1
|
Feng X, Zhu ZA, Wang HT, Zhou HW, Liu JW, Shen Y, Zhang YX, Xiong ZQ. A Novel Mouse Model Unveils Protein Deficiency in Truncated CDKL5 Mutations. Neurosci Bull 2025; 41:805-820. [PMID: 40042769 PMCID: PMC12014890 DOI: 10.1007/s12264-024-01346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/25/2024] [Indexed: 04/23/2025] Open
Abstract
Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) cause a severe neurodevelopmental disorder, yet the impact of truncating mutations remains unclear. Here, we introduce the Cdkl5492stop mouse model, mimicking C-terminal truncating mutations in patients. 492stop/Y mice exhibit altered dendritic spine morphology and spontaneous seizure-like behaviors, alongside other behavioral deficits. After creating cell lines with various Cdkl5 truncating mutations, we found that these mutations are regulated by the nonsense-mediated RNA decay pathway. Most truncating mutations result in CDKL5 protein loss, leading to multiple disease phenotypes, and offering new insights into the pathogenesis of CDKL5 disorder.
Collapse
Affiliation(s)
- Xue Feng
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi-Ai Zhu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong-Tao Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hui-Wen Zhou
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ji-Wei Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Ya Shen
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu-Xian Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhi-Qi Xiong
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Loi M, Valenti F, Medici G, Mottolese N, Candini G, Bove AM, Trebbi F, Pincigher L, Fato R, Bergamini C, Trazzi S, Ciani E. Beneficial Antioxidant Effects of Coenzyme Q10 in In Vitro and In Vivo Models of CDKL5 Deficiency Disorder. Int J Mol Sci 2025; 26:2204. [PMID: 40076840 PMCID: PMC11900000 DOI: 10.3390/ijms26052204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
CDKL5 deficiency disorder (CDD), a developmental encephalopathy caused by mutations in the cyclin-dependent kinase-like 5 (CDKL5) gene, is characterized by a complex and severe clinical picture, including early-onset epilepsy and cognitive, motor, visual, and gastrointestinal disturbances. This disease still lacks a medical treatment to mitigate, or reverse, its course and improve the patient's quality of life. Although CDD is primarily a genetic brain disorder, some evidence indicates systemic abnormalities, such as the presence of a redox imbalance in the plasma and skin fibroblasts from CDD patients and in the cardiac myocytes of a mouse model of CDD. In order to shed light on the role of oxidative stress in the CDD pathophysiology, in this study, we aimed to investigate the therapeutic potential of Coenzyme Q10 (CoQ10), which is known to be a powerful antioxidant, using in vitro and in vivo models of CDD. We found that CoQ10 supplementation not only reduces levels of reactive oxygen species (ROS) and normalizes glutathione balance but also restores the levels of markers of DNA damage (γ-H2AX) and senescence (lamin B1), restoring cellular proliferation and improving cellular survival in a human neuronal model of CDD. Importantly, oral supplementation with CoQ10 exerts a protective role toward lipid peroxidation and DNA damage in the heart of a murine model of CDD, the Cdkl5 (+/-) female mouse. Our results highlight the therapeutic potential of the antioxidant supplement CoQ10 in counteracting the detrimental oxidative stress induced by CDKL5 deficiency.
Collapse
Affiliation(s)
- Manuela Loi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (G.M.); (N.M.); (G.C.); (A.M.B.); (F.T.); (E.C.)
| | - Francesca Valenti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (F.V.); (L.P.); (R.F.); (C.B.)
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (G.M.); (N.M.); (G.C.); (A.M.B.); (F.T.); (E.C.)
| | - Nicola Mottolese
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (G.M.); (N.M.); (G.C.); (A.M.B.); (F.T.); (E.C.)
| | - Giulia Candini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (G.M.); (N.M.); (G.C.); (A.M.B.); (F.T.); (E.C.)
| | - Angelica Marina Bove
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (G.M.); (N.M.); (G.C.); (A.M.B.); (F.T.); (E.C.)
| | - Federica Trebbi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (G.M.); (N.M.); (G.C.); (A.M.B.); (F.T.); (E.C.)
| | - Luca Pincigher
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (F.V.); (L.P.); (R.F.); (C.B.)
| | - Romana Fato
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (F.V.); (L.P.); (R.F.); (C.B.)
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (F.V.); (L.P.); (R.F.); (C.B.)
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (G.M.); (N.M.); (G.C.); (A.M.B.); (F.T.); (E.C.)
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (G.M.); (N.M.); (G.C.); (A.M.B.); (F.T.); (E.C.)
| |
Collapse
|
3
|
Jones T, Raman R, Puhl AC, Lane TR, Riabova O, Kazakova E, Makarov V, Ekins S. Discovery of Dual Targeting GSK-3β/HIV-1 Reverse Transcriptase Inhibitors as Neuroprotective Antiviral Agents. ACS Chem Neurosci 2025; 16:77-84. [PMID: 39663760 DOI: 10.1021/acschemneuro.4c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Abstract
Glycogen synthase kinase-3 beta (GSK-3β or GSK-3B) is a serine-threonine kinase involved in various pathways and cellular processes. Alteration in GSK-3β activity is associated with several neurological diseases including Alzheimer's disease (AD), bipolar disorder, and rare diseases like Rett syndrome. GSK-3β is also implicated in HIV-associated dementia (HAD), as it is upregulated in HIV-1-infected cells and plays a role in neuronal dysfunction. Therefore, a small molecule that can inhibit both GSK-3β and HIV-1 reverse transcriptase could offer neuroprotective therapy for patients suffering from HIV-1. Despite this, there are no known GSK-3β inhibitors currently approved, thus prompting us to screen our panel of various antiviral compounds against this kinase to better understand its structure-activity relationship. We show for the first time that the approved drugs, etravirine and rilpivirine, possess GSK-3β activity (IC50 619 nM and 502 nM, respectively). We have also identified 3 lead molecules exhibiting IC50 < 1 μM (11726169, 12326205, and 12326207), with compound 11726169 being the most potent in vitro GSK-3β inhibitor (IC50 = 12.1 nM). We also describe the generation of machine learning models for GSK-3β inhibition and their validation with our data as an external test set and propose their use for the future optimization of such inhibitors.
Collapse
Affiliation(s)
- Thane Jones
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Renuka Raman
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Ana C Puhl
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Thomas R Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Olga Riabova
- Research Center of Biotechnology RAS, Leninsky Prospekt 33-2, Moscow 119071, Russia
| | - Elena Kazakova
- Research Center of Biotechnology RAS, Leninsky Prospekt 33-2, Moscow 119071, Russia
| | - Vadim Makarov
- Research Center of Biotechnology RAS, Leninsky Prospekt 33-2, Moscow 119071, Russia
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
4
|
Mottolese N, Loi M, Trazzi S, Tassinari M, Uguagliati B, Candini G, Iqbal K, Medici G, Ciani E. Effects of a ciliary neurotrophic factor (CNTF) small-molecule peptide mimetic in an in vitro and in vivo model of CDKL5 deficiency disorder. J Neurodev Disord 2024; 16:65. [PMID: 39592934 PMCID: PMC11590213 DOI: 10.1186/s11689-024-09583-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Mutations in the X-linked CDKL5 gene underlie a severe epileptic encephalopathy, CDKL5 deficiency disorder (CDD), characterized by gross motor impairment, autistic features and intellectual disability. Absence of Cdkl5 negatively impacts neuronal proliferation, survival, and maturation in in vitro and in vivo models, resulting in behavioral deficits in the Cdkl5 KO mouse. While there is no targeted therapy for CDD, several studies showed that treatments enabling an increase in brain BDNF levels give rise to structural and behavioral improvements in Cdkl5 KO mice. P021, a tetra-peptide derived from the biologically active region of the human ciliary neurotrophic factor (CNTF), was found to enhance neurogenesis and synaptic plasticity by promoting an increase in BDNF expression in preclinical models of brain disorders, such as Alzheimer's disease and Down syndrome, resulting in a beneficial therapeutic effect. Considering the positive actions of P021 on brain development and cognition associated with increased BDNF expression, the present study aimed to evaluate the possible beneficial effect of treatment with P021 in an in vitro and in vivo model of CDD. METHODS We used SH-CDKL5-KO cells as an in vitro model of CDD to test the efficacy of P021 on neuronal proliferation, survival, and maturation. In addition, both young and adult Cdkl5 KO mice were used to evaluate the in vivo effects of P021, on neuroanatomical and behavioral defects. RESULTS We found that P021 treatment was effective in restoring neuronal proliferation, survival, and maturation deficits, as well as alterations in the GSK3β signaling pathway, features that characterize a human neuronal model of CDKL5 deficiency. Unexpectedly, chronic in vivo P021 treatment failed to increase BDNF levels and did not improve neuroanatomical defects in Cdkl5 KO mice, resulting in limited behavioral benefit. CONCLUSIONS At present, it remains to be understood whether initiating the treatment prenatally, or prolonging the duration of treatment will be necessary in order to achieve similar results in vivo in CDD mice to those obtained in vitro.
Collapse
Affiliation(s)
- Nicola Mottolese
- Department of Biomedical and Neuromotor Science, University of Bologna, Piazza Di Porta San Donato 2, 40126, Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Science, University of Bologna, Piazza Di Porta San Donato 2, 40126, Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Science, University of Bologna, Piazza Di Porta San Donato 2, 40126, Bologna, Italy
| | - Marianna Tassinari
- Department of Biomedical and Neuromotor Science, University of Bologna, Piazza Di Porta San Donato 2, 40126, Bologna, Italy
| | - Beatrice Uguagliati
- Department of Biomedical and Neuromotor Science, University of Bologna, Piazza Di Porta San Donato 2, 40126, Bologna, Italy
| | - Giulia Candini
- Department of Biomedical and Neuromotor Science, University of Bologna, Piazza Di Porta San Donato 2, 40126, Bologna, Italy
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, 10314, USA
- Phanes Biotech Inc, Malvern, PA, 19355, USA
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Science, University of Bologna, Piazza Di Porta San Donato 2, 40126, Bologna, Italy.
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Science, University of Bologna, Piazza Di Porta San Donato 2, 40126, Bologna, Italy.
| |
Collapse
|
5
|
Quadalti C, Sannia M, Humphreys N, Baldassarro V, Gurgone A, Ascolani M, Zanella L, Giardino L, Gross C, Croci S, Meloni I, Giustetto M, Renieri A, Lorenzini L, Calzà L. A new knockin mouse carrying the E364X patient mutation for CDKL5 deficiency disorder: neurological, behavioral and molecular profiling. Heliyon 2024; 10:e40165. [PMID: 39583831 PMCID: PMC11584566 DOI: 10.1016/j.heliyon.2024.e40165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/15/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
CDKL5 deficiency disorder (CDD) is a rare neurodevelopmental syndrome caused by mutations in the X-linked CDKL5 gene. Hundreds of pathogenic variants have been described, associated with a significant phenotypic heterogeneity observed among patients. To date, different knockout mouse models have been generated. Here we present a new knockin CDKL5 mouse model carrying a humanized, well-characterized nonsense variant (c.1090G > T; p.E364X) described in the C-terminal domain of the CDKL5 protein in a female patient with a milder phenotype. Both male and female Cdkl5 E364X mice were analyzed. The novel Cdkl5 E364X mouse showed altered neurological and motor neuron maturation, hyperactivity, defective coordination and impaired memory and cognition. Gene expression analysis highlighted an unexpected reduction of Cdkl5 expression in Cdkl5 E364X mice brain tissues, with a significant increase in overall neuron-specific gene expression and an area-dependent alteration of astrocyte- and oligodendrocyte-specific transcripts. Moreover, our results showed that the loss of CDKL5 protein had the most significant impact on the cerebellum and hippocampus, compared to other analyzed tissues. A targeted analysis to study synaptic plasticity in cerebellum and hippocampus showed reduced Gabra1 and Gabra5 expression levels in females, whereas Gabra1 expression was increased in males, suggesting an opposite, sex-dependent regulation of the GABA receptor expression already described in humans. In conclusion, the novel Cdkl5E364X mouse model is characterized by robust neurological and neurobehavioral alterations, associated with a molecular profile related to synaptic function indicative of a cerebellar GABAergic hypofunction, pointing to Gabra1 and Gabra5 as novel druggable target candidates for CDD.
Collapse
Affiliation(s)
- C. Quadalti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - M. Sannia
- IRET Foundation, 40064 Ozzano Emilia (Bologna), Italy
| | - N.E. Humphreys
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| | - V.A. Baldassarro
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy
| | - A. Gurgone
- Department of Neuroscience “Rita Levi-Montalcini”, University of Turin, 10125 Turin, Italy
| | - M. Ascolani
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| | - L. Zanella
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy
| | - L. Giardino
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy
| | - C.T. Gross
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| | - S. Croci
- Medical Genetics, University of Siena, 53100 Siena, Italy
| | - I. Meloni
- Medical Genetics, University of Siena, 53100 Siena, Italy
| | - M. Giustetto
- Department of Neuroscience “Rita Levi-Montalcini”, University of Turin, 10125 Turin, Italy
| | - A. Renieri
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Medical Genetics Department, Siena University Hospital, 53100 Siena, Italy
| | - L. Lorenzini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy
| | - L. Calzà
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Li C, Liu Y, Luo S, Yang M, Li L, Sun L. A review of CDKL: An underestimated protein kinase family. Int J Biol Macromol 2024; 277:133604. [PMID: 38964683 DOI: 10.1016/j.ijbiomac.2024.133604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Cyclin-dependent kinase-like (CDKL) family proteins are serine/threonine protein kinases and is a specific branch of CMGC (including CDK, MAPK, GSK). Its name is due to the sequence similarity with CDK and it consists of 5 members. Their function in protein phosphorylation underpins their important role in cellular activities, including cell cycle, apoptosis, autophagy and microtubule dynamics. CDKL proteins have been demonstrated to regulate the length of primary cilium, which is a dynamic and diverse signaling hub and closely associated with multiple diseases. Furthermore, CDKL proteins have been shown to be involved in the development and progression of several diseases, including cancer, neurodegenerative diseases and kidney disease. In this review, we summarize the structural characteristics and discovered functions of CDKL proteins and their role in diseases, which might be helpful for the development of innovative therapeutic strategies for disease.
Collapse
Affiliation(s)
- Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| |
Collapse
|
7
|
Mottolese N, Coiffard O, Ferraguto C, Manolis A, Ciani E, Pietropaolo S. Autistic-relevant behavioral phenotypes of a mouse model of cyclin-dependent kinase-like 5 deficiency disorder. Autism Res 2024; 17:1742-1759. [PMID: 39234879 DOI: 10.1002/aur.3226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a neurodevelopmental disease caused by mutations in the X-linked CDKL5 gene and characterized by early-onset epilepsy, intellectual disability, and autistic features. To date, the etiological mechanisms underlying CDD are largely unknown and no effective therapies are available. The Cdkl5 knock-out (KO) mouse has been broadly employed in preclinical studies on CDD; Cdkl5-KO mice display neurobehavioral abnormalities recapitulating most CDD symptoms, including alterations in motor, sensory, cognitive, and social abilities. However, most available preclinical studies have been carried out on adult Cdkl5-KO mice, so little is known about the phenotypic characteristics of this model earlier during development. Furthermore, major autistic-relevant phenotypes, for example, social and communication deficits, have been poorly investigated and mostly in male mutants. Here, we assessed the autistic-relevant behavioral phenotypes of Cdkl5-KO mice during the first three post-natal weeks and in adulthood. Males and females were tested, the latter including both heterozygous and homozygous mutants. Cdkl5 mutant pups showed qualitative and quantitative alterations in ultrasonic communication, detected first at 2 weeks of age and confirmed later in adulthood. Increased levels of anxiety-like behaviors were observed in mutants at 3 weeks and in adulthood, when stereotypies, reduced social interaction and memory deficits were also observed. These behavioral effects of the mutation were evident in both sexes, being more marked and varied in homozygous than heterozygous females. These findings provide novel evidence for the autistic-relevant behavioral profile of the Cdkl5 mouse model, thus supporting its use in future preclinical studies investigating CDD pathology and autism spectrum disorders.
Collapse
Affiliation(s)
- Nicola Mottolese
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
- CNRS, EPHE, INCIA, Univ. Bordeaux, Bordeaux, France
| | | | | | | | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | | |
Collapse
|
8
|
Massey S, Ang CS, Davidson NM, Quigley A, Rollo B, Harris AR, Kapsa RMI, Christodoulou J, Van Bergen NJ. Novel CDKL5 targets identified in human iPSC-derived neurons. Cell Mol Life Sci 2024; 81:347. [PMID: 39136782 PMCID: PMC11335273 DOI: 10.1007/s00018-024-05389-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024]
Abstract
CDKL5 Deficiency Disorder (CDD) is a debilitating epileptic encephalopathy disorder affecting young children with no effective treatments. CDD is caused by pathogenic variants in Cyclin-Dependent Kinase-Like 5 (CDKL5), a protein kinase that regulates key phosphorylation events in neurons. For therapeutic intervention, it is essential to understand molecular pathways and phosphorylation targets of CDKL5. Using an unbiased phosphoproteomic approach we identified novel targets of CDKL5, including GTF2I, PPP1R35, GATAD2A and ZNF219 in human iPSC-derived neuronal cells. The phosphoserine residue in the target proteins lies in the CDKL5 consensus motif. We validated direct phosphorylation of GTF2I and PPP1R35 by CDKL5 using complementary approaches. GTF2I controls axon guidance, cell cycle and neurodevelopment by regulating expression of neuronal genes. PPP1R35 is critical for centriole elongation and cilia morphology, processes that are impaired in CDD. PPP1R35 interacts with CEP131, a known CDKL5 phospho-target. GATAD2A and ZNF219 belong to the Nucleosome Remodelling Deacetylase (NuRD) complex, which regulates neuronal activity-dependent genes and synaptic connectivity. In-depth knowledge of molecular pathways regulated by CDKL5 will allow a better understanding of druggable disease pathways to fast-track therapeutic development.
Collapse
Affiliation(s)
- Sean Massey
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Ching-Seng Ang
- The Bio21 Institute of Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Nadia M Davidson
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Anita Quigley
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Alexander R Harris
- Department of Biomedical Engineering, University of Melbourne, Melbourne, 3010, Australia
| | - Robert M I Kapsa
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Nicole J Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia.
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia.
- Department of Paediatrics, University of Melbourne, c/o MCRI, 50 Flemington Road, Parkville, VIC, 3052, Australia.
| |
Collapse
|
9
|
Xiong GJ, Sheng ZH. Presynaptic perspective: Axonal transport defects in neurodevelopmental disorders. J Cell Biol 2024; 223:e202401145. [PMID: 38568173 PMCID: PMC10988239 DOI: 10.1083/jcb.202401145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Disruption of synapse assembly and maturation leads to a broad spectrum of neurodevelopmental disorders. Presynaptic proteins are largely synthesized in the soma, where they are packaged into precursor vesicles and transported into distal axons to ensure precise assembly and maintenance of presynapses. Due to their morphological features, neurons face challenges in the delivery of presynaptic cargos to nascent boutons. Thus, targeted axonal transport is vital to build functional synapses. A growing number of mutations in genes encoding the transport machinery have been linked to neurodevelopmental disorders. Emerging lines of evidence have started to uncover presynaptic mechanisms underlying axonal transport defects, thus broadening the view of neurodevelopmental disorders beyond postsynaptic mechanisms. In this review, we discuss presynaptic perspectives of neurodevelopmental disorders by focusing on impaired axonal transport and disturbed assembly and maintenance of presynapses. We also discuss potential strategies for restoring axonal transport as an early therapeutic intervention.
Collapse
Affiliation(s)
- Gui-Jing Xiong
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Silvestre M, Dempster K, Mihaylov SR, Claxton S, Ultanir SK. Cell type-specific expression, regulation and compensation of CDKL5 activity in mouse brain. Mol Psychiatry 2024; 29:1844-1856. [PMID: 38326557 PMCID: PMC11371643 DOI: 10.1038/s41380-024-02434-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
CDKL5 is a brain-enriched serine/threonine kinase, associated with a profound developmental and epileptic encephalopathy called CDKL5 deficiency disorder (CDD). To design targeted therapies for CDD, it is essential to determine where CDKL5 is expressed and is active in the brain and test if compensatory mechanisms exist at cellular level. We generated conditional Cdkl5 knockout mice in excitatory neurons, inhibitory neurons and astrocytes. To assess CDKL5 activity, we utilized a phosphospecific antibody for phosphorylated EB2, a well-known substrate of CDKL5. We found that CDKL5 and EB2 pS222 were prominent in excitatory and inhibitory neurons but were not detected in astrocytes. We observed that approximately 15-20% of EB2 pS222 remained in Cdkl5 knockout brains and primary neurons. Surprisingly, the remaining phosphorylation was modulated by NMDA and PP1/PP2A in neuronal CDKL5 knockout cultures, indicating the presence of a compensating kinase. Using a screen of candidate kinases with highest homology to the CDKL5 kinase domain, we found that CDKL2 and ICK can phosphorylate EB2 S222 in HEK293T cells and in primary neurons. We then generated Cdkl5/Cdkl2 dual knockout mice to directly test if CDKL2 phosphorylates EB2 in vivo and found that CDKL2 phosphorylates CDKL5 substrates in the brain. This study is the first indication that CDKL2 could potentially replace CDKL5 functions in the brain, alluding to novel therapeutic possibilities.
Collapse
Affiliation(s)
- Margaux Silvestre
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Kelvin Dempster
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Simeon R Mihaylov
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Suzanne Claxton
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
11
|
Mottolese N, Uguagliati B, Tassinari M, Cerchier CB, Loi M, Candini G, Rimondini R, Medici G, Trazzi S, Ciani E. Voluntary Running Improves Behavioral and Structural Abnormalities in a Mouse Model of CDKL5 Deficiency Disorder. Biomolecules 2023; 13:1396. [PMID: 37759796 PMCID: PMC10527551 DOI: 10.3390/biom13091396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a rare neurodevelopmental disease caused by mutations in the X-linked CDKL5 gene. CDD is characterized by a broad spectrum of clinical manifestations, including early-onset refractory epileptic seizures, intellectual disability, hypotonia, visual disturbances, and autism-like features. The Cdkl5 knockout (KO) mouse recapitulates several features of CDD, including autistic-like behavior, impaired learning and memory, and motor stereotypies. These behavioral alterations are accompanied by diminished neuronal maturation and survival, reduced dendritic branching and spine maturation, and marked microglia activation. There is currently no cure or effective treatment to ameliorate the symptoms of the disease. Aerobic exercise is known to exert multiple beneficial effects in the brain, not only by increasing neurogenesis, but also by improving motor and cognitive tasks. To date, no studies have analyzed the effect of physical exercise on the phenotype of a CDD mouse model. In view of the positive effects of voluntary running on the brain of mouse models of various human neurodevelopmental disorders, we sought to determine whether voluntary daily running, sustained over a month, could improve brain development and behavioral defects in Cdkl5 KO mice. Our study showed that long-term voluntary running improved the hyperlocomotion and impulsivity behaviors and memory performance of Cdkl5 KO mice. This is correlated with increased hippocampal neurogenesis, neuronal survival, spine maturation, and inhibition of microglia activation. These behavioral and structural improvements were associated with increased BDNF levels. Given the positive effects of BDNF on brain development and function, the present findings support the positive benefits of exercise as an adjuvant therapy for CDD.
Collapse
Affiliation(s)
- Nicola Mottolese
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Beatrice Uguagliati
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Marianna Tassinari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Camilla Bruna Cerchier
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giulia Candini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Roberto Rimondini
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
12
|
Castano A, Silvestre M, Wells CI, Sanderson JL, Ferrer CA, Ong HW, Lang Y, Richardson W, Silvaroli JA, Bashore FM, Smith JL, Genereux IM, Dempster K, Drewry DH, Pabla NS, Bullock AN, Benke TA, Ultanir SK, Axtman AD. Discovery and characterization of a specific inhibitor of serine-threonine kinase cyclin-dependent kinase-like 5 (CDKL5) demonstrates role in hippocampal CA1 physiology. eLife 2023; 12:e88206. [PMID: 37490324 PMCID: PMC10406435 DOI: 10.7554/elife.88206] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023] Open
Abstract
Pathological loss-of-function mutations in cyclin-dependent kinase-like 5 (CDKL5) cause CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental disorder associated with severe and medically refractory early-life epilepsy, motor, cognitive, visual, and autonomic disturbances in the absence of any structural brain pathology. Analysis of genetic variants in CDD has indicated that CDKL5 kinase function is central to disease pathology. CDKL5 encodes a serine-threonine kinase with significant homology to GSK3β, which has also been linked to synaptic function. Further, Cdkl5 knock-out rodents have increased GSK3β activity and often increased long-term potentiation (LTP). Thus, development of a specific CDKL5 inhibitor must be careful to exclude cross-talk with GSK3β activity. We synthesized and characterized specific, high-affinity inhibitors of CDKL5 that do not have detectable activity for GSK3β. These compounds are very soluble in water but blood-brain barrier penetration is low. In rat hippocampal brain slices, acute inhibition of CDKL5 selectively reduces postsynaptic function of AMPA-type glutamate receptors in a dose-dependent manner. Acute inhibition of CDKL5 reduces hippocampal LTP. These studies provide new tools and insights into the role of CDKL5 as a newly appreciated key kinase necessary for synaptic plasticity. Comparisons to rodent knock-out studies suggest that compensatory changes have limited the understanding of the roles of CDKL5 in synaptic physiology, plasticity, and human neuropathology.
Collapse
Affiliation(s)
- Anna Castano
- Department of Pharmacology, University of Colorado School of MedicineAuroraUnited States
| | - Margaux Silvestre
- Kinases and Brain Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Carrow I Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Jennifer L Sanderson
- Department of Pharmacology, University of Colorado School of MedicineAuroraUnited States
| | - Carla A Ferrer
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Han Wee Ong
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Yi Lang
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - William Richardson
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Josie A Silvaroli
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Frances M Bashore
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Jeffery L Smith
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Isabelle M Genereux
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Kelvin Dempster
- Kinases and Brain Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - David H Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
| | - Navlot S Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Alex N Bullock
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Tim A Benke
- Departments of Pediatrics, Pharmacology, Neurology and Otolaryngology, University of Colorado School of MedicineAuroraUnited States
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Alison D Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| |
Collapse
|
13
|
Dedert C, Salih L, Xu F. Progranulin Protects against Hyperglycemia-Induced Neuronal Dysfunction through GSK3β Signaling. Cells 2023; 12:1803. [PMID: 37443837 PMCID: PMC10340575 DOI: 10.3390/cells12131803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Type II diabetes affects over 530 million individuals worldwide and contributes to a host of neurological pathologies. Uncontrolled high blood glucose (hyperglycemia) is a major factor in diabetic pathology, and glucose regulation is a common goal for maintenance in patients. We have found that the neuronal growth factor progranulin protects against hyperglycemic stress in neurons, and although its mechanism of action is uncertain, our findings identified Glycogen Synthase Kinase 3β (GSK3β) as being potentially involved in its effects. In this study, we treated mouse primary cortical neurons exposed to high-glucose conditions with progranulin and a selective pharmacological inhibitor of GSK3β before assessing neuronal health and function. Whole-cell and mitochondrial viability were both improved by progranulin under high-glucose stress in a GSK3β-dependent manner. This extended to autophagy flux, indicated by the expressions of autophagosome marker Light Chain 3B (LC3B) and lysosome marker Lysosome-Associated Membrane Protein 2A (LAMP2A), which were affected by progranulin and showed heterogeneous changes from GSK3β inhibition. Lastly, GSK3β inhibition attenuated downstream calcium signaling and neuronal firing effects due to acute progranulin treatment. These data indicate that GSK3β plays an important role in progranulin's neuroprotective effects under hyperglycemic stress and serves as a jumping-off point to explore progranulin's protective capabilities in other neurodegenerative models.
Collapse
Affiliation(s)
- Cass Dedert
- Department of Biology, College of Arts and Sciences, Saint Louis University, Saint Louis, MO 63103, USA; (C.D.); (L.S.)
- Institute for Translational Neuroscience, Saint Louis University, Saint Louis, MO 63103, USA
| | - Lyuba Salih
- Department of Biology, College of Arts and Sciences, Saint Louis University, Saint Louis, MO 63103, USA; (C.D.); (L.S.)
- Institute for Translational Neuroscience, Saint Louis University, Saint Louis, MO 63103, USA
| | - Fenglian Xu
- Department of Biology, College of Arts and Sciences, Saint Louis University, Saint Louis, MO 63103, USA; (C.D.); (L.S.)
- Institute for Translational Neuroscience, Saint Louis University, Saint Louis, MO 63103, USA
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, Saint Louis, MO 63103, USA
- Department of Biomedical Engineering, School of Science and Engineering, Saint Louis University, Saint Louis, MO 63103, USA
| |
Collapse
|
14
|
Tassinari M, Uguagliati B, Trazzi S, Cerchier CB, Cavina OV, Mottolese N, Loi M, Candini G, Medici G, Ciani E. Early-onset brain alterations during postnatal development in a mouse model of CDKL5 deficiency disorder. Neurobiol Dis 2023; 182:106146. [PMID: 37164289 DOI: 10.1016/j.nbd.2023.106146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023] Open
Abstract
Mutations in the CDKL5 gene are the cause of CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental condition characterized by early-onset epilepsy, motor impairment, intellectual disability, and autistic features. A mouse model of CDD, the Cdkl5 KO mouse, that recapitulates several aspects of CDD symptomology, has helped to highlight brain alterations leading to CDD neurological defects. Studies of brain morphogenesis in adult Cdkl5 KO mice showed defects in dendritic arborization of pyramidal neurons and in synaptic connectivity, a hypocellularity of the hippocampal dentate gyrus, and a generalized microglia over-activation. Nevertheless, no studies are available regarding the presence of these brain alterations in Cdkl5 KO pups, and their severity in early stages of life compared to adulthood. A deeper understanding of the CDKL5 deficient brain during an early phase of postnatal development would represent an important milestone for further validation of the CDD mouse model, and for the identification of the optimum time window for treatments that target defects in brain development. In sight of this, we comparatively evaluated the dendritic arborization and spines of cortical pyramidal neurons, cortical excitatory and inhibitory connectivity, microglia activation, and proliferation and survival of granule cells of the hippocampal dentate gyrus in hemizygous Cdkl5 KO male (-/Y) mice aged 7, 14, 21, and 60 days. We found that most of the structural alterations in Cdkl5 -/Y brains are already present in pups aged 7 days and do not worsen with age. In contrast, the difference in the density of excitatory and inhibitory terminals between Cdkl5 -/Y and wild-type mice changes with age, suggesting an age-dependent cortical excitatory/inhibitory synaptic imbalance. Confirming the precocious presence of brain defects, Cdkl5 -/Y pups are characterized by an impairment in neonatal sensory-motor reflexes.
Collapse
Affiliation(s)
- Marianna Tassinari
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126 Bologna, Italy
| | - Beatrice Uguagliati
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126 Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126 Bologna, Italy.
| | - Camilla Bruna Cerchier
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126 Bologna, Italy
| | - Ottavia Vera Cavina
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126 Bologna, Italy
| | - Nicola Mottolese
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126 Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126 Bologna, Italy
| | - Giulia Candini
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126 Bologna, Italy
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126 Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
15
|
Castano A, Silvestre M, Wells CI, Sanderson JL, Ferrer CA, Ong HW, Liang Y, Richardson W, Silvaroli JA, Bashore FM, Smith JL, Genereux IM, Dempster K, Drewry DH, Pabla NS, Bullock AN, Benke TA, Ultanir SK, Axtman AD. Discovery and characterization of a specific inhibitor of serine-threonine kinase cyclin dependent kinase-like 5 (CDKL5) demonstrates role in hippocampal CA1 physiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538049. [PMID: 37162893 PMCID: PMC10168277 DOI: 10.1101/2023.04.24.538049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Pathological loss-of-function mutations in cyclin-dependent kinase-like 5 ( CDKL5 ) cause CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental disorder associated with severe and medically refractory early-life epilepsy, motor, cognitive, visual and autonomic disturbances in the absence of any structural brain pathology. Analysis of genetic variants in CDD have indicated that CDKL5 kinase function is central to disease pathology. CDKL5 encodes a serine-threonine kinase with significant homology to GSK3β, which has also been linked to synaptic function. Further, Cdkl5 knock-out rodents have increased GSK3β activity and often increased long-term potentiation (LTP). Thus, development of a specific CDKL5 inhibitor must be careful to exclude cross-talk with GSK3β activity. We synthesized and characterized specific, high-affinity inhibitors of CDKL5 that do not have detectable activity for GSK3β. These compounds are very soluble in water but blood-brain barrier penetration is low. In rat hippocampal brain slices, acute inhibition of CDKL5 selectively reduces post-synaptic function of AMPA-type glutamate receptors in a dose-dependent manner. Acute inhibition of CDKL5 reduces hippocampal LTP. These studies provide new tools and insights into the role of CDKL5 as a newly appreciated, key kinase necessary for synaptic plasticity. Comparisons to rodent knock-out studies suggest that compensatory changes have limited the understanding of the roles of CDKL5 in synaptic physiology, plasticity and human neuropathology.
Collapse
|
16
|
Ong HW, Liang Y, Richardson W, Lowry ER, Wells CI, Chen X, Silvestre M, Dempster K, Silvaroli JA, Smith JL, Wichterle H, Pabla NS, Ultanir SK, Bullock AN, Drewry DH, Axtman AD. Discovery of a Potent and Selective CDKL5/GSK3 Chemical Probe That Is Neuroprotective. ACS Chem Neurosci 2023; 14:1672-1685. [PMID: 37084253 PMCID: PMC10161233 DOI: 10.1021/acschemneuro.3c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Despite mediating several essential processes in the brain, including during development, cyclin-dependent kinase-like 5 (CDKL5) remains a poorly characterized human protein kinase. Accordingly, its substrates, functions, and regulatory mechanisms have not been fully described. We realized that availability of a potent and selective small molecule probe targeting CDKL5 could enable illumination of its roles in normal development as well as in diseases where it has become aberrant due to mutation. We prepared analogs of AT-7519, a compound that has advanced to phase II clinical trials and is a known inhibitor of several cyclin-dependent kinases (CDKs) and cyclin-dependent kinase-like kinases (CDKLs). We identified analog 2 as a highly potent and cell-active chemical probe for CDKL5/GSK3 (glycogen synthase kinase 3). Evaluation of its kinome-wide selectivity confirmed that analog 2 demonstrates excellent selectivity and only retains GSK3α/β affinity. We next demonstrated the inhibition of downstream CDKL5 and GSK3α/β signaling and solved a co-crystal structure of analog 2 bound to human CDKL5. A structurally similar analog (4) proved to lack CDKL5 affinity and maintain potent and selective inhibition of GSK3α/β, making it a suitable negative control. Finally, we used our chemical probe pair (2 and 4) to demonstrate that inhibition of CDKL5 and/or GSK3α/β promotes the survival of human motor neurons exposed to endoplasmic reticulum stress. We have demonstrated a neuroprotective phenotype elicited by our chemical probe pair and exemplified the utility of our compounds to characterize the role of CDKL5/GSK3 in neurons and beyond.
Collapse
Affiliation(s)
- Han Wee Ong
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yi Liang
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - William Richardson
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Emily R Lowry
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032, United States
- The Project ALS Therapeutics Core, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Carrow I Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Xiangrong Chen
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Margaux Silvestre
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London NW1 1AT, U.K
| | - Kelvin Dempster
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London NW1 1AT, U.K
| | - Josie A Silvaroli
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jeffery L Smith
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Hynek Wichterle
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032, United States
- The Project ALS Therapeutics Core, Columbia University Irving Medical Center, New York, New York 10032, United States
- Departments of Neurology, Neuroscience, Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, New York 10032, United States
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, New York 10032, United States
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Navjot S Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London NW1 1AT, U.K
| | - Alex N Bullock
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - David H Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alison D Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
17
|
Ong HW, Liang Y, Richardson W, Lowry ER, Wells CI, Chen X, Silvestre M, Dempster K, Silvaroli JA, Smith JL, Wichterle H, Pabla NS, Ultanir SK, Bullock AN, Drewry DH, Axtman AD. A Potent and Selective CDKL5/GSK3 Chemical Probe is Neuroprotective. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527935. [PMID: 36798313 PMCID: PMC9934649 DOI: 10.1101/2023.02.09.527935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Despite mediating several essential processes in the brain, including during development, cyclin-dependent kinase-like 5 (CDKL5) remains a poorly characterized human protein kinase. Accordingly, its substrates, functions, and regulatory mechanisms have not been fully described. We realized that availability of a potent and selective small molecule probe targeting CDKL5 could enable illumination of its roles in normal development as well as in diseases where it has become aberrant due to mutation. We prepared analogs of AT-7519, a known inhibitor of several cyclin dependent and cyclin-dependent kinase-like kinases that has been advanced into Phase II clinical trials. We identified analog 2 as a highly potent and cell-active chemical probe for CDKL5/GSK3 (glycogen synthase kinase 3). Evaluation of its kinome-wide selectivity confirmed that analog 2 demonstrates excellent selectivity and only retains GSK3α/β affinity. As confirmation that our chemical probe is a high-quality tool to use in directed biological studies, we demonstrated inhibition of downstream CDKL5 and GSK3α/β signaling and solved a co-crystal structure of analog 2 bound to CDKL5. A structurally similar analog ( 4 ) proved to lack CDKL5 affinity and maintain potent and selective inhibition of GSK3α/β. Finally, we used our chemical probe pair ( 2 and 4 ) to demonstrate that inhibition of CDKL5 and/or GSK3α/β promotes the survival of human motor neurons exposed to endoplasmic reticulum (ER) stress. We have demonstrated a neuroprotective phenotype elicited by our chemical probe pair and exemplified the utility of our compounds to characterize the role of CDKL5/GSK3 in neurons and beyond.
Collapse
Affiliation(s)
- Han Wee Ong
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States of America
| | - Yi Liang
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States of America
| | - William Richardson
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Emily R. Lowry
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, 10032, United States of America; The Project ALS Therapeutics Core, Columbia University Irving Medical Center, New York, New York, 10032, United States of America
| | - Carrow I. Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States of America
| | - Xiangrong Chen
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Margaux Silvestre
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Kelvin Dempster
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Josie A. Silvaroli
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Jeffery L. Smith
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States of America
| | - Hynek Wichterle
- Departments of Pathology and Cell Biology, Neurology, Neuroscience, Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, New York, 10032, United States of America; Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, New York, 10032, United States of America; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, New York, 10032, United States of America; The Project ALS Therapeutics Core, Columbia University Irving Medical Center, New York, New York, 10032, United States of America
| | - Navjot S. Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Sila K. Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Alex N. Bullock
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States of America; UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States of America
| | - Alison D. Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States of America
| |
Collapse
|
18
|
Medici G, Tassinari M, Galvani G, Bastianini S, Gennaccaro L, Loi M, Mottolese N, Alvente S, Berteotti C, Sagona G, Lupori L, Candini G, Baggett HR, Zoccoli G, Giustetto M, Muotri A, Pizzorusso T, Nakai H, Trazzi S, Ciani E. Expression of a Secretable, Cell-Penetrating CDKL5 Protein Enhances the Efficacy of Gene Therapy for CDKL5 Deficiency Disorder. Neurotherapeutics 2022; 19:1886-1904. [PMID: 36109452 PMCID: PMC9723029 DOI: 10.1007/s13311-022-01295-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2022] [Indexed: 12/14/2022] Open
Abstract
Although delivery of a wild-type copy of the mutated gene to cells represents the most effective approach for a monogenic disease, proof-of-concept studies highlight significant efficacy caveats for treatment of brain disorders. Herein, we develop a cross-correction-based strategy to enhance the efficiency of a gene therapy for CDKL5 deficiency disorder, a severe neurodevelopmental disorder caused by CDKL5 gene mutations. We created a gene therapy vector that produces an Igk-TATk-CDKL5 fusion protein that can be secreted via constitutive secretory pathways and, due to the cell-penetration property of the TATk peptide, internalized by cells. We found that, although AAVPHP.B_Igk-TATk-CDKL5 and AAVPHP.B_CDKL5 vectors had similar brain infection efficiency, the AAVPHP.B_Igk-TATk-CDKL5 vector led to higher CDKL5 protein replacement due to secretion and penetration of the TATk-CDKL5 protein into the neighboring cells. Importantly, Cdkl5 KO mice treated with the AAVPHP.B_Igk-TATk-CDKL5 vector showed a behavioral and neuroanatomical improvement in comparison with vehicle or AAVPHP.B_CDKL5 vector-treated Cdkl5 KO mice. In conclusion, we provide the first evidence that a gene therapy based on a cross-correction approach is more effective at compensating Cdkl5-null brain defects than gene therapy based on the expression of the native CDKL5, opening avenues for the development of this innovative approach for other monogenic diseases.
Collapse
Affiliation(s)
- Giorgio Medici
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy
| | - Marianna Tassinari
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy
| | - Giuseppe Galvani
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy
| | - Stefano Bastianini
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy
| | - Laura Gennaccaro
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy
| | - Nicola Mottolese
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy
| | - Sara Alvente
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy
| | - Chiara Berteotti
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy
| | - Giulia Sagona
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128, Pisa, Italy
- Department of Neuroscience, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139, Psychology, Italy
| | - Leonardo Lupori
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128, Pisa, Italy
- Scuola Normale Superiore, 56126, Pisa, Italy
| | - Giulia Candini
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy
| | - Helen Rappe Baggett
- Departments of Molecular and Medical Genetics and Molecular Immunology and Microbiology Oregon Health & Science University, OR, 97239, Portland, USA
| | - Giovanna Zoccoli
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy
| | - Maurizio Giustetto
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, OR, 10126, Turin, Italy
| | - Alysson Muotri
- School of Medicine, Department of Pediatrics/Rady Children's Hospital, University of California San Diego, San Diego, USA
- Department of Cellular & Molecular Medicine, Kavli Institute for Brain and Mind, Archealization Center (ArchC), Center for Academic Research and Training in Anthropogeny (CARTA), La Jolla, CA, 92037, USA
| | - Tommaso Pizzorusso
- Scuola Normale Superiore, 56126, Pisa, Italy
- Institute of Neuroscience, National Research Council, 56126, Pisa, Italy
| | - Hiroyuki Nakai
- Departments of Molecular and Medical Genetics and Molecular Immunology and Microbiology Oregon Health & Science University, OR, 97239, Portland, USA
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy.
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy.
| |
Collapse
|
19
|
Nitschke F, Montalbano AP. Novel Cross-Correction-Enabled Gene Therapy for CDKL5-Deficiency Disorder. Neurotherapeutics 2022; 19:1878-1882. [PMID: 36266502 PMCID: PMC9722985 DOI: 10.1007/s13311-022-01314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Felix Nitschke
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Alina P Montalbano
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
20
|
Van Bergen NJ, Massey S, Quigley A, Rollo B, Harris AR, Kapsa RM, Christodoulou J. CDKL5 deficiency disorder: molecular insights and mechanisms of pathogenicity to fast-track therapeutic development. Biochem Soc Trans 2022; 50:1207-1224. [PMID: 35997111 PMCID: PMC9444073 DOI: 10.1042/bst20220791] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 12/02/2022]
Abstract
CDKL5 deficiency disorder (CDD) is an X-linked brain disorder of young children and is caused by pathogenic variants in the cyclin-dependent kinase-like 5 (CDKL5) gene. Individuals with CDD suffer infantile onset, drug-resistant seizures, severe neurodevelopmental impairment and profound lifelong disability. The CDKL5 protein is a kinase that regulates key phosphorylation events vital to the development of the complex neuronal network of the brain. Pathogenic variants identified in patients may either result in loss of CDKL5 catalytic activity or are hypomorphic leading to partial loss of function. Whilst the progressive nature of CDD provides an excellent opportunity for disease intervention, we cannot develop effective therapeutics without in-depth knowledge of CDKL5 function in human neurons. In this mini review, we summarize new findings on the function of CDKL5. These include CDKL5 phosphorylation targets and the consequence of disruptions on signaling pathways in the human brain. This new knowledge of CDKL5 biology may be leveraged to advance targeted drug discovery and rapid development of treatments for CDD. Continued development of effective humanized models will further propel our understanding of CDD biology and may permit the development and testing of therapies that will significantly alter CDD disease trajectory in young children.
Collapse
Affiliation(s)
- Nicole J. Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Sean Massey
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Anita Quigley
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
- Aikenhead Centre for Medical Discovery, Department of Biomedical Engineering, University of Melbourne, Melbourne 3010, Australia
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Alexander R. Harris
- Aikenhead Centre for Medical Discovery, Department of Biomedical Engineering, University of Melbourne, Melbourne 3010, Australia
| | - Robert M.I. Kapsa
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Discipline of Child and Adolescent Health, University of Sydney, Sydney, Australia
| |
Collapse
|
21
|
Tassinari M, Mottolese N, Galvani G, Ferrara D, Gennaccaro L, Loi M, Medici G, Candini G, Rimondini R, Ciani E, Trazzi S. Luteolin Treatment Ameliorates Brain Development and Behavioral Performance in a Mouse Model of CDKL5 Deficiency Disorder. Int J Mol Sci 2022; 23:ijms23158719. [PMID: 35955854 PMCID: PMC9369425 DOI: 10.3390/ijms23158719] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 12/16/2022] Open
Abstract
CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental disease caused by mutations in the X-linked CDKL5 gene, is characterized by early-onset epilepsy, intellectual disability, and autistic features. Although pharmacotherapy has shown promise in the CDD mouse model, safe and effective clinical treatments are still far off. Recently, we found increased microglial activation in the brain of a mouse model of CDD, the Cdkl5 KO mouse, suggesting that a neuroinflammatory state, known to be involved in brain maturation and neuronal dysfunctions, may contribute to the pathophysiology of CDD. The present study aims to evaluate the possible beneficial effect of treatment with luteolin, a natural flavonoid known to have anti-inflammatory and neuroprotective activities, on brain development and behavior in a heterozygous Cdkl5 (+/−) female mouse, the mouse model of CDD that best resembles the genetic clinical condition. We found that inhibition of neuroinflammation by chronic luteolin treatment ameliorates motor stereotypies, hyperactive profile and memory ability in Cdkl5 +/− mice. Luteolin treatment also increases hippocampal neurogenesis and improves dendritic spine maturation and dendritic arborization of hippocampal and cortical neurons. These findings show that microglia overactivation exerts a harmful action in the Cdkl5 +/− brain, suggesting that treatments aimed at counteracting the neuroinflammatory process should be considered as a promising adjuvant therapy for CDD.
Collapse
Affiliation(s)
- Marianna Tassinari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Nicola Mottolese
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giuseppe Galvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Domenico Ferrara
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Laura Gennaccaro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giulia Candini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Roberto Rimondini
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
22
|
Barbiero I, Zamberletti E, Tramarin M, Gabaglio M, Peroni D, De Rosa R, Baldin S, Bianchi M, Rubino T, Kilstrup-Nielsen C. Pregnenolone-methyl-ether enhances CLIP170 and microtubule functions improving spine maturation and hippocampal deficits related to CDKL5 deficiency. Hum Mol Genet 2022; 31:2738-2750. [DOI: 10.1093/hmg/ddac067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) cause CDKL5 deficiency disorder (CDD), a neurodevelopmental disease characterized by severe infantile seizures and intellectual disability. The absence of CDKL5 in mice causes defective spine maturation that can at least partially explain the cognitive impairment in CDKL5 patients and CDD mouse models. The molecular basis for such defect may depend on the capacity of CDKL5 to regulate microtubule (MT) dynamics through its association with the MT-plus end tracking protein CLIP170. Indeed, we here demonstrate that the absence of CDKL5 causes CLIP170 to be mainly in a closed inactive conformation that impedes its binding to MTs. Previously, the synthetic pregnenolone analogue, pregnenolone-methyl-ether (PME), was found to have a positive effect on CDKL5-related cellular and neuronal defects in vitro. Here we show that PME induces the open active conformation of CLIP170 and promotes the entry of MTs into dendritic spines in vitro. Furthermore, the administration of PME to symptomatic Cdkl5-knock-out mice improved hippocampal-dependent behavior and restored spine maturation and the localization of MT-related proteins in the synaptic compartment. The positive effect on cognitive deficits persisted for one week after treatment withdrawal. Altogether, our results suggest that CDKL5 regulates spine maturation and cognitive processes through its control of CLIP170 and MT dynamics, which may represent a novel target for the development of disease modifying therapies.
Collapse
Affiliation(s)
- Isabella Barbiero
- Dept. of Biotechnology and Life Sciences, (DBSV), Centre of NeuroScience, University of Insubria, Busto Arsizio, Italy
| | - Erica Zamberletti
- Dept. of Biotechnology and Life Sciences, (DBSV), Centre of NeuroScience, University of Insubria, Busto Arsizio, Italy
| | - Marco Tramarin
- Dept. of Biotechnology and Life Sciences, (DBSV), Centre of NeuroScience, University of Insubria, Busto Arsizio, Italy
| | - Marina Gabaglio
- Dept. of Biotechnology and Life Sciences, (DBSV), Centre of NeuroScience, University of Insubria, Busto Arsizio, Italy
| | - Diana Peroni
- Dept. of Biotechnology and Life Sciences, (DBSV), Centre of NeuroScience, University of Insubria, Busto Arsizio, Italy
| | - Roberta De Rosa
- Dept. of Biotechnology and Life Sciences, (DBSV), Centre of NeuroScience, University of Insubria, Busto Arsizio, Italy
| | - Serena Baldin
- Dept. of Biotechnology and Life Sciences, (DBSV), Centre of NeuroScience, University of Insubria, Busto Arsizio, Italy
| | - Massimiliano Bianchi
- Ulysses Neuroscience Ltd., Trinity College Dublin, Dublin, Ireland
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Tiziana Rubino
- Dept. of Biotechnology and Life Sciences, (DBSV), Centre of NeuroScience, University of Insubria, Busto Arsizio, Italy
| | - Charlotte Kilstrup-Nielsen
- Dept. of Biotechnology and Life Sciences, (DBSV), Centre of NeuroScience, University of Insubria, Busto Arsizio, Italy
| |
Collapse
|
23
|
Arciniegas Ruiz SM, Eldar-Finkelman H. Glycogen Synthase Kinase-3 Inhibitors: Preclinical and Clinical Focus on CNS-A Decade Onward. Front Mol Neurosci 2022; 14:792364. [PMID: 35126052 PMCID: PMC8813766 DOI: 10.3389/fnmol.2021.792364] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022] Open
Abstract
The protein kinase, GSK-3, participates in diverse biological processes and is now recognized a promising drug discovery target in treating multiple pathological conditions. Over the last decade, a range of newly developed GSK-3 inhibitors of diverse chemotypes and inhibition modes has been developed. Even more conspicuous is the dramatic increase in the indications that were tested from mood and behavior disorders, autism and cognitive disabilities, to neurodegeneration, brain injury and pain. Indeed, clinical and pre-clinical studies were largely expanded uncovering new mechanisms and novel insights into the contribution of GSK-3 to neurodegeneration and central nerve system (CNS)-related disorders. In this review we summarize new developments in the field and describe the use of GSK-3 inhibitors in the variety of CNS disorders. This remarkable volume of information being generated undoubtedly reflects the great interest, as well as the intense hope, in developing potent and safe GSK-3 inhibitors in clinical practice.
Collapse
|
24
|
Negraes PD, Trujillo CA, Yu NK, Wu W, Yao H, Liang N, Lautz JD, Kwok E, McClatchy D, Diedrich J, de Bartolome SM, Truong J, Szeto R, Tran T, Herai RH, Smith SEP, Haddad GG, Yates JR, Muotri AR. Altered network and rescue of human neurons derived from individuals with early-onset genetic epilepsy. Mol Psychiatry 2021; 26:7047-7068. [PMID: 33888873 PMCID: PMC8531162 DOI: 10.1038/s41380-021-01104-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/22/2021] [Accepted: 04/06/2021] [Indexed: 02/02/2023]
Abstract
Early-onset epileptic encephalopathies are severe disorders often associated with specific genetic mutations. In this context, the CDKL5 deficiency disorder (CDD) is a neurodevelopmental condition characterized by early-onset seizures, intellectual delay, and motor dysfunction. Although crucial for proper brain development, the precise targets of CDKL5 and its relation to patients' symptoms are still unknown. Here, induced pluripotent stem cells derived from individuals deficient in CDKL5 protein were used to generate neural cells. Proteomic and phosphoproteomic approaches revealed disruption of several pathways, including microtubule-based processes and cytoskeleton organization. While CDD-derived neural progenitor cells have proliferation defects, neurons showed morphological alterations and compromised glutamatergic synaptogenesis. Moreover, the electrical activity of CDD cortical neurons revealed hyperexcitability during development, leading to an overly synchronized network. Many parameters of this hyperactive network were rescued by lead compounds selected from a human high-throughput drug screening platform. Our results enlighten cellular, molecular, and neural network mechanisms of genetic epilepsy that could ultimately promote novel therapeutic opportunities for patients.
Collapse
Affiliation(s)
- Priscilla D Negraes
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Cleber A Trujillo
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
| | - Nam-Kyung Yu
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Wei Wu
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Hang Yao
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Nicholas Liang
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Jonathan D Lautz
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
| | - Ellius Kwok
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Daniel McClatchy
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jolene Diedrich
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Justin Truong
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Ryan Szeto
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Timothy Tran
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Roberto H Herai
- Experimental Multiuser Laboratory, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Stephen E P Smith
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
| | - Gabriel G Haddad
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Alysson R Muotri
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, USA.
- Center for Academic Research and Training in Anthropogeny (CARTA), La Jolla, CA, USA.
| |
Collapse
|
25
|
Hao S, Wang Q, Tang B, Wu Z, Yang T, Tang J. CDKL5 Deficiency Augments Inhibitory Input into the Dentate Gyrus That Can Be Reversed by Deep Brain Stimulation. J Neurosci 2021; 41:9031-9046. [PMID: 34544833 PMCID: PMC8549531 DOI: 10.1523/jneurosci.1010-21.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/16/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cognitive impairment is a core feature of cyclin-dependent kinase-like 5 (CDKL5) deficiency, a neurodevelopmental disorder characterized by early epileptic seizures, intellectual disability, and autistic behaviors. Although loss of CDKL5 affects a number of molecular pathways, very little has been discovered about the physiological effects of these changes on the neural circuitry. We therefore studied synaptic plasticity and local circuit activity in the dentate gyrus of both Cdkl5-/y and Cdkl5+/- mutant mice. We found that CDKL5 haploinsufficiency in both male and female mice impairs hippocampus-dependent learning and memory in multiple tasks. In vivo, loss of CDKL5 reduced LTP of the perforant path to the dentate gyrus and augmented feedforward inhibition in this pathway; ex vivo experiments confirmed that excitatory/inhibitory input into the dentate gyrus is skewed toward inhibition. Injecting the GABAergic antagonist gabazine into the dentate improved contextual fear memory in Cdkl5-/y mice. Finally, chronic forniceal deep brain stimulation rescued hippocampal memory deficits, restored synaptic plasticity, and relieved feedforward inhibition in Cdkl5+/- mice. These results indicate that CDKL5 is important for maintaining proper dentate excitatory/inhibitory balance, with consequences for hippocampal memory.SIGNIFICANCE STATEMENT Cognitive impairment is a core feature of cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder. Although CDKL5 deficiency has been found to affect a number of molecular pathways, little is known about its physiological effects on the neural circuitry. We find that CDKL5 loss reduces hippocampal synaptic plasticity and augments feedforward inhibition in the perforant path to the dentate gyrus in vivo in Cdkl5 mutant mice. Chronic forniceal deep brain stimulation rescued hippocampal memory deficits, restored synaptic plasticity, and relieved feedforward inhibition in Cdkl5+/- mice, as it had previously done with Rett syndrome mice, suggesting that such stimulation may be useful for other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Shuang Hao
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
| | - Qi Wang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
| | - Bin Tang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
| | - Zhenyu Wu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
| | - Tingting Yang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
- Department of Neurology, People's Hospital of Guizhou Province, Guiyang, 560000, China
| | - Jianrong Tang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
26
|
Galvani G, Mottolese N, Gennaccaro L, Loi M, Medici G, Tassinari M, Fuchs C, Ciani E, Trazzi S. Inhibition of microglia overactivation restores neuronal survival in a mouse model of CDKL5 deficiency disorder. J Neuroinflammation 2021; 18:155. [PMID: 34238328 PMCID: PMC8265075 DOI: 10.1186/s12974-021-02204-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
Background CDKL5 deficiency disorder (CDD), a severe neurodevelopmental disorder characterized by early onset epilepsy, intellectual disability, and autistic features, is caused by mutations in the CDKL5 gene. Evidence in animal models of CDD showed that absence of CDKL5 negatively affects neuronal survival, as well as neuronal maturation and dendritic outgrowth; however, knowledge of the substrates underlying these alterations is still limited. Neuroinflammatory processes are known to contribute to neuronal dysfunction and death. Recent evidence shows a subclinical chronic inflammatory status in plasma from CDD patients. However, to date, it is unknown whether a similar inflammatory status is present in the brain of CDD patients and, if so, whether this plays a causative or exacerbating role in the pathophysiology of CDD. Methods We evaluated microglia activation using AIF-1 immunofluorescence, proinflammatory cytokine expression, and signaling in the brain of a mouse model of CDD, the Cdkl5 KO mouse, which is characterized by an impaired survival of hippocampal neurons that worsens with age. Hippocampal neuron survival was determined by DCX, NeuN, and cleaved caspase-3 immunostaining in Cdkl5 KO mice treated with luteolin (10 mg/kg), a natural anti-inflammatory flavonoid. Since hippocampal neurons of Cdkl5 KO mice exhibit increased susceptibility to excitotoxic stress, we evaluated neuronal survival in Cdkl5 KO mice injected with NMDA (60 mg/kg) after a 7-day treatment with luteolin. Results We found increased microglial activation in the brain of the Cdkl5 KO mouse. We found alterations in microglial cell morphology and number, increased levels of AIF-1 and proinflammatory cytokines, and activation of STAT3 signaling. Remarkably, treatment with luteolin recovers microglia alterations as well as neuronal survival and maturation in Cdkl5 KO mice, and prevents the increase in NMDA-induced cell death in the hippocampus. Conclusions Our results suggest that neuroinflammatory processes contribute to the pathogenesis of CDD and imply the potential usefulness of luteolin as a treatment option in CDD patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02204-0.
Collapse
Affiliation(s)
- Giuseppe Galvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Nicola Mottolese
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Laura Gennaccaro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Marianna Tassinari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Claudia Fuchs
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy.
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy.
| |
Collapse
|
27
|
Gennaccaro L, Fuchs C, Loi M, Pizzo R, Alvente S, Berteotti C, Lupori L, Sagona G, Galvani G, Gurgone A, Raspanti A, Medici G, Tassinari M, Trazzi S, Ren E, Rimondini R, Pizzorusso T, Giovanna Z, Maurizio G, Elisabetta C. Age-Related Cognitive and Motor Decline in a Mouse Model of CDKL5 Deficiency Disorder is Associated with Increased Neuronal Senescence and Death. Aging Dis 2021; 12:764-785. [PMID: 34094641 PMCID: PMC8139207 DOI: 10.14336/ad.2020.0827] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/27/2020] [Indexed: 01/02/2023] Open
Abstract
CDKL5 deficiency disorder (CDD) is a severe neurodevelopmental disease caused by mutations in the X-linked CDKL5 gene. Children affected by CDD display a clinical phenotype characterized by early-onset epilepsy, intellectual disability, motor impairment, and autistic-like features. Although the clinical aspects associated with CDKL5 mutations are well described in children, adults with CDD are still under-characterized. Similarly, most animal research has been carried out on young adult Cdkl5 knockout (KO) mice only. Since age represents a risk factor for the worsening of symptoms in many neurodevelopmental disorders, understanding age differences in the development of behavioral deficits is crucial in order to optimize the impact of therapeutic interventions. Here, we compared young adult Cdkl5 KO mice with middle-aged Cdkl5 KO mice, at a behavioral, neuroanatomical, and molecular level. We found an age-dependent decline in motor, cognitive, and social behaviors in Cdkl5 KO mice, as well as in breathing and sleep patterns. The behavioral decline in older Cdkl5 KO mice was not associated with a worsening of neuroanatomical alterations, such as decreased dendritic arborization or spine density, but was paralleled by decreased neuronal survival in different brain regions such as the hippocampus, cortex, and basal ganglia. Interestingly, we found increased β-galactosidase activity and DNA repair protein levels, γH2AX and XRCC5, in the brains of older Cdkl5 KO mice, which suggests that an absence of Cdkl5 accelerates neuronal senescence/death by triggering irreparable DNA damage. In summary, this work provides evidence that CDKL5 may play a fundamental role in neuronal survival during brain aging and suggests a possible worsening with age of the clinical picture in CDD patients.
Collapse
Affiliation(s)
- Laura Gennaccaro
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudia Fuchs
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Manuela Loi
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Riccardo Pizzo
- 2Department of Neuroscience, University of Turin, Turin, Italy
| | - Sara Alvente
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Chiara Berteotti
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Leonardo Lupori
- 3BIO@SNS lab, Scuola Normale Superiore di Pisa, Pisa, Italy.,4Institute of Neuroscience, National Research Council, Pisa, Italy
| | - Giulia Sagona
- 4Institute of Neuroscience, National Research Council, Pisa, Italy.,5Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Florence, Italy.,6Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Giuseppe Galvani
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Antonia Gurgone
- 2Department of Neuroscience, University of Turin, Turin, Italy
| | | | - Giorgio Medici
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marianna Tassinari
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Stefania Trazzi
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Elisa Ren
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Roberto Rimondini
- 7Department of Medical and Clinical Sciences, University of Bologna, Bologna, Italy
| | - Tommaso Pizzorusso
- 3BIO@SNS lab, Scuola Normale Superiore di Pisa, Pisa, Italy.,4Institute of Neuroscience, National Research Council, Pisa, Italy.,5Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Florence, Italy
| | - Zoccoli Giovanna
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giustetto Maurizio
- 2Department of Neuroscience, University of Turin, Turin, Italy.,8National Institute of Neuroscience-Italy, Turin, Italy
| | - Ciani Elisabetta
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
28
|
Loi M, Gennaccaro L, Fuchs C, Trazzi S, Medici G, Galvani G, Mottolese N, Tassinari M, Rimondini Giorgini R, Milelli A, Ciani E. Treatment with a GSK-3β/HDAC Dual Inhibitor Restores Neuronal Survival and Maturation in an In Vitro and In Vivo Model of CDKL5 Deficiency Disorder. Int J Mol Sci 2021; 22:5950. [PMID: 34073043 PMCID: PMC8198396 DOI: 10.3390/ijms22115950] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/03/2023] Open
Abstract
Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene cause a rare neurodevelopmental disorder characterized by early-onset seizures and severe cognitive, motor, and visual impairments. To date there are no therapies for CDKL5 deficiency disorder (CDD). In view of the severity of the neurological phenotype of CDD patients it is widely assumed that CDKL5 may influence the activity of a variety of cellular pathways, suggesting that an approach aimed at targeting multiple cellular pathways simultaneously might be more effective for CDD. Previous findings showed that a single-target therapy aimed at normalizing impaired GSK-3β or histone deacetylase (HDAC) activity improved neurodevelopmental and cognitive alterations in a mouse model of CDD. Here we tested the ability of a first-in-class GSK-3β/HDAC dual inhibitor, Compound 11 (C11), to rescue CDD-related phenotypes. We found that C11, through inhibition of GSK-3β and HDAC6 activity, not only restored maturation, but also significantly improved survival of both human CDKL5-deficient cells and hippocampal neurons from Cdkl5 KO mice. Importantly, in vivo treatment with C11 restored synapse development, neuronal survival, and microglia over-activation, and improved motor and cognitive abilities of Cdkl5 KO mice, suggesting that dual GSK-3β/HDAC6 inhibitor therapy may have a wider therapeutic benefit in CDD patients.
Collapse
Affiliation(s)
- Manuela Loi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| | - Laura Gennaccaro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| | - Claudia Fuchs
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| | - Giuseppe Galvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| | - Nicola Mottolese
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| | - Marianna Tassinari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| | | | - Andrea Milelli
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy;
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| |
Collapse
|
29
|
Ciccia LM, Scalia B, Venti V, Pizzo F, Pappalardo MG, La Mendola FMC, Falsaperla R, Praticò AD. CDKL5 Gene: Beyond Rett Syndrome. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
CDKL5 is a gene located in the X-chromosome (Xp22) encoding a serine/threonine kinase involved in various signaling pathways, implicated in cell proliferation, axon development, dendrite growth, synapse formation, and maintenance. Mutations occurring in this gene have been associated with drug-resistant early-onset epilepsy, with multiple seizures type, and deep cognitive and motor development delay with poor or absent speech, ataxic gait or inability to walk, hand stereotypies and in a few cases decrement of head growth. Many aspects remain unclear about the CDKL5 deficiency disorders, research will be fundamental to better understand the pathogenesis of neurological damage and consequently developed more targeted and profitable therapies, as there is not, at the present, a gene-based treatment and the seizures are in most of the cases drug resistant. In this article, we summarize the actual knowledge about CDKL5 gene function and mostly the consequence given by its dysfunction, also examining the possible therapeutic approaches.
Collapse
Affiliation(s)
- Lina Maria Ciccia
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Bruna Scalia
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Valeria Venti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesco Pizzo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria Grazia Pappalardo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
30
|
Gennaccaro L, Fuchs C, Loi M, Roncacè V, Trazzi S, Ait-Bali Y, Galvani G, Berardi AC, Medici G, Tassinari M, Ren E, Rimondini R, Giustetto M, Aicardi G, Ciani E. A GABA B receptor antagonist rescues functional and structural impairments in the perirhinal cortex of a mouse model of CDKL5 deficiency disorder. Neurobiol Dis 2021; 153:105304. [PMID: 33621640 DOI: 10.1016/j.nbd.2021.105304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 11/25/2022] Open
Abstract
CDKL5 (cyclin-dependent kinase-like 5) deficiency disorder (CDD) is a severe neurodevelopmental encephalopathy characterized by early-onset epilepsy and intellectual disability. Studies in mouse models have linked CDKL5 deficiency to defects in neuronal maturation and synaptic plasticity, and disruption of the excitatory/inhibitory balance. Interestingly, increased density of both GABAergic synaptic terminals and parvalbumin inhibitory interneurons was recently observed in the primary visual cortex of Cdkl5 knockout (KO) mice, suggesting that excessive GABAergic transmission might contribute to the visual deficits characteristic of CDD. However, the functional relevance of cortical GABAergic circuits abnormalities in these mutant mice has not been investigated so far. Here we examined GABAergic circuits in the perirhinal cortex (PRC) of Cdkl5 KO mice, where we previously observed impaired long-term potentiation (LTP) associated with deficits in novel object recognition (NOR) memory. We found a higher number of GABAergic (VGAT)-immunopositive terminals in the PRC of Cdkl5 KO compared to wild-type mice, suggesting that increased inhibitory transmission might contribute to LTP impairment. Interestingly, while exposure of PRC slices to the GABAA receptor antagonist picrotoxin had no positive effects on LTP in Cdkl5 KO mice, the selective GABAB receptor antagonist CGP55845 restored LTP magnitude, suggesting that exaggerated GABAB receptor-mediated inhibition contributes to LTP impairment in mutants. Moreover, acute in vivo treatment with CGP55845 increased the number of PSD95 positive puncta as well as density and maturation of dendritic spines in PRC, and restored NOR memory in Cdkl5 KO mice. The present data show the efficacy of limiting excessive GABAB receptor-mediated signaling in improving synaptic plasticity and cognition in CDD mice.
Collapse
Affiliation(s)
- Laura Gennaccaro
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | - Claudia Fuchs
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | - Vincenzo Roncacè
- Department for Life Quality Studies, University of Bologna, Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | - Yassine Ait-Bali
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Giuseppe Galvani
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | | | - Giorgio Medici
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | - Marianna Tassinari
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | - Elisa Ren
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | - Roberto Rimondini
- Department of Medical and Clinical Sciences, University of Bologna, Bologna, Italy
| | - Maurizio Giustetto
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Giorgio Aicardi
- Department for Life Quality Studies, University of Bologna, Bologna, Italy.
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy.
| |
Collapse
|
31
|
Benn CL, Dawson LA. Clinically Precedented Protein Kinases: Rationale for Their Use in Neurodegenerative Disease. Front Aging Neurosci 2020; 12:242. [PMID: 33117143 PMCID: PMC7494159 DOI: 10.3389/fnagi.2020.00242] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Kinases are an intensively studied drug target class in current pharmacological research as evidenced by the large number of kinase inhibitors being assessed in clinical trials. Kinase-targeted therapies have potential for treatment of a broad array of indications including central nervous system (CNS) disorders. In addition to the many variables which contribute to identification of a successful therapeutic molecule, drug discovery for CNS-related disorders also requires significant consideration of access to the target organ and specifically crossing the blood-brain barrier (BBB). To date, only a small number of kinase inhibitors have been reported that are specifically designed to be BBB permeable, which nonetheless demonstrates the potential for success. This review considers the potential for kinase inhibitors in the context of unmet medical need for neurodegenerative disease. A subset of kinases that have been the focus of clinical investigations over a 10-year period have been identified and discussed individually. For each kinase target, the data underpinning the validity of each in the context of neurodegenerative disease is critically evaluated. Selected molecules for each kinase are identified with information on modality, binding site and CNS penetrance, if known. Current clinical development in neurodegenerative disease are summarized. Collectively, the review indicates that kinase targets with sufficient rationale warrant careful design approaches with an emphasis on improving brain penetrance and selectivity.
Collapse
|
32
|
Cyclin-Dependent Kinase-Like 5 (CDKL5): Possible Cellular Signalling Targets and Involvement in CDKL5 Deficiency Disorder. Neural Plast 2020; 2020:6970190. [PMID: 32587608 PMCID: PMC7293752 DOI: 10.1155/2020/6970190] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/29/2022] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5, also known as STK9) is a serine/threonine protein kinase originally identified in 1998 during a transcriptional mapping project of the human X chromosome. Thereafter, a mutation in CDKL5 was reported in individuals with the atypical Rett syndrome, a neurodevelopmental disorder, suggesting that CDKL5 plays an important regulatory role in neuronal function. The disease associated with CDKL5 mutation has recently been recognised as CDKL5 deficiency disorder (CDD) and has been distinguished from the Rett syndrome owing to its symptomatic manifestation. Because CDKL5 mutations identified in patients with CDD cause enzymatic loss of function, CDKL5 catalytic activity is likely strongly associated with the disease. Consequently, the exploration of CDKL5 substrate characteristics and regulatory mechanisms of its catalytic activity are important for identifying therapeutic target molecules and developing new treatment. In this review, we summarise recent findings on the phosphorylation of CDKL5 substrates and the mechanisms of CDKL5 phosphorylation and dephosphorylation. We also discuss the relationship between changes in the phosphorylation signalling pathways and the Cdkl5 knockout mouse phenotype and consider future prospects for the treatment of mental and neurological disease associated with CDKL5 mutations.
Collapse
|
33
|
Trovò L, Fuchs C, De Rosa R, Barbiero I, Tramarin M, Ciani E, Rusconi L, Kilstrup-Nielsen C. The green tea polyphenol epigallocatechin-3-gallate (EGCG) restores CDKL5-dependent synaptic defects in vitro and in vivo. Neurobiol Dis 2020; 138:104791. [PMID: 32032735 PMCID: PMC7152796 DOI: 10.1016/j.nbd.2020.104791] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 01/30/2023] Open
Abstract
CDKL5 deficiency disorder (CDD) is a rare X-linked neurodevelopmental disorder that is characterised by early-onset seizures, intellectual disability, gross motor impairment, and autistic-like features. CDD is caused by mutations in the cyclin-dependent kinase-like 5 (CDKL5) gene that encodes a serine/threonine kinase with a predominant expression in the brain. Loss of CDKL5 causes neurodevelopmental alterations in vitro and in vivo, including defective dendritic arborisation and spine maturation, which most likely underlie the cognitive defects and autistic features present in humans and mice. Here, we show that treatment with epigallatocathechin-3-gallate (EGCG), the major polyphenol of green tea, can restore defects in dendritic and synaptic development of primary Cdkl5 knockout (KO) neurons. Furthermore, defective synaptic maturation in the hippocampi and cortices of adult Cdkl5-KO mice can be rescued through the intraperitoneal administration of EGCG, which is however not sufficient to normalise behavioural CDKL5-dependent deficits. EGCG is a pleiotropic compound with numerous cellular targets, including the dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) that is selectively inhibited by EGCG. DYRK1A controls dendritic development and spine formation and its deregulation has been implicated in neurodevelopmental and degenerative diseases. Treatment with another DYRK1A inhibitor, harmine, was capable of correcting neuronal CDKL5-dependent defects; moreover, DYRK1A levels were upregulated in primary Cdkl5-KO neurons in concomitance with increased phosphorylation of Tau, a well-accepted DYRK1A substrate. Altogether, our results indicate that DYRK1A deregulation may contribute, at least in part, to the neurodevelopmental alterations caused by CDKL5 deficiency.
Collapse
Affiliation(s)
- L Trovò
- Center of Neuroscience, Dept. Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - C Fuchs
- Dept. Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy; Center of Neuroscience, Dept. Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - R De Rosa
- Center of Neuroscience, Dept. Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - I Barbiero
- Center of Neuroscience, Dept. Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - M Tramarin
- Center of Neuroscience, Dept. Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - E Ciani
- Dept. Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - L Rusconi
- Center of Neuroscience, Dept. Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - C Kilstrup-Nielsen
- Center of Neuroscience, Dept. Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy.
| |
Collapse
|
34
|
Gao Y, Irvine EE, Eleftheriadou I, Naranjo CJ, Hearn-Yeates F, Bosch L, Glegola JA, Murdoch L, Czerniak A, Meloni I, Renieri A, Kinali M, Mazarakis ND. Gene replacement ameliorates deficits in mouse and human models of cyclin-dependent kinase-like 5 disorder. Brain 2020; 143:811-832. [DOI: 10.1093/brain/awaa028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/15/2019] [Accepted: 12/13/2019] [Indexed: 01/04/2023] Open
Abstract
Abstract
Cyclin-dependent kinase-like 5 disorder is a severe neurodevelopmental disorder caused by mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene. It predominantly affects females who typically present with severe early epileptic encephalopathy, global developmental delay, motor dysfunction, autistic features and sleep disturbances. To develop a gene replacement therapy, we initially characterized the human CDKL5 transcript isoforms expressed in the brain, neuroblastoma cell lines, primary astrocytes and embryonic stem cell-derived cortical interneurons. We found that the isoform 1 and to a lesser extent the isoform 2 were expressed in human brain, and both neuronal and glial cell types. These isoforms were subsequently cloned into recombinant adeno-associated viral (AAV) vector genome and high-titre viral vectors were produced. Intrajugular delivery of green fluorescence protein via AAV vector serotype PHP.B in adult wild-type male mice transduced neurons and astrocytes throughout the brain more efficiently than serotype 9. Cdkl5 knockout male mice treated with isoform 1 via intrajugular injection at age 28–30 days exhibited significant behavioural improvements compared to green fluorescence protein-treated controls (1012 vg per animal, n = 10 per group) with PHP.B vectors. Brain expression of the isoform 1 transgene was more abundant in hindbrain than forebrain and midbrain. Transgene brain expression was sporadic at the cellular level and most prominent in hippocampal neurons and cerebellar Purkinje cells. Correction of postsynaptic density protein 95 cerebellar misexpression, a major fine cerebellar structural abnormality in Cdkl5 knockout mice, was found in regions of high transgene expression within the cerebellum. AAV vector serotype DJ efficiently transduced CDKL5-mutant human induced pluripotent stem cell-derived neural progenitors, which were subsequently differentiated into mature neurons. When treating CDKL5-mutant neurons, isoform 1 expression led to an increased density of synaptic puncta, while isoform 2 ameliorated the calcium signalling defect compared to green fluorescence protein control, implying distinct functions of these isoforms in neurons. This study provides the first evidence that gene therapy mediated by AAV vectors can be used for treating CDKL5 disorder.
Collapse
Affiliation(s)
- Yunan Gao
- Gene Therapy, Section of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Elaine E Irvine
- Metabolic Signalling Group, MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Ioanna Eleftheriadou
- Gene Therapy, Section of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Carlos Jiménez Naranjo
- Gene Therapy, Section of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Francesca Hearn-Yeates
- Gene Therapy, Section of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Leontien Bosch
- Gene Therapy, Section of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Justyna A Glegola
- Metabolic Signalling Group, MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Leah Murdoch
- CBS Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | | | - Ilaria Meloni
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Alessandra Renieri
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Maria Kinali
- The Portland Hospital, 205-209 Great Portland Street, London, W1W 5AH, UK
| | - Nicholas D Mazarakis
- Gene Therapy, Section of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| |
Collapse
|
35
|
Increased DNA Damage and Apoptosis in CDKL5-Deficient Neurons. Mol Neurobiol 2020; 57:2244-2262. [PMID: 32002787 DOI: 10.1007/s12035-020-01884-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/20/2020] [Indexed: 12/15/2022]
Abstract
Mutations in the CDKL5 gene, which encodes a serine/threonine kinase, causes a rare encephalopathy, characterized by early-onset epilepsy and severe intellectual disability, named CDKL5 deficiency disorder (CDD). In vitro and in vivo studies in mouse models of Cdkl5 deficiency have highlighted the role of CDKL5 in brain development and, in particular, in the morphogenesis and synaptic connectivity of hippocampal and cortical neurons. Interestingly, Cdkl5 deficiency in mice increases vulnerability to excitotoxic stress in hippocampal neurons. However, the mechanism by which CDKL5 controls neuronal survival is far from being understood. To investigate further the function of CDKL5 and dissect the molecular mechanisms underlying neuronal survival, we generated a human neuronal model of CDKL5 deficiency, using CRISPR/Cas9-mediated genome editing. We demonstrated that CDKL5 deletion in human neuroblastoma SH-SY5Y cells not only impairs neuronal maturation but also reduces cell proliferation and survival, with alterations in the AKT and ERK signaling pathways and an increase in the proapoptotic BAX protein and in DNA damage-associated biomarkers (i.e., γH2AX, RAD50, and PARP1). Furthermore, CDKL5-deficient cells were hypersensitive to DNA damage-associated stress, accumulated more DNA damage foci (γH2AX positive) and were more prone to cell death than the controls. Importantly, increased kainic acid-induced cell death of hippocampal neurons of Cdkl5 KO mice correlated with an increased γH2AX immunostaining. The results suggest a previously unknown role for CDKL5 in DNA damage response that could underlie the pro-survival function of CDKL5.
Collapse
|
36
|
Jorge-Torres OC, Szczesna K, Roa L, Casal C, Gonzalez-Somermeyer L, Soler M, Velasco CD, Martínez-San Segundo P, Petazzi P, Sáez MA, Delgado-Morales R, Fourcade S, Pujol A, Huertas D, Llobet A, Guil S, Esteller M. Inhibition of Gsk3b Reduces Nfkb1 Signaling and Rescues Synaptic Activity to Improve the Rett Syndrome Phenotype in Mecp2-Knockout Mice. Cell Rep 2019; 23:1665-1677. [PMID: 29742424 DOI: 10.1016/j.celrep.2018.04.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 02/07/2018] [Accepted: 03/31/2018] [Indexed: 12/01/2022] Open
Abstract
Rett syndrome (RTT) is the second leading cause of mental impairment in girls and is currently untreatable. RTT is caused, in more than 95% of cases, by loss-of-function mutations in the methyl CpG-binding protein 2 gene (MeCP2). We propose here a molecular target involved in RTT: the glycogen synthase kinase-3b (Gsk3b) pathway. Gsk3b activity is deregulated in Mecp2-knockout (KO) mice models, and SB216763, a specific inhibitor, is able to alleviate the clinical symptoms with consequences at the molecular and cellular levels. In vivo, inhibition of Gsk3b prolongs the lifespan of Mecp2-KO mice and reduces motor deficits. At the molecular level, SB216763 rescues dendritic networks and spine density, while inducing changes in the properties of excitatory synapses. Gsk3b inhibition can also decrease the nuclear activity of the Nfkb1 pathway and neuroinflammation. Altogether, our findings indicate that Mecp2 deficiency in the RTT mouse model is partially rescued following treatment with SB216763.
Collapse
Affiliation(s)
- Olga C Jorge-Torres
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet, Barcelona, Catalonia, Spain
| | - Karolina Szczesna
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet, Barcelona, Catalonia, Spain
| | - Laura Roa
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet, Barcelona, Catalonia, Spain
| | - Carme Casal
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet, Barcelona, Catalonia, Spain
| | - Louisa Gonzalez-Somermeyer
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet, Barcelona, Catalonia, Spain
| | - Marta Soler
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet, Barcelona, Catalonia, Spain
| | - Cecilia D Velasco
- Laboratory of Neurobiology, Bellvitge Biomedical Research Institute (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain; Department of Pathology and Experimental Therapeutics, Faculty of Medicine, 08907 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain; Institute of Neurosciences, University of Barcelona, 08907 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Pablo Martínez-San Segundo
- Laboratory of Neurobiology, Bellvitge Biomedical Research Institute (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain; Department of Pathology and Experimental Therapeutics, Faculty of Medicine, 08907 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain; Institute of Neurosciences, University of Barcelona, 08907 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Paolo Petazzi
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet, Barcelona, Catalonia, Spain
| | - Mauricio A Sáez
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet, Barcelona, Catalonia, Spain
| | - Raúl Delgado-Morales
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet, Barcelona, Catalonia, Spain; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands
| | - Stephane Fourcade
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet, Barcelona, Catalonia, Spain; Institute of Neuropathology, University of Barcelona, Barcelona, Catalonia, Spain; Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet, Barcelona, Catalonia, Spain; Institute of Neuropathology, University of Barcelona, Barcelona, Catalonia, Spain; Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Dori Huertas
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet, Barcelona, Catalonia, Spain
| | - Artur Llobet
- Laboratory of Neurobiology, Bellvitge Biomedical Research Institute (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain; Department of Pathology and Experimental Therapeutics, Faculty of Medicine, 08907 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain; Institute of Neurosciences, University of Barcelona, 08907 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Sonia Guil
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet, Barcelona, Catalonia, Spain.
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet, Barcelona, Catalonia, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), 08907 Catalonia, Spain.
| |
Collapse
|
37
|
Fuchs C, Gennaccaro L, Ren E, Galvani G, Trazzi S, Medici G, Loi M, Conway E, Devinsky O, Rimondini R, Ciani E. Pharmacotherapy with sertraline rescues brain development and behavior in a mouse model of CDKL5 deficiency disorder. Neuropharmacology 2019; 167:107746. [PMID: 31469994 DOI: 10.1016/j.neuropharm.2019.107746] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/27/2019] [Accepted: 08/21/2019] [Indexed: 12/15/2022]
Abstract
Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene cause a severe neurodevelopmental disorder, CDKL5 deficiency disorder (CDD). CDKL5 is fundamental for correct brain development and function, but the molecular mechanisms underlying aberrant neurologic dysfunction in CDD are incompletely understood. Here we show a dysregulation of hippocampal and cortical serotonergic (5-HT) receptor expression in heterozygous Cdkl5 knockout (KO) female mice, suggesting that impaired 5-HT neurotransmission contributes to CDD. We demonstrate that targeting impaired 5-HT signaling via the selective serotonin reuptake inhibitor (SSRI) sertraline rescues CDD-related neurodevelopmental and behavioral defects in heterozygous Cdkl5 KO female mice. In particular, chronic treatment with sertraline normalized locomotion, stereotypic and autistic-like features, and spatial memory in Cdkl5 KO mice. These positive behavioral effects were accompanied by restored neuronal survival, dendritic development and synaptic connectivity. At a molecular level, sertraline increased brain-derived neurotrophic factor (BDNF) expression and restored abnormal phosphorylation levels of tyrosine kinase B (TrkB) and its downstream target the extracellular signal-regulated kinase (ERK1/2). Since sertraline is an FDA-approved drug with an extensive safety and tolerability data package, even for children, our findings suggest that sertraline may improve neurodevelopment in children with CDD. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
Affiliation(s)
- Claudia Fuchs
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.
| | - Laura Gennaccaro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Elisa Ren
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Giuseppe Galvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Erin Conway
- Department of Neurology, NYU Langone Health, New York, USA
| | - Orrin Devinsky
- Department of Neurology, NYU Langone Health, New York, USA
| | - Roberto Rimondini
- Department of Medical and Clinical Sciences, University of Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.
| |
Collapse
|
38
|
Olson HE, Demarest ST, Pestana-Knight EM, Swanson LC, Iqbal S, Lal D, Leonard H, Cross JH, Devinsky O, Benke TA. Cyclin-Dependent Kinase-Like 5 Deficiency Disorder: Clinical Review. Pediatr Neurol 2019; 97:18-25. [PMID: 30928302 PMCID: PMC7120929 DOI: 10.1016/j.pediatrneurol.2019.02.015] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/21/2019] [Accepted: 02/16/2019] [Indexed: 01/08/2023]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a developmental encephalopathy caused by pathogenic variants in the gene CDKL5. This unique disorder includes early infantile onset refractory epilepsy, hypotonia, developmental intellectual and motor disabilities, and cortical visual impairment. We review the clinical presentations and genetic variations in CDD based on a systematic literature review and experience in the CDKL5 Centers of Excellence. We propose minimum diagnostic criteria. Pathogenic variants include deletions, truncations, splice variants, and missense variants. Pathogenic missense variants occur exclusively within the kinase domain or affect splice sites. The CDKL5 protein is widely expressed in the brain, predominantly in neurons, with roles in cell proliferation, neuronal migration, axonal outgrowth, dendritic morphogenesis, and synapse development. The molecular biology of CDD is revealing opportunities in precision therapy, with phase 2 and 3 clinical trials underway or planned to assess disease specific and disease modifying treatments.
Collapse
Affiliation(s)
- Heather E Olson
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts.
| | - Scott T Demarest
- Children's Hospital Colorado, University of Colorado, School of Medicine, Aurora, Colorado; Department of Pediatrics, University of Colorado, School of Medicine, Aurora, Colorado
| | - Elia M Pestana-Knight
- Cleveland Clinic Neurological Institute Epilepsy Center, Cleveland Clinic Neurological Institute Pediatric Neurology Department, Neurogenetics, Cleveland Clinic Children's, Cleveland, Ohio
| | - Lindsay C Swanson
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Sumaiya Iqbal
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Dennis Lal
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio; Neurological Institute, Cleveland Clinic, Cleveland, Ohio
| | - Helen Leonard
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - J Helen Cross
- UCL Great Ormond Street NIHR BRC Institute of Child Health, London, UK
| | - Orrin Devinsky
- Department of Neurology, NYU Langone Health, New York, New York
| | - Tim A Benke
- Children's Hospital Colorado, University of Colorado, School of Medicine, Aurora, Colorado; Department of Pediatrics, University of Colorado, School of Medicine, Aurora, Colorado; Department of Pharmacology, University of Colorado, School of Medicine, Aurora, Colorado; Department of Neurology, University of Colorado, School of Medicine, Aurora, Colorado; Department of Otolaryngology, University of Colorado, School of Medicine, Aurora, Colorado
| |
Collapse
|
39
|
Ren E, Roncacé V, Trazzi S, Fuchs C, Medici G, Gennaccaro L, Loi M, Galvani G, Ye K, Rimondini R, Aicardi G, Ciani E. Functional and Structural Impairments in the Perirhinal Cortex of a Mouse Model of CDKL5 Deficiency Disorder Are Rescued by a TrkB Agonist. Front Cell Neurosci 2019; 13:169. [PMID: 31114483 PMCID: PMC6503158 DOI: 10.3389/fncel.2019.00169] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/09/2019] [Indexed: 11/24/2022] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a severe X-linked neurodevelopmental encephalopathy caused by mutations in the CDKL5 gene and characterized by early-onset epilepsy and intellectual and motor impairments. No cure is currently available for CDD patients, as limited knowledge of the pathology has hindered the development of therapeutics. Cdkl5 knockout (KO) mouse models, recently created to investigate the role of CDKL5 in the etiology of CDD, recapitulate various features of the disorder. Previous studies have shown alterations in synaptic plasticity and dendritic pattern in the cerebral cortex and in the hippocampus, but the knowledge of the molecular substrates underlying these alterations is still limited. Here, we have examined for the first time synaptic function and plasticity, dendritic morphology, and signal transduction pathways in the perirhinal cortex (PRC) of this mouse model. Being interconnected with a wide range of cortical and subcortical structures and involved in various cognitive processes, PRC provides a very interesting framework for examining how CDKL5 mutation leads to deficits at the synapse, circuit, and behavioral level. We found that long-term potentiation (LTP) was impaired, and that the TrkB/PLCγ1 pathway could be mechanistically involved in this alteration. PRC neurons in mutant mice showed a reduction in dendritic length, dendritic branches, PSD-95-positive puncta, GluA2-AMPA receptor levels, and spine density and maturation. These functional and structural deficits were associated with impairment in visual recognition memory. Interestingly, an in vivo treatment with a TrkB agonist (the 7,8-DHF prodrug R13) to trigger the TrkB/PLCγ1 pathway rescued defective LTP, dendritic pattern, PSD-95 and GluA2-AMPA receptor levels, and restored visual recognition memory in Cdkl5 KO mice. Present findings demonstrate a critical role of TrkB signaling in the synaptic development alterations due to CDKL5 mutation, and suggest the possibility of TrkB-targeted pharmacological interventions.
Collapse
Affiliation(s)
- Elisa Ren
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Vincenzo Roncacé
- Department for Life Quality Studies, University of Bologna, Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudia Fuchs
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Laura Gennaccaro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Galvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Keqiang Ye
- School of Medicine, Emory University, Atlanta, GA, United States
| | - Roberto Rimondini
- Department of Biomedical and Clinical Sciences, University of Bologna, Bologna, Italy
| | - Giorgio Aicardi
- Department for Life Quality Studies, University of Bologna, Bologna, Italy.,Interdepartmental Center "Luigi Galvani" for Integrated Studies of Bioinformatics, Biophysics and Biocomplexity, University of Bologna, Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
40
|
Ko A, Kang HC. Frequently Identified Genetic Developmental and Epileptic Encephalopathy: A Review Focusing on Precision Medicine. ANNALS OF CHILD NEUROLOGY 2019. [DOI: 10.26815/acn.2019.00066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
41
|
Fuchs C, Medici G, Trazzi S, Gennaccaro L, Galvani G, Berteotti C, Ren E, Loi M, Ciani E. CDKL5 deficiency predisposes neurons to cell death through the deregulation of SMAD3 signaling. Brain Pathol 2019; 29:658-674. [PMID: 30793413 DOI: 10.1111/bpa.12716] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/18/2019] [Indexed: 12/11/2022] Open
Abstract
CDKL5 deficiency disorder (CDD) is a rare encephalopathy characterized by early onset epilepsy and severe intellectual disability. CDD is caused by mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene, a member of a highly conserved family of serine-threonine kinases. Only a few physiological substrates of CDKL5 are currently known, which hampers the discovery of therapeutic strategies for CDD. Here, we show that SMAD3, a primary mediator of TGF-β action, is a direct phosphorylation target of CDKL5 and that CDKL5-dependent phosphorylation promotes SMAD3 protein stability. Importantly, we found that restoration of the SMAD3 signaling through TGF-β1 treatment normalized defective neuronal survival and maturation in Cdkl5 knockout (KO) neurons. Moreover, we demonstrate that Cdkl5 KO neurons are more vulnerable to neurotoxic/excitotoxic stimuli. In vivo treatment with TGF-β1 prevents increased NMDA-induced cell death in hippocampal neurons from Cdkl5 KO mice, suggesting an involvement of the SMAD3 signaling deregulation in the neuronal susceptibility to excitotoxic injury of Cdkl5 KO mice. Our finding reveals a new function for CDKL5 in maintaining neuronal survival that could have important implications for susceptibility to neurodegeneration in patients with CDD.
Collapse
Affiliation(s)
- Claudia Fuchs
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Laura Gennaccaro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Galvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Chiara Berteotti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Elisa Ren
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
42
|
Trazzi S, De Franceschi M, Fuchs C, Bastianini S, Viggiano R, Lupori L, Mazziotti R, Medici G, Lo Martire V, Ren E, Rimondini R, Zoccoli G, Bartesaghi R, Pizzorusso T, Ciani E. CDKL5 protein substitution therapy rescues neurological phenotypes of a mouse model of CDKL5 disorder. Hum Mol Genet 2019; 27:1572-1592. [PMID: 29474534 DOI: 10.1093/hmg/ddy064] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 02/17/2018] [Indexed: 11/13/2022] Open
Abstract
Cyclin-dependent kinase like-5 (CDKL5) disorder is a rare neurodevelopmental disease caused by mutations in the CDKL5 gene. The consequent misexpression of the CDKL5 protein in the nervous system leads to a severe phenotype characterized by intellectual disability, motor impairment, visual deficits and early-onset epilepsy. No therapy is available for CDKL5 disorder. It has been reported that a protein transduction domain (TAT) is able to deliver macromolecules into cells and even into the brain when fused to a given protein. We demonstrate that TAT-CDKL5 fusion protein is efficiently internalized by target cells and retains CDKL5 activity. Intracerebroventricular infusion of TAT-CDKL5 restored hippocampal development, hippocampus-dependent memory and breathing pattern in Cdkl5-null mice. Notably, systemically administered TAT-CDKL5 protein passed the blood-brain-barrier, reached the CNS, and rescued various neuroanatomical and behavioral defects, including breathing pattern and visual responses. Our results suggest that CDKL5 protein therapy may be an effective clinical tool for the treatment of CDKL5 disorder.
Collapse
Affiliation(s)
- Stefania Trazzi
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Marianna De Franceschi
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Claudia Fuchs
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Stefano Bastianini
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Rocchina Viggiano
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Leonardo Lupori
- BIO@SNS lab, Scuola Normale Superiore di Pisa, 56125 Pisa, Italy
| | | | - Giorgio Medici
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Viviana Lo Martire
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Elisa Ren
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Roberto Rimondini
- Department of Medical and Clinical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giovanna Zoccoli
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Renata Bartesaghi
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Tommaso Pizzorusso
- BIO@SNS lab, Scuola Normale Superiore di Pisa, 56125 Pisa, Italy.,NEUROFARBA Department, University of Florence, 50139 Florence, Italy.,Institute of Neuroscience, CNR, 56125 Pisa, Italy
| | - Elisabetta Ciani
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
43
|
Zhu YC, Xiong ZQ. Molecular and Synaptic Bases of CDKL5 Disorder. Dev Neurobiol 2018; 79:8-19. [PMID: 30246934 DOI: 10.1002/dneu.22639] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/05/2018] [Accepted: 09/14/2018] [Indexed: 01/04/2023]
Abstract
The X-linked gene cyclin-dependent kinase-like 5 (CDKL5) encodes a serine/threonine kinase abundantly expressed in the brain. Mutations in CDKL5 have been associated with neurodevelopmental disorders characterized by early-onset epileptic encephalopathy and severe intellectual disability, suggesting that CDKL5 plays important roles in brain development and function. Recent studies using cultured neurons, knockout mice, and human iPSC-derived neurons have demonstrated that CDKL5 regulates axon outgrowth, dendritic morphogenesis, and synapse formation. The role of CDKL5 in maintaining synaptic function in the mature brain has also begun to emerge. Moreover, mouse models that are deficient for CDKL5 recapitulate some of the key clinical phenotypes in human patients. Here we review these findings related to the function of CDKL5 in the brain and discuss the underlying molecular and cellular mechanisms.
Collapse
Affiliation(s)
- Yong-Chuan Zhu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Qi Xiong
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
44
|
Heterozygous CDKL5 Knockout Female Mice Are a Valuable Animal Model for CDKL5 Disorder. Neural Plast 2018; 2018:9726950. [PMID: 29977282 PMCID: PMC5994305 DOI: 10.1155/2018/9726950] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/27/2018] [Accepted: 04/10/2018] [Indexed: 12/21/2022] Open
Abstract
CDKL5 disorder is a severe neurodevelopmental disorder caused by mutations in the X-linked CDKL5 (cyclin-dependent kinase-like five) gene. CDKL5 disorder primarily affects girls and is characterized by early-onset epileptic seizures, gross motor impairment, intellectual disability, and autistic features. Although all CDKL5 female patients are heterozygous, the most valid disease-related model, the heterozygous female Cdkl5 knockout (Cdkl5 +/−) mouse, has been little characterized. The lack of detailed behavioral profiling of this model remains a crucial gap that must be addressed in order to advance preclinical studies. Here, we provide a behavioral and molecular characterization of heterozygous Cdkl5 +/− mice. We found that Cdkl5 +/− mice reliably recapitulate several aspects of CDKL5 disorder, including autistic-like behaviors, defects in motor coordination and memory performance, and breathing abnormalities. These defects are associated with neuroanatomical alterations, such as reduced dendritic arborization and spine density of hippocampal neurons. Interestingly, Cdkl5 +/− mice show age-related alterations in protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) signaling, two crucial signaling pathways involved in many neurodevelopmental processes. In conclusion, our study provides a comprehensive overview of neurobehavioral phenotypes of heterozygous female Cdkl5 +/− mice and demonstrates that the heterozygous female might be a valuable animal model in preclinical studies on CDKL5 disorder.
Collapse
|
45
|
Okuda K, Takao K, Watanabe A, Miyakawa T, Mizuguchi M, Tanaka T. Comprehensive behavioral analysis of the Cdkl5 knockout mice revealed significant enhancement in anxiety- and fear-related behaviors and impairment in both acquisition and long-term retention of spatial reference memory. PLoS One 2018; 13:e0196587. [PMID: 29702698 PMCID: PMC5922552 DOI: 10.1371/journal.pone.0196587] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/16/2018] [Indexed: 12/27/2022] Open
Abstract
Mutations in the Cyclin-dependent kinase-like 5 (CDKL5) gene cause severe neurodevelopmental disorders. Recently we have generated Cdkl5 KO mice by targeting exon 2 on the C57BL/6N background, and demonstrated postsynaptic overaccumulation of GluN2B-containing N-methyl-D-aspartate (NMDA) receptors in the hippocampus. In the current study, we subjected the Cdkl5 KO mice to a battery of comprehensive behavioral tests, aiming to reveal the effects of loss of CDKL5 in a whole perspective of motor, emotional, social, and cognition/memory functions, and to identify its undetermined roles. The neurological screen, rotarod, hot plate, prepulse inhibition, light/dark transition, open field, elevated plus maze, Porsolt forced swim, tail suspension, one-chamber and three-chamber social interaction, 24-h home cage monitoring, contextual and cued fear conditioning, Barnes maze, and T-maze tests were applied on adult Cdkl5 -/Y and +/Y mice. Cdkl5 -/Y mice showed a mild alteration in the gait. Analyses of emotional behaviors revealed significantly enhanced anxiety-like behaviors of Cdkl5 -/Y mice. Depressive-like behaviors and social interaction of Cdkl5 -/Y mice were uniquely altered. The contextual and cued fear conditioning of Cdkl5 -/Y mice were comparable to control mice; however, Cdkl5 -/Y mice showed a significantly increased freezing time and a significantly decreased distance traveled during the pretone period in the altered context. Both acquisition and long-term retention of spatial reference memory were significantly impaired. The morphometric analysis of hippocampal CA1 pyramidal neurons revealed impaired dendritic arborization and immature spine development in Cdkl5 -/Y mice. These results indicate that CDKL5 plays significant roles in regulating emotional behaviors especially on anxiety- and fear-related responses, and in both acquisition and long-term retention of spatial reference memory, which suggests that focus and special attention should be paid to the specific mechanisms of these deficits in the CDKL5 deficiency disorder.
Collapse
Affiliation(s)
- Kosuke Okuda
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Keizo Takao
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Aya Watanabe
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tsuyoshi Miyakawa
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Masashi Mizuguchi
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Teruyuki Tanaka
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
46
|
Fuchs C, Fustini N, Trazzi S, Gennaccaro L, Rimondini R, Ciani E. Treatment with the GSK3-beta inhibitor Tideglusib improves hippocampal development and memory performance in juvenile, but not adult, Cdkl5 knockout mice. Eur J Neurosci 2018; 47:1054-1066. [PMID: 29603837 DOI: 10.1111/ejn.13923] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 03/13/2017] [Accepted: 03/22/2018] [Indexed: 01/21/2023]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) disorder is a severe neurodevelopmental disorder characterized by early-onset epileptic seizures, severe developmental delay, and intellectual disability. To date, no effective pharmacological treatments are available to improve the neurological phenotype that is due to mutations in the CDKL5 gene. Murine models of CDKL5 disorder have recently been generated, making the preclinical testing of pharmacological interventions possible. Using a Cdkl5 knockout (KO) mouse model, we recently demonstrated that deficiency of Cdkl5 causes defects in postnatal hippocampal development and hippocampus-dependent learning and memory. These defects were accompanied by an increased activity of GSK3β, an important inhibitory regulator of many neuronal functions. Pharmacological inhibition of GSK3β activity was able to recover hippocampal defects and cognitive performance in juvenile Cdkl5 KO mice, suggesting that GSK3β inhibitors might be a potential therapeutic option for CDKL5 disorder. As GSK3β inhibitors have been shown to have differential medication responses in young people and adults, this study was designed to examine whether GSK3β is a possible therapeutic target both in juvenile and in adult CDKL5 patients. We found that treatment with the GSK3β inhibitor Tideglusib during the juvenile period improved hippocampal development and hippocampus-dependent behaviors in Cdkl5 KO mice, while treatment later on in adulthood had no positive effects. These results suggest that pharmacological interventions aimed at normalizing impaired GSK3β activity might have different age-dependent outcomes in CDKL5 disorder. This is of utmost importance in the development of therapeutic approaches in CDKL5 patients and in the design of rational clinical trials.
Collapse
Affiliation(s)
- Claudia Fuchs
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40126, Italy
| | - Norma Fustini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40126, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40126, Italy
| | - Laura Gennaccaro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40126, Italy
| | - Roberto Rimondini
- Department of Medical and Clinical Sciences, University of Bologna, Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40126, Italy
| |
Collapse
|
47
|
Jhang CL, Huang TN, Hsueh YP, Liao W. Mice lacking cyclin-dependent kinase-like 5 manifest autistic and ADHD-like behaviors. Hum Mol Genet 2018; 26:3922-3934. [PMID: 29016850 DOI: 10.1093/hmg/ddx279] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/10/2017] [Indexed: 01/02/2023] Open
Abstract
Neurodevelopmental disorders frequently share common clinical features and appear high rate of comorbidity, such as those present in patients with attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). While characterizing behavioral phenotypes in the mouse model of cyclin-dependent kinase-like 5 (CDKL5) disorder, a neurodevelopmental disorder caused by mutations in the X-linked gene encoding CDKL5, we found that these mice manifested behavioral phenotypes mimicking multiple key features of ASD, such as impaired social interaction and communication, as well as increased stereotypic digging behaviors. These mice also displayed hyper-locomotion, increased aggressiveness and impulsivity, plus deficits in motor and associative learning, resembling primary symptoms of ADHD. Through brain region-specific biochemical analysis, we uncovered that loss of CDKL5 disrupts dopamine synthesis and the expression of social communication-related key genes, such as forkhead-box P2 and mu-opioid receptor, in the corticostriatal circuit. Together, our findings support that CDKL5 plays a role in the comorbid features of autism and ADHD, and mice lacking CDKL5 may serve as an animal model to study the molecular and circuit mechanisms underlying autism-ADHD comorbidity.
Collapse
Affiliation(s)
- Cian-Ling Jhang
- Institute of Neuroscience, National Cheng-Chi University, Taipei 116, Taiwan
| | - Tzyy-Nan Huang
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Wenlin Liao
- Institute of Neuroscience, National Cheng-Chi University, Taipei 116, Taiwan.,Research Center for Mind, Brain and Learning, National Cheng-Chi University, Taipei 116, Taiwan
| |
Collapse
|
48
|
Abstract
The tragedy of epilepsy emerges from the combination of its high prevalence, impact upon sufferers and their families, and unpredictability. Childhood epilepsies are frequently severe, presenting in infancy with pharmaco-resistant seizures; are often accompanied by debilitating neuropsychiatric and systemic comorbidities; and carry a grave risk of mortality. Here, we review the most current basic science and translational research findings on several of the most catastrophic forms of pediatric epilepsy. We focus largely on genetic epilepsies and the research that is discovering the mechanisms linking disease genes to epilepsy syndromes. We also describe the strides made toward developing novel pharmacological and interventional treatment strategies to treat these disorders. The research reviewed provides hope for a complete understanding of, and eventual cure for, these childhood epilepsy syndromes.
Collapse
Affiliation(s)
- MacKenzie A Howard
- Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Texas, 78712;
| | - Scott C Baraban
- Epilepsy Research Laboratory in the Department of Neurological Surgery, Weill Institute for Neurosciences, University of California, San Francisco, California 94143;
| |
Collapse
|
49
|
Mazziotti R, Lupori L, Sagona G, Gennaro M, Della Sala G, Putignano E, Pizzorusso T. Searching for biomarkers of CDKL5 disorder: early-onset visual impairment in CDKL5 mutant mice. Hum Mol Genet 2017; 26:2290-2298. [PMID: 28369421 PMCID: PMC5458338 DOI: 10.1093/hmg/ddx119] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/25/2017] [Indexed: 01/03/2023] Open
Abstract
CDKL5 disorder is a neurodevelopmental disorder still without a cure. Murine models of CDKL5 disorder have been recently generated raising the possibility of preclinical testing of treatments. However, unbiased, quantitative biomarkers of high translational value to monitor brain function are still missing. Moreover, the analysis of treatment is hindered by the challenge of repeatedly and non-invasively testing neuronal function. We analyzed the development of visual responses in a mouse model of CDKL5 disorder to introduce visually evoked responses as a quantitative method to assess cortical circuit function. Cortical visual responses were assessed in CDKL5 null male mice, heterozygous females, and their respective control wild-type littermates by repeated transcranial optical imaging from P27 until P32. No difference between wild-type and mutant mice was present at P25-P26 whereas defective responses appeared from P27-P28 both in heterozygous and homozygous CDKL5 mutant mice. These results were confirmed by visually evoked potentials (VEPs) recorded from the visual cortex of a different cohort. The previously imaged mice were also analyzed at P60-80 using VEPs, revealing a persistent reduction of response amplitude, reduced visual acuity and defective contrast function. The level of adult impairment was significantly correlated with the reduction in visual responses observed during development. Support vector machine showed that multi-dimensional visual assessment can be used to automatically classify mutant and wt mice with high reliability. Thus, monitoring visual responses represents a promising biomarker for preclinical and clinical studies on CDKL5 disorder.
Collapse
Affiliation(s)
- Raffaele Mazziotti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Area San Salvi - Pad. 26, 50135 Florence, Italy
| | - Leonardo Lupori
- BIO@SNS Lab, Scuola Normale Superiore via Moruzzi, 1?56124 Pisa, Italy
| | - Giulia Sagona
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Area San Salvi - Pad. 26, 50135 Florence, Italy
| | - Mariangela Gennaro
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Area San Salvi - Pad. 26, 50135 Florence, Italy.,Institute of Neuroscience, National Research Council, via Moruzzi, 1 56124 Pisa, Italy
| | - Grazia Della Sala
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Area San Salvi - Pad. 26, 50135 Florence, Italy.,Institute of Neuroscience, National Research Council, via Moruzzi, 1 56124 Pisa, Italy
| | - Elena Putignano
- Institute of Neuroscience, National Research Council, via Moruzzi, 1?56124 Pisa, Italy
| | - Tommaso Pizzorusso
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Area San Salvi - Pad. 26, 50135 Florence, Italy.,BIO@SNS Lab, Scuola Normale Superiore via Moruzzi, 1 56124 Pisa, Italy.,Institute of Neuroscience, National Research Council, via Moruzzi, 1 56124 Pisa, Italy
| |
Collapse
|
50
|
Okuda K, Kobayashi S, Fukaya M, Watanabe A, Murakami T, Hagiwara M, Sato T, Ueno H, Ogonuki N, Komano-Inoue S, Manabe H, Yamaguchi M, Ogura A, Asahara H, Sakagami H, Mizuguchi M, Manabe T, Tanaka T. CDKL5 controls postsynaptic localization of GluN2B-containing NMDA receptors in the hippocampus and regulates seizure susceptibility. Neurobiol Dis 2017; 106:158-170. [PMID: 28688852 DOI: 10.1016/j.nbd.2017.07.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/10/2017] [Accepted: 07/02/2017] [Indexed: 12/21/2022] Open
Abstract
Mutations in the Cyclin-dependent kinase-like 5 (CDKL5) gene cause severe neurodevelopmental disorders accompanied by intractable epilepsies, i.e. West syndrome or atypical Rett syndrome. Here we report generation of the Cdkl5 knockout mouse and show that CDKL5 controls postsynaptic localization of GluN2B-containing N-methyl-d-aspartate (NMDA) receptors in the hippocampus and regulates seizure susceptibility. Cdkl5 -/Y mice showed normal sensitivity to kainic acid; however, they displayed significant hyperexcitability to NMDA. In concordance with this result, electrophysiological analysis in the hippocampal CA1 region disclosed an increased ratio of NMDA/α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated excitatory postsynaptic currents (EPSCs) and a significantly larger decay time constant of NMDA receptor-mediated EPSCs (NMDA-EPSCs) as well as a stronger inhibition of the NMDA-EPSCs by the GluN2B-selective antagonist ifenprodil in Cdkl5 -/Y mice. Subcellular fractionation of the hippocampus from Cdkl5 -/Y mice revealed a significant increase of GluN2B and SAP102 in the PSD (postsynaptic density)-1T fraction, without changes in the S1 (post-nuclear) fraction or mRNA transcripts, indicating an intracellular distribution shift of these proteins to the PSD. Immunoelectron microscopic analysis of the hippocampal CA1 region further confirmed postsynaptic overaccumulation of GluN2B and SAP102 in Cdkl5 -/Y mice. Furthermore, ifenprodil abrogated the NMDA-induced hyperexcitability in Cdkl5 -/Y mice, suggesting that upregulation of GluN2B accounts for the enhanced seizure susceptibility. These data indicate that CDKL5 plays an important role in controlling postsynaptic localization of the GluN2B-SAP102 complex in the hippocampus and thereby regulates seizure susceptibility, and that aberrant NMDA receptor-mediated synaptic transmission underlies the pathological mechanisms of the CDKL5 loss-of-function.
Collapse
Affiliation(s)
- Kosuke Okuda
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shizuka Kobayashi
- Division of Neuronal Network, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara 252-0374, Japan
| | - Aya Watanabe
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takuto Murakami
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Mai Hagiwara
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tempei Sato
- Department of Systems Biomedicine, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Hiroe Ueno
- Department of Systems Biomedicine, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Narumi Ogonuki
- Bioresource Engineering Division, RIKEN BioResource Center, Tsukuba 305-0074, Japan
| | - Sayaka Komano-Inoue
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Manabe
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masahiro Yamaguchi
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, RIKEN BioResource Center, Tsukuba 305-0074, Japan
| | - Hiroshi Asahara
- Department of Systems Biomedicine, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla 92037, USA
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara 252-0374, Japan
| | - Masashi Mizuguchi
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Toshiya Manabe
- Division of Neuronal Network, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Teruyuki Tanaka
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|