1
|
Pan C, Gao Q, Chen Y, Wang Y, Tang Z. Recent progress in biosourced polylactic acid-based biocomposites for dentistry: A review. Int J Biol Macromol 2025; 310:143528. [PMID: 40288709 DOI: 10.1016/j.ijbiomac.2025.143528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 04/08/2025] [Accepted: 04/25/2025] [Indexed: 04/29/2025]
Abstract
Polylactic acid (PLA), a biodegradable polymer derived from renewable biological macromolecules such as corn starch and sugarcane, exhibits excellent biocompatibility, biodegradability, non-toxicity, and ease of functionalization, showing great potential in dental medicine applications. However, unmodified PLA has inherent drawbacks, such as poor mechanical ductility, slow degradation, and poor hydrophilicity, which limit its use in this field. This paper briefly introduces the structure and performance advantages of PLA and discusses various modification methods, including chemical and physical modifications. The properties of PLA composites are further elaborated on, with an emphasis on their latest advancements in dental implantation, restoration, orthodontics, maxillofacial surgery, and periodontal disease treatment. An outlook on the development trends of PLA-based composites in oral medicine is also provided, to enhance the role of PLA-based composites in this field and offer patients more treatment options and better outcomes.
Collapse
Affiliation(s)
- Chengxiao Pan
- College of Stomatology, Guizhou Medical University, Guiyang 550004, China
| | - Qiong Gao
- College of Stomatology, Guizhou Medical University, Guiyang 550004, China; Department of Oral and Maxillofacial Surgery, Affiliated Stemmatological Hospital of Guizhou Medical University, Guiyang 550004, China.
| | - Youli Chen
- College of Stomatology, Guizhou Medical University, Guiyang 550004, China; Department of Oral and Maxillofacial Surgery, Affiliated Stemmatological Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Yu Wang
- College of Stomatology, Guizhou Medical University, Guiyang 550004, China; Department of Oral and Maxillofacial Surgery, Affiliated Stemmatological Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Zhenglong Tang
- College of Stomatology, Guizhou Medical University, Guiyang 550004, China; Department of Oral and Maxillofacial Surgery, Affiliated Stemmatological Hospital of Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
2
|
Zhou J, Wang H, Virtanen S, Witek L, Dong H, Thanassi D, Shen J, Yang YP, Yu C, Zhu D. Hybrid zinc oxide nanocoating on titanium implants: Controlled drug release for enhanced antibacterial and osteogenic performance in infectious conditions. Acta Biomater 2024; 189:589-604. [PMID: 39343288 DOI: 10.1016/j.actbio.2024.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Implant-associated bacterial infections are a primary cause of complications in orthopedic implants, and localized drug delivery represents an effective mitigation strategy. Drawing inspiration from the morphology of desiccated soil, our group has developed an advanced drug-delivery system augmented onto titanium (Ti) plates. This system integrates zinc oxide (ZnO) nanorod arrays with a vancomycin drug layer along with a protective Poly(lactic-co-glycolic acid) (PLGA) coating. The binding between the ZnO nanorods and the drug results in attached drug blocks, isolated by desiccation-like cracks, which are then encapsulated by PLGA to enable sustained drug release. Additionally, the release of zinc ions and the generation of reactive oxygen species (ROS) from the ZnO nanorods enhance the antibacterial efficacy. The antibacterial properties of ZnO nanorod-drug-PLGA system have been validated through both in vitro and in vivo studies. Comprehensive investigations were conducted on the impact of bacterial infections on bone defect regeneration and the role of this drug-delivery system in the healing process. Furthermore, the local immune response was analyzed and the immunomodulatory function of the system was demonstrated. Overall, the findings underscore the superior performance of the ZnO nanorod-drug-PLGA system as an efficient and safe approach to combat implant-associated bacterial infections. STATEMENT OF SIGNIFICANCE: Implant-associated bacterial infections pose a significant clinical challenge, particularly in orthopedic procedures. To address this, we developed an innovative ZnO nanorod-drug-PLGA system for local antibiotic delivery on conventional titanium implants. This system is biodegradable and features a unique desiccation-like structure that enables sustained drug release, along with the active substances released from the ZnO nanorods. In a rat calvarial defect model challenged with S. aureus, our system demonstrated remarkable antibacterial efficacy, significantly enhanced bone defect regeneration, and exhibited local immunomodulatory effects that support both infection control and osteogenesis. These breakthrough findings highlight the substantial clinical potential of this novel drug delivery system and introduce a transformative coating strategy to enhance the functionality of traditional metallic biomaterials.
Collapse
Affiliation(s)
- Juncen Zhou
- Department of Biomedical Engineering, University of Stony Brook, Stony Brook, NY 11794, USA
| | - Hanbo Wang
- Department of Biomedical Engineering, University of Stony Brook, Stony Brook, NY 11794, USA
| | - Sannakaisa Virtanen
- Institute for Surface Science and Corrosion, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA; Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY 10010, USA; Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Hongzhou Dong
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 21000, China
| | - David Thanassi
- Department of Microbiology and Immunology, University of Stony Brook, Stony Brook, NY 11794, USA
| | - Jie Shen
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, Stanford University, Palo Alto, CA 94304, USA
| | - Cunjiang Yu
- Department of Electrical & Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Donghui Zhu
- Department of Biomedical Engineering, University of Stony Brook, Stony Brook, NY 11794, USA.
| |
Collapse
|
3
|
Hakim LK, Yari A, Nikparto N, Mehraban SH, Cheperli S, Asadi A, Darehdor AA, Nezaminia S, Dortaj D, Nazari Y, Dehghan M, Hojjat P, Mohajeri M, Hasani Jebelli MS. The current applications of nano and biomaterials in drug delivery of dental implant. BMC Oral Health 2024; 24:126. [PMID: 38267933 PMCID: PMC10809618 DOI: 10.1186/s12903-024-03911-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND AND AIM Dental implantology has revolutionized oral rehabilitation, offering a sophisticated solution for restoring missing teeth. Despite advancements, issues like infection, inflammation, and osseointegration persist. Nano and biomaterials, with their unique properties, present promising opportunities for enhancing dental implant therapies by improving drug delivery systems. This review discussed the current applications of nano and biomaterials in drug delivery for dental implants. METHOD A literature review examined recent studies and advancements in nano and biomaterials for drug delivery in dental implantology. Various materials, including nanoparticles, biocompatible polymers, and bioactive coatings, were reviewed for their efficacy in controlled drug release, antimicrobial properties, and promotion of osseointegration. RESULTS Nano and biomaterials exhibit considerable potential in improving drug delivery for dental implants. Nanostructured drug carriers demonstrate enhanced therapeutic efficacy, sustained release profiles, and improved biocompatibility. Furthermore, bioactive coatings contribute to better osseointegration and reduced risks of infections. CONCLUSION Integrating current nano and biomaterials in drug delivery for dental implants holds promise for advancing clinical outcomes. Enhanced drug delivery systems can mitigate complications associated with dental implant procedures, offering improved infection control, reduced inflammation, and optimized osseointegration.
Collapse
Affiliation(s)
| | - Amir Yari
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kashan University of Medical Sciences, Kashan, Iran
| | - Nariman Nikparto
- Oral and Maxillofacial Surgeon (OMFS), Department of Oral and Maxillofacial Surgery, Masters in Public Health (MPH), Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeed Hasani Mehraban
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amirali Asadi
- Oral and Maxillofacial Surgeon, Department of Oral and Maxillofacial Surgery, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sayna Nezaminia
- Oral and Maxillofacial Surgery Resident, Department of Oral and Maxillofacial Surgery, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Dorara Dortaj
- Operative Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasin Nazari
- General Dentist, Masters in Engineering, Tehran, Iran
| | - Mohamad Dehghan
- Specialist in Prosthodontics, Independent Researcher, Tehran, Iran
| | - Pardis Hojjat
- Department of Periodontics, Faculty of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahsa Mohajeri
- Department of Prosthodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
4
|
Abdulghafor MA, Mahmood MK, Tassery H, Tardivo D, Falguiere A, Lan R. Biomimetic Coatings in Implant Dentistry: A Quick Update. J Funct Biomater 2023; 15:15. [PMID: 38248682 PMCID: PMC10816551 DOI: 10.3390/jfb15010015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Biomimetic dental implants are regarded as one of the recent clinical advancements in implant surface modification. Coatings with varying thicknesses and roughness may affect the dental implant surface's chemical inertness, cell adhesion, and antibacterial characteristics. Different surface coatings and mechanical surface changes have been studied to improve osseointegration and decrease peri-implantitis. The surface medication increases surface energy, leading to enhanced cell proliferation and growth factors, and, consequently, to a rise in the osseointegration process. This review provides a comprehensive update on the numerous biomimetic coatings used to improve the surface characteristics of dental implants and their applications in two main categories: coating to improve osseointegration, including the hydroxyapatite layer and nanocomposites, growth factors (BMPs, PDGF, FGF), and extracellular matrix (collagen, elastin, fibronectin, chondroitin sulfate, hyaluronan, and other proteoglycans), and coatings for anti-bacterial performance, covering drug-coated dental implants (antibiotic, statin, and bisphosphonate), antimicrobial peptide coating (GL13K and human beta defensins), polysaccharide antibacterial coatings (natural chitosan and its coupling agents) and metal elements (silver, zinc, and copper).
Collapse
Affiliation(s)
| | - Mohammed Khalid Mahmood
- Faculty of Dentistry, Aix-Marseille University, CNRS, EFS, ADES, 13284 Marseille, France;
- College of Dentistry, The American University of Iraq, Sulaimani 46001, Kurdistan, Iraq
| | | | - Delphine Tardivo
- Faculty of Dentistry, Aix-Marseille University, CNRS, EFS, ADES, 13284 Marseille, France;
| | - Arthur Falguiere
- Oral Surgery Department, Timone Hospital, Aix-Marseille University, APHM, 13284 Marseille, France
| | - Romain Lan
- Oral Surgery Department, Timone Hospital, Aix-Marseille University, APHM, CNRS, EFS, ADES, 13284 Marseille, France;
| |
Collapse
|
5
|
Fol MF, Hamdi SAH, Abdel-Rahman HA, Mostafa NA. In vivo efficacy of silver nanoparticles against Syphacia muris infected laboratory Wistar rats. J Parasit Dis 2023; 47:744-756. [PMID: 38009151 PMCID: PMC10667209 DOI: 10.1007/s12639-023-01607-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/06/2023] [Indexed: 11/28/2023] Open
Abstract
Helminth infections are a worldwide problem that affects both humans and animals in developing countries. The common pinworm Syphacia muris frequently infects lab rats and can obstruct the creation of unrelated biological experiments. The objective of this study was to examine the in vivo efficacy of silver nanoparticles against S. muris infected Wistar rats. Transmission electron microscopy and X-ray diffraction examinations of silver nanoparticles revealed highly pure polycrystals with a mean size of 4 nm. Rats were divided into group I, the control: received distilled water; groups II and III, the treated: received 2, 4 mg/kg b.w. of Ag NPs, respectively. At the end of the experimental period, all rats were euthanized and dissected for collecting worms. The surface topography of the recovered worms was displayed using light and scanning electron microscopy, and their physiological status was determined using oxidative stress biomarkers. The histological changes in the rat liver, kidney, and spleen were also examined. In the current study, Ag NPs administration revealed substantial alterations in worms collected from treated rats, including shrinkage of lips, peeling and rupture of body cuticles, and disruption of surface annulations. Also, induced a significant increase in malondialdehyde and nitric oxide levels, as well as a decrease in reduced glutathione, glutathione peroxidase and catalase levels compared to control group. Moreover, sections of treated rats' liver, kidney and spleen displayed normal cellular appearance. In conclusion, this is the first in vivo study to evaluate Ag NPs efficacy against S. muris in laboratory rats without significant toxicity.
Collapse
Affiliation(s)
- Mona Fathi Fol
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | | | | |
Collapse
|
6
|
Smola-Dmochowska A, Lewicka K, Macyk A, Rychter P, Pamuła E, Dobrzyński P. Biodegradable Polymers and Polymer Composites with Antibacterial Properties. Int J Mol Sci 2023; 24:ijms24087473. [PMID: 37108637 PMCID: PMC10138923 DOI: 10.3390/ijms24087473] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Antibiotic resistance is one of the greatest threats to global health and food security today. It becomes increasingly difficult to treat infectious disorders because antibiotics, even the newest ones, are becoming less and less effective. One of the ways taken in the Global Plan of Action announced at the World Health Assembly in May 2015 is to ensure the prevention and treatment of infectious diseases. In order to do so, attempts are made to develop new antimicrobial therapeutics, including biomaterials with antibacterial activity, such as polycationic polymers, polypeptides, and polymeric systems, to provide non-antibiotic therapeutic agents, such as selected biologically active nanoparticles and chemical compounds. Another key issue is preventing food from contamination by developing antibacterial packaging materials, particularly based on degradable polymers and biocomposites. This review, in a cross-sectional way, describes the most significant research activities conducted in recent years in the field of the development of polymeric materials and polymer composites with antibacterial properties. We particularly focus on natural polymers, i.e., polysaccharides and polypeptides, which present a mechanism for combating many highly pathogenic microorganisms. We also attempt to use this knowledge to obtain synthetic polymers with similar antibacterial activity.
Collapse
Affiliation(s)
- Anna Smola-Dmochowska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marii Curie-Skłodowskiej Str., 41-819 Zabrze, Poland
| | - Kamila Lewicka
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Alicja Macyk
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
| | - Piotr Rychter
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
| | - Piotr Dobrzyński
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marii Curie-Skłodowskiej Str., 41-819 Zabrze, Poland
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| |
Collapse
|
7
|
Chang CH, Tsai LH, Lee YC, Yao WC, Lin JJ. Synergistic Effects of Silicate-Platelet Supporting Ag and ZnO, Offering High Antibacterial Activity and Low Cytotoxicity. Int J Mol Sci 2023; 24:ijms24087024. [PMID: 37108187 PMCID: PMC10138669 DOI: 10.3390/ijms24087024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Silver nanoparticles (AgNPs) are remarkably able to eliminate microorganisms, but induce cytotoxicity in mammalian cells, and zinc oxide nanoparticles (ZnONPs) are considered to have a wide bactericidal effect with weak cytotoxicity. In this study, both zinc oxide nanoparticles and silver nanoparticles were co-synthesized on a nano-silicate platelet (NSP) to prepare a hybrid of AgNP/ZnONP/NSP. Ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), and transmission electron microscopy (TEM) were used to characterize the formation of nanoparticles on the NSP. Synthesized ZnONP/NSP (ZnONP on NSP) was confirmed by the absorption peaks on UV-Vis and XRD. AgNP synthesized on ZnONP/NSP was also characterized by UV-Vis, and ZnONP/NSP showed no interference with synthesis. The images of TEM demonstrated that NSP provides physical support for the growth of nanoparticles and could prevent the inherent aggregation of ZnONP. In antibacterial tests, AgNP/ZnONP/NSP exhibited more efficacy against Staphylococcus aureus (S. aureus) than ZnONP/NSP (ZnONP was synthesized on NSP) and AgNP/NSP (AgNP was synthesized on NSP). In cell culture tests, 1/10/99 (weight ratio) of AgNP/ZnONP/NSP exhibited low cytotoxicity for mammalian cells (>100 ppm). Therefore, AgNP/ZnONP/NSP, containing both AgNP and ZnONP, with both strong antibacterial qualities and low cytotoxicity, showed potentially advantageous medical utilizations due to its antibacterial properties.
Collapse
Affiliation(s)
- Chih-Hao Chang
- Department of Orthopedics, National Taiwan University Hospital Jin-Shan Branch, New Taipei City 20844, Taiwan
- Department of Orthopedics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Li-Hui Tsai
- Department of Biomedical Engineering, National Taiwan University, Taipei 100, Taiwan
| | - Yi-Chen Lee
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Cheng Yao
- Department of Anesthesiology and Pain Medicine, Min-Sheng General Hospital, Taoyuan 330, Taiwan
| | - Jiang-Jen Lin
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
8
|
Bose S, Surendhiran D, Chun BS, Arthanari S, Tran VN, Lee H, Kang HW. Facile synthesis of black phosphorus-zinc oxide nanohybrids for antibacterial coating of titanium surface. Colloids Surf B Biointerfaces 2022; 219:112807. [PMID: 36088832 DOI: 10.1016/j.colsurfb.2022.112807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/04/2022] [Accepted: 08/24/2022] [Indexed: 11/27/2022]
Abstract
Bacterial infection is a major complication associated with bioimplant materials, including titanium (Ti) based orthopedic joints and dental implants. Thus, the fabrication of Ti surfaces with antibacterial activity is highly important. Black phosphorus (BP) is a recently discovered promising two-dimensional semiconductor for various biomedical applications due to its tunable bandgap and physicochemical properties. The present study aimed to synthesize zinc oxide (ZnO) laden BP nanohybrids (NH) and their coatings on a Ti bioimplant surface for improving the antibacterial activities against pathogenic bacteria with and without near-infrared (NIR) light irradiation. Nanohybrids were produced with the slightly oxidized BP NF and electrostatically laden ZnO NP. The produced BP-ZnO NH was a NIR active nanomaterial (up to ∼1000 nm), demonstrating a photothermal effect against bacterial infection and showing improved activity by damaging the cell membrane towards S. aureus in comparison to E. coli. Ti surface coated with BP-ZnO NH embedded chitosan (CS) demonstrated better antibacterial activity than BP NF, especially with NIR light treatment. Additionally, the produced BP nanoflakes and BP-ZnO NH, and their coatings over the Ti surface were found to be toxic at a negligible level. Electrochemical studies revealed the high corrosion resistance of the Ti surface coated with the synthesized antibacterial agents without altering its characteristic passive behavior. Owing to the interactions between the charged groups between chitosan and cell surfaces, a slight increase in antibacterial activities was noticed. Chitosan-based coating matrix embedded with nanoagents has adhered well over the Ti surface due to its inherent film-forming and high adhesion properties.
Collapse
Affiliation(s)
- Sivakumar Bose
- Marine-integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University (PKNU), Busan 48513, Republic of Korea.
| | | | - Byung-Soo Chun
- Department of Food Science and Technology, PKNU, Busan 48513, Republic of Korea.
| | - Srinivasan Arthanari
- Department of Mechanical & Materials Engineering Education, Chungnam National University (CNU), 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| | - Van Nam Tran
- Industry 4.0 Convergence Bionics Engineering and Marine-integrated Biomedical Technology Center, PKNU, Busan 48513, Republic of Korea.
| | - Huseung Lee
- Department of Mechanical & Materials Engineering Education, Chungnam National University (CNU), 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| | - Hyun Wook Kang
- Marine-integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University (PKNU), Busan 48513, Republic of Korea; Department of Biomedical Engineering, PKNU, Busan 48513, Republic of Korea.
| |
Collapse
|
9
|
Fathi P, Roslend A, Alafeef M, Moitra P, Dighe K, Esch MB, Pan D. In Situ Surface-Directed Assembly of 2D Metal Nanoplatelets for Drug-Free Treatment of Antibiotic-Resistant Bacteria. Adv Healthc Mater 2022; 11:e2102567. [PMID: 35856392 DOI: 10.1002/adhm.202102567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 07/01/2022] [Indexed: 01/27/2023]
Abstract
The development of antibiotic resistance among bacterial strains is a major global public health concern. To address this, drug-free antibacterial approaches are needed. Copper surfaces have long been known for their antibacterial properties. In this work, a one-step surface modification technique is used to assemble 2D copper chloride nanoplatelets directly onto copper surfaces such as copper tape, transmission electron microscopy (TEM) grids, electrodes, and granules. The nanoplatelets are formed using copper ions from the copper surfaces, enabling their direct assembly onto these surfaces in a one-step process that does not require separate nanoparticle synthesis. The synthesis of the nanoplatelets is confirmed with TEM, scanning electron microscopy, energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). Antibacterial properties of the Cu nanoplatelets are demonstrated in multidrug-resistant (MDR) Escherichia coli, MDR Acinetobacter baumannii, MDR Staphylococcus aureus, E. coli, and Streptococcus mutans. Nanoplatelets lead to a marked improvement in antibacterial properties compared to the copper surfaces alone, affecting bacterial cell morphology, preventing bacterial cell division, reducing their viability, damaging bacterial DNA, and altering protein expression. This work presents a robust method to directly assemble copper nanoplatelets onto any copper surface to imbue it with improved antibacterial properties.
Collapse
Affiliation(s)
- Parinaz Fathi
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ayman Roslend
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Maha Alafeef
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Departments of Diagnostic Radiology Nuclear Medicine and Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Chemical and Biochemical Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.,Department of Nuclear Engineering and Materials Science and Engineering Huck Institutes for the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.,Biomedical Engineering Department, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Parikshit Moitra
- Departments of Diagnostic Radiology Nuclear Medicine and Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Nuclear Engineering and Materials Science and Engineering Huck Institutes for the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ketan Dighe
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Departments of Diagnostic Radiology Nuclear Medicine and Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Chemical and Biochemical Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Mandy B Esch
- Biomedical Technologies Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Dipanjan Pan
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Departments of Diagnostic Radiology Nuclear Medicine and Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Chemical and Biochemical Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.,Department of Nuclear Engineering and Materials Science and Engineering Huck Institutes for the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
10
|
Pushpalatha C, Suresh J, Gayathri VS, Sowmya SV, Augustine D, Alamoudi A, Zidane B, Mohammad Albar NH, Patil S. Zinc Oxide Nanoparticles: A Review on Its Applications in Dentistry. Front Bioeng Biotechnol 2022; 10:917990. [PMID: 35662838 PMCID: PMC9160914 DOI: 10.3389/fbioe.2022.917990] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Nanotechnology in modern material science is a research hot spot due to its ability to provide novel applications in the field of dentistry. Zinc Oxide Nanoparticles (ZnO NPs) are metal oxide nanoparticles that open new opportunities for biomedical applications that range from diagnosis to treatment. The domains of these nanoparticles are wide and diverse and include the effects brought about due to the anti-microbial, regenerative, and mechanical properties. The applications include enhancing the anti-bacterial properties of existing restorative materials, as an anti-sensitivity agent in toothpastes, as an anti-microbial and anti-fungal agent against pathogenic oral microflora, as a dental implant coating, to improve the anti-fungal effect of denture bases in rehabilitative dentistry, remineralizing cervical dentinal lesions, increasing the stability of local drug delivery agents and other applications.
Collapse
Affiliation(s)
- C Pushpalatha
- Department of Pedodontics and Preventive Dentistry, Faculty of Dental Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Jithya Suresh
- Department of Pedodontics and Preventive Dentistry, Faculty of Dental Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - VS Gayathri
- Department of Pedodontics and Preventive Dentistry, Faculty of Dental Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - SV Sowmya
- Department of Oral Pathology & Microbiology, Faculty of Dental Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Dominic Augustine
- Department of Oral Pathology & Microbiology, Faculty of Dental Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Ahmed Alamoudi
- Oral Biology Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bassam Zidane
- Restorative Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Shwajra Campus, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
11
|
Xiang E, Gómez-Cerezo MN, Ali Y, Ramachandra SS, Yang N, Dargusch M, Moran CS, Ivanovski S, Abdal-Hay A. Surface Modification of Pure Zinc by Acid Etching: Accelerating the Corrosion Rate and Enhancing Biocompatibility and Antibacterial Characteristics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22554-22569. [PMID: 35533291 DOI: 10.1021/acsami.2c00918] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Zinc (Zn) has recently been identified as an auspicious biodegradable metal for medical implants and devices due to its tunable mechanical properties and good biocompatibility. However, the slow corrosion rate of Zn in a physiological environment does not meet the requirements for biodegradable implants, hindering its clinical translation. The present study aimed to accelerate the corrosion rate of pure Zn by utilizing acid etching to roughen the surface and increase the substrate surface area. The effects of acid etching on surface morphology, surface roughness, tensile properties, hardness, electrochemical corrosion and degradation behavior, cytocompatibility, direct cell attachment, and biofilm formation were investigated. Interestingly, acid-treated Zn showed an exceptionally high rate of corrosion (∼226-125 μm/year) compared to untreated Zn (∼62 μm/year), attributed to the increased surface roughness (Ra ∼ 1.12 μm) of acid-etched samples. Immersion tests in Hank's solution revealed that acid etching accelerated the degradation rate of Zn samples. In vitro, MC3T3-E1 cell lines in 50 and 25% conditioned media extracts of treated samples showed good cytocompatibility. Reduced bacterial adhesion, biofilm formation, and dispersion were observed for Staphylococci aureus biofilms cultured on acid-etched pure Zn substrates. These results suggest that the surface modification of biodegradable pure Zn metals by acid etching markedly increases the translation potential of zinc for various biomedical applications.
Collapse
Affiliation(s)
- Enmao Xiang
- The University of Queensland, School of Dentistry, Herston, Queensland 4006, Australia
| | | | - Yahia Ali
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Nan Yang
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matthew Dargusch
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Corey S Moran
- The University of Queensland, School of Dentistry, Herston, Queensland 4006, Australia
| | - Saso Ivanovski
- The University of Queensland, School of Dentistry, Herston, Queensland 4006, Australia
| | - Abdalla Abdal-Hay
- The University of Queensland, School of Dentistry, Herston, Queensland 4006, Australia
- Department of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley University, Qena 85325, Egypt
| |
Collapse
|
12
|
Berini F, Orlandi V, Gornati R, Bernardini G, Marinelli F. Nanoantibiotics to fight multidrug resistant infections by Gram-positive bacteria: hope or reality? Biotechnol Adv 2022; 57:107948. [PMID: 35337933 DOI: 10.1016/j.biotechadv.2022.107948] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/17/2022]
Abstract
The spread of antimicrobial resistance in Gram-positive pathogens represents a threat to human health. To counteract the current lack of novel antibiotics, alternative antibacterial treatments have been increasingly investigated. This review covers the last decade's developments in using nanoparticles as carriers for the two classes of frontline antibiotics active on multidrug-resistant Gram-positive pathogens, i.e., glycopeptide antibiotics and daptomycin. Most of the reviewed papers deal with vancomycin nanoformulations, being teicoplanin- and daptomycin-carrying nanosystems much less investigated. Special attention is addressed to nanoantibiotics used for contrasting biofilm-associated infections. The status of the art related to nanoantibiotic toxicity is critically reviewed.
Collapse
Affiliation(s)
- Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Viviana Orlandi
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| |
Collapse
|
13
|
Zhang Z, Zeng J, Groll J, Matsusaki M. Layer-by-layer assembly methods and their biomedical applications. Biomater Sci 2022; 10:4077-4094. [DOI: 10.1039/d2bm00497f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Various biomedical applications arising due to the development of different LbL assembly methods with unique process properties.
Collapse
Affiliation(s)
- Zhuying Zhang
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jinfeng Zeng
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Research Fellow of Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB) and Bavarian Polymer Institute (BPI), University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
14
|
Ye J, Li B, Li M, Zheng Y, Wu S, Han Y. Formation of a ZnO nanorods-patterned coating with strong bactericidal capability and quantitative evaluation of the contribution of nanorods-derived puncture and ROS-derived killing. Bioact Mater 2021; 11:181-191. [PMID: 34938922 PMCID: PMC8665260 DOI: 10.1016/j.bioactmat.2021.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/21/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022] Open
Abstract
To endow Ti-based orthopedic implants with strong bactericidal activity, a ZnO nanorods-patterned coating (namely ZNR) was fabricated on Ti utilizing a catalyst- and template-free method of micro-arc oxidation (MAO) and hydrothermal treatment (HT). The coating comprises an outer layer of ZnO nanorods and a partially crystallized inner layer with nanocrystalline TiO2 and Zn2TiO4 embedded amorphous matrix containing Ti, O and Zn. During HT, Zn2+ ions contained in amorphous matrix of the as-MAOed layer migrate to surface and react with OH− in hydrothermal solution to form ZnO nuclei growing in length at expense of the migrated Zn2+. ZNR exhibits intense bactericidal activity against the adhered and planktonic S. aureus in vitro and in vivo. The crucial contributors to kill the adhered bacteria are ZnO nanorods derived mechano-penetration and released reactive oxygen species (ROS). Within 30 min of S. aureus incubation, ROS is the predominant bactericidal contributor with quantitative contribution value of ∼20%, which transforms into mechano-penetration with prolonging time to reach quantitative contribution value of ∼96% at 24 h. In addition, the bactericidal contributor against the planktonic bacteria of ZNR is relied on the released Zn2+. This work discloses an in-depth bactericidal mechanism of ZnO nanorods. A templates and catalysts-free method is used to fabricate ZnO nanorods on Ti ZnO nanorods-arrayed coating shows intense broad-spectrum bactericidal activity Main bactericidal contributor of ZnO nanorods to adhered bacteria is mechano-puncture Main bactericidal contributor of ZnO nanorods to planktonic bacteria is released Zn2+
Collapse
Affiliation(s)
- Jing Ye
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bo Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Mei Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China.,Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yufeng Zheng
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Shuilin Wu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology By the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
15
|
Berini F, Orlandi VT, Gamberoni F, Martegani E, Armenia I, Gornati R, Bernardini G, Marinelli F. Antimicrobial Activity of Nanoconjugated Glycopeptide Antibiotics and Their Effect on Staphylococcus aureus Biofilm. Front Microbiol 2021; 12:657431. [PMID: 34925248 PMCID: PMC8674785 DOI: 10.3389/fmicb.2021.657431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
In the era of antimicrobial resistance, the use of nanoconjugated antibiotics is regarded as a promising approach for preventing and fighting infections caused by resistant bacteria, including those exacerbated by the formation of difficult-to-treat bacterial biofilms. Thanks to their biocompatibility and magnetic properties, iron oxide nanoparticles (IONPs) are particularly attractive as antibiotic carriers for the targeting therapy. IONPs can direct conjugated antibiotics to infection sites by the use of an external magnet, facilitating tissue penetration and disturbing biofilm formation. As a consequence of antibiotic localization, a decrease in its administration dosage might be possible, reducing the side effects to non-targeted organs and the risk of antibiotic resistance spread in the commensal microbiota. Here, we prepared nanoformulations of the 'last-resort' glycopeptides teicoplanin and vancomycin by conjugating them to IONPs via surface functionalization with (3-aminopropyl) triethoxysilane (APTES). These superparamagnetic NP-TEICO and NP-VANCO were chemically stable and NP-TEICO (better than NP-VANCO) conserved the typical spectrum of antimicrobial activity of glycopeptide antibiotics, being effective against a panel of staphylococci and enterococci, including clinical isolates and resistant strains. By a combination of different methodological approaches, we proved that NP-TEICO and, although to a lesser extent, NP-VANCO were effective in reducing biofilm formation by three methicillin-sensitive or resistant Staphylococcus aureus strains. Moreover, when attracted and concentrated by the action of an external magnet, NP-TEICO exerted a localized inhibitory effect on S. aureus biofilm formation at low antibiotic concentration. Finally, we proved that the conjugation of glycopeptide antibiotics to IONPs reduced their intrinsic cytotoxicity toward a human cell line.
Collapse
Affiliation(s)
- Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | | | - Federica Gamberoni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Eleonora Martegani
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Ilaria Armenia
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
16
|
Wang Z, Wang X, Wang Y, Zhu Y, Liu X, Zhou Q. NanoZnO-modified titanium implants for enhanced anti-bacterial activity, osteogenesis and corrosion resistance. J Nanobiotechnology 2021; 19:353. [PMID: 34717648 PMCID: PMC8557588 DOI: 10.1186/s12951-021-01099-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/20/2021] [Indexed: 02/08/2023] Open
Abstract
Titanium (Ti) implants are widely used in dentistry and orthopedics owing to their excellent corrosion resistance, biocompatibility, and mechanical properties, which have gained increasing attention from the viewpoints of fundamental research and practical applications. Also, numerous studies have been carried out to fine-tune the micro/nanostructures of Ti and/or incorporate chemical elements to improve overall implant performance. Zinc oxide nanoparticles (nano-ZnO) are well-known for their good antibacterial properties and low cytotoxicity along with their ability to synergize with a variety of substances, which have received increasingly widespread attention as biomodification materials for implants. In this review, we summarize recent research progress on nano-ZnO modified Ti-implants. Their preparation methods of nano-ZnO modified Ti-implants are introduced, followed by a further presentation of the antibacterial, osteogenic, and anti-corrosion properties of these implants. Finally, challenges and future opportunities for nano-ZnO modified Ti-implants are proposed.
Collapse
Affiliation(s)
- Zheng Wang
- Institute for Translational Medicine, Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Xiaojing Wang
- School of Stomatology, Qingdao University, Qingdao, 266003, China
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yingruo Wang
- Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yanli Zhu
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Xinqiang Liu
- Institute for Translational Medicine, Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China.
- School of Stomatology, Qingdao University, Qingdao, 266003, China.
| | - Qihui Zhou
- Institute for Translational Medicine, Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China.
- School of Stomatology, Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
17
|
Moreira J, Vale AC, Alves NM. Spin-coated freestanding films for biomedical applications. J Mater Chem B 2021; 9:3778-3799. [PMID: 33876170 DOI: 10.1039/d1tb00233c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spin-coating is a widely employed technique for the fabrication of thin-film coatings over large areas with smooth and homogeneous surfaces. In recent years, research has extended the scope of spin-coating by developing methods involving the interface of the substrate and the deposited solution to obtain self-supported films, also called freestanding films. Thereby, such structures have been developed for a wide range of areas. Biomedical applications of spin-coated freestanding films include wound dressings, drug delivery, and biosensing. This review will discuss the fundamental physical and chemical processes governing the conventional spin-coating as well as the techniques to obtain freestanding films. Furthermore, developments within this field with a primary focus on tissue engineering applications will be reviewed.
Collapse
Affiliation(s)
- Joana Moreira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - A Catarina Vale
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Natália M Alves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
18
|
Femtosecond laser-induced nanoporous layer for enhanced osteogenesis of titanium implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112247. [PMID: 34225886 DOI: 10.1016/j.msec.2021.112247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
The osteogenic activity of medical metal can be improved by lowering its surface stiffness and elastic modulus. However, it is very difficult to directly reduce the elastic modulus of medical metal surfaces. In this paper, with selected parameters, the titanium surface was treated via femtosecond laser irradiation. Micro indentation revealed that the femtosecond laser ablation can effectively reduce the surface Young's modulus and Vickers hardness of titanium. Besides, In order to explain the mechanical properties of degradation of titanium surface, Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) was used to simulate the process of laser ablation process of titanium surface, and it was found that after the ablation of titanium surface, voids were produced in the subsurface layer. The simulation showed that the voids are formed by the cavitation of metastable liquid induced by high tensile stress and high temperature during femtosecond laser irradiation. Subsurface voids with a thickness of about 40 nm were observed under the oxide layer in the experiment. Cell experiments showed that the surface with low Young's modulus was more conducive to cell proliferation and osteogenic differentiation.
Collapse
|
19
|
Moradpoor H, Safaei M, Mozaffari HR, Sharifi R, Imani MM, Golshah A, Bashardoust N. An overview of recent progress in dental applications of zinc oxide nanoparticles. RSC Adv 2021; 11:21189-21206. [PMID: 35479373 PMCID: PMC9034121 DOI: 10.1039/d0ra10789a] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
Nanotechnology is an emerging field of science, engineering, and technology concerning the materials in nanoscale dimensions. Several materials are used in dentistry, which can be modified by applying nanotechnology. Nanotechnology has various applications in dentistry to achieve reliable treatment outcomes. The most common nanometals used in dental materials are gold, silver, copper oxide, magnesium oxide, iron oxide, cerium oxide, aluminum oxide, titanium dioxide, and zinc oxide (ZnO). ZnO nanoparticles (NPs), with their unparalleled properties such as high selectivity, enhanced cytotoxicity, biocompatibility, and easy synthesis as important materials were utilized in the field of dentistry. With this background, the present review aimed to discuss the current progress and gain an insight into applications of ZnO NPs in nanodentistry, including restorative, endodontic, implantology, periodontal, prosthodontics, and orthodontics fields.
Collapse
Affiliation(s)
- Hedaiat Moradpoor
- Department of Prosthodontics, School of Dentistry, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Mohsen Safaei
- Advanced Dental Sciences Research Center, School of Dentistry, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Hamid Reza Mozaffari
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Roohollah Sharifi
- Department of Endodontics, School of Dentistry, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Mohammad Moslem Imani
- Department of Orthodontics, School of Dentistry, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Amin Golshah
- Department of Orthodontics, School of Dentistry, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Negin Bashardoust
- Students Research Committee, Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
20
|
Wang Z, Mei L, Liu X, Zhou Q. Hierarchically hybrid biocoatings on Ti implants for enhanced antibacterial activity and osteogenesis. Colloids Surf B Biointerfaces 2021; 204:111802. [PMID: 33964526 DOI: 10.1016/j.colsurfb.2021.111802] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/12/2021] [Accepted: 04/26/2021] [Indexed: 12/30/2022]
Abstract
Titanium (Ti) is widely applied as bone-anchoring implants in dental and orthopedic applications owing to its superior mechanical characteristics, high corrosion resistance, and excellent biocompatibility. Nevertheless, Ti-based implants with the deficiencies of insufficient osteoinduction and associated infections can result in implant failure, which significantly limits its applications in some cases. In this work, hierarchically hybrid biocoatings on Ti implants are developed by gradual incorporation of polydopamine (PDA), ZnO nanoparticles (nZnO), and chitosan (CS)/nanocrystal hydroxyapatite (nHA) via oxidative self-polymerization, nanoparticle deposition, solvent casting and evaporation methods for enhancing their antibacterial activity and osteogenesis. The modification of PDA on porous reticular Ti substrates greatly reduces the surface roughness, wettability, protein adsorption, and provides high adhesion to the deposited nZnO. Further, incorporating nZnO on PDA-coated Ti surfaces affects the surface structure and wettability, significantly inhibits the growth of both Staphylococcus aureus and Escherichia coli. Moreover, the CS/nHA-doped coating on the nZnO-modified Ti surfaces remarkably improves cytocompatibility and enhances the osteogenic differentiation of MC3T3-E1 cells by upregulating the protein expression of alkaline phosphatase. This work offers a promising alternative for developing Ti implants with long-lifetime bioactivity to achieve strong antibacterial ability and enhanced bone formation for potential dental/orthopedic applications.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Li Mei
- School of Stomatology, Qingdao University, Qingdao, 266003, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Xinqiang Liu
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; School of Stomatology, Qingdao University, Qingdao, 266003, China.
| | - Qihui Zhou
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; School of Stomatology, Qingdao University, Qingdao, 266003, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
21
|
Kunrath MF, Campos MM. Metallic-nanoparticle release systems for biomedical implant surfaces: effectiveness and safety. Nanotoxicology 2021; 15:721-739. [PMID: 33896331 DOI: 10.1080/17435390.2021.1915401] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The current focus of bioengineering for implant devices involves the development of functionalized surfaces, bioactive coatings, and metallic nanoparticles (mNPs) with a controlled release, together with strategies for the application of drugs in situ, aiming at reducing infection rates, with an improvement of clinical outcomes. Controversially, negative aspects, such as cytotoxicity, mNP incorporation, bioaccumulation, acquired autoimmunity, and systemic toxicity have gained attention at the same status of importance, concerning the release of mNPs from these surface systems. The balance between the promising prospects of system releasing mNPs and the undesirable long-term adverse reactions require further investigation. The scarcity of knowledge and the methods of analysis of nanoscale-based systems to control the sequence of migration, interaction, and nanoparticle incorporation with human tissues raise hesitation about their efficacy and safety. Looking ahead, this innovative approach requires additional scientific investigation for permitting an evolution of implants without counterpoints, while updating implant surface technologies to a new level of development. This critical review has explored the promising properties of metals at the nano-scale to promote broad-spectrum bacterial control, allowing for a decrease in using systemic antibiotics. Attempts have also been made to discuss the existing limitations and the future challenges regarding these technologies, besides the negative findings that are explored in the literature.
Collapse
Affiliation(s)
- Marcel F Kunrath
- Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria M Campos
- Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
22
|
Xu N, Fu J, Zhao L, Chu PK, Huo K. Biofunctional Elements Incorporated Nano/Microstructured Coatings on Titanium Implants with Enhanced Osteogenic and Antibacterial Performance. Adv Healthc Mater 2020; 9:e2000681. [PMID: 32875743 DOI: 10.1002/adhm.202000681] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/02/2020] [Indexed: 12/20/2022]
Abstract
Bone fracture is prevalent among athletes and senior citizens and may require surgical insertion of bone implants. Titanium (Ti) and its alloys are widely used in orthopedics due to its high corrosion resistance, good biocompatibility, and modulus compatible with natural bone tissues. However, bone repair and regrowth are impeded by the insufficient intrinsic osteogenetic capability of Ti and Ti alloys and potential bacterial infection. The physicochemical properties of the materials and nano/microstructures on the implant surface are crucial for clinical success and loading with biofunctional elements such as Sr, Zn, Cu, Si, and Ag into nano/microstructured TiO2 coating has been demonstrated to enhance bone repair/regeneration and bacterial resistance of Ti implants. In this review, recent advances in biofunctional element-incorporated nano/microstructured coatings on Ti and Ti alloy implants are described and the prospects and limitations are discussed.
Collapse
Affiliation(s)
- Na Xu
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Jijiang Fu
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Lingzhou Zhao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Kaifu Huo
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430081, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
23
|
Jafari A, Nagheli A, Foumani AA, Soltani B, Goswami R. The Role of Metallic Nanoparticles in Inhibition of Mycobacterium Tuberculosis and Enhances Phagosome Maturation into the Infected Macrophage. Oman Med J 2020; 35:e194. [PMID: 33214909 PMCID: PMC7658918 DOI: 10.5001/omj.2020.78] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022] Open
Abstract
This review focuses on the role of gallium (Ga) nanoparticles (NPs) to enhance phagosome maturation into the Mycobacterium tuberculosis-infected macrophage and the role of magnetic iron NPs as nanocarriers of antituberculosis drugs. The literature shows that silver (Ag) and zinc oxide (ZnO) NPs with dimensions less than 10 nm can penetrate directly through the macrophage bilayer membrane. Ag NPs increase the permeability membrane by motiving the aggregation of proteins in the periplasmic space and forming nano-sized pores. ZnO NPs can interact with the membrane of M. tuberculosis, which leads to the formation of surface pores and the release of intracellular nucleotides. The colloidal Ag:ZnO mixture NPs with 1:1 ratio can eliminate M. tuberculosis and shows the lowest cytotoxicity effects on MCF-7 and THP-1 cell lines. Ag/ZnO nanocrystals are not able to kill M. tuberculosis alone ex-vivo. Hence, bimetallic gold (Au)/Ag NPs possessed high efficiency to inhibit M. tuberculosis in an ex-vivo THP-1 infection model. Co-delivery of mixed MeNPs into a polymeric carrier collaborated to selective uptake by macrophages through passive targeting, initial burst release of ions from the encapsulated metallic (Me) NPs, and eventually, reduction of MeNPs toxicity, and plays a pivotal role in increasing the antitubercular activity compared to use alone. In addition, Ga NPs can import drugs to the macrophage, inhibit M. tuberculosis growth, and reduce the inhibition of phagosome maturation. Magnetic encapsulated NPs exhibited good drug release properties and might be suitable as carriers of antituberculosis drugs.
Collapse
Affiliation(s)
- Alireza Jafari
- Urology Research Center, Department of Internal Medicine, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Corresponding author: ✉
| | - Atabak Nagheli
- Inflammatory Lung Disease Research Center, Department of Internal Medicine, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Alavi Foumani
- Inflammatory Lung Disease Research Center, Department of Internal Medicine, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Bahram Soltani
- Cellular and molecular Research Center, Department of Internal Medicine, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Raj Goswami
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Illinois, USA
| |
Collapse
|
24
|
Abstract
Dental implants are widely used in the field of oral restoration, but there are still problems leading to implant failures in clinical application, such as failed osseointegration, marginal bone resorption, and peri-implantitis, which restrict the success rate of dental implants and patient satisfaction. Poor osseointegration and bacterial infection are the most essential reasons resulting in implant failure. To improve the clinical outcomes of implants, many scholars devoted to modifying the surface of implants, especially to preparing different physical and chemical modifications to improve the osseointegration between alveolar bone and implant surface. Besides, the bioactive-coatings to promote the adhesion and colonization of ossteointegration-related proteins and cells also aim to improve the osseointegration. Meanwhile, improving the anti-bacterial performance of the implant surface can obstruct the adhesion and activity of bacteria, avoiding the occurrence of inflammation related to implants. Therefore, this review comprehensively investigates and summarizes the modifying or coating methods of implant surfaces, and analyzes the ossteointegration ability and anti-bacterial characteristics of emerging functional coatings in published references.
Collapse
|
25
|
Wang N, Fuh JYH, Dheen ST, Senthil Kumar A. Functions and applications of metallic and metallic oxide nanoparticles in orthopedic implants and scaffolds. J Biomed Mater Res B Appl Biomater 2020; 109:160-179. [PMID: 32776481 DOI: 10.1002/jbm.b.34688] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022]
Abstract
Bone defects and diseases are devastating, and can lead to severe functional deficits or even permanent disability. Nevertheless, orthopedic implants and scaffolds can facilitate the growth of incipient bone and help us to treat bone defects and diseases. Currently, a wide range of biomaterials with distinct biocompatibility, biodegradability, porosity, and mechanical strength is used in bone-related research. However, most orthopedic implants and scaffolds have certain limitations and diverse complications, such as limited corrosion resistance, low cell proliferation, and bacterial adhesion. With recent advancements in materials science and nanotechnology, metallic and metallic oxide nanoparticles have become the subject of significant interest as they offer an ample variety of options to resolve the existing problems in the orthopedic industry. More importantly, these nanoparticles possess unique physicochemical and mechanical properties not found in conventional materials, and can be incorporated into orthopedic implants and scaffolds to enhance their antimicrobial ability, bioactive molecular delivery, mechanical strength, osteointegration, and cell labeling and imaging. However, many metallic and metallic oxide nanoparticles can also be toxic to nearby cells and tissues. This review article will discuss the applications and functions of metallic and metallic oxide nanoparticles in orthopedic implants and bone tissue engineering.
Collapse
Affiliation(s)
- Niyou Wang
- Department of Mechanical Engineering, 9 Engineering Drive, National University of Singapore, Singapore, Singapore
| | - Jerry Ying Hsi Fuh
- Department of Mechanical Engineering, 9 Engineering Drive, National University of Singapore, Singapore, Singapore
| | - S Thameem Dheen
- Department of Anatomy, 4 Medical Drive, National University of Singapore, Singapore, Singapore
| | - A Senthil Kumar
- Department of Mechanical Engineering, 9 Engineering Drive, National University of Singapore, Singapore, Singapore
| |
Collapse
|
26
|
Functionalization of Polymers and Nanomaterials for Biomedical Applications: Antimicrobial Platforms and Drug Carriers. PROSTHESIS 2020. [DOI: 10.3390/prosthesis2020012] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of polymers and nanomaterials has vastly grown for industrial and biomedical sectors during last years. Before any designation or selection of polymers and their nanocomposites, it is vital to recognize the targeted applications which require these platforms to be modified. Surface functionalization to introduce the desired type and quantity of reactive functional groups to target a cell or tissue in human body is a pivotal approach to improve the physicochemical and biological properties of these materials. Herein, advances in the functionalized polymer and nanomaterials surfaces are highlighted along with their applications in biomedical fields, e.g., antimicrobial therapy and drug delivery.
Collapse
|
27
|
Luo Q, Cao H, Wang L, Ma X, Liu X. ZnO@ZnS nanorod-array coated titanium: Good to fibroblasts but bad to bacteria. J Colloid Interface Sci 2020; 579:50-60. [PMID: 32570030 DOI: 10.1016/j.jcis.2020.06.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 02/02/2023]
Abstract
Cell-selective toxic titanium is highly desired in clinical dental practice. Herein, based on the in situ conversion of ZnO to ZnO@ZnS, nanorod-array structured coatings with a controllable release features of zinc (Zn), has been successfully fabricated by a two-step hydrothermal method to endow titanium surface with cell-selectivity, i.e. boosting the functions (attachment and migration) of human gingival fibroblasts (HGnFs) while acting against the invasion of pathogenic bacteria. The improved functions of HGnFs over the ZnO@ZnS nanorod-array were attributed to the material's optimized zinc release, which was decreased from an order of 3.5 mg L-1 to about 0.3 mg L-1 (within the first week). But more importantly, this concentration still had a high antibacterial efficacy up to 100% (against both the S. aureus and E. coli, 107 CFU mL-1). This study demonstrated that a ZnO@ZnS nanorod-array coating could be a promising strategy to endow titanium dental implants with improved soft tissue sealing and effectively reduce peri-implantitis.
Collapse
Affiliation(s)
- Qiming Luo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiliang Cao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; Materials Science, Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Jena D-07743, Germany.
| | - Lanyu Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohan Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| |
Collapse
|
28
|
Arrabito G, Aleeva Y, Ferrara V, Prestopino G, Chiappara C, Pignataro B. On the Interaction between 1D Materials and Living Cells. J Funct Biomater 2020; 11:E40. [PMID: 32531950 PMCID: PMC7353490 DOI: 10.3390/jfb11020040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 01/08/2023] Open
Abstract
One-dimensional (1D) materials allow for cutting-edge applications in biology, such as single-cell bioelectronics investigations, stimulation of the cellular membrane or the cytosol, cellular capture, tissue regeneration, antibacterial action, traction force investigation, and cellular lysis among others. The extraordinary development of this research field in the last ten years has been promoted by the possibility to engineer new classes of biointerfaces that integrate 1D materials as tools to trigger reconfigurable stimuli/probes at the sub-cellular resolution, mimicking the in vivo protein fibres organization of the extracellular matrix. After a brief overview of the theoretical models relevant for a quantitative description of the 1D material/cell interface, this work offers an unprecedented review of 1D nano- and microscale materials (inorganic, organic, biomolecular) explored so far in this vibrant research field, highlighting their emerging biological applications. The correlation between each 1D material chemistry and the resulting biological response is investigated, allowing to emphasize the advantages and the issues that each class presents. Finally, current challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Giuseppe Arrabito
- Dipartimento di Fisica e Chimica—Emilio Segrè, University of Palermo, Viale delle Scienze, Ed.17, 90128 Palermo, Italy;
| | - Yana Aleeva
- INSTM UdR Palermo, Viale delle Scienze, Ed.17, 90128 Palermo, Italy; (Y.A.); (C.C.)
| | - Vittorio Ferrara
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| | - Giuseppe Prestopino
- Dipartimento di Ingegneria Industriale, Università di Roma “Tor Vergata”, Via del Politecnico 1, I-00133 Roma, Italy;
| | - Clara Chiappara
- INSTM UdR Palermo, Viale delle Scienze, Ed.17, 90128 Palermo, Italy; (Y.A.); (C.C.)
| | - Bruno Pignataro
- Dipartimento di Fisica e Chimica—Emilio Segrè, University of Palermo, Viale delle Scienze, Ed.17, 90128 Palermo, Italy;
| |
Collapse
|
29
|
Foong LK, Foroughi MM, Mirhosseini AF, Safaei M, Jahani S, Mostafavi M, Ebrahimpoor N, Sharifi M, Varma RS, Khatami M. Applications of nano-materials in diverse dentistry regimes. RSC Adv 2020; 10:15430-15460. [PMID: 35495474 PMCID: PMC9052824 DOI: 10.1039/d0ra00762e] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/11/2020] [Indexed: 12/15/2022] Open
Abstract
Research and development in the applied sciences at the atomic or molecular level is the order of the day under the domain of nanotechnology or nano-science with enormous influence on nearly all areas of human health and activities comprising diverse medical fields such as pharmacological studies, clinical diagnoses, and supplementary immune system. The field of nano-dentistry has emerged due to the assorted dental applications of nano-technology. This review provides a brief introduction to the general nanotechnology field and a comprehensive overview of the synthesis features and dental uses of nano-materials including current innovations and future expectations with general comments on the latest advancements in the mechanisms and the most significant toxicological dimensions.
Collapse
Affiliation(s)
- Loke Kok Foong
- Institute of Research and Development, Duy Tan University Da Nang 550000 Viet Nam
| | | | - Armita Forutan Mirhosseini
- Nanobioelectrochemistry Research Center, Bam University of Medical Sciences Bam Iran +98 3433210051 +98 34331321750
| | - Mohadeseh Safaei
- Student Research Committee, School of Public Health, Bam University of Medical Sciences Bam Iran
| | - Shohreh Jahani
- Nanobioelectrochemistry Research Center, Bam University of Medical Sciences Bam Iran +98 3433210051 +98 34331321750
- Student Research Committee, School of Public Health, Bam University of Medical Sciences Bam Iran
| | - Maryam Mostafavi
- Tehran Dental Branch, Islamic Azad University Tehran Iran
- Craniomaxilofacial Resarch Center, Tehran Medical Sciences, Islamic Azad University Tehran Iran
| | - Nasser Ebrahimpoor
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences Kerman Iran
| | - Maryam Sharifi
- Department of Pediatric Dentistry, School of Dentistry, Kerman University of Medical Sciences Kerman Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Šlechtitelů 27 783 71 Olomouc Czech Republic
| | - Mehrdad Khatami
- Nanobioelectrochemistry Research Center, Bam University of Medical Sciences Bam Iran +98 3433210051 +98 34331321750
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences Kerman Iran
| |
Collapse
|
30
|
Yao Y, Zhang Y, Shen M, Li W, Xia W. The facile synthesis and enhanced photocatalytic properties of ZnO@ZnS modified with Ag0 via in-situ ion exchange. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Steckiewicz KP, Inkielewicz-Stepniak I. Modified Nanoparticles as Potential Agents in Bone Diseases: Cancer and Implant-Related Complications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E658. [PMID: 32244745 PMCID: PMC7221902 DOI: 10.3390/nano10040658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
Abstract
Materials sized 1-100 nm are the nanotechnology's field of interest. Because of the unique properties such as the ability to penetrate biological barriers and a high surface to volume ratio, nanoparticles (NPs) are a powerful tool to be used in medicine and industry. This review discusses the role of nanotechnology in bone-related issues: osteosarcoma (bone cancer), the biocompatibility of the implants and implant-related infections. In cancer therapy, NPs can be used as (I) cytotoxic agents, (II) drug delivery platforms and (III) in thermotherapy. In implant-related issues, NPs can be used as (I) antimicrobial agents and (II) adjuvants to increase the biocompatibility of implant surface. Properties of NPs depend on (I) the type of NPs, (II) their size, (III) shape, (IV) concentration, (V) incubation time, (VI) functionalization and (VII) capping agent type.
Collapse
Affiliation(s)
| | - Iwona Inkielewicz-Stepniak
- Chair and Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, ul. Dębinki 1, 80-211 Gdansk, Poland;
| |
Collapse
|
32
|
Lukman SK, Saidin S. Effects of different polyaniline emeraldine compositions in electrodepositing ginsenoside encapsulated poly(lactic-co-glycolic acid) microcapsules coating: Physicochemical characterization and in vitro evaluation. J Biomed Mater Res A 2020; 108:1171-1185. [PMID: 31994824 DOI: 10.1002/jbm.a.36891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 01/01/2023]
Abstract
Even though drug-eluting stent (DES) has prominently reduced restenosis, however, its complication of delayed endothelialization has caused chronic side effect. A coating of ginseng-based biodegradable polymer could address this issue due to its specific therapeutic values. However, deposition of this type of stable coating on metallic implant often scarce. Therefore, in this study, different polyaniline (PANI) emeraldine compositions were adopted to electrodeposit ginsenoside encapsulated poly(lactic-co-glycolic acid) microcapsules coating. The coating surfaces were analyzed using attenuated total reflectance-Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, contact angle, and atomic force microscopy instruments. A month coating stability was then investigated with an evaluation of in vitro human umbilical vein endothelial cell analyses consisted of cytotoxicity and cells attachment assessments. The 1.5 mg PANI emeraldine has assisted the formation of stable, uniform, and rounded microcapsules coating with appropriate wettability and roughness. Less than 1.5 mg PANI emeraldine was not enough to drive the formation of microcapsules coating while greater than 1.5 mg caused the deposition of melted microcapsules. The similar coating also has promoted greater cells proliferation and attachment compared to other coating variation. Therefore, the utilization of electrodeposition to deposit a drug-based polymer coating could be implemented to develop DES, in accordance to stent implantation which ultimately aims for enrich endothelialization.
Collapse
Affiliation(s)
- Siti Khadijah Lukman
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Syafiqah Saidin
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia.,IJN-UTM Cardiovascular Engineering Centre, Institute of Human Centered Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| |
Collapse
|
33
|
Lach S, Jurczak P, Karska N, Kubiś A, Szymańska A, Rodziewicz-Motowidło S. Spectroscopic Methods Used in Implant Material Studies. Molecules 2020; 25:E579. [PMID: 32013172 PMCID: PMC7038083 DOI: 10.3390/molecules25030579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/18/2020] [Accepted: 01/25/2020] [Indexed: 11/30/2022] Open
Abstract
It is recognized that interactions between most materials are governed by their surface properties and manifest themselves at the interface formed between them. To gain more insight into this thin layer, several methods have been deployed. Among them, spectroscopic methods have been thoroughly evaluated. Due to their exceptional sensitivity, data acquisition speed, and broad material tolerance they have been proven to be invaluable tools for surface analysis, used by scientists in many fields, for example, implant studies. Today, in modern medicine the use of implants is considered standard practice. The past two decades of constant development has established the importance of implants in dentistry, orthopedics, as well as extended their applications to other areas such as aesthetic medicine. Fundamental to the success of implants is the knowledge of the biological processes involved in interactions between an implant and its host tissue, which are directly connected to the type of implant material and its surface properties. This review aims to demonstrate the broad applications of spectroscopic methods in implant material studies, particularly discussing hard implants, surface composition studies, and surface-cell interactions.
Collapse
Affiliation(s)
- Sławomir Lach
- Correspondence: (S.L.); (S.R.-M.); Tel.: +48-58-523-5034 (S.L.); +48-58-523-5037 (S.R.-M.)
| | | | | | | | | | - Sylwia Rodziewicz-Motowidło
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (P.J.); (N.K.); (A.K.); (A.S.)
| |
Collapse
|
34
|
Makvandi P, Gu JT, Zare EN, Ashtari B, Moeini A, Tay FR, Niu LN. Polymeric and inorganic nanoscopical antimicrobial fillers in dentistry. Acta Biomater 2020; 101:69-101. [PMID: 31542502 DOI: 10.1016/j.actbio.2019.09.025] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/26/2019] [Accepted: 09/17/2019] [Indexed: 02/08/2023]
Abstract
Failure of dental treatments is mainly due to the biofilm accumulated on the dental materials. Many investigations have been conducted on the advancements of antimicrobial dental materials. Polymeric and inorganic nanoscopical agents are capable of inhibiting microorganism proliferation. Applying them as fillers in dental materials can achieve enhanced microbicidal ability. The present review provides a broad overview on the state-of-the-art research in the field of antimicrobial fillers which have been adopted for incorporation into dental materials over the last 5 years. The antibacterial agents and applications are described, with the aim of providing information for future investigations. STATEMENT OF SIGNIFICANCE: Microbial infection is the primary cause of dental treatment failure. The present review provides an overview on the state-of-art in the field of antimicrobial nanoscopical or polymeric fillers that have been applied in dental materials. Trends in the biotechnological development of these antimicrobial fillers over the last 5 years are reviewed to provide a backdrop for further advancement in this field of research.
Collapse
|
35
|
Dadi R, Azouani R, Traore M, Mielcarek C, Kanaev A. Antibacterial activity of ZnO and CuO nanoparticles against gram positive and gram negative strains. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109968. [PMID: 31500003 DOI: 10.1016/j.msec.2019.109968] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/17/2019] [Accepted: 07/09/2019] [Indexed: 12/30/2022]
Abstract
This is a report on the antibacterial activity of ZnO and CuO nanoparticles synthesized via sol-gel method. The studies were performed on Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli and Pseudomonas aeruginosa bacteria using disc and well diffusion methods, bioluminescence and optical density analysis. The results show a strong decline of bacterial strains after a short contact with nanoparticles. The modelling allowed clarifying the bacterial sensitivity of toxic agents at different stages of their population evolution kinetics. It was concluded that the bacterial suppression is most effective at the exponential growth phase while it is of a lower effectiveness at the lag and stationary phases. The CuO and ZnO nanoparticles showed comparable effectiveness at the exponential growth phase. In the same time, ZnO was almost inactive at the lag phase and of lower effectiveness at the stationary phase, at which CuO conserved a significant activity.
Collapse
Affiliation(s)
- Rania Dadi
- LSPM -CNRS, Laboratoire des Sciences des Procédés et des Matériaux, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France; EBI- Ecole de Biologie Industrielle, 49 Avenue des Genottes - CS 90009, F95895 Cergy Cedex, France
| | - Rabah Azouani
- EBI- Ecole de Biologie Industrielle, 49 Avenue des Genottes - CS 90009, F95895 Cergy Cedex, France.
| | - Mamadou Traore
- LSPM -CNRS, Laboratoire des Sciences des Procédés et des Matériaux, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France
| | - Christine Mielcarek
- EBI- Ecole de Biologie Industrielle, 49 Avenue des Genottes - CS 90009, F95895 Cergy Cedex, France
| | - Andrei Kanaev
- LSPM -CNRS, Laboratoire des Sciences des Procédés et des Matériaux, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France
| |
Collapse
|
36
|
A Facile and Flexible Approach for Large-Scale Fabrication of ZnO Nanowire Film and Its Photocatalytic Applications. NANOMATERIALS 2019; 9:nano9060846. [PMID: 31159486 PMCID: PMC6630657 DOI: 10.3390/nano9060846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 11/23/2022]
Abstract
A novel strategy for large-scale synthesis of ZnO nanowire film is reported, which inherits the advantages of the solution-phase method and seeded growth process, such as low-temperature, efficient, economical, facile and flexible. It is easy to implement on various metals through room-temperature electrodeposition, followed by hydrothermal treatment at 90 °C, and suitable for industrialized production. The ZnO nanowires with an average wire diameter about 40 nm are in situ grown from and on nanocrystalline zinc coating, which forms a strong metallurgical bonding with the substrates. The p-type ZnO nanowire film has a well-preferred orientation along the (100) direction and a wurtzite structure, thereby displaying an effective photocatalytic capability for carcinogenic Cr6+ ions and CO2 greenhouse gas reduction under visible light irradiation. In addition to these features, the ZnO nanowire film is easy to recycle and, therefore, it has broad application prospects in contaminant degradation and renewable energy.
Collapse
|
37
|
Patil D, Wasson MK, Aravindan S, Vivekanandan P, Rao P. Antibacterial and cytocompatibility study of modified Ti6Al4V surfaces through thermal annealing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1007-1020. [DOI: 10.1016/j.msec.2019.02.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/09/2019] [Accepted: 02/15/2019] [Indexed: 11/28/2022]
|
38
|
Zhou P, Mao F, He F, Han Y, Li H, Chen J, Wei S. Screening the optimal hierarchical micro/nano pattern design for the neck and body surface of titanium implants. Colloids Surf B Biointerfaces 2019; 178:515-524. [DOI: 10.1016/j.colsurfb.2019.03.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 11/28/2022]
|
39
|
Yao Y, Fan J, Shen M, Li W, Du B, Li X, Dai J. One-step synthesis of hexylresorcinol calix[4]arene-capped ZnO–Ag nanocomposites for enhanced degradation of organic pollutants. J Colloid Interface Sci 2019; 546:70-82. [DOI: 10.1016/j.jcis.2019.03.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 11/17/2022]
|
40
|
Chen DW, Lee KY, Tsai MH, Lin TY, Chen CH, Cheng KW. Antibacterial Application on Staphylococcus aureus Using Antibiotic Agent/Zinc Oxide Nanorod Arrays/Polyethylethylketone Composite Samples. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E713. [PMID: 31071920 PMCID: PMC6566776 DOI: 10.3390/nano9050713] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 11/27/2022]
Abstract
In this study, zinc oxide (ZnO) nanorod arrays as antibiotic agent carriers were grown on polyetheretherketone (PEEK) substrates using a chemical synthesis method. With the concentration of ammonium hydroxide in the precursor solution kept at 4 M, ZnO nanorod arrays with diameters in the range of 100-400 nm and a loading density of 1.7 mg/cm2 were grown onto the PEEK substrates. Their drug release profiles and the antibacterial properties of the antibiotic agent/ZnO/PEEK samples in the buffer solution were investigated. The results showed that the concentrations of antibiotic agents (ampicillin or vancomycin) released from the samples into the buffer solution were higher than the value of minimum inhibitory concentration of 90% for Staphylococcus aureus within the 96 h test. The bioactivities of ampicillin and vancomycin on substrates also showed around 40% and 80% on the Staphylococcus aureus, respectively. In the antibacterial activity test, sample with the suitable loading amount of antibiotic agent had a good inhibitory effect on the growth of Staphylococcus aureus.
Collapse
Affiliation(s)
- Dave W Chen
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Keelung Branch, Taoyuan 204, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - Kuan-Yi Lee
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Keelung Branch, Taoyuan 204, Taiwan.
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan.
| | - Min-Hua Tsai
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Keelung Branch, Taoyuan 204, Taiwan.
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan.
| | - Tung-Yi Lin
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Keelung Branch, Taoyuan 204, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - Chien-Hao Chen
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Keelung Branch, Taoyuan 204, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - Kong-Wei Cheng
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Keelung Branch, Taoyuan 204, Taiwan.
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan.
| |
Collapse
|
41
|
Xiang Y, Mao C, Liu X, Cui Z, Jing D, Yang X, Liang Y, Li Z, Zhu S, Zheng Y, Yeung KWK, Zheng D, Wang X, Wu S. Rapid and Superior Bacteria Killing of Carbon Quantum Dots/ZnO Decorated Injectable Folic Acid-Conjugated PDA Hydrogel through Dual-Light Triggered ROS and Membrane Permeability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900322. [PMID: 31021489 DOI: 10.1002/smll.201900322] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/04/2019] [Indexed: 05/19/2023]
Abstract
One of the most difficult challenges in the biomedical field is bacterial infection, which causes tremendous harm to human health. In this work, an injectable hydrogel is synthesized through rapid assembly of dopamine (DA) and folic acid (FA) cross-linked by transition metal ions (TMIs, i.e., Zn2+ ), which was named as DFT-hydrogel. Both the two carboxyl groups in the FA molecule and catechol in polydopamine (PDA) easily chelates Zn2+ to form metal-ligand coordination, thereby allowing this injectable hydrogel to match the shapes of wounds. In addition, PDA in the hydrogel coated around carbon quantum dot-decorated ZnO (C/ZnO) nanoparticles (NPs) to rapidly generate reactive oxygen species (ROS) and heat under illumination with 660 and 808 nm light, endows this hybrid hydrogel with great antibacterial efficacy against Staphylococcus aureus (S. aureus, typical Gram-positive bacteria) and Escherichia coli (E. coli, typical Gram-negative bacteria). The antibacterial efficacy of the prepared DFT-C/ZnO-hydrogel against S. aureus and E. coli under dual-light irradiation is 99.9%. Importantly, the hydrogels release zinc ions over 12 days, resulting in a sustained antimicrobial effect and promoted fibroblast growth. Thus, this hybrid hydrogel exhibits great potential for the reconstruction of bacteria-infected tissues, especially exposed wounds.
Collapse
Affiliation(s)
- Yiming Xiang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Ministry of Education, Wuhan, 430062, China
| | - Congyang Mao
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Ministry of Education, Wuhan, 430062, China
| | - Xiangmei Liu
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Ministry of Education, Wuhan, 430062, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, Key Laboratory of Advanced Ceramics and Machining Technology, Tianjin University, Ministry of Education, Tianjin, 300072, China
| | - Doudou Jing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xianjin Yang
- School of Materials Science & Engineering, Key Laboratory of Advanced Ceramics and Machining Technology, Tianjin University, Ministry of Education, Tianjin, 300072, China
| | - Yanqin Liang
- School of Materials Science & Engineering, Key Laboratory of Advanced Ceramics and Machining Technology, Tianjin University, Ministry of Education, Tianjin, 300072, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, Key Laboratory of Advanced Ceramics and Machining Technology, Tianjin University, Ministry of Education, Tianjin, 300072, China
| | - Shengli Zhu
- School of Materials Science & Engineering, Key Laboratory of Advanced Ceramics and Machining Technology, Tianjin University, Ministry of Education, Tianjin, 300072, China
| | - Yufeng Zheng
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Kelvin Wai Kwok Yeung
- Department of Orthopaedics & Traumatology, Li KaShing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Dong Zheng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xianbao Wang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Ministry of Education, Wuhan, 430062, China
| | - Shuilin Wu
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Ministry of Education, Wuhan, 430062, China
- School of Materials Science & Engineering, Key Laboratory of Advanced Ceramics and Machining Technology, Tianjin University, Ministry of Education, Tianjin, 300072, China
| |
Collapse
|
42
|
Guan M, Chen Y, Wei Y, Song H, Gao C, Cheng H, Li Y, Huo K, Fu J, Xiong W. Long-lasting bactericidal activity through selective physical puncture and controlled ions release of polydopamine and silver nanoparticles-loaded TiO 2 nanorods in vitro and in vivo. Int J Nanomedicine 2019; 14:2903-2914. [PMID: 31114199 PMCID: PMC6497113 DOI: 10.2147/ijn.s202625] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/03/2019] [Indexed: 11/23/2022] Open
Abstract
Background: Titanium (Ti) implant-associated infection, which is mostly caused by bacterial adhesion and biofilm formation, may result in implant failure and secondary surgery. Thus it is an urgent issue to prevent bacterial infections at the earliest step. Purpose: To develop a novel surface strategy of polydopamine (PDA) and silver (Ag) nanoparticle-loaded TiO2 nanorods (NRDs) coatings on Ti alloy. Materials and methods: Ag-TiO2@PDA NRDs was fabricated on Ti alloy by hydrothermal synthesis. The antibacterial activity of Ag-TiO2@PDA NRDs against Escherichia coli and methicillin-resistant Staphylococcus aureus were tested by FE-SEM, Live/Dead staining, zone of inhibition, bacteria counting method and protein leakage analysis in vitro. In addition, an implant infection model was conducted and the samples were tested by X-ray, Micro-CT and histological analysis in vivo. Besides, cell morphology and cytotoxicity of Mouse calvarial cells (MC3T3-E1) were characterized by FE-SEM, immunofluorescence and CCK-8 test in vitro. Results: Our study successfully developed a new surface coating of Ag-TiO2@PDA NRDs. The selective physical puncture of bacteria and controlled release of Ag+ ions of Ag-TiO2@PDA NRDs achieved a long-lasting bactericidal ability and anti-biofilm activity with satisfied biocompatibility. Conclusion: This strategy may be promising for clinical applications to reduce the occurrence of infection in the implant surgeries
Collapse
Affiliation(s)
- Ming Guan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.,Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | - Yangmengfan Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yong Wei
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Hao Song
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Chenghao Gao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hao Cheng
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Yong Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Kaifu Huo
- Wuhan National Lab for Optoelectronics, Huazhong University of Science and Techonology, Wuhan 430074, People's Republic of China
| | - Jijiang Fu
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Wei Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
43
|
Euphorbia heterophylla (L.) mediated fabrication of ZnO NPs: Characterization and evaluation of antibacterial and anticancer properties. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2018.10.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Zhang X, Sun H, Tan S, Gao J, Fu Y, Liu Z. Hydrothermal synthesis of Ag nanoparticles on the nanocellulose and their antibacterial study. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2018.12.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
45
|
Liu X, Chen C, Zhang H, Tian A, You J, Wu L, Lei Z, Li X, Bai X, Chen S. Biocompatibility evaluation of antibacterial Ti-Ag alloys with nanotubular coatings. Int J Nanomedicine 2019; 14:457-468. [PMID: 30666107 PMCID: PMC6330981 DOI: 10.2147/ijn.s193569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Implant-related infection is a major problem postsurgery. As an alternative to a localized antibiotic release system, we used Ag to fabricate Ti-Ag alloys with nanotubular coatings (TiAg-NTs). Ag has excellent antibacterial properties, but its biological toxicity is a concern. Therefore, we performed biological experiments both in vitro and in vivo to evaluate the biocompatibility of TiAg-NTs with different concentrations of Ag (1%, 2%, and 4%). METHODS For in vitro experiments, cytocompatibility, including cell attachment, viability, and proliferation, was tested, and genes and proteins related to osteogenic differentiation were also evaluated. For in vivo assays, the rat femoral condylar insertion model was used, and micro-computed tomography (micro-CT) and histological analysis were conducted to analyze bone formation around implants at 1, 2, and 4 weeks after surgery. RESULTS Both in vitro and in vivo results indicate that Ti2%Ag-NT showed comparable cytocompatibility with commercially pure Ti (cp-Ti), and it could achieve good osseointegration with the surrounding bone tissue. CONCLUSION We thus believe that Ti2%Ag-NT is a potential biomaterial for orthopedics.
Collapse
Affiliation(s)
- Xingwang Liu
- Department of Sports Medicine, Huashan Hospital of Fudan University, Shanghai 200040, China,
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200082, China
| | - Chen Chen
- Department of Arthroscopic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Hangzhou Zhang
- Department of Sports Medicine and Joint Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Ang Tian
- Liaoning Provincial Key Laboratory of Metallurgical Resources Circulation Science, Northeastern University, Shenyang 110819, China
| | - Junhua You
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Lin Wu
- Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang 110000, China
| | - Zeming Lei
- Department of Orthopaedics, The People's Hospital of China Medical University, Shenyang 110000, China,
| | - Xi Li
- Department of Orthopaedics, The People's Hospital of China Medical University, Shenyang 110000, China,
| | - Xizhuang Bai
- Department of Orthopaedics, The People's Hospital of China Medical University, Shenyang 110000, China,
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital of Fudan University, Shanghai 200040, China,
| |
Collapse
|
46
|
Madhan Kumar A, Adesina AY, Hussein MA, Ramakrishna S, Al-Aqeeli N, Akhtar S, Saravanan S. PEDOT/FHA nanocomposite coatings on newly developed Ti-Nb-Zr implants: Biocompatibility and surface protection against corrosion and bacterial infections. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:482-495. [PMID: 30813050 DOI: 10.1016/j.msec.2019.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/11/2018] [Accepted: 01/03/2019] [Indexed: 01/19/2023]
Abstract
The fabrication of bioactive polymer nanocomposite coatings with enhanced biocompatibility and surface protection has been a topic of abundant concern in orthopaedic implant applications. Herein, we electrochemically prepared a novel poly (3,4-ethylenedioxythiophene) (PEDOT) based nanocomposite coatings with different contents of fluoro hydroxyapatite (FHA) nanoparticles on a newly developed Ti-Nb-Zr (TNZ) alloy; an appropriate approach to advance the surface features of TNZ implants. FTIR, XRD, and Raman analyses of the coating confirm the successful preparation of PEDOT/FHA nanocomposite, and XPS validate the chemical interaction between FHA and PEDOT matrix. SEM and TEM examination show the uniform distribution of spherical FHA nanoparticles inside the PEDOT matrix. Hardness and contact angle measurement results showed improving in the hardness and surface wettability of the coated samples respectively. Electrochemical corrosion tests specified that the PEDOT/FHA coatings exhibit higher corrosion protection than the pure PEDOT coatings. The fabricated nanocomposite coating supports the cell adsorption and proliferation of MG-63 cells. Moreover, antibacterial studies against Gram positive and negative bacteria reveal the enhanced antibacterial performance of the coated TNZ substrates. Our results show the potential applications of PEDOT/FHA nanocomposite as a most viable coating for the orthopaedic implants.
Collapse
Affiliation(s)
- A Madhan Kumar
- Centre of Research Excellence in Corrosion, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
| | - Akeem Yusuf Adesina
- Centre of Research Excellence in Corrosion, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - M A Hussein
- Centre of Research Excellence in Corrosion, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea
| | - N Al-Aqeeli
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Sultan Akhtar
- Electron Microscopy Unit, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - S Saravanan
- Department of life science, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
47
|
Biological and optical properties of sol–gel derived ZnO using different percentages of silver contents. Colloids Surf B Biointerfaces 2018; 171:383-390. [DOI: 10.1016/j.colsurfb.2018.07.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 11/18/2022]
|
48
|
Armenia I, Marcone GL, Berini F, Orlandi VT, Pirrone C, Martegani E, Gornati R, Bernardini G, Marinelli F. Magnetic Nanoconjugated Teicoplanin: A Novel Tool for Bacterial Infection Site Targeting. Front Microbiol 2018; 9:2270. [PMID: 30386305 PMCID: PMC6199386 DOI: 10.3389/fmicb.2018.02270] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/05/2018] [Indexed: 12/26/2022] Open
Abstract
Nanoconjugated antibiotics can be regarded as next-generation drugs as they possess remarkable potential to overcome multidrug resistance in pathogenic bacteria. Iron oxide nanoparticles (IONPs) have been extensively used in the biomedical field because of their biocompatibility and magnetic properties. More recently, IONPs have been investigated as potential nanocarriers for antibiotics to be magnetically directed to/recovered from infection sites. Here, we conjugated the “last-resort” glycopeptide antibiotic teicoplanin to IONPs after surface functionalization with (3-aminopropyl) triethoxysilane (APTES). Classical microbiological methods and fluorescence and electron microscopy analysis were used to compare antimicrobial activity and surface interactions of naked IONPs, amino-functionalized NPs (NP-APTES), and nanoconjugated teicoplanin (NP-TEICO) with non-conjugated teicoplanin. As bacterial models, differently resistant strains of three Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis, and Bacillus subtilis) and a Gram-negative representative (Escherichia coli) were used. The results indicated that teicoplanin conjugation conferred a valuable and prolonged antimicrobial activity to IONPs toward Gram-positive bacteria. No antimicrobial activity was detected using NP-TEICO toward the Gram-negative E. coli. Although IONPs and NP-APTES showed only insignificant antimicrobial activity in comparison to NP-TEICO, our data indicate that they might establish diverse interaction patterns at bacterial surfaces. Sensitivity of bacteria to NPs varied according to the surface provided by the bacteria and it was species specific. In addition, conjugation of teicoplanin improved the cytocompatibility of IONPs toward two human cell lines. Finally, NP-TEICO inhibited the formation of S. aureus biofilm, conserving the activity of non-conjugated teicoplanin versus planktonic cells and improving it toward adherent cells.
Collapse
Affiliation(s)
- Ilaria Armenia
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | | | - Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | | | - Cristina Pirrone
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Eleonora Martegani
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
49
|
Ultrasonic fabrication of flexible antibacterial ZnO nanopillar array film. Colloids Surf B Biointerfaces 2018; 170:172-178. [DOI: 10.1016/j.colsurfb.2018.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/29/2018] [Accepted: 06/05/2018] [Indexed: 01/25/2023]
|
50
|
Qing Y, Cheng L, Li R, Liu G, Zhang Y, Tang X, Wang J, Liu H, Qin Y. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomedicine 2018; 13:3311-3327. [PMID: 29892194 PMCID: PMC5993028 DOI: 10.2147/ijn.s165125] [Citation(s) in RCA: 473] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Infection, as a common postoperative complication of orthopedic surgery, is the main reason leading to implant failure. Silver nanoparticles (AgNPs) are considered as a promising antibacterial agent and always used to modify orthopedic implants to prevent infection. To optimize the implants in a reasonable manner, it is critical for us to know the specific antibacterial mechanism, which is still unclear. In this review, we analyzed the potential antibacterial mechanisms of AgNPs, and the influences of AgNPs on osteogenic-related cells, including cellular adhesion, proliferation, and differentiation, were also discussed. In addition, methods to enhance biocompatibility of AgNPs as well as advanced implants modifications technologies were also summarized.
Collapse
Affiliation(s)
- Yun’an Qing
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, People’s Republic of China
| | - Lin Cheng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, People’s Republic of China
| | - Ruiyan Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, People’s Republic of China
| | - Guancong Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, People’s Republic of China
| | - Yanbo Zhang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, People’s Republic of China
| | - Xiongfeng Tang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, People’s Republic of China
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, People’s Republic of China
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, People’s Republic of China
| | - Yanguo Qin
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, People’s Republic of China
| |
Collapse
|