1
|
Martin BA, Viegas J, Dalmolin LF, Santos EDS, Vatanabe IP, Lisboa SF, Lopez RFV, Sarmento B. Development of a Sensory Neuron-Integrated Skin Spheroid Model for the Evaluation of Neuropeptide-Based Topical Delivery Systems. ACS Biomater Sci Eng 2025. [PMID: 40410664 DOI: 10.1021/acsbiomaterials.5c00141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
The skin is a complex organ composed of multiple layers and diverse cell types, including keratinocytes, fibroblasts, adipocytes, and sensory neurons, which maintain its structural and functional integrity together. Conventional in vitro and ex vivo models help investigate drug permeation and selected biological effects. However, they are limited in replicating neural interactions critical for assessing the efficacy of neuropeptide-based therapies. To address this limitation, a sensory neuron-integrated skin spheroid (SS) model was established, incorporating key skin cell types and providing a rapid, adaptable, and physiologically relevant platform for screening the biological activity of topical delivery systems targeting neuronal pathways. The model's responsiveness was demonstrated using acetyl hexapeptide-3 (HEX-3), a neuropeptide that inhibits acetylcholine release. HEX-3 was internalized by spheroid cells, with preferential accumulation around sensory neurons, confirming targeted cellular uptake. In parallel, ex vivo human skin studies confirmed that HEX-3 can traverse the stratum corneum and accumulate in deeper layers. Treatment with this film enhanced skin hydration, reduced scaling, and improved the structural organization of the stratum corneum after 48 h. Functional assays using the SS model showed that HEX-3 treatment suppressed acetylcholine release, upregulated the antioxidant enzyme SOD2, and stimulated type I collagen synthesis. In aged skin samples, the application of HEX-3 significantly increased collagen levels. This effect was mirrored in the spheroid model, which reached collagen levels comparable to those of aged human skin upon treatment. These findings establish the SS model as a robust platform for evaluating the biological activity of neuropeptide-based topical therapies, offering valuable insights for developing advanced strategies for skin rejuvenation and repair.
Collapse
Affiliation(s)
- Bianca Aparecida Martin
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Juliana Viegas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Luciana Facco Dalmolin
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Emerson de Souza Santos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Izabela Pereira Vatanabe
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Sabrina Francesca Lisboa
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Renata Fonseca Vianna Lopez
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IUCS-CESPU - Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| |
Collapse
|
2
|
Rasà DM, Stoppa I, Bérenger-Currias N, Pasho E, Ciura S, Kabashi E, Martinat C, Boido M. Stress exposure affects amyotrophic lateral sclerosis pathogenesis via PI3K/Akt and focal adhesion pathways: evidence from three experimental models. Sci Rep 2025; 15:17583. [PMID: 40399476 PMCID: PMC12095691 DOI: 10.1038/s41598-025-02167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 05/12/2025] [Indexed: 05/23/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a multifactorial motor neuron (MN) disease, characterized by several cellular dysfunctions, many of which are shared by different neurodegenerative diseases. Here, we investigated whether a stressful lifestyle might exacerbate the altered mechanisms and affect the disease progression in ALS-predisposed conditions. To model stress in vivo, SOD1G93A mice underwent a chronic unpredicted mild stress protocol. This resulted in a significant impairment in body weight gain and motor performance, in a gender-specific manner. Moreover, the gene expression of Col1a1, Col1a2 and Il6 was strongly dysregulated in motor cortex and/or spinal cord of stressed mice. To assess the direct impact of stress on MNs, NSC-34 hSOD1G93A cells underwent oxygen and glucose deprivation. Compared to NSC-34 hSOD1WT, mutated MNs exhibited a reduced capacity to cope with stress. By performing gene expression, protein-protein interaction, gene ontology and pathway enrichment analyses, we also revealed the pivotal role of the PI3K/Akt and focal adhesion pathways (triggered by Gsk3b, Il6, Igf1 and/or collagen) in mediating stress response. Similar results were observed in stressed human iPSCs-derived TARDBPG298S MNs. In conclusion, our results suggest that the PI3K/Akt and focal adhesion pathways play a crucial role in stress response across different ALS-predisposed models: the study paves the way for novel therapeutic targets and highlights the relevance of a healthy lifestyle.
Collapse
Affiliation(s)
- Daniela Maria Rasà
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
- University School for Advanced Studies IUSS Pavia, Pavia, Italy
| | - Ilaria Stoppa
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Noémie Bérenger-Currias
- Université Paris-Saclay, Université d'Evry, Inserm, I-Stem, UMR861, 91100, Corbeil-Essonnes, France
| | - Elena Pasho
- Laboratory of Translational Research for Neurological Disorders, Imagine Institute, INSERM UMR 1163, 75015, Université Paris Cité, Paris, France
| | - Sorana Ciura
- Laboratory of Translational Research for Neurological Disorders, Imagine Institute, INSERM UMR 1163, 75015, Université Paris Cité, Paris, France
| | - Edor Kabashi
- Laboratory of Translational Research for Neurological Disorders, Imagine Institute, INSERM UMR 1163, 75015, Université Paris Cité, Paris, France
| | - Cécile Martinat
- Université Paris-Saclay, Université d'Evry, Inserm, I-Stem, UMR861, 91100, Corbeil-Essonnes, France
| | - Marina Boido
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy.
| |
Collapse
|
3
|
Tan X, Su X, Wang Y, Liang W, Wang D, Huo D, Wang H, Qi Y, Zhang W, Han L, Zhang D, Wang M, Xu J, Wang S, Wang J, Feng H. COMM domain containing 4 inhibits hephaestin and ferroportin to enhance neuronal ferroptosis by disturbing the Cu-Fe balance in amyotrophic lateral sclerosis. Brain Res 2025; 1861:149707. [PMID: 40389143 DOI: 10.1016/j.brainres.2025.149707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/16/2025] [Accepted: 05/14/2025] [Indexed: 05/21/2025]
Abstract
Dysregulation of copper and iron homeostasis contributes to the progression of amyotrophic lateral sclerosis (ALS), but the role and mechanism of COMM domain containing 4 (COMMD4) in ALS remains unclear. In this research, we showed that the expression of COMMD4 was upregulated in ALS cells and animal models. The increased COMMD4 induced neuronal ferroptosis by disrupting the Cu-Fe balance. Mechanistic studies indicated that COMMD4 inhibited ferroportin (FPN)-mediated neuronal iron efflux by inhibiting intracellular copper and hephaestin (HEPH). Our findings demonstrated that COMMD4 depletion exerts neuroprotective effects on ALS by increasing intracellular copper and activating HEPH/FPN pathway, rather than affecting the interaction between HEPH and FPN. Targeting COMMD4 and its downstream signaling pathways may offer potential therapeutic avenues for ALS.
Collapse
Affiliation(s)
- Xingli Tan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Xiaoli Su
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Ying Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Weiwei Liang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China; Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Di Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Di Huo
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Hongyong Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Yan Qi
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Wenmo Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Ling Han
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Dongmei Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Ming Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Jing Xu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Shuyu Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Jing Wang
- School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China
| | - Honglin Feng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China.
| |
Collapse
|
4
|
De Bertier S, Lautrette G, Amador MDM, Miki T, Boillée S, Lobsiger CS, Bohl D, Darios F, Machat S, Duchesne M, Vourc'h P, Fauret-Amsellem AL, Corcia P, Guy N, Couratier P, Seilhean D, Millecamps S. MAPT mutations in amyotrophic lateral sclerosis: clinical, neuropathological and functional insights. J Neurol 2025; 272:272. [PMID: 40100285 PMCID: PMC11920346 DOI: 10.1007/s00415-025-13007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/16/2025] [Accepted: 03/01/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are part of a well-established disease continuum, underpinned by TDP43-pathology. In contrast, the clinical manifestations of Tau-linked disorders are typically limited to cognitive phenotypes or atypical parkinsonism, although few reports describe motor neuron involvement associated with MAPT (microtubule-associated protein Tau) mutations. This study aimed to investigate the contribution of MAPT to the ALS phenotype. METHODS We analyzed a whole-exome sequencing database comprising 470 ALS patients and explored the pathogenicity of the identified variants through familial, clinical, neuropathological, and cellular studies. RESULTS We identified two missense variants in the Tau repeat domains: the novel p.I308T variant, in a patient with early-onset ALS, and the p.P364S mutation in three families with spinal- or respiratory-onset ALS. Segregation of this mutation with disease could be confirmed in two affected cousins. The observation of p.P364S patient's tissue showed accumulations of hyperphosphorylated Tau in various brain regions, prominent in the motor cortex with Lewy body-like inclusions, along with a C-terminal cleaved form of Tau in muscle. In NSC-34 motor neuron cells expressing p.I308T or p.P364S mutants, Tau was discontinuous along the neurites, with clusters of mitochondria resulting from impaired mitochondrial motility. CONCLUSION These findings expand the molecular understanding of ALS to include MAPT mutations. MAPT analysis should be incorporated into ALS genetic screening, particularly in patients with a familial history of the disease. Recognizing the full spectrum of MAPT-linked neurodegenerative diseases is of considerable interest, given the ongoing efforts to develop MAPT-targeted therapies.
Collapse
Affiliation(s)
- Sibylle De Bertier
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, 75013, Paris, France
| | - Géraldine Lautrette
- Service de Neurologie, Centre de Référence SLA et autres maladies du neurone moteur, CHU Dupuytren, 87000, Limoges, France
| | - Maria-Del-Mar Amador
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, 75013, Paris, France
- Département de Neurologie, Assistance Publique Hôpitaux de Paris (APHP), Centre de Référence SLA Ile de France, Hôpital de la Pitié-Salpêtrière, DMU Neurosciences, 75013, Paris, France
| | - Tomoko Miki
- Département de Neuropathologie, APHP, Hôpital de la Pitié-Salpêtrière, DMU Neurosciences, 75013, Paris, France
| | - Séverine Boillée
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, 75013, Paris, France
| | - Christian Stefan Lobsiger
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, 75013, Paris, France
| | - Delphine Bohl
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, 75013, Paris, France
| | - Frederic Darios
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, 75013, Paris, France
| | - Selma Machat
- Service de Neurologie, Centre de Référence SLA et autres maladies du neurone moteur, CHU Dupuytren, 87000, Limoges, France
| | | | - Patrick Vourc'h
- UMR 1253, iBraiN, Université de Tours, INSERM, 37000, Tours, France
- Service de Biochimie et Biologie Moléculaire, CHU de Tours, 37000, Tours, France
| | - Anne-Laure Fauret-Amsellem
- Unité Fonctionnelle de Neurogénétique Moléculaire et Cellulaire, Département de Génétique Médicale, APHP, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, 75013, Paris, France
| | - Philippe Corcia
- UMR 1253, iBraiN, Université de Tours, INSERM, 37000, Tours, France
- Centre de référence SLA, CHU Tours, 37000, Tours, France
| | - Nathalie Guy
- Service de Neurologie, Centre de Ressources et de Compétences SLA, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Philippe Couratier
- Service de Neurologie, Centre de Référence SLA et autres maladies du neurone moteur, CHU Dupuytren, 87000, Limoges, France
| | - Danielle Seilhean
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, 75013, Paris, France
- Département de Neuropathologie, APHP, Hôpital de la Pitié-Salpêtrière, DMU Neurosciences, 75013, Paris, France
| | - Stéphanie Millecamps
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, 75013, Paris, France.
| |
Collapse
|
5
|
Huang HY, Hsu HY, Kuo CY, Wu ML, Lai CC, Chang GRL, Lin YJ. Heterologous expressing melittin in a probiotic yeast to evaluate its function for promoting NSC-34 regeneration. Appl Microbiol Biotechnol 2024; 108:496. [PMID: 39466458 PMCID: PMC11519230 DOI: 10.1007/s00253-024-13336-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/21/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
Melittin is a bioactive peptide and the predominant component in bee venom (BV), studied for its many medical properties, such as antibacterial, anti-inflammatory, anti-arthritis, nerve damage reduction, and muscle cell regeneration. Melittin is primarily obtained through natural extraction and chemical synthesis; however, both methods have limitations and cannot be used for mass production. This study established a heterologous melittin expression system in the probiotic yeast Kluyveromyces marxianus. This yeast was selected for its advantages in stress tolerance and high secreted protein yields, simplifying purification. A > 95% high-purity melittin (MET) and its precursor promelittin (ProMET) were successfully produced and purified at 1.68 μg/mL and 3.33 μg/mL concentrations and verified through HPLC and mass spectrum. The functional test of the NSC-34 cell regeneration revealed that MET achieved the best activity compared to ProMET and the natural-extracted BV groups. Growth-related gene expressions were evaluated, including microtubule-associated protein 2 (MAP2), microtubule-associated protein Tau (MAPT), growth-associated protein 43 (GAP-43), choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT), and acetylcholine esterase (AChE). The results indicated that treating MET increased MAP2, GAP-43, and VAChT expressions, in which cholinergic signaling is related to neurological functions. A heterologously expressed melittin in a probiotic yeast and its potential for promoting NSC-34 regeneration described here facilitate commercial and therapeutic use. KEY POINTS: • MET and its precursor ProMET were successfully hetero-expressed in K. marxianus • > 95% high-purity MET and ProMET were purified at 1.68 μg/mL and 3.33 μg/mL • MET has no cytotoxicity toward NSC-34 and significantly promotes NSC-34 growth.
Collapse
Affiliation(s)
- Hsiao-Yun Huang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xing-Da Road, South District, Taichung City, 40227, Taiwan, ROC
| | - Hung-Yi Hsu
- Section of Neurology, Department of Internal Medicine, Tungs' Taichung Metro-Harbor Hospital, No. 699, Section 8, Taiwan Boulevard, Wuqi District, Taichung City, 43503, Taiwan, ROC
- Department of Post Baccalaureate Medicine, National Chung Hsing University, No.699, Section 8, Taiwan Boulevard, Wuqi District, Taichung City, 43503, Taiwan, ROC
| | - Cheng-Yu Kuo
- Institute of Molecular Biology, National Chung Hsing University, No.145, Xing-Da Road, South District, Taichung City, 40227, Taiwan, ROC
| | - Mao-Lun Wu
- Department of Life Sciences, National Chung Hsing University, No. 145, Xing-Da Road, South District, Taichung City, 40227, Taiwan, ROC
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, No.145, Xing-Da Road, South District, Taichung City, 40227, Taiwan, ROC
| | - Gary Ro-Lin Chang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xing-Da Road, South District, Taichung City, 40227, Taiwan, ROC
| | - Yu-Ju Lin
- Department of Life Sciences, National Chung Hsing University, No. 145, Xing-Da Road, South District, Taichung City, 40227, Taiwan, ROC.
| |
Collapse
|
6
|
Tan X, Su X, Wang Y, Liang W, Wang D, Huo D, Wang H, Qi Y, Zhang W, Han L, Zhang D, Wang M, Xu J, Feng H. RBM5 induces motor neuron apoptosis in hSOD1 G93A-related amyotrophic lateral sclerosis by inhibiting Rac1/AKT pathways. Brain Res Bull 2024; 216:111049. [PMID: 39142444 DOI: 10.1016/j.brainresbull.2024.111049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder distinguished by gradual depletion of motor neurons. RNA binding motif protein 5 (RBM5), an abundantly expressed RNA-binding protein, plays a critical role in the process of cellular death. However, little is known about the role of RBM5 in the pathogenesis of ALS. Here, we found that RBM5 was upregulated in ALS hSOD1G93A-NSC34 cell models and hSOD1G93A mice due to a reduction of miR-141-5p. The upregulation of RBM5 increased the apoptosis of motor neurons by inhibiting Rac1-mediated neuroprotection. In contrast, genetic knockdown of RBM5 rescued motor neurons from hSOD1G93A-induced degeneration by activating Rac1 signaling. The neuroprotective effect of RBM5-knockdown was significantly inhibited by the Rac1 inhibitor, NSC23766. These findings suggest that RBM5 could potentially serve as a therapeutic target in ALS by activating the Rac1 signalling.
Collapse
Affiliation(s)
- Xingli Tan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Xiaoli Su
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Ying Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Weiwei Liang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China; Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Di Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Di Huo
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Hongyong Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Yan Qi
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Wenmo Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Ling Han
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Dongmei Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Ming Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Jing Xu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Honglin Feng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China.
| |
Collapse
|
7
|
Vitale G, Amadio S, Liguori F, Volonté C. Empowering the NSC-34 cell line as a motor neuron model: cytosine arabinoside's action. Neural Regen Res 2024; 21:01300535-990000000-00516. [PMID: 39314144 PMCID: PMC12094541 DOI: 10.4103/nrr.nrr-d-24-00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/31/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
The NSC-34 cell line is a widely recognized motor neuron model and various neuronal differentiation protocols have been exploited. Under previously reported experimental conditions, only part of the cells resemble differentiated neurons; however, they do not exhibit extensive and time-prolonged neuritogenesis, and maintain their duplication capacity in culture. The aim of the present work was to facilitate long-term and more homogeneous neuronal differentiation in motor neuron-like NSC-34 cells. We found that the antimitotic drug cytosine arabinoside promoted robust and persistent neuronal differentiation in the entire cell population. Long and interconnecting neuronal processes with abundant growth cones were homogeneously induced and were durable for up to at least 6 weeks in culture. Moreover, cytosine arabinoside was permissive, dispensable, and mostly irreversible in priming NSC-34 cells for neurite initiation and regeneration after mechanical dislodgement. Finally, the expression of the cell proliferation antigen Ki67 was inhibited by cytosine arabinoside, whereas the expression levels of neuronal growth associated protein 43, vimentin, and motor neuron-specific p75, Islet2, homeobox 9 markers were upregulated, as confirmed by western blot and/or confocal immunofluorescence analysis. Overall, these findings support the use of NSC-34 cells as a motor neuron model for properly investigating neurodegenerative mechanisms and prospectively identifying neuroprotective strategies.
Collapse
Affiliation(s)
- Giuseppe Vitale
- Experimental Neuroscience and Neurological Disease Models, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Susanna Amadio
- Experimental Neuroscience and Neurological Disease Models, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Francesco Liguori
- Experimental Neuroscience and Neurological Disease Models, IRCCS Fondazione Santa Lucia, Rome, Italy
- Institute for System Analysis and Computer Science “Antonio Ruberti” (IASI), National Research Council (CNR), Rome, Italy
| | - Cinzia Volonté
- Experimental Neuroscience and Neurological Disease Models, IRCCS Fondazione Santa Lucia, Rome, Italy
- Institute for System Analysis and Computer Science “Antonio Ruberti” (IASI), National Research Council (CNR), Rome, Italy
| |
Collapse
|
8
|
Escudier O, Zhang Y, Whiting A, Chazot P. Evaluation of a Synthetic Retinoid, Ellorarxine, in the NSC-34 Cell Model of Motor Neuron Disease. Int J Mol Sci 2024; 25:9764. [PMID: 39337251 PMCID: PMC11431449 DOI: 10.3390/ijms25189764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease worldwide and is characterized by progressive muscle atrophy. There are currently two approved treatments, but they only relieve symptoms briefly and do not cure the disease. The main hindrance to research is the complex cause of ALS, with its pathogenesis not yet fully elucidated. Retinoids (vitamin A derivatives) appear to be essential in neuronal cells and have been implicated in ALS pathogenesis. This study explores 4-[2-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydroquinoxalin-2-yl)ethylnyl]benzoic acid (Ellorarxine, or DC645 or NVG0645), a leading synthetic retinoic acid, discussing its pharmacological mechanisms, neuroprotective properties, and relevance to ALS. The potential therapeutic effect of Ellorarxine was analyzed in vitro using the WT and SOD1G93A NSC-34 cell model of ALS at an administered concentration of 0.3-30 nM. Histological, functional, and biochemical analyses were performed. Elorarxine significantly increased MAP2 expression and neurite length, increased AMPA receptor GluA2 expression and raised intracellular Ca2+ baseline, increased level of excitability, and reduced Ca2+ spike during depolarization in neurites. Ellorarxine also displayed both antioxidant and anti-inflammatory effects. Overall, these results suggest Ellorarxine shows relevance and promise as a novel therapeutic strategy for treatment of ALS.
Collapse
Affiliation(s)
- Olivia Escudier
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK
- Department of Chemistry, Science Laboratories, Durham University, Durham DH1 3LE, UK
| | - Yunxi Zhang
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK
| | - Andrew Whiting
- Department of Chemistry, Science Laboratories, Durham University, Durham DH1 3LE, UK
| | - Paul Chazot
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
9
|
Trainito A, Gugliandolo A, Chiricosta L, Salamone S, Pollastro F, Mazzon E, Lui M. Cannabinol Regulates the Expression of Cell Cycle-Associated Genes in Motor Neuron-like NSC-34: A Transcriptomic Analysis. Biomedicines 2024; 12:1340. [PMID: 38927547 PMCID: PMC11201772 DOI: 10.3390/biomedicines12061340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Cannabinoids are reported to have neuroprotective properties and play a role in neurogenesis and neuroplasticity in in vitro and in vivo models. Cannabinol (CBN) is a minor cannabinoid produced by the degradation of Δ9-tetrahydrocannabinol in Cannabis sativa L. and exhibits anti-oxidant, analgesic, anti-bacterial, and anti-inflammatory effects. In this study, we explored the biological effects of 20 µM CBN (6.20 µg/mL) on differentiated NSC-34 cells by MTT assay and next-generation sequencing analysis on the transcriptome. KEGG and Gene Ontology enrichment analyses have been performed to evaluate potential CBN-associated processes. Our results highlighted the absence of any cytotoxic effect of CBN. The comparative transcriptomic analysis pointed out the downregulation of Cdkn2a, Cdkn2c and Cdkn2d genes, which are known to suppress the cell cycle. Ccne2, Cdk2, Cdk7, Anapc11, Anapc10, Cdc23, Cdc16, Anapc4, Cdc27, Stag1, Smc3, Smc1a, Nipbl, Pds5a, Pds5b, and Wapl genes, renowned for their role as cell cycle progression activators, were instead upregulated. Our work suggests that CBN regulates the expression of many genes related to the cell cycle, which are required for axonal maturation, migration, and synaptic plasticity, while not affecting the expression of genes involved in cell death or tumorigenesis.
Collapse
Affiliation(s)
- Alessandra Trainito
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.T.); (A.G.); (M.L.)
| | - Agnese Gugliandolo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.T.); (A.G.); (M.L.)
| | - Luigi Chiricosta
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.T.); (A.G.); (M.L.)
| | - Stefano Salamone
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy; (S.S.); (F.P.)
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy; (S.S.); (F.P.)
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.T.); (A.G.); (M.L.)
| | - Maria Lui
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.T.); (A.G.); (M.L.)
| |
Collapse
|
10
|
Carata E, Muci M, Mariano S, Di Giulio S, Nigro A, Romano A, Panzarini E. Extracellular Vesicles from NSC-34 MN-like Cells Transfected with Mutant SOD1 Modulate Inflammatory Status of Raw 264.7 Macrophages. Genes (Basel) 2024; 15:735. [PMID: 38927671 PMCID: PMC11202944 DOI: 10.3390/genes15060735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease targeting the brain and spinal cord. Non-neuronal cells, including macrophages, may contribute to the disruption of motor neurons (MNs), neuromuscular junction dismantling and clinical signs of ALS. Understanding the modality and the effect of MNs-macrophage communication is pivotal. Here, we focus on extracellular vesicle (EVS)-mediated communication and, in particular, we analyze the response of macrophages. NSC-34 cells transfected with mutant SOD1 (G93A, A4V, G85R, G37R) and differentiated towards MN-like cells, and Raw 264.7 macrophages are the cellular models of the study. mSOD1 NSC-34 cells release a high number of vesicles, both large-lEVs (300 nm diameter) and small-sEVs (90 nm diameter), containing inflammation-modulating molecules, and are efficiently taken up by macrophages. RT-PCR analysis of inflammation mediators demonstrated that the conditioned medium of mSOD1 NSC-34 cells polarizes Raw 264.7 macrophages towards both pro-inflammatory and anti-inflammatory phenotypes. sEVs act on macrophages in a time-dependent manner: an anti-inflammatory response mediated by TGFβ firstly starts (12 h); successively, the response shifts towards a pro-inflammation IL-1β-mediated (48 h). The response of macrophages is strictly dependent on the SOD1 mutation type. The results suggest that EVs impact physiological and behavioral macrophage processes and are of potential relevance to MN degeneration.
Collapse
Affiliation(s)
- Elisabetta Carata
- Department of Biological Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (E.C.); (M.M.); (S.M.); (S.D.G.)
| | - Marco Muci
- Department of Biological Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (E.C.); (M.M.); (S.M.); (S.D.G.)
| | - Stefania Mariano
- Department of Biological Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (E.C.); (M.M.); (S.M.); (S.D.G.)
| | - Simona Di Giulio
- Department of Biological Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (E.C.); (M.M.); (S.M.); (S.D.G.)
| | - Annamaria Nigro
- IRCCS San Raffaele Scientific Institute, Division of Neuroscience, Institute of Experimental Neurology, 20132 Milan, Italy; (A.N.); (A.R.)
| | - Alessandro Romano
- IRCCS San Raffaele Scientific Institute, Division of Neuroscience, Institute of Experimental Neurology, 20132 Milan, Italy; (A.N.); (A.R.)
| | - Elisa Panzarini
- Department of Biological Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (E.C.); (M.M.); (S.M.); (S.D.G.)
| |
Collapse
|
11
|
Malnar Črnigoj M, Čerček U, Yin X, Ho MT, Repic Lampret B, Neumann M, Hermann A, Rouleau G, Suter B, Mayr M, Rogelj B. Phenylalanine-tRNA aminoacylation is compromised by ALS/FTD-associated C9orf72 C4G2 repeat RNA. Nat Commun 2023; 14:5764. [PMID: 37717009 PMCID: PMC10505166 DOI: 10.1038/s41467-023-41511-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
The expanded hexanucleotide GGGGCC repeat mutation in the C9orf72 gene is the main genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Under one disease mechanism, sense and antisense transcripts of the repeat are predicted to bind various RNA-binding proteins, compromise their function and cause cytotoxicity. Here we identify phenylalanine-tRNA synthetase (FARS) subunit alpha (FARSA) as the main interactor of the CCCCGG antisense repeat RNA in cytosol. The aminoacylation of tRNAPhe by FARS is inhibited by antisense RNA, leading to decreased levels of charged tRNAPhe. Remarkably, this is associated with global reduction of phenylalanine incorporation in the proteome and decrease in expression of phenylalanine-rich proteins in cellular models and patient tissues. In conclusion, this study reveals functional inhibition of FARSA in the presence of antisense RNA repeats. Compromised aminoacylation of tRNA could lead to impairments in protein synthesis and further contribute to C9orf72 mutation-associated pathology.
Collapse
Affiliation(s)
- Mirjana Malnar Črnigoj
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
- Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Urša Čerček
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
- Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Xiaoke Yin
- King's BHF Centre, King's College London, London, SE5 9NU, UK
| | - Manh Tin Ho
- Institute of Cell Biology, University of Bern, Bern, 3012, Switzerland
| | - Barbka Repic Lampret
- Clinical Institute of Special Laboratory Diagnostics, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, 1000, Slovenia
| | - Manuela Neumann
- Molecular Neuropathology of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Tübingen, 72076, Germany
- Department of Neuropathology, University Hospital of Tübingen, Tübingen, 72076, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology and Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Rostock/Greifswald, 18147, Rostock, Germany
| | - Guy Rouleau
- Department of Human Genetics, McGill University, Montréal, QC, H3A 0G4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, H3A 0G4, Canada
| | - Beat Suter
- Institute of Cell Biology, University of Bern, Bern, 3012, Switzerland
| | - Manuel Mayr
- King's BHF Centre, King's College London, London, SE5 9NU, UK
| | - Boris Rogelj
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, 1000, Slovenia.
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, 1000, Slovenia.
| |
Collapse
|
12
|
Shirosaki Y, Fregnan F, Muratori L, Yasutomi S, Geuna S, Raimondo S. The Impact of the Molecular Weight of Degradation Products with Silicon from Porous Chitosan-Siloxane Hybrids on Neuronal Cell Behavior. Polymers (Basel) 2023; 15:3272. [PMID: 37571166 PMCID: PMC10422348 DOI: 10.3390/polym15153272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Silicon (Si) is an essential trace element in the human body and it exists in connective tissue as aqueous orthosilicic acid. Porous chitosan-3-glycidoxypropyltrimethoxysilane (GPTMS) hybrids can regenerate nerve tissue and recover sensor and motor functions. However, the structures and roles of the degradation products with Si extracted from the hybrids in nerve regeneration are not clear. In this study, we prepared porous chitosan-GPTMS hybrids with different amounts of GPTMS to amino groups of chitosan (chitosan:GPTMS = 1:0.5 and 1:1 molar ratios). The structures of the degradation products with Si from the hybrids were examined using time-of-flight mass spectrometry, and biological assessments were conducted in order to evaluate their potential use in the preparation of devices for nerve repair. Glial and motor cell lines and ex vivo explants of dorsal root ganglia were used in this study for evaluating their behavior in the presence of the different degradation products with Si. The structure of the degradation products with Si depended on the starting composition. The results showed that glial cell proliferation was lower in the medium with the higher-molecular-weight degradation products with Si. Moreover, motor cell line differentiation and the neurite outgrowth of dorsal root ganglion explants were improved with the lower-molecular-weight degradation products with Si. The results obtained could be useful for designing a new nerve regeneration scaffold including silicon components.
Collapse
Affiliation(s)
- Yuki Shirosaki
- Faculty of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan
| | - Federica Fregnan
- Department of Clinical and Biological Sciences and Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (F.F.); (L.M.); (S.G.); (S.R.)
| | - Luisa Muratori
- Department of Clinical and Biological Sciences and Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (F.F.); (L.M.); (S.G.); (S.R.)
| | - Saki Yasutomi
- Faculty of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan
| | - Stefano Geuna
- Department of Clinical and Biological Sciences and Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (F.F.); (L.M.); (S.G.); (S.R.)
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences and Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (F.F.); (L.M.); (S.G.); (S.R.)
| |
Collapse
|
13
|
Nango H, Tsuruta K, Miyagishi H, Aono Y, Saigusa T, Kosuge Y. Update on the pathological roles of prostaglandin E 2 in neurodegeneration in amyotrophic lateral sclerosis. Transl Neurodegener 2023; 12:32. [PMID: 37337289 DOI: 10.1186/s40035-023-00366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/07/2023] [Indexed: 06/21/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by selective degeneration of upper and lower motor neurons. The pathogenesis of ALS remains largely unknown; however, inflammation of the spinal cord is a focus of ALS research and an important pathogenic process in ALS. Prostaglandin E2 (PGE2) is a major lipid mediator generated by the arachidonic-acid cascade and is abundant at inflammatory sites. PGE2 levels are increased in the postmortem spinal cords of ALS patients and in ALS model mice. Beneficial therapeutic effects have been obtained in ALS model mice using cyclooxygenase-2 inhibitors to inhibit the biosynthesis of PGE2, but the usefulness of this inhibitor has not yet been proven in clinical trials. In this review, we present current evidence on the involvement of PGE2 in the progression of ALS and discuss the potential of microsomal prostaglandin E synthase (mPGES) and the prostaglandin receptor E-prostanoid (EP) 2 as therapeutic targets for ALS. Signaling pathways involving prostaglandin receptors mediate toxic effects in the central nervous system. In some situations, however, the receptors mediate neuroprotective effects. Our recent studies demonstrated that levels of mPGES-1, which catalyzes the final step of PGE2 biosynthesis, are increased at the early-symptomatic stage in the spinal cords of transgenic ALS model mice carrying the G93A variant of superoxide dismutase-1. In addition, in an experimental motor-neuron model used in studies of ALS, PGE2 induces the production of reactive oxygen species and subsequent caspase-3-dependent cytotoxicity through activation of the EP2 receptor. Moreover, this PGE2-induced EP2 up-regulation in motor neurons plays a role in the death of motor neurons in ALS model mice. Further understanding of the pathophysiological role of PGE2 in neurodegeneration may provide new insights to guide the development of novel therapies for ALS.
Collapse
Affiliation(s)
- Hiroshi Nango
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan
| | - Komugi Tsuruta
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan
| | - Hiroko Miyagishi
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan
| | - Yuri Aono
- Department of Pharmacology, School of Dentistry at Matsudo, Nihon University, 2-870-1 Sakaechonishi, Matsudo-Shi, Chiba, 271-8587, Japan
| | - Tadashi Saigusa
- Department of Pharmacology, School of Dentistry at Matsudo, Nihon University, 2-870-1 Sakaechonishi, Matsudo-Shi, Chiba, 271-8587, Japan
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan.
| |
Collapse
|
14
|
Liu Y, Ding M, Pan S, Zhou R, Yao J, Fu R, Yu H, Lu Z. MicroRNA-23a-3p is upregulated in plasma exosomes of bulbar-onset ALS patients and targets ERBB4. Neuroscience 2023:S0306-4522(23)00250-6. [PMID: 37290686 DOI: 10.1016/j.neuroscience.2023.05.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/10/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease related to the progressive death of motor neurons. Understanding the pathogenesis of ALS continues to provide considerable challenges. Bulbar-onset ALS involves faster functional loss and shorter survival time than spinal cord-onset ALS. However, debate is ongoing regarding typical plasma miRNA changes in ALS patients with bulbar onset. Exosomal miRNAs have not yet been described as a tool for bulbar-onset ALS diagnosis or prognosis prediction. In this study, candidate exosomal miRNAs were identified by small RNA sequencing using samples from patients with bulbar-onset ALS and healthy controls. Potential pathogenic mechanisms were identified through enrichment analysis of target genes for differential miRNAs. Expression of miR-16-5p, miR-23a-3p, miR-22-3p, and miR-93-5p was significantly up-regulated in plasma exosomes from bulbar-onset ALS patients compared with healthy control subjects. Among them, miR-16-5p and miR-23a-3p were significantly lower in spinal-onset ALS patients than those with bulbar-onset. Furthermore, up-regulation of miR-23a-3p in motor neuron-like NSC-34 cells promoted apoptosis and inhibited cell viability. This miRNA was found to directly target ERBB4 and regulate the AKT/GSK3β pathway. Collectively, the above miRNAs and their targets are related to the development of bulbar-onset ALS. Our research indicates that miR-23a-3p might have an effect on motor neuron loss observed in bulbar-onset ALS and may be a novel target for the therapy of ALS in the future.
Collapse
Affiliation(s)
- Yue Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Man Ding
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sijia Pan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rumeng Zhou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiajia Yao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rong Fu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hang Yu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zuneng Lu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
15
|
Valeri A, Chiricosta L, D’Angiolini S, Pollastro F, Salamone S, Mazzon E. Cannabichromene Induces Neuronal Differentiation in NSC-34 Cells: Insights from Transcriptomic Analysis. Life (Basel) 2023; 13:life13030742. [PMID: 36983897 PMCID: PMC10051538 DOI: 10.3390/life13030742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Phytocannabinoids, with their variety of beneficial effects, represent a valid group of substances that could be employed as neurogenesis-enhancers or neuronal differentiation inducers. We focused our attention on the neuronal-related potential of cannabichromene (CBC) when administered to undifferentiated NSC-34 for 24 h. Transcriptomic analysis showed an upregulation of several neuronal markers, such as Neurod1 and Tubb3, as well as indicators of neuronal differentiation process progression, such as Pax6. An in-depth investigation of the processes involved in neuronal differentiation indicates positive cytoskeleton remodeling by upregulation of Cfl2 and Tubg1, and active differentiation-targeted transcriptional program, suggested by Phox2b and Hes1. After 48 h of treatment, the markers previously examined in the transcriptomic analysis are still overexpressed, like Ache and Hes1, indicating that the differentiation process is still in progress. The lack of GFAP protein suggests that no astroglial differentiation is taking place, and it is reasonable to indicate the neuronal one as the ongoing one. These results indicate CBC as a potential neuronal differentiation inducer for NSC-34 cells.
Collapse
Affiliation(s)
- Andrea Valeri
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Luigi Chiricosta
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Simone D’Angiolini
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
- Plantachem S.r.l.s., Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Stefano Salamone
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
- Plantachem S.r.l.s., Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
- Correspondence:
| |
Collapse
|
16
|
Gonzalez Porras MA, Gransee HM, Denton TT, Shen D, Webb KL, Brinker CJ, Noureddine A, Sieck GC, Mantilla CB. CTB-targeted protocells enhance ability of lanthionine ketenamine analogs to induce autophagy in motor neuron-like cells. Sci Rep 2023; 13:2581. [PMID: 36781993 PMCID: PMC9925763 DOI: 10.1038/s41598-023-29437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Impaired autophagy, a cellular digestion process that eliminates proteins and damaged organelles, has been implicated in neurodegenerative diseases, including motor neuron disorders. Motor neuron targeted upregulation of autophagy may serve as a promising therapeutic approach. Lanthionine ketenamine (LK), an amino acid metabolite found in mammalian brain tissue, activates autophagy in neuronal cell lines. We hypothesized that analogs of LK can be targeted to motor neurons using nanoparticles to improve autophagy flux. Using a mouse motor neuron-like hybrid cell line (NSC-34), we tested the effect of three different LK analogs on autophagy modulation, either alone or loaded in nanoparticles. For fluorescence visualization of autophagy flux, we used a mCherry-GFP-LC3 plasmid reporter. We also evaluated protein expression changes in LC3-II/LC3-I ratio obtained by western blot, as well as presence of autophagic vacuoles per cell obtained by electron microscopy. Delivering LK analogs with targeted nanoparticles significantly enhanced autophagy flux in differentiated motor neuron-like cells compared to LK analogs alone, suggesting the need of a delivery vehicle to enhance their efficacy. In conclusion, LK analogs loaded in nanoparticles targeting motor neurons constitute a promising treatment option to induce autophagy flux, which may serve to mitigate motor neuron degeneration/loss and preserve motor function in motor neuron disease.
Collapse
Affiliation(s)
- Maria A Gonzalez Porras
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Heather M Gransee
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Travis T Denton
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University Health Sciences Spokane, Spokane, WA, USA
- Department of Translational Medicine and Physiology, Elson S. Floyd, College of Medicine, Washington State University Health Sciences Spokane, Spokane, WA, USA
- Steve Gleason Institute for Neuroscience, Washington State University Health Sciences Spokane, Spokane, WA, USA
| | - Dunxin Shen
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University Health Sciences Spokane, Spokane, WA, USA
| | - Kevin L Webb
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - C Jeffrey Brinker
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, USA
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM, USA
| | - Achraf Noureddine
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, USA
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA
| | - Gary C Sieck
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Carlos B Mantilla
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- MB2-758, St Mary's Hospital, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
17
|
Wang D, Liang W, Huo D, Wang H, Wang Y, Cong C, Zhang C, Yan S, Gao M, Su X, Tan X, Zhang W, Han L, Zhang D, Feng H. SPY1 inhibits neuronal ferroptosis in amyotrophic lateral sclerosis by reducing lipid peroxidation through regulation of GCH1 and TFR1. Cell Death Differ 2023; 30:369-382. [PMID: 36443440 PMCID: PMC9950139 DOI: 10.1038/s41418-022-01089-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/29/2022] Open
Abstract
Ferroptosis is an iron-dependent cell death with the accumulation of lipid peroxidation and dysfunction of antioxidant systems. As the critical regulator, glutathione peroxidase 4 (GPX4) has been demonstrated to be down-regulated in amyotrophic lateral sclerosis (ALS). However, the mechanism of ferroptosis in ALS remains unclear. In this research, bioinformatics analysis revealed a high correlation between ALS, ferroptosis, and Speedy/RINGO cell cycle regulator family member A (SPY1). Lipid peroxidation of ferroptosis in hSOD1G93A cells and mice was generated by TFR1-imported excess free iron, decreased GSH, mitochondrial membrane dysfunction, upregulated ALOX15, and inactivation of GCH1, GPX4. SPY1 is a "cyclin-like" protein that has been proved to enhance the viability of hSOD1G93A cells by inhibiting DNA damage. In our study, the decreased expression of SPY1 in ALS was resulted from unprecedented ubiquitination degradation mediated by MDM2 (a nuclear-localized E3 ubiquitin ligase). Further, SPY1 was identified as a novel ferroptosis suppressor via alleviating lipid peroxidation produced by dysregulated GCH1/BH4 axis (a resistance axis of ferroptosis) and transferrin receptor protein 1 (TFR1)-induced iron. Additionally, neuron-specific overexpression of SPY1 significantly delayed the occurrence and prolonged the survival in ALS transgenic mice through the above two pathways. These results suggest that SPY1 is a novel target for both ferroptosis and ALS.
Collapse
Affiliation(s)
- Di Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Weiwei Liang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Di Huo
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Hongyong Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Ying Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Chaohua Cong
- Department of Neurology, Shanghai JiaoTong University School of Medicine, Shanghai No. 9 People's Hospital, Shanghai, PR China
| | - Chunting Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei City, Anhui Province, PR China
| | - Shi Yan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Ming Gao
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang Province, PR China
| | - Xiaoli Su
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Xingli Tan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Wenmo Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Ling Han
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Dongmei Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Honglin Feng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China.
| |
Collapse
|
18
|
Ackerman HD, Gerhard GS. Bile Acids Induce Neurite Outgrowth in Nsc-34 Cells via TGR5 and a Distinct Transcriptional Profile. Pharmaceuticals (Basel) 2023; 16:174. [PMID: 37259326 PMCID: PMC9963315 DOI: 10.3390/ph16020174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 09/24/2024] Open
Abstract
Increasing evidence supports a neuroprotective role for bile acids in major neurodegenerative disorders. We studied major human bile acids as signaling molecules for their two cellular receptors, farnesoid X receptor (FXR or NR1H4) and G protein-coupled bile acid receptor 1 (GPBAR1 or TGR5), as potential neurotrophic agents. Using quantitative image analysis, we found that 20 μM deoxycholic acid (DCA) could induce neurite outgrowth in NSC-34 cells that was comparable to the neurotrophic effects of the culture control 1 μM retinoic acid (RA), with lesser effects observed for chenodexoycholic acid (CDCA) at 20 μM, and similar though less robust neurite outgrowth in SH-SY5Y cells. Using chemical agonists and antagonists of FXR, LXR, and TGR5, we found that TGR5 agonism was comparable to DCA stimulation and stronger than RA, and that neither FXR nor liver X receptor (LXR) inhibition could block bile acid-induced neurite growth. RNA sequencing identified a core set of genes whose expression was regulated by DCA, CDCA, and RA. Our data suggest that bile acid signaling through TGR5 may be a targetable pathway to stimulate neurite outgrowth.
Collapse
Affiliation(s)
- Hayley D Ackerman
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Glenn S Gerhard
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
19
|
Nango H, Kosuge Y. Present State and Future Perspectives of Prostaglandins as a Differentiation Factor in Motor Neurons. Cell Mol Neurobiol 2022; 42:2097-2108. [PMID: 34032949 PMCID: PMC11421640 DOI: 10.1007/s10571-021-01104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/18/2021] [Indexed: 11/28/2022]
Abstract
Spinal motor neurons have the longest axons that innervate the skeletal muscles of the central nervous system. Motor neuron diseases caused by spinal motor neuron cell death are incurable due to the unique and irreplaceable nature of their neural circuits. Understanding the mechanisms of neurogenesis, neuritogenesis, and synaptogenesis in motor neurons will allow investigators to develop new in vitro models and regenerative therapies for motor neuron diseases. In particular, small molecules can directly reprogram and convert into neural stem cells and neurons, and promote neuron-like cell differentiation. Prostaglandins are known to have a role in the differentiation and tissue regeneration of several cell types and organs. However, the involvement of prostaglandins in the differentiation of motor neurons from neural stem cells is poorly understood. The general cell line used in research on motor neuron diseases is the mouse neuroblastoma and spinal motor neuron fusion cell line NSC-34. Recently, our laboratory reported that prostaglandin E2 and prostaglandin D2 enhanced the conversion of NSC-34 cells into motor neuron-like cells with neurite outgrowth. Moreover, we found that prostaglandin E2-differentiated NSC-34 cells had physiological and electrophysiological properties of mature motor neurons. In this review article, we provide contemporary evidence on the effects of prostaglandins, particularly prostaglandin E2 and prostaglandin D2, on differentiation and neural conversion. We also discuss the potential of prostaglandins as candidates for the development of new therapeutic drugs for motor neuron diseases.
Collapse
Affiliation(s)
- Hiroshi Nango
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba, 274-8555, Japan
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba, 274-8555, Japan.
| |
Collapse
|
20
|
Truong TT, Chiu WT, Lai YS, Huang H, Jiang X, Huang CC. Ca 2+ signaling-mediated low-intensity pulsed ultrasound-induced proliferation and activation of motor neuron cells. ULTRASONICS 2022; 124:106739. [PMID: 35367809 DOI: 10.1016/j.ultras.2022.106739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/24/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Motor neuron diseases (MND) including amyotrophic lateral sclerosis and Parkinson disease are commonly neurodegenerative, causing a gradual loss of nerve cells and affecting the mechanisms underlying changes in calcium (Ca2+)-regulated dendritic growth. In this study, the NSC-34 cell line, a population of hybridomas generated using mouse spinal cord cells with neuroblastoma, was used to investigate the effect of low-intensity pulsed ultrasound (LIPUS) as part of an MND treatment model. After NSC-34 cells were seeded for 24 h, LIPUS stimulation was performed on the cells at days 1 and 3 using a non-focused transducer at 1.15 MHz for 8 min. NSC-34 cell proliferation and morphological changes were observed at various LIPUS intensities and different combinations of Ca2+ channel blockers. The nuclear translocation of Ca2+-dependent transcription factors was also examined. We observed that the neurite outgrowth and cell number of NSC-34 significantly increased with LIPUS stimulation at days 2 and 4, which may be associated with the treatment's positive effect on the activation of Ca2+-dependent transcription factors, such as nuclear factor of activated T cells and nuclear factor-kappa B. Our findings suggest that the LIPUS-induced Ca2+ signaling and transcription factor activation facilitate the morphological maturation and proliferation of NSC-34 cells, presenting a promising noninvasive method to improve stimulation therapy for MNDs in the future.
Collapse
Affiliation(s)
- Thi-Thuyet Truong
- Department of Biomedical Engineering, National Cheng Kung University, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Taiwan
| | - Yi-Shyun Lai
- Department of Biomedical Engineering, National Cheng Kung University, Taiwan
| | - Hsien Huang
- Department of Biomedical Engineering, National Cheng Kung University, Taiwan
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, USA
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Taiwan; Department of Mechanical and Aerospace Engineering, North Carolina State University, USA; Medical Device Innovation Center, National Cheng Kung University, Taiwan.
| |
Collapse
|
21
|
Ferrari V, Cristofani R, Cicardi ME, Tedesco B, Crippa V, Chierichetti M, Casarotto E, Cozzi M, Mina F, Galbiati M, Piccolella M, Carra S, Vaccari T, Nalbandian A, Kimonis V, Fortuna TR, Pandey UB, Gagliani MC, Cortese K, Rusmini P, Poletti A. Pathogenic variants of Valosin-containing protein induce lysosomal damage and transcriptional activation of autophagy regulators in neuronal cells. Neuropathol Appl Neurobiol 2022; 48:e12818. [PMID: 35501124 PMCID: PMC10588520 DOI: 10.1111/nan.12818] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/14/2022] [Accepted: 04/28/2022] [Indexed: 11/28/2022]
Abstract
AIM Mutations in the valosin-containing protein (VCP) gene cause various lethal proteinopathies that mainly include inclusion body myopathy with Paget's disease of bone and frontotemporal dementia (IBMPFD) and amyotrophic lateral sclerosis (ALS). Different pathological mechanisms have been proposed. Here, we define the impact of VCP mutants on lysosomes and how cellular homeostasis is restored by inducing autophagy in the presence of lysosomal damage. METHODS By electron microscopy, we studied lysosomal morphology in VCP animal and motoneuronal models. With the use of western blotting, real-time quantitative polymerase chain reaction (RT-qPCR), immunofluorescence and filter trap assay, we evaluated the effect of selected VCP mutants in neuronal cells on lysosome size and activity, lysosomal membrane permeabilization and their impact on autophagy. RESULTS We found that VCP mutants induce the formation of aberrant multilamellar organelles in VCP animal and cell models similar to those found in patients with VCP mutations or with lysosomal storage disorders. In neuronal cells, we found altered lysosomal activity characterised by membrane permeabilization with galectin-3 redistribution and activation of PPP3CB. This selectively activated the autophagy/lysosomal transcriptional regulator TFE3, but not TFEB, and enhanced both SQSTM1/p62 and lipidated MAP1LC3B levels inducing autophagy. Moreover, we found that wild type VCP, but not the mutants, counteracted lysosomal damage induced either by trehalose or by a mutant form of SOD1 (G93A), also blocking the formation of its insoluble intracellular aggregates. Thus, chronic activation of autophagy might fuel the formation of multilamellar bodies. CONCLUSION Together, our findings provide insights into the pathogenesis of VCP-related diseases, by proposing a novel mechanism of multilamellar body formation induced by VCP mutants that involves lysosomal damage and induction of lysophagy.
Collapse
Affiliation(s)
- Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan
| | - Maria E. Cicardi
- Department of Neuroscience, Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS – Istituto Neurologico Carlo Besta, Milan, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan
| | - Marta Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan
| | - Francesco Mina
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Thomas Vaccari
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | | | - Virginia Kimonis
- Department of Pediatrics, University of California, Irvine, CA, USA
| | - Tyler R. Fortuna
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Udai B. Pandey
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria C. Gagliani
- Department of Experimental Medicine (DIMES), Cellular Electron Microscopy Lab, University of Genoa, Genova
| | - Katia Cortese
- Department of Experimental Medicine (DIMES), Cellular Electron Microscopy Lab, University of Genoa, Genova
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan
| |
Collapse
|
22
|
Cannabinerol and NSC-34 Transcriptomic Analysis: Is the Dose Who Makes Neuronal Differentiation? Int J Mol Sci 2022; 23:ijms23147541. [PMID: 35886896 PMCID: PMC9324784 DOI: 10.3390/ijms23147541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/10/2022] Open
Abstract
Cannabis sativa L. proved to be a source of several phytocompounds able to help patients facing different diseases. Moreover, these phytocompounds can help ameliorate general conditions and control certain unpleasant effects of diseases. Some cannabinoids, however, provided more benefits applicable to settings other than palliative care. Using the NSC-34 cell line, we evaluated the barely known phytocompound named cannabinerol (CBNR) at different doses, in order to understand its unique characteristics and the ones shared with other cannabinoids. The transcriptomic analysis suggests a possible ongoing neuronal differentiation, principally due to the activation of cannabinoid receptor 1 (CB1), to which the phosphorylation of serine–threonine protein kinase (Akt) followed, especially between 20 and 7.5 µM. The increase of Neurod1 and Map2 genes at 7.5 µM, accompanied by a decrease of Vim, as well as the increase of Syp at all the other doses, point toward the initiation of differentiation signals. Our preliminary results indicate CBNR as a promising candidate to be added to the list of cannabinoids with neuronal differentiation-enhancer properties. However, further studies are needed to confirm this initial insight.
Collapse
|
23
|
Talà A, Guerra F, Calcagnile M, Romano R, Resta SC, Paiano A, Chiariello M, Pizzolante G, Bucci C, Alifano P. HrpA anchors meningococci to the dynein motor and affects the balance between apoptosis and pyroptosis. J Biomed Sci 2022; 29:45. [PMID: 35765029 PMCID: PMC9241232 DOI: 10.1186/s12929-022-00829-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Neisseria meningitidis the HrpA/HrpB two-partner secretion system (TPS) was implicated in diverse functions including meningococcal competition, biofilm formation, adherence to epithelial cells, intracellular survival and vacuolar escape. These diverse functions could be attributed to distinct domains of secreted HrpA. METHODS A yeast two-hybrid screening, in vitro pull-down assay and immunofluorescence microscopy experiments were used to investigate the interaction between HrpA and the dynein light-chain, Tctex-type 1 (DYNLT1). In silico modeling was used to analyze HrpA structure. Western blot analysis was used to investigate apoptotic and pyroptotic markers. RESULTS The HrpA carboxy-terminal region acts as a manganese-dependent cell lysin, while the results of a yeast two-hybrid screening demonstrated that the HrpA middle region has the ability to bind the dynein light-chain, Tctex-type 1 (DYNLT1). This interaction was confirmed by in vitro pull-down assay and immunofluorescence microscopy experiments showing co-localization of N. meningitidis with DYNLT1 in infected epithelial cells. In silico modeling revealed that the HrpA-M interface interacting with the DYNLT1 has similarity with capsid proteins of neurotropic viruses that interact with the DYNLT1. Indeed, we found that HrpA plays a key role in infection of and meningococcal trafficking within neuronal cells, and is implicated in the modulation of the balance between apoptosis and pyroptosis. CONCLUSIONS Our findings revealed that N. meningitidis is able to effectively infect and survive in neuronal cells, and that this ability is dependent on HrpA, which establishes a direct protein-protein interaction with DYNLTI in these cells, suggesting that the HrpA interaction with dynein could be fundamental for N. meningitidis spreading inside the neurons. Moreover, we found that the balance between apoptotic and pyroptotic pathways is heavily affected by HrpA.
Collapse
Affiliation(s)
- Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Roberta Romano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Silvia Caterina Resta
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Aurora Paiano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Mario Chiariello
- Core Research Laboratory-Siena, Institute for Cancer Research and Prevention (ISPRO), 53100, Siena, Italy.,Institute of Clinical Physiology (IFC), National Research Council (CNR), 53100, Siena, Italy
| | - Graziano Pizzolante
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy.
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy.
| |
Collapse
|
24
|
Fernandes F, Barroso MF, De Simone A, Emriková E, Dias-Teixeira M, Pereira JP, Chlebek J, Fernandes VC, Rodrigues F, Andrisano V, Delerue-Matos C, Grosso C. Multi-target neuroprotective effects of herbal medicines for Alzheimer's disease. JOURNAL OF ETHNOPHARMACOLOGY 2022; 290:115107. [PMID: 35176467 DOI: 10.1016/j.jep.2022.115107] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alzheimer's disease is the most common form of dementia, but its treatment options remain few and ineffective. To find new therapeutic strategies, natural products have gained interest due to their neuroprotective potential, being able to target different pathological hallmarks associated with this disorder. Several plant species are traditionally used due to their empirical neuroprotective effects and it is worth to explore their mechanism of action. AIM OF THE STUDY This study intended to explore the neuroprotective potential of seven traditional medicinal plants, namely Scutellaria baicalensis, Ginkgo biloba, Hypericum perforatum, Curcuma longa, Lavandula angustifolia, Trigonella foenum-graecum and Rosmarinus officinalis. The safety assessment with reference to pesticides residues was also aimed. MATERIALS AND METHODS Decoctions prepared from these species were chemically characterized by HPLC-DAD and screened for their ability to scavenge four different free radicals (DPPH•, ABTS•+, O2•‒ and •NO) and to inhibit enzymes related to neurodegeneration (cholinesterases and glycogen synthase kinase-3β). Cell viability through MTT assay was also evaluated in two different brain cell lines, namely non-tumorigenic D3 human brain endothelial cells (hCMEC/D3) and NSC-34 motor neurons. Furthermore, and using GC, 21 pesticides residues were screened. RESULTS Regarding chemical composition, chromatographic analysis revealed the presence of several flavonoids, phenolic acids, curcuminoids, phenolic diterpenoids, one alkaloid and one naphthodianthrone in the seven decoctions. All extracts were able to scavenge free radicals and were moderate glycogen synthase kinase-3β inhibitors; however, they displayed weak to moderate acetylcholinesterase and butyrylcholinesterase inhibition. G. biloba and L. angustifolia decoctions were the less cytotoxic to hCMEC/D3 and NSC-34 cell lines. No pesticides residues were detected. CONCLUSIONS The results extend the knowledge on the potential use of plant extracts to combat multifactorial disorders, giving new insights into therapeutic avenues for Alzheimer's disease.
Collapse
Affiliation(s)
- Filipe Fernandes
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal
| | - M Fátima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal
| | - Angela De Simone
- Department of Drug Science and Technology University of Turin, via P.Giuria 9, 10125, Torino, Italy
| | - Eliška Emriková
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921, Rimini, Italy
| | - Mónica Dias-Teixeira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal; NICiTeS-Núcleo de Investigação em Ciências e Tecnologias da Saúde, Escola Superior de Saúde Ribeiro Sanches, Lisboa, Portugal
| | - José Paulo Pereira
- NICiTeS-Núcleo de Investigação em Ciências e Tecnologias da Saúde, Escola Superior de Saúde Ribeiro Sanches, Lisboa, Portugal
| | - Jakub Chlebek
- Department of Pharmaceutical Botany, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Virgínia Cruz Fernandes
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal
| | - Francisca Rodrigues
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal
| | - Vincenza Andrisano
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921, Rimini, Italy
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal.
| |
Collapse
|
25
|
Cannabis terpenes display variable protective and anti-aggregatory actions against neurotoxic β amyloid in vitro: highlighting the protective bioactivity of α-bisabolol in motorneuronal-like NSC-34 cells. Neurotoxicology 2022; 90:81-87. [PMID: 35278524 DOI: 10.1016/j.neuro.2022.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/15/2022] [Accepted: 03/05/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Terpenes form a diverse class of naturally occurring chemicals ascribed various biological activities. Cannabis contains over 400 different terpenes of varying chemical complexity which may add to the known biological activities of phytocannabinoids of relevance to the increasing use of medical cannabis; however, to date have been incompletely characterized. We assessed three terpenes predominant in cannabis: α-bisabolol, myrcene and β-caryophyllene for neuroprotective and anti-aggregative properties in both undifferentiated and differentiated NSC-34 motorneuronal-like cells as a sensitive model for neurotoxicity to oxidative stress and amyloid β (Aβ1-42) protein exposure. METHODS Cell viability was assessed biochemically using the MTT assay in the presence of either α-bisabolol, myrcene and β-caryophyllene (1-1000µM) for 48hr. Sub-toxic threshold test concentrations of each terpene were then applied to cells, alone or with concomitant incubation with the lipid peroxidant tert-butyl hyrdroperoxide (t-BHP) or amyloid β (Aβ1-42; 0-1µM) to assess neuroprotective effects. Direct effects of each terpene on Aβ fibril formation and aggregation were also evaluated using the Thioflavin T (ThT) fluorometric kinetic assay, circular dichroism and transmission electron microscopy (TEM) to visualise fibril and aggregate morphology. RESULTS Terpenes were intrinsically benign to NSC-34 cells up to 100µM. No significant antioxidant effects were observed following t-BHP administration with myrcene and β-caryophyllene, however α-bisabolol provided a modest but significant increase in cell viability in undifferentiated cells. α-bisabolol also demonstrated a significant neuroprotective effect against amyloid β exposure, with β-caryophyllene also providing a lesser, but significant increase in cell viability. Protective effects of terpenes were more pronounced in undifferentiated versus differentiated cells, attributable more so to an attenuated loss of cell viability in response to Aβ1-42 following NSC-34 cell differentiation. Neuroprotection was associated with a direct inhibition of Aβ1-42 fibril and aggregate density, evidenced by both attenuated ThT fluorescence kinetics and both spectral and microscopic evidence of altered and diminished density of Aβ aggregates. While myrcene and β-caryophyllene also elicited reductions in ThT fluorescence and alterations in Aβ aggregation, these were less well associated with neuroprotective capacity. CONCLUSIONS These findings highlight a neuroprotective role of α-bisabolol against Aβ-mediated neurotoxicity associated with an inhibition of Aβ fibrillization and modest antioxidant effect against lipid peroxidation, while β-caryophyllene also provided a small but significant measure of protection to Aβ-mediated neurotoxicity. Anti-aggregatory effects were not directly correlated with neuroprotective efficacy. This demonstrates that bioactivity of selected terpenes should be a consideration in the emergent use of medicinal cannabis formulations for the treatment of neurodegenerative diseases.
Collapse
|
26
|
Chitramuthu BP, Campos-García VR, Bateman A. Multiple Molecular Pathways Are Influenced by Progranulin in a Neuronal Cell Model-A Parallel Omics Approach. Front Neurosci 2022; 15:775391. [PMID: 35095393 PMCID: PMC8791029 DOI: 10.3389/fnins.2021.775391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Progranulin (PGRN) is critical in supporting a healthy CNS. Its haploinsufficiency results in frontotemporal dementia, while in experimental models of age-related neurodegenerative diseases, the targeted expression of PGRN greatly slows the onset of disease phenotypes. Nevertheless, much remains unclear about how PGRN affects its target cells. In previous studies we found that PGRN showed a remarkable ability to support the survival of NSC-34 motor neuron cells under conditions that would otherwise lead to their apoptosis. Here we used the same model to investigate other phenotypes of PGRN expression in NSC-34 cells. PGRN significantly influenced morphological differentiation, resulting in cells with enlarged cell bodies and extended projections. At a molecular level this correlated with pathways associated with the cytoskeleton and synaptic differentiation. Depletion of PGRN led to increased expression of several neurotrophic receptors, which may represent a homeostatic mechanism to compensate for loss of neurotrophic support from PGRN. The exception was RET, a neurotrophic tyrosine receptor kinase, which, when PGRN levels are high, shows increased expression and enhanced tyrosine phosphorylation. Other receptor tyrosine kinases also showed higher tyrosine phosphorylation when PGRN was elevated, suggesting a generalized enhancement of receptor activity. PGRN was found to bind to multiple plasma membrane proteins, including RET, as well as proteins in the ER/Golgi apparatus/lysosome pathway. Understanding how these various pathways contribute to PGRN action may provide routes toward improving neuroprotective therapies.
Collapse
Affiliation(s)
- Babykumari P Chitramuthu
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, and Centre for Translational Biology, Metabolic Disorders and Complications, McGill University Health Centre Research Institute, Montréal, QC, Canada
| | - Víctor R Campos-García
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, and Centre for Translational Biology, Metabolic Disorders and Complications, McGill University Health Centre Research Institute, Montréal, QC, Canada
| | - Andrew Bateman
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, and Centre for Translational Biology, Metabolic Disorders and Complications, McGill University Health Centre Research Institute, Montréal, QC, Canada
| |
Collapse
|
27
|
Will Cannabigerol Trigger Neuroregeneration after a Spinal Cord Injury? An In Vitro Answer from NSC-34 Scratch-Injured Cells Transcriptome. Pharmaceuticals (Basel) 2022; 15:ph15020117. [PMID: 35215230 PMCID: PMC8875351 DOI: 10.3390/ph15020117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury affects the lives of millions of people around the world, often causing disability and, in unfortunate circumstances, death. Rehabilitation can partly improve outcomes and only a small percentage of patients, typically the least injured, can hope to return to normal living conditions. Cannabis sativa is gaining more and more interest in recent years, even though its beneficial properties have been known for thousands of years. Cannabigerol (CBG), extracted from C. sativa, is defined as the “mother of all cannabinoids” and its properties range from anti-inflammatory to antioxidant and neuroprotection. Using NSC-34 cells to model spinal cord injury in vitro, our work evaluated the properties of CBG treatments in motor neuron regeneration. While pre-treatment can modulate oxidative stress and increase antioxidant enzyme genes, such as Tnx1, decreasing Nos1 post-treatment seems to induce regeneration genes by triggering different pathways, such as Gap43 via p53 acetylation by Ep300 and Ddit3 and Xbp1 via Bdnf signaling, along with cytoskeletal remodeling signaling genes Nrp1 and Map1b. Our results indicate CBG as a phytocompound worth further investigation in the field of neuronal regeneration.
Collapse
|
28
|
Latif S, Kang YS. Differences of Transport Activity of Arginine and Regulation on Neuronal Nitric Oxide Synthase and Oxidative Stress in Amyotrophic Lateral Sclerosis Model Cell Lines. Cells 2021; 10:cells10123554. [PMID: 34944061 PMCID: PMC8700480 DOI: 10.3390/cells10123554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 01/09/2023] Open
Abstract
L-Arginine, a semi-essential amino acid, was shown to delay dysfunction of motor neurons and to prolong the lifespan, upon analysis of transgenic mouse models of amyotrophic lateral sclerosis (ALS). We investigated the transport function of arginine and neuronal nitric oxide synthase (nNOS) expression after pretreatment with L-arginine in NSC-34 hSOD1WT (wild-type, WT) and hSOD1G93A (mutant-type, MT) cell lines. [3H]L-Arginine uptake was concentration-dependent, voltage-sensitive, and sodium-independent in both cell lines. Among the cationic amino acid transporters family, including system y+, b0,+, B0,+, and y+L, system y+ is mainly involved in [3H]L-arginine transport in ALS cell lines. System b0,+ accounted for 23% of the transport in both cell lines. System B0,+ was found only in MT, and whereas, system y+L was found only in WT. Lysine competitively inhibited [3H]L-arginine uptake in both cell lines. The nNOS mRNA expression was significantly lower in MT than in WT. Pretreatment with arginine elevated nNOS mRNA levels in MT. Oxidizing stressor, H2O2, significantly decreased their uptake; however, pretreatment with arginine restored the transport activity in both cell lines. In conclusion, arginine transport is associated with system y+, and neuroprotection by L-arginine may provide an edge as a possible therapeutic target in the treatment of ALS.
Collapse
|
29
|
Malada Edelstein YF, Solomonov Y, Hadad N, Alfahel L, Israelson A, Levy R. Early upregulation of cytosolic phospholipase A 2α in motor neurons is induced by misfolded SOD1 in a mouse model of amyotrophic lateral sclerosis. J Neuroinflammation 2021; 18:274. [PMID: 34823547 PMCID: PMC8620709 DOI: 10.1186/s12974-021-02326-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 11/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal multifactorial neurodegenerative disease characterized by the selective death of motor neurons. Cytosolic phospholipase A2 alpha (cPLA2α) upregulation and activation in the spinal cord of ALS patients has been reported. We have previously shown that cPLA2α upregulation in the spinal cord of mutant SOD1 transgenic mice (SOD1G93A) was detected long before the development of the disease, and inhibition of cPLA2α upregulation delayed the disease's onset. The aim of the present study was to determine the mechanism for cPLA2α upregulation. METHODS Immunofluorescence analysis and western blot analysis of misfolded SOD1, cPLA2α and inflammatory markers were performed in the spinal cord sections of SOD1G93A transgenic mice and in primary motor neurons. Over expression of mutant SOD1 was performed by induction or transfection in primary motor neurons and in differentiated NSC34 motor neuron like cells. RESULTS Misfolded SOD1 was detected in the spinal cord of 3 weeks old mutant SOD1G93A mice before cPLA2α upregulation. Elevated expression of both misfolded SOD1 and cPLA2α was specifically detected in the motor neurons at 6 weeks with a high correlation between them. Elevated TNFα levels were detected in the spinal cord lysates of 6 weeks old mutant SOD1G93A mice. Elevated TNFα was specifically detected in the motor neurons and its expression was highly correlated with cPLA2α expression at 6 weeks. Induction of mutant SOD1 in primary motor neurons induced cPLA2α and TNFα upregulation. Over expression of mutant SOD1 in NSC34 cells caused cPLA2α upregulation which was prevented by antibodies against TNFα. The addition of TNFα to NSC34 cells caused cPLA2α upregulation in a dose dependent manner. CONCLUSIONS Motor neurons expressing elevated cPLA2α and TNFα are in an inflammatory state as early as at 6 weeks old mutant SOD1G93A mice long before the development of the disease. Accumulated misfolded SOD1 in the motor neurons induced cPLA2α upregulation via induction of TNFα.
Collapse
Affiliation(s)
- Yafa Fetfet Malada Edelstein
- Immunology and Infectious Diseases Laboratory, Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev and Soroka University Medical Center, 84105, Beer Sheva, Israel
| | - Yulia Solomonov
- Immunology and Infectious Diseases Laboratory, Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev and Soroka University Medical Center, 84105, Beer Sheva, Israel
| | - Nurit Hadad
- Immunology and Infectious Diseases Laboratory, Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev and Soroka University Medical Center, 84105, Beer Sheva, Israel
| | - Leenor Alfahel
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Rachel Levy
- Immunology and Infectious Diseases Laboratory, Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev and Soroka University Medical Center, 84105, Beer Sheva, Israel.
| |
Collapse
|
30
|
Stanzione A, Polini A, La Pesa V, Quattrini A, Romano A, Gigli G, Moroni L, Gervaso F. Thermosensitive chitosan-based hydrogels supporting motor neuron-like NSC-34 cell differentiation. Biomater Sci 2021; 9:7492-7503. [PMID: 34642708 DOI: 10.1039/d1bm01129d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Motor neuron diseases are neurodegenerative diseases that predominantly affect the neuromuscular system. To date, there are no valid therapeutic treatments for such diseases, and the classical experimental models fail in faithfully reproducing the pathological mechanisms behind them. In this regard, the use of three-dimensional (3D) culture systems, which more closely reproduce the native in vivo environment, can be a promising approach. Hydrogel-based systems are among the most used materials to reproduce the extracellular matrix, featuring an intrinsic similarity with its physiological characteristics. In this study, we developed a thermosensitive chitosan-based hydrogel combined with β-glycerophosphate (βGP) and sodium hydrogen carbonate (SHC), which give the system optimal mechanical properties and injectability, inducing the hydrogel sol-gel transition at 37 °C. An ad hoc protocol for the preparation of the hydrogel was established in order to obtain a highly homogeneous system, leading to reproducible physicochemical characteristics and easy cell encapsulation. All formulations supported the viability of a neuroblastoma/spinal cord hybrid cell line (NSC-34) beyond two weeks of culture and enabled cell differentiation towards a motor neuron-like morphology, characterized by the presence of extended neurites. Based on our results, these hydrogels represent excellent candidates for establishing 3D in vitro models of motor neuron diseases.
Collapse
Affiliation(s)
- Antonella Stanzione
- Dipartimento di Matematica e Fisica E. De Giorgi, University of Salento, 73100 Lecce, LE, Italy.,CNR-Nanotec, Institute of Nanotechnology, 73100 Lecce, Italy.
| | | | - Velia La Pesa
- IRCCS San Raffaele Scientific Institute, Neuropathology Unit, Institute of Experimental Neurology and Division of Neuroscience, 20132 Milan, Italy.
| | - Angelo Quattrini
- IRCCS San Raffaele Scientific Institute, Neuropathology Unit, Institute of Experimental Neurology and Division of Neuroscience, 20132 Milan, Italy.
| | - Alessandro Romano
- IRCCS San Raffaele Scientific Institute, Neuropathology Unit, Institute of Experimental Neurology and Division of Neuroscience, 20132 Milan, Italy.
| | - Giuseppe Gigli
- Dipartimento di Matematica e Fisica E. De Giorgi, University of Salento, 73100 Lecce, LE, Italy.,CNR-Nanotec, Institute of Nanotechnology, 73100 Lecce, Italy.
| | - Lorenzo Moroni
- CNR-Nanotec, Institute of Nanotechnology, 73100 Lecce, Italy. .,Complex Tissue Regeneration department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | | |
Collapse
|
31
|
Keilhoff G, Ludwig C, Pinkernelle J, Lucas B. Effects of Gynostemma pentaphyllum on spinal cord motor neurons and microglial cells in vitro. Acta Histochem 2021; 123:151759. [PMID: 34425524 DOI: 10.1016/j.acthis.2021.151759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/25/2021] [Accepted: 07/11/2021] [Indexed: 11/18/2022]
Abstract
The regenerative capability of spinal cord neurons is limited to impossible. Thus, experimental approaches supporting reconstruction/regeneration are in process. This study focused on the evaluation of the protective potency of an extract from Gynostemma pentaphyllum (GP), a plant used in traditional medicine with anti-oxidative and neuroprotective activities, in vitro on organotypic spinal cord cultures, the motor-neuron-like NSC-34 cell line and the microglial cell line BV-2. Organotypic cultures were mechanically stressed by the slicing procedure and the effect of GP on motor neuron survival and neurite sprouting was tested by immunohistochemistry. NSC-34 cells were neuronal differentiated by using special medium. Afterwards, cell survival (propidium iodide/fluorescein diacetate labeling), proliferation (BrdU-incorporation), and neurite sprouting were evaluated. BV-2 cells were stimulated with LPS/interferon γ and subjected to migration assay and nanoparticle uptake. Cell survival, proliferation and the expression pattern of different microglial activation markers (cFOS, iNOS) as well as transcription factors (PPARγ, YB1) were analyzed. In organotypic cultures, high-dose GP supported survival of motor neurons and especially of the neuronal fiber network. Despite reduced neurodegeneration, however, there was a GP-mediated activation of astro- and microglia. In NSC-34 cells, high-dosed GP had degenerative and anti-proliferative effects, but only in normal medium. Moreover, GP supported the neuro-differentiation ability. In BV-2 cells, high-dosed GP was toxic. In lower dosages, GP affected cell survival and proliferation when combined with LPS/interferon γ. Nanoparticle uptake, migration ability, and the transcription factor PPARγ, however, GP affected directly. The data suggest positive effects of GP on injured spinal motor neurons. Moreover, GP activated microglial cells. The dual role of microglia (protective/detrimental) in neurodegenerative processes required further experiments to enhance the knowledge about GP effects. Therefore, a possible clinical use of GP in spinal cord injuries is still a long way off.
Collapse
Affiliation(s)
- Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University Magdeburg, Germany.
| | - Christina Ludwig
- Institute of Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University Magdeburg, Germany
| | - Josephine Pinkernelle
- Institute of Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University Magdeburg, Germany
| | - Benjamin Lucas
- Dept. of Trauma Surgery, Medical Faculty, Otto-von-Guericke University Magdeburg, Germany
| |
Collapse
|
32
|
Carta G, Gambarotta G, Fornasari BE, Muratori L, El Soury M, Geuna S, Raimondo S, Fregnan F. The neurodynamic treatment induces biological changes in sensory and motor neurons in vitro. Sci Rep 2021; 11:13277. [PMID: 34168249 PMCID: PMC8225768 DOI: 10.1038/s41598-021-92682-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/14/2021] [Indexed: 11/08/2022] Open
Abstract
Nerves are subjected to tensile forces in various paradigms such as injury and regeneration, joint movement, and rehabilitation treatments, as in the case of neurodynamic treatment (NDT). The NDT induces selective uniaxial repeated tension on the nerve and was described to be an effective treatment to reduce pain in patients. Nevertheless, the biological mechanisms activated by the NDT promoting the healing processes of the nerve are yet still unknown. Moreover, a dose-response analysis to define a standard protocol of treatment is unavailable. In this study, we aimed to define in vitro whether NDT protocols could induce selective biological effects on sensory and motor neurons, also investigating the possible involved molecular mechanisms taking a role behind this change. The obtained results demonstrate that NDT induced significant dose-dependent changes promoting cell differentiation, neurite outgrowth, and neuron survival, especially in nociceptive neurons. Notably, NDT significantly upregulated PIEZO1 gene expression. A gene that is coding for an ion channel that is expressed both in murine and human sensory neurons and is related to mechanical stimuli transduction and pain suppression. Other genes involved in mechanical allodynia related to neuroinflammation were not modified by NDT. The results of the present study contribute to increase the knowledge behind the biological mechanisms activated in response to NDT and to understand its efficacy in improving nerve regenerational physiological processes and pain reduction.
Collapse
Affiliation(s)
- Giacomo Carta
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
- ASST Nord Milano, Sesto San Giovanni Hospital, Milan, Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Benedetta Elena Fornasari
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Luisa Muratori
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Marwa El Soury
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy.
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy.
| | - Federica Fregnan
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
| |
Collapse
|
33
|
Barbosa M, Gomes C, Sequeira C, Gonçalves-Ribeiro J, Pina CC, Carvalho LA, Moreira R, Vaz SH, Vaz AR, Brites D. Recovery of Depleted miR-146a in ALS Cortical Astrocytes Reverts Cell Aberrancies and Prevents Paracrine Pathogenicity on Microglia and Motor Neurons. Front Cell Dev Biol 2021; 9:634355. [PMID: 33968923 PMCID: PMC8103001 DOI: 10.3389/fcell.2021.634355] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Reactive astrocytes in Amyotrophic Lateral Sclerosis (ALS) change their molecular expression pattern and release toxic factors that contribute to neurodegeneration and microglial activation. We and others identified a dysregulated inflammatory miRNA profile in ALS patients and in mice models suggesting that they represent potential targets for therapeutic intervention. Such cellular miRNAs are known to be released into the secretome and to be carried by small extracellular vesicles (sEVs), which may be harmful to recipient cells. Thus, ALS astrocyte secretome may disrupt cell homeostasis and impact on ALS pathogenesis. Previously, we identified a specific aberrant signature in the cortical brain of symptomatic SOD1-G93A (mSOD1) mice, as well as in astrocytes isolated from the same region of 7-day-old mSOD1 mice, with upregulated S100B/HMGB1/Cx43/vimentin and downregulated GFAP. The presence of downregulated miR-146a on both cases suggests that it can be a promising target for modulation in ALS. Here, we upregulated miR-146a with pre-miR-146a, and tested glycoursodeoxycholic acid (GUDCA) and dipeptidyl vinyl sulfone (VS) for their immunoregulatory properties. VS was more effective in restoring astrocytic miR-146a, GFAP, S100B, HMGB1, Cx43, and vimentin levels than GUDCA, which only recovered Cx43 and vimentin mRNA. The miR-146a inhibitor generated typical ALS aberrancies in wild type astrocytes that were abolished by VS. Similarly, pre-miR-146a transfection into the mSOD1 astrocytes abrogated aberrant markers and intracellular Ca2+ overload. Such treatment counteracted miR-146a depletion in sEVs and led to secretome-mediated miR-146a enhancement in NSC-34-motor neurons (MNs) and N9-microglia. Secretome from mSOD1 astrocytes increased early/late apoptosis and FGFR3 mRNA in MNs and microglia, but not when derived from pre-miR-146a or VS-treated cells. These last strategies prevented the impairment of axonal transport and synaptic dynamics by the pathological secretome, while also averted microglia activation through either secretome, or their isolated sEVs. Proteomic analysis of the target cells indicated that pre-miR-146a regulates mitochondria and inflammation via paracrine signaling. We demonstrate that replenishment of miR-146a in mSOD1 cortical astrocytes with pre-miR-146a or by VS abrogates their phenotypic aberrancies and paracrine deleterious consequences to MNs and microglia. These results propose miR-146a as a new causal and emerging therapeutic target for astrocyte pathogenic processes in ALS.
Collapse
Affiliation(s)
- Marta Barbosa
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Cátia Gomes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina Sequeira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Joana Gonçalves-Ribeiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Carolina Campos Pina
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Luís A Carvalho
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Rui Moreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal.,Departamento de Ciências Farmacêuticas e do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Sandra H Vaz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Rita Vaz
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal.,Departamento de Ciências Farmacêuticas e do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Dora Brites
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal.,Departamento de Ciências Farmacêuticas e do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
34
|
Lim ZQ, Ng QY, Oo Y, Chu JJH, Ng SY, Sze SK, Alonso S. Enterovirus-A71 exploits peripherin and Rac1 to invade the central nervous system. EMBO Rep 2021; 22:e51777. [PMID: 33871166 DOI: 10.15252/embr.202051777] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 12/28/2022] Open
Abstract
Enterovirus-A71 (EV-A71) has been associated with severe neurological forms of hand, foot, and mouth disease (HFMD). EV-A71 infects motor neurons at neuromuscular junctions (NMJs) to invade the central nervous system (CNS). Here, we investigate the role of peripherin (PRPH) during EV-A71 infection, a type III intermediate neurofilament involved in neurodegenerative conditions. In mice infected with EV-A71, PRPH co-localizes with viral particles in the muscles at NMJs and in the spinal cord. In motor neuron-like and neuroblastoma cell lines, surface-expressed PRPH facilitates viral entry, while intracellular PRPH influences viral genome replication through interactions with structural and non-structural viral components. Importantly, PRPH does not play a role during infection with coxsackievirus A16, another causative agent of HFMD rarely associated with neurological complications, suggesting that EV-A71 ability to exploit PRPH represents a unique attribute for successful CNS invasion. Finally, we show that EV-A71 also exploits some of the many PRPH-interacting partners. Of these, small GTP-binding protein Rac1 represents a potential druggable host target to limit neuroinvasion of EV-A71.
Collapse
Affiliation(s)
- Ze Qin Lim
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Qing Yong Ng
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Yukei Oo
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Justin Jang Hann Chu
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shi Yan Ng
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Siu Kwan Sze
- Proteomics and Mass Spectrometry Services Core Facility, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sylvie Alonso
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
35
|
Solomon EA, Rooney AM, Rodriguez AM, Micheva-Viteva S, Bashir R, Iyer R, Harris JF. Neuromuscular Junction Model Optimized for Electrical Platforms. Tissue Eng Part C Methods 2021; 27:242-252. [PMID: 33599165 DOI: 10.1089/ten.tec.2020.0292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Neuromuscular junctions (NMJs), specialized synapses between motor neurons and muscle fibers, are essential for muscle activity. A simple and reproducible cell-based in vitro NMJ platform is needed to test the impact of chemicals on the neuron-muscle communication. Our platform utilizes genetically modified neurons and muscle cells, optimized culture conditions, and commercially available multielectrode array system for recording action potentials. Neuronal cells (NSC34) were optogenetically modified with channelrhodopsin chimera to allow for simultaneous, light-mediated, millisecond-precise activation of neuronal population. This signal is propagated through functional synapses to the muscle fibers. Muscle cells (C2C12) were modified by incorporating gap junction protein (Connexin-43) to improve intracellular communication without affecting muscle differentiation. This communication between muscle fibers resulted in better signal propagation and signal strength. Optimized culture medium facilitated the growth and differentiation of both cell types together. Our system was validated using vecuronium, a muscle relaxant, which abolished the muscle response. This in vitro model provides a unique tool for establishing a NMJ platform that is easy to record and analyze. Potential applications include nondestructive long-term screening of drugs affecting the NMJ.
Collapse
Affiliation(s)
- Emilia A Solomon
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Allison M Rooney
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Arasely M Rodriguez
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | - Rashid Bashir
- Department of Bioengineering, Nick J. Holonyak Micro and Nanotechnology Laboratory, and Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Rashi Iyer
- Information System and Modeling, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | |
Collapse
|
36
|
Dangoumau A, Marouillat S, Coelho R, Wurmser F, Brulard C, Haouari S, Laumonnier F, Corcia P, Andres CR, Blasco H, Vourc’h P. Dysregulations of Expression of Genes of the Ubiquitin/SUMO Pathways in an In Vitro Model of Amyotrophic Lateral Sclerosis Combining Oxidative Stress and SOD1 Gene Mutation. Int J Mol Sci 2021; 22:ijms22041796. [PMID: 33670299 PMCID: PMC7918082 DOI: 10.3390/ijms22041796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/24/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Protein aggregates in affected motor neurons are a hallmark of amyotrophic lateral sclerosis (ALS), but the molecular pathways leading to their formation remain incompletely understood. Oxidative stress associated with age, the major risk factor in ALS, contributes to this neurodegeneration in ALS. We show that several genes coding for enzymes of the ubiquitin and small ubiquitin-related modifier (SUMO) pathways exhibit altered expression in motor neuronal cells exposed to oxidative stress, such as the CCNF gene mutated in ALS patients. Eleven of these genes were further studied in conditions combining oxidative stress and the expression of an ALS related mutant of the superoxide dismutase 1 (SOD1) gene. We observed a combined effect of these two environmental and genetic factors on the expression of genes, such as Uhrf2, Rbx1, Kdm2b, Ube2d2, Xaf1, and Senp1. Overall, we identified dysregulations in the expression of enzymes of the ubiquitin and SUMO pathways that may be of interest to better understand the pathophysiology of ALS and to protect motor neurons from oxidative stress and genetic alterations.
Collapse
Affiliation(s)
- Audrey Dangoumau
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
| | - Sylviane Marouillat
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
| | - Roxane Coelho
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
| | - François Wurmser
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
| | | | - Shanez Haouari
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
| | - Frédéric Laumonnier
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
| | - Philippe Corcia
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
- Service de Neurologie, Centre de Référence sur la SLA, CHRU de Tours, 37000 Tours, France
| | - Christian R. Andres
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Hélène Blasco
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Patrick Vourc’h
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
- UTTIL, CHRU de Tours, 37000 Tours, France;
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
- Correspondence: ; Tel.: +33-(0)-234-378-910
| |
Collapse
|
37
|
Lee S, Kim S, Kang HY, Lim HR, Kwon Y, Jo M, Jeon YM, Kim SR, Kim K, Ha CM, Lee S, Kim HJ. The overexpression of TDP-43 in astrocytes causes neurodegeneration via a PTP1B-mediated inflammatory response. J Neuroinflammation 2020; 17:299. [PMID: 33054766 PMCID: PMC7556969 DOI: 10.1186/s12974-020-01963-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cytoplasmic inclusions of transactive response DNA binding protein of 43 kDa (TDP-43) in neurons and astrocytes are a feature of some neurodegenerative diseases, such as frontotemporal lobar degeneration with TDP-43 (FTLD-TDP) and amyotrophic lateral sclerosis (ALS). However, the role of TDP-43 in astrocyte pathology remains largely unknown. METHODS To investigate whether TDP-43 overexpression in primary astrocytes could induce inflammation, we transfected primary astrocytes with plasmids encoding Gfp or TDP-43-Gfp. The inflammatory response and upregulation of PTP1B in transfected cells were examined using quantitative RT-PCR and immunoblot analysis. Neurotoxicity was analysed in a transwell coculture system of primary cortical neurons with astrocytes and cultured neurons treated with astrocyte-conditioned medium (ACM). We also examined the lifespan, performed climbing assays and analysed immunohistochemical data in pan-glial TDP-43-expressing flies in the presence or absence of a Ptp61f RNAi transgene. RESULTS PTP1B inhibition suppressed TDP-43-induced secretion of inflammatory cytokines (interleukin 1 beta (IL-1β), interleukin 6 (IL-6) and tumour necrosis factor alpha (TNF-α)) in primary astrocytes. Using a neuron-astrocyte coculture system and astrocyte-conditioned media treatment, we demonstrated that PTP1B inhibition attenuated neuronal death and mitochondrial dysfunction caused by overexpression of TDP-43 in astrocytes. In addition, neuromuscular junction (NMJ) defects, a shortened lifespan, inflammation and climbing defects caused by pan-glial overexpression of TDP-43 were significantly rescued by downregulation of ptp61f (the Drosophila homologue of PTP1B) in flies. CONCLUSIONS These results indicate that PTP1B inhibition mitigates the neuronal toxicity caused by TDP-43-induced inflammation in mammalian astrocytes and Drosophila glial cells.
Collapse
Affiliation(s)
- Shinrye Lee
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, South Korea
| | - Seyeon Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, South Korea
- Department of Brain & Cognitive Sciences, DGIST, Daegu, 42988, South Korea
| | - Ha-Young Kang
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, 61886, South Korea
| | - Hye Ryeong Lim
- Research Division and Brain Research Core Facilities, Korea Brain Research Institute (KBRI), Daegu, 41062, South Korea
| | - Younghwi Kwon
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, South Korea
- Department of Brain & Cognitive Sciences, DGIST, Daegu, 42988, South Korea
| | - Myungjin Jo
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, South Korea
| | - Yu-Mi Jeon
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, South Korea
| | - Sang Ryong Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Institute of Life Science & Biotechnology, Kyungpook National University, Daegu, 41566, South Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41944, South Korea
| | - Kiyoung Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan, 31538, South Korea
| | - Chang Man Ha
- Research Division and Brain Research Core Facilities, Korea Brain Research Institute (KBRI), Daegu, 41062, South Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, 61886, South Korea.
| | - Hyung-Jun Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, South Korea.
| |
Collapse
|
38
|
Colón-Rodríguez A, Colón-Carrión NM, Atchison WD. AMPA receptor contribution to methylmercury-mediated alteration of intracellular Ca 2+ concentration in human induced pluripotent stem cell motor neurons. Neurotoxicology 2020; 81:116-126. [PMID: 32991939 DOI: 10.1016/j.neuro.2020.09.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/28/2022]
Abstract
α motor neurons (MNs) are a target of the environmental neurotoxicant methylmercury (MeHg), accumulating MeHg and subsequently degenerating. In mouse spinal cord MN cultures, MeHg increased intracellular Ca2+ [Ca2+]i; the AMPA receptor (AMPAR) antagonist CNQX delayed the increase in [Ca2+]i, implicating the role of AMPARs in this response. Here we used human induced pluripotent stem cell-derived MNs (hiPSC-MNs), to characterize the role of MN AMPARs in MeHg neurotoxicity. Acute exposure to MeHg (0.1, 0.2, 0.5, 1 and 1.5 μM), fura-2 microfluorimetry, and a standard cytotoxicity assay, were used to examine MN regulation of [Ca2+]i, and cytotoxicity, respectively. Contribution of Ca2+-permeable and impermeable AMPARs was compared using either CNQX, or the Ca2+-permeable AMPAR antagonist N-acetyl spermine (NAS). MeHg-induced cytotoxicity was evaluated following a 24 h delay subsequent to 1 h exposure of hiPSC-MNs. MeHg caused a characteristic biphasic increase in [Ca2+]i, the onset of which was concentration-dependent; higher MeHg concentrations hastened onset of both phases. CNQX significantly delayed MeHg's effect on onset time of both phases. In contrast, NAS significantly delayed only the 2nd phase increase in fura-2 fluorescence. Exposure to MeHg for 1 h followed by a 24 h recovery period caused a concentration-dependent incidence of cell death. These results demonstrate for the first time that hiPSC-derived MNs are highly sensitive to effects of MeHg on [Ca2+]i, and cytotoxicity, and that both Ca2+-permeable and impermeable AMPARs contribute the elevations in [Ca2+]i.
Collapse
Affiliation(s)
- Alexandra Colón-Rodríguez
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Michigan State University, 1355 Bogue St., B338 Life Science Bldg., East Lansing, MI 48824, United States; Institute for Integrative Toxicology, College of Veterinary Medicine, Michigan State University, 1355 Bogue St., B338 Life Science Bldg., East Lansing, MI 48824, United States; Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, 1355 Bogue St., B331 Life Science Bldg., East Lansing, MI 48824, United States.
| | - Nicole M Colón-Carrión
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Michigan State University, 1355 Bogue St., B338 Life Science Bldg., East Lansing, MI 48824, United States.
| | - William D Atchison
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Michigan State University, 1355 Bogue St., B338 Life Science Bldg., East Lansing, MI 48824, United States; Institute for Integrative Toxicology, College of Veterinary Medicine, Michigan State University, 1355 Bogue St., B338 Life Science Bldg., East Lansing, MI 48824, United States; Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, 1355 Bogue St., B331 Life Science Bldg., East Lansing, MI 48824, United States.
| |
Collapse
|
39
|
Gomes C, Sequeira C, Barbosa M, Cunha C, Vaz AR, Brites D. Astrocyte regional diversity in ALS includes distinct aberrant phenotypes with common and causal pathological processes. Exp Cell Res 2020; 395:112209. [PMID: 32739211 DOI: 10.1016/j.yexcr.2020.112209] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022]
Abstract
Astrocytes are major contributors of motor neuron (MN) degeneration in amyotrophic lateral sclerosis (ALS). We investigated whether regional and cell maturation differences influence ALS astrocyte malfunction. Spinal and cortical astrocytes from SOD1G93A (mSOD1) 7-day-old mice were cultured for 5 and 13 days in vitro (DIV). Astrocyte aberrancies predominated in 13DIV cells with region specificity. 13DIV cortical mSOD1 astrocytes showed early morphological changes and a predominant reactive and inflammatory phenotype, while repressed proteins and genes were found in spinal cells. Inflammatory-associated miRNAs, e.g. miR-155/miR-21/miR-146a, were downregulated in the first and upregulated in the later ones. Interestingly, depleted miR-155/miR-21/miR-146a in small extracellular vesicles (sEVs/exosomes) was a common pathological feature. Cortical mSOD1 astrocytes induced late apoptosis and kinesin-1 downregulation in mSOD1 NSC-34 MNs, whereas spinal cells upregulated dynein, while decreased nNOS and synaptic-related genes. Both regional-distinct mSOD1 astrocytes enhanced iNOS gene expression in mSOD1 MNs. We provide information on the potential contribution of astrocytes to ALS bulbar-vs. spinal-onset pathology, local influence on neuronal dysfunction and their shared miRNA-depleted exosome trafficking. These causal and common features may have potential therapeutic implications in ALS. Future studies should clarify if astrocyte-derived sEVs are active players in ALS-related neuroinflammation and glial activation.
Collapse
Affiliation(s)
- Cátia Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Catarina Sequeira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Marta Barbosa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Carolina Cunha
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Ana Rita Vaz
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
40
|
Nango H, Kosuge Y, Sato M, Shibukawa Y, Aono Y, Saigusa T, Ito Y, Ishige K. Highly Efficient Conversion of Motor Neuron-Like NSC-34 Cells into Functional Motor Neurons by Prostaglandin E 2. Cells 2020; 9:cells9071741. [PMID: 32708195 PMCID: PMC7409148 DOI: 10.3390/cells9071741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022] Open
Abstract
Motor neuron diseases are a group of progressive neurological disorders that degenerate motor neurons. The neuroblastoma × spinal cord hybrid cell line NSC-34 is widely used as an experimental model in studies of motor neuron diseases. However, the differentiation efficiency of NSC-34 cells to neurons is not always sufficient. We have found that prostaglandin E2 (PGE2) induces morphological differentiation in NSC-34 cells. The present study investigated the functional properties of PGE2-differentiated NSC-34 cells. Retinoic acid (RA), a widely-used agent inducing cell differentiation, facilitated neuritogenesis, which peaked on day 7, whereas PGE2-induced neuritogenesis took only 2 days to reach the same level. Whole-cell patch-clamp recordings showed that the current threshold of PGE2-treated cell action potentials was lower than that of RA-treated cells. PGE2 and RA increased the protein expression levels of neuronal differentiation markers, microtubule-associated protein 2c and synaptophysin, and to the same extent, motor neuron-specific markers HB9 and Islet-1. On the other hand, protein levels of choline acetyltransferase and basal release of acetylcholine in PGE2-treated cells were higher than in RA-treated cells. These results suggest that PGE2 is a rapid and efficient differentiation-inducing factor for the preparation of functionally mature motor neurons from NSC-34 cells.
Collapse
Affiliation(s)
- Hiroshi Nango
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan; (H.N.); (Y.I.)
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan; (H.N.); (Y.I.)
- Correspondence: (Y.K.); (K.I.); Tel.: +81-47-465-4027 (Y.K.)
| | - Masaki Sato
- Department of Physiology, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan; (M.S.); (Y.S.)
- Department of Biology Tokyo Dental College, 2-9-7 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yoshiyuki Shibukawa
- Department of Physiology, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan; (M.S.); (Y.S.)
| | - Yuri Aono
- Department of Pharmacology, School of Dentistry at Matsudo, Nihon University, 2-870-1 Sakaechonishi, Matsudo-shi, Chiba 271-8587, Japan; (Y.A.); (T.S.)
| | - Tadashi Saigusa
- Department of Pharmacology, School of Dentistry at Matsudo, Nihon University, 2-870-1 Sakaechonishi, Matsudo-shi, Chiba 271-8587, Japan; (Y.A.); (T.S.)
| | - Yoshihisa Ito
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan; (H.N.); (Y.I.)
- Pharmacy Education Center, Yokohama University of Pharmacy, 601 Matanocho, Totuka-ku, Yokohama 245-0066, Japan
| | - Kumiko Ishige
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan; (H.N.); (Y.I.)
- Correspondence: (Y.K.); (K.I.); Tel.: +81-47-465-4027 (Y.K.)
| |
Collapse
|
41
|
Abstract
Organs-on-chips are broadly defined as microfabricated surfaces or devices designed to engineer cells into microscale tissues with native-like features and then extract physiologically relevant readouts at scale. Because they are generally compatible with patient-derived cells, these technologies can address many of the human relevance limitations of animal models. As a result, organs-on-chips have emerged as a promising new paradigm for patient-specific disease modeling and drug development. Because neuromuscular diseases span a broad range of rare conditions with diverse etiology and complex pathophysiology, they have been especially challenging to model in animals and thus are well suited for organ-on-chip approaches. In this Review, we first briefly summarize the challenges in neuromuscular disease modeling with animal models. Next, we describe a variety of existing organ-on-chip approaches for neuromuscular tissues, including a survey of cell sources for both muscle and nerve, and two- and three-dimensional neuromuscular tissue-engineering techniques. Although researchers have made tremendous advances in modeling neuromuscular diseases on a chip, the remaining challenges in cell sourcing, cell maturity, tissue assembly and readout capabilities limit their integration into the drug development pipeline today. However, as the field advances, models of healthy and diseased neuromuscular tissues on a chip, coupled with animal models, have vast potential as complementary tools for modeling multiple aspects of neuromuscular diseases and identifying new therapeutic strategies. Summary: Modeling neuromuscular diseases is challenging due to their complex etiology and pathophysiology. Here, we review the cell sources and tissue-engineering procedures that are being integrated as emerging neuromuscular disease models.
Collapse
Affiliation(s)
- Jeffrey W Santoso
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA .,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
42
|
Keilhoff G, Mbou RP, Lucas B. Differentiation of NSC-34 cells is characterized by expression of NGF receptor p75, glutaminase and NCAM L1, activation of mitochondria, and sensitivity to fatty acid intervention. Acta Histochem 2020; 122:151574. [PMID: 32622426 DOI: 10.1016/j.acthis.2020.151574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/25/2020] [Accepted: 06/05/2020] [Indexed: 01/06/2023]
Abstract
Motor neuronal damage due to diseases, traumatic insults or de-afferentation of the spinal cord is often incurable because of poor intrinsic regenerative capacity. Hence, medical basic research has to provide a better understanding of development-/regeneration-related cellular processes as only way to develop new and successful therapeutic strategies. Here, we investigated the neuronal differentiation of the NSC-34 hybrid cell line, which is an accepted model for spinal cord motor neurons. Their differentiation was stimulated by switching from normal to differentiation medium and by supplementation with palmitic and oleic acid. To characterize neuro-differentiation of NSC-34 cells, expression of nicotinic acetylcholine receptor alpha 4, NGF p75 receptor, IGF I alpha receptor, glutaminase, NCAM L1, ADAM10 and myelin basic protein as well as activation of mitochondria were analyzed. Both switch from normal to differentiation medium and fatty acid application stimulated NSC-34 differentiation. Differentiation was characterized by diminishing expression of the nicotinic acetylcholine receptor alpha 4 and enhancing expression of the NGF receptor p75, of glutaminase, of NCAM L1 and it's partially transformation from the cell surface into the cell. Fatty acid intervention stabilized the expression of the nicotinic acetylcholine receptor alpha 4, diminished the expression of the NGF receptor p75, consolidated the expression profile of NCAM L1, and intensified the expression of the relevant for NCAM L1 cleavage ADAM10. However, NCAM L1 cleavage itself was unaffected by fatty acid intervention, as was the differentiation-relevant activation of mitochondria and their transformation into neuronal filopodia.
Collapse
|
43
|
The Dichotomic Role of Macrophage Migration Inhibitory Factor in Neurodegeneration. Int J Mol Sci 2020; 21:ijms21083023. [PMID: 32344747 PMCID: PMC7216212 DOI: 10.3390/ijms21083023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine expressed by different cell types and exerting multiple biological functions. It has been shown that MIF may be involved in several disorders, including neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), Parkinson disease (PD), and Huntington disease (HD), that represent an unmet medical need. Therefore, further studies are needed to identify novel pathogenetic mechanisms that may translate into tailored therapeutic approaches so to improve patients’ survival and quality of life. Here, we reviewed the preclinical and clinical studies investigating the role of MIF in ALS, PD, and HD. The emerging results suggest that MIF might play a dichotomic role in these disorders, exerting a protective action in ALS, a pathogenetic action in HD, and a yet undefined and debated role in PD. The better understanding of the role of MIF in these diseases could allow its use as a novel diagnostic and therapeutic tool for the monitoring and treatment of the patients and for eventual biomarker-driven therapeutic approaches.
Collapse
|
44
|
Nango H, Kosuge Y, Yoshimura N, Miyagishi H, Kanazawa T, Hashizaki K, Suzuki T, Ishige K. The Molecular Mechanisms Underlying Prostaglandin D 2-Induced Neuritogenesis in Motor Neuron-Like NSC-34 Cells. Cells 2020; 9:E934. [PMID: 32290308 PMCID: PMC7226968 DOI: 10.3390/cells9040934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 12/28/2022] Open
Abstract
Prostaglandins are a group of physiologically active lipid compounds derived from arachidonic acid. Our previous study has found that prostaglandin E2 promotes neurite outgrowth in NSC-34 cells, which are a model for motor neuron development. However, the effects of other prostaglandins on neuronal differentiation are poorly understood. The present study investigated the effect of prostaglandin D2 (PGD2) on neuritogenesis in NSC-34 cells. Exposure to PGD2 resulted in increased percentages of neurite-bearing cells and neurite length. Although D-prostanoid receptor (DP) 1 and DP2 were dominantly expressed in the cells, BW245C (a DP1 agonist) and 15(R)-15-methyl PGD2 (a DP2 agonist) had no effect on neurite outgrowth. Enzyme-linked immunosorbent assay demonstrated that PGD2 was converted to 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) under cell-free conditions. Exogenously applied 15d-PGJ2 mimicked the effect of PGD2 on neurite outgrowth. GW9662, a peroxisome proliferator-activated receptor-gamma (PPARγ) antagonist, suppressed PGD2-induced neurite outgrowth. Moreover, PGD2 and 15d-PGJ2 increased the protein expression of Islet-1 (the earliest marker of developing motor neurons), and these increases were suppressed by co-treatment with GW9662. These results suggest that PGD2 induces neuritogenesis in NSC-34 cells and that PGD2-induced neurite outgrowth was mediated by the activation of PPARγ through the metabolite 15d-PGJ2.
Collapse
Affiliation(s)
- Hiroshi Nango
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan
| | - Nana Yoshimura
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan
| | - Hiroko Miyagishi
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan
| | - Takanori Kanazawa
- Laboratory of Pharmaceutics, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan
| | - Kaname Hashizaki
- Laboratory of Physical Chemistry, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan
| | - Toyofumi Suzuki
- Laboratory of Pharmaceutics, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan
| | - Kumiko Ishige
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan
| |
Collapse
|
45
|
Chen S, Tian R, Luo D, Xiao Z, Li H, Lin D. Time-Course Changes and Role of Autophagy in Primary Spinal Motor Neurons Subjected to Oxygen-Glucose Deprivation: Insights Into Autophagy Changes in a Cellular Model of Spinal Cord Ischemia. Front Cell Neurosci 2020; 14:38. [PMID: 32265654 PMCID: PMC7098962 DOI: 10.3389/fncel.2020.00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
Spinal cord ischemia is a severe clinical complication induced by thoracoabdominal aortic surgery, severe trauma, or compression to the spinal column. As one of the most important functional cells in the spinal cord, spinal motor neurons (SMNs) suffer most during the process since they are vulnerable to ischemic injury due to high demands of energy. Previous researches have tried various animal models or organotypic tissue experiments to mimic the process and get to know the pathogenesis and mechanism. However, little work has been performed on the cellular model of spinal cord ischemia, which has been hampered by the inability to obtain a sufficient number of pure primary SMNs for in vitro study. By optimizing the isolation and culture of SMNs, our laboratory has developed an improved culture system of primary SMNs, which allows cellular models and thus mechanism studies. In the present study, by establishing an in vitro model of spinal cord ischemia, we intended to observe the dynamic time-course changes of SMNs and investigate the role of autophagy in SMNs during the process. It was found that oxygen-glucose deprivation (OGD) resulted in destruction of neural networks and decreased cell viability of primary SMNs, and the severity increased with the prolonging of the OGD time. The OGD treatment enhanced autophagy, which reached a peak at 5 h. Further investigation demonstrated that inhibition of autophagy exacerbated the injury, evidencing that autophagy plays a protective role during the process.
Collapse
Affiliation(s)
- Shudong Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruimin Tian
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Dan Luo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhifeng Xiao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dingkun Lin
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| |
Collapse
|
46
|
Gatius A, Tarabal O, Cayuela P, Casanovas A, Piedrafita L, Salvany S, Hernández S, Soler RM, Esquerda JE, Calderó J. The Y172 Monoclonal Antibody Against p-c-Jun (Ser63) Is a Marker of the Postsynaptic Compartment of C-Type Cholinergic Afferent Synapses on Motoneurons. Front Cell Neurosci 2020; 13:582. [PMID: 32038174 PMCID: PMC6992659 DOI: 10.3389/fncel.2019.00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/20/2019] [Indexed: 12/02/2022] Open
Abstract
C-bouton-type cholinergic afferents exert an important function in controlling motoneuron (MN) excitability. During the immunocytochemical analysis of the role of c-Jun in MNs with a monoclonal (clone Y172) antibody against phospho (p)-c-Jun (serine [Ser]63), unexpected labeling was identified in the cell body cytoplasm. As predicted for c-Jun in adult spinal cord, very few, if any MNs exhibited nuclear immunoreactivity with the Y172 antibody; conversely, virtually all MNs displayed strong Y172 immunostaining in cytoplasmic structures scattered throughout the soma and proximal dendrites. The majority of these cytoplasmic Y172-positive profiles was closely associated with VAChT-positive C-boutons, but not with other types of nerve afferents contacting MNs. Ultrastructural analysis revealed that cytoplasmic Y172 immunostaining was selectively located at the subsurface cistern (SSC) of C-boutons and also in the inner areas of the endoplasmic reticulum (ER). We also described changes in cytoplasmic Y172 immunoreactivity in injured and degenerating MNs. Moreover, we noticed that MNs from NRG1 type III-overexpressing transgenic mice, which show abnormally expanded SSCs, exhibited an increase in the density and size of peripherally located Y172-positive profiles. A similar immunocytochemical pattern to that of the Y172 antibody in MNs was found with a polyclonal antibody against p-c-Jun (Ser63) but not with another polyclonal antibody that recognizes c-Jun phosphorylated at a different site. No differential band patterns were found by western blotting with any of the antibodies against c-Jun or p-c-Jun used in our study. In cultured MNs, Y172-positive oval profiles were distributed in the cell body and proximal dendrites. The in vitro lentiviral-based knockdown of c-Jun resulted in a dramatic decrease in nuclear Y172 immunostaining in MNs without any reduction in the density of cytoplasmic Y172-positive profiles, suggesting that the synaptic antigen recognized by the antibody corresponds to a C-bouton-specific protein other than p-c-Jun. Our results lay the foundation for further studies aimed at identifying this protein and determining its role in this particular type of synapse.
Collapse
Affiliation(s)
- Alaó Gatius
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Olga Tarabal
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Paula Cayuela
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Anna Casanovas
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Lídia Piedrafita
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Sara Salvany
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Sara Hernández
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Rosa M Soler
- Unitat de Senyalització Neuronal, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Josep E Esquerda
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Jordi Calderó
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| |
Collapse
|
47
|
Generation of Cellular Reactive Oxygen Species by Activation of the EP2 Receptor Contributes to Prostaglandin E2-Induced Cytotoxicity in Motor Neuron-Like NSC-34 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6101838. [PMID: 32411331 PMCID: PMC7201578 DOI: 10.1155/2020/6101838] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/19/2019] [Accepted: 09/07/2019] [Indexed: 11/17/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease characterized by progressive degeneration of motor neurons in the central nervous system. Prostaglandin E2 (PGE2) plays a pivotal role in the degeneration of motor neurons in human and transgenic models of ALS. We have shown previously that PGE2 directly induces neuronal death through activation of the E-prostanoid (EP) 2 receptor in differentiated NSC-34 cells, a motor neuron-like cell line. In the present study, to clarify the mechanisms underlying PGE2-induced neurotoxicity, we focused on generation of intracellular reactive oxygen species (ROS) and examined the effects of N-acetylcysteine (NAC), a cell-permeable antioxidant, on PGE2-induced cell death in differentiated NSC-34 cells. Dichlorofluorescein (DCF) fluorescence analysis of PGE2-treated cells showed that intracellular ROS levels increased markedly with time, and that this effect was antagonized by a selective EP2 antagonist (PF-04418948) but not a selective EP3 antagonist (L-798,106). Although an EP2-selective agonist, butaprost, mimicked the effect of PGE2, an EP1/EP3 agonist, sulprostone, transiently but significantly decreased the level of intracellular ROS in these cells. MTT reduction assay and lactate dehydrogenase release assay revealed that PGE2- and butaprost-induced cell death were each suppressed by pretreatment with NAC in a concentration-dependent manner. Western blot analysis revealed that the active form of caspase-3 was markedly increased in the PGE2- and butaprost-treated cells. These increases in caspase-3 protein expression were suppressed by pretreatment with NAC. Moreover, dibutyryl-cAMP treatment of differentiated NSC-34 cells caused intracellular ROS generation and cell death. Our data reveal the existence of a PGE2-EP2 signaling-dependent intracellular ROS generation pathway, with subsequent activation of the caspase-3 cascade, in differentiated NSC-34 cells, suggesting that PGE2 is likely a key molecule linking inflammation to oxidative stress in motor neuron-like NSC-34 cells.
Collapse
|
48
|
Endoplasmic Reticulum Stress Signalling Induces Casein Kinase 1-Dependent Formation of Cytosolic TDP-43 Inclusions in Motor Neuron-Like Cells. Neurochem Res 2020; 45:1354-1364. [PMID: 31280399 PMCID: PMC7260270 DOI: 10.1007/s11064-019-02832-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/30/2022]
Abstract
Motor neuron disease (MND) is a progressive neurodegenerative disease with no effective treatment. One of the principal pathological hallmarks is the deposition of TAR DNA binding protein 43 (TDP-43) in cytoplasmic inclusions. TDP-43 aggregation occurs in both familial and sporadic MND; however, the mechanism of endogenous TDP-43 aggregation in disease is incompletely understood. This study focused on the induction of cytoplasmic accumulation of endogenous TDP-43 in the motor neuronal cell line NSC-34. The endoplasmic reticulum (ER) stressor tunicamycin induced casein kinase 1 (CK1)-dependent cytoplasmic accumulation of endogenous TDP-43 in differentiated NSC-34 cells, as seen by immunocytochemistry. Immunoblotting showed that induction of ER stress had no effect on abundance of TDP-43 or phosphorylated TDP-43 in the NP-40/RIPA soluble fraction. However, there were significant increases in abundance of TDP-43 and phosphorylated TDP-43 in the NP-40/RIPA-insoluble, urea-soluble fraction, including high molecular weight species. In all cases, these increases were lowered by CK1 inhibition. Thus ER stress signalling, as induced by tunicamycin, causes CK1-dependent phosphorylation of TDP-43 and its consequent cytosolic accumulation.
Collapse
|
49
|
Primary Neurons and Differentiated NSC-34 Cells Are More Susceptible to Arginine-Rich ALS Dipeptide Repeat Protein-Associated Toxicity than Non-Differentiated NSC-34 and CHO Cells. Int J Mol Sci 2019; 20:ijms20246238. [PMID: 31835664 PMCID: PMC6941034 DOI: 10.3390/ijms20246238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022] Open
Abstract
A repeat expansion mutation in the C9orf72 gene is the most common known genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In this study, using multiple cell-based assay systems, we reveal both increased dipeptide repeat protein (DRP) toxicity in primary neurons and in differentiated neuronal cell lines. Using flow cytometry and confocal laser scanning microscopy of cells treated with fluorescein isothiocyanate (FITC)-labeled DRPs, we confirm that poly-glycine-arginine (GR) and poly-proline-arginine (PR) DRPs entered cells more readily than poly-glycine-proline (GP) and poly-proline-alanine (PA) DRPs. Our findings suggest that the toxicity of C9-DRPs may be influenced by properties associated with differentiated and aging motor neurons. Further, our findings provide sensitive cell-based assay systems to test phenotypic rescue ability of potential interventions.
Collapse
|
50
|
Could the Combination of Two Non-Psychotropic Cannabinoids Counteract Neuroinflammation? Effectiveness of Cannabidiol Associated with Cannabigerol. ACTA ACUST UNITED AC 2019; 55:medicina55110747. [PMID: 31752240 PMCID: PMC6915685 DOI: 10.3390/medicina55110747] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/04/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
Background and Objectives: Neuroinflammation is associated with many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). In this study, we investigate the anti-inflammatory, anti-oxidant, and anti-apoptotic properties of two non-psychoactive phytocannabinoids, cannabigerol (CBG) and cannabidiol (CBD). Materials and Methods: The motoneuron-like cell line NSC-34 differentiated by serum deprivation and with the additional treatment of all-trans retinoic acid (RA) is a valid model to investigate molecular events linked to neurodegeneration in ALS. Results: Pre-treatment with CBG (at 2.5 and 5 µM doses) alone and in combination with CBD (at 2.5 and 5 µM doses) was able to reduce neuroinflammation induced by a culture medium of LPS-stimulated macrophages. In particular, the pre-treatment with CBD at a 5 µM dose decreased TNF-α levels and increased IL10 and IL-37 expression. CBG–CBD association at a 5 µM dose also reduced NF-kB nuclear factor activation with low degradation of the inhibitor of kappaB alpha (IkBα). CBG and CBD co-administered at a 5 µM dose decreased iNOS expression and increased Nrf2 levels. Furthermore, the pre-treatment with the association of two non-psychoactive cannabinoids downregulated Bax protein expression and upregulated Bcl-2 expression. Our data show the anti-inflammatory, anti-oxidant, and anti-apoptotic effects PPARγ-mediated. Conclusions: Our results provide preliminary support on the potential therapeutic application of a CBG–CBD combination for further preclinical studies.
Collapse
|