1
|
Nwako JG, McCauley HA. Enteroendocrine cells regulate intestinal homeostasis and epithelial function. Mol Cell Endocrinol 2024; 593:112339. [PMID: 39111616 PMCID: PMC11401774 DOI: 10.1016/j.mce.2024.112339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/11/2024]
Abstract
Enteroendocrine cells (EECs) are well-known for their systemic hormonal effects, especially in the regulation of appetite and glycemia. Much less is known about how the products made by EECs regulate their local environment within the intestine. Here, we focus on paracrine interactions between EECs and other intestinal cells as they regulate three essential aspects of intestinal homeostasis and physiology: 1) intestinal stem cell function and proliferation; 2) nutrient absorption; and 3) mucosal barrier function. We also discuss the ability of EECs to express multiple hormones, describe in vitro and in vivo models to study EECs, and consider how EECs are altered in GI disease.
Collapse
Affiliation(s)
- Jennifer G Nwako
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, 111 Mason Farm Road, Molecular Biology Research Building 5341C, Chapel Hill, NC 27599, USA
| | - Heather A McCauley
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, 111 Mason Farm Road, Molecular Biology Research Building 5341C, Chapel Hill, NC 27599, USA.
| |
Collapse
|
2
|
Bildstein T, Charbit-Henrion F, Azabdaftari A, Cerf-Bensussan N, Uhlig HH. Cellular and molecular basis of proximal small intestine disorders. Nat Rev Gastroenterol Hepatol 2024; 21:687-709. [PMID: 39117867 DOI: 10.1038/s41575-024-00962-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
The proximal part of the small intestine, including duodenum and jejunum, is not only dedicated to nutrient digestion and absorption but is also a highly regulated immune site exposed to environmental factors. Host-protective responses against pathogens and tolerance to food antigens are essential functions in the small intestine. The cellular ecology and molecular pathways to maintain those functions are complex. Maladaptation is highlighted by common immune-mediated diseases such as coeliac disease, environmental enteric dysfunction or duodenal Crohn's disease. An expanding spectrum of more than 100 rare monogenic disorders inform on causative molecular mechanisms of nutrient absorption, epithelial homeostasis and barrier function, as well as inflammatory immune responses and immune regulation. Here, after summarizing the architectural and cellular traits that underlie the functions of the proximal intestine, we discuss how the integration of tissue immunopathology and molecular mechanisms can contribute towards our understanding of disease and guide diagnosis. We propose an integrated mechanism-based taxonomy and discuss the latest experimental approaches to gain new mechanistic insight into these disorders with large disease burden worldwide as well as implications for therapeutic interventions.
Collapse
Affiliation(s)
- Tania Bildstein
- Great Ormond Street Hospital for Children, Department of Paediatric Gastroenterology, London, UK
| | - Fabienne Charbit-Henrion
- Department of Genomic Medicine for Rare Diseases, Necker-Enfants Malades Hospital, APHP, University of Paris-Cité, Paris, France
- INSERM UMR1163, Intestinal Immunity, Institut Imagine, Paris, France
| | - Aline Azabdaftari
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Oxford, UK
| | | | - Holm H Uhlig
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
3
|
Ibrahim H, Balboa D, Saarimäki-Vire J, Montaser H, Dyachok O, Lund PE, Omar-Hmeadi M, Kvist J, Dwivedi OP, Lithovius V, Barsby T, Chandra V, Eurola S, Ustinov J, Tuomi T, Miettinen PJ, Barg S, Tengholm A, Otonkoski T. RFX6 haploinsufficiency predisposes to diabetes through impaired beta cell function. Diabetologia 2024; 67:1642-1662. [PMID: 38743124 PMCID: PMC11343796 DOI: 10.1007/s00125-024-06163-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/21/2024] [Indexed: 05/16/2024]
Abstract
AIMS/HYPOTHESIS Regulatory factor X 6 (RFX6) is crucial for pancreatic endocrine development and differentiation. The RFX6 variant p.His293LeufsTer7 is significantly enriched in the Finnish population, with almost 1:250 individuals as a carrier. Importantly, the FinnGen study indicates a high predisposition for heterozygous carriers to develop type 2 and gestational diabetes. However, the precise mechanism of this predisposition remains unknown. METHODS To understand the role of this variant in beta cell development and function, we used CRISPR technology to generate allelic series of pluripotent stem cells. We created two isogenic stem cell models: a human embryonic stem cell model; and a patient-derived stem cell model. Both were differentiated into pancreatic islet lineages (stem-cell-derived islets, SC-islets), followed by implantation in immunocompromised NOD-SCID-Gamma mice. RESULTS Stem cell models of the homozygous variant RFX6-/- predictably failed to generate insulin-secreting pancreatic beta cells, mirroring the phenotype observed in Mitchell-Riley syndrome. Notably, at the pancreatic endocrine stage, there was an upregulation of precursor markers NEUROG3 and SOX9, accompanied by increased apoptosis. Intriguingly, heterozygous RFX6+/- SC-islets exhibited RFX6 haploinsufficiency (54.2% reduction in protein expression), associated with reduced beta cell maturation markers, altered calcium signalling and impaired insulin secretion (62% and 54% reduction in basal and high glucose conditions, respectively). However, RFX6 haploinsufficiency did not have an impact on beta cell number or insulin content. The reduced insulin secretion persisted after in vivo implantation in mice, aligning with the increased risk of variant carriers to develop diabetes. CONCLUSIONS/INTERPRETATION Our allelic series isogenic SC-islet models represent a powerful tool to elucidate specific aetiologies of diabetes in humans, enabling the sensitive detection of aberrations in both beta cell development and function. We highlight the critical role of RFX6 in augmenting and maintaining the pancreatic progenitor pool, with an endocrine roadblock and increased cell death upon its loss. We demonstrate that RFX6 haploinsufficiency does not affect beta cell number or insulin content but does impair function, predisposing heterozygous carriers of loss-of-function variants to diabetes. DATA AVAILABILITY Ultra-deep bulk RNA-seq data for pancreatic differentiation stages 3, 5 and 7 of H1 RFX6 genotypes are deposited in the Gene Expression Omnibus database with accession code GSE234289. Original western blot images are deposited at Mendeley ( https://data.mendeley.com/datasets/g75drr3mgw/2 ).
Collapse
Affiliation(s)
- Hazem Ibrahim
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Diego Balboa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jonna Saarimäki-Vire
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hossam Montaser
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Oleg Dyachok
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Per-Eric Lund
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Jouni Kvist
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Om P Dwivedi
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, Helsinki, Finland
- Research Program of Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Väinö Lithovius
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tom Barsby
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vikash Chandra
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Solja Eurola
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jarkko Ustinov
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tiinamaija Tuomi
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, Helsinki, Finland
- Research Program of Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Finland
- Abdominal Center, Endocrinology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Päivi J Miettinen
- Department of Pediatrics, Helsinki University Hospital, Helsinki, Finland
| | - Sebastian Barg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Pediatrics, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
4
|
Peng Z, Bao L, Iben J, Wang S, Shi B, Shi YB. Protein arginine methyltransferase 1 regulates mouse enteroendocrine cell development and homeostasis. Cell Biosci 2024; 14:70. [PMID: 38835047 DOI: 10.1186/s13578-024-01257-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND The adult intestinal epithelium is a complex, self-renewing tissue composed of specialized cell types with diverse functions. Intestinal stem cells (ISCs) located at the bottom of crypts, where they divide to either self-renew, or move to the transit amplifying zone to divide and differentiate into absorptive and secretory cells as they move along the crypt-villus axis. Enteroendocrine cells (EECs), one type of secretory cells, are the most abundant hormone-producing cells in mammals and involved in the control of energy homeostasis. However, regulation of EEC development and homeostasis is still unclear or controversial. We have previously shown that protein arginine methyltransferase (PRMT) 1, a histone methyltransferase and transcription co-activator, is important for adult intestinal epithelial homeostasis. RESULTS To investigate how PRMT1 affects adult intestinal epithelial homeostasis, we performed RNA-Seq on small intestinal crypts of tamoxifen-induced intestinal epithelium-specific PRMT1 knockout and PRMT1fl/fl adult mice. We found that PRMT1fl/fl and PRMT1-deficient small intestinal crypts exhibited markedly different mRNA profiles. Surprisingly, GO terms and KEGG pathway analyses showed that the topmost significantly enriched pathways among the genes upregulated in PRMT1 knockout crypts were associated with EECs. In particular, genes encoding enteroendocrine-specific hormones and transcription factors were upregulated in PRMT1-deficient small intestine. Moreover, a marked increase in the number of EECs was found in the PRMT1 knockout small intestine. Concomitantly, Neurogenin 3-positive enteroendocrine progenitor cells was also increased in the small intestinal crypts of the knockout mice, accompanied by the upregulation of the expression levels of downstream targets of Neurogenin 3, including Neuod1, Pax4, Insm1, in PRMT1-deficient crypts. CONCLUSIONS Our finding for the first time revealed that the epigenetic enzyme PRMT1 controls mouse enteroendocrine cell development, most likely via inhibition of Neurogenin 3-mediated commitment to EEC lineage. It further suggests a potential role of PRMT1 as a critical transcriptional cofactor in EECs specification and homeostasis to affect metabolism and metabolic diseases.
Collapse
Affiliation(s)
- Zhaoyi Peng
- Department of Endocrinology, The First Affiliated Hospital of Xi'an JiaoTong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lingyu Bao
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - James Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shouhong Wang
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an JiaoTong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Sanchez JG, Rankin S, Paul E, McCauley HA, Kechele DO, Enriquez JR, Jones NH, Greeley SAW, Letourneau-Friedberg L, Zorn AM, Krishnamurthy M, Wells JM. RFX6 regulates human intestinal patterning and function upstream of PDX1. Development 2024; 151:dev202529. [PMID: 38587174 PMCID: PMC11128285 DOI: 10.1242/dev.202529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/12/2024] [Indexed: 04/09/2024]
Abstract
The gastrointestinal (GI) tract is complex and consists of multiple organs with unique functions. Rare gene variants can cause congenital malformations of the human GI tract, although the molecular basis of these has been poorly studied. We identified a patient with compound-heterozygous variants in RFX6 presenting with duodenal malrotation and atresia, implicating RFX6 in development of the proximal intestine. To identify how mutations in RFX6 impact intestinal patterning and function, we derived induced pluripotent stem cells from this patient to generate human intestinal organoids (HIOs). We identified that the duodenal HIOs and human tissues had mixed regional identity, with gastric and ileal features. CRISPR-mediated correction of RFX6 restored duodenal identity. We then used gain- and loss-of-function and transcriptomic approaches in HIOs and Xenopus embryos to identify that PDX1 is a downstream transcriptional target of RFX6 required for duodenal development. However, RFX6 had additional PDX1-independent transcriptional targets involving multiple components of signaling pathways that are required for establishing early regional identity in the GI tract. In summary, we have identified RFX6 as a key regulator in intestinal patterning that acts by regulating transcriptional and signaling pathways.
Collapse
Affiliation(s)
- J. Guillermo Sanchez
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Scott Rankin
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Emily Paul
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Heather A. McCauley
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Daniel O. Kechele
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Jacob R. Enriquez
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Nana-Hawa Jones
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Siri A. W. Greeley
- Division of Endocrinology, University of Chicago, Chicago, IL 60637, USA
| | | | - Aaron M. Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Mansa Krishnamurthy
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - James M. Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
6
|
Kwon SJ, Khan MS, Kim SG. Intestinal Inflammation and Regeneration-Interdigitating Processes Controlled by Dietary Lipids in Inflammatory Bowel Disease. Int J Mol Sci 2024; 25:1311. [PMID: 38279309 PMCID: PMC10816399 DOI: 10.3390/ijms25021311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a disease of chronic inflammatory conditions of the intestinal tract due to disturbance of the inflammation and immune system. Symptoms of IBD include abdominal pain, diarrhea, bleeding, reduced weight, and fatigue. In IBD, the immune system attacks the intestinal tract's inner wall, causing chronic inflammation and tissue damage. In particular, interlukin-6 and interlukin-17 act on immune cells, including T cells and macrophages, to amplify the immune responses so that tissue damage and morphological changes occur. Of note, excessive calorie intake and obesity also affect the immune system due to inflammation caused by lipotoxicity and changes in lipids supply. Similarly, individuals with IBD have alterations in liver function after sustained high-fat diet feeding. In addition, excess dietary fat intake, along with alterations in primary and secondary bile acids in the colon, can affect the onset and progression of IBD because inflammatory cytokines contribute to insulin resistance; the factors include the release of inflammatory cytokines, oxidative stress, and changes in intestinal microflora, which may also contribute to disease progression. However, interfering with de novo fatty acid synthase by deleting the enzyme acetyl-CoA-carboxylase 1 in intestinal epithelial cells (IEC) leads to the deficiency of epithelial crypt structures and tissue regeneration, which seems to be due to Lgr5+ intestinal stem cell function. Thus, conflicting reports exist regarding high-fat diet effects on IBD animal models. This review will focus on the pathological basis of the link between dietary lipids intake and IBD and will cover the currently available pharmacological approaches.
Collapse
Affiliation(s)
| | | | - Sang Geon Kim
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (S.J.K.); (M.S.K.)
| |
Collapse
|
7
|
Nakamura T, Fujikura J, Ito R, Keidai Y, Inagaki N. Human RFX6 regulates endoderm patterning at the primitive gut tube stage. PNAS NEXUS 2024; 3:pgae001. [PMID: 38239755 PMCID: PMC10794167 DOI: 10.1093/pnasnexus/pgae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024]
Abstract
Transcriptional factor RFX6 is known to be a causal gene of Mitchell-Riley syndrome (MRS), an autosomal recessive neonatal diabetes associated with pancreatic hypoplasia and intestinal atresia/malformation. The morphological defects are limited to posterior foregut and mid-hindgut endodermal lineages and do not occur in the anterior foregut lineage; the mechanism remains to be fully elucidated. In this study, we generated RFX6+/eGFP heterozygous knockin and RFX6eGFP/eGFP homozygous knockin/knockout human-induced pluripotent stem cell (hiPSC) lines and performed in vitro endoderm differentiation to clarify the role of RFX6 in early endoderm development. RFX6 expression was found to surge at the primitive gut tube (PGT) stage in comparison with that in the undifferentiated or definitive endoderm stage. At the PGT stage, the expression of PDX1 and CDX2, posterior foregut and mid-hindgut master regulators, respectively, was decreased by the RFX6 deficit. PDX1+ and CDX2+ cells were mostly green fluorescent protein (GFP)+ in RFX6+/eGFP hiPSCs, but their cell number was markedly decreased in RFX6eGFP/eGFP hiPSCs. The expression of SOX2, an anterior foregut marker, was not affected by the RFX6 deficit. In addition, we found a putative RFX6-binding X-box motif using cap analysis of gene expression-seq and the motif-containing sequences in the enhancer regions of PDX1 and CDX2 bound to RFX6 in vitro. Thus, RFX6 regulates the ParaHox genes PDX1 and CDX2 but does not affect SOX2 in early endodermal differentiation, suggesting that defects in early stage endoderm patterning account for the morphological pathology of MRS.
Collapse
Affiliation(s)
- Toshihiro Nakamura
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Junji Fujikura
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Ryo Ito
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Yamato Keidai
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Medical Research Institute, Kitano Hospital, PIIF Tazuke-kofukai, Osaka 530-8480, Japan
| |
Collapse
|
8
|
Dinsart G, Leprovots M, Lefort A, Libert F, Quesnel Y, Veithen A, Vassart G, Huysseune S, Parmentier M, Garcia MI. The olfactory receptor Olfr78 promotes differentiation of enterochromaffin cells in the mouse colon. EMBO Rep 2024; 25:304-333. [PMID: 38177905 PMCID: PMC10897383 DOI: 10.1038/s44319-023-00013-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 01/06/2024] Open
Abstract
The gastrointestinal epithelium constitutes a chemosensory system for microbiota-derived metabolites such as short-chain fatty acids (SCFA). Here, we investigate the spatial distribution of Olfr78, one of the SCFA receptors, in the mouse intestine and study the transcriptome of colon enteroendocrine cells expressing Olfr78. The receptor is predominantly detected in the enterochromaffin and L subtypes in the proximal and distal colon, respectively. Using the Olfr78-GFP and VilCre/Olfr78flox transgenic mouse lines, we show that loss of epithelial Olfr78 results in impaired enterochromaffin cell differentiation, blocking cells in an undefined secretory lineage state. This is accompanied by a reduced defense response to bacteria in colon crypts and slight dysbiosis. Using organoid cultures, we further show that maintenance of enterochromaffin cells involves activation of the Olfr78 receptor via the SCFA ligand acetate. Taken together, our work provides evidence that Olfr78 contributes to colon homeostasis by promoting enterochromaffin cell differentiation.
Collapse
Affiliation(s)
- Gilles Dinsart
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Faculty of Medicine, Université Libre de Bruxelles ULB, Route de Lennik 808, 1070, Brussels, Belgium
- Chemcom, Route de Lennik 802, 1070, Brussels, Belgium
| | - Morgane Leprovots
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Faculty of Medicine, Université Libre de Bruxelles ULB, Route de Lennik 808, 1070, Brussels, Belgium
| | - Anne Lefort
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Faculty of Medicine, Université Libre de Bruxelles ULB, Route de Lennik 808, 1070, Brussels, Belgium
- BRIGHTcore Facility, IRIBHM, Faculty of Medicine, Université Libre de Bruxelles ULB, Route de Lennik 808, 1070, Brussels, Belgium
| | - Frédérick Libert
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Faculty of Medicine, Université Libre de Bruxelles ULB, Route de Lennik 808, 1070, Brussels, Belgium
- BRIGHTcore Facility, IRIBHM, Faculty of Medicine, Université Libre de Bruxelles ULB, Route de Lennik 808, 1070, Brussels, Belgium
| | - Yannick Quesnel
- Chemcom, Route de Lennik 802, 1070, Brussels, Belgium
- Inchinn Therapeutics, Rue Auguste Piccard 48, 6041, Gosselies, Belgium
| | - Alex Veithen
- Chemcom, Route de Lennik 802, 1070, Brussels, Belgium
| | - Gilbert Vassart
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Faculty of Medicine, Université Libre de Bruxelles ULB, Route de Lennik 808, 1070, Brussels, Belgium
| | | | - Marc Parmentier
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Faculty of Medicine, Université Libre de Bruxelles ULB, Route de Lennik 808, 1070, Brussels, Belgium
| | - Marie-Isabelle Garcia
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Faculty of Medicine, Université Libre de Bruxelles ULB, Route de Lennik 808, 1070, Brussels, Belgium.
| |
Collapse
|
9
|
Jiménez S, Schreiber V, Mercier R, Gradwohl G, Molina N. Characterization of cell-fate decision landscapes by estimating transcription factor dynamics. CELL REPORTS METHODS 2023; 3:100512. [PMID: 37533652 PMCID: PMC10391345 DOI: 10.1016/j.crmeth.2023.100512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/23/2023] [Accepted: 06/01/2023] [Indexed: 08/04/2023]
Abstract
Time-specific modulation of gene expression during differentiation by transcription factors promotes cell diversity. However, estimating their dynamic regulatory activity at the single-cell level and in a high-throughput manner remains challenging. We present FateCompass, an integrative approach that utilizes single-cell transcriptomics data to identify lineage-specific transcription factors throughout differentiation. By combining a probabilistic framework with RNA velocities or differentiation potential, we estimate transition probabilities, while a linear model of gene regulation is employed to compute transcription factor activities. Considering dynamic changes and correlations of expression and activities, FateCompass identifies lineage-specific regulators. Our validation using in silico data and application to pancreatic endocrine cell differentiation datasets highlight both known and potentially novel lineage-specific regulators. Notably, we uncovered undescribed transcription factors of an enterochromaffin-like population during in vitro differentiation toward ß-like cells. FateCompass provides a valuable framework for hypothesis generation, advancing our understanding of the gene regulatory networks driving cell-fate decisions.
Collapse
Affiliation(s)
- Sara Jiménez
- Université de Strasbourg, Strasbourg, France
- CNRS, UMR 7104, 67400 Illkirch, France
- INSERM, UMR-S 1258, 67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France
| | - Valérie Schreiber
- Université de Strasbourg, Strasbourg, France
- CNRS, UMR 7104, 67400 Illkirch, France
- INSERM, UMR-S 1258, 67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France
| | - Reuben Mercier
- Université de Strasbourg, Strasbourg, France
- CNRS, UMR 7104, 67400 Illkirch, France
- INSERM, UMR-S 1258, 67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France
| | - Gérard Gradwohl
- Université de Strasbourg, Strasbourg, France
- CNRS, UMR 7104, 67400 Illkirch, France
- INSERM, UMR-S 1258, 67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France
| | - Nacho Molina
- Université de Strasbourg, Strasbourg, France
- CNRS, UMR 7104, 67400 Illkirch, France
- INSERM, UMR-S 1258, 67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France
| |
Collapse
|
10
|
Hickey JW, Becker WR, Nevins SA, Horning A, Perez AE, Zhu C, Zhu B, Wei B, Chiu R, Chen DC, Cotter DL, Esplin ED, Weimer AK, Caraccio C, Venkataraaman V, Schürch CM, Black S, Brbić M, Cao K, Chen S, Zhang W, Monte E, Zhang NR, Ma Z, Leskovec J, Zhang Z, Lin S, Longacre T, Plevritis SK, Lin Y, Nolan GP, Greenleaf WJ, Snyder M. Organization of the human intestine at single-cell resolution. Nature 2023; 619:572-584. [PMID: 37468586 PMCID: PMC10356619 DOI: 10.1038/s41586-023-05915-x] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/02/2023] [Indexed: 07/21/2023]
Abstract
The intestine is a complex organ that promotes digestion, extracts nutrients, participates in immune surveillance, maintains critical symbiotic relationships with microbiota and affects overall health1. The intesting has a length of over nine metres, along which there are differences in structure and function2. The localization of individual cell types, cell type development trajectories and detailed cell transcriptional programs probably drive these differences in function. Here, to better understand these differences, we evaluated the organization of single cells using multiplexed imaging and single-nucleus RNA and open chromatin assays across eight different intestinal sites from nine donors. Through systematic analyses, we find cell compositions that differ substantially across regions of the intestine and demonstrate the complexity of epithelial subtypes, and find that the same cell types are organized into distinct neighbourhoods and communities, highlighting distinct immunological niches that are present in the intestine. We also map gene regulatory differences in these cells that are suggestive of a regulatory differentiation cascade, and associate intestinal disease heritability with specific cell types. These results describe the complexity of the cell composition, regulation and organization for this organ, and serve as an important reference map for understanding human biology and disease.
Collapse
Affiliation(s)
- John W Hickey
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - Winston R Becker
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | | | - Aaron Horning
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Almudena Espin Perez
- Department of Biomedical Data Science, Stanford School of Medicine, Stanford, CA, USA
| | - Chenchen Zhu
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Bokai Zhu
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - Bei Wei
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Roxanne Chiu
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Derek C Chen
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Daniel L Cotter
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Edward D Esplin
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Annika K Weimer
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Chiara Caraccio
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | | | - Christian M Schürch
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Sarah Black
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - Maria Brbić
- Department of Computer Science, Stanford University, Stanford, CA, USA
- School of Computer and Communication Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Kaidi Cao
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Shuxiao Chen
- Department of Statistics and Data Science, University of Pennsylvania, Pennsylvania, PA, USA
| | - Weiruo Zhang
- Department of Biomedical Data Science, Stanford School of Medicine, Stanford, CA, USA
| | - Emma Monte
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Nancy R Zhang
- Department of Statistics and Data Science, University of Pennsylvania, Pennsylvania, PA, USA
| | - Zongming Ma
- Department of Statistics and Data Science, University of Pennsylvania, Pennsylvania, PA, USA
| | - Jure Leskovec
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Zhengyan Zhang
- Department of Surgery, Washington University, St Louis, MO, USA
| | - Shin Lin
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Teri Longacre
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - Sylvia K Plevritis
- Department of Biomedical Data Science, Stanford School of Medicine, Stanford, CA, USA
| | - Yiing Lin
- Department of Surgery, Washington University, St Louis, MO, USA
| | - Garry P Nolan
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA.
| | | | - Michael Snyder
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA.
| |
Collapse
|
11
|
Zinina VV, Sauer M, Nigmatullina L, Kreim N, Soshnikova N. TCF7L1 Controls the Differentiation of Tuft Cells in Mouse Small Intestine. Cells 2023; 12:1452. [PMID: 37296573 PMCID: PMC10253002 DOI: 10.3390/cells12111452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Continuous and rapid renewal of the intestinal epithelium depends on intestinal stem cells (ISCs). A large repertoire of transcription factors mediates the correct maintenance and differentiation of ISCs along either absorptive or secretory lineages. In the present study, we addressed the role of TCF7L1, a negative regulator of WNT signalling, in embryonic and adult intestinal epithelium using conditional mouse mutants. We found that TCF7L1 prevents precocious differentiation of the embryonic intestinal epithelial progenitors towards enterocytes and ISCs. We show that Tcf7l1 deficiency leads to upregulation of the Notch effector Rbp-J, resulting in a subsequent loss of embryonic secretory progenitors. In the adult small intestine, TCF7L1 is required for the differentiation of secretory epithelial progenitors along the tuft cell lineage. Furthermore, we show that Tcf7l1 promotes the differentiation of enteroendocrine D- and L-cells in the anterior small intestine. We conclude that TCF7L1-mediated repression of both Notch and WNT pathways is essential for the correct differentiation of intestinal secretory progenitors.
Collapse
Affiliation(s)
- Valeriya V. Zinina
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (V.V.Z.); (M.S.)
| | - Melanie Sauer
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (V.V.Z.); (M.S.)
| | | | - Nastasja Kreim
- Institute of Molecular Biology gGmbH, 55128 Mainz, Germany (N.K.)
| | - Natalia Soshnikova
- Institute for Molecular Medicine and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| |
Collapse
|
12
|
Blot F, Marchix J, Ejarque M, Jimenez S, Meunier A, Keime C, Trottier C, Croyal M, Lapp C, Mahe MM, De Arcangelis A, Gradwohl G. Gut Microbiota Remodeling and Intestinal Adaptation to Lipid Malabsorption After Enteroendocrine Cell Loss in Adult Mice. Cell Mol Gastroenterol Hepatol 2023; 15:1443-1461. [PMID: 36858136 PMCID: PMC10149283 DOI: 10.1016/j.jcmgh.2023.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND & AIMS Enteroendocrine cells (EECs) and their hormones are essential regulators of whole-body energy homeostasis. EECs sense luminal nutrients and microbial metabolites and subsequently secrete various hormones acting locally or at a distance. Impaired development of EECs during embryogenesis is life-threatening in newborn mice and humans due to compromised nutrient absorption. However, the physiological importance of the EEC system in adult mice has yet to be directedly studied. Herein, we aimed to determine the long-term consequences of a total loss of EECs in healthy adults on energy metabolism, intestinal transcriptome, and microbiota. METHODS We depleted intestinal EECs by tamoxifen treatment of adult Neurog3fl/fl; Villin-CreERT2 male mice. We studied intestinal cell differentiation, food efficiency, lipid absorption, microbiota composition, fecal metabolites, and transcriptomic responses in the proximal and distal small intestines of mice lacking EECs. We also determined the high-fat diet-induced transcriptomic changes in sorted Neurog3eYFP/+ EECs. RESULTS Induction of EEC deficiency in adults is not life-threatening unless fed with a high-fat diet. Under a standard chow diet, mice lose 10% of weight due to impaired food efficiency. Blood concentrations of cholesterol, triglycerides, and free fatty acids are reduced, and lipid absorption is impaired and delayed in the distal small intestine. Genes controlling lipogenesis, carbohydrate metabolism, and neoglucogenesis are upregulated. Microbiota composition is rapidly altered after EECs depletion and is characterized by decreased a-diversity. Bacteroides and Lactobacillus were progressively enriched, whereas Lachnospiraceae declined without impacting fecal short-chain fatty acid concentrations. CONCLUSIONS EECs are dispensable for survival in adult male mice under a standard chow diet. The absence of EECs impairs intestinal lipid absorption, leading to transcriptomic and metabolic adaptations and remodeling of the gut microbiota.
Collapse
Affiliation(s)
- Florence Blot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Justine Marchix
- Nantes Université, CHU Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Miriam Ejarque
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Sara Jimenez
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Aline Meunier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Céline Keime
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Camille Trottier
- Nantes Université, CHU Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Mikaël Croyal
- L'Institut du Thorax, INSERM UMR_S1087, CNRS UMR_6291, Université de Nantes, Nantes, France; CRNH-Ouest Mass Spectrometry Core Facility, Nantes, France; Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | - Céline Lapp
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Maxime M Mahe
- Nantes Université, CHU Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France; Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Adèle De Arcangelis
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France.
| | - Gérard Gradwohl
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France.
| |
Collapse
|
13
|
Wang Y, Song W, Yu S, Liu Y, Chen YG. Intestinal cellular heterogeneity and disease development revealed by single-cell technology. CELL REGENERATION 2022; 11:26. [PMID: 36045190 PMCID: PMC9433512 DOI: 10.1186/s13619-022-00127-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/15/2022] [Indexed: 11/10/2022]
Abstract
The intestinal epithelium is responsible for food digestion and nutrient absorption and plays a critical role in hormone secretion, microorganism defense, and immune response. These functions depend on the integral single-layered intestinal epithelium, which shows diversified cell constitution and rapid self-renewal and presents powerful regeneration plasticity after injury. Derailment of homeostasis of the intestine epithelium leads to the development of diseases, most commonly including enteritis and colorectal cancer. Therefore, it is important to understand the cellular characterization of the intestinal epithelium at the molecular level and the mechanisms underlying its homeostatic maintenance. Single-cell technologies allow us to gain molecular insights at the single-cell level. In this review, we summarize the single-cell RNA sequencing applications to understand intestinal cell characteristics, spatiotemporal evolution, and intestinal disease development.
Collapse
|
14
|
Estefanía-Fernández K, Andrés A, Alcolea A, Velayos-López M, Pastrían LG, Ramírez-Amorós C, Gonzalez R, Sarría M, Ramos E, López-Santamaria M, Hernández F. First multivisceral transplantation in Mitchell-Riley/Martinez-Frias syndrome. Pediatr Transplant 2022; 26:e14270. [PMID: 35307919 DOI: 10.1111/petr.14270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/08/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND MRS/MFS is a rare multisystem disorder with a poor prognosis. The high mortality rate of this syndrome is related to the severity of the associated gastrointestinal, pancreatic, and hepatobiliary conditions, as most of them are not amenable to conventional medical and surgical treatments. METHODS We report the case of a Romani girl with all the key clinical features of MRS/MFS, and a review of cases reported in the literature. Our patient is a newborn from consanguineous parents who presented duodenal atresia, hypoplastic pancreas, gallbladder agenesis, and neonatal diabetes. Given the clinical suspicion of MRS/MFS, a genetic analysis was performed which revealed the presence of a homozygous variant in the RFX6 gene. During the course of the disease, the patient presented intractable secretory diarrhea and severe intestinal failure. RESULTS At 2 years of age, she underwent MVT of the stomach, duodenum, small intestine, colon, liver, and pancreas. There were no surgical complications. Histologic evaluation of the small bowel showed extensive patches of gastric heterotopia. After more than 10 years of follow-up, she had presented with normal gastrointestinal, hepatic, and pancreatic function. She has one of the longest survival periods in the literature. CONCLUSIONS Our experience suggests that multivisceral transplantation may be a promising option in select cases of MRS/MFS.
Collapse
Affiliation(s)
| | - Ane Andrés
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
| | - Alida Alcolea
- Department of Pediatric Gastroenterology, La Paz University Hospital, Madrid, Spain
| | | | - Laura G Pastrían
- Department of Pathology, La Paz University Hospital, Madrid, Spain
| | | | - Rocío Gonzalez
- Department of Pediatric Gastroenterology, La Paz University Hospital, Madrid, Spain
| | - Marta Sarría
- Department of Pediatric Gastroenterology, La Paz University Hospital, Madrid, Spain
| | - Esther Ramos
- Department of Pediatric Gastroenterology, La Paz University Hospital, Madrid, Spain
| | | | | |
Collapse
|
15
|
Calderon RM, Smith CA, Miedzybrodzka EL, Silvaroli JA, Golczak M, Gribble FM, Reimann F, Blaner WS. Intestinal Enteroendocrine Cell Signaling: Retinol-binding Protein 2 and Retinoid Actions. Endocrinology 2022; 163:bqac064. [PMID: 35552670 PMCID: PMC9162388 DOI: 10.1210/endocr/bqac064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 02/02/2023]
Abstract
Retinol-binding protein 2-deficient (Rbp2-/-) mice are more prone to obesity, glucose intolerance, and hepatic steatosis than matched controls. Glucose-dependent insulinotropic polypeptide (GIP) blood levels are dysregulated in these mice. The present studies provide new insights into these observations. Single cell transcriptomic and immunohistochemical studies establish that RBP2 is highly expressed in enteroendocrine cells (EECs) that produce incretins, either GIP or glucagon-like peptide-1. EECs also express an enzyme needed for all-trans-retinoic acid (ATRA) synthesis, aldehyde dehydrogenase 1 family member A1, and retinoic acid receptor-alpha, which mediates ATRA-dependent transcription. Total and GIP-positive EECs are significantly lower in Rbp2-/- mice. The plasma transport protein for retinol, retinol-binding protein 4 (RBP4) is also expressed in EECs and is cosecreted with GIP upon stimulation. Collectively, our data support direct roles for RBP2 and ATRA in cellular processes that give rise to GIP-producing EECs and roles for RBP2 and RBP4 within EECs that facilitate hormone storage and secretion.
Collapse
Affiliation(s)
- Rossana M Calderon
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Christopher A Smith
- Institute of Metabolic Sciences and MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge CB0 0QQ 44106, UK
| | - Emily L Miedzybrodzka
- Institute of Metabolic Sciences and MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge CB0 0QQ 44106, UK
| | - Josie A Silvaroli
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
- Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Fiona M Gribble
- Institute of Metabolic Sciences and MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge CB0 0QQ 44106, UK
| | - Frank Reimann
- Institute of Metabolic Sciences and MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge CB0 0QQ 44106, UK
| | - William S Blaner
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
16
|
Lyu D, Kou G, Li S, Li L, Li B, Zhou R, Yang X, Tian W, Li Y, Zuo X. Digital Spatial Profiling Reveals Functional Shift of Enterochromaffin Cell in Patients With Ulcerative Colitis. Front Cell Dev Biol 2022; 10:841090. [PMID: 35465329 PMCID: PMC9023741 DOI: 10.3389/fcell.2022.841090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/21/2022] [Indexed: 11/30/2022] Open
Abstract
As a major component of the enteroendocrine system, enterochromaffin (EC) cells play a key role in ulcerative colitis (UC). However, the scarcity of EC cells has limited the investigation of their function. In this study, we applied digital spatial profiling to acquire transcriptomic data for EC cells and other epithelial cells from colonoscopic biopsy samples from eight patients with UC and seven healthy controls. Differential expression analysis, gene set enrichment analysis, and weighted gene coexpression network analysis were performed to identify differentially expressed genes and pathways and coexpression networks. Results were validated using an online dataset obtained by single-cell RNA sequencing, along with immunofluorescence staining and quantitative real-time PCR. In healthy participants, 10 genes were significantly enriched in EC cells, functionally concentrated in protein and bioamine synthesis. A coexpression network containing 17 hub genes, including TPH1, CHGA, and GCLC, was identified in EC cells. In patients with UC, EC cells gained increased capacity for protein synthesis, along with novel immunological functions such as antigen processing and presentation, whereas chemical sensation was downregulated. The specific expression of CHGB and RGS2 in EC cells was confirmed by immunofluorescence staining. Our results illuminate the transcriptional signatures of EC cells in the human colon. EC cells’ newly observed functional shift from sensation to secretion and immunity indicates their pivotal role in UC.
Collapse
Affiliation(s)
- Dongping Lyu
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - Guanjun Kou
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - Shiyang Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Advanced Medical Research Institute, Shandong University, Jinan, China
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Shandong University, Jinan, China
| | - Bing Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - Ruchen Zhou
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - Xiaoxiao Yang
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - Wenyu Tian
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Shandong University, Jinan, China
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Shandong University, Jinan, China
- *Correspondence: Xiuli Zuo,
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The intestinal enteroendocrine cells (EECs) are specialized hormone-secreting cells that respond to both circulating and luminal cues. Collectively, EECs constitute the largest endocrine organ of the body and signal to a multitude of targets including locally to neighboring intestinal cells, enteric neurons, as well as systemically to other organs, such as the pancreas and brain. To accomplish their wide range of downstream signaling effects, EECs secrete multiple hormones; however, the mechanisms that influence EEC development in the embryo and differentiation in adults are not well defined. RECENT FINDINGS This review highlights the recent discoveries in EEC differentiation and function while also discussing newly revealed roles of transcription factors and signaling networks involved in the allocation of EEC subtypes that were discovered using a combination of novel intestinal model systems and genetic sequencing. We also discuss the potential of these new experimental models that study the mechanisms regulating EEC function and development both to uncover novel therapeutic targets. SUMMARY Several EEC hormones are being used to treat various metabolic disorders, such as type 2 diabetes and obesity. Therefore, understanding the signaling pathways and gene regulatory networks that facilitate EEC formation is paramount to the development of novel therapies.
Collapse
Affiliation(s)
- J. Guillermo Sanchez
- Division of Developmental Biology, Cincinnati Children’s Medical Center, 3333 Burnet Ave Cincinnati OH, 45229, USA
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Medical Center, 3333 Burnet Ave Cincinnati OH, 45229, USA
| | - Jacob R. Enriquez
- Division of Developmental Biology, Cincinnati Children’s Medical Center, 3333 Burnet Ave Cincinnati OH, 45229, USA
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Medical Center, 3333 Burnet Ave Cincinnati OH, 45229, USA
| | - James M. Wells
- Division of Developmental Biology, Cincinnati Children’s Medical Center, 3333 Burnet Ave Cincinnati OH, 45229, USA
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Medical Center, 3333 Burnet Ave Cincinnati OH, 45229, USA
- Division of Endocrinology, Cincinnati Children’s Medical Center, 3333 Burnet Ave Cincinnati OH, 45229, USA
| |
Collapse
|
18
|
Enteroendocrine System and Gut Barrier in Metabolic Disorders. Int J Mol Sci 2022; 23:ijms23073732. [PMID: 35409092 PMCID: PMC8998765 DOI: 10.3390/ijms23073732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
With the continuous rise in the worldwide prevalence of obesity and type 2 diabetes, developing therapies regulating body weight and glycemia has become a matter of great concern. Among the current treatments, evidence now shows that the use of intestinal hormone analogs (e.g., GLP1 analogs and others) helps to control glycemia and reduces body weight. Indeed, intestinal endocrine cells produce a large variety of hormones regulating metabolism, including appetite, digestion, and glucose homeostasis. Herein, we discuss how the enteroendocrine system is affected by local environmental and metabolic signals. These signals include those arising from unbalanced diet, gut microbiota, and the host metabolic organs and their complex cross-talk with the intestinal barrier integrity.
Collapse
|
19
|
Tao E, Zhu Z, Hu C, Long G, Chen B, Guo R, Fang M, Jiang M. Potential Roles of Enterochromaffin Cells in Early Life Stress-Induced Irritable Bowel Syndrome. Front Cell Neurosci 2022; 16:837166. [PMID: 35370559 PMCID: PMC8964523 DOI: 10.3389/fncel.2022.837166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/09/2022] [Indexed: 12/04/2022] Open
Abstract
Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders, also known as disorders of the gut–brain interaction; however, the pathophysiology of IBS remains unclear. Early life stress (ELS) is one of the most common risk factors for IBS development. However, the molecular mechanisms by which ELS induces IBS remain unclear. Enterochromaffin cells (ECs), as a prime source of peripheral serotonin (5-HT), play a pivotal role in intestinal motility, secretion, proinflammatory and anti-inflammatory effects, and visceral sensation. ECs can sense various stimuli and microbiota metabolites such as short-chain fatty acids (SCFAs) and secondary bile acids. ECs can sense the luminal environment and transmit signals to the brain via exogenous vagal and spinal nerve afferents. Increasing evidence suggests that an ECs-5-HT signaling imbalance plays a crucial role in the pathogenesis of ELS-induced IBS. A recent study using a maternal separation (MS) animal model mimicking ELS showed that MS induced expansion of intestinal stem cells and their differentiation toward secretory lineages, including ECs, leading to ECs hyperplasia, increased 5-HT production, and visceral hyperalgesia. This suggests that ELS-induced IBS may be associated with increased ECs-5-HT signaling. Furthermore, ECs are closely related to corticotropin-releasing hormone, mast cells, neuron growth factor, bile acids, and SCFAs, all of which contribute to the pathogenesis of IBS. Collectively, ECs may play a role in the pathogenesis of ELS-induced IBS. Therefore, this review summarizes the physiological function of ECs and focuses on their potential role in the pathogenesis of IBS based on clinical and pre-clinical evidence.
Collapse
Affiliation(s)
- Enfu Tao
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- Wenling Maternal and Child Health Care Hospital, Wenling, China
| | - Zhenya Zhu
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Chenmin Hu
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Gao Long
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Bo Chen
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Rui Guo
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Marong Fang
- Institute of Neuroscience and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mizu Jiang
- Department of Gastroenterology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- *Correspondence: Mizu Jiang,
| |
Collapse
|
20
|
Shakya M, Martin NK, Arunagiri A, Martin MG, Arvan P, Low MJ, Lindberg I. The G209R mutant mouse as a model for human PCSK1 polyendocrinopathy. Endocrinology 2022; 163:6542675. [PMID: 35245347 PMCID: PMC9044177 DOI: 10.1210/endocr/bqac024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 11/19/2022]
Abstract
PCSK1 encodes an enzyme required for prohormone maturation into bioactive peptides. A striking number of SNPs and rare mutations in PCSK1 are associated with a range of clinical phenotypes. Infants bearing two copies of a catalytically inactivating mutation, such as G209R, exhibit life-threatening chronic diarrhea and subsequently develop systemic endocrinopathies. Using CRISPR/Cas9 technology, we have engineered a mouse model bearing a G209R missense mutation in exon 6 of the murine Pcsk1 locus. Most pups homozygous for the G209R mutation succumbed by day 2, and surviving pups were severely dwarfed. In homozygous (but not heterozygous) pups, blood glucose levels were significantly lower, accompanied by elevated plasma insulin-like immunoreactivity and accumulation of large quantities of unprocessed proinsulin in the pancreas. Peptide hormone processing was also aberrant in G209R mouse pituitary, with mature ACTH levels markedly reduced in homozygotes, accompanied by a significant accumulation of POMC. We also observed a significant reduction in PC1/3 protein in the brains of G209R homozygous mice by Western blotting, while PC2 levels remained unaffected. Most likely due to the continued presence of PC2, pituitary and brain levels of α-MSH were not impaired. Analysis of intestinal cell types indicated a modest reduction of enteroendocrine cells in G209R homozygotes. We suggest that the G209R Pcsk1 mouse model recapitulates many of the dramatic neonatal deficiencies of human patients with this homozygous mutation.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Anatomy & Neurobiology, University of Maryland School of
Medicine, Baltimore, MD, USA
| | - Surbhi
- Department Molecular & Integrative Physiology, University of
Michigan, Ann Arbor, MI, USA
| | - Nicolle K Martin
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel
Children’s Hospital and the David Geffen School of Medicine, University of California Los
Angeles, Los Angeles, CA, USA
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology & Diabetes, University of
Michigan, Ann Arbor, MI, USA
| | - Martin G Martin
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel
Children’s Hospital and the David Geffen School of Medicine, University of California Los
Angeles, Los Angeles, CA, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of
Michigan, Ann Arbor, MI, USA
| | - Malcolm J Low
- Department Molecular & Integrative Physiology, University of
Michigan, Ann Arbor, MI, USA
| | - Iris Lindberg
- Department of Anatomy & Neurobiology, University of Maryland School of
Medicine, Baltimore, MD, USA
- Correspondence: Iris Lindberg, PhD, Department of Anatomy and Neurobiology, University of Maryland
School of Medicine, 20 Penn St, HSF2, S218, Baltimore, MD 21201, USA.
| |
Collapse
|
21
|
Zinina VV, Ruehle F, Winkler P, Rebmann L, Lukas H, Möckel S, Diefenbach A, Mendez‐Lago M, Soshnikova N. ID2 controls differentiation of enteroendocrine cells in mouse small intestine. Acta Physiol (Oxf) 2022; 234:e13773. [PMID: 34985199 DOI: 10.1111/apha.13773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/15/2021] [Accepted: 01/01/2022] [Indexed: 12/17/2022]
Abstract
AIMS The mammalian gut is the largest endocrine organ. Dozens of hormones secreted by enteroendocrine cells regulate a variety of physiological functions of the gut but also of the pancreas and brain. Here, we examined the role of the helix-loop-helix transcription factor ID2 during the differentiation of intestinal stem cells along the enteroendocrine lineage. METHODS To assess the functions of ID2 in the adult mouse small intestine, we used single-cell RNA sequencing, genetically modified mice, and organoid assays. RESULTS We found that in the adult intestinal epithelium Id2 is predominantly expressed in enterochromaffin and peptidergic enteroendocrine cells. Consistently, the loss of Id2 leads to the reduction of Chromogranin A-positive enteroendocrine cells. In contrast, the numbers of tuft cells are increased in Id2 mutant small intestine. Moreover, ablation of Id2 elevates the numbers of Serotonin+ enterochromaffin cells and Ghrelin+ X-cells in the posterior part of the small intestine. Finally, ID2 acts downstream of BMP signalling during the differentiation of Glucagon-like peptide-1+ L-cells and Cholecystokinin+ I-cells towards Neurotensin+ PYY+ N-cells. CONCLUSION ID2 plays an important role in cell fate decisions in the adult small intestine. First, ID2 is essential for establishing a differentiation gradient for enterochromaffin and X-cells along the anterior-posterior axis of the gut. Next, ID2 is necessary for the differentiation of N-cells thus ensuring a differentiation gradient along the crypt-villi axis. Finally, ID2 suppresses the commitment of secretory intestinal epithelial progenitors towards tuft cell lineage and thus controls host immune response to commensal and parasitic microbiota.
Collapse
Affiliation(s)
- Valeriya V. Zinina
- Institute for Molecular Medicine University Medical Center of the Johannes Gutenberg‐University Mainz Germany
| | - Frank Ruehle
- Institute of Molecular Biology gGmbH Mainz Germany
| | - Patricia Winkler
- MSc Programme in Biomedicine Institute for Molecular Medicine University Medical Center of the Johannes Gutenberg‐University Mainz Germany
| | - Lisa Rebmann
- Institute for Molecular Medicine University Medical Center of the Johannes Gutenberg‐University Mainz Germany
- Faculty Medical and Life Sciences Hochschule Furtwangen University Furtwangen Germany
| | - Hanna Lukas
- Institute of Molecular Biology gGmbH Mainz Germany
| | | | - Andreas Diefenbach
- Laboratory of Innate Immunity Department of Microbiology, Infectious Diseases and Immunology Charité‐Universitätsmedizin Berlin Berlin Germany
- Berlin Institute of Health (BIH) Berlin Germany
- Mucosal and Developmental Immunology Deutsches Rheuma‐Forschungszentrum (DRFZ) Berlin Germany
| | | | - Natalia Soshnikova
- Institute for Molecular Medicine University Medical Center of the Johannes Gutenberg‐University Mainz Germany
| |
Collapse
|
22
|
Passone CDGB, Vermillac G, Staels W, Besancon A, Kariyawasam D, Godot C, Lambe C, Talbotec C, Girard M, Chardot C, Berteloot L, Hachem T, Lapillonne A, Poidvin A, Storey C, Neve M, Stan C, Dugelay E, Fauret-Amsellem AL, Capri Y, Cavé H, Ybarra M, Chandra V, Scharfmann R, Bismuth E, Polak M, Carel JC, Pigneur B, Beltrand J. Mitchell-Riley Syndrome: Improving Clinical Outcomes and Searching for Functional Impact of RFX-6 Mutations. Front Endocrinol (Lausanne) 2022; 13:802351. [PMID: 35813646 PMCID: PMC9257252 DOI: 10.3389/fendo.2022.802351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS/HYPOTHESIS Caused by biallelic mutations of the gene encoding the transcription factor RFX6, the rare Mitchell-Riley syndrome (MRS) comprises neonatal diabetes, pancreatic hypoplasia, gallbladder agenesis or hypoplasia, duodenal atresia, and severe chronic diarrhea. So far, sixteen cases have been reported, all with a poor prognosis. This study discusses the multidisciplinary intensive clinical management of 4 new cases of MRS that survived over the first 2 years of life. Moreover, it demonstrates how the mutations impair the RFX6 function. METHODS Clinical records were analyzed and described in detail. The functional impact of two RFX6R181W and RFX6V506G variants was assessed by measuring their ability to transactivate insulin transcription and genes that encode the L-type calcium channels required for normal pancreatic beta-cell function. RESULTS All four patients were small for gestational age (SGA) and prenatally diagnosed with duodenal atresia. They presented with neonatal diabetes early in life and were treated with intravenous insulin therapy before switching to subcutaneous insulin pump therapy. All patients faced recurrent hypoglycemic episodes, exacerbated when parenteral nutrition (PN) was disconnected. A sensor-augmented insulin pump therapy with a predictive low-glucose suspension system was installed with good results. One patient had a homozygous c.1517T>G (p.Val506Gly) mutation, two patients had a homozygous p.Arg181Trp mutation, and one patient presented with new compound heterozygosity. The RFX6V506G and RFX6R181W mutations failed to transactivate the expression of insulin and genes that encode L-type calcium channel subunits required for normal pancreatic beta-cell function. CONCLUSIONS/INTERPRETATION Multidisciplinary and intensive disease management improved the clinical outcomes in four patients with MRS, including adjustment of parenteral/oral nutrition progression and advanced diabetes technologies. A better understanding of RFX6 function, in both intestine and pancreas cells, may break ground in new therapies, particularly regarding the use of drugs that modulate the enteroendocrine system.
Collapse
Affiliation(s)
- Caroline de Gouveia Buff Passone
- Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris, France
- Pediatric Endocrinology, Gynecology and Diabetology, Centre de Référence des Pathologies Gynécologiques Rares et des Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
- *Correspondence: Caroline de Gouveia Buff Passone, ; orcid.org/0000-0003-2639-352X
| | - Gaëlle Vermillac
- Pediatric Endocrinology, Gynecology and Diabetology, Centre de Référence des Pathologies Gynécologiques Rares et des Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Willem Staels
- Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris, France
- Beta Cell Neogenesis (BENE) Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Division of Pediatric Endocrinology, Department of Pediatrics, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Alix Besancon
- Pediatric Endocrinology, Gynecology and Diabetology, Centre de Référence des Pathologies Gynécologiques Rares et des Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Dulanjalee Kariyawasam
- Pediatric Endocrinology, Gynecology and Diabetology, Centre de Référence des Pathologies Gynécologiques Rares et des Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
- Imagine Institute, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Cécile Godot
- Pediatric Endocrinology, Gynecology and Diabetology, Centre de Référence des Pathologies Gynécologiques Rares et des Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Cécile Lambe
- Pediatric Gastroentherology Hepatology and Nutrition Unit, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Cécile Talbotec
- Pediatric Gastroentherology Hepatology and Nutrition Unit, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
- INSERM UMR S 1139, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| | - Muriel Girard
- Hepatology Unit, Hôpital Universitaire Necker Enfants Malades, Université de Paris, Inserm U1151, Centre de Référence Maladie rares Atresie des voies biliaires et cholestases génétiques et Filière de soin Filfoie, Paris, France
| | - Christophe Chardot
- Pediatric Surgery Department, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Laureline Berteloot
- Pediatric Radiology Department, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France/INSERM U1163, Institut Imagine, Paris, France
| | - Taymme Hachem
- Neonatal Intensive Care Unit, Hôpital Universitaire Necker Enfants Malades, EHU 7328 Université Paris Descartes, Paris, France
| | - Alexandre Lapillonne
- Neonatal Intensive Care Unit, Hôpital Universitaire Necker Enfants Malades, EHU 7328 Université Paris Descartes, Paris, France
| | - Amélie Poidvin
- Université Paris Cité, Hôpital Universitaire Robert-Debré, Service d’Endocrinologie Diabétologie Pédiatrique et CRMR Prisis, Paris, France
| | - Caroline Storey
- Université Paris Cité, Hôpital Universitaire Robert-Debré, Service d’Endocrinologie Diabétologie Pédiatrique et CRMR Prisis, Paris, France
| | - Mathieu Neve
- Pediatric Department Hôpital d’Enfants de Margency Croix-Rouge française, Margency, France
| | - Cosmina Stan
- Pediatric Department Hôpital d’Enfants de Margency Croix-Rouge française, Margency, France
| | - Emmanuelle Dugelay
- Department of Pediatric Gastroenterology and Nutrition, Hôpital Universitaire Robert-Debré, Paris, France
| | | | - Yline Capri
- Genetic Department, Hopital Universitaire Robert Debré, Paris, France
| | - Hélène Cavé
- Genetic Department, Hopital Universitaire Robert Debré, Paris, France
| | - Marina Ybarra
- Research Center of Sainte Justine University Hospital, Université de Montréal, Montreal, QC, Canada
| | - Vikash Chandra
- Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris, France
- Biomedicum Stem Cell Center, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Raphaël Scharfmann
- Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris, France
| | - Elise Bismuth
- Université Paris Cité, Hôpital Universitaire Robert-Debré, Service d’Endocrinologie Diabétologie Pédiatrique et CRMR Prisis, Paris, France
| | - Michel Polak
- Pediatric Endocrinology, Gynecology and Diabetology, Centre de Référence des Pathologies Gynécologiques Rares et des Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Jean Claude Carel
- Université Paris Cité, Hôpital Universitaire Robert-Debré, Service d’Endocrinologie Diabétologie Pédiatrique et CRMR Prisis, Paris, France
| | - Bénédicte Pigneur
- Pediatric Gastroentherology Hepatology and Nutrition Unit, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Jacques Beltrand
- Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris, France
- Pediatric Endocrinology, Gynecology and Diabetology, Centre de Référence des Pathologies Gynécologiques Rares et des Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
- Imagine Institute, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
| |
Collapse
|
23
|
Jung S, Ye BD, Lee HS, Baek J, Kim G, Park D, Park SH, Yang SK, Han B, Liu J, Song K. Identification of Three Novel Susceptibility Loci for Inflammatory Bowel Disease in Koreans in an Extended Genome-Wide Association Study. J Crohns Colitis 2021; 15:1898-1907. [PMID: 33853113 DOI: 10.1093/ecco-jcc/jjab060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Genome-wide association studies [GWAS] of inflammatory bowel disease [IBD] in multiple populations have identified over 240 susceptibility loci. We previously performed a largest-to-date Asian-specific IBD GWAS to identify two new IBD risk loci and confirm associations with 28 established loci. To identify additional susceptibility loci in Asians, we expanded our previous study design by doubling the case size with an additional dataset of 1726 cases and 378 controls. METHODS An inverse-variance fixed-effects meta-analysis was performed between the previous and the new GWAS dataset, comprising a total of 3195 cases and 4419 controls, followed by replication in an additional 1088 cases and 845 controls. RESULTS The meta-analysis of Korean GWAS identified one novel locus for ulcerative colitis at rs76227733 on 10q24 [pcombined = 6.56 × 10-9] and two novel loci for Crohn's disease [CD] at rs2240751 on 19p13 [pcombined = 3.03 × 10-8] and rs6936629 on 6q22 [pcombined = 3.63 × 10-8]. Pathway-based analysis of GWAS data using MAGMA showed that the MHC and antigenic stimulus-related pathways were more significant in Korean CD, whereas cytokine and transcription factor-related pathways were more significant in European CD. Phenotype variance explained by the polygenic risk scores derived from Korean data explained up to 14% of the variance of CD whereas those derived from European data explained 10%, emphasizing the need for large-scale genetic studies in this population. CONCLUSIONS The identification of novel loci not previously associated with IBD suggests the importance of studying IBD genetics in diverse populations.
Collapse
Affiliation(s)
- Seulgi Jung
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Byong Duk Ye
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ho-Su Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Jiwon Baek
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Gyeonghoon Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Dohoon Park
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang Hyoung Park
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Suk-Kyun Yang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Buhm Han
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jianjun Liu
- Human Genetics Group, Genome Institute of Singapore, Singapore
| | - Kyuyoung Song
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Calcaterra V, Chiricosta L, Mazzon E, Gugnandolo A, Alberti D, Maestri L, Meroni M, Vestri E, Verduci E, Dilillo D, Zuccotti G, Pelizzo G. Determining oncogenic patterns and cancer predisposition through the transcriptomic profile in Mitchell-Riley syndrome with heterotopic gastric mucosa and duodenal atresia: a case report. Orphanet J Rare Dis 2021; 16:455. [PMID: 34715892 PMCID: PMC8556982 DOI: 10.1186/s13023-021-02093-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/17/2021] [Indexed: 11/25/2022] Open
Abstract
Background Homozygous mutations in the transcription factor RFX6 are the cause of the Mitchell–Riley syndrome (MRS) associating neonatal diabetes, congenital digestive system, such as biliary atresia, pancreatic hypoplasia, duodenal and/or jejunal atresia, intestinal malrotation, gallbladder aplasia, cholestasis. A constitutive inactivation of RFX6 leads also to gastric heterotopia. Application of RNA-seq in human diseases may help to better understand pathogenic mechanism of diseases and to predict the risk of developing chronic disorders and personalizing their prevention and treatment. We evaluated oncogenic patterns and cancer predisposition using the transcriptomic profile in a case of MRS with neonatal diabetes, duodenal atresia, and extensive intestinal tract gastric heterotopia. Results We signalled the interactors of RFX6 with other up and downregulated genes, that may be interested in severity of diabetic condition, in multi-organs impairment and cancer predisposition. Furthermore, several dysregulated genes are involved in biological processes that can lead to promote cancer including “Evading apoptosis” (BAD, BBC3, EGF, FGFR2, FLT3LG, HMOX1, HRAS, IFNAR2, IGF1R, IL12RB1, IL13RA1, IL15, IL2RB, IL2RG, IL6R, KEAP1, MGST1, PDGFA, PDGFRB, PIK3R3, RALB, RALGDS, RASSF1, SOS1, TGFA, TXNRD3), “Proliferation” (APC, BRAF, CCND2, CCND3, CCNE2, FGFR2, FLT3LG, FZD1, FZD6, HMOX1, HRAS, IGF1R, KEAP1, LRP6, MAPK3, MGST1, PDGFA, PDGFB, PDGFRB, RB1, SOS1, TGFA, TXNRD3, WNT10B), “Sustained angiogenesis” (BRAF, FGFR2, FLT3LG, HRAS, IGF1R, JAG1, MAPK3, NOTCH2, PDGFA, PDGFB, PDGFRB, SOS1, TGFA, TGFB1), “Genomic instability” (BAD, BBC3) and “Insensitivity to anti-growth signals” (SMAD2, TGFB1). We also inspected the signalings and their related genes in cancer, such as “PI3K signaling”, “ERK signaling”, “JAK-STAT signaling”, “Calcium signaling”, “Other RAS signaling”, “WNT signaling”. Conclusions In our MRS patient, we signaled the interactors of RFX6 with other up- and downregulated genes that may be related to severe diabetic condition, multi-organ impairment, and cancer predisposition. Notably, many dysregulated genes may lead to triggering carcinogenesis. The possibility of the patient developing cancer degeneration in heterotopic gastric mucosa and/or additional long-term tumoral sequelae is not excluded. Personalized prevention and treatment strategies should be proposed.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Pediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, Pavia, Italy.,Pediatric Department, Children's Hospital "Vittore Buzzi", Milan, Italy
| | | | | | | | - Daniele Alberti
- Pediatric Surgery Department, "Spedali Civili" Children's Hospital, Brescia, Italy
| | - Luciano Maestri
- Pediatric Surgery Department, Children's Hospital "Vittore Buzzi", Via Lodovico Castelvetro n.32, 20154, Milan, Italy
| | - Milena Meroni
- Pediatric Surgery Department, Children's Hospital "Vittore Buzzi", Via Lodovico Castelvetro n.32, 20154, Milan, Italy
| | - Elettra Vestri
- Pediatric Surgery Department, Children's Hospital "Vittore Buzzi", Via Lodovico Castelvetro n.32, 20154, Milan, Italy
| | - Elvira Verduci
- Pediatric Department, Children's Hospital "Vittore Buzzi", Milan, Italy.,Department of Health Sciences, University of Milano, Milan, Italy
| | - Dario Dilillo
- Pediatric Department, Children's Hospital "Vittore Buzzi", Milan, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Department, Children's Hospital "Vittore Buzzi", Milan, Italy.,Department of Biomedical and Clinical Science "L. Sacco", University of Milano, Milan, Italy
| | - Gloria Pelizzo
- Pediatric Surgery Department, Children's Hospital "Vittore Buzzi", Via Lodovico Castelvetro n.32, 20154, Milan, Italy. .,Department of Biomedical and Clinical Science "L. Sacco", University of Milano, Milan, Italy.
| |
Collapse
|
25
|
Imaki S, Iizuka K, Horikawa Y, Yasuda M, Kubota S, Kato T, Liu Y, Takao K, Mizuno M, Hirota T, Suwa T, Hosomichi K, Tajima A, Fujiwara Y, Yamazaki Y, Kuwata H, Seino Y, Yabe D. A novel RFX6 heterozygous mutation (p.R652X) in maturity-onset diabetes mellitus: A case report. J Diabetes Investig 2021; 12:1914-1918. [PMID: 33721395 PMCID: PMC8504905 DOI: 10.1111/jdi.13545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 01/07/2023] Open
Abstract
Heterozygous RFX6 mutation has emerged as a potential cause of maturity-onset diabetes mellitus of the young (MODY). A 16-year-old female was diagnosed with diabetes by her family doctor and was referred to our institution for genetic examination. Genetic testing revealed a novel RFX6 heterozygous mutation (NM_173560: exon17: c.1954C>T: p.R652X) in the patient and in her mother and brother. She had no islet-specific autoantibodies and showed a reduced meal-induced response of insulin, glucose-dependent insulinotropic polypeptide, and glucagon-like peptide-1, which is consistent with the phenotype of MODY due to heterozygous RFX6 mutation. In conclusion, we report a case of MODY due to a novel heterozygous mutation, p.R652X.
Collapse
Affiliation(s)
| | - Katsumi Iizuka
- Department of Diabetes and EndocrinologyGifu University Graduate School of MedicineGifuJapan
| | - Yukio Horikawa
- Department of Diabetes and EndocrinologyGifu University Graduate School of MedicineGifuJapan
| | - Megumi Yasuda
- Department of Diabetes and EndocrinologyGifu University Graduate School of MedicineGifuJapan
| | - Sodai Kubota
- Department of Diabetes and EndocrinologyGifu University Graduate School of MedicineGifuJapan
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstitutionKobeJapan
| | - Takehiro Kato
- Department of Diabetes and EndocrinologyGifu University Graduate School of MedicineGifuJapan
| | - Yanyan Liu
- Department of Diabetes and EndocrinologyGifu University Graduate School of MedicineGifuJapan
| | - Ken Takao
- Department of Diabetes and EndocrinologyGifu University Graduate School of MedicineGifuJapan
| | - Masami Mizuno
- Department of Diabetes and EndocrinologyGifu University Graduate School of MedicineGifuJapan
| | - Takuo Hirota
- Department of Diabetes and EndocrinologyGifu University Graduate School of MedicineGifuJapan
| | - Tetsuya Suwa
- Department of Diabetes and EndocrinologyGifu University Graduate School of MedicineGifuJapan
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and GenomicsGraduate School of Advanced Preventive Medical SciencesKanazawa UniversityKanazawaJapan
| | - Atsushi Tajima
- Department of Bioinformatics and GenomicsGraduate School of Advanced Preventive Medical SciencesKanazawa UniversityKanazawaJapan
| | - Yuuka Fujiwara
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstitutionKobeJapan
| | - Yuji Yamazaki
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstitutionKobeJapan
- Center for Diabetes, Metabolism and EndocrinologyKansai Electric Power HospitalOsakaJapan
| | - Hitoshi Kuwata
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstitutionKobeJapan
- Center for Diabetes, Metabolism and EndocrinologyKansai Electric Power HospitalOsakaJapan
| | - Yutaka Seino
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstitutionKobeJapan
- Center for Diabetes, Metabolism and EndocrinologyKansai Electric Power HospitalOsakaJapan
| | - Daisuke Yabe
- Department of Diabetes and EndocrinologyGifu University Graduate School of MedicineGifuJapan
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstitutionKobeJapan
- Division of Molecular and Metabolic MedicineDepartment of Physiology and Cell BiologyKobe University Graduate School of MedicineKobeJapan
| |
Collapse
|
26
|
Aliluev A, Tritschler S, Sterr M, Oppenländer L, Hinterdobler J, Greisle T, Irmler M, Beckers J, Sun N, Walch A, Stemmer K, Kindt A, Krumsiek J, Tschöp MH, Luecken MD, Theis FJ, Lickert H, Böttcher A. Diet-induced alteration of intestinal stem cell function underlies obesity and prediabetes in mice. Nat Metab 2021; 3:1202-1216. [PMID: 34552271 PMCID: PMC8458097 DOI: 10.1038/s42255-021-00458-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/13/2021] [Indexed: 12/11/2022]
Abstract
Excess nutrient uptake and altered hormone secretion in the gut contribute to a systemic energy imbalance, which causes obesity and an increased risk of type 2 diabetes and colorectal cancer. This functional maladaptation is thought to emerge at the level of the intestinal stem cells (ISCs). However, it is not clear how an obesogenic diet affects ISC identity and fate. Here we show that an obesogenic diet induces ISC and progenitor hyperproliferation, enhances ISC differentiation and cell turnover and changes the regional identities of ISCs and enterocytes in mice. Single-cell resolution of the enteroendocrine lineage reveals an increase in progenitors and peptidergic enteroendocrine cell types and a decrease in serotonergic enteroendocrine cell types. Mechanistically, we link increased fatty acid synthesis, Ppar signaling and the Insr-Igf1r-Akt pathway to mucosal changes. This study describes molecular mechanisms of diet-induced intestinal maladaptation that promote obesity and therefore underlie the pathogenesis of the metabolic syndrome and associated complications.
Collapse
Affiliation(s)
- Alexandra Aliluev
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sophie Tritschler
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Lena Oppenländer
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Julia Hinterdobler
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Tobias Greisle
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Center Munich, Neuherberg, Germany
| | - Johannes Beckers
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Center Munich, Neuherberg, Germany
- Technical University of Munich, Freising, Germany
| | - Na Sun
- Research Unit of Analytical Pathology, Helmholtz Center Munich, Neuherberg, Germany
| | - Axel Walch
- Research Unit of Analytical Pathology, Helmholtz Center Munich, Neuherberg, Germany
| | - Kerstin Stemmer
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- Rudolf-Buchheim-Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Alida Kindt
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Jan Krumsiek
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Matthias H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| | - Malte D Luecken
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany.
- Technical University of Munich, Munich, Germany.
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Technical University of Munich, Munich, Germany.
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
27
|
Woźniak D, Cichy W, Przysławski J, Drzymała-Czyż S. The role of microbiota and enteroendocrine cells in maintaining homeostasis in the human digestive tract. Adv Med Sci 2021; 66:284-292. [PMID: 34098509 DOI: 10.1016/j.advms.2021.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/10/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022]
Abstract
The microbiota is a heterogeneous ecosystem consisting of diverse microorganisms unique to an individual, playing a crucial role in maintaining human body homeostasis. The microbiota, as a suggested endocrine organ, is also capable of producing and regulating hormones, playing an important role in food processing, synthesis of vitamins, pathogen displacement, and influencing functions of distant systems and organs. The efficient connections between the brain and intestines and microbiota ensure the maintenance of the digestive tract homeostasis, with the bidirectional brain and gut axis playing an important role in the regulation of digestion. Enteroendocrine cells (EECs) are a fascinating example of highly specified cells scattered throughout the gastrointestinal (GI) tract. They produce and release signaling molecules (hormones), thus modulate homeostatic functions. EECs are believed to be crucial sensors of gut microbiota or/and microbial metabolites, secreting peptide hormones and cytokines in response to them. The diet, microbiota, and EECs are inevitably dependent on one another, thus together (nutrients, microbiota, enterohormones) affect metabolism. This manuscript reviews the role of various components of the brain-gut axis in digestive and absorption processes, as well as the maintenance of digestive tract homeostasis and the consequences of disturbances in the individual components of this axis.
Collapse
Affiliation(s)
- Dagmara Woźniak
- Department of Bromatology, Poznan University of Medical Sciences, Poznań, Poland
| | - Wojciech Cichy
- Department of Cosmetology, Faculty of Health Sciences, The President Stanisław Wojciechowski State University of Applied Sciences in Kalisz, Kalisz, Poland
| | - Juliusz Przysławski
- Department of Bromatology, Poznan University of Medical Sciences, Poznań, Poland
| | | |
Collapse
|
28
|
Guo X, Lv J, Xi R. The specification and function of enteroendocrine cells in Drosophila and mammals: a comparative review. FEBS J 2021; 289:4773-4796. [PMID: 34115929 DOI: 10.1111/febs.16067] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022]
Abstract
Enteroendocrine cells (EECs) in both invertebrates and vertebrates derive from intestinal stem cells (ISCs) and are scattered along the digestive tract, where they function in sensing various environmental stimuli and subsequently secrete neurotransmitters or neuropeptides to regulate diverse biological and physiological processes. To fulfill these functions, EECs are specified into multiple subtypes that occupy specific gut regions. With advances in single-cell technology, organoid culture experimental systems, and CRISPR/Cas9-mediated genomic editing, rapid progress has been made toward characterization of EEC subtypes in mammals. Additionally, studies of genetic model organisms-especially Drosophila melanogaster-have also provided insights about the molecular processes underlying EEC specification from ISCs and about the establishment of diverse EEC subtypes. In this review, we compare the regulation of EEC specification and function in mammals and Drosophila, with a focus on EEC subtype characterization, on how internal and external regulators mediate EEC subtype specification, and on how EEC-mediated intra- and interorgan communications affect gastrointestinal physiology and pathology.
Collapse
Affiliation(s)
- Xingting Guo
- National Institute of Biological Sciences, Beijing, China
| | - Jiaying Lv
- National Institute of Biological Sciences, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Rongwen Xi
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
29
|
Nóbrega S, Monteiro MP, Pereira-da-Silva L, Pereira SS, Hartmann B, Holst JJ, Barbosa Silva R, Cordeiro-Ferreira G. Congenital Glucagon-like Peptide-1 Deficiency in the Pathogenesis of Protracted Diarrhea in Mitchell-Riley Syndrome. J Clin Endocrinol Metab 2021; 106:1084-1090. [PMID: 33382423 DOI: 10.1210/clinem/dgaa916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Mitchell-Riley syndrome due to RFX6 gene mutations is characterized by neonatal diabetes and protracted diarrhea. The RFX6 gene encodes a transcription factor involved in enteroendocrine cell differentiation required for beta-cell maturation. In contrast to the pathway by which RFX6 mutations leads to diabetes, the mechanisms underlying protracted diarrhea are unknown. OBJECTIVE To assess whether glucagon-like peptide-1 (GLP-1) was involved in the pathogenesis of Mitchell-Riley syndrome protracted diarrhea. METHODS Two case report descriptions. in a tertiary pediatric hospital. "Off-label" treatment with liraglutide. We describe 2 children diagnosed with Mitchell-Riley syndrome, presenting neonatal diabetes and protracted diarrhea. Both patients had nearly undetectable GLP-1 plasma levels and absence of GLP-1 immunostaining in distal intestine and rectum. The main outcome was to evaluate whether GLP-1 analogue therapy could improve Mitchell-Riley syndrome protracted diarrhea. RESULTS "Off-label" liraglutide treatment, licensed for type 2 diabetes treatment in children, was started as rescue therapy for protracted intractable diarrhea resulting in rapid improvement during the course of 12 months. CONCLUSION Congenital GLP-1 deficiency was identified in patients with Mitchell-Riley syndrome. The favorable response to liraglutide further supports GLP-1 involvement in the pathogenesis of protracted diarrhea and its potential therapeutic use.
Collapse
Affiliation(s)
- Sara Nóbrega
- Special Nutrition and Respiratory Care Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
- Gastroenterology and Hepatology Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC), Medicine of Woman, Childhood and Adolescence, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Mariana P Monteiro
- Endocrine, Cardiovascular & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
- Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Luís Pereira-da-Silva
- Comprehensive Health Research Centre (CHRC), Medicine of Woman, Childhood and Adolescence, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- NICU, Hospital Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Sofia S Pereira
- Endocrine, Cardiovascular & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
- Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Raul Barbosa Silva
- Special Nutrition and Respiratory Care Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Gonçalo Cordeiro-Ferreira
- Special Nutrition and Respiratory Care Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
- Gastroenterology and Hepatology Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC), Medicine of Woman, Childhood and Adolescence, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- NICU, Hospital Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| |
Collapse
|
30
|
Cornejo MP, Mustafá ER, Cassano D, Banères JL, Raingo J, Perello M. The ups and downs of growth hormone secretagogue receptor signaling. FEBS J 2021; 288:7213-7229. [PMID: 33460513 DOI: 10.1111/febs.15718] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022]
Abstract
The growth hormone secretagogue receptor (GHSR) has emerged as one of the most fascinating molecules from the perspective of neuroendocrine control. GHSR is mainly expressed in the pituitary and the brain, and plays key roles regulating not only growth hormone secretion but also food intake, adiposity, body weight, glucose homeostasis and other complex functions. Quite atypically, GHSR signaling displays a basal constitutive activity that can be up- or downregulated by two digestive system-derived hormones: the octanoylated-peptide ghrelin and the liver-expressed antimicrobial peptide 2 (LEAP2), which was recently recognized as an endogenous GHSR ligand. The existence of two ligands with contrary actions indicates that GHSR activity can be tightly regulated and that the receptor displays the capability to integrate such opposing inputs in order to provide a balanced intracellular signal. This article provides a summary of the current understanding of the biology of ghrelin, LEAP2 and GHSR and discusses the reconceptualization of the cellular and physiological implications of the ligand-regulated GHSR signaling, based on the latest findings.
Collapse
Affiliation(s)
- María P Cornejo
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET), Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], Buenos Aires, Argentina
| | - Emilio R Mustafá
- Laboratory of Electrophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET), Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], Buenos Aires, Argentina
| | - Daniela Cassano
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET), Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], Buenos Aires, Argentina
| | - Jean-Louis Banères
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, Faculté de Pharmacie, Montpellier cedex 5, France
| | - Jesica Raingo
- Laboratory of Electrophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET), Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], Buenos Aires, Argentina
| | - Mario Perello
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET), Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], Buenos Aires, Argentina
| |
Collapse
|
31
|
Kuhre RE, Deacon CF, Holst JJ, Petersen N. What Is an L-Cell and How Do We Study the Secretory Mechanisms of the L-Cell? Front Endocrinol (Lausanne) 2021; 12:694284. [PMID: 34168620 PMCID: PMC8218725 DOI: 10.3389/fendo.2021.694284] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
Synthetic glucagon-like peptide-1 (GLP-1) analogues are effective anti-obesity and anti-diabetes drugs. The beneficial actions of GLP-1 go far beyond insulin secretion and appetite, and include cardiovascular benefits and possibly also beneficial effects in neurodegenerative diseases. Considerable reserves of GLP-1 are stored in intestinal endocrine cells that potentially might be mobilized by pharmacological means to improve the body's metabolic state. In recognition of this, the interest in understanding basic L-cell physiology and the mechanisms controlling GLP-1 secretion, has increased considerably. With a view to home in on what an L-cell is, we here present an overview of available data on L-cell development, L-cell peptide expression profiles, peptide production and secretory patterns of L-cells from different parts of the gut. We conclude that L-cells differ markedly depending on their anatomical location, and that the traditional definition of L-cells as a homogeneous population of cells that only produce GLP-1, GLP-2, glicentin and oxyntomodulin is no longer tenable. We suggest to sub-classify L-cells based on their differential peptide contents as well as their differential expression of nutrient sensors, which ultimately determine the secretory responses to different stimuli. A second purpose of this review is to describe and discuss the most frequently used experimental models for functional L-cell studies, highlighting their benefits and limitations. We conclude that no experimental model is perfect and that a comprehensive understanding must be built on results from a combination of models.
Collapse
Affiliation(s)
- Rune E. Kuhre
- Department of Obesity Pharmacology, Novo Nordisk, Måløv, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Rune E. Kuhre, ;
| | - Carolyn F. Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Jens J. Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
32
|
Kondo T, Kitano S, Miyakawa N, Watanabe T, Goto R, Sato M, Hanatani S, Sakaguchi M, Igata M, Kawashima J, Motoshima H, Matsumura T, Araki E. The Amount of Residual Incretin Regulates the Pancreatic β-cell Function and Glucose Homeostasis. Intern Med 2021; 60:1433-1442. [PMID: 33952814 PMCID: PMC8170253 DOI: 10.2169/internalmedicine.6026-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The gastrointestinal tract is considered an important endocrine organ for controlling glucose homeostasis via the production of incretins. A 21-year-old man emergently underwent total colectomy due to severe ulcerative colitis, and overt diabetes became evident. Weekly administration of a glucagon-like peptide (GLP)-1 receptor agonist (RA) dramatically improved his glucose control. Levels of GLP-1 or gastric inhibitory polypeptide (GIP) were low at the baseline in the duodenum and serum of the patient. After 11 months of GLP-1RA treatment, his HbA1c worsened again, and intensive insulin therapy was necessary to control his glucose levels. Our report may explain the significance of residual incretin for maintaining the pancreatic β-cell function.
Collapse
Affiliation(s)
- Tatsuya Kondo
- Department of Diabetes, Metabolism and Endocrinology, Kumamoto University Hospital, Japan
| | - Sayaka Kitano
- Department of Diabetes, Metabolism and Endocrinology, Kumamoto University Hospital, Japan
| | - Nobukazu Miyakawa
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Japan
| | - Takuro Watanabe
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Japan
| | - Rieko Goto
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Japan
| | - Miki Sato
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Japan
| | - Satoko Hanatani
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Japan
| | - Masaji Sakaguchi
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Japan
| | - Motoyuki Igata
- Department of Diabetes, Metabolism and Endocrinology, Kumamoto University Hospital, Japan
| | - Junji Kawashima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Japan
| | - Hiroyuki Motoshima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Japan
| | - Takeshi Matsumura
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Japan
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Japan
| |
Collapse
|
33
|
Li HJ, Ray SK, Kucukural A, Gradwohl G, Leiter AB. Reduced Neurog3 Gene Dosage Shifts Enteroendocrine Progenitor Towards Goblet Cell Lineage in the Mouse Intestine. Cell Mol Gastroenterol Hepatol 2020; 11:433-448. [PMID: 32822913 PMCID: PMC7788244 DOI: 10.1016/j.jcmgh.2020.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS Transient expression of Neurog3 commits intestinal secretory progenitors to become enteroendocrine-biased progenitors and hence drive enteroendocrine differentiation. Loss of Neurog3 in mouse resulted in the depletion of intestinal enteroendocrine cells (EECs) and an increase in goblet cells. Earlier studies in developing mouse pancreas identified a role of Neurog3 gene dosage in endocrine and exocrine cell fate allocation. We aimed to determine whether Neurog3 gene dosage controls fate choice of enteroendocrine progenitors. METHODS We acquired mutant Neurog3 reporter mice carrying 2, 1, or null Neurog3 alleles to study Neurog3 gene dosage effect by lineage tracing. Cell types arising from Neurog3+ progenitors were determined by immunohistochemistry using antibodies against intestinal lineage-specific markers. RNA sequencing of sorted Neurog3+/+, Neurog3+/-, or bulk intestinal cells were performed and differentially expressed genes were analyzed. RESULTS We identified 2731 genes enriched in sorted Neurog3+/+-derived cells in the Neurog3+/+EYFP mouse intestine when compared with bulk duodenum epithelial cells. In the intestine of Neurog3+/-EGFP heterozygous mouse, we observed a 63% decrease in EEC numbers. Many Neurog3-derived cells stained for goblet marker Mucin 2. RNA sequencing of sorted Neurog3+/- cells uncovered enriched expression of genes characteristic for both goblet and enteroendocrine cells, indicating the mixed lineages arose from Neurog3+ progenitors. Consistent with this hypothesis, deletion of both Neurog3 alleles resulted in the total absence of EECs. All Neurog3+-derived cells stained for Mucin 2. CONCLUSIONS We identified that the fate of Neurog3+ enteroendocrine progenitors is dependent on Neurog3 gene dosage. High Neurog3 gene dosage enforces the commitment of secretory progenitors to an EE lineage, while constraining their goblet cell lineage potential. Transcriptome profiling data was deposited to Gene Ontology omnibus, accession number: GSE149203.
Collapse
Affiliation(s)
- Hui Joyce Li
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts.
| | - Subir K Ray
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Alper Kucukural
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Gerard Gradwohl
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Andrew B Leiter
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
34
|
Beumer J, Puschhof J, Bauzá-Martinez J, Martínez-Silgado A, Elmentaite R, James KR, Ross A, Hendriks D, Artegiani B, Busslinger GA, Ponsioen B, Andersson-Rolf A, Saftien A, Boot C, Kretzschmar K, Geurts MH, Bar-Ephraim YE, Pleguezuelos-Manzano C, Post Y, Begthel H, van der Linden F, Lopez-Iglesias C, van de Wetering WJ, van der Linden R, Peters PJ, Heck AJR, Goedhart J, Snippert H, Zilbauer M, Teichmann SA, Wu W, Clevers H. High-Resolution mRNA and Secretome Atlas of Human Enteroendocrine Cells. Cell 2020; 181:1291-1306.e19. [PMID: 32407674 DOI: 10.1016/j.cell.2020.04.036] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/10/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
Abstract
Enteroendocrine cells (EECs) sense intestinal content and release hormones to regulate gastrointestinal activity, systemic metabolism, and food intake. Little is known about the molecular make-up of human EEC subtypes and the regulated secretion of individual hormones. Here, we describe an organoid-based platform for functional studies of human EECs. EEC formation is induced in vitro by transient expression of NEUROG3. A set of gut organoids was engineered in which the major hormones are fluorescently tagged. A single-cell mRNA atlas was generated for the different EEC subtypes, and their secreted products were recorded by mass-spectrometry. We note key differences to murine EECs, including hormones, sensory receptors, and transcription factors. Notably, several hormone-like molecules were identified. Inter-EEC communication is exemplified by secretin-induced GLP-1 secretion. Indeed, individual EEC subtypes carry receptors for various EEC hormones. This study provides a rich resource to study human EEC development and function.
Collapse
Affiliation(s)
- Joep Beumer
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Jens Puschhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Julia Bauzá-Martinez
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Adriana Martínez-Silgado
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Rasa Elmentaite
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Kylie R James
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Alexander Ross
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Delilah Hendriks
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Benedetta Artegiani
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Georg A Busslinger
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Bas Ponsioen
- Oncode Institute, Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Amanda Andersson-Rolf
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Aurelia Saftien
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Charelle Boot
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Kai Kretzschmar
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Maarten H Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Yotam E Bar-Ephraim
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Cayetano Pleguezuelos-Manzano
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Yorick Post
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Harry Begthel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Franka van der Linden
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, the Netherlands
| | - Carmen Lopez-Iglesias
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Willine J van de Wetering
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Reinier van der Linden
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Joachim Goedhart
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, the Netherlands
| | - Hugo Snippert
- Oncode Institute, Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Matthias Zilbauer
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; Theory of Condensed Matter, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Wei Wu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands; The Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, the Netherlands.
| |
Collapse
|
35
|
Vazquez SE, Ferré EMN, Scheel DW, Sunshine S, Miao B, Mandel-Brehm C, Quandt Z, Chan AY, Cheng M, German M, Lionakis M, DeRisi JL, Anderson MS. Identification of novel, clinically correlated autoantigens in the monogenic autoimmune syndrome APS1 by proteome-wide PhIP-Seq. eLife 2020; 9:e55053. [PMID: 32410729 PMCID: PMC7228772 DOI: 10.7554/elife.55053] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
The identification of autoantigens remains a critical challenge for understanding and treating autoimmune diseases. Autoimmune polyendocrine syndrome type 1 (APS1), a rare monogenic form of autoimmunity, presents as widespread autoimmunity with T and B cell responses to multiple organs. Importantly, autoantibody discovery in APS1 can illuminate fundamental disease pathogenesis, and many of the antigens found in APS1 extend to more common autoimmune diseases. Here, we performed proteome-wide programmable phage-display (PhIP-Seq) on sera from a cohort of people with APS1 and discovered multiple common antibody targets. These novel APS1 autoantigens exhibit tissue-restricted expression, including expression in enteroendocrine cells, pineal gland, and dental enamel. Using detailed clinical phenotyping, we find novel associations between autoantibodies and organ-restricted autoimmunity, including a link between anti-KHDC3L autoantibodies and premature ovarian insufficiency, and between anti-RFX6 autoantibodies and diarrheal-type intestinal dysfunction. Our study highlights the utility of PhIP-Seq for extensively interrogating antigenic repertoires in human autoimmunity and the importance of antigen discovery for improved understanding of disease mechanisms.
Collapse
Affiliation(s)
- Sara E Vazquez
- Medical Scientist Training Program, University of California, San FranciscoSan FranciscoUnited States
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Elise MN Ferré
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - David W Scheel
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Sara Sunshine
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Biomedical Sciences Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Brenda Miao
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Caleigh Mandel-Brehm
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Zoe Quandt
- Department of Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Alice Y Chan
- Department of Pediatrics, University of California, San FranciscoSan FranciscoUnited States
| | - Mickie Cheng
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Michael German
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
- Department of Medicine, University of California, San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| | - Michail Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Mark S Anderson
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
- Department of Medicine, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
36
|
Tsakmaki A, Fonseca Pedro P, Pavlidis P, Hayee B, Bewick GA. ISX-9 manipulates endocrine progenitor fate revealing conserved intestinal lineages in mouse and human organoids. Mol Metab 2020; 34:157-173. [PMID: 32180555 PMCID: PMC7036449 DOI: 10.1016/j.molmet.2020.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/08/2020] [Accepted: 01/21/2020] [Indexed: 01/17/2023] Open
Abstract
Objective Enteroendocrine cells (EECs) survey the gut luminal environment and coordinate hormonal, immune and neuronal responses to it. They exhibit well-characterised physiological roles ranging from the control of local gut function to whole body metabolism, but little is known regarding the regulatory networks controlling their differentiation, especially in the human gut. The small molecule isoxazole-9 (ISX-9) has been shown to stimulate neuronal and pancreatic beta-cell differentiation, both closely related to EEC differentiation. Our aim was to use ISX-9 as a tool to explore EEC differentiation. Methods We investigated the effects of ISX-9 on EEC differentiation in mouse and human intestinal organoids, using real-time quantitative polymerase chain reaction (RT-qPCR), fluorescent-activated cell sorting, immunostaining and single-cell RNA sequencing. Results ISX-9 increased the number of neurogenin3-RFP (Ngn3)-positive endocrine progenitor cells and upregulated NeuroD1 and Pax4, transcription factors that play roles in mouse EEC specification. Single-cell analysis showed induction of Pax4 expression in a developmentally late Ngn3+ population of cells and potentiation of genes associated with progenitors biased toward serotonin-producing enterochromaffin (EC) cells. Further, we observed enrichment of organoids with functional EC cells that was partly dependent on stimulation of calcium signalling in a population of cells residing outside the crypt base. Inducible Pax4 overexpression, in ileal organoids, uncovered its importance as a component of early human endocrine specification and highlighted the potential existence of two major endocrine lineages, the early appearing enterochromaffin lineage and the later developing peptidergic lineage which contains classical gut hormone cell types. Conclusion Our data provide proof-of-concept for the controlled manipulation of specific endocrine lineages with small molecules, whilst also shedding new light on human EEC differentiation and its similarity to the mouse. Given their diverse roles, understanding endocrine lineage plasticity and its control could have multiple therapeutic implications. ISX-9 promotes flux through the Ngn3 lineage and enriches it with enterochromaffin cells. ISX-9 engages an enterochromaffin biased transcriptional programme in endocrine fated cells. Enterochromaffin bias is partly dependent on calcium signalling in progenitor cells. ISX-9 reveals conserved gut endocrine specification between mouse and human. Pax4 overexpression in human ileum organoids mimics the effects of ISX-9 on EC bias.
Collapse
Affiliation(s)
- Anastasia Tsakmaki
- Diabetes Research Group, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Patricia Fonseca Pedro
- Diabetes Research Group, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Polychronis Pavlidis
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, UK
| | - Bu'Hussain Hayee
- Department of Gastroenterology, King's College Hospital NHS Foundation Trust, London, UK
| | - Gavin A Bewick
- Diabetes Research Group, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, London, UK.
| |
Collapse
|