1
|
Díaz-Catalán D, Capó J, Vega-Beyhart A, Rodrigo-Calvo MT, Mora M, Vidal O, Squarcia M, Enseñat J, Casals G, Hanzu F. Sex-dependent effects of FGF21 on HPA axis regulation and adrenal regeneration after Cushing syndrome in mice. Mol Metab 2025; 96:102122. [PMID: 40154841 PMCID: PMC12013334 DOI: 10.1016/j.molmet.2025.102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Cushing's syndrome (CS) results from prolonged exposure to excessive glucocorticoids (GCs), leading to metabolic disturbances and adrenal insufficiency (AI). Fibroblast growth factor 21 (FGF21) has shown promise as a potential therapeutic target for metabolic disorders. This study explores the effects of FGF21 on adrenal gland function in a mouse model of AI following chronic hypercortisolism and investigates sex-dependent differences in the hypothalamic-pituitary-adrenal (HPA) axis response. METHODS We employed a mouse model of AI after chronic corticosterone (CORT) treatment. The effects of recombinant human FGF21 (hFGF21) administration on adrenal function were evaluated in AI mice. Male and female wild-type (WT) and FGF21-overexpressing transgenic (Tg) mice were subjected to 5 weeks of CORT treatment, reaching CS phenotype, followed by immediate analysis or a 10-week recovery period. Metabolic parameters, HPA axis function, and adrenal gland morphology and gene expression were assessed. RESULTS Prolonged CORT exposure resulted in metabolic disturbances and HPA axis dysregulation. hFGF21 treatment increased CORT and ACTH secretion in AI mice. FGF21 overexpression influenced glucose homeostasis and insulin regulation during CORT treatment and recovery, with sex-specific effects. Tissue-specific regulation of Klb expression was observed across the HPA axis, with distinct patterns between males and females. Tg mice displayed altered adrenal progenitor cell activation and steroidogenic gene expression. Sex-specific differences were observed in adrenal capsule remodeling and gene expression patterns during recovery. CONCLUSIONS This study reveals the complex interplay between FGF21 signaling and GC-induced metabolic and endocrine changes, suggesting a potential sex-specific role of FGF21 in metabolic regulation and HPA axis recovery following after CS.
Collapse
Affiliation(s)
- Daniela Díaz-Catalán
- Endocrine Disorders Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)/ Hospital Clínic, Barcelona, Spain.
| | - Júlia Capó
- Endocrine Disorders Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)/ Hospital Clínic, Barcelona, Spain
| | - Arturo Vega-Beyhart
- Endocrine Disorders Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)/ Hospital Clínic, Barcelona, Spain
| | | | - Mireia Mora
- Endocrine Disorders Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)/ Hospital Clínic, Barcelona, Spain; Endocrinology Department, Hospital Clínic, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Oscar Vidal
- Endocrine Surgery Department, Hospital Clínic Barcelona, University of Barcelona, Spain
| | - Mattia Squarcia
- Endocrine Disorders Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)/ Hospital Clínic, Barcelona, Spain; The Biomedical Diagnostic Center (CBD), Barcelona, Spain
| | - Joaquim Enseñat
- Neurosurgery Department, Hospital Clinic Barcelona, University of Barcelona, Spain
| | - Gregori Casals
- Endocrine Disorders Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)/ Hospital Clínic, Barcelona, Spain; Biochemistry and Molecular Genetics Service, Hospital Clínic, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain
| | - Felicia Hanzu
- Endocrine Disorders Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)/ Hospital Clínic, Barcelona, Spain; Endocrinology Department, Hospital Clínic, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain.
| |
Collapse
|
2
|
Zhou Z, Moore TM, Strumwasser AR, Ribas V, Iwasaki H, Morrow N, Ma A, Tran PH, Wanagat J, de Aguiar Vallim TQ, Clifford B, Zhang Z, Sallam T, Parks BW, Reue K, Shirihai O, Acin-Perez R, Morselli M, Pellegrini M, Mahata SK, Norheim F, Zhou M, Seldin MM, Lusis AJ, Lee CC, Goodarzi MO, Rotter JI, Hansen JR, Drucker B, Sagendorf TJ, Adkins JN, Sanford JA, DeMayo FJ, Hewitt SC, Korach KS, Hevener AL. Muscle metabolic resilience and enhanced exercise adaptation by Esr1-induced remodeling of mitochondrial cristae-nucleoid architecture in males. Cell Rep Med 2025; 6:102116. [PMID: 40328250 DOI: 10.1016/j.xcrm.2025.102116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/26/2024] [Accepted: 04/09/2025] [Indexed: 05/08/2025]
Abstract
Reduced estrogen action is associated with obesity and insulin resistance. However, the cell and tissue-specific actions of estradiol in maintaining metabolic health remain inadequately understood, especially in men. We observed that skeletal muscle ESR1/Esr1 (encodes estrogen receptor α [ERα]) is positively correlated with insulin sensitivity and metabolic health in humans and mice. Because skeletal muscle is a primary tissue involved in oxidative metabolism and insulin sensitivity, we generated muscle-selective Esr1 loss- and gain-of-expression mouse models. We determined that Esr1 links mitochondrial DNA replication and cristae-nucleoid architecture with metabolic function and insulin action in the skeletal muscle of male mice. Overexpression of human ERα in muscle protected male mice from diet-induced disruption of metabolic health and enhanced mitochondrial adaptation to exercise training intervention. Our findings indicate that muscle expression of Esr1 is critical for the maintenance of mitochondrial function and metabolic health in males and that tissue-selective activation of ERα can be leveraged to combat metabolic-related diseases in both sexes.
Collapse
Affiliation(s)
- Zhenqi Zhou
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology and Metabolism, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Timothy M Moore
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology and Metabolism, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alexander R Strumwasser
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology and Metabolism, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Vicent Ribas
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology and Metabolism, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hirotaka Iwasaki
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology and Metabolism, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Noelle Morrow
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology and Metabolism, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alice Ma
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology and Metabolism, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peter H Tran
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology and Metabolism, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jonathan Wanagat
- Division of Geriatrics, David Geffen School of Medicine, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas Q de Aguiar Vallim
- Division of Cardiology, David Geffen School of Medicine, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bethan Clifford
- Division of Cardiology, David Geffen School of Medicine, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhengyi Zhang
- Division of Cardiology, David Geffen School of Medicine, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tamer Sallam
- Division of Cardiology, David Geffen School of Medicine, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Brian W Parks
- David Geffen School of Medicine, Department of Medicine, Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Karen Reue
- David Geffen School of Medicine, Department of Medicine, Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Orian Shirihai
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology and Metabolism, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rebeca Acin-Perez
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology and Metabolism, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marco Morselli
- Department of Molecular, Cell and Developmental Biology and UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA 900095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology and UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA 900095, USA
| | - Sushil K Mahata
- Department of Medicine and VA, University of California, San Diego, La Jolla, CA 92037, USA
| | - Frode Norheim
- David Geffen School of Medicine, Department of Medicine, Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; University Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
| | - Mingqi Zhou
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Marcus M Seldin
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Aldons J Lusis
- Division of Cardiology, David Geffen School of Medicine, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; David Geffen School of Medicine, Department of Medicine, Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cathy C Lee
- Department of Medicine and VA, Greater Los Angeles Healthcare System GRECC, Los Angeles, CA 90073, USA
| | - Mark O Goodarzi
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Joshua R Hansen
- Chemical and Biological Signature Sciences Group, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Ben Drucker
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Tyler J Sagendorf
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Joshua N Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - James A Sanford
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Francesco J DeMayo
- Reproductive Developmental Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC 27709, USA
| | - Sylvia C Hewitt
- Reproductive Developmental Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC 27709, USA
| | - Kenneth S Korach
- Reproductive Developmental Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC 27709, USA
| | - Andrea L Hevener
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology and Metabolism, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine and VA, Greater Los Angeles Healthcare System GRECC, Los Angeles, CA 90073, USA; Iris Cantor-UCLA Women's Health Research Center, Los Angeles, CA 90095, USA.
| |
Collapse
|
3
|
Feng JN, Shao W, Yang L, Pang J, Ling W, Liu D, Wheeler MB, He HH, Jin T. Hepatic fibroblast growth factor 21 is required for curcumin or resveratrol in exerting their metabolic beneficial effect in male mice. Nutr Diabetes 2025; 15:4. [PMID: 39929809 PMCID: PMC11811165 DOI: 10.1038/s41387-025-00363-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Our mechanistic understanding on metabolic beneficial effects of dietary polyphenols has been hampered for decades due to the lack of functional receptors for those compounds and their extremely low plasma concentrations. Recent studies by our team and others suggest that those dietary polyphenols target gut microbiome, and gut-liver axis and that hepatic fibroblast factor 21 (FGF21) serves as a common target for various dietary interventions. METHODS Utilizing liver-specific FGF21 null mice (lFgf21-/-), we are asking a straightforward question: Is hepatic FGF21 required for curcumin or resveratrol, two typical dietary polyphenols, in exerting their metabolic beneficial effect in obesogenic diet-induced obesity mouse models. RESULTS On low-fat diet feeding, no appreciable defect on glucose disposal was observed in male or female lFgf21-/- mice, while fat tolerance was moderately impaired in male but not in female lFgf21-/- mice, associated with elevated random and fasting serum triglyceride (TG) levels, and reduced hepatic expression of Ehhadh and Ppargc1a, which encodes the two downstream effectors of FGF21. On high-fat-high-fructose (HFHF) diet challenge, Fgf21fl/fl but not lFgf21-/- mice exhibited response to curcumin intervention on reducing fasting serum TG, and on improving fat tolerance. Resveratrol intervention also affected FGF21 expression or its downstream effectors. Metabolic beneficial effects of resveratrol intervention observed in HFHF diet-challenged Fgf21fl/fl mice were either absent or attenuated in lFgf21-/- mice. CONCLUSION AND SIGNIFICANCE We conclude that hepatic FGF21 is required for curcumin or resveratrol in exerting their major metabolic beneficial effect. The recognition that FGF21 as the common target of dietary intervention, demonstrated in current as well as previous investigations, brings us a novel angle in understanding metabolic disease treatment and prevention. It remains to be further explored how various dietary interventions regulate FGF21 expression and function, via certain common or unique gut-liver or gut-brain-liver axis.
Collapse
Affiliation(s)
- Jia Nuo Feng
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Banting and Best Diabetes Centre, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Weijuan Shao
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
- Banting and Best Diabetes Centre, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Lin Yang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Juan Pang
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, PR China
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, PR China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, PR China
| | - Dinghui Liu
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Michael B Wheeler
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Banting and Best Diabetes Centre, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Tianru Jin
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON, Canada.
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Banting and Best Diabetes Centre, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Taniguchi H, Hashimoto Y, Dowaki N, Nirengi S. Association of brown adipose tissue activity with circulating sex hormones and fibroblast growth factor 21 in the follicular and luteal phases in young women. J Physiol Anthropol 2024; 43:23. [PMID: 39354624 PMCID: PMC11446134 DOI: 10.1186/s40101-024-00371-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Thermogenesis is influenced by fluctuations in sex hormones during the menstrual cycle in premenopausal women. The thermogenic activity and mass of brown adipose tissue (BAT) are regulated by endocrine factors, including sex hormones and fibroblast growth factor 21 (FGF21). However, the relationship between human BAT and these endocrine fluctuations within individuals remains to be elucidated. This study aimed to assess variations in BAT activity between the luteal and follicular phases and identify correlations with circulating levels of sex hormones and FGF21. METHODS Healthy young women were enrolled in an observational study. Measurement of BAT activity and blood analyses were performed in both the follicular and luteal phases. BAT activity was analyzed using thermography with 2-h cold exposure. Plasma 17β-estradiol, progesterone, and FGF21 levels were determined by enzyme-linked immunosorbent assay. A comparative analysis within individuals was conducted in 13 women to compare the follicular and luteal phases. Furthermore, sensitivity analysis was carried out in 21 women during the follicular phase only. RESULTS Plasma 17β-estradiol and progesterone levels were significantly higher in the luteal phase, whereas plasma FGF21 level was significantly higher in the follicular phase. Comparison analysis found no significant differences in cold-induced BAT activity between the follicular and luteal phases in young women. Correlation analysis in both comparison and sensitivity analyses found that plasma 17β-estradiol and progesterone levels were not associated with BAT activity, whereas plasma FGF21 levels were significantly and positively correlated with BAT activity only in the follicular phase. In addition, plasma 17β-estradiol levels in the follicular phase were significantly and positively associated with plasma FGF21 levels in both the comparison and sensitivity analyses. CONCLUSIONS The thermogenic activity of BAT during cold exposure was comparable between the follicular and luteal phases in young women. Higher BAT activity was associated with elevated levels of plasma FGF21 only in the follicular phase, which is related to increased plasma 17β-estradiol levels.
Collapse
Affiliation(s)
- Hirokazu Taniguchi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan.
| | - Yuka Hashimoto
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Narumi Dowaki
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Shinsuke Nirengi
- Clinical Research Institute, Division of Preventive Medicine, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
5
|
Streeter J, Persaud L, Gao J, Manika D, Fairman W, García-Peña LM, Marti A, Manika C, Gaddi S, Schickling B, Pereira RO, Abel ED. ATF4-dependent and independent mitokine secretion from OPA1 deficient skeletal muscle in mice is sexually dimorphic. Front Endocrinol (Lausanne) 2024; 15:1325286. [PMID: 39381436 PMCID: PMC11458430 DOI: 10.3389/fendo.2024.1325286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 08/30/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Reducing Optic Atrophy 1 (OPA1) expression in skeletal muscle in male mice induces Activation Transcription Factor 4 (ATF4) and the integrated stress response (ISR). Additionally, skeletal muscle secretion of Fibroblast Growth Factor 21 (FGF21) is increased, which mediates metabolic adaptations including resistance to diet-induced obesity (DIO) and glucose intolerance in these mice. Although FGF21 induction in this model can be reversed with pharmacological attenuation of ER stress, it remains to be determined if ATF4 is responsible for FGF21 induction and its metabolic benefits in this model. Methods We generated mice with homozygous floxed Opa1 and Atf4 alleles and a tamoxifen-inducible Cre transgene controlled by the human skeletal actin promoter to enable simultaneous depletion of OPA1 and ATF4 in skeletal muscle (mAO DKO). Mice were fed high fat (HFD) or control diet and evaluated for ISR activation, body mass, fat mass, glucose tolerance, insulin tolerance and circulating concentrations of FGF21 and growth differentiation factor 15 (GDF15). Results In mAO DKO mice, ATF4 induction is absent. Other indices of ISR activation, including XBP1s, ATF6, and CHOP were induced in mAO DKO males, but not in mOPA1 or mAO DKO females. Resistance to diet-induced obesity was not reversed in mAO DKO mice of both sexes. Circulating FGF21 and GDF15 illustrated sexually dimorphic patterns. Loss of OPA1 in skeletal muscle increases circulating FGF21 in mOPA1 males, but not in mOPA1 females. Additional loss of ATF4 decreased circulating FGF21 in mAO DKO male mice, but increased circulating FGF21 in female mAO DKO mice. Conversely, circulating GDF15 was increased in mAO DKO males and mOPA1 females, but not in mAO DKO females. Conclusion Sex differences exist in the transcriptional outputs of the ISR following OPA deletion in skeletal muscle. Deletion of ATF4 in male and female OPA1 KO mice does not reverse the resistance to DIO. Induction of circulating FGF21 is ATF4 dependent in males, whereas induction of circulating GDF15 is ATF4 dependent in females. Elevated GDF15 in males and FGF21 in females could reflect activation by other transcriptional outputs of the ISR, that maintain mitokine-dependent metabolic protection in an ATF4-independent manner.
Collapse
Affiliation(s)
- Jennifer Streeter
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Luis Persaud
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Jason Gao
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Deeraj Manika
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Will Fairman
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Luis Miguel García-Peña
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Alex Marti
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Chethan Manika
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Shreya Gaddi
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Brandon Schickling
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Renata O. Pereira
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - E. Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
6
|
Handzlik G, Owczarek AJ, Więcek A, Mossakowska M, Zdrojewski T, Chudek A, Olszanecka-Glinianowicz M, Chudek J. Fibroblast growth factor 21 inversely correlates with survival in elderly population - the results of the Polsenior2 study. Aging (Albany NY) 2024; 16:12673-12684. [PMID: 39302236 PMCID: PMC11501387 DOI: 10.18632/aging.206114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/18/2024] [Indexed: 09/22/2024]
Abstract
Fibroblast growth factor 21 (FGF21) is a liver-secreted hormone involved in the regulation of lipid, glucose, and energy metabolism. Its serum concentration increases with age but also is higher in numerous diseases. FGF21 is being investigated for biomarker properties and as a potential therapeutic target. The present study aimed to assess the prognostic value of FGF21 in an older population-based cohort, the PolSenior2 study participants. In the sub-analysis of 3512 individuals, aged 60 and older, stratified according to FGF21 into tertiles, the survival estimate was worse in participants with middle and high levels compared to the lowest tertile. These results were consistent with univariable Cox regression analysis, in which participants in the middle and the high FGF21 tertiles after adjustment for age had 1.43-fold (HR, 1.31; 95% CI, 1.05 - 1.62) and 2.56-fold (HR, 1.94; 95% CI, 1.59 - 2.37) higher risk for mortality, respectively, compared with those in the lowest tertile. In multivariable Cox regression analysis, the highest levels of FGF21 were associated with increased mortality (HR 1.53; 95% CI, 1.22 - 1.92) independently of co-morbidities and blood parameters. These results indicate that higher serum FGF21 concentration is an independent predictor of all-cause mortality in the general population of older adults.
Collapse
Affiliation(s)
- Gabriela Handzlik
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Aleksander J. Owczarek
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Andrzej Więcek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Katowice, Poland
| | - Małgorzata Mossakowska
- Study on Aging and Longevity, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Tomasz Zdrojewski
- Division of Preventive Medicine and Education, Medical University of Gdansk, Gdansk, Poland
| | - Anna Chudek
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Magdalena Olszanecka-Glinianowicz
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Jerzy Chudek
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
7
|
Soto Sauza KA, Ryan KK. FGF21 mediating the Sex-dependent Response to Dietary Macronutrients. J Clin Endocrinol Metab 2024; 109:e1689-e1696. [PMID: 38801670 PMCID: PMC11319005 DOI: 10.1210/clinem/dgae363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Sex is key variable influencing body composition and substrate utilization. At rest, females maintain greater adiposity than males and resist the mobilization of fat. Males maintain greater lean muscle mass and mobilize fat readily. Determining the mechanisms that direct these sex-dependent effects is important for both reproductive and metabolic health. Here, we highlight the fundamental importance of sex in shaping metabolic physiology and assess growing evidence that the hepatokine fibroblast growth factor-21 (FGF21) plays a mechanistic role to facilitate sex-dependent responses to a changing nutritional environment. First, we examine the importance of sex in modulating body composition and substrate utilization. We summarize new data that point toward sex-biased effects of pharmacologic FGF21 administration on these endpoints. When energy is not limited, metabolic responses to FGF21 mirror broader sex differences; FGF21-treated males conserve lean mass at the expense of increased lipid catabolism, whereas FGF21-treated females conserve fat mass at the expense of reduced lean mass. Next, we examine the importance of sex in modulating the endogenous secretion of FGF21 in response to changing macronutrient and energy availability. During the resting state when energy is not limited, macronutrient imbalance increases the secretion of FGF21 more so in males than females. When energy is limited, the effect of sex on both the secretion of FGF21 and its metabolic actions may be reversed. Altogether, we argue that a growing literature supports FGF21 as a plausible mechanism contributing to the sex-dependent mobilization vs preservation of lipid storage and highlight the need for further research.
Collapse
Affiliation(s)
- Karla A Soto Sauza
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA
| | - Karen K Ryan
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA
| |
Collapse
|
8
|
Malo-Vintimilla L, Aguirre C, Vergara A, Fernández-Verdejo R, Galgani JE. Resting energy metabolism and sweet taste preference during the menstrual cycle in healthy women. Br J Nutr 2024; 131:384-390. [PMID: 37641942 PMCID: PMC10784125 DOI: 10.1017/s0007114523001927] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Differences in blood concentration of sex hormones in the follicular (FP) and luteal (LP) phases may influence energy metabolism in women. We compared fasting energy metabolism and sweet taste preference on a representative day of the FP and LP in twenty healthy women (25·3 (sd 5·1) years, BMI: 22·2 (sd 2·2) kg/m2) with regular self-reported menses and without the use of hormonal contraceptives. From the self-reported duration of the three prior menstrual cycles, the predicted FP and LP visits were scheduled for days 5-12 and 20-25 after menses, respectively. The order of the FP and LP visits was randomly assigned. On each visit, RMR and RQ by indirect calorimetry, sweet taste preference by the Monell two-series forced-choice tracking procedure, serum fibroblast growth factor 21 by a commercial ELISA (FGF21, a liver-derived protein with action in energy balance, fuel oxidation and sugar preference) and dietary food intake by a 24-h dietary recall were determined. Serum progesterone and oestradiol concentrations displayed the expected differences between phases. RMR was lower in the FP v. LP (5042 (sd 460) v. 5197 (sd 490) kJ/d, respectively; P = 0·04; Cohen effect size, d rm = 0·33), while RQ showed borderline significant higher values (0·84 (sd 0·05) v. 0·81 (sd 0·05), respectively; P = 0·07; d rm = 0·62). Also, in the FP v. LP, sweet taste preference was lower (12 (sd 8) v. 16 (sd 9) %; P = 0·04; d rm = 0·47) concomitant with higher serum FGF21 concentration (294 (sd 164) v. 197 (sd 104) pg/ml; P < 0·01; d rm = 0·66). The menstrual cycle is associated with changes in energy expenditure, sweet taste preference and oxidative fuel partitioning.
Collapse
Affiliation(s)
- Lorena Malo-Vintimilla
- Departamento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Aguirre
- Carrera de Nutrición y Dietética, Departamento de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angie Vergara
- División de Obstetricia y Ginecología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Fernández-Verdejo
- Laboratorio de Fisiología del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Jose E. Galgani
- Departamento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Carrera de Nutrición y Dietética, Departamento de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| |
Collapse
|
9
|
Prezotto LD, Keane JA, Cupp AS, Thorson JF. Fibroblast Growth Factor 21 Has a Diverse Role in Energetic and Reproductive Physiological Functions of Female Beef Cattle. Animals (Basel) 2023; 13:3185. [PMID: 37893910 PMCID: PMC10603626 DOI: 10.3390/ani13203185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) has been identified in multiple mammalian species as a molecular marker of energy metabolism while also providing negative feedback to the gonads. However, the role of FGF21 in regulating the energetic and reproductive physiology of beef heifers and cows has yet to be characterized. Herein, we investigated the temporal concentrations of FGF21 in female beef cattle from the prepubertal period to early lactation. Circulating concentrations of FGF21, non-esterified fatty acids, plasma urea nitrogen, glucose, and progesterone were assessed. Ultrasonography was employed to determine the onset of puberty and resumption of postpartum ovarian cyclicity as well as to measure backfat thickness. Finally, cows and calves underwent the weigh-suckle-weigh technique to estimate rate of milk production. We have revealed that FGF21 has an expansive role in the physiology of female beef cattle, including pubertal onset, adaptation to nutritional transition, rate of body weight gain, circulating markers of metabolism, and rate of milk production. In conclusion, FGF21 plays a role in physiological functions in beef cattle that can be applied to advance the understanding of basic scientific processes governing the nutritional regulation of reproductive function but also provides a novel means for beef cattle producers to select parameters of financial interest.
Collapse
Affiliation(s)
- Ligia D. Prezotto
- Department of Animal Science, University of Nebraska-Lincoln, 3940 Fair Street, Lincoln, NE 68583-0908, USA; (L.D.P.); (J.A.K.); (A.S.C.)
| | - Jessica A. Keane
- Department of Animal Science, University of Nebraska-Lincoln, 3940 Fair Street, Lincoln, NE 68583-0908, USA; (L.D.P.); (J.A.K.); (A.S.C.)
| | - Andrea S. Cupp
- Department of Animal Science, University of Nebraska-Lincoln, 3940 Fair Street, Lincoln, NE 68583-0908, USA; (L.D.P.); (J.A.K.); (A.S.C.)
| | - Jennifer F. Thorson
- U.S. Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, NE 68933-0166, USA
| |
Collapse
|
10
|
Xu J, Shao X, Zeng H, Wang C, Li J, Peng X, Zhuo Y, Hua L, Meng F, Han X. Hepatic-Specific FGF21 Knockout Abrogates Ovariectomy-Induced Obesity by Reversing Corticosterone Production. Int J Mol Sci 2023; 24:14922. [PMID: 37834368 PMCID: PMC10573867 DOI: 10.3390/ijms241914922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Increased glucocorticoid (GC) levels act as a master contributor to central obesity in estrogen-depleted females; however, what factors cause their increased GC production is unclear. Given (1) liver fibroblast growth factor 21 (FGF21) and GCs regulate each other's production in a feed-forward loop, and (2) circulating FGF21 and GCs are parallelly increased in menopausal women and ovariectomized mice, we thus hypothesized that elevation of hepatic FGF21 secretion causes increased GGs production in estrogen-depleted females. Using the ovariectomized mice as a model for menopausal women, we found that ovariectomy (OVX) increased circulating corticosterone levels, which in turn increased visceral adipose Hsd11b1 expression, thus causing visceral obesity in females. In contrast, liver-specific FGF21 knockout (FGF21 LKO) completely reversed OVX-induced high GCs and high visceral adipose Hsd11b1 expression, thus abrogating OVX-induced obesity in females. Even though FGF21 LKO failed to rescue OVX-induced dyslipidemia, hepatic steatosis, and insulin resistance. What's worse, FGF21 LKO even further exacerbated whole-body glucose metabolic dysfunction as evidenced by more impaired glucose and pyruvate tolerance and worsened insulin resistance. Mechanically, we found that FGF21 LKO reduced circulating insulin levels, thus causing the dissociation between decreased central obesity and the improvement of obesity-related metabolic syndromes in OVX mice. Collectively, our results suggest that liver FGF21 plays an essential role in mediating OVX-induced central obesity by promoting GC production. However, lack of liver FGF21 signaling reduces insulin production and in turn causes the dissociation between decreased central obesity and the improvement of obesity-related metabolic syndromes, highlighting a detrimental role for hepatic FGF21 signals in mediating the development of central obesity but a beneficial role in preventing metabolic abnormality from further exacerbation in estrogen-depleted females.
Collapse
Affiliation(s)
- Jiayu Xu
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (J.X.); (X.S.); (H.Z.); (C.W.); (J.L.); (X.P.); (F.M.)
| | - Xinyu Shao
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (J.X.); (X.S.); (H.Z.); (C.W.); (J.L.); (X.P.); (F.M.)
| | - Haozhe Zeng
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (J.X.); (X.S.); (H.Z.); (C.W.); (J.L.); (X.P.); (F.M.)
| | - Chengxi Wang
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (J.X.); (X.S.); (H.Z.); (C.W.); (J.L.); (X.P.); (F.M.)
| | - Jiayi Li
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (J.X.); (X.S.); (H.Z.); (C.W.); (J.L.); (X.P.); (F.M.)
| | - Xiaoqin Peng
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (J.X.); (X.S.); (H.Z.); (C.W.); (J.L.); (X.P.); (F.M.)
| | - Yong Zhuo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611134, China (L.H.)
| | - Lun Hua
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611134, China (L.H.)
| | - Fengyan Meng
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (J.X.); (X.S.); (H.Z.); (C.W.); (J.L.); (X.P.); (F.M.)
| | - Xingfa Han
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (J.X.); (X.S.); (H.Z.); (C.W.); (J.L.); (X.P.); (F.M.)
| |
Collapse
|
11
|
Fang Y, Medina D, Stockwell R, McFadden S, Hascup ER, Hascup KN, Bartke A. Resistance to mild cold stress is greater in both wild-type and long-lived GHR-KO female mice. GeroScience 2023; 45:1081-1093. [PMID: 36527583 PMCID: PMC9886789 DOI: 10.1007/s11357-022-00706-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Adapting to stress, including cold environmental temperature (eT), is crucial for the survival of mammals, especially small rodents. Long-lived mutant mice have enhanced stress resistance against oxidative and non-oxidative challenges. However, much less is known about the response of those long-lived mice to cold stress. Growth hormone receptor knockout (GHR-KO) mice are long-lived with reduced growth hormone signaling. We wanted to test whether GHR-KO mice have enhanced resistance to cold stress. To examine the response of GHR-KO mice to cold eT, GHR-KO mice were housed at mild cold eT (16 °C) immediately following weaning. Longevity results showed that female GHR-KO and wild-type (WT) mice retained similar lifespan, while both male GHR-KO and WT mice had shortened lifespan compared to the mice housed at 23 °C eT. Female GHR-KO and WT mice housed at 16 °C had upregulated fibroblast growth factor 21 (FGF21), enhanced energy metabolism, reduced plasma triglycerides, and increased mRNA expression of some xenobiotic enzymes compared to females housed at 23 °C and male GHR-KO and WT mice housed under the same condition. In contrast, male GHR-KO and WT mice housed at 16 °C showed deleterious effects in parameters which might be associated with their shortened longevity compared to male GHR-KO and WT mice housed at 23 °C. Together, this study suggests that in response to mild cold stress, sex plays a pivotal role in the regulation of longevity, and female GHR-KO and WT mice are more resistant to this challenge than the males.
Collapse
Affiliation(s)
- Yimin Fang
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA.
| | - David Medina
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Robert Stockwell
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Samuel McFadden
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Erin R Hascup
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Kevin N Hascup
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| |
Collapse
|
12
|
Protective Effects of Coumestrol on Metabolic Dysfunction and Its Estrogen Receptor-Mediated Action in Ovariectomized Mice. Nutrients 2023; 15:nu15040954. [PMID: 36839308 PMCID: PMC9966481 DOI: 10.3390/nu15040954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Coumestrol, a phytoestrogen compound found in various plants, has been shown to act as a potent estrogen receptor (ER) agonist, with a higher binding affinity for ERβ than for ERα. However, there is currently limited information regarding its beneficial effects in postmenopausal disorders and its ER-mediated mechanisms. Herein, we investigated the effects of coumestrol (subcutaneous or oral treatment) on metabolic dysfunction in ovariectomized (OVX) mice fed a high-fat diet, in comparison with the effects of 17β-estradiol (E2) replacement. Coumestrol was administered daily at a dose of 5 mg/kg for 10 weeks. Coumestrol treatment through the subcutaneous route stimulated uterine growth in OVX mice at a level lower than that of E2. E2 and coumestrol prevented body fat accumulation, adipocyte hypertrophy, and hepatic steatosis, and enhanced voluntary physical activity. Coumestrol showed estrogen-mimetic effects in the regulation of the protein expressions involved in browning of white fat and insulin signaling, including increased hepatic expression of fibroblast growth factor 21. Importantly, the metabolic effects of coumestrol (oral administration at 10 mg/kg for 7 weeks) were mostly abolished following co-treatment with an ERβ-selective antagonist but not with an ERα-selective antagonist, indicating that the metabolic actions of coumestrol in OVX mice are primarily mediated by ERβ. These findings provide important insights into the beneficial effects of coumestrol as a phytoestrogen supplement for the prevention and treatment of postmenopausal symptoms.
Collapse
|
13
|
Fibroblast growth factor 21 and dietary macronutrient intake in female mice. Physiol Behav 2022; 257:113995. [DOI: 10.1016/j.physbeh.2022.113995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/17/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
|
14
|
Protein preference and elevated plasma FGF21 induced by dietary protein restriction is similar in both male and female mice. Physiol Behav 2022; 257:113994. [DOI: 10.1016/j.physbeh.2022.113994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/23/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
|
15
|
Mizumoto T, Yoshizawa T, Sato Y, Ito T, Tsuyama T, Satoh A, Araki S, Tsujita K, Tamura M, Oike Y, Yamagata K. SIRT7 Deficiency Protects against Aging-Associated Glucose Intolerance and Extends Lifespan in Male Mice. Cells 2022; 11:cells11223609. [PMID: 36429037 PMCID: PMC9688483 DOI: 10.3390/cells11223609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Sirtuins (SIRT1-7 in mammals) are evolutionarily conserved nicotinamide adenine dinucleotide-dependent lysine deacetylases/deacylases that regulate fundamental biological processes including aging. In this study, we reveal that male Sirt7 knockout (KO) mice exhibited an extension of mean and maximum lifespan and a delay in the age-associated mortality rate. In addition, aged male Sirt7 KO mice displayed better glucose tolerance with improved insulin sensitivity compared with wild-type (WT) mice. Fibroblast growth factor 21 (FGF21) enhances insulin sensitivity and extends lifespan when it is overexpressed. Serum levels of FGF21 were markedly decreased with aging in WT mice. In contrast, this decrease was suppressed in Sirt7 KO mice, and the serum FGF21 levels of aged male Sirt7 KO mice were higher than those of WT mice. Activating transcription factor 4 (ATF4) stimulates Fgf21 transcription, and the hepatic levels of Atf4 mRNA were increased in aged male Sirt7 KO mice compared with WT mice. Our findings indicate that the loss of SIRT7 extends lifespan and improves glucose metabolism in male mice. High serum FGF21 levels might be involved in the beneficial effect of SIRT7 deficiency.
Collapse
Affiliation(s)
- Tomoya Mizumoto
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Tatsuya Yoshizawa
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yoshifumi Sato
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takaaki Ito
- Department of Medical Technology, Faculty of Health Science, Kumamoto Health Science University, Kumamoto 861-5598, Japan
| | - Tomonori Tsuyama
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Akiko Satoh
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
- Department of Integrative Physiology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Satoshi Araki
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kenichi Tsujita
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Research Center, Tsukuba-shi 305-0074, Japan
| | - Yuichi Oike
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kazuya Yamagata
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Correspondence: ; Tel.: +81-96-373-5068; Fax: +81-96-364-6940
| |
Collapse
|
16
|
ERα-Dependent Regulation of Adropin Predicts Sex Differences in Liver Homeostasis during High-Fat Diet. Nutrients 2022; 14:nu14163262. [PMID: 36014766 PMCID: PMC9416503 DOI: 10.3390/nu14163262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/07/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a public health issue, due to its prevalence and association with other cardiometabolic diseases. Growing evidence suggests that NAFLD alters the production of hepatokines, which, in turn, influence several metabolic processes. Despite accumulating evidence on the major role of estrogen signaling in the sexually dimorphic nature of NAFLD, dependency of hepatokine expression on sex and estrogens has been poorly investigated. Through in vitro and in vivo analysis, we determined the extent to which hepatokines, known to be altered in NAFLD, can be regulated, in a sex-specific fashion, under different hormonal and nutritional conditions. Our study identified four hepatokines that better recapitulate sex and estrogen dependency. Among them, adropin resulted as one that displays a sex-specific and estrogen receptor alpha (ERα)-dependent regulation in the liver of mice under an excess of dietary lipids (high-fat diet, HFD). Under HFD conditions, the hepatic induction of adropin negatively correlates with the expression of lipogenic genes and with fatty liver in female mice, an effect that depends upon hepatic ERα. Our findings support the idea that ERα-mediated induction of adropin might represent a potential approach to limit or prevent NAFLD.
Collapse
|
17
|
Maternal Fibroblast Growth Factor 21 Levels Decrease during Early Pregnancy in Normotensive Pregnant Women but Are Higher in Preeclamptic Women-A Longitudinal Study. Cells 2022; 11:cells11142251. [PMID: 35883694 PMCID: PMC9322099 DOI: 10.3390/cells11142251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 12/04/2022] Open
Abstract
(1) Background: Fibroblast growth factor 21 (FGF-21) is an endocrine factor involved in glucose and lipid metabolism that exerts pleiotropic effects. The aim of this study was to investigate the serum FGF-21 profile in healthy and mild preeclamptic pregnant women at each trimester of pregnancy; (2) Methods: Serum FGF-21 levels were determined by ELISA in a nested case-control study within a longitudinal cohort study that included healthy (n = 54) and mild preeclamptic (n = 20) pregnant women, women at three months after delivery (n = 20) and eumenorrheic women during the menstrual cycle (n = 20); (3) Results: FGF-21 levels were significantly lower in the mid-luteal phase compared to the early follicular phase of the menstrual cycle in eumenorrheic women (p < 0.01). Maternal levels of FGF-21 were significantly lower in the first and second trimesters and peaked during the third trimester in healthy pregnant women (p < 0.01). Serum levels of FGF-21 in healthy pregnant were significantly lower in the first and second trimester of pregnancy compared with the follicular phase of the menstrual cycle and postpartum (p < 0.01). Serum FGF-21 levels were significantly higher in preeclamptic compared to healthy pregnant women during pregnancy (p < 0.01); (4) Conclusions: These results suggest that a peak of FGF-21 towards the end of pregnancy in healthy pregnancy and higher levels in preeclamptic women might play a critical role that contributes to protecting against the negatives effects of high concentrations of non-esterified fatty acids (NEFA) and hypertensive disorder. Furthermore, FGF-21 might play an important role in reproductive function in healthy eumenorrheic women during the menstrual cycle.
Collapse
|
18
|
Mauvais-Jarvis F, Lange CA, Levin ER. Membrane-Initiated Estrogen, Androgen, and Progesterone Receptor Signaling in Health and Disease. Endocr Rev 2022; 43:720-742. [PMID: 34791092 PMCID: PMC9277649 DOI: 10.1210/endrev/bnab041] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 12/15/2022]
Abstract
Rapid effects of steroid hormones were discovered in the early 1950s, but the subject was dominated in the 1970s by discoveries of estradiol and progesterone stimulating protein synthesis. This led to the paradigm that steroid hormones regulate growth, differentiation, and metabolism via binding a receptor in the nucleus. It took 30 years to appreciate not only that some cellular functions arise solely from membrane-localized steroid receptor (SR) actions, but that rapid sex steroid signaling from membrane-localized SRs is a prerequisite for the phosphorylation, nuclear import, and potentiation of the transcriptional activity of nuclear SR counterparts. Here, we provide a review and update on the current state of knowledge of membrane-initiated estrogen (ER), androgen (AR) and progesterone (PR) receptor signaling, the mechanisms of membrane-associated SR potentiation of their nuclear SR homologues, and the importance of this membrane-nuclear SR collaboration in physiology and disease. We also highlight potential clinical implications of pathway-selective modulation of membrane-associated SR.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Department of Medicine, Section of Endocrinology and Metabolism, Tulane University School of Medicine, New Orleans, LA, 70112, USA.,Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA, 70112, USA.,Southeast Louisiana Veterans Affairs Medical Center, New Orleans, LA, 70119, USA
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis, MN 55455, USA.,Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ellis R Levin
- Division of Endocrinology, Department of Medicine, University of California, Irvine, Irvine, CA, 92697, USA.,Department of Veterans Affairs Medical Center, Long Beach, Long Beach, CA, 90822, USA
| |
Collapse
|
19
|
Cangelosi AL, Puszynska AM, Roberts JM, Armani A, Nguyen TP, Spinelli JB, Kunchok T, Wang B, Chan SH, Lewis CA, Comb WC, Bell GW, Helman A, Sabatini DM. Zonated leucine sensing by Sestrin-mTORC1 in the liver controls the response to dietary leucine. Science 2022; 377:47-56. [PMID: 35771919 PMCID: PMC10049859 DOI: 10.1126/science.abi9547] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) kinase controls growth in response to nutrients, including the amino acid leucine. In cultured cells, mTORC1 senses leucine through the leucine-binding Sestrin proteins, but the physiological functions and distribution of Sestrin-mediated leucine sensing in mammals are unknown. We find that mice lacking Sestrin1 and Sestrin2 cannot inhibit mTORC1 upon dietary leucine deprivation and suffer a rapid loss of white adipose tissue (WAT) and muscle. The WAT loss is driven by aberrant mTORC1 activity and fibroblast growth factor 21 (FGF21) production in the liver. Sestrin expression in the liver lobule is zonated, accounting for zone-specific regulation of mTORC1 activity and FGF21 induction by leucine. These results establish the mammalian Sestrins as physiological leucine sensors and reveal a spatial organization to nutrient sensing by the mTORC1 pathway.
Collapse
Affiliation(s)
- Andrew L. Cangelosi
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anna M. Puszynska
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Justin M. Roberts
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrea Armani
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Thao P. Nguyen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jessica B. Spinelli
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tenzin Kunchok
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Brianna Wang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Sze Ham Chan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Caroline A. Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - William C. Comb
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - George W. Bell
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Aharon Helman
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - David M. Sabatini
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
20
|
Park S, Sim KS, Hwangbo Y, Park SJ, Kim YJ, Kim JH. Naringenin and Phytoestrogen 8-Prenylnaringenin Protect against Islet Dysfunction and Inhibit Apoptotic Signaling in Insulin-Deficient Diabetic Mice. Molecules 2022; 27:molecules27134227. [PMID: 35807469 PMCID: PMC9268740 DOI: 10.3390/molecules27134227] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022] Open
Abstract
It has been shown that citrus flavanone naringenin and its prenyl derivative 8-prenylnaringenin (8-PN) possess various pharmacological activities in in vitro and in vivo models. Interestingly, it has been proposed that prenylation can enhance biological potentials, including the estrogen-like activities of flavonoids. The objective of this study was to investigate the anti-diabetic potential and molecular mechanism of 8-PN in streptozotocin (STZ)-induced insulin-deficient diabetic mice in comparison with naringenin reported to exhibit hypoglycemic effects. The oral administration of naringenin and 8-PN ameliorated impaired glucose homeostasis and islet dysfunction induced by STZ treatment. These protective effects were associated with the suppression of pancreatic β-cell apoptosis and inflammatory responses in mice. Moreover, both naringenin and 8-PN normalized STZ-induced insulin-signaling defects in skeletal muscles and apoptotic protein expression in the liver. Importantly, 8-PN increased the protein expression levels of estrogen receptor-α (ERα) in the pancreas and liver and of fibroblast growth factor 21 in the liver, suggesting that 8-PN could act as an ERα agonist in the regulation of glucose homeostasis. This study provides novel insights into the mechanisms underlying preventive effects of naringenin and 8-PN on the impairment of glucose homeostasis in insulin-deficient diabetic mice.
Collapse
Affiliation(s)
- Song Park
- Department of Food Science and Biotechnology, Andong National University, Andong 36729, Korea; (S.P.); (Y.H.)
| | - Kyu-Sang Sim
- Biomaterials Research Institute, Kyochon F&B, Andong 36729, Korea;
| | - Yeop Hwangbo
- Department of Food Science and Biotechnology, Andong National University, Andong 36729, Korea; (S.P.); (Y.H.)
| | - Sung-Jin Park
- Department of Food and Biotechnology, Korea University, Sejong 30019, Korea; (S.-J.P.); (Y.-J.K.)
| | - Young-Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, Korea; (S.-J.P.); (Y.-J.K.)
| | - Jun-Ho Kim
- Department of Food Science and Biotechnology, Andong National University, Andong 36729, Korea; (S.P.); (Y.H.)
- Correspondence: ; Tel.: +82-54-820-5846; Fax: +82-54-820-6264
| |
Collapse
|
21
|
Metz L, Isacco L, Redman LM. Effect of oral contraceptives on energy balance in women: A review of current knowledge and potential cellular mechanisms. Metabolism 2022; 126:154919. [PMID: 34715118 DOI: 10.1016/j.metabol.2021.154919] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 12/14/2022]
Abstract
Body weight management is currently of major concern as the obesity epidemic is still a worldwide challenge. As women face more difficulties to lose weight than men, there is an urgent need to better understand the underlying reasons and mechanisms. Recent data have suggested that the use of oral contraceptive (OC) could be involved. The necessity of utilization and development of contraceptive strategies for birth regulation is undeniable and contraceptive pills appear as a quite easy approach. Moreover, OC also represent a strategy for the management of premenstrual symptoms, acne or bulimia nervosa. The exact impact of OC on body weight remains not clearly established. Thus, after exploring the potential underlying mechanisms by which OC could influence the two side of energy balance, we then provide an overview of the available evidence regarding the effects of OC on energy balance (i.e. energy expenditure and energy intake). Finally, we highlight the necessity for future research to clarify the cellular effects of OC and how the individualization of OC prescriptions can improve long-term weight loss management.
Collapse
Affiliation(s)
- Lore Metz
- Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions, (AME2P), UE3533, Clermont Auvergne University, 63170 Aubiere CEDEX, France; Auvergne Research Center for Human Nutrition (CRNH), 63000 Clermont-Ferrand, France.
| | - Laurie Isacco
- Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions, (AME2P), UE3533, Clermont Auvergne University, 63170 Aubiere CEDEX, France; Auvergne Research Center for Human Nutrition (CRNH), 63000 Clermont-Ferrand, France
| | - Leanne M Redman
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| |
Collapse
|
22
|
Sim KS, Park S, Seo H, Lee SH, Lee HS, Park Y, Kim JH. Comparative study of estrogenic activities of phytoestrogens using OECD in vitro and in vivo testing methods. Toxicol Appl Pharmacol 2022; 434:115815. [PMID: 34848279 DOI: 10.1016/j.taap.2021.115815] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 01/08/2023]
Abstract
With growing scientific interest in phytoestrogens, a number of studies have investigated the estrogenic potential of phytoestrogens in a wide variety of assay systems. However, evaluations of individual phytoestrogens with different assay systems make it difficult for predicting their relative estrogenic potency. The objective of this study was to compare estrogenic properties of fifteen known phytoestrogens using an estrogen receptor-α (ER-α) dimerization assay and Organization for Economic Cooperation and Development (OECD) standardized methods including in vitro estrogen receptor (ER) transactivation assay using VM7Luc4E2 cells and in vivo uterotrophic assay using an immature rat model. Human ER-α dimerization assay showed positive responses of eight test compounds and negative responses of seven compounds. These results were consistently found in luciferase reporter assay results for evaluating ER transactivation ability. Seven test compounds exhibiting relatively higher in vitro estrogenic activities were subjected to uterotrophic bioassays. Significant increases in uterine weights were only found after treatments with biochanin A, 8-prenylnaringenin, and coumestrol. Importantly, their uterotrophic effects were lost when animals were co-treated with antagonist of ER, indicating their ER-dependent effects in the uterus. In addition, analysis of estrogen responsive genes revealed that these phytoestrogens regulated uterine gene expressions differently compared to estrogens. Test methods used in this study provided a high consistency between in vitro and in vivo results. Thus, they could be used as effective screening tools for phytoestrogens, particularly focusing on their interactions with ER-α.
Collapse
Affiliation(s)
- Kyu Sang Sim
- Department of Food Science and Biotechnology, Andong National University, Andong 36729, Republic of Korea
| | - Song Park
- Department of Food Science and Biotechnology, Andong National University, Andong 36729, Republic of Korea
| | - Huiwon Seo
- Department of Food Science and Biotechnology, Dongguk University, Gyeonggi-do 10326, Republic of Korea
| | - Seok-Hee Lee
- Department of Food Science and Biotechnology, Dongguk University, Gyeonggi-do 10326, Republic of Korea
| | - Hee-Seok Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Yooheon Park
- Department of Food Science and Biotechnology, Dongguk University, Gyeonggi-do 10326, Republic of Korea
| | - Jun Ho Kim
- Department of Food Science and Biotechnology, Andong National University, Andong 36729, Republic of Korea.
| |
Collapse
|
23
|
Makarova E, Kazantseva A, Dubinina A, Jakovleva T, Balybina N, Baranov K, Bazhan N. The Same Metabolic Response to FGF21 Administration in Male and Female Obese Mice Is Accompanied by Sex-Specific Changes in Adipose Tissue Gene Expression. Int J Mol Sci 2021; 22:10561. [PMID: 34638898 PMCID: PMC8508620 DOI: 10.3390/ijms221910561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/14/2021] [Accepted: 09/25/2021] [Indexed: 02/07/2023] Open
Abstract
The preference for high-calorie foods depends on sex and contributes to obesity development. Fibroblast growth factor 21 (FGF21) beneficially affects taste preferences and obesity, but its action has mainly been studied in males. The aim of this study was to compare the effects of FGF21 on food preferences and glucose and lipid metabolism in C57Bl/6J male and female mice with diet-induced obesity. Mice were injected with FGF21 or vehicle for 7 days. Body weight, choice between standard (SD) and high-fat (HFD) diets, blood parameters, and gene expression in white (WAT) and brown (BAT) adipose tissues, liver, muscles, and the hypothalamus were assessed. Compared to males, females had a greater preference for HFD; less WAT; lower levels of cholesterol, glucose, and insulin; and higher expression of Fgf21, Insr, Ppara, Pgc1, Acca and Accb in the liver and Dio2 in BAT. FGF21 administration decreased adiposity; blood levels of cholesterol, glucose, and insulin; hypothalamic Agrp expression, increased SD intake, decreased HFD intake independently of sex, and increased WAT expression of Pparg, Lpl and Lipe only in females. Thus, FGF21 administration beneficially affected mice of both sexes despite obesity-associated sex differences in metabolic characteristics, and it induced female-specific activation of gene expression in WAT.
Collapse
Affiliation(s)
- Elena Makarova
- The Laboratory of Physiological Genetics, The Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.K.); (A.D.); (T.J.); (N.B.); (N.B.)
| | - Antonina Kazantseva
- The Laboratory of Physiological Genetics, The Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.K.); (A.D.); (T.J.); (N.B.); (N.B.)
| | - Anastasia Dubinina
- The Laboratory of Physiological Genetics, The Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.K.); (A.D.); (T.J.); (N.B.); (N.B.)
| | - Tatiana Jakovleva
- The Laboratory of Physiological Genetics, The Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.K.); (A.D.); (T.J.); (N.B.); (N.B.)
| | - Natalia Balybina
- The Laboratory of Physiological Genetics, The Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.K.); (A.D.); (T.J.); (N.B.); (N.B.)
| | - Konstantin Baranov
- The Institute of Molecular and Cellular Biology, 630090 Novosibirsk, Russia;
| | - Nadezhda Bazhan
- The Laboratory of Physiological Genetics, The Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.K.); (A.D.); (T.J.); (N.B.); (N.B.)
| |
Collapse
|
24
|
Morán-Costoya A, Proenza AM, Gianotti M, Lladó I, Valle A. Sex Differences in Nonalcoholic Fatty Liver Disease: Estrogen Influence on the Liver-Adipose Tissue Crosstalk. Antioxid Redox Signal 2021; 35:753-774. [PMID: 33736456 DOI: 10.1089/ars.2021.0044] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Nonalcoholic fatty liver disease (NAFLD) is a hepatic and systemic disorder with a complex multifactorial pathogenesis. Owing to the rising incidence of obesity and diabetes mellitus, the prevalence of NAFLD and its impact on global health care are expected to increase in the future. Differences in NAFLD exist between males and females, and among females depending on their reproductive status. Clinical and preclinical data show that females in the fertile age are more protected against NAFLD, and studies in postmenopausal women and ovariectomized animal models support a protective role for estrogens. Recent Advances: An efficient crosstalk between the liver and adipose tissue is necessary to regulate lipid and glucose metabolism, protecting the liver from steatosis and insulin resistance contributing to NALFD. New advances in the knowledge of sexual dimorphism in liver and adipose tissue are providing interesting clues about the sex differences in NAFLD pathogenesis that could inspire new therapeutic strategies. Critical Issues: Sex hormones influence key master regulators of lipid metabolism and oxidative stress in liver and adipose tissue. All these sex-biased metabolic adjustments shape the crosstalk between liver and adipose tissue, contributing to the higher protection of females to NAFLD. Future Directions: The development of novel drugs based on the protective action of estrogens, but without its feminizing or undesired side effects, might provide new therapeutic strategies for the management of NAFLD. Antioxid. Redox Signal. 35, 753-774.
Collapse
Affiliation(s)
- Andrea Morán-Costoya
- Energy Metabolism and Nutrition Group, Department of Fundamental Biology and Health Sciences, Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Ana M Proenza
- Energy Metabolism and Nutrition Group, Department of Fundamental Biology and Health Sciences, Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,Center for Biomedical Research in the Pathophysiology of Obesity and Nutrition Network, Carlos III Health Institute, Madrid, Spain
| | - Magdalena Gianotti
- Energy Metabolism and Nutrition Group, Department of Fundamental Biology and Health Sciences, Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,Center for Biomedical Research in the Pathophysiology of Obesity and Nutrition Network, Carlos III Health Institute, Madrid, Spain
| | - Isabel Lladó
- Energy Metabolism and Nutrition Group, Department of Fundamental Biology and Health Sciences, Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,Center for Biomedical Research in the Pathophysiology of Obesity and Nutrition Network, Carlos III Health Institute, Madrid, Spain
| | - Adamo Valle
- Energy Metabolism and Nutrition Group, Department of Fundamental Biology and Health Sciences, Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,Center for Biomedical Research in the Pathophysiology of Obesity and Nutrition Network, Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
25
|
Comparison of metabolic beneficial effects of Liraglutide and Semaglutide in male C57BL/6J mice. Can J Diabetes 2021; 46:216-224.e2. [DOI: 10.1016/j.jcjd.2021.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/10/2021] [Accepted: 08/27/2021] [Indexed: 11/29/2022]
|
26
|
Badakhshi Y, Shao W, Liu D, Tian L, Pang J, Gu J, Hu J, Jin T. Estrogen-Wnt signaling cascade regulates expression of hepatic fibroblast growth factor 21. Am J Physiol Endocrinol Metab 2021; 321:E292-E304. [PMID: 34229476 DOI: 10.1152/ajpendo.00638.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have generated the transgenic mouse line LTCFDN in which dominant negative TCF7L2 (TCF7L2DN) is specifically expressed in the liver during adulthood. Male but not female LTCFDN mice showed elevated hepatic and plasma triglyceride (TG) levels, indicating the existence of estrogen-β-cat/TCF signaling cascade that regulates hepatic lipid homeostasis. We show here that hepatic fibroblast growth factor 21 (FGF21) expression was reduced in male but not in female LTCFDN mice. The reduction was not associated with altered hepatic expression of peroxisome proliferator-activated receptor α (PPARα). In mouse primary hepatocytes (MPH), Wnt-3a treatment increased FGF21 expression in the presence of PPARα inhibitor. Results from our luciferase-reporter assay and chromatin immunoprecipitation suggest that evolutionarily conserved TCF binding motifs (TCFBs) on Fgf21 promoter mediate Wnt-3a-induced Fgf21 transactivation. Female mice showed reduced hepatic FGF21 production and circulating FGF21 level following ovariectomy (OVX), associated with reduced hepatic TCF expression and β-catenin S675 phosphorylation. Finally, in MPH, estradiol (E2) treatment enhanced FGF21 expression, as well as binding of TCF7L2 and ribonucleic acid (RNA) polymerase II to the Fgf21 promoter; and the enhancement can be attenuated by the G-protein-coupled estrogen receptor 1 (GPER) antagonist G15. Our observations hence indicate that hepatic FGF21 is among the effectors of the newly recognized E2-β-cat/TCF signaling cascade.NEW & NOTEWORTHY FGF21 is mainly produced in the liver. Therapeutic effect of FGF21 analogues has been demonstrated in clinical trials on reducing hyperlipidemia. We show here that Fgf21 transcription is positively regulated by Wnt pathway effector β-cat/TCF. Importantly, hepatic β-cat/TCF activity can be regulated by the female hormone estradiol, involving GPER. The investigation enriched our understanding on hepatic FGF21 hormone production, and expanded our view on metabolic functions of the Wnt pathway in the liver.
Collapse
Affiliation(s)
- Yasaman Badakhshi
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
- Divison of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Weijuan Shao
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
- Divison of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Dinghui Liu
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Lili Tian
- Divison of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Juan Pang
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jianqiu Gu
- Divison of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Departmemt of Endocrinology and Metabolism and the Institute of Endocrinology, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jim Hu
- Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tianru Jin
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
- Divison of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
27
|
Xie B, Pan D, Liu H, Liu M, Shi X, Chu X, Lu J, Zhu M, Xia B, Wu J. Diosmetin Protects Against Obesity and Metabolic Dysfunctions Through Activation of Adipose Estrogen Receptors in Mice. Mol Nutr Food Res 2021; 65:e2100070. [PMID: 34223710 DOI: 10.1002/mnfr.202100070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/28/2021] [Indexed: 12/19/2022]
Abstract
SCOPE Obesity is a major public health and economic problem of global significance. Here, we investigate the role of diosmetin, a natural flavonoid presents mainly in citrus fruits, in the regulation of obesity and metabolic dysfunctions in mice. METHODS AND RESULTS Eight-week-old male C57BL/6 mice fed a high-fat diet (HFD) or 5-week-old male ob/ob mice fed a normal diet are treated with diosmetin (50 mg kg-1 daily) or vehicle for 8 weeks. Diosmetin treatment decreases body weight and fat mass, improves glucose tolerance and insulin resistance in obese mice. These metabolic benefits are mainly attributed to increase energy expenditure via enhancing thermogenesis in brown adipose tissue (BAT) and browning of white adipose tissue (WAT). Mechanistically, diosmetin acts as an agonist for estrogen receptors (ERs), and subsequently elevates adipose expressions of ERs in mice and in cultured adipocytes. When ERs are blocked by their antagonist fulvestrant in mice, diosmetin loses its beneficial effects, suggesting that ERs are indispensable for the metabolic benefits of diosmetin. CONCLUSION The results indicate that diosmetin may be a potential anti-obesity nutritional supplement and could be explored for low ERs-related obesity populations.
Collapse
Affiliation(s)
- Baocai Xie
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Dengke Pan
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| | - Huan Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Min Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaochen Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinyi Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Junfeng Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengqing Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bo Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiangwei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
28
|
Deng Y, Yuan J, Qiu J, Tang B, Chen X, Hu S, He H, Liu H, Li L, Han C, Hu J, Wang J. Oestrogen promotes lipids transportation through oestrogen receptor α in hepatic steatosis of geese in vitro. J Anim Physiol Anim Nutr (Berl) 2021; 106:552-560. [PMID: 34111322 DOI: 10.1111/jpn.13590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 01/05/2023]
Abstract
Evidence has shown that oestrogen suppresses lipids deposition in the liver of mammals. However, the molecular mechanism of oestrogen action in hepatic steatosis of geese liver has yet to be determined. This study aimed to investigate the effect of oestrogen on lipid homeostasis at different states of geese hepatocytes in vitro. The results showed that an in vitro model of hepatic steatosis was induced by 1.5 mM sodium oleate via detecting the viability of hepatocytes and content of lipids. When the normal hepatocytes were administrated with different concentrations of oestrogen (E2 ), the expression levels of diacylglycerol acyltransferase 2 (DGAT2), microsomal triglyceride transfer protein (MTTP) and oestrogen receptors (ERs, alpha and beta) were up-regulated only at high concentrations of E2 , whereas the lipid content was not a significant difference. In goose hepatocytes of hepatic steatosis, however, the expression levels of MTTP, apolipoprotein B (apoB) and ERα/β significantly increased at 10-7 or 10-6 M E2 . Meanwhile, the lipids content significantly increased at 10-9 and 10-8 M E2 and decreased at 80 µM E2 . Further heatmap analysis showed that ERα was clustered with apoB and MTTP in either normal hepatocytes or that of hepatic steatosis. Taken together, E2 might bind to ERα to up-regulate the expression levels of apoB and MTTP, promoting the transportation of lipids and alleviating lipids overload in hepatic steatosis of geese in vitro.
Collapse
Affiliation(s)
- Yan Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Junsong Yuan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiamin Qiu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bincheng Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xuefei Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
29
|
Chee Y, Toh GL, Lim CJ, Goh LL, Dalan R. Sex Modifies the Association of Fibroblast Growth Factor 21 With Subclinical Carotid Atherosclerosis. Front Cardiovasc Med 2021; 8:627691. [PMID: 33996935 PMCID: PMC8116496 DOI: 10.3389/fcvm.2021.627691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/18/2021] [Indexed: 12/22/2022] Open
Abstract
Background and Aims: Fibroblast growth factor 21 (FGF21), an emerging metabolic hepatokine, is associated with atherosclerosis. An interaction with sex has been described in various populations. We aimed to study whether sex modulates the relationship between FGF21 and subclinical carotid atherosclerosis in a diabetes-enriched multiethnic population of Singapore. We explore differences in intermediary mechanisms, in terms of hypertension, lipids, and inflammation, between FGF21 and atherosclerosis. Methods: We recruited 425 individuals from a single diabetes center in Singapore, and demographics, anthropometry, metabolic profile, FGF21, and carotid ultrasonography were performed. Multivariable logistic regression models were used to study the association between subclinical atherosclerosis and FGF21 adjusting for age, ethnicity, body mass index (BMI), hemoglobin A1c (HbA1c), systolic and diastolic blood pressures, and low-density lipoprotein (LDL)-cholesterol separately for males and females as two groups after an interaction test. Results: An interaction test assessing interaction by sex on the relationship between subclinical atherosclerosis and FGF21 showed a significant interaction with sex (Pinteraction = 0.033). In the female subgroup, significant independent associations of standardized lnFGF21 with subclinical atherosclerosis were seen, with 1 SD increment in lnFGF21 being associated with 1.48-fold (95% CI: 1.03, 2.12; p = 0.036) increase in risk. In the male subgroup, the association of subclinical atherosclerosis with standardized lnFGF21 was not significant [odds ratio (OR) (95% CI): 0.90 (0.63, 1.28); p = 0.553]. We found sex interactions with pulse pressure being significantly associated in females only and triglycerides and C-reactive protein being associated with males only. Conclusion: FGF21 is positively associated with subclinical carotid atherosclerosis in women, but not in men. The sex–racial patterns in the mechanisms by which FGF21 causes subclinical atherosclerosis needs to be explored in larger population-based studies and mechanistically studied in greater detail.
Collapse
Affiliation(s)
| | | | | | | | - Rinkoo Dalan
- Tan Tock Seng Hospital, Singapore, Singapore.,Department of Metabolic Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
30
|
Momozono A, Hayashi A, Takano K, Shichiri M. The effectiveness of growth hormone replacement on energy expenditure and body composition in patients with adult growth hormone deficiency. Endocr J 2021; 68:469-475. [PMID: 33361693 DOI: 10.1507/endocrj.ej20-0644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Numerous studies have shown that growth hormone (GH) replacement in adult GH deficiency (AGHD) improves the body composition and metabolic rate; however, data about the relationship between body composition and energy expenditure in these patients is scarce. Our study aimed to investigate the changes in resting energy expenditure (REE) and body composition after GH replacement in patients with AGHD. We enrolled 15 patients diagnosed with AGHD and evaluated the effect of GH replacement administered once daily for 12 months on REE, body composition measured by bioelectrical impedance analysis, and serological markers. GH replacement therapy significantly increased the serum insulin growth factor-1 levels after 4, 8, and 12 months. The REE and REE/basal energy expenditure (REE/BEE) ratio significantly increased from 1278.0 ± 490.0 kcal/day and 0.87 ± 0.23 at baseline to 1505.5 ± 449.2 kcal/day and 1.11 ± 0.21 at 4 months, 1,918.7 ± 631.2 kcal/day and 1.29 ± 0.27 at 8 months, and 1,511.1 ± 271.2 kcal/day, 1.14 ± 0.29 at 12 months (p < 0.005, p < 0.005; p < 0.01, p < 0.01; p < 0.01, p < 0.005, respectively). There was no change in the body weight, while the lean body mass increased significantly from 45.8 ± 9.5 kg at baseline to 46.9 ± 9.4 kg at 4 months and 47.5 ± 10.1 kg at 8 months (p < 0.005, p < 0.01, respectively). The fat mass also decreased at 12 months. Lipid metabolism improved after 4 and 8 months. GH replacement therapy in patients with AGHD significantly improved the REE and body composition.
Collapse
Affiliation(s)
- Akari Momozono
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Akinori Hayashi
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Koji Takano
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Masayoshi Shichiri
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| |
Collapse
|
31
|
Badakhshi Y, Jin T. Current understanding and controversies on the clinical implications of fibroblast growth factor 21. Crit Rev Clin Lab Sci 2020; 58:311-328. [PMID: 33382006 DOI: 10.1080/10408363.2020.1864278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Metabolic functions of the hepatic hormone fibroblast growth factor 21 (FGF21) have been recognized for more than a decade in studying the responses of human subjects and rodent models to nutritional stresses such as fasting, high-fat diet or ketogenic diet consumption, and ethanol intake. Our interest in the beneficial metabolic effects of FGF21 has risen due to its potential ability to serve as a therapeutic agent for various metabolic disorders, including type 2 diabetes, obesity, and fatty liver diseases, as well as its potential to act as a diagnostic or prognostic biomarker for metabolic and other disorders. Here, we briefly review the FGF21 gene and protein structures, its expression pattern, and cellular signaling cascades that mediate FGF21 production and function. We mainly focus on discussing experimental and clinical literature pertaining to FGF21 as a therapeutic agent. Furthermore, we present several lines of investigation, including a few studies conducted by our team, suggesting that FGF21 expression and function can be regulated by dietary polyphenol interventions. Finally, we discuss the literature debating FGF21 as a potential biomarker in various disorders.
Collapse
Affiliation(s)
- Yasaman Badakhshi
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada.,Banting and Best Diabetes Center, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Tianru Jin
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada.,Banting and Best Diabetes Center, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
32
|
Uchida K, Inoue K, Hasegawa Y, Hakuno F, Takahashi SI, Takenaka A. Endogenous testosterone reduces hepatic lipid accumulation in protein-restricted male rats. Nutrition 2020; 85:111130. [PMID: 33545537 DOI: 10.1016/j.nut.2020.111130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/19/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Protein deficiency is known to cause ectopic fat accumulation in the liver. The aim of this study was to analyse the mechanism of suppression of hepatic fat accumulation by testosterone and to clarify the mechanism behind the gender difference in fatty liver formation due to protein deficiency. METHODS Hepatic fat accumulation due to protein deficiency was evaluated in male and female rats before and after sexual maturation. Then, the effects of testosterone on liver lipid, muscle protein metabolism and energy expenditure in adipose tissue were investigated in castrated or testosterone-injected male rats fed control or protein-restricted diet. RESULTS Hepatic triglyceride accumulation diminished with sex maturation in male but not in female protein-restricted rats. Protein restriction resulted in a significant increase in hepatic triglyceride content in castrated rats but not in sham-operated rats demonstrating that endogenous testosterone reduces hepatic lipid accumulation in male rats. Protein restriction reduced plasma IGF-I and muscle protein synthesis measured using the SUnSET method. Castration increased the plasma corticosterone level and muscle autophagic activity. Muscle weight was reduced and energy expenditure in adipose tissue was increased only when both factors were combined. CONCLUSIONS Muscle protein synthesis downregulation owing to protein restriction and activation of autophagy following castration reduced muscle mass thereby releasing surplus energy and promoting steatosis in protein-restricted castrated rats despite increased energy expenditure in adipose tissue. We hypothesize that endogenous testosterone reduces hepatic lipid accumulation in protein-deficient male rats and provide novel findings on the gender-specific differences in hepatic steatosis.
Collapse
Affiliation(s)
- Kaito Uchida
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Kana Inoue
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Yukiko Hasegawa
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Fumihiko Hakuno
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Japan
| | - Shin-Ichiro Takahashi
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Japan
| | - Asako Takenaka
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Japan.
| |
Collapse
|
33
|
Iakovleva TV, Kostina NE, Makarova EN, Bazhan NM. Effect of gonadectomy and estradiol on the expression of insulin signaling cascade genes in female and male mice. Vavilovskii Zhurnal Genet Selektsii 2020; 24:427-434. [PMID: 33659826 PMCID: PMC7716539 DOI: 10.18699/vj20.635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- T. V. Iakovleva
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
| | - N. E. Kostina
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
| | - E. N. Makarova
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
| | - N. M. Bazhan
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
| |
Collapse
|
34
|
Corona G, Kreimes A, Barone M, Turroni S, Brigidi P, Keleszade E, Costabile A. Impact of lignans in oilseed mix on gut microbiome composition and enterolignan production in younger healthy and premenopausal women: an in vitro pilot study. Microb Cell Fact 2020; 19:82. [PMID: 32245478 PMCID: PMC7119089 DOI: 10.1186/s12934-020-01341-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/26/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Dietary lignans belong to the group of phytoestrogens together with coumestans, stilbenes and isoflavones, and themselves do not exhibit oestrogen-like properties. Nonetheless, the gut microbiota converts them into enterolignans, which show chemical similarity to the human oestrogen molecule. One of the richest dietary sources of lignans are oilseeds, including flaxseed. The aim of this pilot study was to determine the concentration of the main dietary lignans in an oilseed mix, and explore the gut microbiota-dependent production of enterolignans for oestrogen substitution in young and premenopausal women. The oilseed mix was fermented in a pH-controlled batch culture system inoculated with women's faecal samples. The lignan content and enterolignan production were measured by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), and the faecal-derived microbial communities were profiled by 16S rRNA gene-based next-generation sequencing. RESULTS In vitro batch culture fermentation of faecal samples inoculated with oilseed mix for 24 h resulted in a substantial increase in enterolactone production in younger women and an increase in enterodiol in the premenopausal group. As for the gut microbiota, different baseline profiles were observed as well as different temporal dynamics, mainly related to Clostridiaceae, and Klebsiella and Collinsella spp. CONCLUSIONS Despite the small sample size, our pilot study revealed that lignan-rich oilseeds could strongly influence the faecal microbiota of both younger and premenopausal females, leading to a different enterolignan profile being produced. Further studies in larger cohorts are needed to evaluate the long-term effects of lignan-rich diets on the gut microbiota and find out how enterolactone-producing bacterial species could be increased. Diets rich in lignans could potentially serve as a safe supplement of oestrogen analogues to meet the cellular needs of endogenous oestrogen and deliver numerous health benefits, provided that the premenopausal woman microbiota is capable of converting dietary precursors into enterolignans.
Collapse
Affiliation(s)
- Giulia Corona
- Health Science Research Centre, Department of Life Sciences, University of Roehampton, London, UK
| | - Anna Kreimes
- Health Science Research Centre, Department of Life Sciences, University of Roehampton, London, UK
| | - Monica Barone
- Unit of Holobiont Microbiome and Microbiome Engineering, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Silvia Turroni
- Unit of Holobiont Microbiome and Microbiome Engineering, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Patrizia Brigidi
- Unit of Holobiont Microbiome and Microbiome Engineering, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Enver Keleszade
- Health Science Research Centre, Department of Life Sciences, University of Roehampton, London, UK
| | - Adele Costabile
- Health Science Research Centre, Department of Life Sciences, University of Roehampton, London, UK.
| |
Collapse
|
35
|
Tramunt B, Smati S, Grandgeorge N, Lenfant F, Arnal JF, Montagner A, Gourdy P. Sex differences in metabolic regulation and diabetes susceptibility. Diabetologia 2020; 63:453-461. [PMID: 31754750 PMCID: PMC6997275 DOI: 10.1007/s00125-019-05040-3] [Citation(s) in RCA: 510] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022]
Abstract
Gender and biological sex impact the pathogenesis of numerous diseases, including metabolic disorders such as diabetes. In most parts of the world, diabetes is more prevalent in men than in women, especially in middle-aged populations. In line with this, considering almost all animal models, males are more likely to develop obesity, insulin resistance and hyperglycaemia than females in response to nutritional challenges. As summarised in this review, it is now obvious that many aspects of energy balance and glucose metabolism are regulated differently in males and females and influence their predisposition to type 2 diabetes. During their reproductive life, women exhibit specificities in energy partitioning as compared with men, with carbohydrate and lipid utilisation as fuel sources that favour energy storage in subcutaneous adipose tissues and preserve them from visceral and ectopic fat accumulation. Insulin sensitivity is higher in women, who are also characterised by higher capacities for insulin secretion and incretin responses than men; although, these sex advantages all disappear when glucose tolerance deteriorates towards diabetes. Clinical and experimental observations evidence the protective actions of endogenous oestrogens, mainly through oestrogen receptor α activation in various tissues, including the brain, the liver, skeletal muscle, adipose tissue and pancreatic beta cells. However, beside sex steroids, underlying mechanisms need to be further investigated, especially the role of sex chromosomes, fetal/neonatal programming and epigenetic modifications. On the path to precision medicine, further deciphering sex-specific traits in energy balance and glucose homeostasis is indeed a priority topic to optimise individual approaches in type 2 diabetes prevention and treatment.
Collapse
Affiliation(s)
- Blandine Tramunt
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), UMR1048, Team 9, INSERM/UPS, Université de Toulouse, 1 avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 4, France
- Service de Diabétologie, Maladies Métaboliques et Nutrition, CHU de Toulouse, Toulouse, France
| | - Sarra Smati
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), UMR1048, Team 9, INSERM/UPS, Université de Toulouse, 1 avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 4, France
- Institut National de la Recherche Agronomique (INRA), Toxalim UMR 1331, Toulouse, France
| | - Naia Grandgeorge
- Service de Diabétologie, Maladies Métaboliques et Nutrition, CHU de Toulouse, Toulouse, France
| | - Françoise Lenfant
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), UMR1048, Team 9, INSERM/UPS, Université de Toulouse, 1 avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 4, France
| | - Jean-François Arnal
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), UMR1048, Team 9, INSERM/UPS, Université de Toulouse, 1 avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 4, France
| | - Alexandra Montagner
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), UMR1048, Team 9, INSERM/UPS, Université de Toulouse, 1 avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 4, France
| | - Pierre Gourdy
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), UMR1048, Team 9, INSERM/UPS, Université de Toulouse, 1 avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 4, France.
- Service de Diabétologie, Maladies Métaboliques et Nutrition, CHU de Toulouse, Toulouse, France.
| |
Collapse
|
36
|
Sex Differences in Liver, Adipose Tissue, and Muscle Transcriptional Response to Fasting and Refeeding in Mice. Cells 2019; 8:cells8121529. [PMID: 31783664 PMCID: PMC6953068 DOI: 10.3390/cells8121529] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
Fasting is often used for obesity correction but the “refeeding syndrome” limits its efficiency, and molecular mechanisms underlying metabolic response to different food availability are under investigation. Sex was shown to affect hormonal and metabolic reactions to fasting/refeeding. The aim of this study was to evaluate hormonal and transcriptional responses to fasting and refeeding in male and female C57Bl/6J mice. Sex asymmetry was observed both at the hormonal and transcriptional levels. Fasting (24 h) induced increase in hepatic Fgf21 gene expression, which was associated with elevation of plasma FGF21 and adiponectin levels, and the upregulation of expression of hepatic (Pparα, Cpt1α) and muscle (Cpt1β, Ucp3) genes involved in fatty acid oxidation. These changes were more pronounced in females. Refeeding (6 h) evoked hyperinsulinemia and increased hepatic expression of gene related to lipogenesis (Fasn) only in males and hyperleptinemia and increase in Fgf21 gene expression in muscles and adipose tissues only in females. The results suggest that in mice, one of the molecular mechanisms underlying sex asymmetry in hepatic Pparα, Cpt1α, muscle Cpt1β, and Ucp3 expression during fasting is hepatic Fgf21 expression, and the reason for sex asymmetry in hepatic Fasn expression during refeeding is male-specific hyperinsulinemia.
Collapse
|