1
|
Miró-Vinyals C, Emmert S, Grammbitter G, Jud A, Kockmann T, Rivera-Fuentes P. Characterization of the glutathione redox state in the Golgi apparatus. Redox Biol 2025; 81:103560. [PMID: 39986117 PMCID: PMC11904595 DOI: 10.1016/j.redox.2025.103560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025] Open
Abstract
Redox homeostasis is crucial for cell function, and, in eukaryotic cells, studying it in a compartmentalized way is essential due to the redox variations between different organelles. The redox state of organelles is largely determined by the redox potential of glutathione, EGSH, and the concentration of its reduced and oxidized species, [GS]. The Golgi apparatus is an essential component of the secretory pathway, yet little is known about the concentration or redox state of GSH in this organelle. Here, we characterized the redox state of GSH in the Golgi apparatus using a combination of microscopy and proteomics methods. Our results prove that the Golgi apparatus is a highly oxidizing organelle with a strikingly low GSH concentration (EGSH = - 157 mV, 1-5 mM). These results fill an important gap in our knowledge of redox homeostasis in subcellular organelles. Moreover, the new Golgi-targeted GSH sensors allow us to observe dynamic changes in the GSH redox state in the organelle and pave the way for further characterization of the Golgi redox state under various physiological and pathological conditions.
Collapse
Affiliation(s)
| | - Sarah Emmert
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Gina Grammbitter
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédéral de Lausanne, Lausanne, Switzerland
| | - Alex Jud
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Tobias Kockmann
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
2
|
Li Q, Yang X, Li T. Natural flavonoids from herbs and nutraceuticals as ferroptosis inhibitors in central nervous system diseases: current preclinical evidence and future perspectives. Front Pharmacol 2025; 16:1570069. [PMID: 40196367 PMCID: PMC11973303 DOI: 10.3389/fphar.2025.1570069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/24/2025] [Indexed: 04/09/2025] Open
Abstract
Flavonoids are a class of important polyphenolic compounds, renowned for their antioxidant properties. However, recent studies have uncovered an additional function of these natural flavonoids: their ability to inhibit ferroptosis. Ferroptosis is a key mechanism driving cell death in central nervous system (CNS) diseases, including both acute injuries and chronic neurodegenerative disorders, characterized by iron overload-induced lipid peroxidation and dysfunction of the antioxidant defense system. This review discusses the therapeutic potential of natural flavonoids from herbs and nutraceuticals as ferroptosis inhibitors in CNS diseases, focusing on their molecular mechanisms, summarizing findings from preclinical animal models, and providing insights for clinical translation. We specifically highlight natural flavonoids such as Baicalin, Baicalein, Chrysin, Vitexin, Galangin, Quercetin, Isoquercetin, Eriodictyol, Proanthocyanidin, (-)-epigallocatechin-3-gallate, Dihydromyricetin, Soybean Isoflavones, Calycosin, Icariside II, and Safflower Yellow, which have shown promising results in animal models of acute CNS injuries, including ischemic stroke, cerebral ischemia-reperfusion injury, intracerebral hemorrhage, subarachnoid hemorrhage, traumatic brain injury, and spinal cord injury. Among these, Baicalin and its precursor Baicalein stand out due to extensive research and favorable outcomes in acute injury models. Mechanistically, these flavonoids not only regulate the Nrf2/ARE pathway and activate GPX4/GSH-related antioxidant pathways but also modulate iron metabolism proteins, thereby alleviating iron overload and inhibiting ferroptosis. While flavonoids show promise as ferroptosis inhibitors for CNS diseases, especially in acute injury settings, further studies are needed to evaluate their efficacy, safety, pharmacokinetics, and blood-brain barrier penetration for clinical application.
Collapse
Affiliation(s)
- Qiuhe Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaohang Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Tiegang Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Xu J, He X, Li L, Zhang L, Li M, Mu Y, Yang X, Li S, Feng Y, Zuo Z, Xu Y, Hu X, Zheng H. Voluntary exercise alleviates neural functional deficits in Parkinson's disease mice by inhibiting microglial ferroptosis via SLC7A11/ALOX12 axis. NPJ Parkinsons Dis 2025; 11:55. [PMID: 40122927 PMCID: PMC11930983 DOI: 10.1038/s41531-025-00912-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 03/10/2025] [Indexed: 03/25/2025] Open
Abstract
Microglia are more susceptible to ferroptosis compared to neurons and astrocytes, which may compromise their phagocytic and clearance capabilities of α-synuclein (α-syn) in Parkinson's disease (PD). While the beneficial effects of physical exercise (PE) on reducing α-syn deposition in PD have been highlighted, the role of PE in modulating microglial ferroptosis remains unclear. This study focuses on the impact of exercise on inhibiting microglial ferroptosis and mitigating α-syn accumulation. We demonstrate that voluntary exercise effectively inhibits microglial ferroptosis. Mechanistically, PE-induced upregulation of SLC7A11 inhibits microglial ferroptosis by suppressing ALOX12, thereby enhancing microglial phagocytosis and clearance of α-syn, which is paralleled by improvements in neurological function in PD mice. Collectively, these findings not only underscore the critical role of microglial ferroptosis in the pathological progression of PD but also elucidate the molecular mechanism by which PE attenuates microglial ferroptosis via the SLC7A11/ALOX12 axis.
Collapse
Affiliation(s)
- Jinghui Xu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaofei He
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lili Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liying Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingyue Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yating Mu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaofeng Yang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shiyin Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yifeng Feng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zejie Zuo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yunqi Xu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Haiqing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
4
|
Gao XD, Ding JE, Xie JX, Xu HM. Epigenetic regulation of iron metabolism and ferroptosis in Parkinson's disease: Identifying novel epigenetic targets. Acta Pharmacol Sin 2025:10.1038/s41401-025-01499-6. [PMID: 40069488 DOI: 10.1038/s41401-025-01499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/28/2025] [Indexed: 03/17/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease, and emerging evidence has shown that iron deposition, ferroptosis and epigenetic modifications are implicated in the pathogenesis of PD. However, the interplay among these factors in PD has not been fully understood. In this review, we provide an overview of the current research progress on iron metabolism, ferroptosis and epigenetic alterations associated with PD. Furthermore, we present new frontiers concerning various epigenetic modifications related to iron metabolism and ferroptosis that might contribute to the pathology of PD. Notably, epigenetic modifications of iron metabolism and ferroptosis as both diagnostic and therapeutic targets in PD have been discussed. This opens new avenues for the regulation of iron homeostasis and ferroptosis in PD from epigenetic perspectives, and provides evidence for their potential implications in the diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Xiao-Die Gao
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Jian-E Ding
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Jun-Xia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
| | - Hua-Min Xu
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
5
|
Wang H, Wu S, Jiang X, Li W, Li Q, Sun H, Wang Y. Acteoside alleviates salsolinol-induced Parkinson's disease by inhibiting ferroptosis via activating Nrf2/SLC7A11/GPX4 pathway. Exp Neurol 2025; 385:115084. [PMID: 39631720 DOI: 10.1016/j.expneurol.2024.115084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Salsolinol (SAL), i.e.1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroiso-quinoline, is a dopamine metabolite and endogenous neurotoxin that is toxic to dopaminergic neurons, and is involved in the genesis of Parkinson's disease (PD). However, the machinery underlying SAL induces neurotoxicity in PD are still being elucidated. In the present study, we first used RNA sequencing (RNAseq) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to detect differentially expressed genes in SAL-treated SH-SY5Y cells. We found that ferroptosis-related pathway was enriched by SAL, which was validated by in vitro and in vivo SAL models. SAL inducing ferroptosis through downregulating SLC7A11/GPX4 in SH-SY5Y cells, which neurotoxic effect was reversed by ferroptosis inhibitors deferoxamine (DFO) and ferrostatin-1 (Fer-1). Acteoside, a phenylethanoid glycoside of plant origin with neuroprotective effect, attenuates SAL-induced neurotoxicity by inhibiting ferroptosis in in vitro and in vivo PD models through upregulating SLC7A11/GPX4. Mechanistically, acteoside activates Nrf2. Nrf2 inhibitor ML385 abolished acteoside-mediated increased SLC7A11/GPX4 and neuroprotection against SAL in SH-SY5Y cells. Meanwhile, the PI3K inhibitor LY294002 suppressed the acteoside-induced Nrf2 expression and ensued decreased expression of SLC7A11/GPX4 in SAL-treated SH-SY5Y cells. Taken together, these results demonstrate that salsolinol-induced PD through inducing ferroptosis via downregulating SLC7A11/GPX4. Acteoside attenuates SAL-induced PD through inhibiting ferroptosis via activating PI3K/Akt-dependant Nrf2. The present study revealed a novel molecular mechanisms underlining SAL-induced neurotoxicity via induction of ferroptosis in PD, and uncovered a new pharmacological effect against PD through inhibiting ferroptosis. This study highlights SAL-induced ferroptosis -dependent neurotoxicity as a potential therapeutic target in PD.
Collapse
Affiliation(s)
- Hongquan Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China.
| | - Shuang Wu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Xiaodong Jiang
- Department of anatomy, College of Basic Medicine, Chifeng University Health Science Center, Chifeng 024005, China
| | - Wenjing Li
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng 024005, China
| | - Qiang Li
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng 024005, China
| | - Huiyan Sun
- Chifeng University Health Science Center, Chifeng 024000, China.
| | - Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China.
| |
Collapse
|
6
|
Zhou L, Li L, Yang J, Mansuer M, Deng X, Wang Y, Ren H, Cui D, Jiang Y, Gao L. TNFAIP3 affects ferroptosis after traumatic brain injury by affecting the deubiquitination and ubiquitination pathways of the HMOX1 protein and ACSL3. Free Radic Biol Med 2025; 228:221-239. [PMID: 39743027 DOI: 10.1016/j.freeradbiomed.2024.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
The occurrence and progression of traumatic brain injury involve a complex process. The pathophysiological mechanisms triggered by neuronal damage include various forms of programmed cell death, including ferroptosis. We observed upregulation of TNFAIP3 in mice after traumatic brain injury. Overexpression of TNFAIP3 inhibits HT-22 proliferation and cell viability through ferroptosis. Mechanistically, TNFAIP3 interacts with the HMOX1 protein and promotes its stability through the deubiquitination pathway. Additionally, TNFAIP3 can enhance lipoperoxidation, mitochondrial damage, and neuronal cell death by promoting ACSL3 degradation via NEDD4-mediated ubiquitination. Mice injected with AAV-shTNFAIP3 exhibited reduced neuronal degeneration and improved motor and cognitive function following cortical impact injury. In conclusion, our findings demonstrate that TNFAIP3 deficiency inhibits neuronal cell ferroptosis and ameliorates cognitive impairment caused by traumatic brain injury and demonstrate its potential applicability in the treatment of traumatic brain injury.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Lei Li
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jinghao Yang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Maierdan Mansuer
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xianyu Deng
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yida Wang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Hui Ren
- Department of Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200435, China
| | - Daming Cui
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yang Jiang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Liang Gao
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
7
|
Kato A, Tani A, Kamijo F, Otsuka T, Kamiya T, Hara H. Involvement of iron ions in 6-hydroxydopamine-induced disruption of intracellular copper metabolism. Free Radic Res 2025; 59:129-137. [PMID: 39930764 DOI: 10.1080/10715762.2025.2465276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/10/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. Recently, disorders in metabolism of metals, including copper (Cu) and iron (Fe), have been reported to be linked to the pathogenesis of PD. We previously demonstrated that 6-hydoroxydopamine (6-OHDA), a neurotoxin used for the production of PD model animals, decreases Atox1, a Cu chaperone, and ATP7A, a Cu transporter, and disrupts intracellular Cu metabolism in human neuroblastoma SH-SY5Y cells. However, the exact mechanisms remain unclear. Meanwhile, intracellular Fe modulates 6-OHDA-induced cellular responses. In this study, we investigated whether Fe participates in 6-OHDA-induced abnormality in Cu metabolism. 6-OHDA-induced reactive oxygen species (ROS) production and cellular injury were suppressed by Fe chelators, deferoxamine and 2,2'-bipyridyl (BIP). These chelators also restored 6-OHDA-induced degradation of Atox1 and ATP7A proteins and subsequent Cu accumulation, indicating that intracellular Fe is involved in the disruption of Cu homeostasis associated with 6-OHDA. Atox1 has redox-sensitive cysteine (Cys) residues in its Cu-binding site. The Cys residues of Atox1 were oxidized by 6-OHDA, and BIP suppressed their oxidation. Moreover, the replacement of Cys with histidine in the Cu-binding site conferred resistance to 6-OHDA-induced Atox1 degradation. These results suggest that oxidized modification of Atox1 by 6-OHDA is likely to accelerate its degradation. Thus, we conclude that Fe and Cu metabolisms are closely related to each other in the pathogenesis of PD.
Collapse
Affiliation(s)
- Ami Kato
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Ayano Tani
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Fuka Kamijo
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Tomohiro Otsuka
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Hirokazu Hara
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
8
|
Lee L, Okudaira N, Murase K, Kong R, Jones HM. Determination of Vatiquinone Drug-Drug Interactions, as CYP450 Perpetrator and Victim, Using Physiologically Based Pharmacokinetic (PBPK) Modeling and Simulation. J Clin Pharmacol 2025; 65:160-169. [PMID: 39308341 PMCID: PMC11771645 DOI: 10.1002/jcph.6133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/26/2024] [Indexed: 01/30/2025]
Abstract
Vatiquinone, a 15-lipoxygenase inhibitor, is in development for patients with Friedreich's ataxia. Physiologically based pharmacokinetic (PBPK) modeling addressed drug-drug interaction gaps without additional studies. A PBPK model (Simcyp Simulator version 21, full model) was developed using parameters obtained from in vitro studies, in silico estimation and optimization, and two clinical studies. A venous blood dosing model best characterized vatiquinone lymphatic absorption. Apparent oral clearance (CL/F) was used to optimize intrinsic clearance (CLint). Intestinal availability (Fg) was estimated using the hybrid flow term (Qgut), unbound fraction in the enterocytes (fugut), and gut intrinsic metabolic clearance (CLuG,int). Renal clearance (CLR) was set to zero. Assuming an Fa of 1, CYP3A4 contribution (fmCYP3A4) was further optimized. The PBPK model was verified with two clinical studies and demonstrated that it adequately characterized vatiquinone PK. As a perpetrator, the model predicted no risk for vatiquinone to significantly alter the drug exposures of CYP3A4 and CYP1A2 substrates as evident bynegligible reduction in both midazolam and caffeine area under the curve (AUC)inf and Cmax. As a victim, the model predicted that vatiquinone exposures are weakly influenced by moderate CYP3A4 inhibitors and inducers. With fluconazole coadministration, vatiquinone AUCinf and Cmax increased by nearly 50% and 25%, respectively. With efavirenz coadministration, vatiquinone AUCinf and Cmax decreased by approximately 20% and 10%, respectively. Results suggested that vatiquinone does not significantly impact CYP3A4 and CYP1A2 substrates and that moderate CYP3A4 inhibitors and inducers weakly impact vatiquinone AUC.
Collapse
Affiliation(s)
- Lucy Lee
- PTC Therapeutics, Inc.WarrenNJUSA
| | | | | | | | | |
Collapse
|
9
|
Wang L, Li X, Chen L, Mei S, Shen Q, Liu L, Liu X, Liao S, Zhao B, Chen Y, Hou J. Mitochondrial Uncoupling Protein-2 Ameliorates Ischemic Stroke by Inhibiting Ferroptosis-Induced Brain Injury and Neuroinflammation. Mol Neurobiol 2025; 62:501-517. [PMID: 38874704 DOI: 10.1007/s12035-024-04288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Ischemic stroke is a devastating disease in which mitochondrial damage or dysfunction substantially contributes to brain injury. Mitochondrial uncoupling protein-2 (UCP2) is a member of the UCP family, which regulates production of mitochondrial superoxide anion. UCP2 is reported to be neuroprotective for ischemic stroke-induced brain injury. However, the molecular mechanisms of UCP2 in ischemic stroke remain incompletely understood. In this study, we investigated whether and how UCP2 modulates neuroinflammation and regulates neuronal ferroptosis following ischemic stroke in vitro and in vivo. Wild-type (WT) and UCP2 knockout (Ucp2-/-) mice were subjected to middle cerebral artery occlusion (MCAO). BV2 cells (mouse microglial cell line) and HT-22 cells (mouse hippocampal neuronal cell line) were transfected with small interfering (si)-RNA or overexpression plasmids to knockdown or overexpress UCP2 levels. Cells were then exposed to oxygen-glucose deprivation and reoxygenation (OGD/RX) to simulate hypoxic injury in vitro. We found that UCP2 expression was markedly reduced in a time-dependent manner in both in vitro and in vivo ischemic stroke models. In addition, UCP2 was mainly expressed in neurons. UCP2 deficiency significantly enlarged infarct volumes, aggravated neurological deficit scores, and exacerbated cerebral edema in mice after MCAO. In vitro knockdown of Ucp2 and in vivo genetic depletion of Ucp2 (Ucp2-/- mice) increased neuronal ferroptosis-related indicators, including Fe2+, malondialdehyde, glutathione, and lipid peroxidation. Overexpression of UCP2 in neuronal cells resulted in reduced ferroptosis. Moreover, knockdown of UCP2 exacerbated neuroinflammation in BV2 microglia and mouse ischemic stroke models, suggesting that endogenous UCP2 inhibits neuroinflammation following ischemic stroke. Upregulation of UCP2 expression in microglia appeared to decrease the release of pro-inflammatory factors and increase the levels of anti-inflammatory factors. Further investigation showed that UCP2 deletion inhibited expression of AMPKα/NRF1 pathway-related proteins, including p-AMPKα, t-AMPKα, NRF1, and TFAM. Thus, UCP2 protects the brain from ischemia-induced ferroptosis by activating AMPKα/NRF1 signaling. Activation of UCP2 represents an attractive strategy for the prevention and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaona Li
- Department of Pain Medicine, Wuhan Fourth Hospital, Wuhan, 430033, China
| | - Lili Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Shenglan Mei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Qianni Shen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Lian Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Xuke Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Shichong Liao
- Department of Thyroid and Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Yannan Chen
- Department of Endocrinology, Wuhan Fourth Hospital, Wuhan, 430033, China
| | - Jiabao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China.
| |
Collapse
|
10
|
Tan R, Ge C, Yan Y, Guo H, Han X, Zhu Q, Du Q. Deciphering ferroptosis in critical care: mechanisms, consequences, and therapeutic opportunities. Front Immunol 2024; 15:1511015. [PMID: 39737174 PMCID: PMC11682965 DOI: 10.3389/fimmu.2024.1511015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
Ischemia-reperfusion injuries (IRI) across various organs and tissues, along with sepsis, significantly contribute to the progression of critical illnesses. These conditions disrupt the balance of inflammatory mediators and signaling pathways, resulting in impaired physiological functions in human tissues and organs. Ferroptosis, a distinct form of programmed cell death, plays a pivotal role in regulating tissue damage and modulating inflammatory responses, thereby influencing the onset and progression of severe illnesses. Recent studies highlight that pharmacological agents targeting ferroptosis-related proteins can effectively mitigate oxidative stress caused by IRI in multiple organs, alleviating associated symptoms. This manuscript delves into the mechanisms and signaling pathways underlying ferroptosis, its role in critical illnesses, and its therapeutic potential in mitigating disease progression. We aim to offer a novel perspective for advancing clinical treatments for critical illnesses.
Collapse
Affiliation(s)
- Ruimin Tan
- School of Clinical Medical, North China University of Science and Technology, Tangshan, Hebei, China
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Chen Ge
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yating Yan
- School of Clinical Medical, North China University of Science and Technology, Tangshan, Hebei, China
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - He Guo
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
- School of Graduate, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xumin Han
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
- School of Graduate, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qiong Zhu
- Department of Orthopaedics, The People’s Hospital Of Shizhu, Chongqing, China
| | - Quansheng Du
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
11
|
Guo Z, Zhuang H, Shi X. Therapeutic efficacy of ferroptosis in the treatment of colorectal cancer (Review). Oncol Lett 2024; 28:563. [PMID: 39390976 PMCID: PMC11465226 DOI: 10.3892/ol.2024.14697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy worldwide, and the second leading cause of cancer-associated mortality. The incidence and mortality rates of CRC remain high, posing a significant threat to humans and overall quality of life. Current therapeutic strategies, such as surgery and chemotherapy, are limited due to disease recurrence, chemotherapeutic drug resistance and toxicity. Thus, research is focused on the development of novel treatment approaches. In 2012, ferroptosis was identified as a form of regulated cell death that is iron-dependent and driven by lipid peroxidation. Notably, therapies targeting ferroptosis exhibit potential in the treatment of disease; however, their role in CRC treatment remains controversial. The present study aimed to systematically review the mechanisms and signaling pathways of ferroptosis in CRC, and the specific role within the tumor microenvironment. Moreover, the present study aimed to review the role of ferroptosis in drug resistance, offering novel perspectives for the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Zhao Guo
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Haoyan Zhuang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Xuewen Shi
- Department of Anorectal, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
12
|
Shi Y, Shi Y, Jie R, He J, Luo Z, Li J. Vitamin D: The crucial neuroprotective factor for nerve cells. Neuroscience 2024; 560:272-285. [PMID: 39343160 DOI: 10.1016/j.neuroscience.2024.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
Vitamin D is well known for its role in regulating the absorption and utilization of calcium and phosphorus as well as bone formation, and a growing number of studies have shown that vitamin D also has important roles in the nervous system, such as maintaining neurological homeostasis and protecting normal brain function, and that neurons and glial cells may be the targets of these effects. Most reviews of vitamin D's effects on the nervous system have focused on its overall effects, without distinguishing the contributors to these effects. In this review, we mainly focus on the cells of the central nervous system, summarizing the effects of vitamin D on them and the related pathways. With this review, we hope to elucidate the role of vitamin D in the nervous system at the cellular level and provide new insights into the prevention and treatment of neurodegenerative diseases in the direction of neuroprotection, myelin regeneration, and so on.
Collapse
Affiliation(s)
- Yuxin Shi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Yuchen Shi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Rao Jie
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiawei He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha 410008, Hunan, PR China; Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China.
| | - Jing Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China.
| |
Collapse
|
13
|
Lee L, Flach S, Xue H, Arivelu L, Golden L, Kong R, Darpo B. Lack of Concentration-QTc Relationship and Cardiac Risk With Vatiquinone Therapeutic and Supratherapeutic Doses. Clin Pharmacol Drug Dev 2024; 13:1227-1238. [PMID: 39415654 DOI: 10.1002/cpdd.1476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Vatiquinone, a 15-lipoxygenase inhibitor, is in development for patients with Friedreich ataxia. The study determined the effect of vatiquinone on electrocardiogram parameters. This was a 2-part, single-center, randomized, double-blinded, and placebo-controlled study. Part 1 used an adaptive approach to identify a supratherapeutic dose, while Part 2 evaluated the effect of vatiquinone on Fridericia corrected QT interval (QTcF). A safe and tolerated supratherapeutic dose of 1400 mg was identified. Concentration-QTcF analysis confirmed there was no statistically significant relationship between vatiquinone concentration and QTcF. QTcF effect (ie, ΔΔQTcF) exceeding 10 milliseconds was excluded for concentrations up to approximately 11,500 ng/mL. By-time-point analysis confirmed that least-squares mean ΔΔQTcF was below 10 milliseconds. Largest least-squares mean ΔΔQTcF of 1.5 milliseconds was observed at 2 hours after dosing. Vatiquinone did not have a clinically relevant effect on heart rate nor on cardiac conduction (PR interval and QRS interval). No new safety signals were found, as safety data are consistent with the known safety profile of vatiquinone. These findings altogether demonstrated that there is a minimal cardiac risk for vatiquinone concentrations up to the supratherapeutic dose level.
Collapse
Affiliation(s)
- Lucy Lee
- PTC Therapeutics, Inc., Warren, NJ, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Jiang F, Li X, Xie Z, Liu L, Wu X, Wang Y. Bioinformatics Analysis and Identification of Ferroptosis-Related Hub Genes in Intervertebral Disc Degeneration. Biochem Genet 2024; 62:3403-3420. [PMID: 38104050 DOI: 10.1007/s10528-023-10601-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023]
Abstract
Approximately 80% of individuals encounter lower back pain (LBP), a prevalent clinical issue largely attributed to intervertebral disc degeneration (IDD). Ferroptosis is an iron-dependent lipid peroxidation-driven cell death, and there is growing evidence that ferroptosis plays an important role in various human diseases. However, the underlying mechanism of ferroptosis in IDD remains unclear. This study aims to reveal the potential hub genes and related pathways of ferroptosis in the pathogenesis and progression of IDD. In this study, we analyzed three microarray datasets from the GEO database. Additionally, we downloaded ferroptosis-related genes from FerrDb-V2 and extracted apoptosis-related genes from UniProt as a control to show the specificity of ferroptosis. Weighted gene co-expression network analysis (WGCNA) was performed to identify the IDD-related module genes. Then, ferroptosis-related genes and apoptosis-related genes were separately overlapped with the IDD-related module genes, resulting in the identification of 35 ferroptosis-related module genes (FRMG) and 142 apoptosis-related module genes (ARMG). Furthermore, we performed functional enrichment analysis and protein-protein interaction network, and Cytoscape along with CytoHubba was used to identify the hub genes. Finally, logistic regression models were constructed and identified two hub FRMGs (PTEN and EGFR) and one hub ARMG (CTNNB1), which could distinguish IDD patients from controls (P < 0.05). The areas under the ROC curves were 0.792 and 0.730, respectively, suggesting that ferroptosis is more specific than apoptosis in IDD. In conclusion, this study provided fresh perspectives on ferroptosis in the pathogenesis and progression of IDD that can be used to evaluate potential biomarker genes and therapeutic targets.
Collapse
Affiliation(s)
- Feng Jiang
- Southeast University Medical College, No. 87, Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
| | - Xinxin Li
- Southeast University Medical College, No. 87, Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
| | - Zhiyang Xie
- Department of Spine Surgery, Southeast University Zhongda Hospital, No. 87, Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
| | - Lei Liu
- Department of Spine Surgery, Southeast University Zhongda Hospital, No. 87, Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
| | - Xiaotao Wu
- Southeast University Medical College, No. 87, Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
- Department of Spine Surgery, Southeast University Zhongda Hospital, No. 87, Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
| | - Yuntao Wang
- Southeast University Medical College, No. 87, Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China.
- Department of Spine Surgery, Southeast University Zhongda Hospital, No. 87, Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
15
|
Mohapatra A, Mohanty A, Park IK. Inorganic Nanomedicine-Mediated Ferroptosis: A Synergistic Approach to Combined Cancer Therapies and Immunotherapy. Cancers (Basel) 2024; 16:3210. [PMID: 39335181 PMCID: PMC11430644 DOI: 10.3390/cancers16183210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Ferroptosis, a form of regulated cell death characterized by iron-dependent lipid peroxidation, has generated substantial interest in cancer therapy. Various methods have been developed to induce ferroptosis in tumor cells, including approved drugs, experimental compounds, and nanomedicine formulations. Unlike apoptosis, ferroptosis presents unique molecular and cellular features, representing a promising approach for cancers resistant to conventional treatments. Recent research indicates a strong link between ferroptosis and the tumor immune microenvironment, suggesting the potential of ferroptosis to trigger robust antitumor immune responses. Multiple cellular metabolic pathways control ferroptosis, including iron, lipid, and redox metabolism. Thus, understanding the interaction between tumor metabolism and ferroptosis is crucial for developing effective anticancer therapies. This review provides an in-depth discussion on combining inorganic nanoparticles with cancer therapies such as phototherapy, chemotherapy, radiotherapy, and immunotherapy, and the role of ferroptosis in these combination treatments. Furthermore, this paper explores the future of tumor treatment using nanomedicine, focusing on how inorganic nanoparticles can enhance ferroptosis in tumor cells and boost antitumor immunity. The goal is to advance ferroptosis-based nanomedicine from the laboratory to clinical applications.
Collapse
Affiliation(s)
- Adityanarayan Mohapatra
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea; (A.M.); (A.M.)
- DR Cure Inc., Hwasun 58128, Republic of Korea
| | - Ayeskanta Mohanty
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea; (A.M.); (A.M.)
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea; (A.M.); (A.M.)
- DR Cure Inc., Hwasun 58128, Republic of Korea
| |
Collapse
|
16
|
Minnella A, McCusker KP, Amagata A, Trias B, Weetall M, Latham JC, O'Neill S, Wyse RK, Klein MB, Trimmer JK. Targeting ferroptosis with the lipoxygenase inhibitor PTC-041 as a therapeutic strategy for the treatment of Parkinson's disease. PLoS One 2024; 19:e0309893. [PMID: 39292705 PMCID: PMC11410249 DOI: 10.1371/journal.pone.0309893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/18/2024] [Indexed: 09/20/2024] Open
Abstract
Parkinson's disease is the second most common neurodegenerative disorder, affecting nearly 10 million people worldwide. Ferroptosis, a recently identified form of regulated cell death characterized by 15-lipoxygenase-mediated hydroperoxidation of membrane lipids, has been implicated in neurodegenerative disorders including amyotrophic lateral sclerosis and Parkinson's disease. Pharmacological inhibition of 15 -lipoxygenase to prevent iron- and lipid peroxidation-associated ferroptotic cell death is a rational strategy for the treatment of Parkinson's disease. We report here the characterization of PTC-041 as an anti-ferroptotic reductive lipoxygenase inhibitor developed for the treatment of Parkinson's disease. In these studies, PTC-041 potently protects primary human Parkinson's disease patient-derived fibroblasts from lipid peroxidation and subsequent ferroptotic cell death and prevents ferroptosis-related neuronal loss and astrogliosis in primary rat neuronal cultures. Additionally, PTC-041 prevents ferroptotic-mediated α-synuclein protein aggregation and nitrosylation in vitro, suggesting a potential role for anti-ferroptotic lipoxygenase inhibitors in mitigating pathogenic aspects of synucleinopathies such as Parkinson's disease. We further found that PTC-041 protects against synucleinopathy in vivo, demonstrating that PTC-041 treatment of Line 61 transgenic mice protects against α-synuclein aggregation and phosphorylation as well as prevents associated neuronal and non-neuronal cell death. Finally, we show that. PTC-041 protects against 6-hydroxydopamine-induced motor deficits in a hemiparkinsonian rat model, further validating the potential therapeutic benefits of lipoxygenase inhibitors in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Angela Minnella
- PTC Therapeutics, Mountain View, California, United States of America
| | - Kevin P McCusker
- PTC Therapeutics, Mountain View, California, United States of America
| | - Akiko Amagata
- PTC Therapeutics, Mountain View, California, United States of America
| | - Beatrice Trias
- PTC Therapeutics, Warren, New Jersey, United States of America
| | - Marla Weetall
- PTC Therapeutics, Warren, New Jersey, United States of America
| | - Joey C Latham
- PTC Therapeutics, Mountain View, California, United States of America
| | - Sloane O'Neill
- PTC Therapeutics, Mountain View, California, United States of America
| | | | - Matthew B Klein
- PTC Therapeutics, Warren, New Jersey, United States of America
| | - Jeffrey K Trimmer
- PTC Therapeutics, Mountain View, California, United States of America
| |
Collapse
|
17
|
Yan X, Liu Q, Wu S, Fan X, Teng Y, Wang N, Zhang J. Tert-butyl hydroperoxide induces trabecular meshwork cells injury through ferroptotic cell death. J Cell Commun Signal 2024; 18:e12050. [PMID: 39524143 PMCID: PMC11544637 DOI: 10.1002/ccs3.12050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 11/16/2024] Open
Abstract
Trabecular meshwork (TM) tissue has a crucial role in regulating aqueous humor circulation in the eye, thus maintaining normal intraocular pressure (IOP). TM dysfunction causes IOP elevation, which leads to glaucoma. To investigate biological changes in TM tissue in patients with glaucoma, we analyzed the mRNA expression microarray dataset, GSE27276. Gene ontology analysis indicated that redox microenvironment imbalance is among the main changes of TM tissue in patients with glaucoma. Subsequently, we induced oxidative stress in TM cells using the tert-butyl hydroperoxide (tBHP) treatment, to generate in vivo and in vitro models, and conducted mRNA sequencing to identify genes with critical roles in maintaining the redox microenvironment balance. We found that the tBHP caused TM dysfunction in vivo, characterized by aqueous humor circulation resistance, IOP elevation, and TM cell death. Further, Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that ferroptosis signaling was enriched in tBHP-treated TM cells. Consistently, in vitro analyses showed that levels of reactive oxygen species, ferric ion, and malondialdehyde were increased after the tBHP treatment, indicating TM cell ferroptosis. Furthermore, inhibiting ferroptosis alleviated tBHP-induced TM cell injury. This study provides new insights suggesting that inhibition of ferroptosis has potential as a treatment for glaucoma.
Collapse
Affiliation(s)
- Xuejing Yan
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren HospitalCapital Medical UniversityBeijing Ophthalmology & Visual Sciences Key LaboratoryBeijingChina
- Beijing Institute of Brain DisordersCollaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Qian Liu
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren HospitalCapital Medical UniversityBeijing Ophthalmology & Visual Sciences Key LaboratoryBeijingChina
- Beijing Institute of Brain DisordersCollaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Shen Wu
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren HospitalCapital Medical UniversityBeijing Ophthalmology & Visual Sciences Key LaboratoryBeijingChina
- Beijing Institute of Brain DisordersCollaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Xiaowei Fan
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren HospitalCapital Medical UniversityBeijing Ophthalmology & Visual Sciences Key LaboratoryBeijingChina
| | - Yufei Teng
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren HospitalCapital Medical UniversityBeijing Ophthalmology & Visual Sciences Key LaboratoryBeijingChina
| | - Ningli Wang
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren HospitalCapital Medical UniversityBeijing Ophthalmology & Visual Sciences Key LaboratoryBeijingChina
- Beijing Institute of Brain DisordersCollaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Jingxue Zhang
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren HospitalCapital Medical UniversityBeijing Ophthalmology & Visual Sciences Key LaboratoryBeijingChina
- Beijing Institute of Brain DisordersCollaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| |
Collapse
|
18
|
Li Y, Ruan X, Sun M, Yuan M, Song J, Zhou Z, Li H, Ma Y, Mi W, Zhang X. Iron deposition participates in LPS-induced cognitive impairment by promoting neuroinflammation and ferroptosis in mice. Exp Neurol 2024; 379:114862. [PMID: 38866103 DOI: 10.1016/j.expneurol.2024.114862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/16/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Neuroinflammation is a common pathological feature and onset in multiple cognitive disorders, including postoperative cognitive dysfunction (POCD). Iron deposition was proved to participate in this process. But how iron mediates inflammation-induced cognitive deficits remains unknown. This study aimed to investigate the mechanism of iron through the neuroprotective effect of the iron chelator deferoxamine (DFO) in a mouse model of lipopolysaccharide (LPS)-induced cognitive impairment. Adult C57BL/6 mice were pretreated with 0.5 μg of DFO three days before intracerebroventricular microinjection of 2 μg of LPS. The mice showed memory deficits by showing decreased percentage of distance and the time within the platform-site quadrant, fewer platform-site crossings, and shortened swimming distance around the platform in the Morris water maze test, which were significantly mitigated by DFO pretreatment. Mechanistically, DFO prevented LPS-induced iron accumulation and modulated the imbalance of proteins expression related to iron metabolism, including elevated transferrin (TF) levels and reduced ferritin (Fth) caused by LPS. DFO attenuated the LPS-induced lipid peroxidation and oxidative stress, which is evidenced by the decrease of malondialdehyde (MDA) and lipid peroxidation (LPO) levels and the increase of superoxide dismutase (SOD) activity and glutathione (GSH) concentration. Moreover, DFO ameliorated ferroptosis-like mitochondrial damages in the hippocampus and also alleviated the expression of ferroptosis-related proteins in the hippocampus. Additionally, DFO attenuated microglial activation, alleviated LPS-induced inflammation, and reduced elevated levels of IL-6 and TNF-α in the hippocampus. Taken together, our findings suggested that DFO exerts neuroprotective effects by alleviating excessive iron participation in lipid peroxidation, reducing the occurrence of ferroptosis, inhibiting the vicious cycle between oxidative stress and inflammation, and ultimately ameliorating LPS-induced cognitive dysfunction, providing novel insights into the immunopathogenesis of inflammation-related cognitive dysfunction and future potential prevention options targeting iron.
Collapse
Affiliation(s)
- Yang Li
- Department of Anesthesiology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Xianghan Ruan
- Department of Anesthesiology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; Chinese PLA Medical School, Beijing 100853, China
| | - Miao Sun
- Department of Anesthesiology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Mengyao Yuan
- Department of Anesthesiology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; Chinese PLA Medical School, Beijing 100853, China
| | - Jie Song
- Nursing Department, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; Intensive Care Unit, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Zhikang Zhou
- Department of Anesthesiology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Hao Li
- Department of Anesthesiology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yulong Ma
- Department of Anesthesiology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| | - Weidong Mi
- Department of Anesthesiology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| | - Xiaoying Zhang
- Department of Anesthesiology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
19
|
Wang H, Mao W, Zhang Y, Feng W, Bai B, Ji B, Chen J, Cheng B, Yan F. NOX1 triggers ferroptosis and ferritinophagy, contributes to Parkinson's disease. Free Radic Biol Med 2024; 222:331-343. [PMID: 38876456 DOI: 10.1016/j.freeradbiomed.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
The progressive loss of dopaminergic neurons in the midbrain is the hallmark of Parkinson's disease (PD). A newly emerging form of lytic cell death, ferroptosis, has been implicated in PD. However, it remains unclear in terms of PD-associated ferroptosis underlying causative genes and effective therapeutic approaches. This research explored the underlying mechanism of ferroptosis-related genes in PD. Here, Firstly, we found NOX1 associated with ferroptosis differently in PD patients by bioinformatics analysis. In vitro and in vivo models of PD were constructed to explore the underlying mechanism. qPCR, Western blot analysis, immunohistochemistry, immunofluorescence, Ferro orange, and BODIPY C11 were utilized to analyze the levels of ferroptosis. Transcriptomics sequencing was to investigate the downstream pathway and the analysis of immunoprecipitation to validate the upstream factor. In conclusion, NOX1 upregulation and activation of ferroptosis-related neurodegeneration, therefore, might be useful as a clinical therapeutic agent.
Collapse
Affiliation(s)
- Huiqing Wang
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Wenwei Mao
- Jining Medical University, Jining, 272067, People's Republic of China
| | - Yuhan Zhang
- Jining Medical University, Jining, 272067, People's Republic of China
| | - Wenhui Feng
- Jining Medical University, Jining, 272067, People's Republic of China
| | - Bo Bai
- Jining Medical University, Jining, 272067, People's Republic of China
| | - Bingyuan Ji
- Institute of Precision Medicine, Jining Medical University, Jining, 272067, People's Republic of China
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, 272067, Jining, People's Republic of China; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Baohua Cheng
- Neurobiology Institute, Jining Medical University, 272067, Jining, People's Republic of China; College of Basic Medicine, Jining Medical University, Jining, 272067, People's Republic of China.
| | - Fuling Yan
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
20
|
Li J, Wang Y, Huang J, Gong D. Knowledge mapping of ferroptosis in Parkinson's disease: a bibliometric analysis: 2012-2023. Front Aging Neurosci 2024; 16:1433325. [PMID: 39280701 PMCID: PMC11401074 DOI: 10.3389/fnagi.2024.1433325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Background Ferroptosis is a crucial pathogenic mechanism in Parkinson's disease, offering significant potential for pharmacological intervention. Despite its importance, the number of bibliometric analyses examining the relationship between ferroptosis and Parkinson's disease remains limited. This study aims to elucidate the knowledge structure and primary research focuses within this field using various bibliometric tools search. Materials and methods We conducted a comprehensive literature son ferroptosis in Parkinson's disease using the Web of Science Core Collection database. Bibliometric analyses and visualizations were performed with VOSviewer, examining the geographical and institutional distribution of publications, journal interconnections, and keyword prevalence. Furthermore, CiteSpace was used to visually explore and analyze journal interactions and citation dynamics. The bibliometrix R package facilitated the delineation of collaborative networks across different countries and the construction of visual network representations illustrating relationships among authors, keywords, and journals. Data visualization was further enhanced with Microsoft Office Excel 2021. Results Recently, there has been a significant increase in publications on ferroptosis, with China emerging as a leading contributor in this research area. Keyword analysis highlights the critical role of ferroptosis in the pathogenesis of Parkinson's disease, identifying GPX4 as a key enzyme mitigating lipid peroxidation. This study also elucidates the connections and distinctions between ferroptosis and other cell death processes such as apoptosis, autophagy, and pyroptosis. Current research primarily focuses on immunotherapy, prognosis, oxidative stress, lipid peroxidation, and the tumor microenvironment. Conclusion This study provides a comprehensive initial analysis of the research landscape, identifying current focal points and potential future directions for ferroptosis research in Parkinson's disease. The findings leverage a variety of bibliometric methodologies to offer valuable insights into this emerging field.
Collapse
Affiliation(s)
- Juanqin Li
- Department of Neurology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
- Hubei Provincial Clinical Research Center for Parkinson's Disease, Xiangyang, China
| | - Yanli Wang
- Department of Neurology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
- Hubei Provincial Clinical Research Center for Parkinson's Disease, Xiangyang, China
| | - Jing Huang
- Department of Neurology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
- Hubei Provincial Clinical Research Center for Parkinson's Disease, Xiangyang, China
| | - Daokai Gong
- Department of Neurology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
- Hubei Provincial Clinical Research Center for Parkinson's Disease, Xiangyang, China
| |
Collapse
|
21
|
Jiao T, Chen Y, Sun H, Yang L. Targeting ferroptosis as a potential prevention and treatment strategy for aging-related diseases. Pharmacol Res 2024; 208:107370. [PMID: 39181344 DOI: 10.1016/j.phrs.2024.107370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Ferroptosis, an emerging paradigm of programmed cellular necrosis posited in recent years, manifests across a spectrum of maladies with profound implications for human well-being. Numerous investigations substantiate that modulating ferroptosis, whether through inhibition or augmentation, plays a pivotal role in the etiology and control of numerous age-related afflictions, encompassing neurological, circulatory, respiratory, and other disorders. This paper not only summarizes the regulatory mechanisms of ferroptosis, but also discusses the impact of ferroptosis on the biological processes of aging and its role in age-related diseases. Furthermore, it scrutinizes recent therapeutic strides in addressing aging-related conditions through the modulation of ferroptosis. The paper consolidates the existing knowledge on potential applications of ferroptosis-related pharmacotherapies and envisages the translational prospects of ferroptosis-targeted interventions in clinical paradigms.
Collapse
Affiliation(s)
- Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Yiman Chen
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Haiyan Sun
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, Liaoning 110001, PR China.
| | - Lina Yang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China; Department of International Physical Examination Center, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China.
| |
Collapse
|
22
|
Duță C, Muscurel C, Dogaru CB, Stoian I. Ferroptosis-A Shared Mechanism for Parkinson's Disease and Type 2 Diabetes. Int J Mol Sci 2024; 25:8838. [PMID: 39201524 PMCID: PMC11354749 DOI: 10.3390/ijms25168838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Type 2 diabetes (T2D) and Parkinson's disease (PD) are the two most frequent age-related chronic diseases. There are many similarities between the two diseases: both are chronic diseases; both are the result of a decrease in a specific substance-insulin in T2D and dopamine in PD; and both are caused by the destruction of specific cells-beta pancreatic cells in T2D and dopaminergic neurons in PD. Recent epidemiological and experimental studies have found that there are common underlying mechanisms in the pathophysiology of T2D and PD: chronic inflammation, mitochondrial dysfunction, impaired protein handling and ferroptosis. Epidemiological research has indicated that there is a higher risk of PD in individuals with T2D. Moreover, clinical studies have observed that the symptoms of Parkinson's disease worsen significantly after the onset of T2D. This article provides an up-to-date review on the intricate interplay between oxidative stress, reactive oxygen species (ROS) and ferroptosis in PD and T2D. By understanding the shared molecular pathways and how they can be modulated, we can develop more effective therapies, or we can repurpose existing drugs to improve patient outcomes in both disorders.
Collapse
|
23
|
Lee L, Thoolen M, Ma J, Kaushik D, Golden L, Kong R. Effect of Itraconazole, a CYP3A4 Inhibitor, and Rifampin, a CYP3A4 Inducer, on the Pharmacokinetics of Vatiquinone. Clin Pharmacol Drug Dev 2024. [PMID: 39133029 DOI: 10.1002/cpdd.1461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024]
Abstract
Vatiquinone is a small molecule inhibitor of 15-lipoxygenase in development for patients with Friedreich's ataxia. The objective of this analysis was to determine the effect of a cytochrome P450 isoform 3A4 (CYP3A4) inhibitor and inducer on vatiquinone pharmacokinetics (PKs). The coadministration of 400 mg of vatiquinone with 200 mg of itraconazole (a CYP3A4 inhibitor) resulted in increased maximum observed concentration (Cmax) of vatiquinone and systemic exposure (AUC0-inf) by approximately 3.5- and 2.9-fold, respectively. The coadministration of 400 mg of vatiquinone with 600 mg of rifampin (a CYP3A4 inducer) resulted in decreased vatiquinone Cmax and AUC0-inf by approximately 0.64- and 0.54-fold, respectively. The terminal half-life of vatiquinone was not affected by itraconazole or rifampin. These clinical study results confirm the in vitro reaction phenotyping data that shows that CYP3A4 plays an important role in vatiquinone metabolism. The result of this analysis together with phase 3 efficacy and safety data, population PK analysis, and the exposure-response relationship will determine if the extent of vatiquinone changes in the presence of CYP3A4 inhibitors and inducers are considered clinically relevant.
Collapse
Affiliation(s)
- Lucy Lee
- PTC Therapeutics, Inc., Warren, NJ, USA
| | | | - Jiyuan Ma
- PTC Therapeutics, Inc., Warren, NJ, USA
| | | | | | | |
Collapse
|
24
|
Ferreyra MR, Romero VL, Fernandez-Hubeid LE, Gonzales-Moreno C, Aschner M, Virgolini MB. Ferrostatin-1 mitigates cellular damage in a ferroptosis-like environment in Caenorhabditis elegans. Toxicol Sci 2024; 200:357-368. [PMID: 38754108 DOI: 10.1093/toxsci/kfae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Although iron (Fe) is the most biologically abundant transition metal, it is highly toxic when it accumulates as Fe2+, forming a labile Fe pool and favoring the Fenton reaction. This oxidative scenario leads to a type of caspase-independent programmed cell death, referred to as ferroptosis, where following processes take place: (i) Fe2+ overload, (ii) glutathione peroxidase 4 inactivation, (iii) lipid peroxidation, and (iv) glutathione depletion. The present study sought to evaluate the consequences of Fe2+ administration on ferroptosis induction in Caenorhabditis elegans. We demonstrated higher mortality, increased lipid peroxidation, reduced glutathione peroxidase activity, and morphological damage in dopaminergic neurons upon Fe2+ overload. Pharmacological intervention at the level of lipid peroxidation with ferrostatin-1 (250 μM) mitigated the damage and returned the biochemical parameters to basal levels, revealing the potential of this therapeutical approach. Finally, to assess the relationship between ferroptosis and dopamine in a Parkinsonian background, we evaluated the UA44 worm strain which overexpresses the alpha-synuclein protein in cherry-labeled dopaminergic neurons. We demonstrated that Fe2+ administration reduced lethality associated with similar alterations in biochemical and dopaminergic morphological parameters in wild-type animals. These experiments provide mechanistic-based evidence on the efficacy of a pharmacological approach to mitigate the physiological, biochemical, and morphological consequences of Fe2+ overload. At the same time, they encourage further research on the impact of the combined effects resulting from the genetic background and dopamine signaling in a Parkinsonian phenotype.
Collapse
Affiliation(s)
- Melisa R Ferreyra
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba , Córdoba X5000HUA, Argentina
| | - Verónica L Romero
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba , Córdoba X5000HUA, Argentina
| | - Lucia E Fernandez-Hubeid
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba , Córdoba X5000HUA, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas (IFEC-CONICET) , Córdoba X5000HUA, Argentina
| | - Candelaria Gonzales-Moreno
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba , Córdoba X5000HUA, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas (IFEC-CONICET) , Córdoba X5000HUA, Argentina
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Miriam B Virgolini
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba , Córdoba X5000HUA, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas (IFEC-CONICET) , Córdoba X5000HUA, Argentina
| |
Collapse
|
25
|
Thirupathi A, Marqueze LF, Outeiro TF, Radak Z, Pinho RA. Physical Exercise-Induced Activation of NRF2 and BDNF as a Promising Strategy for Ferroptosis Regulation in Parkinson's Disease. Neurochem Res 2024; 49:1643-1654. [PMID: 38782838 DOI: 10.1007/s11064-024-04152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/19/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. Ferroptosis, an iron-dependent form of regulated cell death, may contribute to the progression of PD owing to an unbalanced brain redox status. Physical exercise is a complementary therapy that can modulate ferroptosis in PD by regulating the redox system through the activation of nuclear factor (erythroid-derived 2)-like 2 (NRF2) and brain-derived neurotrophic factor (BDNF) signaling. However, the precise effects of physical exercise on ferroptosis in PD remain unclear. In this review, we explored how physical exercise influences NRF2 and BDNF signaling and affects ferroptosis in PD. We further investigated relevant publications over the past two decades by searching the PubMed, Web of Science, and Google Scholar databases using keywords related to physical exercise, PD, ferroptosis, and neurotrophic factor antioxidant signaling. This review provides insights into current research gaps and demonstrates the necessity for future research to elucidate the specific mechanisms by which exercise regulates ferroptosis in PD, including the assessment of different exercise protocols and their long-term effects. Ultimately, exploring these aspects may lead to the development of improved exercise interventions for the better management of patients with PD.
Collapse
Affiliation(s)
| | - Luis Felipe Marqueze
- Graduate Program in Health Sciences, School of Life Sciences and Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Ricardo A Pinho
- Faculty of Sports Science, Ningbo University, Ningbo, China.
- Graduate Program in Health Sciences, School of Life Sciences and Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil.
| |
Collapse
|
26
|
Yu A, Zhang W, Zhang Q, Yang K, Liu X, Liu H, Xie J, Feng Y, Li J, Jia C. A TICT-AIE activated dual-channel fluorescence-on probe to reveal the dynamics mechanosensing of lipid droplets during ferroptosis. Talanta 2024; 274:126028. [PMID: 38599126 DOI: 10.1016/j.talanta.2024.126028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/18/2024] [Accepted: 03/30/2024] [Indexed: 04/12/2024]
Abstract
Mechanical forces play a crucial role in cellular processes, including ferroptosis, a form of regulated cell death associated with various diseases. However, the mechanical aspects of organelle lipid droplets (LDs) during ferroptosis are poorly understood. In this study, we designed and synthesized a fluorescent probe, TPE-V1, to enable real-time monitoring of LDs' viscosity using a dual-channel fluorescence-on model (red channel at 617 nm and NIR channel at 710 nm). The fluorescent imaging of using TPE-V1 was achieved due to the integrated mechanisms of the twisted intramolecular charge transfer (TICT) and aggregation-induced emission (AIE). Through dual-emission channel fluorescence imaging, we observed the enhanced mechanical energy of LDs triggering cellular mechanosensing, including ferroptosis and cell deformation. Theoretical calculations confirmed the probe's behavior, showing that high-viscosity media prevented the rotation processes and restored fluorescence quenching in low viscosity. These findings suggest that our TICT-TPE design strategy provides a practical approach to study LDs' mechanical properties during ferroptosis. This development enhances our understanding of the interplay between mechanical forces and LDs, contributing to the knowledge of ferroptotic cell death and potential therapeutic interventions targeting dysregulated cell death processes.
Collapse
Affiliation(s)
- Ao Yu
- Hainan Provincial Key Laboratory of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Wei Zhang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199, China
| | - Qiangsheng Zhang
- Hainan Provincial Key Laboratory of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Kunlong Yang
- Hainan Provincial Key Laboratory of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Xiongbo Liu
- Hainan Provincial Key Laboratory of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Hongtao Liu
- Hainan Provincial Key Laboratory of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China; One Health Institute, Hainan University, Haikou, 570228, China
| | - Jialin Xie
- Hainan Provincial Key Laboratory of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China; One Health Institute, Hainan University, Haikou, 570228, China
| | - Yan Feng
- Hainan Provincial Key Laboratory of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China; One Health Institute, Hainan University, Haikou, 570228, China.
| | - Jianwei Li
- MediCity Research Laboratory, University of Turku, Tykistökatu 6, Turku, 20520, Finland.
| | - Chunman Jia
- Hainan Provincial Key Laboratory of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China; One Health Institute, Hainan University, Haikou, 570228, China; Analytical & Testing Center, Hainan University, Haikou, 570228, China.
| |
Collapse
|
27
|
Wu X, Shi M, Chen Y, Lian Y, Fang S, Zhang H. Effect and Mechanism of LIN28 on Ferroptosis in Mg 2+-free Rat Hippocampal Neuron Model of Epilepsy. Neurochem Res 2024; 49:1655-1664. [PMID: 38217758 DOI: 10.1007/s11064-024-04101-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Studies have demonstrated that LIN28 is expressed in the CNS and may exert protective effects on neurons. However, it remains unknown whether LIN28 regulates ferroptosis in the context of epilepsy. In this study, we established an epilepsy model by culturing hippocampal neurons from rats in a magnesium-free (Mg2+-free) medium. In Mg2+-depleted conditions, hippocampal neurons exhibited reduced LIN28 expression, heightened miR-142-5p expression, decreased glutathione peroxidase (GPX) activity and expression, elevated levels of reactive oxygen species (ROS) and malondialdehyde (MDA), resulting in a significant decline in cell viability and an increase in ferroptosis. Conversely, overexpression of LIN28 reversed these trends in the mentioned indices. Altogether, this study reveals that LIN28 may exert neuroprotective effects by inhibiting the miR-142-5p expression and suppressing ferroptosis in hippocampal neurons induced by Mg2+-free via increasing GPX4 expression.
Collapse
Affiliation(s)
- Xiaoke Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Mengmeng Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuan Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shaokuan Fang
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Haifeng Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
28
|
Liu N, Yu W, Sun M, Li X, Zhang W, Wang M. Dabrafenib mitigates the neuroinflammation caused by ferroptosis in experimental autoimmune encephalomyelitis by up regulating Axl receptor. Eur J Pharmacol 2024; 973:176600. [PMID: 38643834 DOI: 10.1016/j.ejphar.2024.176600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Multiple sclerosis is an autoimmune disease that causes inflammatory damage to the central nervous system. At present, the pathogenesis of the disease is unknown. There is a lack of few effective therapy medications available. Therefore, it is necessary to further explore the pathogenesis of this illness and develop potential therapeutic drugs. Dabrafenib is potential therapeutic medicine for nervous system disease. In this study, we preliminarily studied the possible mechanism of dabrafenib in the treatment of multiple sclerosis from the perspective of ferroptosis. First, we observed that dabrafenib significantly improved symptoms of gait abnormalities, limb weakness or paralysis, and down-regulated levels of spinal cord inflammation in an experimental autoimmune encephalitis (EAE) model. Meanwhile, we also observed that dabrafenib could inhibit the proteins of ferroptosis in spinal cord tissue of EAE mice by Western blot. The results of immunohistochemical analysis showed that the effect of dabrafenib on ferroptosis mainly occurred in microglia. Second, dabrafenib was demonstrated to be able to inhibit the S phase of the cell cycle, reduce ROS levels, and reinstate mitochondrial activity in the LPS-induced BV2 inflammatory cell model. Futhermore, we found that dabrafenib inhibits P-JAK2 and P-STAT3 activation by acting Axl receptor, which in turn prevents neurogenic inflammation in microglia. The co-stimulated BV2 cell model with LPS and Erastin also verified these findings. Ultimately, the Axl knockout mice used to construct the EAE model allowed for the confirmation that dabrafenib prevented ferroptosis in microglia by up-regulating Axl receptor, which reduced the inflammatory demyelination associated with EAE. In summary, our research demonstrates the advantages of dabrafenib in multiple sclerosis treatment, which can prevent ferroptosis in microglia in multiple sclerosis through up-regulating Axl receptor, thus halting the progression of multiple sclerosis.
Collapse
Affiliation(s)
- Ning Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| | - Wuhan Yu
- Department of general Surgery, the Second Affiliated Hospital of Lanzhou University, Lanzhou, 730030, China; The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, 523000, China
| | - Mengjiao Sun
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Xiaoling Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Wenjing Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
29
|
Bao Y, Wang L, Liu H, Yang J, Yu F, Cui C, Huang D. A Diagnostic Model for Parkinson's Disease Based on Anoikis-Related Genes. Mol Neurobiol 2024; 61:3641-3656. [PMID: 38001358 DOI: 10.1007/s12035-023-03753-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease, and its pathological mechanisms are thought to be closely linked to apoptosis. Anoikis, a specific type of apoptosis, has recently been suggested to play a role in the progression of Parkinson's disease; however, the underlying mechanisms are not well understood. To explore the potential mechanisms involved in PD, we selected genes from the GSE28894 dataset and compared their expression in PD patients and healthy controls to identify differentially expressed genes (DEGs), and selected anoikis-related genes (ANRGs) from the DEGs. Furthermore, the least absolute shrinkage and selection operator (LASSO) regression approach and multivariate logistic regression highlighted five key genes-GSK3B, PCNA, CDC42, DAPK2, and SRC-as biomarker candidates. Subsequently, we developed a nomogram model incorporating these 5 genes along with age and sex to predict and diagnose PD. To evaluate the model's coherence, clinical applicability, and distinguishability, we utilized receiver operating characteristic (ROC) curves, the C-index, and calibration curves and validated it in both the GSE20295 dataset and our center's external clinical data. In addition, we confirmed the differential expression of the 5 model genes in human blood samples through qRT-PCR and Western blotting. Our constructed anoikis-related PD diagnostic model exhibits satisfactory predictive accuracy and offers novel insights into both diagnosis and treatment strategies for Parkinson's disease while facilitating its implementation in clinical practice.
Collapse
Affiliation(s)
- Yiwen Bao
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Lufeng Wang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Hong Liu
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jie Yang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Fei Yu
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Can Cui
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Dongya Huang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
30
|
Chen Y, Wu Z, Li S, Chen Q, Wang L, Qi X, Tian C, Yang M. Mapping the Research of Ferroptosis in Parkinson's Disease from 2013 to 2023: A Scientometric Review. Drug Des Devel Ther 2024; 18:1053-1081. [PMID: 38585257 PMCID: PMC10999190 DOI: 10.2147/dddt.s458026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
Methods Related studies on PD and ferroptosis were searched in Web of Science Core Collection (WOSCC) from inception to 2023. VOSviewer, CiteSpace, RStudio, and Scimago Graphica were employed as bibliometric analysis tools to generate network maps about the collaborations between authors, countries, and institutions and to visualize the co-occurrence and trends of co-cited references and keywords. Results A total of 160 original articles and reviews related to PD and ferroptosis were retrieved, produced by from 958 authors from 162 institutions. Devos David was the most prolific author, with 9 articles. China and the University of Melbourne had leading positions in publication volume with 84 and 12 publications, respectively. Current hot topics focus on excavating potential new targets for treating PD based on ferroptosis by gaining insight into specific molecular mechanisms, including iron metabolism disorders, lipid peroxidation, and imbalanced antioxidant regulation. Clinical studies aimed at treating PD by targeting ferroptosis remain in their preliminary stages. Conclusion A continued increase was shown in the literature within the related field over the past decade. The current study suggested active collaborations among authors, countries, and institutions. Research into the pathogenesis and treatment of PD based on ferroptosis has remained a prominent topic in the field in recent years, indicating that ferroptosis-targeted therapy is a potential approach to halting the progression of PD.
Collapse
Affiliation(s)
- Yingfan Chen
- Medical School of Chinese People’s Liberation Army, Beijing, People’s Republic of China
- Department of Traditional Chinese Medicine, the Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Zhenhui Wu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Shaodan Li
- Department of Traditional Chinese Medicine, the Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Qi Chen
- Department of Traditional Chinese Medicine, the Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Liang Wang
- Department of Traditional Chinese Medicine, the Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Xiaorong Qi
- Medical School of Chinese People’s Liberation Army, Beijing, People’s Republic of China
| | - Chujiao Tian
- Medical School of Chinese People’s Liberation Army, Beijing, People’s Republic of China
| | - Minghui Yang
- Department of Traditional Chinese Medicine, the Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
31
|
Wei J, Wang G, Lai M, Zhang Y, Li F, Wang Y, Tan Y. Faecal Microbiota Transplantation Alleviates Ferroptosis after Ischaemic Stroke. Neuroscience 2024; 541:91-100. [PMID: 38296019 DOI: 10.1016/j.neuroscience.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Ischaemic stroke can induce changes in the abundance of gut microbiota constituents, and the outcome of stroke may also be influenced by the gut microbiota. This study aimed to determine whether gut microbiota transplantation could rescue changes in the gut microbiota and reduce ferroptosis after stroke in rats. Male Sprague-Dawley rats (6 weeks of age) were subjected to ischaemic stroke by middle cerebral artery occlusion (MCAO). Fecal samples were collected for 16S ribosomal RNA (rRNA) sequencing to analyze the effects of FMT on the gut microbiota. Neurological deficits were evaluated using the Longa score. triphenyl tetrazolium chloride (TTC) staining was performed in the brain, and kits were used to measure malondialdehyde (MDA), iron, and glutathione (GSH) levels in the ipsilateral brain of rats. Western blotting was used to detect the protein expression levels of glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11 (SLC7A11), and the transferrin receptor 2 (TFR2) in the ipsilateral brain of rats. Stroke induced significant changes in the gut microbiota, and FMT ameliorated these changes. TTC staining results showed that FMT reduced cerebral infarct volume. In addition, FMT diminished MDA and iron levels and elevated GSH levels in the ipsilateral brain. Western blot analysis showed that FMT increased GPX4 and SLC7A11 protein expression and decreased TFR2 protein expression in the ipsilateral brain after stroke. FMT can reverse gut microbiota dysbiosis, reduce cerebellar infarct volume, and decrease ferroptosis after stroke.
Collapse
Affiliation(s)
- Jinzhen Wei
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Guilin 541000, China
| | - Gang Wang
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Guilin 541000, China
| | - Min Lai
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Guilin 541000, China
| | - Yipin Zhang
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Guilin 541000, China
| | - Fengru Li
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Guilin 541000, China
| | - Yongwang Wang
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Guilin 541000, China.
| | - Yongxing Tan
- Guilin Municipal Hospital of Traditional Chinese Medicine, Guilin 541000, China.
| |
Collapse
|
32
|
Wang L, Fang X, Ling B, Wang F, Xia Y, Zhang W, Zhong T, Wang X. Research progress on ferroptosis in the pathogenesis and treatment of neurodegenerative diseases. Front Cell Neurosci 2024; 18:1359453. [PMID: 38515787 PMCID: PMC10955106 DOI: 10.3389/fncel.2024.1359453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
Globally, millions of individuals are impacted by neurodegenerative disorders including Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD). Although a great deal of energy and financial resources have been invested in disease-related research, breakthroughs in therapeutic approaches remain elusive. The breakdown of cells usually happens together with the onset of neurodegenerative diseases. However, the mechanism that triggers neuronal loss is unknown. Lipid peroxidation, which is iron-dependent, causes a specific type of cell death called ferroptosis, and there is evidence its involvement in the pathogenic cascade of neurodegenerative diseases. However, the specific mechanisms are still not well known. The present article highlights the basic processes that underlie ferroptosis and the corresponding signaling networks. Furthermore, it provides an overview and discussion of current research on the role of ferroptosis across a variety of neurodegenerative conditions.
Collapse
Affiliation(s)
- Lijuan Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiansong Fang
- Department of Blood Transfusion, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Baodian Ling
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Fangsheng Wang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yu Xia
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Wenjuan Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoling Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
33
|
Dar NJ, John U, Bano N, Khan S, Bhat SA. Oxytosis/Ferroptosis in Neurodegeneration: the Underlying Role of Master Regulator Glutathione Peroxidase 4 (GPX4). Mol Neurobiol 2024; 61:1507-1526. [PMID: 37725216 DOI: 10.1007/s12035-023-03646-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
Oxytosis/ferroptosis is an iron-dependent oxidative form of cell death triggered by lethal accumulation of phospholipid hydroperoxides (PLOOHs) in membranes. Failure of the intricate PLOOH repair system is a principle cause of ferroptotic cell death. Glutathione peroxidase 4 (GPX4) is distinctly vital for converting PLOOHs in membranes to non-toxic alcohols. As such, GPX4 is known as the master regulator of oxytosis/ferroptosis. Ferroptosis has been implicated in a number of disorders such as neurodegenerative diseases (amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), etc.), ischemia/reperfusion injury, and kidney degeneration. Reduced function of GPX4 is frequently observed in degenerative disorders. In this study, we examine how diminished GPX4 function may be a critical event in triggering oxytosis/ferroptosis to perpetuate or initiate the neurodegenerative diseases and assess the possible therapeutic importance of oxytosis/ferroptosis in neurodegenerative disorders. These discoveries are important for advancing our understanding of neurodegenerative diseases because oxytosis/ferroptosis may provide a new target to slow the course of the disease.
Collapse
Affiliation(s)
- Nawab John Dar
- School of Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| | - Urmilla John
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India
- School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nargis Bano
- Faculty of Life Sciences, Department of Zoology, Aligarh Muslim University, Aligarh, U.P, India
| | - Sameera Khan
- Faculty of Life Sciences, Department of Zoology, Aligarh Muslim University, Aligarh, U.P, India
| | - Shahnawaz Ali Bhat
- Faculty of Life Sciences, Department of Zoology, Aligarh Muslim University, Aligarh, U.P, India.
| |
Collapse
|
34
|
Ganguly U, Singh S, Bir A, Ghosh A, Chakrabarti SS, Saini RV, Saso L, Bisaglia M, Chakrabarti S. Alpha-synuclein interaction with mitochondria is the final mechanism of ferroptotic death induced by erastin in SH-SY5Y cells. Free Radic Res 2024; 58:217-228. [PMID: 38572725 DOI: 10.1080/10715762.2024.2336563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/16/2024] [Indexed: 04/05/2024]
Abstract
Ferroptosis has been characterized as a form of iron-dependent regulated cell death accompanied by an accumulation of reactive oxygen species and lipid oxidation products along with typical morphological alterations in mitochondria. Ferroptosis is activated by diverse triggers and inhibited by ferrostatin-1 and liproxstatin-1, apart from iron chelators and several antioxidants, and the process is implicated in multiple pathological conditions. There are, however, certain ambiguities about ferroptosis, especially regarding the final executioner of cell death subsequent to the accumulation of ROS. This study uses a typical inducer of ferroptosis such as erastin on SH-SY5Y cells, and shows clearly that ferroptotic death of cells is accompanied by the loss of mitochondrial membrane potential and intracellular ATP content along with an accumulation of oxidative stress markers. All these are prevented by ferrostatin-1 and liproxstatin-1. Additionally, cyclosporine A prevents mitochondrial alterations and cell death induced by erastin implying the crucial role of mitochondrial permeability transition pore (mPTP) activation in ferroptotic death. Furthermore, an accumulation of α-synuclein occurs during erastin induced ferroptosis which can be inhibited by ferrostatin-1 and liproxstatin-1. When the knock-down of α-synuclein expression is performed by specific siRNA treatment of SH-SY5Y cells, the mitochondrial impairment and ferroptotic death of the cells induced by erastin are markedly prevented. Thus, α-synuclein through the involvement of mPTP appears to be the key executioner protein of ferroptosis induced by erastin, but it needs to be verified if it is a generalized mechanism of ferroptosis by using other inducers and cell lines.
Collapse
Affiliation(s)
- Upasana Ganguly
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Ambala, India
| | - Sukhpal Singh
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Ambala, India
| | - Aritri Bir
- Department of Biochemistry, Dr B. C. Roy Multi-Speciality Medical Research Centre, IIT Kharagpur, India
| | - Arindam Ghosh
- Department of Biochemistry, Dr B. C. Roy Multi-Speciality Medical Research Centre, IIT Kharagpur, India
| | - Sankha Shubhra Chakrabarti
- Department of Geriatric Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Reena V Saini
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar University (Deemed to be), Ambala, India
| | - Luciano Saso
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Marco Bisaglia
- Department of Biology, University of Padova, Padova, Italy
| | - Sasanka Chakrabarti
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Ambala, India
| |
Collapse
|
35
|
Fadoul G, Ikonomovic M, Zhang F, Yang T. The cell-specific roles of Nrf2 in acute and chronic phases of ischemic stroke. CNS Neurosci Ther 2024; 30:e14462. [PMID: 37715557 PMCID: PMC10916447 DOI: 10.1111/cns.14462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/17/2023] Open
Abstract
Ischemic stroke refers to the sudden loss of blood flow in a specific area of the brain. It is the fifth leading cause of mortality and the leading cause of permanent disability. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) controls the production of several antioxidants and protective proteins and it has been investigated as a possible pharmaceutical target for reducing harmful oxidative events in brain ischemia. Each cell type exhibits different roles and behaviors in different phases post-stroke, which is comprehensive yet important to understand to optimize management strategies and goals for care for stroke patients. In this review, we comprehensively summarize the protective effects of Nrf2 in experimental ischemic stroke, emphasizing the role of Nrf2 in different cell types including neurons, astrocytes, oligodendrocytes, microglia, and endothelial cells during acute and chronic phases of stroke and providing insights on the neuroprotective role of Nrf2 on each cell type throughout the long term of stroke care. We also highlight the importance of targeting Nrf2 in clinical settings while considering a variety of important factors such as age, drug dosage, delivery route, and time of administration.
Collapse
Affiliation(s)
- George Fadoul
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders and RecoveryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Milos Ikonomovic
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
| | - Feng Zhang
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders and RecoveryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Tuo Yang
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders and RecoveryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Internal MedicineUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| |
Collapse
|
36
|
Sun Q, Wang Y, Hou L, Li S, Hong JS, Wang Q, Zhao J. Clozapine-N-oxide protects dopaminergic neurons against rotenone-induced neurotoxicity by preventing ferritinophagy-mediated ferroptosis. Free Radic Biol Med 2024; 212:384-402. [PMID: 38182072 PMCID: PMC10842931 DOI: 10.1016/j.freeradbiomed.2023.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, yet treatment options are limited. Clozapine (CLZ), an antipsychotic used for schizophrenia, has potential as a PD treatment. CLZ and its metabolite, Clozapine-N-Oxide (CNO), show neuroprotective effects on dopaminergic neurons, with mechanisms needing further investigation. This study aimed to confirm the neuroprotective effects of CLZ and CNO in a rotenone-induced mouse model and further explore the underlying mechanisms of CNO-afforded protection. Gait pattern and rotarod activity evaluations showed motor impairments in rotenone-exposed mice, with CLZ or CNO administration ameliorating behavioral deficits. Cell counts and biochemical analysis demonstrated CLZ and CNO's effectiveness in reducing rotenone-induced neurodegeneration of dopaminergic neurons in the nigrostriatal system in mice. Mechanistic investigations revealed that CNO suppressed rotenone-induced ferroptosis of dopaminergic neurons by rectifying iron imbalances, curtailing lipid peroxidation, and mitigating mitochondrial morphological changes. CNO also reversed autolysosome and ferritinophagic activation in rotenone-exposed mice. SH-SY5Y cell cultures validated these findings, indicating ferritinophage involvement, where CNO-afforded protection was diminished by ferritinophagy enhancers. Furthermore, knockdown of NCOA4, a crucial cargo receptor for ferritin degradation in ferritinophagy, hampered rotenone-induced ferroptosis and NCOA4 overexpression countered the anti-ferroptotic effects of CNO. Whereas, iron-chelating agents and ferroptosis enhancers had no effect on the anti-ferritinophagic effects of CNO in rotenone-treated cells. In summary, CNO shielded dopaminergic neurons in the rotenone-induced PD model by modulating NCOA4-mediated ferritinophagy, highlighting a potential therapeutic pathway for PD treatment. This research provided insights into the role of NCOA4 in ferroptosis and suggested new approaches for PD therapy.
Collapse
Affiliation(s)
- Qingquan Sun
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China; Department of Neurology, Dalian University Affiliated Xinhua Hospital, No. 156 W. Wansui Road, Dalian 116021, China
| | - Yan Wang
- Institute of Integrative Medicine, College of Pharmacy, Dalian Medical University Library, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Liyan Hou
- Dalian Medical University Library, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Sheng Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Jau-Shyong Hong
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health, Sciences, NIH, MD F1-01, P. O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Qingshan Wang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China; School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China.
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China.
| |
Collapse
|
37
|
Mohan S, Alhazmi HA, Hassani R, Khuwaja G, Maheshkumar VP, Aldahish A, Chidambaram K. Role of ferroptosis pathways in neuroinflammation and neurological disorders: From pathogenesis to treatment. Heliyon 2024; 10:e24786. [PMID: 38314277 PMCID: PMC10837572 DOI: 10.1016/j.heliyon.2024.e24786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Ferroptosis is a newly discovered non-apoptotic and iron-dependent type of cell death. Ferroptosis mainly takes place owing to the imbalance of anti-oxidation and oxidation in the body. It is regulated via a number of factors and pathways both inside and outside the cell. Ferroptosis is closely linked with brain and various neurological disorders (NDs). In the human body, the brain contains the highest levels of polyunsaturated fatty acids, which are known as lipid peroxide precursors. In addition, there is also a connection of glutathione depletion and lipid peroxidation with NDs. There is growing evidence regarding the possible link between neuroinflammation and multiple NDs, such as Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease, and stroke. Recent studies have demonstrated that disruptions of lipid reactive oxygen species (ROS), glutamate excitatory toxicity, iron homeostasis, and various other manifestations linked with ferroptosis can be identified in various neuroinflammation-mediated NDs. It has also been reported that damage-associated molecular pattern molecules including ROS are generated during the events of ferroptosis and can cause glial activation via activating neuroimmune pathways, which subsequently leads to the generation of various inflammatory factors that play a role in various NDs. This review summarizes the regulation pathways of ferroptosis, the link between ferroptosis as well as inflammation in NDs, and the potential of a range of therapeutic agents that can be used to target ferroptosis and inflammation in the treatment of neurological disorders.
Collapse
Affiliation(s)
- Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Hassan A Alhazmi
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Rym Hassani
- Department of Mathematics, University College AlDarb, Jazan University, Jazan, Saudi Arabia
| | - Gulrana Khuwaja
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - V P Maheshkumar
- Department of Pharmacy, Annamalai University, Annamalai Nagar 608002, Tamil Nadu, India
| | - Afaf Aldahish
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
38
|
Liang Y, Wang Y, Sun C, Xiang Y, Deng Y. Deferoxamine reduces endothelial ferroptosis and protects cerebrovascular function after experimental traumatic brain injury. Brain Res Bull 2024; 207:110878. [PMID: 38218407 DOI: 10.1016/j.brainresbull.2024.110878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
Cerebrovascular dysfunction resulting from traumatic brain injury (TBI) significantly contributes to poor patient outcomes. Recent studies revealed the involvement of iron metabolism in neuronal survival, yet its effect on vasculature remains unclear. This study aims to explore the impact of endothelial ferroptosis on cerebrovascular function in TBI. A Controlled Cortical Impact (CCI) model was established in mice, resulting in a significant increase in iron-related proteins such as TfR1, FPN1, and FTH, as well as oxidative stress biomarker 4HNE. This was accompanied by a decline in expression of the ferroptosis inhibitor GPX4. Moreover, Perls' staining and nonhemin iron content assay showed iron overload in brain microvascular endothelial cells (BMECs) and the ipsilateral cortex. Immunofluorescence staining revealed more FTH-positive cerebral endothelial cells, consistent with impaired perfusion vessel density and cerebral blood flow. As a specific iron chelator, deferoxamine (DFO) treatment inhibited such ferroptotic proteins expression and the accumulation of lipid-reactive oxygen species following CCI, enhancing glutathione peroxidase (GPx) activity. DFO treatment significantly reduced iron deposition in BMECs and brain tissue, and increased density of the cerebral capillaries as well. Consequently, DFO treatment led to improvements in cerebral blood flow (as measured by laser speckle imaging) and behavioral performance (as measured by the neurological severity scores, rotarod test, and Morris water maze test). Taken together, our results indicated that TBI induces remarkable iron disorder and endothelial ferroptosis, and DFO treatment may help maintain iron homeostasis and protect vascular function. This may provide a novel therapeutic strategy to prevent cerebrovascular dysfunction following TBI.
Collapse
Affiliation(s)
- Yidan Liang
- Department of Neurosurgery, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| | - Yanglingxi Wang
- Department of Neurosurgery, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| | - Chao Sun
- Department of Neurosurgery, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| | - Yi Xiang
- Department of Neurosurgery, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| | - Yongbing Deng
- Department of Neurosurgery, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China.
| |
Collapse
|
39
|
Kojima Y, Tanaka M, Sasaki M, Ozeki K, Shimura T, Kubota E, Kataoka H. Induction of ferroptosis by photodynamic therapy and enhancement of antitumor effect with ferroptosis inducers. J Gastroenterol 2024; 59:81-94. [PMID: 37947872 DOI: 10.1007/s00535-023-02054-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Photodynamic therapy (PDT) is an effective tumor treatment that involves the administration of a photosensitizer to generate cytotoxic 1O2 [reactive oxygen species (ROS)] from molecular oxygen that is produced from energy absorption following tumor irradiation at specific wavelengths. Ferroptosis is induced by the disruption of the glutathione peroxidase 4 (GPX4) antioxidant system, leading to lipid peroxidation. We hypothesized that talaporfin sodium-photodynamic therapy (TS-PDT)-generated ROS would lead to ferroptosis via accumulation of lipid peroxidation. METHODS Cell viability assay in TS-PDT-treated cells in combination with a ferroptosis inhibitor (ferrostatin-1: Fer-1) or ferroptosis inducers (imidazole ketone erastin: IKE, Ras-selective lethal 3: RSL3) was performed. Accumulation of lipid peroxidation, GPX4 antioxidant system and cystine/glutamate antiporter (system xc-) activity in TS-PDT-treated cells was investigated. In xenograft mice, the antitumor effect of TS-PDT in combination with ferroptosis inducers (IKE or sorafenib) was examined. RESULTS TS-PDT-induced cell death was partly suppressed by Fer-1 and accompanied by lipid peroxidation. TS-PDT combined with IKE or RSL3 enhanced the induction of cell death. TS-PDT inhibited cystine uptake activity via system xc-. In vivo, the combination of TS-PDT and ferroptosis inducers (IKE or sorafenib) reduced tumor volume. CONCLUSION This study found that the mechanism underlying TS-PDT-induced ferroptosis constitutes direct lipid peroxidation by the generated ROS, and the inhibition of system xc-, and that the combination of a ferroptosis inducer with TS-PDT enhances the antitumor effect of TS-PDT. Our findings suggest that ferroptosis-inducing therapies combined with PDT may benefit cancer patients.
Collapse
Affiliation(s)
- Yuki Kojima
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Mamoru Tanaka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan.
| | - Makiko Sasaki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Keiji Ozeki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Takaya Shimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Eiji Kubota
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| |
Collapse
|
40
|
Shen QQ, Jv XH, Ma XZ, Li C, Liu L, Jia WT, Qu L, Chen LL, Xie JX. Cell senescence induced by toxic interaction between α-synuclein and iron precedes nigral dopaminergic neuron loss in a mouse model of Parkinson's disease. Acta Pharmacol Sin 2024; 45:268-281. [PMID: 37674042 PMCID: PMC10789811 DOI: 10.1038/s41401-023-01153-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/10/2023] [Indexed: 09/08/2023]
Abstract
Cell senescence has been implicated in the pathology of Parkinson's disease (PD). Both abnormal α-synuclein aggregation and iron deposition are suggested to be the triggers, facilitators, and aggravators during the development of PD. In this study, we investigated the involvement of α-synuclein and iron in the process of cell senescence in a mouse model of PD. In order to overexpress α-syn-A53T in the substantia nigra pars compacta (SNpc), human α-syn-A53T was microinjected into both sides of the SNpc in mice. We found that overexpression of α-syn-A53T for one week induced significant pro-inflammatory senescence-associated secretory phenotype (SASP), increased cell senescence-related proteins (β-gal, p16, p21, H2A.X and γ-H2A.X), mitochondrial dysfunction accompanied by dysregulation of iron-related proteins (L-ferritin, H-ferritin, DMT1, IRP1 and IRP2) in the SNpc. In contrast, significant loss of nigral dopaminergic neurons and motor dysfunction were only observed after overexpression of α-syn-A53T for 4 weeks. In PC12 cells stably overexpressing α-syn-A53T, iron overload (ferric ammonium citrate, FAC, 100 μM) not only increased the level of reactive oxygen species (ROS), p16 and p21, but also exacerbated the processes of oxidative stress and cell senescence signalling induced by α-syn-A53T overexpression. Interestingly, reducing the iron level with deferoxamine (DFO) or knockdown of transferrin receptor 1 (TfR1) significantly improved both the phenotypes and dysregulated proteins of cell senescence induced by α-syn-A53T overexpression. All these evidence highlights the toxic interaction between iron and α-synuclein inducing cell senescence, which precedes nigral dopaminergic neuronal loss in PD. Further investigation on cell senescence may yield new therapeutic agents for the prevention or treatment of PD.
Collapse
Affiliation(s)
- Qing-Qing Shen
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China
| | - Xian-Hui Jv
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China
| | - Xi-Zhen Ma
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China
| | - Chong Li
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China
| | - Lin Liu
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China
| | - Wen-Ting Jia
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China
| | - Le Qu
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China
| | - Lei-Lei Chen
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China.
| | - Jun-Xia Xie
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
41
|
Li M, Jin S, Zhu X, Xu J, Cao Y, Piao H. The role of ferroptosis in central nervous system damage diseases. PeerJ 2024; 12:e16741. [PMID: 38313006 PMCID: PMC10836208 DOI: 10.7717/peerj.16741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 12/11/2023] [Indexed: 02/06/2024] Open
Abstract
Ferroptosis is a form of cell death, i.e., programmed cell death characterized by lipid peroxidation and iron dependence, which has unique morphological and biochemical properties. This unique mode of cell death is driven by iron-dependent phospholipid peroxidation and regulated by multiple cell metabolic pathways, including redox homeostasis, iron metabolism, mitochondrial activity, and the metabolism of amino acids, lipids, and sugars. Many organ injuries and degenerative pathologies are caused by ferroptosis. Ferroptosis is closely related to central nervous system injury diseases and is currently an important topic of research globally. This research examined the relationships between ferroptosis and the occurrence and treatment of central nervous system injury diseases. Additionally, ferroptosis was assessed from the aspect of theory proposal, mechanism of action, and related signaling pathways per recent research. This review provides a relevant theoretical basis for further research on this theory, the prospect of its development, and the prevention and treatment of such diseases.
Collapse
Affiliation(s)
- Mingzhu Li
- Department of Integrated Traditional Chinese and Western Medicine Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Shengbo Jin
- College of Acupuncture and Massage of Liaoning Chinese Traditional Medicine, Shenyang, Liaoning Province, China
| | - Xudong Zhu
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Jian Xu
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Yang Cao
- Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| |
Collapse
|
42
|
Hua Y, Yang S, Zhang Y, Li J, Wang M, Yeerkenbieke P, Liao Q, Liu Q. Modulating ferroptosis sensitivity: environmental and cellular targets within the tumor microenvironment. J Exp Clin Cancer Res 2024; 43:19. [PMID: 38217037 PMCID: PMC10787430 DOI: 10.1186/s13046-023-02925-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024] Open
Abstract
Ferroptosis, a novel form of cell death triggered by iron-dependent phospholipid peroxidation, presents significant therapeutic potential across diverse cancer types. Central to cellular metabolism, the metabolic pathways associated with ferroptosis are discernible in both cancerous and immune cells. This review begins by delving into the intricate reciprocal regulation of ferroptosis between cancer and immune cells. It subsequently details how factors within the tumor microenvironment (TME) such as nutrient scarcity, hypoxia, and cellular density modulate ferroptosis sensitivity. We conclude by offering a comprehensive examination of distinct immunophenotypes and environmental and metabolic targets geared towards enhancing ferroptosis responsiveness within the TME. In sum, tailoring precise ferroptosis interventions and combination strategies to suit the unique TME of specific cancers may herald improved patient outcomes.
Collapse
Affiliation(s)
- Yuze Hua
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Sen Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Yalu Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
- Department of General Surgery, Anhui Provincial Hospital, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230027, China
| | - Jiayi Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Mengyi Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Palashate Yeerkenbieke
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
- Department of General Surgery, Xinjiang Yili Kazak Autonomous Prefecture Friendship Hospital, Xinjiang, 835099, China
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Qiaofei Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
43
|
Ma XZ, Chen LL, Qu L, Li H, Wang J, Song N, Xie JX. Gut microbiota-induced CXCL1 elevation triggers early neuroinflammation in the substantia nigra of Parkinsonian mice. Acta Pharmacol Sin 2024; 45:52-65. [PMID: 37674043 PMCID: PMC10770039 DOI: 10.1038/s41401-023-01147-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/25/2023] [Indexed: 09/08/2023]
Abstract
Gut microbiota disturbance and systemic inflammation have been implicated in the degeneration of dopaminergic neurons in Parkinson's disease (PD). How the alteration of gut microbiota results in neuropathological events in PD remains elusive. In this study, we explored whether and how environmental insults caused early neuropathological events in the substantia nigra (SN) of a PD mouse model. Aged (12-month-old) mice were orally administered rotenone (6.25 mg·kg-1·d-1) 5 days per week for 2 months. We demonstrated that oral administration of rotenone to ageing mice was sufficient to establish a PD mouse model and that microglial activation and iron deposition selectively appeared in the SN of the mice prior to loss of motor coordination and dopaminergic neurons, and these events could be fully blocked by microglial elimination with a PLX5622-formulated diet. 16 S rDNA sequencing analysis showed that the gut microbiota in rotenone-treated mice was altered, and mice receiving faecal microbial transplantation (FMT) from ageing mice treated with rotenone for 2 months exhibited the same pathology in the SN. We demonstrated that C-X-C motif chemokine ligand-1 (CXCL1) was an essential molecule, as intravenous injection of CXCL1 mimicked almost all the pathology in serum and SN induced by oral rotenone and FMT. Using metabolomics and transcriptomics analyses, we identified the PPAR pathway as a key pathway involved in rotenone-induced neuronal damage. Inhibition of the PPARγ pathway was consistent in the above models, whereas its activation by linoleic acid (60 mg·kg-1·d-1, i.g. for 1 week) could block these pathological events in mice intravenously injected with CXCL1. Altogether, these results reveal that the altered gut microbiota resulted in neuroinflammation and iron deposition occurring early in the SN of ageing mice with oral administration of rotenone, much earlier than motor symptoms and dopaminergic neuron loss. We found that CXCL1 plays a crucial role in this process, possibly via PPARγ signalling inhibition. This study may pave the way for understanding the "brain-gut-microbiota" molecular regulatory networks in PD pathogenesis. The aged C57BL/6 male mice with rotenone intragastric administration showed altered gut microbiota, which caused systemic inflammation, PPARγ signalling inhibition and neuroinflammation, brain iron deposition and ferroptosis, and eventually dopaminergic neurodegeneration in PD.
Collapse
Affiliation(s)
- Xi-Zhen Ma
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China
| | - Lei-Lei Chen
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China
| | - Le Qu
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China
| | - Hui Li
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China
| | - Jun Wang
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China
| | - Ning Song
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China.
| | - Jun-Xia Xie
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
44
|
Pourhanifeh MH, Hosseinzadeh A, Koosha F, Reiter RJ, Mehrzadi S. Therapeutic Effects of Melatonin in the Regulation of Ferroptosis: A Review of Current Evidence. Curr Drug Targets 2024; 25:543-557. [PMID: 38706348 DOI: 10.2174/0113894501284110240426074746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 05/07/2024]
Abstract
Ferroptosis is implicated in the pathogenesis of multiple diseases, including neurodegenerative diseases, cardiovascular diseases, kidney pathologies, ischemia-reperfusion injury, and cancer. The current review article highlights the involvement of ferroptosis in traumatic brain injury, acute kidney damage, ethanol-induced liver injury, and PM2.5-induced lung injury. Melatonin, a molecule produced by the pineal gland and many other organs, is well known for its anti- aging, anti-inflammatory, and anticancer properties and is used in the treatment of different diseases. Melatonin's ability to activate anti-ferroptosis pathways including sirtuin (SIRT)6/p- nuclear factor erythroid 2-related factor 2 (Nrf2), Nrf2/ antioxidant responsive element (ARE)/ heme oxygenase (HO-1)/SLC7A11/glutathione peroxidase (GPX4)/ prostaglandin-endoperoxide synthase 2 (PTGS2), extracellular signal-regulated kinase (ERK)/Nrf2, ferroportin (FPN), Hippo/ Yes-associated protein (YAP), Phosphoinositide 3-kinase (PI3K)/ protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) and SIRT6/ nuclear receptor coactivator 4 (NCOA4)/ ferritin heavy chain 1 (FTH1) signaling pathways suggests that it could serve as a valuable therapeutic agent for preventing cell death associated with ferroptosis in various diseases. Further research is needed to fully understand the precise mechanisms by which melatonin regulates ferroptosis and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Koosha
- Department of Radiology Technology, Faculty of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cellular & Structural Biology, University of Texas, Health Science Center, San Antonio, USA
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Tan Y, Dong X, Zhuang D, Cao B, Jiang H, He Q, Zhao M. Emerging roles and therapeutic potentials of ferroptosis: from the perspective of 11 human body organ systems. Mol Cell Biochem 2023; 478:2695-2719. [PMID: 36913150 DOI: 10.1007/s11010-023-04694-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/26/2023] [Indexed: 03/14/2023]
Abstract
Since ferroptosis was first described as an iron-dependent cell death pattern in 2012, there has been increasing interest in ferroptosis research. In view of the immense potential of ferroptosis in treatment efficacy and its rapid development in recent years, it is essential to track and summarize the latest research in this field. However, few writers have been able to draw on any systematic investigation into this field based on human body organ systems. Hence, in this review, we provide a comprehensive description of the latest progress in unveiling the roles and functions, as well as the therapeutic potential of ferroptosis, in treating diseases from the aspects of 11 human body organ systems (including the nervous system, respiratory system, digestive system, urinary system, reproductive system, integumentary system, skeletal system, immune system, cardiovascular system, muscular system, and endocrine system) in the hope of providing references for further understanding the pathogenesis of related diseases and bringing an innovative train of thought for reformative clinical treatment.
Collapse
Affiliation(s)
- Yaochong Tan
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Medical School of Xiangya, Central South University, Changsha, 410013, Hunan, China
| | - Xueting Dong
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Medical School of Xiangya, Central South University, Changsha, 410013, Hunan, China
| | - Donglin Zhuang
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Buzi Cao
- Hunan Normal University School of Medicine, Changsha, 410081, Hunan, China
| | - Hua Jiang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China.
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
46
|
Li L, Huang Y, Jin X, Wang Q, Su J, Guo L. Dual Ratio and Ultraprecision Quantification of Mitochondrial Viscosity in Ferroptosis Enabled by a Vibration-Based Triple-Emission Fluorescent Probe. Anal Chem 2023; 95:17003-17010. [PMID: 37942555 DOI: 10.1021/acs.analchem.3c03541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Ferroptosis is a new mode of cell death with major morphological changes in mitochondria, including structural shrinkage and increased membrane density, indicating the mitochondrial abnormality during this process. Viscosity, as one of the crucial microenvironmental parameters for characterizing the mitochondrial state, is thought to be highly involved in the ferroptosis. Herein, we present a single fluorescent probe (PPAC-C4) for the dual ratio and ultrahigh-accuracy quantification of mitochondrial viscosity. This probe is constructed by linking a mitochondria-targeting cation fragment on a vibration-based fluorescent scaffold whose fluorescence exhibits the rare triple emission (480, 533, and 628 nm) depending on the viscosity. The intensity ratios of 480 nm/628 nm and 533 nm/628 nm can be used to monitor the viscosity changes in a double self-calibration manner and finally afford an average viscosity value with improved precision. By virtue of this pattern, we reveal that the mitochondrial viscosity will increase from 43.58 to 152.05 cP in A549 cells during the ferroptosis. This dual-ratio probe with triemission not only shows great potential in the study of ferroptosis and ferroptosis-related diseases but also proposes a new concept for ultraprecision quantitative analysis.
Collapse
Affiliation(s)
- Lu Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Yidan Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Xin Jin
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Qiaochun Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Jianhua Su
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Lifang Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
47
|
Lu Y, Chen Y, Jiang Z, Ge Y, Yao R, Geng S, Zhang J, Chen F, Wang Y, Chen G, Yang D. Research progress of ferroptosis in Parkinson's disease: a bibliometric and visual analysis. Front Aging Neurosci 2023; 15:1278323. [PMID: 38035275 PMCID: PMC10682076 DOI: 10.3389/fnagi.2023.1278323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/13/2023] [Indexed: 12/02/2023] Open
Abstract
Background In recent years, the role of ferroptosis in Parkinson's disease (PD) has become a research hotspot based on evidence of abnormal iron deposition and lipid peroxidation damage in the brains of PD patients. This study aims to examine the relevant research on ferroptosis and PD from a bibliometric perspective. Methods Original research and review articles related to ferroptosis and PD were retrieved from the Web of Science Core Collection (WOSCC) database. Statistical analysis and visualization of information including countries, institutions, authors, journals, and keywords of the included studies were conducted using the R software package "bibliometrix." Results A total of 414 articles met the inclusion criteria, averaging 37.86 citations per article. From 2012 to 2022, the average annual growth rate of research in this area was 63.44%. The corresponding authors of published articles were mainly affiliated with institutions in China, the United States, and Australia. Shanghai Jiao Tong University in China and the University of Melbourne in Australia emerged as the most active and influential institutions. The journal with the highest H-index and publication output was Free Radical Biology and Medicine. "Ferroptosis," "immunotherapy," "prognosis" and "microenvironment" were identified as high-frequency keywords, indicating current and future research directions in this field. Conclusion This bibliometric study provides insights into current research hotspots and emerging trends in the growing field of ferroptosis research related to PD. The high-frequency keywords identified highlight active areas of investigation involving methods, mechanisms, and populations of interest.
Collapse
Affiliation(s)
- Yangguang Lu
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yiqun Chen
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Zihan Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yaoying Ge
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Ruotong Yao
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Shangze Geng
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Jinxiu Zhang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Feng Chen
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yukai Wang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Guangyong Chen
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dehao Yang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
48
|
Vincenzi M, Kremić A, Jouve A, Lattanzi R, Miele R, Benharouga M, Alfaidy N, Migrenne-Li S, Kanthasamy AG, Porcionatto M, Ferrara N, Tetko IV, Désaubry L, Nebigil CG. Therapeutic Potential of Targeting Prokineticin Receptors in Diseases. Pharmacol Rev 2023; 75:1167-1199. [PMID: 37684054 PMCID: PMC10595023 DOI: 10.1124/pharmrev.122.000801] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 09/10/2023] Open
Abstract
The prokineticins (PKs) were discovered approximately 20 years ago as small peptides inducing gut contractility. Today, they are established as angiogenic, anorectic, and proinflammatory cytokines, chemokines, hormones, and neuropeptides involved in variety of physiologic and pathophysiological pathways. Their altered expression or mutations implicated in several diseases make them a potential biomarker. Their G-protein coupled receptors, PKR1 and PKR2, have divergent roles that can be therapeutic target for treatment of cardiovascular, metabolic, and neural diseases as well as pain and cancer. This article reviews and summarizes our current knowledge of PK family functions from development of heart and brain to regulation of homeostasis in health and diseases. Finally, the review summarizes the established roles of the endogenous peptides, synthetic peptides and the selective ligands of PKR1 and PKR2, and nonpeptide orthostatic and allosteric modulator of the receptors in preclinical disease models. The present review emphasizes the ambiguous aspects and gaps in our knowledge of functions of PKR ligands and elucidates future perspectives for PK research. SIGNIFICANCE STATEMENT: This review provides an in-depth view of the prokineticin family and PK receptors that can be active without their endogenous ligand and exhibits "constitutive" activity in diseases. Their non- peptide ligands display promising effects in several preclinical disease models. PKs can be the diagnostic biomarker of several diseases. A thorough understanding of the role of prokineticin family and their receptor types in health and diseases is critical to develop novel therapeutic strategies with safety concerns.
Collapse
Affiliation(s)
- Martina Vincenzi
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Amin Kremić
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Appoline Jouve
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Roberta Lattanzi
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Rossella Miele
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Mohamed Benharouga
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Nadia Alfaidy
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Stephanie Migrenne-Li
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Anumantha G Kanthasamy
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Marimelia Porcionatto
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Napoleone Ferrara
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Igor V Tetko
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Laurent Désaubry
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Canan G Nebigil
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| |
Collapse
|
49
|
Manivarma T, Kapralov AA, Samovich SN, Tyurina YY, Tyurin VA, VanDemark AP, Nowak W, Bayır H, Bahar I, Kagan VE, Mikulska-Ruminska K. Membrane regulation of 15LOX-1/PEBP1 complex prompts the generation of ferroptotic signals, oxygenated PEs. Free Radic Biol Med 2023; 208:458-467. [PMID: 37678654 PMCID: PMC10952060 DOI: 10.1016/j.freeradbiomed.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
Ferroptosis is a regulated form of cell death, the mechanism of which is still to be understood. 15-lipoxygenase (15LOX) complex with phosphatidylethanolamine (PE)-binding protein 1 (PEBP1) catalyzes the generation of pro-ferroptotic cell death signals, hydroperoxy-polyunsaturated PE. We focused on gaining new insights into the molecular basis of these pro-ferroptotic interactions using computational modeling and liquid chromatography-mass spectrometry experiments. Simulations of 15LOX-1/PEBP1 complex dynamics and interactions with lipids revealed that association with the membrane triggers a conformational change in the complex. This conformational change facilitates the access of stearoyl/arachidonoyl-PE (SAPE) substrates to the catalytic site. Furthermore, the binding of SAPE promotes tight interactions within the complex and induces further conformational changes that facilitate the oxidation reaction. The reaction yields two hydroperoxides as products, 15-HpETE-PE and 12-HpETE-PE, at a ratio of 5:1. A significant effect of PEBP1 is observed only on the predominant product. Moreover, combined experiments and simulations consistently demonstrate the significance of PEBP1 P112E mutation in generating ferroptotic cell death signals.
Collapse
Affiliation(s)
- Thiliban Manivarma
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Aleksandr A Kapralov
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA, USA
| | - Svetlana N Samovich
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics, Division of Critical Care and Hospital Medicine, Redox Health Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Yulia Y Tyurina
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA, USA
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew P VanDemark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wieslaw Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Hülya Bayır
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics, Division of Critical Care and Hospital Medicine, Redox Health Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology and Department of Biochemistry and Cell Biology, Stony Brook University, New York, USA.
| | - Valerian E Kagan
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA, USA; Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Karolina Mikulska-Ruminska
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Torun, Poland.
| |
Collapse
|
50
|
Barayeu U, Sawa T, Nishida M, Wei FY, Motohashi H, Akaike T. Supersulfide biology and translational medicine for disease control. Br J Pharmacol 2023. [PMID: 37872133 DOI: 10.1111/bph.16271] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
For decades, the major focus of redox biology has been oxygen, the most abundant element on Earth. Molecular oxygen functions as the final electron acceptor in the mitochondrial respiratory chain, contributing to energy production in aerobic organisms. In addition, oxygen-derived reactive oxygen species including hydrogen peroxide and nitrogen free radicals, such as superoxide, hydroxyl radical and nitric oxide radical, undergo a complicated sequence of electron transfer reactions with other biomolecules, which lead to their modified physiological functions and diverse biological and pathophysiological consequences (e.g. oxidative stress). What is now evident is that oxygen accounts for only a small number of redox reactions in organisms and knowledge of biological redox reactions is still quite limited. This article reviews a new aspects of redox biology which is governed by redox-active sulfur-containing molecules-supersulfides. We define the term 'supersulfides' as sulfur species with catenated sulfur atoms. Supersulfides were determined to be abundant in all organisms, but their redox biological properties have remained largely unexplored. In fact, the unique chemical properties of supersulfides permit them to be readily ionized or radicalized, thereby allowing supersulfides to actively participate in redox reactions and antioxidant responses in cells. Accumulating evidence has demonstrated that supersulfides are indispensable for fundamental biological processes such as energy production, nucleic acid metabolism, protein translation and others. Moreover, manipulation of supersulfide levels was beneficial for pathogenesis of various diseases. Thus, supersulfide biology has opened a new era of disease control that includes potential applications to clinical diagnosis, prevention and therapeutics of diseases.
Collapse
Grants
- 22K19397 Ministry of Education, Culture, Sports, Science and Technology
- 21H05263 Ministry of Education, Culture, Sports, Science and Technology
- 18H05277 Ministry of Education, Culture, Sports, Science and Technology
- 21H04799 Ministry of Education, Culture, Sports, Science and Technology
- 21H05264 Ministry of Education, Culture, Sports, Science and Technology
- 21H05265 Ministry of Education, Culture, Sports, Science and Technology
- 21H02659 Ministry of Education, Culture, Sports, Science and Technology
- JPMJER2002 Ministry of Education, Culture, Sports, Science and Technology
- JPMJFR205Y Ministry of Education, Culture, Sports, Science and Technology
- 22K19395 Ministry of Education, Culture, Sports, Science and Technology
- 22H02772 Ministry of Education, Culture, Sports, Science and Technology
- 21H05269 Ministry of Education, Culture, Sports, Science and Technology
- 21H05267 Ministry of Education, Culture, Sports, Science and Technology
- 21H02071 Ministry of Education, Culture, Sports, Science and Technology
- 21H05258 Ministry of Education, Culture, Sports, Science and Technology
- JPMJCR2024 Japan Science and Technology Agency
- PE23749 Japan Society for the Promotion of Science
- JP21zf0127001 Japan Agency for Medical Research and Development
Collapse
Affiliation(s)
- Uladzimir Barayeu
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Motohiro Nishida
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|