| |
Collapse
|
21
|
Xia S, Yan C, Gu J, Yuan Y, Zou H, Liu Z, Bian J. Resveratrol Alleviates Zearalenone-Induced Intestinal Dysfunction in Mice through the NF-κB/Nrf2/HO-1 Signalling Pathway. Foods 2024; 13:1217. [PMID: 38672890 PMCID: PMC11049466 DOI: 10.3390/foods13081217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Zearalenone (ZEA), a mycotoxin widely present in crops and food, poses a major threat to animal and human health. The consumption of ZEA-contaminated food or feed causes intestinal damage. Therefore, exploring how to mitigate the intestinal damage caused by its ZEA is becoming increasingly important. Resveratrol (RSV), a polyphenol compound, mainly exists in Vitis vinifera, Polygonum cuspidatum, Arachis hypogaea, and other plants. It has potent anti-inflammatory and antioxidant activity. The primary objective of this study was to assess the defensive effects of RSV and its molecular mechanism on the intestinal mucosal injury induced by ZEA exposure in mice. The results showed that RSV pretreatment significantly reduced serum DAO and that D-lactate levels altered intestinal morphology and markedly restored TJ protein levels, intestinal goblet cell number, and MUC-2 gene expression after ZEA challenge. In addition, RSV significantly reversed serum pro-inflammatory factor levels and abnormal changes in intestinal MDA, CAT, and T-SOD. Additional research demonstrated that RSV decreased inflammation by blocking the translocation of nuclear factor-kappaB (NF-κB) p65 and decreased oxidative stress by activating the nuclear factor E2-related factor 2 (Nrf2) pathway and its associated antioxidant genes, including NQO1, γ-GCS, and GSH-PX. In summary, RSV supplementation attenuates intestinal oxidative stress, inflammation, and intestinal barrier dysfunction induced by ZEA exposure by mediating the NF-κB and Nrf2/HO-1 pathways.
Collapse
Affiliation(s)
- Sugan Xia
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.X.); (C.Y.); (J.G.); (Y.Y.); (H.Z.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Chaoyue Yan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.X.); (C.Y.); (J.G.); (Y.Y.); (H.Z.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.X.); (C.Y.); (J.G.); (Y.Y.); (H.Z.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.X.); (C.Y.); (J.G.); (Y.Y.); (H.Z.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.X.); (C.Y.); (J.G.); (Y.Y.); (H.Z.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.X.); (C.Y.); (J.G.); (Y.Y.); (H.Z.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.X.); (C.Y.); (J.G.); (Y.Y.); (H.Z.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
22
|
Wan L, Qian C, Yang C, Peng S, Dong G, Cheng P, Zong G, Han H, Shao M, Gong G, Deng Z, Pan H, Wang H, Liu X, Wang G, Lu Y, Zhao Y, Jiang Z. Ginseng polysaccharides ameliorate ulcerative colitis via regulating gut microbiota and tryptophan metabolism. Int J Biol Macromol 2024; 265:130822. [PMID: 38521337 DOI: 10.1016/j.ijbiomac.2024.130822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Ulcerative colitis (UC) is regarded as a recurring inflammatory disorder of the gastrointestinal tract, for which treatment approaches remain notably limited. In this study, we demonstrated that ginseng polysaccharides (GPs) could alleviate the development of dextran sulfate sodium (DSS)-induced UC as reflected by the ameliorated pathological lesions in the colon. GPs strikingly suppressed the expression levels of multiple inflammatory cytokines, as well as significantly inhibited the infiltration of inflammatory cells. Microbiota-dependent investigations by virtue of 16S rRNA gene sequencing, antibiotic treatment and fecal microbiota transplantation illustrated that GPs treatment prominently restored intestinal microbial balance predominantly through modulating the relative abundance of Lactobacillus. Additionally, GPs remarkably influenced the levels of microbial tryptophan metabolites, diminished the intestinal permeability and strengthened intestinal barrier integrity via inhibiting the 5-HT/HTR3A signaling pathway. Taken together, the promising therapeutic potential of GPs on the development of UC predominantly hinges on the capacity to suppress the expression of inflammatory cytokines as well as to influence Lactobacillus and microbial tryptophan metabolites.
Collapse
Affiliation(s)
- Li Wan
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Cheng Qian
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chunmei Yang
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sainan Peng
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guanglu Dong
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Peng Cheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Gangfan Zong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongkuan Han
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mingyue Shao
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Guanwen Gong
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Zhengming Deng
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Huafeng Pan
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Haifeng Wang
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Xinxin Liu
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Gang Wang
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhiwei Jiang
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
23
|
Wang S, Gong X, Xiao F, Yang Y. Recent advances in host-focused molecular tools for investigating host-gut microbiome interactions. Front Microbiol 2024; 15:1335036. [PMID: 38605718 PMCID: PMC11007152 DOI: 10.3389/fmicb.2024.1335036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Microbial communities in the human gut play a significant role in regulating host gene expression, influencing a variety of biological processes. To understand the molecular mechanisms underlying host-microbe interactions, tools that can dissect signaling networks are required. In this review, we discuss recent advances in molecular tools used to study this interplay, with a focus on those that explore how the microbiome regulates host gene expression. These tools include CRISPR-based whole-body genetic tools for deciphering host-specific genes involved in the interaction process, Cre-loxP based tissue/cell-specific gene editing approaches, and in vitro models of host-derived organoids. Overall, the application of these molecular tools is revolutionizing our understanding of how host-microbiome interactions contribute to health and disease, paving the way for improved therapies and interventions that target microbial influences on the host.
Collapse
Affiliation(s)
- Siyao Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Ministry of Industry and Information Technology, Beihang University, Beijing, China
| | - Xu Gong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Ministry of Industry and Information Technology, Beihang University, Beijing, China
| | - Fei Xiao
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Yun Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Ministry of Industry and Information Technology, Beihang University, Beijing, China
| |
Collapse
|
24
|
Che J, Wang H, Dong J, Wu Y, Zhang H, Fu L, Zhang J. Human umbilical cord mesenchymal stem cell-derived exosomes attenuate neuroinflammation and oxidative stress through the NRF2/NF-κB/NLRP3 pathway. CNS Neurosci Ther 2024; 30:e14454. [PMID: 37697971 PMCID: PMC10916441 DOI: 10.1111/cns.14454] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/19/2023] [Accepted: 08/16/2023] [Indexed: 09/13/2023] Open
Abstract
AIMS We investigated whether human umbilical cord mesenchymal stem cell (hUC-MSC)-derived exosomes bear therapeutic potential against lipopolysaccharide (LPS)-induced neuroinflammation. METHODS Exosomes were isolated from hUC-MSC supernatant by ultra-high-speed centrifugation and characterized by transmission electron microscopy and western blotting. Inflammatory responses were induced by LPS in BV-2 cells, primary microglial cultures, and C57BL/6J mice. H2 O2 was also used to induce inflammation and oxidative stress in BV-2 cells. The effects of hUC-MSC-derived exosomes on inflammatory cytokine expression, oxidative stress, and microglia polarization were studied by immunofluorescence and western blotting. RESULTS Treatment with hUC-MSC-derived exosomes significantly decreased the LPS- or H2 O2 -induced oxidative stress and expression of pro-inflammatory cytokines (IL-6 and TNF-α) in vitro, while promoting an anti-inflammatory (classical M2) phenotype in an LPS-treated mouse model. Mechanistically, the exosomes increased the NRF2 levels and inhibited the LPS-induced NF-κB p65 phosphorylation and NLRP3 inflammasome activation. In contrast, the reactive oxygen species scavenger NAC and NF-κB inhibitor BAY 11-7082 also inhibited the LPS-induced NLRP3 inflammasome activation and switched to the classical M2 phenotype. Treatment with the NRF2 inhibitor ML385 abolished the anti-inflammatory and anti-oxidative effects of the exosomes. CONCLUSION hUC-MSC-derived exosomes ameliorated LPS/H2 O2 -induced neuroinflammation and oxidative stress by inhibiting the microglial NRF2/NF-κB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Ji Che
- Department of AnesthesiologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Hui Wang
- Department of AnesthesiologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Jing Dong
- Department of AnesthesiologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yuanyuan Wu
- Department of AnesthesiologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Haichao Zhang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong HospitalFudan UniversityShanghaiChina
| | - Lei Fu
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong HospitalFudan UniversityShanghaiChina
| | - Jun Zhang
- Department of AnesthesiologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
25
|
Chen C, Xu J, Han T, Chen G, Yu K, Du C, Shen W, Sun Y, Zeng X. Microencapsulation as a Protective Strategy for Sialylated Immunoglobulin G: Efficacy in Alleviating Symptoms of Dextran Sulfate Sodium-Induced Colitis in Mice and Potential Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4074-4088. [PMID: 38323407 DOI: 10.1021/acs.jafc.3c07733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Sialylated immunoglobulin G (IgG) is a vital glycoprotein in breast milk with the ability to promote the growth of Bifidobacterium in gut microbiota and relieve inflammatory bowel disease (IBD) symptoms in vitro. Here, it was found that the microcapsules with sialylated IgG could protect and release sialylated IgG with its structure and function in the intestine. Furthermore, the sialylated IgG microcapsules alleviated the clinical symptoms (body weight, feed quantity, and colon length loss), decreased disease activity index score, suppressed the production of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β, IFN-γ, and MCP-1) and endotoxin (lipopolysaccharide), and enhanced the intestinal mucosal barrier (Claudin1, Muc2, Occludin, and ZO-1) in dextran sulfate sodium (DSS)-induced colitis mice. Additionally, the sialylated IgG microcapsules improved the gut microbiota by increasing the relative abundance of critical microbe Bifidobacterium bifidum and promoted the production of short-chain fatty acids (SCFAs). Correlation analysis indicated that the key microbes were strongly correlated with pro-inflammatory factors, clinical symptoms, tight junction protein, and SCFAs. These findings suggest that the sialylated IgG microcapsules have the potential to be used as a novel therapeutic approach for treating IBD.
Collapse
Affiliation(s)
- Chunxu Chen
- College of Food Engineering, Anhui Science and Technology University, Fengyang 233100, Anhui, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Jiaming Xu
- College of Food Engineering, Anhui Science and Technology University, Fengyang 233100, Anhui, China
| | - Tianxiang Han
- College of Food Engineering, Anhui Science and Technology University, Fengyang 233100, Anhui, China
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Kun Yu
- College of Food Engineering, Anhui Science and Technology University, Fengyang 233100, Anhui, China
| | - Chuanlai Du
- College of Food Engineering, Anhui Science and Technology University, Fengyang 233100, Anhui, China
| | - Wenbiao Shen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yi Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| |
Collapse
|
26
|
Dhanyamraju PK. Drug resistance mechanisms in cancers: Execution of pro-survival strategies. J Biomed Res 2024; 38:95-121. [PMID: 38413011 PMCID: PMC11001593 DOI: 10.7555/jbr.37.20230248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/21/2023] [Accepted: 12/07/2023] [Indexed: 02/29/2024] Open
Abstract
One of the quintessential challenges in cancer treatment is drug resistance. Several mechanisms of drug resistance have been described to date, and new modes of drug resistance continue to be discovered. The phenomenon of cancer drug resistance is now widespread, with approximately 90% of cancer-related deaths associated with drug resistance. Despite significant advances in the drug discovery process, the emergence of innate and acquired mechanisms of drug resistance has impeded the progress in cancer therapy. Therefore, understanding the mechanisms of drug resistance and the various pathways involved is integral to treatment modalities. In the present review, I discuss the different mechanisms of drug resistance in cancer cells, including DNA damage repair, epithelial to mesenchymal transition, inhibition of cell death, alteration of drug targets, inactivation of drugs, deregulation of cellular energetics, immune evasion, tumor-promoting inflammation, genome instability, and other contributing epigenetic factors. Furthermore, I highlight available treatment options and conclude with future directions.
Collapse
Affiliation(s)
- Pavan Kumar Dhanyamraju
- Fels Cancer Institute of Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
27
|
Yang Y, Zhang C, Jiang Y, He Y, Cai J, Liang L, Chen Z, Pan S, Hua C, Wu K, Wang L, Zhang Z. Harnessing cytokine-induced killer cells to accelerate diabetic wound healing: an approach to regulating post-traumatic inflammation. Regen Biomater 2024; 11:rbad116. [PMID: 38333727 PMCID: PMC10850840 DOI: 10.1093/rb/rbad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 02/10/2024] Open
Abstract
Impaired immunohomeostasis in diabetic wounds prolongs inflammation and cytokine dysfunction, thus, delaying or preventing wound-surface healing. Extensive clinical studies have been conducted on cytokine-induced killer (CIK) cells recently, as they can be easily proliferated using a straightforward, inexpensive protocol. Therefore, the function of CIK cells in regulating inflammatory environments has been drawing attention for clinical management. Throughout the current investigation, we discovered the regenerative capacity of these cells in the challenging environment of wounds that heal poorly due to diabetes. We demonstrated that the intravenous injection of CIK cells can re-establish a proregenerative inflammatory microenvironment, promote vascularization and, ultimately, accelerate skin healing in diabetic mice. The results indicated that CIK cell treatment affects macrophage polarization and restores the function of regenerative cells under hyperglycemic conditions. This novel cellular therapy offers a promising intervention for clinical applications through specific inflammatory regulation functions.
Collapse
Affiliation(s)
- Yixi Yang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510150, P. R. China
| | - Cheng Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510150, P. R. China
| | - Yuan Jiang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510150, P. R. China
| | - Yijun He
- Department of Osteoarthropathy and Sports Medicine, Panyu Central Hospital, Guangzhou 511400, P. R. China
| | - Jiawei Cai
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510150, P. R. China
| | - Lin Liang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510150, P. R. China
| | - Zhaohuan Chen
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510150, P. R. China
| | - Sicheng Pan
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510150, P. R. China
| | - Chu Hua
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510150, P. R. China
| | - Keke Wu
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510150, P. R. China
| | - Le Wang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510150, P. R. China
| | - Zhiyong Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510150, P. R. China
| |
Collapse
|
28
|
Shi P, Yan Z, Chen M, Li P, Wang D, Zhou J, Wang Z, Yang S, Zhang Z, Li C, Yin Y, Huang P. Effects of dietary supplementation with Radix Isatidis polysaccharide on egg quality, immune function, and intestinal health in hens. Res Vet Sci 2024; 166:105080. [PMID: 37952298 DOI: 10.1016/j.rvsc.2023.105080] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
This study aimed to investigate the effects of supplementing laying hen diets with Radix Isatidis Polysaccharide (RIPS) on egg quality, immune function, and intestinal health. The research was conducted using 288 Hyland Brown hens, which were randomly assigned to four dietary treatments: control (without RIPS), low dose (200 g/t), medium dose (500 g/t), and high dose (1000 g/t) of RIPS. Each dietary treatment was administered to eight replicates of nine hens for nine weeks. The results revealed that RIPS inclusion in diets significantly improved egg quality parameters such as egg shape index, yolk color, haugh unit, and protein height (P < 0.05). Additionally, RIPS supplementation enhanced immune function as evidenced by an alteration in serum biochemical parameters, an increase in the spleen index, and a decrease in the liver index. Further, an evaluation of intestinal health showed that RIPS fortified the intestinal barrier, thus increasing the population of beneficial intestinal bacteria and reducing the abundance of harmful ones. Such mechanisms promoted intestinal health, digestion, and nutrient absorption, ultimately leading to enhanced egg quality. In conclusion, supplementing laying hen diets with RIPS has been demonstrated to improve egg quality by boosting immunity and optimizing intestinal digestion and absorption.
Collapse
Affiliation(s)
- Panpan Shi
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zenghao Yan
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd, Guangzhou 510515, China
| | - Miaofen Chen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Pingping Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Deqin Wang
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd, Guangzhou 510515, China
| | - Junjuan Zhou
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zhaojie Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Shihao Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zhikun Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Chuyuan Li
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd, Guangzhou 510515, China.
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Peng Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
29
|
Li H, Liu C, Cui Y, Chang P, Chong W. Effect of tubastatin A on NLRP3 inflammasome activation in macrophages under hypoxia/reoxygenation conditions. World J Emerg Med 2024; 15:289-296. [PMID: 39050221 PMCID: PMC11265631 DOI: 10.5847/wjem.j.1920-8642.2024.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/25/2023] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND There are currently no effective drugs to mitigate the ischemia/reperfusion injury caused by fluid resuscitation after hemorrhagic shock (HS). The aim of this study was to explore the potential of the histone deacetylase 6 (HDAC6)-specific inhibitor tubastatin A (TubA) to suppress nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome activation in macrophages under hypoxia/reoxygenation (H/R) conditions. METHODS The viability of RAW264.7 cells subjected to H/R after treatment with different concentrations of TubA was assessed using a cell-counting kit-8 (CCK8) assay. Briefly, 2.5 μmol/L TubA was used with RAW264.7 cells under H/R condition. RAW264.7 cells were divided into three groups, namely the control, H/R, and TubA groups. The levels of reactive oxygen species (ROS) in the cells were detected using fluorescence microscopy. The protein expression of HDAC6, heat shock protein 90 (Hsp90), inducible nitric oxide synthase (iNOS), NLRP3, gasdermin-D (GSDMD), Caspase-1, GSDMD-N, and Caspase-1 p20 was detected by western blotting. The levels of interleukin-1β (IL-1β) and IL-18 in the supernatants were detected using enzyme-linked immunosorbent assay (ELISA). RESULTS HDAC6, Hsp90, and iNOS expression levels were significantly higher (P<0.01) in the H/R group than in the control group, but lower in the TubA group than in the H/R group (P<0.05). When comparing the H/R group to the control group, ROS levels were significantly higher (P<0.01), but significantly reduced in the TubA group (P<0.05). The H/R group had higher NLRP3, GSDMD, Caspase-1, GSDMD-N, and Caspase-1 p20 expression levels than the control group (P<0.05), however, the TubA group had significantly lower expression levels than the H/R group (P<0.05). IL-1β and IL-18 levels in the supernatants were significantly higher in the H/R group compared to the control group (P<0.01), but significantly lower in the TubA group compared to the H/R group (P<0.01). CONCLUSION TubA inhibited the expression of HDAC6, Hsp90, and iNOS in macrophages subjected to H/R. This inhibition led to a decrease in the content of ROS in cells, which subsequently inhibited the activation of the NLRP3 inflammasome and the secretion of IL-1β and IL-18.
Collapse
Affiliation(s)
- Hao Li
- Department of Emergency Medicine, the First Hospital of China Medical University, Shenyang 110001, China
| | - Chang Liu
- Department of Emergency Medicine, the First Hospital of China Medical University, Shenyang 110001, China
| | - Ying Cui
- Department of Emergency Medicine, the First Hospital of China Medical University, Shenyang 110001, China
| | - Panpan Chang
- Trauma Medicine Center, Peking University People’s Hospital, Beijing 100871, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100871, China
- National Center for Trauma Medicine of China, Beijing 100871, China
| | - Wei Chong
- Department of Emergency Medicine, the First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
30
|
Li H, Ruan J, Huang J, Yang D, Yu H, Wu Y, Zhang Y, Wang T. Pomegranate ( Punica granatum L.) and Its Rich Ellagitannins as Potential Inhibitors in Ulcerative Colitis. Int J Mol Sci 2023; 24:17538. [PMID: 38139367 PMCID: PMC10744232 DOI: 10.3390/ijms242417538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Ulcerative colitis, an immune-mediated inflammatory disease of the gastrointestinal tract, places a significant financial burden on patients and the healthcare system. Recently, reviews of the pomegranate and the abundant medicinal applications of its ellagitannins, as well as its pharmacological action, phytochemicals, metabolism, and pharmacokinetics, have been completed. However, summaries on their anti-ulcerative colitis effects are lacking. Numerous preclinical animal investigations and clinical human trial reports demonstrated the specific therapeutic effects of pomegranate and the effect of its ellagitannins against ulcerative colitis. According to the literature collected by Sci-finder and PubMed databases over the past 20 years, this is the first review that has compiled references regarding how the rich ellagitannins found in pomegranate have altered the ulcerative colitis. It was suggested that the various parts of pomegranates and their rich ellagitannins (especially their primary components, punicalagin, and ellagic acid) can inhibit oxidant and inflammatory processes, regulate the intestinal barrier and flora, and provide an anti-ulcerative colitis resource through dietary management.
Collapse
Affiliation(s)
- Huimin Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (H.L.); (J.R.); (J.H.); (H.Y.); (Y.W.)
| | - Jingya Ruan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (H.L.); (J.R.); (J.H.); (H.Y.); (Y.W.)
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China;
| | - Jiayan Huang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (H.L.); (J.R.); (J.H.); (H.Y.); (Y.W.)
| | - Dingshan Yang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China;
| | - Haiyang Yu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (H.L.); (J.R.); (J.H.); (H.Y.); (Y.W.)
| | - Yuzheng Wu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (H.L.); (J.R.); (J.H.); (H.Y.); (Y.W.)
| | - Yi Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (H.L.); (J.R.); (J.H.); (H.Y.); (Y.W.)
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China;
| | - Tao Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (H.L.); (J.R.); (J.H.); (H.Y.); (Y.W.)
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China;
| |
Collapse
|
31
|
Nandi D, Forster J, Ramesh A, Nguyen A, Bharadwaj H, Kulkarni A. Caspase-1 Responsive Nanoreporter for In Vivo Monitoring of Inflammasome Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55545-55558. [PMID: 37990965 PMCID: PMC11056827 DOI: 10.1021/acsami.3c15733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Inflammasomes are multimeric protein signaling complexes that are assembled in innate immune cells in response to a multitude of pathogen and damage-associated signals. They are essential for generating robust inflammatory responses to prevent pathogenic insults. However, inflammasome dysregulation can induce cascading immune responses, resulting in systemic toxicities and inflammatory disease. In this sense, there is a strong need to develop potent inflammasome inhibiting therapies as well as technologies to monitor their efficacy, yet current systems lack the ability to effectively image inflammasome activation and track therapy response early. To overcome these limitations, we report a novel nanoparticle system delivering both a caspase-1 cleavable inflammasome detecting probe and the NLRP3 inhibitor drug MCC-950, providing dual capabilities of monitoring and regulation of inflammasome activation in a biocompatible, tissue penetrating, and sustained release liposomal formulation. We observed this liposomal nanoreporter's ability to reduce and detect inflammasome activation both in vitro in immortalized bone marrow-derived macrophages and in vivo in a DSS-induced ulcerative colitis mouse model. Our results exhibited the nanoreporter's ability to penetrate inflammatory tissues and detect inflammasome activation early and in real-time for multiple days while alleviating inflammation in the groups coencapsulating imaging reporter and inflammasome inhibitor. Overall, the developed liposomal nanoreporter platform enables spatiotemporal delivery of imaging probe and inhibitor, captures early and sustained inflammasome detection, and induces inflammasome amelioration, thus establishing a novel tool for the real-time monitoring and treatment of inflammasome-mediated disease with high potential for clinical application.
Collapse
Affiliation(s)
- Dipika Nandi
- Department of Chemical Engineering and Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - James Forster
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Anujan Ramesh
- Department of Chemical Engineering and Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Anh Nguyen
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Hariharan Bharadwaj
- Department of Pathology, UMass Chan, Medical School-Baystate, Springfield, Massachusetts 01107, United States
| | - Ashish Kulkarni
- Department of Chemical Engineering, Department of Veterinary and Animal Sciences, Department of Biomedical Engineering, and Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
32
|
Ramadan Q, Hazaymeh R, Zourob M. Immunity-on-a-Chip: Integration of Immune Components into the Scheme of Organ-on-a-Chip Systems. Adv Biol (Weinh) 2023; 7:e2200312. [PMID: 36866511 DOI: 10.1002/adbi.202200312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/16/2023] [Indexed: 03/04/2023]
Abstract
Studying the immune system in vitro aims to understand how, when, and where the immune cells migrate/differentiate and respond to the various triggering events and the decision points along the immune response journey. It becomes evident that organ-on-a-chip (OOC) technology has a superior capability to recapitulate the cell-cell and tissue-tissue interaction in the body, with a great potential to provide tools for tracking the paracrine signaling with high spatial-temporal precision and implementing in situ real-time, non-destructive detection assays, therefore, enabling extraction of mechanistic information rather than phenotypic information. However, despite the rapid development in this technology, integration of the immune system into OOC devices stays among the least navigated tasks, with immune cells still the major missing components in the developed models. This is mainly due to the complexity of the immune system and the reductionist methodology of the OOC modules. Dedicated research in this field is demanded to establish the understanding of mechanism-based disease endotypes rather than phenotypes. Herein, we systemically present a synthesis of the state-of-the-art of immune-cantered OOC technology. We comprehensively outlined what is achieved and identified the technology gaps emphasizing the missing components required to establish immune-competent OOCs and bridge these gaps.
Collapse
Affiliation(s)
- Qasem Ramadan
- Alfaisal University, Riyadh, 11533, Kingdom of Saudi Arabia
| | - Rana Hazaymeh
- Almaarefa University, Diriyah, 13713, Kingdom of Saudi Arabia
| | | |
Collapse
|
33
|
Liu W, Liu A, Li X, Sun Z, Sun Z, Liu Y, Wang G, Huang D, Xiong H, Yu S, Zhang X, Fan C. Dual-engineered cartilage-targeting extracellular vesicles derived from mesenchymal stem cells enhance osteoarthritis treatment via miR-223/NLRP3/pyroptosis axis: Toward a precision therapy. Bioact Mater 2023; 30:169-183. [PMID: 37593145 PMCID: PMC10429745 DOI: 10.1016/j.bioactmat.2023.06.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/24/2023] [Accepted: 06/19/2023] [Indexed: 08/19/2023] Open
Abstract
Osteoarthritis (OA) is the most common disabling joint disease with no effective disease modifying drugs. Extracellular vesicles released by several types of mesenchymal stem cells could promote cartilage repair and ameliorate OA pathology in animal models, representing a novel therapeutic strategy. In this study, we demonstrated that extracellular vesicles derived from human umbilical cord mesenchymal stem cells (hUC-EVs) could maintain chondrocyte homeostasis and alleviate OA, and further revealed a novel molecular mechanism of this therapeutic effect. miR-223, which could directly bind with the 3'UTR of NLRP3 mRNA, was found to be a key miRNA for hUC-EVs to exert beneficial effects on inflammation inhibiting and cartilage protecting. For enhancing the effect on mitigating osteoarthritis, exogenous miR-223 was loaded into hUC-EVs by electroporation, and a collagen II-targeting peptide (WYRGRL) was modified onto the surface of hUC-EVs by genetic engineering to achieve a more targeted and efficient RNA delivery to the cartilage. The dual-engineered EVs showed a maximal effect on inhibiting the NLRP3 inflammasome activation and chondrocyte pyroptosis, and offered excellent results for the treatment of OA. This study provides a novel theoretical basis and a promising therapeutic strategy for the application of engineered extracellular vesicles in OA treatment.
Collapse
Affiliation(s)
- Weixuan Liu
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
| | - Anqi Liu
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Xujun Li
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Ziyang Sun
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhenghua Sun
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
| | - Yaru Liu
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
| | - Gang Wang
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
| | - Dan Huang
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
| | - Hao Xiong
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Shiyang Yu
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xintao Zhang
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Cunyi Fan
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
34
|
Yang Z, Man J, Liu Y, Zhang H, Wu D, Shao D, Hao B, Wang S. Study on the Alleviating Effect and Potential Mechanism of Ethanolic Extract of Limonium aureum (L.) Hill. on Lipopolysaccharide-Induced Inflammatory Responses in Macrophages. Int J Mol Sci 2023; 24:16272. [PMID: 38003461 PMCID: PMC10671607 DOI: 10.3390/ijms242216272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Inflammation is the host response of immune cells during infection and traumatic tissue injury. An uncontrolled inflammatory response leads to inflammatory cascade, which in turn triggers a variety of diseases threatening human and animal health. The use of existing inflammatory therapeutic drugs is constrained by their high cost and susceptibility to systemic side effects, and therefore new therapeutic candidates for inflammatory diseases need to be urgently developed. Natural products are characterized by wide sources and rich pharmacological activities, which are valuable resources for the development of new drugs. This study aimed to uncover the alleviating effect and potential mechanism of natural product Limonium aureum (LAH) on LPS-induced inflammatory responses in macrophages. The experimental results showed that the optimized conditions for LAH ultrasound-assisted extraction via response surface methodology were an ethanol concentration of 72%, a material-to-solvent ratio of 1:37 g/mL, an extraction temperature of 73 °C, and an extraction power of 70 W, and the average extraction rate of LAH total flavonoids was 0.3776%. Then, data of 1666 components in LAH ethanol extracts were obtained through quasi-targeted metabolomics analysis. The ELISA showed that LAH significantly inhibited the production of pro-inflammatory cytokines while promoting the secretion of anti-inflammatory cytokines. Finally, combined with the results of network pharmacology analysis and protein expression validation of hub genes, it was speculated that LAH may alleviate LPS-induced inflammatory responses of macrophages through the AKT1/RELA/PTGS2 signaling pathway and the MAPK3/JUN signaling pathway. This study preliminarily revealed the anti-inflammatory activity of LAH and the molecular mechanism of its anti-inflammatory action, and provided a theoretical basis for the development of LAH as a new natural anti-inflammatory drug.
Collapse
Affiliation(s)
- Zhen Yang
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Jingyuan Man
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yu Liu
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Hongjuan Zhang
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Di Wu
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Dan Shao
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Baocheng Hao
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| |
Collapse
|
35
|
Garcia-Puente LM, Fraile-Martinez O, García-Montero C, Bujan J, De León-Luis JA, Bravo C, Rodríguez-Benitez P, Pintado P, Ruiz-Labarta FJ, Álvarez-Mon M, García-Honduvilla N, Cancelo MJ, Saez MA, Ortega MA. Placentas from Women with Late-Onset Preeclampsia Exhibit Increased Expression of the NLRP3 Inflammasome Machinery. Biomolecules 2023; 13:1644. [PMID: 38002326 PMCID: PMC10669618 DOI: 10.3390/biom13111644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Pre-eclampsia is a harmful and potentially lethal medical condition during pregnancy clinically diagnosed by hypertension and commonly accompanied by proteinuria and multiorgan affections. According to the time of diagnosis, it is differentiated between early-onset (EO-PE) and late-onset preeclampsia (LO-PE). Despite being less dangerous and presenting distinct pathophysiological signatures, LO-PE has a greater prevalence than EO-PE, both having significant consequences on the placenta. Previous works have evidenced that exacerbated inflammation in this organ might play a potential pathogenic role in the development of pre-eclampsia, and there is some preliminary evidence that the hyperactivation of inflammasomes can be related to the altered immunoinflammatory responses observed in the placentas of these patients. However, the precise role of inflammasomes in the placentas of women with LO-PE remains to be fully understood. In this work, we have studied the gene and protein expression of the main components related to the canonical and non-canonical pathways of the inflammasome NLRP3 (NLRP3, ASC, caspase 1, caspase 5, caspase 8, interleukin 1β, and interleukin 18) in the placental tissue of women with LO-PE. Our results show a marked increase in all these components in the placentas of women who have undergone LO-PE, suggesting that NLRP3 inflammasome plays a potentially pathophysiological role in the development of this entity. Future works should aim to evaluate possible translational approaches to this dysregulation in these patients.
Collapse
Affiliation(s)
- Luis M Garcia-Puente
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Juan A De León-Luis
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Patrocinio Rodríguez-Benitez
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
- Department of Nephrology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
| | - Pilar Pintado
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Francisco Javier Ruiz-Labarta
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Prince of Asturias, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28806 Alcalá de Henares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - María J Cancelo
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Department of Obstetrics and Gynecology, University Hospital of Guadalajara, 19002 Guadalajara, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, University Hospital Gómez-Ulla, 28806 Alcalá de Henares, Spain
| | - Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|
36
|
Tian E, Zhou C, Quan S, Su C, Zhang G, Yu Q, Li J, Zhang J. RIPK2 inhibitors for disease therapy: Current status and perspectives. Eur J Med Chem 2023; 259:115683. [PMID: 37531744 DOI: 10.1016/j.ejmech.2023.115683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Receptor-interacting protein kinase 2 (RIPK2) belongs to the receptor-interacting protein family (RIPs), which is mainly distributed in the cytoplasm. RIPK2 is widely expressed in human tissues, and its mRNA level is highly expressed in the spleen, leukocytes, placenta, testis, and heart. RIPK2 is a dual-specificity kinase with multiple domains, which can interact with tumor necrosis factor receptor (TNFR), and participate in the Toll-like receptor (TLR) and nucleotide-binding oligomerization domain (NOD) signaling pathways. It is considered as a vital adapter molecule involved in the innate immunity, adaptive immunity, and apoptosis. Functionally, RIPK2 and its targeted small molecules are of great significance in inflammatory responses, autoimmune diseases and tumors. The present study reviews the molecule structure and biological functions of RIPK2, and its correlation between human diseases. In addition, we focus on the structure-activity relationship of small molecule inhibitors of RIPK2 and their therapeutic potential in human diseases.
Collapse
Affiliation(s)
- Erkang Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Changhan Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shuqi Quan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chongying Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Guanning Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Quanwei Yu
- Joint Research Institution of Altitude Health, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Juan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Jifa Zhang
- Joint Research Institution of Altitude Health, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
37
|
Li C, Zhou S, Chen J, Jiang X. Fluorescence Imaging of Inflammation with Optical Probes. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:495-508. [PMID: 39473573 PMCID: PMC11503926 DOI: 10.1021/cbmi.3c00039] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 11/08/2024]
Abstract
Inflammation plays an important role in the occurrence and development of disease; dysregulation of inflammatory progression often leads to disease such as tissue sclerosis, cancers, stroke, etc. Optical imaging technology, due to its higher sensitivity and resolution, can provide finer images for the observation of inflammation. Many optical probes have been developed as contrast agents for optical imaging techniques in different diseases. In this review, we summarize the recent advances of optical probe and imaging methods for imaging inflammation in different organs, such as brain, liver, lung, kidney, intestine, etc. Finally, we discuss the opportunities and challenges of optical probes used in the clinic for inflammation monitoring and prospect their future development in disease detection.
Collapse
Affiliation(s)
| | | | - Jian Chen
- MOE Key Laboratory of High
Performance Polymer Materials and Technology and Department of Polymer
Science and Engineering, College of Chemistry and Chemical Engineering,
Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210023, China
| | - Xiqun Jiang
- MOE Key Laboratory of High
Performance Polymer Materials and Technology and Department of Polymer
Science and Engineering, College of Chemistry and Chemical Engineering,
Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210023, China
| |
Collapse
|
38
|
Scalavino V, Piccinno E, Valentini AM, Schena N, Armentano R, Giannelli G, Serino G. miR-369-3p Modulates Intestinal Inflammatory Response via BRCC3/NLRP3 Inflammasome Axis. Cells 2023; 12:2184. [PMID: 37681916 PMCID: PMC10486421 DOI: 10.3390/cells12172184] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
Inflammasomes are multiprotein complexes expressed by immune cells in response to distinct stimuli that trigger inflammatory responses and the release of pro-inflammatory cytokines. Evidence suggests a different role of inflammasome NLRP3 in IBD. NLRP3 inflammasome activation can be controlled by post-translational modifications such as ubiquitination through BRCC3. The aim of this study was to investigate the effect of miR-369-3p on the expression and activation of NLRP3 inflammasomes via BRCC3 regulation. After bioinformatics prediction of Brcc3 as a gene target of miR-369-3p, in vitro, we validated its modulation in bone marrow-derived macrophages (BMDM). The increase in miR-369-3p significantly reduced BRCC3 gene and protein expression. This modulation, in turn, reduced the expression of NLRP3 and blocked the recruitment of ASC adaptor protein by NLRP3. As a result, miR-369-3p reduced the activity of Caspase-1 by the inflammasome, decreasing the cleavage of pro-IL-1β and pro-IL-18. These results support a novel mechanism that seems to act on post-translational modification of NLRP3 inflammasome activation by BRCC3. This may be an interesting new target in the personalized treatment of inflammatory disorders, including IBD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Grazia Serino
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA, Italy; (V.S.); (E.P.); (A.M.V.); (N.S.); (R.A.); (G.G.)
| |
Collapse
|
39
|
Manríquez-Núñez J, Mora O, Villarroya F, Reynoso-Camacho R, Pérez-Ramírez IF, Ramos-Gómez M. Macrophage Activity under Hyperglycemia: A Study of the Effect of Resveratrol and 3H-1,2-Dithiole-3-thione on Potential Polarization. Molecules 2023; 28:5998. [PMID: 37630249 PMCID: PMC10458500 DOI: 10.3390/molecules28165998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Currently, research is focused on bioactive compounds with the potential to promote macrophage polarization with the aim of reducing the development of inflammatory-related diseases. However, the effect of bioactive compounds under oxidative-stress-induced hyperglycemia on macrophage polarization has been scarcely investigated. RAW 264.7 macrophages were incubated under standard (SG) or high glucose (HG) conditions and stimulated with lipopolysaccharide (LPS) (10, 60 and 100 ng/mL) to monitor macrophage polarization after resveratrol (RSV) or 3H-1,2-dithiole-3-thione (D3T) supplementation (2.5, 5, 10 and 20 µM). Under SG and HG conditions without LPS stimulation, RSV significantly decreased macrophage viability at the highest concentration (20 µM), whereas D3T had no or low effect. LPS stimulation at 60 and 100 ng/mL, under SG and HG conditions, increased significantly macrophage viability. Both RSV and D3T significantly decreased NO production in LPS-stimulated macrophages under HG condition, whereas only D3T increased GSH levels at 100 ng/mL and normalized MDA values at 60 ng/mL of LPS under HG condition. Under 60 ng/mL LPS stimulation and HG, mRNA IL-1 and IL-6 were higher. Interestingly, RSV decreased pro-inflammatory interleukins; meanwhile, D3T increased Arg1 and IL-10 relative expression. Overall, our results indicate that hyperglycemia plays a fundamental role in the modulation of macrophage-induced inflammation in response to bioactive compounds.
Collapse
Affiliation(s)
- Josué Manríquez-Núñez
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario S/N, Cerro de las Campanas, Querétaro 76010, Mexico
| | - Ofelia Mora
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico, Querétaro 76230, Mexico
| | - Francesc Villarroya
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine of the University of Barcelona, 08007 Barcelona, Spain
| | - Rosalía Reynoso-Camacho
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario S/N, Cerro de las Campanas, Querétaro 76010, Mexico
| | - Iza Fernanda Pérez-Ramírez
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario S/N, Cerro de las Campanas, Querétaro 76010, Mexico
| | - Minerva Ramos-Gómez
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario S/N, Cerro de las Campanas, Querétaro 76010, Mexico
| |
Collapse
|
40
|
Wu Y, Wang P, Long X, Zhao X. Protective effects of Lactiplantibacillus pentosus CQZC01 on alcohol-induced gastric mucosa injury in mice via an anti-oxidative mechanism. J Funct Foods 2023; 107:105644. [DOI: 10.1016/j.jff.2023.105644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025] Open
|
41
|
Ortega MA, De Leon-Oliva D, García-Montero C, Fraile-Martinez O, Boaru DL, de Castro AV, Saez MA, Lopez-Gonzalez L, Bujan J, Alvarez-Mon MA, García-Honduvilla N, Diaz-Pedrero R, Alvarez-Mon M. Reframing the link between metabolism and NLRP3 inflammasome: therapeutic opportunities. Front Immunol 2023; 14:1232629. [PMID: 37545507 PMCID: PMC10402745 DOI: 10.3389/fimmu.2023.1232629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
Inflammasomes are multiprotein signaling platforms in the cytosol that senses exogenous and endogenous danger signals and respond with the maturation and secretion of IL-1β and IL-18 and pyroptosis to induce inflammation and protect the host. The inflammasome best studied is the Nucleotide-binding oligomerization domain, leucine-rich repeat-containing family pyrin domain containing 3 (NLRP3) inflammasome. It is activated in a two-step process: the priming and the activation, leading to sensor NLRP3 oligomerization and recruitment of both adaptor ASC and executioner pro-caspase 1, which is activated by cleavage. Moreover, NLRP3 inflammasome activation is regulated by posttranslational modifications, including ubiquitination/deubiquitination, phosphorylation/dephosphorylation, acetylation/deacetylation, SUMOylation and nitrosylation, and interaction with NLPR3 protein binding partners. Moreover, the connection between it and metabolism is receiving increasing attention in this field. In this review, we present the structure, functions, activation, and regulation of NLRP3, with special emphasis on regulation by mitochondrial dysfunction-mtROS production and metabolic signals, i.e., metabolites as well as enzymes. By understanding the regulation of NLRP3 inflammasome activation, specific inhibitors can be rationally designed for the treatment and prevention of various immune- or metabolic-based diseases. Lastly, we review current NLRP3 inflammasome inhibitors and their mechanism of action.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Amador Velazquez de Castro
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-University of Alcalá (UAH) Madrid, Alcala de Henares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Department of General and Digestive Surgery, University Hospital Príncipe de Asturias, Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Príncipe de Asturias, CIBEREHD, Alcalá de Henares, Spain
| |
Collapse
|
42
|
Luo WD, Wang YP, Lv J, Liu Y, Qu YQ, Xu XF, Yang LJ, Lin ZC, Wang LN, Chen RH, Yang JJ, Zeng YL, Zhang RL, Huang BX, Yun XY, Wang XY, Song LL, Wu JH, Wang XX, Chen X, Zhang W, Wang HM, Qu LQ, Liu MH, Liu L, Law BYK, Wong VKW. Age-related self-DNA accumulation may accelerate arthritis in rats and in human rheumatoid arthritis. Nat Commun 2023; 14:4394. [PMID: 37474626 PMCID: PMC10359253 DOI: 10.1038/s41467-023-40113-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
The incidence of rheumatoid arthritis (RA) is increasing with age. DNA fragments is known to accumulate in certain autoimmune diseases, but the mechanistic relationship among ageing, DNA fragments and RA pathogenesis remain unexplored. Here we show that the accumulation of DNA fragments, increasing with age and regulated by the exonuclease TREX1, promotes abnormal activation of the immune system in an adjuvant-induced arthritis (AIA) rat model. Local overexpression of TREX1 suppresses synovial inflammation in rats, while conditional genomic deletion of TREX1 in AIA rats result in higher levels of circulating free (cf) DNA and hence abnormal immune activation, leading to more severe symptoms. The dysregulation of the heterodimeric transcription factor AP-1, formed by c-Jun and c-Fos, appear to regulate both TREX1 expression and SASP induction. Thus, our results confirm that DNA fragments are inflammatory mediators, and TREX1, downstream of AP-1, may serve as regulator of cellular immunity in health and in RA.
Collapse
Affiliation(s)
- Wei-Dan Luo
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China
- The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yu-Ping Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, China
| | - Jun Lv
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, China
| | - Yong Liu
- The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, China
| | - Yuan-Qing Qu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiong-Fei Xu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China
- The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Li-Jun Yang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Zi-Cong Lin
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lin-Na Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Rui-Hong Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jiu-Jie Yang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ya-Ling Zeng
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Rui-Long Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Bai-Xiong Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiao-Yun Yun
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xuan-Ying Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lin-Lin Song
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jian-Hui Wu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xing-Xia Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China
- The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xi Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Wei Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Hui-Miao Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Li-Qun Qu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Meng-Han Liu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Betty Yuen Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
43
|
Chae BJ, Lee KS, Hwang I, Yu JW. Extracellular Acidification Augments NLRP3-Mediated Inflammasome Signaling in Macrophages. Immune Netw 2023; 23:e23. [PMID: 37416933 PMCID: PMC10320421 DOI: 10.4110/in.2023.23.e23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 07/08/2023] Open
Abstract
Inflammation is a series of host defense processes in response to microbial infection and tissue injury. Inflammatory processes frequently cause extracellular acidification in the inflamed region through increased glycolysis and lactate secretion. Therefore, the immune cells infiltrating the inflamed region encounter an acidic microenvironment. Extracellular acidosis can modulate the innate immune response of macrophages; however, its role for inflammasome signaling still remains elusive. In the present study, we demonstrated that macrophages exposed to an acidic microenvironment exhibited enhanced caspase-1 processing and IL-1β secretion compared with those under physiological pH. Moreover, exposure to an acidic pH increased the ability of macrophages to assemble the NLR family pyrin domain containing 3 (NLRP3) inflammasome in response to an NLRP3 agonist. This acidosis-mediated augmentation of NLRP3 inflammasome activation occurred in bone marrow-derived macrophages but not in bone marrow-derived neutrophils. Notably, exposure to an acidic environment caused a reduction in the intracellular pH of macrophages but not neutrophils. Concordantly, macrophages, but not neutrophils, exhibited NLRP3 agonist-mediated translocation of chloride intracellular channel protein 1 (CLIC1) into their plasma membranes under an acidic microenvironment. Collectively, our results demonstrate that extracellular acidosis during inflammation can increase the sensitivity of NLRP3 inflammasome formation and activation in a CLIC1-dependent manner. Thus, CLIC1 may be a potential therapeutic target for NLRP3 inflammasome-mediated pathological conditions.
Collapse
Affiliation(s)
- Byeong Jun Chae
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Kyung-Seo Lee
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Inhwa Hwang
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Je-Wook Yu
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
44
|
Abstract
Pyroptosis is a form of cell death associated with inflammation. In the maintenance of airway homeostasis, pyroptosis goes through activation and assembly of Inflammasome. The pyroptosis pathway is mediated by caspase which activates the pore-forming effect of substrate gasdermin family members. It eventually leads to lysis and release of the cell contents and then induces an inflammatory response. In this process, it participates in airway homeostasis regulation by affecting airway immunity, airway epithelial structure and airway microbiota. Therefore, we discussed the correlation between airway immunity, airway epithelial structure, airway microbiota and the mechanism of pyroptosis to describe the role of pyroptosis in airway homeostasis regulation which is of great significance for understanding the occurrence and treatment of airway inflammatory diseases.
Collapse
Affiliation(s)
- P Xu
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China. and
| | | | | |
Collapse
|
45
|
The Multifaceted Role and Regulation of Nlrp3 Inflammasome in Colitis-Associated Colo-Rectal Cancer: A Systematic Review. Int J Mol Sci 2023; 24:ijms24043472. [PMID: 36834883 PMCID: PMC9959003 DOI: 10.3390/ijms24043472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Colitis-associated colo-rectal cancer remains the leading cause of mortality in inflammatory bowel diseases, with inflammation remaining one of the bridging points between the two pathologies. The NLRP3 inflammasome complex plays an important role in innate immunity; however, its misregulation can be responsible for the apparition of various pathologies such as ulcerative colitis. Our review focuses on the potential pathways of upregulation or downregulation of the NLRP3 complex, in addition to evaluating its role in the current clinical setting. Eighteen studies highlighted the potential pathways of NLRP3 complex regulation as well as its role in the metastatic process in colo-rectal cancer, with promising results. Further research is, however, needed in order to validate the results in a clinical setting.
Collapse
|
46
|
Liu T, Lu Y, Zhan R, Qian W, Luo G. Nanomaterials and nanomaterials-based drug delivery to promote cutaneous wound healing. Adv Drug Deliv Rev 2023; 193:114670. [PMID: 36538990 DOI: 10.1016/j.addr.2022.114670] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Various factors could damage the structure and integrity of skin to cause wounds. Nonhealing or chronic wounds seriously affect the well-being of patients and bring heavy burdens to the society. The past few decades have witnessed application of numerous nanomaterials to promote wound healing. Owing to the unique physicochemical characteristics at nanoscale, nanomaterials-based therapy has been regarded as a potential approach to promote wound healing. In this review, we first overview the wound categories, wound healing process and critical influencing factors. Then applications of nanomaterials with intrinsic therapeutic effect and nanomaterials-based drug delivery systems to promote wound healing are addressed in detail. Finally, current limitations and future perspectives of nanomaterials in wound healing are discussed.
Collapse
Affiliation(s)
- Tengfei Liu
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yifei Lu
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Rixing Zhan
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Wei Qian
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
47
|
Li T, Cao K, Yang X, Liu Y, Wang X, Wu F, Chen G, Wang Q. An oral ratiometric NIR-II fluorescent probe for reliable monitoring of gastrointestinal diseases in vivo. Biomaterials 2023; 293:121956. [PMID: 36543049 DOI: 10.1016/j.biomaterials.2022.121956] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Early monitoring of gastrointestinal diseases via orally delivered NIR-II ratiometric fluorescent probes represents a promising noninvasive diagnostic modality, but is challenging due to the limitation of harsh digestive environment. Here, we report a single-component NIR-II ratiometric molecular nanoprobe (LC-1250 NP) to monitor gastrointestinal disease with high specificity to its biomarker H2O2 via oral administration. LC-1250 NP displays stable fluorescence in the channel of 1250 long-pass (F1250LP) before and after the gastrointestinal disease detection as the reference, while it presents significantly enhanced fluorescence signal in the response channel of 1150 nm short-pass (F1150SP) in diseased gastrointestinal environment due to the intramolecular cyclization of LC-1250 molecules activated by H2O2. The fluorescence ratio (F1150SP/F1250LP) increases linearly with the concentration of H2O2 with a low detection limit of 20 nM. Therefore, when delivered orally, LC-1250 NP can accurately map the diseased areas and surmount the false-positive interference from biological heterogeneity by NIR-II ratiometric fluorescence imaging, providing sensitive and reliable evaluation for the progress of gastroenteritis.
Collapse
Affiliation(s)
- Tuanwei Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Kaili Cao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaohu Yang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yongyang Liu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Xingyu Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Feng Wu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Guangcun Chen
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China; College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
48
|
Wang K, Chen D, Yu B, He J, Mao X, Huang Z, Yan H, Wu A, Luo Y, Zheng P, Yu J, Luo J. Eugenol Alleviates TGEV-Induced Intestinal Injury via Suppressing ROS/NLRP3/GSDMD-Dependent Pyroptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1477-1487. [PMID: 36642968 DOI: 10.1021/acs.jafc.2c05833] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Transmissible gastroenteritis virus (TGEV), a coronavirus, is one of the main causative agents of diarrhea in piglets and significantly impacts the global swine industry. Pyroptosis is involved in the pathogenesis of coronavirus, but its role in TGEV-induced intestinal injury has yet to be fully elucidated. Eugenol, an essential plant oil, plays a vital role in antiviral innate immune responses. We demonstrate the preventive effect of eugenol on TGEV infection. Eugenol alleviates TGEV-induced intestinal epithelial cell pyroptosis and reduces intestinal injury in TGEV-infected piglets. Mechanistically, eugenol reduces the activation of NLRP3 inflammasome, thereby inhibiting TGEV-induced intestinal epithelial cell pyroptosis. In addition, eugenol scavenges TGEV-induced reactive oxygen species (ROS) increase, which in turn prevents TGEV-induced NLRP3 inflammasome activation and pyroptosis. Overall, eugenol protects the intestine by reducing TGEV-induced pyroptosis through inhibition of NLRP3 inflammasome activation, which may be mediated through intracellular ROS levels. These findings propose that eugenol may be an effective strategy to prevent TGEV infection.
Collapse
Affiliation(s)
- Kang Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, People's Republic of China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, People's Republic of China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, People's Republic of China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, People's Republic of China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, People's Republic of China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, People's Republic of China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, People's Republic of China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, People's Republic of China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, People's Republic of China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, People's Republic of China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, People's Republic of China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, People's Republic of China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, People's Republic of China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, People's Republic of China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, People's Republic of China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, People's Republic of China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, People's Republic of China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, People's Republic of China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, People's Republic of China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, People's Republic of China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, People's Republic of China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, People's Republic of China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, People's Republic of China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, People's Republic of China
| |
Collapse
|
49
|
Ding S, Cheng Y, Azad MAK, Dong H, He J, Huang P, Kong X. Dietary fiber alters immunity and intestinal barrier function of different breeds of growing pigs. Front Immunol 2023; 14:1104837. [PMID: 36865532 PMCID: PMC9972983 DOI: 10.3389/fimmu.2023.1104837] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Dietary fiber (DF) regulates immune response and barrier function by interacting with epithelial cells and immune cells. However, the differences in the regulation of intestinal health of different pig breeds by DF remain obscure. Methods A total of 60 healthy pigs (20 pigs/breed) from Taoyuan black (TB), Xiangcun black (XB), and Duroc (DR) pigs (body weight = 11.00 ± 1.00 kg) were fed two different levels (low and high) of DF for 28 days to evaluate the differences in the modulation of intestinal immunity and barrier function by DF in different pig breeds. Results TB and XB pigs had higher plasma Eos level, Eos%, and Lym% but lower Neu level compared with the DR pigs when fed low DF (LDF). The TB and XB pigs had higher plasma Eos, MCV, and MCH levels and Eos% while lower Neu% compared with the DR pigs when fed high DF (HDF). HDF decreased IgA, IgG, IgM, and sIgA concentrations in the ileum of TB and XB pigs compared with the DR pigs, while the plasma IgG and IgM concentrations of TB pigs were higher than those of the DR pigs. Moreover, compared with the DR pigs, HDF decreased the levels of IL-1β, IL-17, and TGF-β in the plasma, and IL-1β, IL-2, IL-6, IL-10, IL-17, IFN-γ, TGF-β, and TNF-α in the ileum of TB and XB pigs. However, HDF did not affect the mRNA expression of cytokines in the ileum of TB, XB, and DR pigs, while HDF increased the TRAF6 expression of TB pigs compared with the DR pigs. In addition, HDF increased the Claudin abundance of TB and DR pigs compared with the pigs feeding with LDF. Moreover, in the LDF and HDF groups, the XB pigs had higher protein abundances of Claudin and ZO-1 compared with the TB and DR pigs. Conclusions DF regulated the TB and DR pigs' plasma immune cells, the XB pigs showed enhanced barrier function, and the DR pigs had increased ileal inflammation, which indicates that Chinese indigenous pigs are more DF tolerant than the DR pigs.
Collapse
Affiliation(s)
- Sujuan Ding
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yating Cheng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Md Abul Kalam Azad
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haibo Dong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Pan Huang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Xiangfeng Kong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
50
|
Li Y, Jiang Q. Uncoupled pyroptosis and IL-1β secretion downstream of inflammasome signaling. Front Immunol 2023; 14:1128358. [PMID: 37090724 PMCID: PMC10117957 DOI: 10.3389/fimmu.2023.1128358] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 04/25/2023] Open
Abstract
Inflammasomes are supramolecular platforms that organize in response to various damage-associated molecular patterns and pathogen-associated molecular patterns. Upon activation, inflammasome sensors (with or without the help of ASC) activate caspase-1 and other inflammatory caspases that cleave gasdermin D and pro-IL-1β/pro-IL-18, leading to pyroptosis and mature cytokine secretion. Pyroptosis enables intracellular pathogen niche disruption and intracellular content release at the cost of cell death, inducing pro-inflammatory responses in the neighboring cells. IL-1β is a potent pro-inflammatory regulator for neutrophil recruitment, macrophage activation, and T-cell expansion. Thus, pyroptosis and cytokine secretion are the two main mechanisms that occur downstream of inflammasome signaling; they maintain homeostasis, drive the innate immune response, and shape adaptive immunity. This review aims to discuss the possible mechanisms, timing, consequences, and significance of the two uncoupling preferences downstream of inflammasome signaling. While pyroptosis and cytokine secretion may be usually coupled, pyroptosis-predominant and cytokine-predominant uncoupling are also observed in a stimulus-, cell type-, or context-dependent manner, contributing to the pathogenesis and development of numerous pathological conditions such as cryopyrin-associated periodic syndromes, LPS-induced sepsis, and Salmonella enterica serovar Typhimurium infection. Hyperactive cells consistently release IL-1β without LDH leakage and pyroptotic death, thereby leading to prolonged inflammation, expanding the lifespans of pyroptosis-resistant neutrophils, and hyperactivating stimuli-challenged macrophages, dendritic cells, monocytes, and specific nonimmune cells. Death inflammasome activation also induces GSDMD-mediated pyroptosis with no IL-1β secretion, which may increase lethality in vivo. The sublytic GSDMD pore formation associated with lower expressions of pyroptotic components, GSDMD-mediated extracellular vesicles, or other GSDMD-independent pathways that involve unconventional secretion could contribute to the cytokine-predominant uncoupling; the regulation of caspase-1 dynamics, which may generate various active species with different activities in terms of GSDMD or pro-IL-1β, could lead to pyroptosis-predominant uncoupling. These uncoupling preferences enable precise reactions to different stimuli of different intensities under specific conditions at the single-cell level, promoting cooperative cell and host fate decisions and participating in the pathogen "game". Appropriate decisions in terms of coupling and uncoupling are required to heal tissues and eliminate threats, and further studies exploring the inflammasome tilt toward pyroptosis or cytokine secretion may be helpful.
Collapse
|