1
|
Joshi U, Shah S, Gupta S, George LB, Highland H. Evaluation of Exosomal Proteins as Potential Biomarkers from RBC Stages of Plasmodium falciparum 3D7. ACS Infect Dis 2025; 11:164-180. [PMID: 39694666 DOI: 10.1021/acsinfecdis.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Falciparum malaria relies extensively on cell-to-cell communication, and earlier research on the function of exosomal proteins derived from infected red blood cells (iRBCs) has been classified into numerous important roles. In this study, the exosomes were derived from Pf3D7-iRBCs cultured in vitro during synchronized trophozoite stages. The isolated exosomes were assessed using NTA, FE-SEM, and flow cytometry. Our study reported heterogeneous populations of exosomes during the infection. Additionally, label-free quantification based on LC/MS-MS for protein profiling revealed the presence of both parasitic and host (RBC) proteins; out of a total of 124 proteins detected, 20 Pf3D7 proteins and 80 RBC proteins were identified. Exosomal RBC protein expression is different in cRBCs-Exo and iRBCs-Exo, which shows how the parasite and RBCs interact with each other. Functional classification reported that the majority of these Pf3D7 proteins are uncharacterized with unknown functions, few of which are involved in biological processes such as regulation of complement activation, response to external stimuli, immune system-mediated signaling pathway, protein processing, etc. Hence, studying these exosomal proteins and comparing them to previous research has helped us understand how exosomes help cells to communicate in malaria. It may also reveal new potential biomarkers for diagnostic methods or therapies for malaria.
Collapse
Affiliation(s)
- Urja Joshi
- Department of Biochemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India
- Department of Zoology, BMTC, Human Genetics and Wildlife Biology and Conservation, School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India
| | - Sumedha Shah
- Biological Engineering, IIT Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Sharad Gupta
- Biological Engineering, IIT Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Linz-Buoy George
- Department of Zoology, BMTC, Human Genetics and Wildlife Biology and Conservation, School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India
| | - Hyacinth Highland
- Department of Zoology, BMTC, Human Genetics and Wildlife Biology and Conservation, School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India
| |
Collapse
|
2
|
Louro AF, Meliciano A, Alves PM, Costa MHG, Serra M. A roadmap towards manufacturing extracellular vesicles for cardiac repair. Trends Biotechnol 2024; 42:1305-1322. [PMID: 38653588 DOI: 10.1016/j.tibtech.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
For the past two decades researchers have linked extracellular vesicle (EV)-mediated mechanisms to various physiological and pathological processes in the heart, such as immune response regulation, fibrosis, angiogenesis, and the survival and growth of cardiomyocytes. Although use of EVs has gathered momentum in the cardiac field, several obstacles in both upstream and downstream processes during EV manufacture need to be addressed before clinical success can be achieved. Low EV yields obtained in small-scale cultures deter clinical translation, as mass production is a prerequisite to meet therapeutic doses. Moreover, standardizing EV manufacture is critical given the inherent heterogeneity of EVs and the constraints of current isolation techniques. In this review, we discuss the critical steps for the large-scale manufacturing of high-potency EVs for cardiac therapies.
Collapse
Affiliation(s)
- Ana F Louro
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana Meliciano
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Marta H G Costa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Margarida Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
3
|
Dlugolecka M, Czystowska-Kuzmicz M. Factors to consider before choosing EV labeling method for fluorescence-based techniques. Front Bioeng Biotechnol 2024; 12:1479516. [PMID: 39359260 PMCID: PMC11445045 DOI: 10.3389/fbioe.2024.1479516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
A well-designed fluorescence-based analysis of extracellular vesicles (EV) can provide insights into the size, morphology, and biological function of EVs, which can be used in medical applications. Fluorescent nanoparticle tracking analysis with appropriate controls can provide reliable data for size and concentration measurements, while nanoscale flow cytometry is the most appropriate tool for characterizing molecular cargoes. Label selection is a crucial element in all fluorescence methods. The most comprehensive data can be obtained if several labeling approaches for a given marker are used, as they would provide complementary information about EV populations and interactions with the cells. In all EV-related experiments, the influence of lipoproteins and protein corona on the results should be considered. By reviewing and considering all the factors affecting EV labeling methods used in fluorescence-based techniques, we can assert that the data will provide as accurate as possible information about true EV biology and offer precise, clinically applicable information for future EV-based diagnostic or therapeutic applications.
Collapse
|
4
|
Dezhakam E, Mahmoudi E, Naseri A, Rahbarghazi R, Isildak I, Khalilzadeh B, Niaei A, Delibas N, Coruh A. Platinum-perovskite nanocomposite-based Exosensor for specific detection of prostate cancer in clinical settings. Mikrochim Acta 2024; 191:593. [PMID: 39261334 DOI: 10.1007/s00604-024-06655-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Exosomes, extracellular vesicles (EVs) with an average size of 50-150 nm, transfer various biomolecules and exchange signaling molecules between cells in a paracrine manner. Molecular investigations have revealed that EVs can reflect real-time metabolic changes in normal- and cancer-origin cells and thus harbor valid diagnostic biomarkers. Despite these advantages, the detection of low concentrations of cancer cell EVs in biological fluids is still a great challenge. Here, a new electrochemical Exosensor based on platinum-perovskite is developed for the direct detection of EVs using a biotinylated monoclonal CD63 antibody as a capture element. The label-free method exhibited higher sensitivity with a lower limit of quantification of 2000 EVs/µL with a dynamic linear range (LDR) of 2000 to 14,000 EVs/μL compared with other available methods. To enhance the selectivity of detection, EVs were simultaneously sandwiched between secondary antibodies of PSA (prostate-specific antigen), as an FDA-approved prostate cancer biomarker. Data indicated that this Exosensor can distinguish normal and cancer EVs in samples from healthy individuals and prostate cancer patients. Taken together, this technology offers a unique approach to label-free quantification of EVs and cancer detection in the early stages.
Collapse
Affiliation(s)
- Ehsan Dezhakam
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Elham Mahmoudi
- Catalyst and Reactor Research Lab, Department of Chemical & Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Abdolhossein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Reza Rahbarghazi
- Stem Cell Research Center (SCRC), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ibrahim Isildak
- Department of Bioengineering, Faculty of Chemistry-Metallurgy, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Balal Khalilzadeh
- Stem Cell Research Center (SCRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Aligholi Niaei
- Catalyst and Reactor Research Lab, Department of Chemical & Petroleum Engineering, University of Tabriz, Tabriz, Iran
- Department of Physics, Faculty of Science, University of Sakarya, Sakarya, Turkey
| | - Nagihan Delibas
- Department of Physics, Faculty of Science, University of Sakarya, Sakarya, Turkey
| | - Ali Coruh
- Department of Physics, Faculty of Science, University of Sakarya, Sakarya, Turkey
| |
Collapse
|
5
|
Joshi U, Pandya M, Gupta S, George LB, Highland H. Extracellular Proteomic Profiling from the Erythrocytes Infected with Plasmodium Falciparum 3D7 Holds Promise for the Detection of Biomarkers. Protein J 2024; 43:819-833. [PMID: 39009910 DOI: 10.1007/s10930-024-10212-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2024] [Indexed: 07/17/2024]
Abstract
Plasmodium falciparum (P. falciparum), which causes the most severe form of malaria, if left untreated, has 24 h window in which it can cause severe illness and even death. The aim of this study was to create the most comprehensive and informative secretory-proteome possible by combining high-accuracy and high-sensitivity protein identification technology. In this study, we used Plasmodium falciparum 3D7 (Pf3D7) as the model parasite to develop a label-free quantification proteomic strategy with the main goal of identifying Pf3D7 proteins that are supposed to be secreted outside the infected erythrocytes in the spent media culture during the in-vitro study. The spent culture media supernatant was subjected to differential and ultra-centrifugation steps followed by total protein extraction, estimation, and in-solution digestion using trypsin, digested peptides were analyzed using Nano-LC coupled with ESI for MS/MS. MS/MS spectra were processed using Maxquant software (v2.1.4.0.). Non-infected erythrocytes incubated spent cultured media supernatant were considered as control. Out of discovered 38 proteins, proteins belonging to P. falciparum spp. were EGF-like protein (C0H544), Endoplasmic reticulum chaperone GRP170 (C0H5H0), Small GTP-binding protein sar1 (Q8I1S0), Erythrocyte membrane protein 1, PfEMP1 (Q8I639), aldehyde reductase (Q8ID61), Conserved Plasmodium proteins (Q8IEH3, Q8ILD1), Antigen 332, DBL-like protein (Q8IHN4), Fe-S cluster assembly protein (Q8II78), identified and chosen for further in-depth investigation. This study highlights the value of secretory Plasmodium proteins play crucial roles in various aspects of the disease progression and host-pathogen interactions which can serve as diagnostic markers for malaria infection.
Collapse
Affiliation(s)
- Urja Joshi
- Department of Biochemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India.
- Department of Zoology, BMTC, Human Genetics and WLC, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India.
| | - Maulik Pandya
- Department of Botany, Bioinformatics and Climate change, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Sharad Gupta
- Biological Engineering, IIT Gandhinagar, Palaj, Gujarat, India
| | - Linz-Buoy George
- Department of Zoology, BMTC, Human Genetics and WLC, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Hyacinth Highland
- Department of Zoology, BMTC, Human Genetics and WLC, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
6
|
Oberholster L, Du Pasquier R, Mathias A. Exploring the role of brain-derived extracellular vesicles in viral infections: from pathological insights to biomarker potential. Front Cell Infect Microbiol 2024; 14:1423394. [PMID: 38887492 PMCID: PMC11181307 DOI: 10.3389/fcimb.2024.1423394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound vesicles secreted by all cell types that play a central role in cell-to-cell communication. Since these vesicles serve as vehicles of cellular content (nucleic acids, proteins and lipids) with the potential to cross biological barriers, they represent a novel attractive window into an otherwise inaccessible organ, such as the brain. The composition of EVs is cell-type specific and mirrors the physiological condition of the cell-of-origin. Consequently, during viral infection, EVs undergo significant changes in their content and morphology, thereby reflecting alterations in the cellular state. Here, we briefly summarize the potential of brain-derived EVs as a lens into viral infection in the central nervous system, thereby: 1) uncovering underlying pathophysiological processes at play and 2) serving as liquid biopsies of the brain, representing a non-invasive source of biomarkers for monitoring disease activity. Although translating the potential of EVs from research to diagnosis poses complexities, characterizing brain-derived EVs in the context of viral infections holds promise to enhance diagnostic and therapeutic strategies, offering new avenues for managing infectious neurological diseases.
Collapse
Affiliation(s)
- Larise Oberholster
- Laboratory of Neuroimmunology, Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Renaud Du Pasquier
- Laboratory of Neuroimmunology, Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Amandine Mathias
- Laboratory of Neuroimmunology, Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Teixeira-Marques A, Monteiro-Reis S, Montezuma D, Lourenço C, Oliveira MC, Constâncio V, Sequeira JP, Carvalho-Maia C, Freitas R, Martens-Uzunova ES, Vasconcelos MH, Henrique R, Jerónimo C. Improved recovery of urinary small extracellular vesicles by differential ultracentrifugation. Sci Rep 2024; 14:12267. [PMID: 38806574 PMCID: PMC11133306 DOI: 10.1038/s41598-024-62783-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Extracellular vesicles (EVs) are lipid-membrane enclosed structures that are associated with several diseases, including those of genitourinary tract. Urine contains EVs derived from urinary tract cells. Owing to its non-invasive collection, urine represents a promising source of biomarkers for genitourinary disorders, including cancer. The most used method for urinary EVs separation is differential ultracentrifugation (UC), but current protocols lead to a significant loss of EVs hampering its efficiency. Moreover, UC protocols are labor-intensive, further limiting clinical application. Herein, we sought to optimize an UC protocol, reducing the time spent and improving small EVs (SEVs) yield. By testing different ultracentrifugation times at 200,000g to pellet SEVs, we found that 48 min and 60 min enabled increased SEVs recovery compared to 25 min. A step for pelleting large EVs (LEVs) was also evaluated and compared with filtering of the urine supernatant. We found that urine supernatant filtering resulted in a 1.7-fold increase on SEVs recovery, whereas washing steps resulted in a 0.5 fold-decrease on SEVs yield. Globally, the optimized UC protocol was shown to be more time efficient, recovering higher numbers of SEVs than Exoquick-TC (EXO). Furthermore, the optimized UC protocol preserved RNA quality and quantity, while reducing SEVs separation time.
Collapse
Affiliation(s)
- Ana Teixeira-Marques
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Sara Monteiro-Reis
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- INEGI-LAETA, Faculty of Engineering, University of Porto, Campus FEUP, Rua Dr. Roberto Frias, 400, 4600-465, Porto, Portugal
| | - Diana Montezuma
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- IMP Diagnostics, Praça do Bom Sucesso, 61, Sala 808, 4150-146, Porto, Portugal
- Doctoral Programme in Medical Sciences, ICBAS-School of Medicine and Biomedical Sciences-University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Catarina Lourenço
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135, Porto, Portugal
- Doctoral Programme in Biomedical Sciences, ICBAS-School Medicine and Biomedical Sciences, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Miguel Carlos Oliveira
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Vera Constâncio
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Doctoral Programme in Biomedical Sciences, ICBAS-School Medicine and Biomedical Sciences, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - José Pedro Sequeira
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Doctoral Programme in Biomedical Sciences, ICBAS-School Medicine and Biomedical Sciences, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Carina Carvalho-Maia
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rui Freitas
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Department of Urology, Portuguese Oncology Institute of Porto (IPOPorto), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Elena S Martens-Uzunova
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Be-331, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - M Helena Vasconcelos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135, Porto, Portugal
- Cancer Drug Resistance Group, IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, R. Alfredo Allen 208, 4200-135, Porto, Portugal
- Department of Biological Sciences, FFUP-Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), R. Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), R. Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
8
|
Defourny KAY, Pei X, van Kuppeveld FJM, Nolte-T Hoen ENM. Picornavirus security proteins promote the release of extracellular vesicle enclosed viruses via the modulation of host kinases. PLoS Pathog 2024; 20:e1012133. [PMID: 38662794 DOI: 10.1371/journal.ppat.1012133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/07/2024] [Accepted: 03/18/2024] [Indexed: 05/08/2024] Open
Abstract
The discovery that extracellular vesicles (EVs) serve as carriers of virus particles calls for a reevaluation of the release strategies of non-enveloped viruses. Little is currently known about the molecular mechanisms that determine the release and composition of EVs produced by virus-infected cells, as well as conservation of these mechanisms among viruses. We previously described an important role for the Leader protein of the picornavirus encephalomyocarditis virus (EMCV) in the induction of virus-carrying EV subsets with distinct molecular and physical properties. EMCV L acts as a 'viral security protein' by suppressing host antiviral stress and type-I interferon (IFN) responses. Here, we tested the ability of functionally related picornavirus proteins of Theilers murine encephalitis virus (TMEV L), Saffold virus (SAFV L), and coxsackievirus B3 (CVB3 2Apro), to rescue EV and EV-enclosed virus release when introduced in Leader-deficient EMCV. We show that all viral security proteins tested were able to promote virus packaging in EVs, but that only the expression of EMCV L and CVB3 2Apro increased overall EV production. We provide evidence that one of the main antiviral pathways counteracted by this class of picornaviral proteins, i.e. the inhibition of PKR-mediated stress responses, affected EV and EV-enclosed virus release during infection. Moreover, we show that the enhanced capacity of the viral proteins EMCV L and CVB3 2Apro to promote EV-enclosed virus release is linked to their ability to simultaneously promote the activation of the stress kinase P38 MAPK. Taken together, we demonstrate that cellular stress pathways involving the kinases PKR and P38 are modulated by the activity of non-structural viral proteins to increase the release EV-enclosed viruses during picornavirus infections. These data shed new light on the molecular regulation of EV production in response to virus infection.
Collapse
Affiliation(s)
- Kyra A Y Defourny
- Infection Biology Section, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Xinyi Pei
- Infection Biology Section, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank J M van Kuppeveld
- Virology Section, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Esther N M Nolte-T Hoen
- Infection Biology Section, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
9
|
Zhao Z, Yang S, Tang X, Feng L, Ding Z, Chen Z, Luo X, Deng R, Sheng J, Xie S, Chang K, Chen M. DNA four-way junction-driven dual-rolling circle amplification sandwich-type aptasensor for ultra-sensitive and specific detection of tumor-derived exosomes. Biosens Bioelectron 2024; 246:115841. [PMID: 38006701 DOI: 10.1016/j.bios.2023.115841] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/27/2023]
Abstract
There is an urgent need to accurately quantify tumor-derived exosomes, which have emerged as promising non-invasive tumor diagnostic biomarkers. Herein, a bispecific-aptamer sandwich-type gold nanoparticle-modified electrochemical aptasensor was developed based on a four-way junction (4-WJ)-triggered dual rolling circle amplification (RCA)-assisted methylene blue (MB)/G-quadruplex strategy for extremely specific and sensitive exosome detection. This aptamer/exosome/aptamer sandwich-type design contained a CD63-specific aptamer and a cancerous mucin-1 (MUC1) protein-specific aptamer. The CD63 aptamer modified on a gold electrode captured exosomes, and then the sandwich-type aptasensor was formed with the addition of the MUC1 aptamer. The MUC1 aptamer's 3'-end sequence facilitated the formation of 4-WJ, assisted by a molecular beacon probe and a binary DNA probe. Subsequently, a dual-RCA reaction was triggered by binding to two cytosine-rich circle DNA templates at both ends of 4-WJ. Ultimately, dual-RCA products containing multiple G-quadruplex conformations were generated with the assistance of K+ to trap abundant MB indicators and amplify electrochemical signals. The aptasensor exhibited high specificity, sensitivity, repeatability, and stability toward MCF-7-derived exosomes, with a detection limit of 20 particles/mL and a linear range of 1 × 102 to 1 × 107 particles/mL. Moreover, it showed excellent applicability in clinical settings to recover exosomes in normal human serum. Our aptasensor is anticipated to serve as a versatile platform for detecting various specific aptamer-based targets in biomedical and bioanalytical applications.
Collapse
Affiliation(s)
- Zhuyang Zhao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Sha Yang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Xiaoqi Tang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Liu Feng
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Zishan Ding
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Zhiguo Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Xing Luo
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Ruijia Deng
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Jing Sheng
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Shuang Xie
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Kai Chang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China.
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China; College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China.
| |
Collapse
|
10
|
Driedonks TAP, Ressel S, Tran Ngoc Minh T, Buck AH, Nolte‐‘t Hoen ENM. Intracellular localisation and extracellular release of Y RNA and Y RNA binding proteins. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e123. [PMID: 38938676 PMCID: PMC11080805 DOI: 10.1002/jex2.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 06/29/2024]
Abstract
Cells can communicate via the release and uptake of extracellular vesicles (EVs), which are nano-sized membrane vesicles that can transfer protein and RNA cargo between cells. EVs contain microRNAs and various other types of non-coding RNA, of which Y RNA is among the most abundant types. Studies on how RNAs and their binding proteins are sorted into EVs have mainly focused on comparing intracellular (cytoplasmic) levels of these RNAs to the extracellular levels in EVs. Besides overall transcriptional levels that may regulate sorting of RNAs into EVs, the process may also be driven by local intracellular changes in RNA/RBP concentrations. Changes in extracellular Y RNA have been linked to cancer and cardiovascular diseases. Although the loading of RNA cargo into EVs is generally thought to be influenced by cellular stimuli and regulated by RNA binding proteins (RBP), little is known about Y RNA shuttling into EVs. We previously reported that immune stimulation alters the levels of Y RNA in EVs independently of cytosolic Y RNA levels. This suggests that Y RNA binding proteins, and/or changes in the local Y RNA concentration at EV biogenesis sites, may affect Y RNA incorporation into EVs. Here, we investigated the subcellular distribution of Y RNA and Y RNA binding proteins in activated and non-activated THP1 macrophages. We demonstrate that Y RNA and its main binding protein Ro60 abundantly co-fractionate in organelles involved in EV biogenesis and in EVs. Cellular activation led to an increase in Y RNA concentration at EV biogenesis sites and this correlated with increased EV-associated levels of Y RNA and Ro60. These results suggest that Y RNA incorporation into EVs may be controlled by local intracellular changes in the concentration of Y RNA and their protein binding partners.
Collapse
Affiliation(s)
- Tom A. P. Driedonks
- Department Biomolecular Health Sciences, Fac. Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
- Department CDL ResearchUniversity Medical Centre UtrechtUtrechtThe Netherlands
| | - Sarah Ressel
- Institute of Immunology & Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Thi Tran Ngoc Minh
- Department Biomolecular Health Sciences, Fac. Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute of Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Amy H. Buck
- Institute of Immunology & Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Esther N. M. Nolte‐‘t Hoen
- Department Biomolecular Health Sciences, Fac. Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
11
|
Feng J, Yao Y, Wang Q, Han X, Deng X, Cao Y, Chen X, Zhou M, Zhao C. Exosomes: Potential key players towards novel therapeutic options in diabetic wounds. Biomed Pharmacother 2023; 166:115297. [PMID: 37562235 DOI: 10.1016/j.biopha.2023.115297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023] Open
Abstract
Diabetic wounds are usually difficult to heal, and wounds in foot in particular are often aggravated by infection, trauma, diabetic neuropathy, peripheral vascular disease and other factors, resulting in serious foot ulcers. The pathogenesis and clinical manifestations of diabetic wounds are complicated, and there is still a lack of objective and in-depth laboratory diagnosis and classification standards. Exosomes are nanoscale vesicles containing DNA, mRNA, microRNA, cyclic RNA, metabolites, lipids, cytoplasm and cell surface proteins, etc., which are involved in intercellular communication and play a crucial role in vascular regeneration, tissue repair and inflammation regulation in the process of diabetic wound healing. Here, we discussed exosomes of different cellular origins, such as diabetic wound-related fibroblasts (DWAF), adipose stem cells (ASCs), mesenchymal stem cells (MSCs), immune cells, platelets, human amniotic epithelial cells (hAECs), epidermal stem cells (ESCs), and their various molecular components. They exhibit multiple therapeutic effects during diabetic wound healing, including promoting cell proliferation and migration associated with wound healing, regulating macrophage polarization to inhibit inflammatory responses, promoting nerve repair, and promoting vascular renewal and accelerating wound vascularization. In addition, exosomes can be designed to deliver different therapeutic loads and have the ability to deliver them to the desired target. Therefore, exosomes may become an innovative target for precision therapeutics in diabetic wounds. In this review, we summarize the latest research on the role of exosomes in the healing of diabetic wound by regulating the pathogenesis of diabetic wounds, and discuss their potential applications in the precision treatment of diabetic wounds.
Collapse
Affiliation(s)
- Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yichen Yao
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qixue Wang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaozhou Han
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Xiaofei Deng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Xinghua Chen
- Jinshan Hospital Afflicted to Fudan University, Shanghai, China.
| | - Mingmei Zhou
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| |
Collapse
|
12
|
Cheng Z, Shang J, Wang H, Yu L, Yuan Z, Zhang Y, Du Y, Tian J. Molecular imaging-guided extracellular vesicle-based drug delivery for precise cancer management: Current status and future perspectives. J Control Release 2023; 362:97-120. [PMID: 37625599 DOI: 10.1016/j.jconrel.2023.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023]
Abstract
Extracellular vesicles (EVs), the mediators of intercellular communication, have attracted the attention of researchers for the important roles they play in cancer treatment. Compared with other inorganic nano-materials, EVs possess the advantages of higher biocompatibility, better physiochemical stability, easier surface modification, and excellent biosafety. They can be used as an advanced drug delivery system with an improved therapeutic index for various therapeutic agents. Engineered EV-based imaging and therapeutic agents (engineered EVs) have emerged as useful tools in targeted cancer diagnosis and therapy. Non-invasive tracing of engineered EVs contributes to a better evaluation of their functions in cancer progression, in vivo dynamic biodistribution, therapeutic response, and drug-loading efficiency. Recent advances in real-time molecular imaging (MI), and innovative EV labeling strategies have led to the development of novel tools that can evaluate the pharmacokinetics of engineered EVs in cancer management, which may accelerate further clinical translation of novel EV-based drug delivery platforms. Herein, we review the latest advances in EVs, their characteristics, and current examples of EV-based targeted drug delivery for cancer. Then, we discuss the prominent applications of MI for tracing both natural and engineered EVs. Finally, we discuss the current challenges and considerations of EVs in targeted cancer treatment and the limitations of different MI modalities. In the coming decades, EV-based therapeutic applications for cancer with improved drug loading and targeting abilities will be developed, and better anti-cancer effects of drug delivery nanoplatform will be achieved.
Collapse
Affiliation(s)
- Zhongquan Cheng
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing 100050, China; CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Jihuan Shang
- School of Clinical Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Huarong Wang
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing 100050, China
| | - Leyi Yu
- Beijing Haidian Hospital, Beijing 100080, China
| | - Zhu Yuan
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing 100050, China.
| | - Yinlong Zhang
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100080, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, China; Science and Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
13
|
Kaur S, Nathani A, Singh M. Exosomal delivery of cannabinoids against cancer. Cancer Lett 2023; 566:216243. [PMID: 37257632 PMCID: PMC10426019 DOI: 10.1016/j.canlet.2023.216243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
Exosomes are extracellular vesicles (EVs) originating from endosomes that play a role in cellular communication. These vesicles which mimic the parental cells that release them are promising candidates for targeted drug delivery and therapeutic applications against cancer because of their favorable biocompatibility, specific targeting, low toxicity, and immunogenicity. Currently, Delta-9-tetrahydrocannabinol (THC), cannabidiol (CBD) and other cannabinoids (e.g., CBG, THCV, CBC), are being explored for their anticancer and anti-proliferative properties. Several mechanisms, including cell cycle arrest, proliferation inhibition, activation of autophagy and apoptosis, inhibition of adhesion, metastasis, and angiogenesis have been proposed for their anticancer activity. EVs could be engineered as cannabinoid delivery systems for tumor-specificity leading to superior anticancer effects. This review discusses current techniques for EV isolation from various sources, characterization and strategies to load them with cannabinoids. More extensively, we culminate information available on different sources of EVs that have anticancer activity, mechanism of action of cannabinoids against various wild type and resistant tumors and role of CBD in histone modifications and cancer epigenetics. We have also enumerated the role of EVs containing cannabinoids against various tumors and in chemotherapy induced neuropathic pain.
Collapse
Affiliation(s)
- Sukhmandeep Kaur
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Aakash Nathani
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA.
| |
Collapse
|
14
|
Zhang H, Zheng X, Zhao T, Chen Y, Luo Y, Dong Y, Tang H, Jiang J. Real-Time Monitoring of Exosomes Secretion from Single Cell Using Dual-Nanopore Biosensors. ACS Sens 2023. [PMID: 37368982 DOI: 10.1021/acssensors.3c00288] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Exosomes secreted from cells carry rich information from their parent cells, representing a promising biomarker for investigation of diseases. We develop a dual-nanopore biosensor using DNA aptamers to specifically recognize CD63 protein on the exosome's surface, which enables label-free exosome detection based on ionic current change. The sensor allows for sensitive detection of exosomes with a detection limit of 3.4 × 106 particles/mL. The dual-nanopore biosensor was able to form an intrapipette electric circuit for ionic current measurement due to its unique structure, which is crucial to achieve detection of exosome secretion from a single cell. We utilized a microwell array chip to entrap a single cell into a confined microwell with small volume, enabling the accumulation of exosomes with high concentration. The dual-nanopore biosensor was positioned into the microwell with a single cell, and monitoring of exosome secretion from a single cell in different cell lines and under different stimulations has been achieved. Our design may provide a useful platform for developing nanopore biosensors for detecting cell secretions from a single living cell.
Collapse
Affiliation(s)
- Hongshuai Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421002, China
| | - Xin Zheng
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Tao Zhao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yiping Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yang Luo
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yangcan Dong
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hao Tang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianhui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
15
|
He Y, Xing Y, Jiang T, Wang J, Sang S, Rong H, Yu F. Fluorescence labeling of extracellular vesicles for diverse bio-applications in vitro and in vivo. Chem Commun (Camb) 2023; 59:6609-6626. [PMID: 37161668 DOI: 10.1039/d3cc00998j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Extracellular vesicles (EVs) are nanosized vesicles enclosed in a lipid membrane that are sustainably released by nearly all cell types. EVs have been deemed as valuable biomarkers for diagnostics and effective drug carriers, owing to the physiological function of transporting biomolecules for intercellular communication. To investigate their biological properties, efficient labeling strategies have been constructed for EV research, among which fluorescence labeling exerts a powerful function due to the capability of visualizing the nanovesicles with high sensitivity both in vitro and in vivo. In one aspect, with the help of functional fluorescence tags, EVs could be differentiated and categorized in vitro by various analytical techniques, which exert vital roles in disease diagnosis, prognosis, and treatment monitoring. Additionally, innovative EV reporters have been utilized for visualizing EVs, in combination with powerful microscopy techniques, which provide potential tools for investigating the dynamic events of EV release and intercellular communication in suitable animal models. In this feature article, we survey the latest advances regarding EV fluorescence labeling strategies and their application in biomedical application and in vivo biology investigation, highlighting the progresses in individual EV imaging. Finally, the challenges and future perspectives in unravelling EV physiological properties and further biomedical application are discussed.
Collapse
Affiliation(s)
- Yun He
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
| | - Yanlong Xing
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Tongmeng Jiang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Juan Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Shenggang Sang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
| | - Hong Rong
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
| | - Fabiao Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
16
|
Brezgin S, Parodi A, Kostyusheva A, Ponomareva N, Lukashev A, Sokolova D, Pokrovsky VS, Slatinskaya O, Maksimov G, Zamyatnin AA, Chulanov V, Kostyushev D. Technological aspects of manufacturing and analytical control of biological nanoparticles. Biotechnol Adv 2023; 64:108122. [PMID: 36813011 DOI: 10.1016/j.biotechadv.2023.108122] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/19/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived biological nanoparticles that gained great interest for drug delivery. EVs have numerous advantages compared to synthetic nanoparticles, such as ideal biocompatibility, safety, ability to cross biological barriers and surface modification via genetic or chemical methods. On the other hand, the translation and the study of these carriers resulted difficult, mostly because of significant issues in up-scaling, synthesis and impractical methods of quality control. However, current manufacturing advances enable EV packaging with any therapeutic cargo, including DNA, RNA (for RNA vaccines and RNA therapeutics), proteins, peptides, RNA-protein complexes (including gene-editing complexes) and small molecules drugs. To date, an array of new and upgraded technologies have been introduced, substantially improving EV production, isolation, characterization and standardization. The used-to-be "gold standards" of EV manufacturing are now outdated, and the state-of-art requires extensive revision. This review re-evaluates the pipeline for EV industrial production and provides a critical overview of the modern technologies required for their synthesis and characterization.
Collapse
Affiliation(s)
- Sergey Brezgin
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia
| | | | - Anastasiya Kostyusheva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia
| | - Natalia Ponomareva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia
| | - Alexander Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia
| | - Darina Sokolova
- Sirius University of Science and Technology, Sochi 354340, Russia; Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia; People's Friendship University, Moscow 117198, Russia
| | - Vadim S Pokrovsky
- Sirius University of Science and Technology, Sochi 354340, Russia; Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia; People's Friendship University, Moscow 117198, Russia
| | - Olga Slatinskaya
- Lomonosov Moscow State University, Faculty of Biology, Moscow 119991, Russia
| | - Georgy Maksimov
- Lomonosov Moscow State University, Faculty of Biology, Moscow 119991, Russia
| | - Andrey A Zamyatnin
- Sirius University of Science and Technology, Sochi 354340, Russia; Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7X, UK
| | - Vladimir Chulanov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia; Department of Infectious Diseases, Sechenov University, Moscow 119048, Russia; National Medical Research Center for Tuberculosis and Infectious Diseases, Moscow 127994, Russia
| | - Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia.
| |
Collapse
|
17
|
Gupta D, Wiklander OP, Wood MJ, El-Andaloussi S. Biodistribution of therapeutic extracellular vesicles. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:170-190. [PMID: 39697988 PMCID: PMC11648525 DOI: 10.20517/evcna.2023.12] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 12/20/2024]
Abstract
The field of extracellular vesicles (EVs) has seen a tremendous paradigm shift in the past two decades, from being regarded as cellular waste bags to being considered essential mediators in intercellular communication. Their unique ability to transfer macromolecules across cells and biological barriers has made them a rising star in drug delivery. Mounting evidence suggests that EVs can be explored as efficient drug delivery vehicles for a range of therapeutic macromolecules. In contrast to many synthetic delivery systems, these vesicles appear exceptionally well tolerated in vivo. This tremendous development in the therapeutic application of EVs has been made through technological advancement in labelling and understanding the in vivo biodistribution of EVs. Here in this review, we have summarised the recent findings in EV in vivo pharmacokinetics and discussed various biological barriers that need to be surpassed to achieve tissue-specific delivery.
Collapse
Affiliation(s)
- Dhanu Gupta
- Department of Paediatrics. University of Oxford, Oxford OX3 7TY, UK
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge 14151, Sweden
| | - Oscar P.B Wiklander
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge 14151, Sweden
| | - Matthew J.A Wood
- Department of Paediatrics. University of Oxford, Oxford OX3 7TY, UK
| | - Samir El-Andaloussi
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge 14151, Sweden
| |
Collapse
|
18
|
Zhuang L, You Q, Su X, Chang Z, Ge M, Mei Q, Yang L, Dong W, Li L. High-Performance Detection of Exosomes Based on Synergistic Amplification of Amino-Functionalized Fe 3O 4 Nanoparticles and Two-Dimensional MXene Nanosheets. SENSORS (BASEL, SWITZERLAND) 2023; 23:3508. [PMID: 37050576 PMCID: PMC10099274 DOI: 10.3390/s23073508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Exosomes derived from cancer cells have been recognized as a promising biomarker for minimally invasive liquid biopsy. Herein, a novel sandwich-type biosensor was fabricated for highly sensitive detection of exosomes. Amino-functionalized Fe3O4 nanoparticles were synthesized as a sensing interface with a large surface area and rapid enrichment capacity, while two-dimensional MXene nanosheets were used as signal amplifiers with excellent electrical properties. Specifically, CD63 aptamer attached Fe3O4 nanoprobes capture the target exosomes. MXene nanosheets modified with epithelial cell adhesion molecule (EpCAM) aptamer were tethered on the electrode surface to enhance the quantification of exosomes captured with the detection of remaining protein sites. With such a design, the proposed biosensor showed a wide linear range from 102 particles μL-1 to 107 particles μL-1 for sensing 4T1 exosomes, with a low detection limit of 43 particles μL-1. In addition, this sensing platform can determine four different tumor cell types (4T1, Hela, HepG2, and A549) using surface proteins corresponding to aptamers 1 and 2 (CD63 and EpCAM) and showcases good specificity in serum samples. These preliminary results demonstrate the feasibility of establishing a sensitive, accurate, and inexpensive electrochemical sensor for detecting exosome concentrations and species. Moreover, they provide a significant reference for exosome applications in clinical settings, such as liquid biopsy and early cancer diagnosis.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Qiannan You
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Xue Su
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Zhimin Chang
- Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Mingfeng Ge
- Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Qian Mei
- Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Li Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Wenfei Dong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Li Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| |
Collapse
|
19
|
Clinically Expired Platelet Concentrates as a Source of Extracellular Vesicles for Targeted Anti-Cancer Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15030953. [PMID: 36986815 PMCID: PMC10056378 DOI: 10.3390/pharmaceutics15030953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/25/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The short shelf life of platelet concentrates (PC) of up to 5–7 days leads to higher wastage due to expiry. To address this massive financial burden on the healthcare system, alternative applications for expired PC have emerged in recent years. Engineered nanocarriers functionalized with platelet membranes have shown excellent targeting abilities for tumor cells owing to their platelet membrane proteins. Nevertheless, synthetic drug delivery strategies have significant drawbacks that platelet-derived extracellular vesicles (pEV) can overcome. We investigated, for the first time, the use of pEV as a carrier of the anti-breast cancer drug paclitaxel, considering it as an appealing alternative to improve the therapeutic potential of expired PC. The pEV released during PC storage showed a typical EV size distribution profile (100–300 nm) with a cup-shaped morphology. Paclitaxel-loaded pEV showed significant anti-cancer effects in vitro, as demonstrated by their anti-migratory (>30%), anti-angiogenic (>30%), and anti-invasive (>70%) properties in distinct cells found in the breast tumor microenvironment. We provide evidence for a novel application for expired PC by suggesting that the field of tumor treatment research may be broadened by the use of natural carriers.
Collapse
|
20
|
Welsh JA, Arkesteijn GJA, Bremer M, Cimorelli M, Dignat-George F, Giebel B, Görgens A, Hendrix A, Kuiper M, Lacroix R, Lannigan J, van Leeuwen TG, Lozano-Andrés E, Rao S, Robert S, de Rond L, Tang VA, Tertel T, Yan X, Wauben MHM, Nolan JP, Jones JC, Nieuwland R, van der Pol E. A compendium of single extracellular vesicle flow cytometry. J Extracell Vesicles 2023; 12:e12299. [PMID: 36759917 PMCID: PMC9911638 DOI: 10.1002/jev2.12299] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 11/29/2022] [Accepted: 12/17/2022] [Indexed: 02/11/2023] Open
Abstract
Flow cytometry (FCM) offers a multiparametric technology capable of characterizing single extracellular vesicles (EVs). However, most flow cytometers are designed to detect cells, which are larger than EVs. Whereas cells exceed the background noise, signals originating from EVs partly overlap with the background noise, thereby making EVs more difficult to detect than cells. This technical mismatch together with complexity of EV-containing fluids causes limitations and challenges with conducting, interpreting and reproducing EV FCM experiments. To address and overcome these challenges, researchers from the International Society for Extracellular Vesicles (ISEV), International Society for Advancement of Cytometry (ISAC), and the International Society on Thrombosis and Haemostasis (ISTH) joined forces and initiated the EV FCM working group. To improve the interpretation, reporting, and reproducibility of future EV FCM data, the EV FCM working group published an ISEV position manuscript outlining a framework of minimum information that should be reported about an FCM experiment on single EVs (MIFlowCyt-EV). However, the framework contains limited background information. Therefore, the goal of this compendium is to provide the background information necessary to design and conduct reproducible EV FCM experiments. This compendium contains background information on EVs, the interaction between light and EVs, FCM hardware, experimental design and preanalytical procedures, sample preparation, assay controls, instrument data acquisition and calibration, EV characterization, and data reporting. Although this compendium focuses on EVs, many concepts and explanations could also be applied to FCM detection of other particles within the EV size range, such as bacteria, lipoprotein particles, milk fat globules, and viruses.
Collapse
Affiliation(s)
- Joshua A Welsh
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ger J A Arkesteijn
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Michel Bremer
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael Cimorelli
- Vesicle Observation Center, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Experimental Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Chemical Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Françoise Dignat-George
- Aix Marseille Univ, INSERM, INRAE, C2VN, UFR de Pharmacie, Marseille, France
- Hematology and Vascular Biology Department, CHU La Conception, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - André Görgens
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Clinical Research Center, Department for Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Evox Therapeutics Ltd, Oxford, UK
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Martine Kuiper
- Vesicle Observation Center, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Experimental Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Biomedical Engineering & Physics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Dutch Metrology Institute, VSL, Delft, The Netherlands
| | - Romaric Lacroix
- Aix Marseille Univ, INSERM, INRAE, C2VN, UFR de Pharmacie, Marseille, France
- Hematology and Vascular Biology Department, CHU La Conception, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Joanne Lannigan
- Flow Cytometry Support Services, LLC, Arlington, Virginia, USA
| | - Ton G van Leeuwen
- Vesicle Observation Center, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Biomedical Engineering & Physics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Estefanía Lozano-Andrés
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Shoaib Rao
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stéphane Robert
- Aix Marseille Univ, INSERM, INRAE, C2VN, UFR de Pharmacie, Marseille, France
- Hematology and Vascular Biology Department, CHU La Conception, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Leonie de Rond
- Vesicle Observation Center, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Experimental Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Biomedical Engineering & Physics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Vera A Tang
- Flow Cytometry & Virometry Core Facility, Faculty of Medicine, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Tobias Tertel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Xiaomei Yan
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Marca H M Wauben
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - John P Nolan
- Scintillon Institute, San Diego, California, USA
- Cellarcus Biosciences, San Diego, California, USA
| | - Jennifer C Jones
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rienk Nieuwland
- Vesicle Observation Center, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Experimental Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, Amsterdam, The Netherlands
| | - Edwin van der Pol
- Vesicle Observation Center, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Experimental Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Biomedical Engineering & Physics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Kwon Y, Park J. Methods to analyze extracellular vesicles at single particle level. MICRO AND NANO SYSTEMS LETTERS 2022. [DOI: 10.1186/s40486-022-00156-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractExtracellular vesicles (EVs) are nano-sized vesicles derived from cells that transport biomaterials between cells through biofluids. Due to their biological role and components, they are considered as potential drug carriers and for diagnostic applications. Today's advanced nanotechnology enables single-particle-level analysis that was difficult in the past due to its small size below the diffraction limit. Single EV analysis reveals the heterogeneity of EVs, which could not be discovered by various ensemble analysis methods. Understanding the characteristics of single EVs enables more advanced pathological and biological researches. This review focuses on the advanced techniques employed for EV analysis at the single particle level and describes the principles of each technique.
Collapse
|
22
|
Gul B, Syed F, Khan S, Iqbal A, Ahmad I. Characterization of extracellular vesicles by flow cytometry: Challenges and promises. Micron 2022; 161:103341. [DOI: 10.1016/j.micron.2022.103341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 10/16/2022]
|
23
|
Prasad R, Conde J. Bioinspired soft nanovesicles for site-selective cancer imaging and targeted therapies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1792. [PMID: 35318815 DOI: 10.1002/wnan.1792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/17/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Cell-to-cell communication within the heterogeneous solid tumor environment plays a significant role in the uncontrolled metastasis of cancer. To inhibit the metastasis and growth of cancer cells, various chemically designed and biologically derived nanosized biomaterials have been applied for targeted cancer therapeutics applications. Over the years, bioinspired soft nanovesicles have gained tremendous attention for targeted cancer therapeutics due to their easy binding with tumor microenvironment, natural targeting ability, bio-responsive nature, better biocompatibility, high cargo capacity for multiple therapeutics agents, and long circulation time. These cell-derived nanovesicles guard their loaded cargo molecules from immune clearance and make them site-selective to cancer cells due to their natural binding and delivery abilities. Furthermore, bioinspired soft nanovesicles prevent cell-to-cell communication and secretion of cancer cell markers by delivering the therapeutics agents predominantly. Cell-derived vesicles, namely, exosomes, extracellular vesicles, and so forth have been recognized as versatile carriers for therapeutic biomolecules. However, low product yield, poor reproducibility, and uncontrolled particle size distribution have remained as major challenges of these soft nanovesicles. Furthermore, the surface biomarkers and molecular contents of these vesicles change with respect to the stage of disease and types. Here in this review, we have discussed numerous examples of bioinspired soft vesicles for targeted imaging and cancer therapeutic applications with their advantages and limitations. Importance of bioengineered soft nanovesicles for localized therapies with their clinical relevance has also been addressed in this article. Overall, cell-derived nanovesicles could be considered as clinically relevant platforms for cancer therapeutics. This article is categorized under: Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Rajendra Prasad
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - João Conde
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
24
|
van der Grein SG, Defourny KAY, Rabouw HH, Goerdayal SS, van Herwijnen MJC, Wubbolts RW, Altelaar M, van Kuppeveld FJM, Nolte-'t Hoen ENM. The encephalomyocarditis virus Leader promotes the release of virions inside extracellular vesicles via the induction of secretory autophagy. Nat Commun 2022; 13:3625. [PMID: 35750662 PMCID: PMC9232559 DOI: 10.1038/s41467-022-31181-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/07/2022] [Indexed: 11/08/2022] Open
Abstract
Naked viruses can escape host cells before the induction of lysis via release in extracellular vesicles (EVs). These nanosized EVs cloak the secreted virus particles in a host-derived membrane, which alters virus-host interactions that affect infection efficiency and antiviral immunity. Currently, little is known about the viral and host factors regulating this form of virus release. Here, we assessed the role of the encephalomyocarditis virus (EMCV) Leader protein, a 'viral security protein' that subverts the host antiviral response. EV release upon infection with wildtype virus or a Leader-deficient mutant was characterized at the single particle level using high-resolution flow cytometry. Inactivation of the Leader abolished EV induction during infection and strongly reduced EV-enclosed virus release. We demonstrate that the Leader promotes the release of virions within EVs by stimulating a secretory arm of autophagy. This newly discovered role of the EMCV Leader adds to the variety of mechanisms via which this protein affects virus-host interactions. Moreover, these data provide first evidence for a crucial role of a non-structural viral protein in the non-lytic release of picornaviruses via packaging in EVs.
Collapse
Affiliation(s)
- Susanne G van der Grein
- Division of Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Kyra A Y Defourny
- Division of Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Huib H Rabouw
- Virology Section, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Soenita S Goerdayal
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Martijn J C van Herwijnen
- Division of Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Richard W Wubbolts
- Division of Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Frank J M van Kuppeveld
- Virology Section, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Esther N M Nolte-'t Hoen
- Division of Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands.
| |
Collapse
|
25
|
Imanbekova M, Suarasan S, Lu Y, Jurchuk S, Wachsmann-Hogiu S. Recent advances in optical label-free characterization of extracellular vesicles. NANOPHOTONICS 2022; 11:2827-2863. [PMID: 35880114 PMCID: PMC9128385 DOI: 10.1515/nanoph-2022-0057] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 05/04/2023]
Abstract
Extracellular vesicles (EVs) are complex biological nanoparticles endogenously secreted by all eukaryotic cells. EVs carry a specific molecular cargo of proteins, lipids, and nucleic acids derived from cells of origin and play a significant role in the physiology and pathology of cells, organs, and organisms. Upon release, they may be found in different body fluids that can be easily accessed via noninvasive methodologies. Due to the unique information encoded in their molecular cargo, they may reflect the state of the parent cell and therefore EVs are recognized as a rich source of biomarkers for early diagnostics involving liquid biopsy. However, body fluids contain a mixture of EVs released by different types of healthy and diseased cells, making the detection of the EVs of interest very challenging. Recent research efforts have been focused on the detection and characterization of diagnostically relevant subpopulations of EVs, with emphasis on label-free methods that simplify sample preparation and are free of interfering signals. Therefore, in this paper, we review the recent progress of the label-free optical methods employed for the detection, counting, and morphological and chemical characterization of EVs. We will first briefly discuss the biology and functions of EVs, and then introduce different optical label-free techniques for rapid, precise, and nondestructive characterization of EVs such as nanoparticle tracking analysis, dynamic light scattering, atomic force microscopy, surface plasmon resonance spectroscopy, Raman spectroscopy, and SERS spectroscopy. In the end, we will discuss their applications in the detection of neurodegenerative diseases and cancer and provide an outlook on the future impact and challenges of these technologies to the field of liquid biopsy via EVs.
Collapse
Affiliation(s)
- Meruyert Imanbekova
- Bioengineering, McGill University Faculty of Engineering, Montreal, QC, Canada
| | - Sorina Suarasan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271, Cluj-Napoca, Romania
| | - Yao Lu
- Bioengineering, McGill University Faculty of Engineering, 3480 Rue Universite, 1006, Montreal, QC, H3C6W1, Canada
| | - Sarah Jurchuk
- Bioengineering, McGill University Faculty of Engineering, 3480 Rue Universite, Rm#350, Montreal, QC, H3A 0E9, Canada
| | - Sebastian Wachsmann-Hogiu
- Bioengineering, McGill University Faculty of Engineering, 3480 University St., MC362, Montreal, H3A 0E9l, Canada
| |
Collapse
|
26
|
Pirisinu M, Pham TC, Zhang DX, Hong TN, Nguyen LT, Le MT. Extracellular vesicles as natural therapeutic agents and innate drug delivery systems for cancer treatment: Recent advances, current obstacles, and challenges for clinical translation. Semin Cancer Biol 2022; 80:340-355. [PMID: 32977006 DOI: 10.1016/j.semcancer.2020.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
Abstract
As cancer poses a significant threat to the well-being of humans on a global scale, many researchers have embarked on the search for effective anticancer therapeutic agents. In recent years, many drugs have been shown to have extraordinary anticancer effects. However, in a lot of cases the treatment is accompanied by undesirable side effects due to some intrinsic properties linked to the therapeutic agents, such as poor targeting selectivity and short half-life in the circulation. In this regard, extracellular vesicles (EVs), a diverse family of natural cell-derived vesicles, steal the show as potential anticancer immunotherapy or delivery vectors of anticancer agents since they are an innate mechanism of intercellular communication. Here, we describe some of the most hotly-debated issues regarding the use of EVs as anticancer therapeutics. First, we review the biology of EVs providing the most up-to-date definition of EVs as well as highlighting their circulation kinetics and homing properties. Next, we share our views on popular methods reported for EV isolation, characterization, and functional analysis. Pioneering and innovative reports along with emerging challenges in the field of EV imaging and EV drug loading strategies are then discussed. Finally, we examine in detail the therapeutic application of EVs in cancer treatment, including their role in cancer immunotherapy and as natural delivery systems for anticancer agents including natural compounds such as paclitaxel and doxorubicin. We consider standardised protocols and proper analytical approaches to be crucial in improving the reproducibility and rigor in EV research and ensuring the successful translation of EVs as anticancer therapeutics.
Collapse
Affiliation(s)
- Marco Pirisinu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR of China, China
| | - Tin Chanh Pham
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR of China, China
| | - Daniel Xin Zhang
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR of China, China; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Tran Nguyen Hong
- Department of Pharmacology and Biochemistry, Vietnam Institute of Medicinal Materials, Hanoi, Vietnam
| | - Lap Thi Nguyen
- Department of Biochemistry, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Minh Tn Le
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR of China, China.
| |
Collapse
|
27
|
Naqvi RA, Datta M, Khan SH, Naqvi AR. Regulatory roles of MicroRNA in shaping T cell function, differentiation and polarization. Semin Cell Dev Biol 2022; 124:34-47. [PMID: 34446356 PMCID: PMC11661912 DOI: 10.1016/j.semcdb.2021.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/09/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022]
Abstract
T lymphocytes are an integral component of adaptive immunity with pleotropic effector functions. Impairment of T cell activity is implicated in various immune pathologies including autoimmune diseases, AIDS, carcinogenesis, and periodontitis. Evidently, T cell differentiation and function are under robust regulation by various endogenous factors that orchestrate underlying molecular pathways. MicroRNAs (miRNA) are a class of noncoding, regulatory RNAs that post-transcriptionally control multiple mRNA targets by sequence-specific interaction. In this article, we will review the recent progress in our understanding of miRNA-gene networks that are uniquely required by specific T cell effector functions and provide miRNA-mediated mechanisms that govern the fate of T cells. A subset of miRNAs may act in a synergistic or antagonistic manner to exert functional suppression of genes and regulate pathways that control T cell activation and differentiation. Significance of T cell-specific miRNAs and their dysregulation in immune-mediated diseases is discussed. Exosome-mediated horizontal transfer of miRNAs from antigen presenting cells (APCs) to T cells and from one T cell to another T cell subset and their impact on recipient cell functions is summarized.
Collapse
Affiliation(s)
- Raza Ali Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago 60612, IL, USA.
| | - Manali Datta
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Samia Haseeb Khan
- Graduate School of Medicine, Science and Technology, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano 399-4598, Japan
| | - Afsar R Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago 60612, IL, USA.
| |
Collapse
|
28
|
Madeira RP, Meneghetti P, Barros LAD, Buck PDC, Mady C, Ianni BM, Fernandez-Becerra C, Torrecilhas AC. Isolation and molecular characterization of circulating extracellular vesicles from blood of chronic Chagas disease patients. Cell Biol Int 2022; 46:883-894. [PMID: 35253308 DOI: 10.1002/cbin.11787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 11/11/2022]
Abstract
Extracellular vesicles (EVs) are lipid bilayer envelopes that encase several types of molecules. Their contents mostly reflect their cell origin and possible targets at other locations in the organism and can be modified in pathological conditions to interfere with intercellular communication, thus promoting disease establishment and development. These characteristics, in addition to their presence in virtually all body fluids, make such vesicles ideal for biomarker discovery in human diseases. Here we describe the effect of different anticoagulants and the combination of two purification methods for isolation and characterization of circulating extracellular vesicles from blood of chronic Chagas disease (CCD) patients. We illustrated this procedure by studying a population of patients with Chagas disease at the indeterminate chronic stage, in which the Trypanosoma cruzi is very scarce in circulation. EVs were harvested from blood collected without or with different anticoagulants. Protein and nanoparticle tracking analysis was used to measure EVs size and concentration. The EVs were purified by ultracentrifugation, followed by size exclusion chromatography and characterized by chemiluminescent ELISA and Dot Blot using antibodies that recognized parasite-derived EVs, such as hyperimmune sera, polyclonal and monoclonal antibodies against trans-sialidase and mucins. In parallel, antibodies against classical human EV markers CD9, CD63, CD81 and CD82, were also analyzed. The results showed that anticoagulants did not interfere with the analyzed parameters and circulating EVs from CCD patients contain T. cruzi antigens and classical human exosomal markers. Overall, our protocol is adequate for the isolation of the total circulating extracellular vesicles and can serve as an important basis for further studies on biomarker discovery in Chagas' disease. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Rafael Pedro Madeira
- Disciplina de Infectologia, Departamento de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brasil.,Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Diadema, Brasil
| | - Paula Meneghetti
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Diadema, Brasil
| | - Lucas Alexandre de Barros
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Diadema, Brasil
| | - Paula de Cassia Buck
- Unidade Clínica de Miocardiopatias, Instituto do Coração, Universidade de São Paulo (USP), São Paulo, Brasil
| | - Charles Mady
- Unidade Clínica de Miocardiopatias, Instituto do Coração, Universidade de São Paulo (USP), São Paulo, Brasil
| | - Barbara Maria Ianni
- Unidade Clínica de Miocardiopatias, Instituto do Coração, Universidade de São Paulo (USP), São Paulo, Brasil
| | - Carmen Fernandez-Becerra
- ISGlobal, Hospital Cl ́ınic - Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacio ́ en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain.,CIBER de Enfermedades Infecciosas (CIBERINFEC), Spain
| | - Ana Claudia Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Diadema, Brasil
| |
Collapse
|
29
|
Buenafe AC, Dorrell C, Reddy AP, Klimek J, Marks DL. Proteomic analysis distinguishes extracellular vesicles produced by cancerous versus healthy pancreatic organoids. Sci Rep 2022; 12:3556. [PMID: 35241737 PMCID: PMC8894448 DOI: 10.1038/s41598-022-07451-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are produced and released by both healthy and malignant cells and bear markers indicative of ongoing biological processes. In the present study we utilized high resolution flow cytometry to detect EVs in the plasma of patients with pancreatic ductal adenocarcinoma (PDAC) and in the supernatants of PDAC and healthy control (HC) pancreatic organoid cultures. Using ultrafiltration and size exclusion chromatography, PDAC and HC pancreatic organoid EVs were isolated for mass spectrometry analysis. Proteomic and functional protein network analysis showed a striking distinction in that EV proteins profiled in pancreatic cancer organoids were involved in vesicular transport and tumorigenesis while EV proteins in healthy organoids were involved in cellular homeostasis. Thus, the most abundant proteins identified in either case represented non-overlapping cellular programs. Tumor-promoting candidates LAMA5, SDCBP and TENA were consistently upregulated in PDAC EVs. Validation of specific markers for PDAC EVs versus healthy pancreatic EVs will provide the biomarkers and enhanced sensitivity necessary to monitor early disease or disease progression, with or without treatment. Moreover, disease-associated changes in EV protein profiles provide an opportunity to investigate alterations in cellular programming with disease progression.
Collapse
Affiliation(s)
- Abigail C Buenafe
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, USA.
| | - Craig Dorrell
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, USA
| | - Ashok P Reddy
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR, USA
| | - John Klimek
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
30
|
Kruse T, Schneider S, Reger LN, Kampmann M, Reif O. A novel approach for enumeration of extracellular vesicles from crude and purified cell culture samples. Eng Life Sci 2022; 22:334-343. [PMID: 35382531 PMCID: PMC8961042 DOI: 10.1002/elsc.202100149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022] Open
Abstract
The interest in extracellular vesicles (EVs) has been increased in recent years due to their potential application in diagnosis and therapy of severe diseases. The versatile fields of application due to the numerous possible cargos and the targeted delivery system make them a promising biopharmaceutical product. However, their broad size range as well as varied surface protein content result in challenges for the purification, characterization, and quantification. In this study a novel method, based on high-resolution flow cytometry, was examined for the enumeration of EVs in purified as well as crude process samples. In addition to quantification, samples were characterized by dynamic light scattering, zeta potential measurement, and analytical size exclusion chromatography. It has been demonstrated that EVs were successfully enumerated with the novel method, offering great benefits for development and monitoring of EV processes.
Collapse
|
31
|
Alghamdi M, Alamry SA, Bahlas SM, Uversky VN, Redwan EM. Circulating extracellular vesicles and rheumatoid arthritis: a proteomic analysis. Cell Mol Life Sci 2021; 79:25. [PMID: 34971426 PMCID: PMC11072894 DOI: 10.1007/s00018-021-04020-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
Circulating extracellular vesicles (EVs) are membrane-bound nanoparticles secreted by most cells for intracellular communication and transportation of biomolecules. EVs carry proteins, lipids, nucleic acids, and receptors that are involved in human physiology and pathology. EV cargo is variable and highly related to the type and state of the cellular origin. Three subtypes of EVs have been identified: exosomes, microvesicles, and apoptotic bodies. Exosomes are the smallest and the most well-studied class of EVs that regulate different biological processes and participate in several diseases, such as cancers and autoimmune diseases. Proteomic analysis of exosomes succeeded in profiling numerous types of proteins involved in disease development and prognosis. In rheumatoid arthritis (RA), exosomes revealed a potential function in joint inflammation. These EVs possess a unique function, as they can transfer specific autoantigens and mediators between distant cells. Current proteomic data demonstrated that exosomes could provide beneficial effects against autoimmunity and exert an immunosuppressive action, particularly in RA. Based on these observations, effective therapeutic strategies have been developed for arthritis and other inflammatory disorders.
Collapse
Affiliation(s)
- Mohammed Alghamdi
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Laboratory Department, University Medical Services Center, King Abdulaziz University, P.O. Box 80200, Jeddah, 21589, Saudi Arabia
| | - Sultan Abdulmughni Alamry
- Immunology Diagnostic Laboratory Department, King Abdulaziz University Hospital, P.O Box 80215, Jeddah, 21589, Saudi Arabia
| | - Sami M Bahlas
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, P.O. Box 80215, Jeddah, 21589, Saudi Arabia
| | - Vladimir N Uversky
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Elrashdy M Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, 21934, Alexandria, Egypt.
| |
Collapse
|
32
|
Klasinc R, Reiter M, Digruber A, Tschulenk W, Walter I, Kirschner A, Spittler A, Stockinger H. A Novel Flow Cytometric Approach for the Quantification and Quality Control of Chlamydia trachomatis Preparations. Pathogens 2021; 10:1617. [PMID: 34959572 PMCID: PMC8706156 DOI: 10.3390/pathogens10121617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/27/2022] Open
Abstract
Chlamydia trachomatis is an obligate intracellular pathogenic bacterium with a biphasic developmental cycle manifesting two distinct morphological forms: infectious elementary bodies (EBs) and replicative intracellular reticulate bodies (RBs). Current standard protocols for quantification of the isolates assess infectious particles by titering inclusion-forming units, using permissive cell lines, and analyzing via immunofluorescence. Enumeration of total particle counts is achieved by counting labeled EBs/RBs using a fluorescence microscope. Both methods are time-consuming with a high risk of observer bias. For a better assessment of C. trachomatis preparations, we developed a simple and time-saving flow cytometry-based workflow for quantifying small particles, such as EBs with a size of 300 nm. This included optimization of gain and threshold settings with the addition of a neutral density filter for small-particle discrimination. The nucleic acid dye SYBR® Green I (SGI) was used together with propidium iodide and 5(6)-carboxyfluorescein diacetate to enumerate and discriminate between live and dead bacteria. We found no significant differences between the direct particle count of SGI-stained C. trachomatis preparations measured by microscopy or flow cytometry (p > 0.05). Furthermore, we completed our results by introducing a cell culture-independent viability assay. Our measurements showed very good reproducibility and comparability to the existing state-of-the-art methods, indicating that the evaluation of C. trachomatis preparations by flow cytometry is a fast and reliable method. Thus, our method facilitates an improved assessment of the quality of C. trachomatis preparations for downstream applications.
Collapse
Affiliation(s)
- Romana Klasinc
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (M.R.); (A.K.); (H.S.)
| | - Michael Reiter
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (M.R.); (A.K.); (H.S.)
| | - Astrid Digruber
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | - Waltraud Tschulenk
- Institute of Morphology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (W.T.); (I.W.)
| | - Ingrid Walter
- Institute of Morphology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (W.T.); (I.W.)
| | - Alexander Kirschner
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (M.R.); (A.K.); (H.S.)
- Division Water Quality & Health, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| | - Andreas Spittler
- Core Facility Flow Cytometry and Department of Surgery, Research Laboratories, Medical University of Vienna, 1090 Vienna, Austria;
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (M.R.); (A.K.); (H.S.)
| |
Collapse
|
33
|
Dosing extracellular vesicles. Adv Drug Deliv Rev 2021; 178:113961. [PMID: 34481030 DOI: 10.1016/j.addr.2021.113961] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/19/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are natural nanoparticles containing biologically active molecules. They are important mediators of intercellular communication and can be exploited therapeutically by various bioengineering approaches. To accurately determine the therapeutic potential of EVs in pre-clinical and clinical settings, dependable dosing strategies are of utmost importance. However, the field suffers from inconsistencies comprising all areas of EV production and characterisation. Therefore, a standardised and well-defined process in EV quantification, key to reliable therapeutic EV dosing, remains to be established. Here, we examined 64 pre-clinical studies for EV-based therapeutics with respect to their applied EV dosing strategies. We identified variations in effective dosing strategies irrespective of the applied EV purification method and cell source. Moreover, we found dose discrepancies depending on the disease model, where EV doses were selected without accounting for published EV pharmacokinetics or biodistribution patterns. We therefore propose to focus on qualitative aspects when dosing EV-based therapeutics, such as the potency of the therapeutic cargo entity. This will ensure batch-to-batch reliability and enhance reproducibility between applications. Furthermore, it will allow for the successful benchmarking of EV-based therapeutics compared to other nanoparticle drug delivery systems, such as viral vector-based or lipid-based nanoparticle approaches.
Collapse
|
34
|
Mol S, Hafkamp FMJ, Varela L, Simkhada N, Taanman-Kueter EW, Tas SW, Wauben MHM, Groot Kormelink T, de Jong EC. Efficient Neutrophil Activation Requires Two Simultaneous Activating Stimuli. Int J Mol Sci 2021; 22:ijms221810106. [PMID: 34576270 PMCID: PMC8467451 DOI: 10.3390/ijms221810106] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are abundantly present in the synovium and synovial fluid of patients suffering from arthritis. Neutrophils can be activated by a multitude of stimuli and the current dogma states that this is a two-step process, consisting of a priming step followed by an activation step. Considering that neutrophil activation occurs in an inflammatory environment, where multiple stimuli are present, we argue that a two-step process is highly unlikely. Here, we indeed demonstrate that neutrophils require simultaneous ligation of two different receptors for efficient activation. We isolated human peripheral blood neutrophils and cultured them with various combinations of stimuli (GM-CSF, fMLF, TNF, and LPS). Next, we evaluated essential neutrophil functions, including degranulation and ROS production using flow cytometry, mediator release using ELISA, NETosis by a live cell imaging method, phagocytosis by imaging flow cytometry, and extracellular vesicle (EV) release quantified by high-resolution flow cytometry. Exposure of neutrophils to any combination of stimuli, but not to single stimuli, resulted in significant degranulation, and mediator and EV release. Furthermore, ROS production increased substantially by dual stimulation, yet appeared to be more dependent on the type of stimulation than on dual stimulation. Phagocytosis was induced to its maximum capacity by a single stimulus, while NETosis was not induced by any of the used physiological stimuli. Our data indicate that neutrophil activation is tightly regulated and requires activation by two simultaneous stimuli, which is largely independent of the combination of stimuli.
Collapse
Affiliation(s)
- Sanne Mol
- Department Experimental Immunology, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands; (S.M.); (F.M.J.H.); (N.S.); (E.W.T.-K.); (S.W.T.); (T.G.K.)
- Department Biomolecular Health Sciences, Faculty Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The Netherlands; (L.V.); (M.H.M.W.)
| | - Florianne M. J. Hafkamp
- Department Experimental Immunology, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands; (S.M.); (F.M.J.H.); (N.S.); (E.W.T.-K.); (S.W.T.); (T.G.K.)
| | - Laura Varela
- Department Biomolecular Health Sciences, Faculty Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The Netherlands; (L.V.); (M.H.M.W.)
| | - Neena Simkhada
- Department Experimental Immunology, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands; (S.M.); (F.M.J.H.); (N.S.); (E.W.T.-K.); (S.W.T.); (T.G.K.)
| | - Esther W. Taanman-Kueter
- Department Experimental Immunology, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands; (S.M.); (F.M.J.H.); (N.S.); (E.W.T.-K.); (S.W.T.); (T.G.K.)
| | - Sander W. Tas
- Department Experimental Immunology, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands; (S.M.); (F.M.J.H.); (N.S.); (E.W.T.-K.); (S.W.T.); (T.G.K.)
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Marca H. M. Wauben
- Department Biomolecular Health Sciences, Faculty Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The Netherlands; (L.V.); (M.H.M.W.)
| | - Tom Groot Kormelink
- Department Experimental Immunology, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands; (S.M.); (F.M.J.H.); (N.S.); (E.W.T.-K.); (S.W.T.); (T.G.K.)
| | - Esther C. de Jong
- Department Experimental Immunology, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands; (S.M.); (F.M.J.H.); (N.S.); (E.W.T.-K.); (S.W.T.); (T.G.K.)
- Correspondence: ; Tel.: +31-2-0566-4963
| |
Collapse
|
35
|
Garcia Romeu H, Deville S, Salvati A. Time- and Space-Resolved Flow-Cytometry of Cell Organelles to Quantify Nanoparticle Uptake and Intracellular Trafficking by Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100887. [PMID: 34272923 DOI: 10.1002/smll.202100887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/15/2021] [Indexed: 05/20/2023]
Abstract
The design of targeted nanomedicines requires intracellular space- and time-resolved data of nanoparticle distribution following uptake. Current methods to study intracellular trafficking, such as dynamic colocalization by fluorescence microscopy in live cells, are usually low throughput and require extensive analysis of large datasets to quantify colocalization in several individual cells. Here a method based on flow cytometry to easily detect and characterize the organelles in which nanoparticles are internalized and trafficked over time is proposed. Conventional cell fractionation methods are combined with immunostaining and high-sensitivity organelle flow cytometry to get space-resolved data of nanoparticle intracellular distribution. By extracting the organelles at different times, time-resolved data of nanoparticle intracellular trafficking are obtained. The method is validated by determining how nanoparticle size affects the kinetics of arrival to the lysosomes. The results demonstrate that this method allows high-throughput analysis of nanoparticle uptake and intracellular trafficking by cells, therefore it can be used to determine how nanoparticle design affects their intracellular behavior.
Collapse
Affiliation(s)
- Hector Garcia Romeu
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, 9713AV, The Netherlands
| | - Sarah Deville
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, 9713AV, The Netherlands
- Health Unit, Flemish Institute for Technological Research, Boeretang 200, Mol, 2400, Belgium
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, 9713AV, The Netherlands
| |
Collapse
|
36
|
Campos CDM, Childers K, Gamage SST, Wijerathne H, Zhao Z, Soper SA. Analytical Technologies for Liquid Biopsy of Subcellular Materials. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:207-229. [PMID: 33974805 PMCID: PMC8601690 DOI: 10.1146/annurev-anchem-091520-093931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Liquid biopsy markers, which can be secured from a simple blood draw or other biological samples, are used to manage a variety of diseases and even monitor for bacterial or viral infections. Although there are several different types of liquid biopsy markers, the subcellular ones, including cell-free DNA, microRNA, extracellular vesicles, and viral particles, are evolving in terms of their utility. A challenge with liquid biopsy markers is that they must be enriched from the biological sample prior to analysis because they are a vast minority in a mixed population, and potential interferences may be present in the sample matrix that can inhibit profiling the molecular cargo from the subcellular marker. In this article, we discuss existing and developing analytical enrichment platforms used to isolate subcellular liquid biopsy markers, and discuss their figures of merit such as recovery, throughput, and purity.
Collapse
Affiliation(s)
- Camila D M Campos
- Life Science Department, Imec, 3001 Leuven, Belgium
- Department of Electrical Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Katie Childers
- Bioengineering Program, University of Kansas, Lawrence, Kansas 66045, USA;
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, Kansas 66045, USA
| | - Sachindra S T Gamage
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, Kansas 66045, USA
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | - Harshani Wijerathne
- Department of Mechanical Engineering, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Zheng Zhao
- Bioengineering Program, University of Kansas, Lawrence, Kansas 66045, USA;
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, Kansas 66045, USA
| | - Steven A Soper
- Bioengineering Program, University of Kansas, Lawrence, Kansas 66045, USA;
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, Kansas 66045, USA
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, Kansas 66045, USA
- KU Cancer Center, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
- Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| |
Collapse
|
37
|
Buschmann D, Mussack V, Byrd JB. Separation, characterization, and standardization of extracellular vesicles for drug delivery applications. Adv Drug Deliv Rev 2021; 174:348-368. [PMID: 33964356 PMCID: PMC8217305 DOI: 10.1016/j.addr.2021.04.027] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) are membranous nanovesicles secreted from living cells, shuttling macromolecules in intercellular communication and potentially possessing intrinsic therapeutic activity. Due to their stability, low immunogenicity, and inherent interaction with recipient cells, EVs also hold great promise as drug delivery vehicles. Indeed, they have been used to deliver nucleic acids, proteins, and small molecules in preclinical investigations. Furthermore, EV-based drugs have entered early clinical trials for cancer or neurodegenerative diseases. Despite their appeal as delivery vectors, however, EV-based drug delivery progress has been hampered by heterogeneity of sample types and methods as well as a persistent lack of standardization, validation, and comprehensive reporting. This review highlights specific requirements for EVs in drug delivery and describes the most pertinent approaches for separation and characterization. Despite residual uncertainties related to pharmacodynamics, pharmacokinetics, and potential off-target effects, clinical-grade, high-potency EV drugs might be achievable through GMP-compliant workflows in a highly standardized environment.
Collapse
Affiliation(s)
- Dominik Buschmann
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Veronika Mussack
- Department of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - James Brian Byrd
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
38
|
Gupta R, Luo X, Lin Z, Tian Y, Ajit SK. Uptake of Fluorescent Labeled Small Extracellular Vesicles In Vitro and in Spinal Cord. J Vis Exp 2021:10.3791/62537. [PMID: 34096919 PMCID: PMC10460254 DOI: 10.3791/62537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Small extracellular vesicles (sEVs) are 50-150 nm vesicles secreted by all cells and present in bodily fluids. sEVs transfer biomolecules such as RNA, proteins, and lipids from donor to acceptor cells, making them key signaling mediators between cells. In the central nervous system (CNS), sEVs can mediate intercellular signaling, including neuroimmune interactions. sEV functions can be studied by tracking the uptake of labeled sEVs in recipient cells both in vitro and in vivo. This paper describes the labeling of sEVs from the conditioned media of RAW 264.7 macrophage cells using a PKH membrane dye. It shows the uptake of different concentrations of labeled sEVs at multiple time points by Neuro-2a cells and primary astrocytes in vitro. Also shown is the uptake of sEVs delivered intrathecally in mouse spinal cord neurons, astrocytes, and microglia visualized by confocal microscopy. The representative results demonstrate time-dependent variation in the uptake of sEVs by different cells, which can help confirm successful sEVs delivery into the spinal cord.
Collapse
Affiliation(s)
- Richa Gupta
- Department of Pharmacology & Physiology, Drexel University College of Medicine
| | - Xuan Luo
- Department of Pharmacology & Physiology, Drexel University College of Medicine
| | - Zhucheng Lin
- Department of Pharmacology & Physiology, Drexel University College of Medicine
| | - Yuzhen Tian
- Department of Pharmacology & Physiology, Drexel University College of Medicine
| | - Seena K Ajit
- Department of Pharmacology & Physiology, Drexel University College of Medicine;
| |
Collapse
|
39
|
Bongiovanni L, Andriessen A, Wauben MHM, Hoen ENMN', de Bruin A. Extracellular Vesicles: Novel Opportunities to Understand and Detect Neoplastic Diseases. Vet Pathol 2021; 58:453-471. [PMID: 33813952 PMCID: PMC8064535 DOI: 10.1177/0300985821999328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
With a size range from 30 to 1000 nm, extracellular vesicles (EVs) are one of the smallest cell components able to transport biologically active molecules. They mediate intercellular communications and play a fundamental role in the maintenance of tissue homeostasis and pathogenesis in several types of diseases. In particular, EVs actively contribute to cancer initiation and progression, and there is emerging understanding of their role in creation of the metastatic niche. This fact underlies the recent exponential growth in EV research, which has improved our understanding of their specific roles in disease and their potential applications in diagnosis and therapy. EVs and their biomolecular cargo reflect the state of the diseased donor cells, and can be detected in body fluids and exploited as biomarkers in cancer and other diseases. Relatively few studies have been published on EVs in the veterinary field. This review provides an overview of the features and biology of EVs as well as recent developments in EV research including techniques for isolation and analysis, and will address the way in which the EVs released by diseased tissues can be studied and exploited in the field of veterinary pathology. Uniquely, this review emphasizes the important contribution that pathologists can make to the field of EV research: pathologists can help EV scientists in studying and confirming the role of EVs and their molecular cargo in diseased tissues and as biomarkers in liquid biopsies.
Collapse
Affiliation(s)
- Laura Bongiovanni
- 90051Utrecht University, Utrecht, the Netherlands.,University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Present address: Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | | | | | | | - Alain de Bruin
- 90051Utrecht University, Utrecht, the Netherlands.,University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
40
|
Yan H, Li Y, Cheng S, Zeng Y. Advances in Analytical Technologies for Extracellular Vesicles. Anal Chem 2021; 93:4739-4774. [PMID: 33635060 DOI: 10.1021/acs.analchem.1c00693] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- He Yan
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Yutao Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Shibo Cheng
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Yong Zeng
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.,University of Florida Health Cancer Center, Gainesville, Florida 32610, United States
| |
Collapse
|
41
|
Welsh JA, Killingsworth B, Kepley J, Traynor T, McKinnon K, Savage J, Appel D, Aldape K, Camphausen K, Berzofsky JA, Ivanov AR, Ghiran IH, Jones JC. A simple, high-throughput method of protein and label removal from extracellular vesicle samples. NANOSCALE 2021; 13:3737-3745. [PMID: 33544111 PMCID: PMC7941347 DOI: 10.1039/d0nr07830a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Evidence continues to increase of the clinical utility extracellular vesicles (EVs) as translational biomarkers. While a wide variety of EV isolation and purification methods have been implemented, few techniques are high-throughput and scalable for removing excess fluorescent reagents (e.g. dyes, antibodies). EVs are too small to be recovered from routine cell-processing procedures, such as filtration or centrifugation. The lack of suitable methods for removing unbound labels, especially in optical assays, is a major roadblock to accurate EV phenotyping and utilization of EV assays in a translational or clinical setting. Therefore, we developed a method for using a multi-modal resin, referred to as EV-Clean, to remove unbound labels from EV samples, and we demonstrate improvement in flow cytometric EV analysis with the use of this EV-Clean method.
Collapse
Affiliation(s)
- Joshua A Welsh
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Bryce Killingsworth
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Julia Kepley
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Tim Traynor
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Kathy McKinnon
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jason Savage
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Deven Appel
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kevin Camphausen
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alexander R Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | - Ionita H Ghiran
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jennifer C Jones
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
42
|
Ouyang Y, Mouillet JF, Sorkin A, Sadovsky Y. Trophoblastic extracellular vesicles and viruses: Friends or foes? Am J Reprod Immunol 2021; 85:e13345. [PMID: 32939907 PMCID: PMC7880881 DOI: 10.1111/aji.13345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022] Open
Abstract
Cells produce cytoplasmic vesicles to facilitate the processing and transport of RNAs, proteins, and other signaling molecules among intracellular organelles. Moreover, most cells release a range of extracellular vesicles (EVs) that mediate intercellular communication in both physiological and pathological settings. In addition to a better understanding of their biological functions, the diagnostic and therapeutic prospects of EVs, particularly the nano-sized small EVs (sEVs, exosomes), are currently being rigorously pursued. While EVs and viruses such as retroviruses might have evolved independently, they share a number of similar characteristics, including biogenesis pathways, size distribution, cargo, and cell-targeting mechanisms. The interplay of EVs with viruses has profound effects on viral replication and infectivity. Our research indicates that sEVs, produced by primary human trophoblasts, can endow other non-placental cell types with antiviral response. Better insights into the interaction of EVs with viruses may illuminate new ways to attenuate viral infections during pregnancy, and perhaps develop new antiviral therapeutics to protect the feto-placental unit during critical times of human development.
Collapse
Affiliation(s)
- Yingshi Ouyang
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jean-Francois Mouillet
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
43
|
Rastogi S, Sharma V, Bharti PS, Rani K, Modi GP, Nikolajeff F, Kumar S. The Evolving Landscape of Exosomes in Neurodegenerative Diseases: Exosomes Characteristics and a Promising Role in Early Diagnosis. Int J Mol Sci 2021; 22:E440. [PMID: 33406804 PMCID: PMC7795439 DOI: 10.3390/ijms22010440] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases (ND) remains to be one of the biggest burdens on healthcare systems and serves as a leading cause of disability and death. Alzheimer's disease (AD) is among the most common of such disorders, followed by Parkinson's disease (PD). The basic molecular details of disease initiation and pathology are still under research. Only recently, the role of exosomes has been linked to the initiation and progression of these neurodegenerative diseases. Exosomes are small bilipid layer enclosed extracellular vesicles, which were once considered as a cellular waste and functionless. These nano-vesicles of 30-150 nm in diameter carry specific proteins, lipids, functional mRNAs, and high amounts of non-coding RNAs (miRNAs, lncRNAs, and circRNAs). As the exosomes content is known to vary as per their originating and recipient cells, these vesicles can be utilized as a diagnostic biomarker for early disease detection. Here we review exosomes, their biogenesis, composition, and role in neurodegenerative diseases. We have also provided details for their characterization through an array of available techniques. Their updated role in neurodegenerative disease pathology is also discussed. Finally, we have shed light on a novel field of salivary exosomes as a potential candidate for early diagnosis in neurodegenerative diseases and compared the biomarkers of salivary exosomes with other blood/cerebrospinal fluid (CSF) based exosomes within these neurological ailments.
Collapse
Affiliation(s)
- Simran Rastogi
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.R.); (V.S.); (P.S.B.)
| | - Vaibhav Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.R.); (V.S.); (P.S.B.)
| | - Prahalad Singh Bharti
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.R.); (V.S.); (P.S.B.)
| | - Komal Rani
- Department of Biotechnology, Amity University, Mumbai 410206, India;
| | - Gyan P. Modi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India;
| | - Fredrik Nikolajeff
- Department of Health Science, Lulea Technical University, 97187 Lulea, Sweden
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.R.); (V.S.); (P.S.B.)
| |
Collapse
|
44
|
López-Pacheco C, Bedoya-López A, Olguín-Alor R, Soldevila G. Analysis of Tumor-Derived Exosomes by Nanoscale Flow Cytometry. Methods Mol Biol 2021; 2174:171-191. [PMID: 32813250 DOI: 10.1007/978-1-0716-0759-6_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The study of tumor exosomes has gained relevance in the last decades due to their potential use for therapeutic and diagnostic application. Although there is extensive knowledge of exosome biology, some biological samples like tumor-derived exosomes have been difficult to characterize due to their complexity and heterogeneity. This distinctive feature makes difficult the identification of specific exosome subpopulations with a shared molecular signature that could allow for targeting of exosomes with therapeutic and diagnostic potential use in cancer patients. Nanoscale flow cytometry has lately emerged as an alternative tool that can be adapted to the study of nanoparticles, such as exosomes. However, the physicochemical properties of these particles are an important issue to consider as nanoparticles need the application of specific settings which differ from those used in conventional flow cytometry of cells. Therefore, in the last few years, one of the main aims has been the optimization of technical and experimental protocols to improve exosome analysis. In this chapter, we discuss several aspects of cytometric systems with a special emphasis in technical considerations of samples and equipment.
Collapse
Affiliation(s)
- Cynthia López-Pacheco
- Departamento de Inmunología and Laboratorio Nacional de Citometría de Flujo, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Andrea Bedoya-López
- Departamento de Inmunología and Laboratorio Nacional de Citometría de Flujo, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Roxana Olguín-Alor
- Departamento de Inmunología and Laboratorio Nacional de Citometría de Flujo, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gloria Soldevila
- Departamento de Inmunología and Laboratorio Nacional de Citometría de Flujo, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
45
|
Oesterreicher J, Pultar M, Schneider J, Mühleder S, Zipperle J, Grillari J, Holnthoner W. Fluorescence-Based Nanoparticle Tracking Analysis and Flow Cytometry for Characterization of Endothelial Extracellular Vesicle Release. Int J Mol Sci 2020; 21:E9278. [PMID: 33291792 PMCID: PMC7731108 DOI: 10.3390/ijms21239278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022] Open
Abstract
As extracellular vesicles (EVs) have become a prominent topic in life sciences, a growing number of studies are published on a regular basis addressing their biological relevance and possible applications. Nevertheless, the fundamental question of the true vesicular nature as well as possible influences on the EV secretion behavior have often been not adequately addressed. Furthermore, research regarding endothelial cell-derived EVs (EndoEVs) often focused on the large vesicular fractions comprising of microvesicles (MV) and apoptotic bodies. In this study we aimed to further extend the current knowledge of the influence of pre-isolation conditions, such as cell density and conditioning time, on EndoEV release from human umbilical vein endothelial cells (HUVECs). We combined fluorescence nanoparticle tracking analysis (NTA) and the established fluorescence-triggered flow cytometry (FT-FC) protocol to allow vesicle-specific detection and characterization of size and surface markers. We found significant effects of cell density and conditioning time on both abundance and size distribution of EndoEVs. Additionally, we present detailed information regarding the surface marker display on EVs from different fractions and size ranges. Our data provide crucial relevance for future projects aiming to elucidate EV secretion behavior of endothelial cells. Moreover, we show that the influence of different conditioning parameters on the nature of EndoEVs has to be considered.
Collapse
Affiliation(s)
- Johannes Oesterreicher
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Centre, 1200 Vienna, Austria; (J.O.); (M.P.); (J.S.); (J.Z.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Marianne Pultar
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Centre, 1200 Vienna, Austria; (J.O.); (M.P.); (J.S.); (J.Z.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Jaana Schneider
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Centre, 1200 Vienna, Austria; (J.O.); (M.P.); (J.S.); (J.Z.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Severin Mühleder
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain;
| | - Johannes Zipperle
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Centre, 1200 Vienna, Austria; (J.O.); (M.P.); (J.S.); (J.Z.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Centre, 1200 Vienna, Austria; (J.O.); (M.P.); (J.S.); (J.Z.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, 1090 Vienna, Austria
| | - Wolfgang Holnthoner
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Centre, 1200 Vienna, Austria; (J.O.); (M.P.); (J.S.); (J.Z.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
46
|
Xing Y, Cheng Z, Wang R, Lv C, James TD, Yu F. Analysis of extracellular vesicles as emerging theranostic nanoplatforms. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213506] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
47
|
Dehghani M, Montange RK, Olszowy MW, Pollard D. An Emerging Fluorescence-Based Technique for Quantification and Protein Profiling of Extracellular Vesicles. SLAS Technol 2020; 26:189-199. [PMID: 33185120 DOI: 10.1177/2472630320970458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Robust and well-established techniques for the quantification and characterization of extracellular vesicles (EVs) are a crucial need for the utilization of EVs as potential diagnostic and therapeutic tools. Current bulk analysis techniques such as proteomics and Western blot suffer from low resolution in the detection of small changes in target marker expression levels, exemplified by the heterogeneity of EVs. Microscopy-based techniques can provide valuable information from individual EVs; however, they are time-consuming and statistically less powerful than other techniques. Flow cytometry has been successfully employed for the quantification and characterization of individual EVs within larger populations. However, traditional flow cytometry is not highly suited for the examination of smaller, submicron particles. Here we demonstrate the accurate and precise quantification of nanoparticles such as EVs using the Virus Counter 3100 (VC3100) platform, a fluorescence-based technique that uses the principles of flow cytometry with critical enhancements to enable the effective detection of smaller particles. This approach can detect nanoparticles precisely with no evidence of inaccurate concentration measurement from masking effects associated with traditional nanoparticle tracking analysis (NTA). Fluorescently labeled EVs from different sources were successfully quantified using the VC3100 without a postlabeling washing step. Moreover, protein profiling and characterization of individual EVs were achieved and have been shown to determine the expression level of target protein markers.
Collapse
Affiliation(s)
- Mehdi Dehghani
- Sartorius Corporate Research, Sartorius (Smart Labs), Boston, MA, USA.,Sartorius Corporate Research, Sartorius (Smart Labs), Boston, MA, USA.,Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | | | | | - David Pollard
- Sartorius Corporate Research, Sartorius (Smart Labs), Boston, MA, USA
| |
Collapse
|
48
|
Edelmann MJ, Maegawa GHB. CNS-Targeting Therapies for Lysosomal Storage Diseases: Current Advances and Challenges. Front Mol Biosci 2020; 7:559804. [PMID: 33304924 PMCID: PMC7693645 DOI: 10.3389/fmolb.2020.559804] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
During the past decades, several therapeutic approaches have been developed and made rapidly available for many patients afflicted with lysosomal storage disorders (LSDs), inborn organelle disorders with broad clinical manifestations secondary to the progressive accumulation of undegraded macromolecules within lysosomes. These conditions are individually rare, but, collectively, their incidence ranges from 1 in 2,315 to 7,700 live-births. Most LSDs are manifested by neurological symptoms or signs, including developmental delay, seizures, acroparesthesia, motor weakness, and extrapyramidal signs. The chronic and later-onset clinical forms are at one end of the continuum spectrum and are characterized by a subtle and slow progression of neurological symptoms. Due to its inherent physiological properties, unfortunately, the blood-brain barrier (BBB) constitutes a significant obstacle for current and upcoming therapies to achieve the central nervous system (CNS) and treat neurological problems so prevalent in these conditions. To circumvent this limitation, several strategies have been developed to make the therapeutic agent achieve the CNS. This narrative will provide an overview of current therapeutic strategies under development to permeate the BBB, and address and unmet need for treatment of the progressive neurological manifestations, which are so prevalent in these inherited lysosomal disorders.
Collapse
Affiliation(s)
- Mariola J Edelmann
- Department of Microbiology and Cell Science, The University of Florida's Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Gustavo H B Maegawa
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
49
|
Orally Administered 5-aminolevulinic Acid for Isolation and Characterization of Circulating Tumor-Derived Extracellular Vesicles in Glioblastoma Patients. Cancers (Basel) 2020; 12:cancers12113297. [PMID: 33171819 PMCID: PMC7695169 DOI: 10.3390/cancers12113297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Background: In glioblastoma (GB), tissue is required for accurate diagnosis and subtyping. Tissue can be obtained through resection or (stereotactic) biopsy, but these invasive procedures provide risks for patients. Extracellular vesicles (EVs) are small, cell-derived vesicles that contain miRNAs, proteins, and lipids, and possible candidates for liquid biopsies. GB-derived EVs can be found in the blood of patients, but it is difficult to distinguish them from circulating non-tumor EVs. 5-aminolevulinic acid (5-ALA) is orally administered to GB patients to facilitate tumor visualization and maximal resection, as it is metabolized to fluorescent protoporphyrin IX (PpIX) that accumulates in glioma cells. In this study, we assessed whether PpIX accumulates in GB-derived EVs and whether these EVs could be isolated and characterized to enable a liquid biopsy in GB. Methods: EVs were isolated from the conditioned media of U87 cells treated with 5-ALA by differential ultracentrifugation. Blood samples were collected and processed from healthy controls and patients undergoing 5-ALA guided surgery for GB. High-resolution flow cytometry (hFC) enabled detection and sorting of PpIX-positive EVs, which were subsequently analyzed by digital droplet PCR (ddPCR). Results: PpIX-positive EVs could be detected in conditioned cell culture media as well as in patient samples after administration of 5-ALA. By using hFC, we could sort the PpIX-positive EVs for further analysis with ddPCR, which indicated the presence of EVs and GB-associated miRNAs. Conclusion: GB-derived EVs can be isolated from the plasma of GB patients by using 5-ALA induced fluorescence. Although many challenges remain, our findings show new possibilities for the development of blood-based liquid biopsies in GB patients.
Collapse
|
50
|
Maia J, Batista S, Couto N, Gregório AC, Bodo C, Elzanowska J, Strano Moraes MC, Costa-Silva B. Employing Flow Cytometry to Extracellular Vesicles Sample Microvolume Analysis and Quality Control. Front Cell Dev Biol 2020; 8:593750. [PMID: 33195266 PMCID: PMC7661467 DOI: 10.3389/fcell.2020.593750] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/30/2020] [Indexed: 12/20/2022] Open
Abstract
Extracellular Vesicles (EVs), membrane vesicles released by all cells, are emerging mediators of cell-cell communication. By carrying biomolecules from tissues to biofluids, EVs have attracted attention as non-invasive sources of clinical biomarkers in liquid biopsies. EVs-based liquid biopsies usually require EVs isolation before content analysis, which frequently increases sample volume requirements. We here present a Flow Cytometry (FC) strategy that does not require isolation or concentration of EVs prior to staining. By doing so, it enables population analysis of EVs in samples characterized by challenging small volumes, while reducing overall sample processing time. To illustrate its application, we performed longitudinal non-lethal population analysis of EVs in mouse plasma and in single-animal collections of murine vitreous humor. By quantifying the proportion of vesicular particles in purified and non-purified biological samples, this method also serves as a precious tool to quality control isolates of EVs purified by different protocols. Our FC strategy has an unexplored clinical potential to analyze EVs in biofluids with intrinsically limited volumes and to multiply the number of different analytes in EVs that can be studied from a single collection of biofluid.
Collapse
Affiliation(s)
- Joana Maia
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.,Graduate Program in Areas of Basic and Applied Biology, University of Porto, Porto, Portugal
| | - Silvia Batista
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Nuno Couto
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.,Digestive Unit, Champalimaud Clinical Centre, Lisbon, Portugal
| | - Ana C Gregório
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Cristian Bodo
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Julia Elzanowska
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | - Bruno Costa-Silva
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|