1
|
Cheng YK, Chiang HS. The interrelationship between intestinal immune cells and enteric α-synuclein in the progression of Parkinson's disease. Neurol Sci 2025:10.1007/s10072-025-08114-w. [PMID: 40085320 DOI: 10.1007/s10072-025-08114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder primarily characterized by motor impairment, resulting from the accumulation of α-synuclein and neuronal cell death in the substantia nigra of the midbrain. Emerging evidence suggests that α-synuclein aggregation may originate in the enteric nervous system (ENS) and subsequently propagate to the brain via the vagus nerve. Clinical observations, such as prodromal gastrointestinal dysfunction in PD patients and the increased incidence of PD among individuals with inflammatory bowel disease, support the hypothesis that abnormal intestinal inflammation may contribute to the onset of motor dysfunction and neuropathology in PD. This review examines recent findings on the interplay between intestinal immune cells and α-synuclein aggregation within the framework of gut-originated PD pathogenesis. It begins by discussing evidence linking dysbiosis and intestinal inflammation to α-synuclein aggregation in the ENS. Additionally, it explores the potential role of intestinal immune cells in influencing enteric neurons and α-synuclein aggregation, furthering the understanding of PD development.
Collapse
Affiliation(s)
- Yuan-Kai Cheng
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hao-Sen Chiang
- Department of Life Science, National Taiwan University, Taipei, Taiwan.
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
Hussain N, Khan MM, Sharma A, Singh RK, Khan RH. Beyond plaques and tangles: The role of immune cell dysfunction in Alzheimer's disease. Neurochem Int 2025; 184:105947. [PMID: 39956324 DOI: 10.1016/j.neuint.2025.105947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
The interplay between immune cell dysfunction and associated neuroinflammation plays a critical role in the pathogenesis of Alzheimer's disease. Neuroinflammation, orchestrated by microglia and peripheral immune cells, exacerbates synaptic dysfunction and neurodegeneration in AD. Emerging evidence suggests a systemic immune response in AD, challenging traditional views of neurocentric pathology. Therapeutic strategies targeting neuroinflammation hold promise, yet translating preclinical findings into clinical success remains elusive. This article presents recent advances in AD scientific studies, highlighting the pivotal role of immune cell dysfunction and signaling pathways in disease progression. We also discussed therapeutic studies targeting immune cell dysregulation, as treatment methods. This advocates for a paradigm shift towards holistic approaches that integrate peripheral and central immune responses, fostering a comprehensive understanding of AD pathophysiology and paving the way for transformative interventions.
Collapse
Affiliation(s)
- Nasif Hussain
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohd Moin Khan
- Brigham and Women's Hospital, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Ayushi Sharma
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Rakesh K Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
3
|
Jiang Z, Huang H, Chen Y, Xie H, Lu Y, Ge Y, Yao R, Wang L, Wu Z, Bu Y, Chen G, Yang D. The role of the immune system in Parkinson's disease pathogenesis: A focus on Th17 cells - A systematic review and meta-analysis. J Neuroimmunol 2025; 398:578484. [PMID: 39577101 DOI: 10.1016/j.jneuroim.2024.578484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/16/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Parkinson's disease (PD) has been linked to T helper 17 (Th17) cells in prior investigations, but the evidence remains inconclusive. To gain a deeper understanding of this potential connection, we conducted a systematic review and meta-analysis. METHODS A comprehensive search for relevant studies published up to July 8, 2023, was performed across PubMed, EMBASE, and Cochrane Library databases. A random-effect model was employed to synthesize effect sizes and their corresponding 95 % confidence intervals (CIs). Leave-one-out sensitivity analysis and funnel plots with trim-and-fill were utilized to assess the combined results' robustness. RESULTS Thirteen studies were ultimately included in the meta-analysis. Pooled effect sizes indicated a significantly higher percentage of Th17 cells in PD patients (Standardized Mean Difference [SMD] = 1.00, 95 % CI 0.30-1.71). Notably, Th17 cell levels were more elevated in Asian PD patients (SMD = 1.33, 95 % CI 0.31-2.35). Additionally, the percentage of Th17 cells positively correlated with Movement Disorder Society Unified Parkinson's Disease Rating Scale-III (UPDRS-III) scores (r = 0.22, 95 % CI 0.01-0.41), indicating a link to motor dysfunction. Conversely, a negative correlation was observed with Cognitive function scale scores (r = - 0.27, 95 % CI -0.47--0.04), suggesting a potential association with cognitive decline. CONCLUSIONS This study revealed a positive association between Th17 cells and PD, with PD patients exhibiting elevated Th17 levels. Furthermore, the percentage of Th17 cells correlated with motor and cognitive impairments in PD patients.
Collapse
Affiliation(s)
- Zihan Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Honghao Huang
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiqun Chen
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Haobo Xie
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yangguang Lu
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yaoyin Ge
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Ruotong Yao
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Lingsheng Wang
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Zihao Wu
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yiran Bu
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Guangyong Chen
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Dehao Yang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
4
|
Mormile R, Mormile C, Picone C. Potential hypothesis for the increased risk of Parkinson´s disease following COVID-19. Mol Biol Rep 2024; 51:1085. [PMID: 39432143 DOI: 10.1007/s11033-024-10021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
Patients with severe COVID-19 may be more likely to develop PD as a result of shared biological pathways including a great expansion of MDSCs and an imbalance in Th17/Tregs ratio. We think that these shared pathogenic features may mechanistically explain the COVID-19 - PD axis. Thus, we assume that patients who recovered from critical COVID-19 should be selected based upon a potential higher risk of developing PD. Further studies are needed to better define the possible relationship between COVID-19 and neuroinflammation and identify whether some people are more likely to develop PD after contracting COVID-19 than others with special emphasis to ascertain possible vulnerable genetic backgrounds or epigenetic factors acting on brain which may promote PD during SARS COV-2 infection. Finally, we think that regular physical activity should be performed and encouraged in patients with PD.
Collapse
Affiliation(s)
- Raffaella Mormile
- Division of Pediatrics and Neonatology, Moscati Hospital, Via A. Gramsci, Aversa, 81031, Italy.
| | | | - Carmine Picone
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, Napoli, Italy
- Department of Medicine and Health Science, Vincenzo Tiberio University of Molise, Campobasso, Italy
| |
Collapse
|
5
|
Su J, Wang Y, Yao J, Sun L, Zhao C, Liu L, Zhang L. Systemic knockout of Tmem175 results in aberrant differentiation but no effect on hematopoietic reconstitution. Stem Cell Res 2024; 79:103469. [PMID: 38878670 DOI: 10.1016/j.scr.2024.103469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 08/04/2024] Open
Abstract
Lysosomes play crucial roles in regulating cell metabolism, and K+ channels are critical for controlling various aspects of lysosomal function. Additionally, lysosomal activity is essential for maintaining the quiescence of hematopoietic stem cells (HSCs) under both steady-state and stress conditions. Tmem175 is a lysosomal potassium channel protein. To further investigate the role of K+ channels in HSCs, our study employed knockout mice to examine the function of Tmem175. Our research findings demonstrate that the deletion of Tmem175 does not disrupt the functionality of HSCs in both stable and stressed conditions, including irradiation and intraperitoneal 5-FU injections. However, we did observe that the absence of Tmem175 impairs the long-term differentiation capacity of HSCs into myeloid differentiated subpopulation cells(In this paper, it is referred to simply as M cells)in HSC transplantation test, while promoting their differentiation into T cells. This suggests that Tmem175 plays a role in the lineage differentiation of HSCs without being essential for their self-renewal or long-term regenerative capabilities.
Collapse
Affiliation(s)
- Jingjing Su
- Key Laboratory of Molecular Pharmacology and Translational Medicine and Department of Pharmacology, College of Pharmacy, Shandong Second Medical University, Weifang , 261053, China
| | - Yue Wang
- Center for Metabolic Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jiyuan Yao
- Center for Metabolic Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Leimin Sun
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Chunzhen Zhao
- Key Laboratory of Molecular Pharmacology and Translational Medicine and Department of Pharmacology, College of Pharmacy, Shandong Second Medical University, Weifang , 261053, China.
| | - Leiming Liu
- Key Laboratory of Artificial Organs and Computational Medicine, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China.
| | - Lingling Zhang
- Center for Metabolic Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| |
Collapse
|
6
|
Choe YH, Jo MG, Kim BG, Lee S, Lee B, Kim SH, Seong H, Yoo WS, Kim M, Lee DK, Kim SJ, Yun SP, Kim M. The autoimmune response induced by α-synuclein peptides drives neuronal cell death and glial cell activation. J Autoimmun 2024; 147:103256. [PMID: 38788538 DOI: 10.1016/j.jaut.2024.103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder associated with the loss of dopaminergic neurons and neuroinflammation. Recent studies have identified a role of T cells in the pathogenesis of PD. Additionally, these studies suggested that α-synuclein (α-Syn) is related to abnormal T-cell responses and may act as an epitope and trigger autoimmune T-cell responses. However, it is unclear whether the α-Syn-mediated autoimmune response occurs and whether it is related to neuronal cell death and glial cell activation. In this study, we investigated the autoimmune T-cell response induced by α-Syn peptides and evaluated the neurotoxic effect of the α-Syn peptide-mediated autoimmune response. The immunization of mice with α-Syn peptides resulted in enhanced autoimmune responses, such as the peptide recall response, polarization toward Th1/Th17 cells, and regulatory T cell imbalance. Furthermore, the α-Syn autoimmune response led to the death of primary neurons cocultured with splenocytes. Treatment with conditioned media from α-Syn peptide-immunized splenocytes induced microglia and toxic A1-type astrocyte activation. Taken together, our results provide evidence of the potential role of the α-Syn-initiated autoimmune response and its contribution to neuronal cell death and glial cell activation.
Collapse
Affiliation(s)
- Yong-Ho Choe
- Division of Rheumatology. Department of Internal Medicine, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea; Lillehei Heart Institute and Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis 55414, MN, United States; Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Gi Jo
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Bo Gyu Kim
- Division of Rheumatology. Department of Internal Medicine, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Sangwon Lee
- Division of Rheumatology. Department of Internal Medicine, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Bina Lee
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Seon-Hee Kim
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Hyemin Seong
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Ophthalmology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Woong-Sun Yoo
- Department of Ophthalmology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Minkyeong Kim
- Department of Neurology, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
| | - Dong-Kun Lee
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Physiology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Seong Jae Kim
- Department of Ophthalmology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea.
| | - Mingyo Kim
- Division of Rheumatology. Department of Internal Medicine, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Internal Medicine, College of Medicine, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea.
| |
Collapse
|
7
|
Quan W, Qin Y, Li J, Wang L, Song J, Xu J, Chen J. Causal role of myeloid cells in Parkinson's disease: Mendelian randomization study. Inflamm Res 2024; 73:809-818. [PMID: 38538756 DOI: 10.1007/s00011-024-01867-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 04/30/2024] Open
Abstract
BACKGROUND Previous studies have observed elevated myeloid cells in the peripheral blood of patients with Parkinson's disease (PD), but the causal relationship between them remains to be elucidated. We investigated whether there is a causal relationship between different subtypes of peripheral blood myeloid cells and PD using Mendelian randomization (MR) combined with bioinformatics analysis. Exploring the etiology of PD from the perspective of genetics can remove confounding factors and provide a more reliable theoretical basis for elucidating the pathogenesis of PD. METHODS Comprehensive two-sample MR analysis and sensitivity analyses were conducted to explore the causal associations between 64 myeloid cell signatures and PD risk. The Venn diagram and protein-protein interaction network analysis of instrumental variables (IV) corresponding genes were used to further investigate the potential mechanism of myeloid cells influencing the pathogenesis of PD. RESULTS We investigated the impact of four immunophenotypes on the risk of PD, including Im MDSC% CD33dim HLA DR- CD66b- (relative count), CD33dim HLA DR+ CD11b+% CD33dim HLA DR+ (relative count), and CD11b on Mo MDSC (MFI) and CD11b on CD33br HLA DR+ CD14dim (MFI), while an immunophenotype's protective effect on PD was observed CD45 on Im MDSC (MFI). The results of bioinformatics analysis showed that CD33, NTRK2, PLD2, GRIK2 and RELN had protein interactions with the risk genes of PD. CONCLUSIONS Our study has demonstrated a close genetic correlation between different subtypes of myeloid cells and PD, providing guidance for early identification and immunotherapeutic development in patients with PD.
Collapse
Affiliation(s)
- Wei Quan
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130021, Jilin, China
| | - Yidan Qin
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130021, Jilin, China
| | - Jia Li
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130021, Jilin, China
| | - Lin Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130021, Jilin, China
| | - Jia Song
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130021, Jilin, China
| | - Jing Xu
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130021, Jilin, China
| | - Jiajun Chen
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130021, Jilin, China.
| |
Collapse
|
8
|
Tamberi L, Belloni A, Pugnaloni A, Rippo MR, Olivieri F, Procopio AD, Bronte G. The Influence of Myeloid-Derived Suppressor Cell Expansion in Neuroinflammation and Neurodegenerative Diseases. Cells 2024; 13:643. [PMID: 38607083 PMCID: PMC11011419 DOI: 10.3390/cells13070643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
The neuro-immune axis has a crucial function both during physiological and pathological conditions. Among the immune cells, myeloid-derived suppressor cells (MDSCs) exert a pivotal role in regulating the immune response in many pathological conditions, influencing neuroinflammation and neurodegenerative disease progression. In chronic neuroinflammation, MDSCs could lead to exacerbation of the inflammatory state and eventually participate in the impairment of cognitive functions. To have a complete overview of the role of MDSCs in neurodegenerative diseases, research on PubMed for articles using a combination of terms made with Boolean operators was performed. According to the search strategy, 80 papers were retrieved. Among these, 44 papers met the eligibility criteria. The two subtypes of MDSCs, monocytic and polymorphonuclear MDSCs, behave differently in these diseases. The initial MDSC proliferation is fundamental for attenuating inflammation in Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS), but not in amyotrophic lateral sclerosis (ALS), where MDSC expansion leads to exacerbation of the disease. Moreover, the accumulation of MDSC subtypes in distinct organs changes during the disease. The proliferation of MDSC subtypes occurs at different disease stages and can influence the progression of each neurodegenerative disorder differently.
Collapse
Affiliation(s)
- Lorenza Tamberi
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
| | - Alessia Belloni
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
| | - Armanda Pugnaloni
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), 60124 Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), 60124 Ancona, Italy
| | - Giuseppe Bronte
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), 60124 Ancona, Italy
| |
Collapse
|
9
|
Shen J, Bian N, Zhao L, Wei J. The role of T-lymphocytes in central nervous system diseases. Brain Res Bull 2024; 209:110904. [PMID: 38387531 DOI: 10.1016/j.brainresbull.2024.110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
The central nervous system (CNS) has been considered an immunologically privileged site. In the past few decades, research on inflammation in CNS diseases has mostly focused on microglia, innate immune cells that respond rapidly to injury and infection to maintain CNS homeostasis. Discoveries of lymphatic vessels within the dura mater and peripheral immune cells in the meningeal layer indicate that the peripheral immune system can monitor and intervene in the CNS. This review summarizes recent advances in the involvement of T lymphocytes in multiple CNS diseases, including brain injury, neurodegenerative diseases, and psychiatric disorders. It emphasizes that a deep understanding of the pathogenesis of CNS diseases requires intimate knowledge of T lymphocytes. Aiming to promote a better understanding of the relationship between the immune system and CNS and facilitate the development of therapeutic strategies targeting T lymphocytes in neurological diseases.
Collapse
Affiliation(s)
- Jianing Shen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ning Bian
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Lu Zhao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| | - Jingkuan Wei
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| |
Collapse
|
10
|
Gu J, Qiao Y, Cong S. Causal role of immune cells on risk of Parkinson's disease: a Mendelian randomization study. Front Aging Neurosci 2024; 16:1368374. [PMID: 38586828 PMCID: PMC10995297 DOI: 10.3389/fnagi.2024.1368374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024] Open
Abstract
Background Previous observational studies have suggested a correlation between immune cells and Parkinson's disease (PD), yet specific investigations into the causal relationship between the two remain limited. This study aims to explore this potential causal relationship. Methods We utilized genome-wide association study (GWAS) data on immune cells and Parkinson's Disease, conducting a two-sample Mendelian randomization (MR) analysis using single nucleotide polymorphisms (SNPs). To estimate causality, we employed inverse variance weighting (IVW), MR-Egger, and weighted median (WM) methods. For sensitivity analysis, we used Cochran's Q-test, MR-Egger intercept, leave-one-out analysis, and funnel plots. Results After false discovery rate (FDR) correction, the effects of PD on immune cells, and vice versa, were not statistically significant. These include CX3CR1 on CD14+ CD16-monocyte (OR = 0.91, 95% CI = 0.86-0.96, p = 0.0003 PFDR = 0.152), CD62L-CD86+ myeloid DC AC (OR = 0.93, 95% CI = 0.89-0.97, p = 0.0005, PFDR = 0.152),CD11b on Mo (OR = 1.08, 95% CI = 1.03-1.13, p = 0.001, PFDR = 0.152), CD38 on igd+ cd24- (OR = 1.14, 95% CI = 1.06-1.23, p = 0.001, PFDR = 0.152), D14+ cd16+ monocyte %monocyte (OR = 1.10, 95% CI = 1.04-1.17, p = 0.001, PFDR = 0.159). Additionally, PD may be causally related to the immune phenotype of CM CD8br %T cell (beta = 0.10, 95% CI = 1.14-1.16, p = 0.0004, PFDR = 0.151), SSC-A on monocyte (beta = 0.11, 95% CI = 1.15-1.18, p = 0.0004, PFDR = 0.1 SSC-A on monocyte). No pleiotropy was determined. Conclusion This study suggested a potential causal link between immune cells and Parkinson's Disease through the MR method, which could provide a new direction for the mechanistic research and clinical treatment of PD.
Collapse
Affiliation(s)
| | | | - Shuyan Cong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
11
|
Yang HJ, Lee MY, Lee JH, Jung CJ, Lee WJ, Won CH, Lee MW, Jung JM, Chang SE. Comparison of metabolic and neurological comorbidities in Asian patients with psoriasis and atopic dermatitis. Sci Rep 2024; 14:4212. [PMID: 38378928 PMCID: PMC10879488 DOI: 10.1038/s41598-024-54407-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024] Open
Abstract
Although various comorbidities have been noted to be associated with atopic dermatitis (AD) and psoriasis, few studies have compared comorbidities between the two diseases, and little is known about whether these comorbidities vary by the subtypes of psoriasis. In this study of 1:1 age- and sex-matched pair analysis between patients diagnosed with either psoriasis or AD at Asan Medical Center between 1991 and 2020, comorbidities, as determined by the International Classification of Diseases-10 codes, and likelihood ratios of metabolic and neurologic comorbidities in psoriasis compared with AD were studied using a logistic regression model. Among a total of 14,128 patients, the psoriasis group had higher odds of obesity (odds ratio [95% confidence interval]: 1.49 [1.34-1.66]), hypertension (1.14 [1.03-1.26]), diabetes mellitus (1.46 [1.29-1.66]), chronic kidney disease (1.59 [1.22-2.08]), and Parkinson's disease (2.1 [1.15-3.83]) than the AD group. Subgroup analysis revealed that patients with plaque psoriasis had higher odds of obesity (1.18 [1.05-1.33]), hypertension (1.18 [1.06-1.32]), diabetes mellitus (1.53 [1.34-1.75]), chronic kidney disease (1.66 [1.26-2.17]), and Parkinson's disease (2.12 [1.16-3.88]) compared with AD. Meanwhile, guttate psoriasis was associated with higher odds of dementia (3.63 [1.06-12.40]) and patients with generalized pustular psoriasis showed higher odds of diabetes mellitus (5.42 [1.56-18.83]) compared with AD. In conclusion, Asian patients with all types of psoriasis should be closely monitored for the development of metabolic and neurologic diseases, especially men and those aged ≥ 40 years.
Collapse
Affiliation(s)
- Hee Joo Yang
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43 gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Mi Young Lee
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43 gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jeong Hyeon Lee
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43 gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Chang Jin Jung
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43 gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Woo Jin Lee
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43 gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Chong Hyun Won
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43 gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Mi Woo Lee
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43 gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Joon Min Jung
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43 gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| | - Sung Eun Chang
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43 gil, Songpa-gu, Seoul, 05505, Republic of Korea.
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Zhao J, An K, Mao Z, Qu Y, Wang D, Li J, Min Z, Xue Z. CCL5 promotes LFA-1 expression in Th17 cells and induces LCK and ZAP70 activation in a mouse model of Parkinson's disease. Front Aging Neurosci 2023; 15:1250685. [PMID: 38020765 PMCID: PMC10655117 DOI: 10.3389/fnagi.2023.1250685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Background Parkinson's disease (PD), which is associated to autoimmune disorders, is characterized by the pathological deposition of alpha-synuclein (α-Syn) and loss of dopaminergic (DA) neurons. Th17 cells are thought to be responsible for the direct loss of DA neurons. C-C chemokine ligand 5 (CCL5) specifically induces Th17 cell infiltration into the SN. However, the specific effect of CCL5 on Th17 cells in PD and the relationship between CCL5 and lymphocyte function-associated antigen-1 (LFA-1) expression in Th17 cells are unknown. Methods We evaluated the effects of CCL5 on LFA-1 expression in Th17 cells in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and examined Th17 cell differentiation upon CCL5 stimulation in vitro. Furthermore, we assessed the effects of CCL5 on tyrosine kinase zeta-chain-associated protein kinase 70 (ZAP70) and lymphocyte-specific protein tyrosine kinase (LCK) activity in CCL5-stimulated Th17 cells in vivo and in vitro. Results CCL5 increased the proportion of peripheral Th17 cells in MPTP-treated mice, LFA-1 expression on Th17 cells, and Th17 cell levels in the SN of MPTP-treated mice. CCL5 promoted Th17 cell differentiation and LFA-1 expression in naive T cells in vitro. Moreover, CCL5 increased Th17 cell differentiation and LFA-1 expression by stimulating LCK and ZAP70 activation in naive CD4+ T cells. Inhibiting LCK and ZAP70 activation reduced the proportion of peripheral Th17 cells and LFA-1 surface expression in MPTP-treated mice, and Th17 cell levels in the SN also significantly decreased. Conclusion CCL5, which increased Th17 cell differentiation and LFA-1 protein expression by activating LCK and ZAP70, could increase the Th17 cell number in the SN, induce DA neuron death and aggravate PD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhe Min
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Xue
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Ortega-Vázquez A, Sánchez-Badajos S, Ramírez-García MÁ, Alvarez-Luquín D, López-López M, Adalid-Peralta LV, Monroy-Jaramillo N. Longitudinal Changes in Mitochondrial DNA Copy Number and Telomere Length in Patients with Parkinson's Disease. Genes (Basel) 2023; 14:1913. [PMID: 37895262 PMCID: PMC10606744 DOI: 10.3390/genes14101913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Parkinson's disease (PD) pathophysiology includes mitochondrial dysfunction, neuroinflammation, and aging as its biggest risk factors. Mitochondrial DNA copy number (mtDNA-CN) and telomere length (TL) are biological aging markers with inconclusive results regarding their association with PD. A case-control study was used to measure TL and mtDNA-CN using qPCR in PBMCs. PD patients were naive at baseline (T0) and followed-up at one (T1) and two (T2) years after the dopaminergic treatment (DRT). Plasmatic cytokines were determined by ELISA in all participants, along with clinical parameters of patients at T0. While TL was shorter in patients vs. controls at all time points evaluated (p < 0.01), mtDNA-CN showed no differences. An increase in mtDNA-CN and TL was observed in treated patients vs. naive ones (p < 0.001). Our statistical model analyzed both aging markers with covariates, showing a strong correlation between them (r = 0.57, p < 0.01), and IL-17A levels positively correlating with mtDNA-CN only in untreated patients (r = 0.45, p < 0.05). TL and mtDNA-CN could be useful markers for monitoring inflammation progression or treatment response in PD. DRT might modulate TL and mtDNA-CN, reflecting a compensatory mechanism to counteract mitochondrial dysfunction in PD, but this needs further investigation.
Collapse
Affiliation(s)
- Alberto Ortega-Vázquez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Mexico City 04960, Mexico; (A.O.-V.); (M.L.-L.)
| | - Salvador Sánchez-Badajos
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Xochimilco, Mexico City 04960, Mexico;
| | | | - Diana Alvarez-Luquín
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular UNAM en el Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico; (D.A.-L.); (L.V.A.-P.)
| | - Marisol López-López
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Mexico City 04960, Mexico; (A.O.-V.); (M.L.-L.)
| | - Laura Virginia Adalid-Peralta
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular UNAM en el Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico; (D.A.-L.); (L.V.A.-P.)
| | - Nancy Monroy-Jaramillo
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico;
| |
Collapse
|
14
|
Bourque M, Morissette M, Soulet D, Di Paolo T. Impact of Sex on Neuroimmune contributions to Parkinson's disease. Brain Res Bull 2023:110668. [PMID: 37196734 DOI: 10.1016/j.brainresbull.2023.110668] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/27/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. Inflammation has been observed in both the idiopathic and familial forms of PD. Importantly, PD is reported more often in men than in women, men having at least 1.5- fold higher risk to develop PD than women. This review summarizes the impact of biological sex and sex hormones on the neuroimmune contributions to PD and its investigation in animal models of PD. Innate and peripheral immune systems participate in the brain neuroinflammation of PD patients and is reproduced in neurotoxin, genetic and alpha-synuclein based models of PD. Microglia and astrocytes are the main cells of the innate immune system in the central nervous system and are the first to react to restore homeostasis in the brain. Analysis of serum immunoprofiles in female and male control and PD patients show that a great proportion of these markers differ between male and female. The relationship between CSF inflammatory markers and PD clinical characteristics or PD biomarkers shows sex differences. Conversely, in animal models of PD, sex differences in inflammation are well documented and the beneficial effects of endogenous and exogenous estrogenic modulation in inflammation have been reported. Targeting neuroinflammation in PD is an emerging therapeutic option but gonadal drugs have not yet been investigated in this respect, thus offering new opportunities for sex specific treatments.
Collapse
Affiliation(s)
- Mélanie Bourque
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada.
| | - Marc Morissette
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada.
| | - Denis Soulet
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada; Faculté de Pharmacie, Pavillon Ferdinand-Vandry, 1050, avenue de la Médecine, Université Laval, Québec (Québec) G1V 0A6, Canada.
| | - Thérèse Di Paolo
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada; Faculté de Pharmacie, Pavillon Ferdinand-Vandry, 1050, avenue de la Médecine, Université Laval, Québec (Québec) G1V 0A6, Canada.
| |
Collapse
|
15
|
Mamais A, Wallings R, Rocha EM. Disease mechanisms as subtypes: Lysosomal dysfunction in the endolysosomal Parkinson's disease subtype. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:33-51. [PMID: 36803821 DOI: 10.1016/b978-0-323-85555-6.00009-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Parkinson's disease (PD) remains one of the most prevalent neurodegenerative disorders. It has become increasingly recognized that PD is not one disease but a constellation of many, with distinct cellular mechanisms driving pathology and neuronal loss in each given subtype. Endolysosomal trafficking and lysosomal degradation are crucial to maintain neuronal homeostasis and vesicular trafficking. It is clear that deficits in endolysosomal signaling data support the existence of an endolysosomal PD subtype. This chapter describes how cellular pathways involved in endolysosomal vesicular trafficking and lysosomal degradation in neurons and immune cells can contribute to PD. Last, as inflammatory processes including phagocytosis and cytokine release are central in glia-neuron interactions, a spotlight on the role of neuroinflammation plays in the pathogenesis of this PD subtype is also explored.
Collapse
Affiliation(s)
- Adamantios Mamais
- Department of Neurology, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, United States; Center for Translational Research in Neurodegenerative disease, University of Florida, Gainesville, FL, United States
| | - Rebecca Wallings
- Department of Neurology, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, United States; Center for Translational Research in Neurodegenerative disease, University of Florida, Gainesville, FL, United States
| | - Emily M Rocha
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
16
|
Contaldi E, Magistrelli L, Comi C. Disease mechanisms as subtypes: Immune dysfunction in Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:67-93. [PMID: 36803824 DOI: 10.1016/b978-0-323-85555-6.00008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
In recent years, the contraposition between inflammatory and neurodegenerative processes has been increasingly challenged. Inflammation has been emphasized as a key player in the onset and progression of Parkinson disease (PD) and other neurodegenerative disorders. The strongest indicators of the involvement of the immune system derived from evidence of microglial activation, profound imbalance in phenotype and composition of peripheral immune cells, and impaired humoral immune responses. Moreover, peripheral inflammatory mechanisms (e.g., involving the gut-brain axis) and immunogenetic factors are likely to be implicated. Even though several lines of preclinical and clinical studies are supporting and defining the complex relationship between the immune system and PD, the exact mechanisms are currently unknown. Similarly, the temporal and causal connections between innate and adaptive immune responses and neurodegeneration are unsettled, challenging our ambition to define an integrated and holistic model of the disease. Despite these difficulties, current evidence is providing the unique opportunity to develop immune-targeted approaches for PD, thus enriching our therapeutic armamentarium. This chapter aims to provide an extensive overview of past and present studies that explored the implication of the immune system in neurodegeneration, thus paving the road for the concept of disease modification in PD.
Collapse
Affiliation(s)
- Elena Contaldi
- Movement Disorders Centre, "Maggiore della Carità" University Hospital, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Luca Magistrelli
- Movement Disorders Centre, "Maggiore della Carità" University Hospital, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Cristoforo Comi
- Neurology Unit, S.Andrea Hospital, Department of Translational Medicine, University of Piemonte Orientale, Vercelli, Italy.
| |
Collapse
|
17
|
Li J, Zhao J, Chen L, Gao H, Zhang J, Wang D, Zou Y, Qin Q, Qu Y, Li J, Xiong Y, Min Z, Yan M, Mao Z, Xue Z. α-Synuclein induces Th17 differentiation and impairs the function and stability of Tregs by promoting RORC transcription in Parkinson's disease. Brain Behav Immun 2023; 108:32-44. [PMID: 36343753 DOI: 10.1016/j.bbi.2022.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/15/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons (DA) and the accumulation of Lewy body deposits composed of alpha-Synuclein (α-Syn), which act as antigenic epitopes to drive cytotoxic T-cell responses in PD. Increased T helper 17 (Th17) cells and dysfunctional regulatory T cells (Tregs) have been reported to be associated with the loss of DA in PD. However, the mechanism underlying the Th17/Treg imbalance remains unknown. METHODS Here, we examined the percentage of Th17 cells, the percentage of Tregs and the α-Syn level and analysed their correlations in the peripheral blood of PD patients and in the substantia nigra pars compacta (SNpc) and spleen of MPTP-treated mice and A53 transgenic mice. We assessed the effect of α-Syn on the stability and function of Tregs and the differentiation of Th17 cells and evaluated the role of retinoid-related orphan nuclear receptor (RORγt) upregulation in α-Syn stimulation in vivo and in vitro. RESULTS We found that the α-Syn level and severity of motor symptoms were positively correlated with the increase in Th17 cells and decrease in Tregs in PD patients. Moreover, α-Syn stimulation led to the loss of Forkhead box protein P3 (FOXP3) expression in Tregs, accompanied by the acquisition of IL-17A expression. Increased Th17 differentiation was detected upon α-Syn stimulation when naïve CD4+ T cells were cultured under Th17-polarizing conditions. Mechanistically, α-Syn promotes the transcription of RORC, encoding RORγt, in Tregs and Th17 cells, leading to increased Th17 differentiation and loss of Treg function. Intriguingly, the increase in Th17 cells, decrease in Tregs and apoptosis of DA were suppressed by a RORγt inhibitor (GSK805) in MPTP-treated mice. CONCLUSION Together, our data suggest that α-Syn promotes the transcription of RORC in circulating CD4+ T cells, including Tregs and Th17 cells, to impair the stability of Tregs and promote the differentiation of Th17 cells in PD. Inhibition of RORγt attenuated the apoptosis of DA and alleviated the increase in Th17 cells and decrease in Tregs in PD.
Collapse
Affiliation(s)
- Jingyi Li
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jingwei Zhao
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Longmin Chen
- Department of Rheumatology and Immunology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; The Center for Biomedical Research, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Hongling Gao
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jing Zhang
- The Center for Biomedical Research, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Danlei Wang
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yuan Zou
- The Center for Biomedical Research, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Qixiong Qin
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yi Qu
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jiangting Li
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yongjie Xiong
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Zhe Min
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Manli Yan
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Zhijuan Mao
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Zheng Xue
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China.
| |
Collapse
|
18
|
DeMaio A, Mehrotra S, Sambamurti K, Husain S. The role of the adaptive immune system and T cell dysfunction in neurodegenerative diseases. J Neuroinflammation 2022; 19:251. [PMID: 36209107 PMCID: PMC9548183 DOI: 10.1186/s12974-022-02605-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
The adaptive immune system and associated inflammation are vital in surveillance and host protection against internal and external threats, but can secondarily damage host tissues. The central nervous system is immune-privileged and largely protected from the circulating inflammatory pathways. However, T cell involvement and the disruption of the blood-brain barriers have been linked to several neurodegenerative diseases including Parkinson's disease, Alzheimer's disease, and multiple sclerosis. Under normal physiological conditions, regulatory T cells (Treg cells) dampen the inflammatory response of effector T cells. In the pathological states of many neurodegenerative disorders, the ability of Treg cells to mitigate inflammation is reduced, and a pro-inflammatory environment persists. This perspective review provides current knowledge on the roles of T cell subsets (e.g., effector T cells, Treg cells) in neurodegenerative and ocular diseases, including uveitis, diabetic retinopathy, age-related macular degeneration, and glaucoma. Many neurodegenerative and ocular diseases have been linked to immune dysregulation, but the cellular events and molecular mechanisms involved in such processes remain largely unknown. Moreover, the role of T cells in ocular pathologies remains poorly defined and limited literature is available in this area of research. Adoptive transfer of Treg cells appears to be a vital immunological approach to control ocular pathologies. Similarities in T cell dysfunction seen among non-ocular neurodegenerative diseases suggest that this area of research has a great potential to develop better therapeutic agents for ocular diseases and warrants further studies. Overall, this perspective review article provides significant information on the roles of T cells in numerous ocular and non-ocular neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexa DeMaio
- Department of Ophthalmology, Storm Eye Institute, Room 713, Medical University of South Carolina, 167 Ashley Ave, SC, 29425, Charleston, USA
| | - Shikhar Mehrotra
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, SC, 29425, Charleston, USA
| | - Kumar Sambamurti
- Department of Neuroscience, Medical University of South Carolina, SC, 29425, Charleston, USA
| | - Shahid Husain
- Department of Ophthalmology, Storm Eye Institute, Room 713, Medical University of South Carolina, 167 Ashley Ave, SC, 29425, Charleston, USA.
| |
Collapse
|
19
|
The Innate and Adaptive Immune Cells in Alzheimer’s and Parkinson’s Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1315248. [PMID: 36211819 PMCID: PMC9534688 DOI: 10.1155/2022/1315248] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/14/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative disorders of the central nervous system (CNS). Increasing evidence supports the view that dysfunction of innate immune cells initiated by accumulated and misfolded proteins plays essential roles in the pathogenesis and progression of these diseases. The TLR family was found to be involved in the regulation of microglial function in the pathogenesis and progression of AD or PD, making it as double-edged sword in these diseases. Altered function of peripheral innate immune cells was found in AD and PD and thus contributed to the development and progression of AD and PD. Alteration of different subsets of T cells was found in the peripheral blood and CNS in AD and PD. The CNS-infiltrating T cells can exert both neuroprotective and neurotoxic effects in the pathogenesis and progression. Here, we review recent evidences for the roles of innate and adaptive immune cells in the pathogenesis and progression of AD and PD.
Collapse
|
20
|
Chen L, Wang Y, Huang J, Hu B, Huang W. Identification of Immune-Related Hub Genes in Parkinson’s Disease. Front Genet 2022; 13:914645. [PMID: 35938039 PMCID: PMC9353688 DOI: 10.3389/fgene.2022.914645] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Parkinson’s disease (PD) is a common, age-related, and progressive neurodegenerative disease. Growing evidence indicates that immune dysfunction plays an essential role in the pathogenic process of PD. The objective of this study was to explore potential immune-related hub genes and immune infiltration patterns of PD. Method: The microarray expression data of human postmortem substantia nigra samples were downloaded from GSE7621, GSE20141, and GSE49036. Key module genes were screened via weighted gene coexpression network analysis, and immune-related genes were intersected to obtain immune-key genes. Functional enrichment analysis was performed on immune-key genes of PD. In addition to, immune infiltration analysis was applied by a single-sample gene set enrichment analysis algorithm to detect differential immune cell types in the substantia nigra between PD samples and control samples. Least absolute shrinkage and selection operator analysis was performed to further identify immune-related hub genes for PD. Receiver operating characteristic curve analysis of the immune-related hub genes was used to differentiate PD patients from healthy controls. Correlations between immune-related hub genes and differential immune cell types were assessed. Result: Our findings identified four hub genes (SLC18A2, L1CAM, S100A12, and CXCR4) and seven immune cell types (neutrophils, T follicular helper cells, myeloid-derived suppressor cells, type 1 helper cells, immature B cells, immature dendritic cells, and CD56 bright natural killer cells). The area under the curve (AUC) value of the four-gene-combined model was 0.92. The AUC values of each immune-related hub gene (SLC18A2, L1CAM, S100A12, and CXCR4) were 0.81, 0.78, 0.78, and 0.76, respectively. Conclusion: In conclusion, SLC18A2, L1CAM, S100A12, and CXCR4 were identified as being associated with the pathogenesis of PD and should be further researched.
Collapse
Affiliation(s)
- Lin Chen
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong Wang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Juan Huang
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Binbin Hu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Huang
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Wei Huang,
| |
Collapse
|
21
|
Liu W, Fan M, Lu W, Zhu W, Meng L, Lu S. Emerging Roles of T Helper Cells in Non-Infectious Neuroinflammation: Savior or Sinner. Front Immunol 2022; 13:872167. [PMID: 35844577 PMCID: PMC9280647 DOI: 10.3389/fimmu.2022.872167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
CD4+ T cells, also known as T helper (Th) cells, contribute to the adaptive immunity both in the periphery and in the central nervous system (CNS). At least seven subsets of Th cells along with their signature cytokines have been identified nowadays. Neuroinflammation denotes the brain’s immune response to inflammatory conditions. In recent years, various CNS disorders have been related to the dysregulation of adaptive immunity, especially the process concerning Th cells and their cytokines. However, as the functions of Th cells are being discovered, it’s also found that their roles in different neuroinflammatory conditions, or even the participation of a specific Th subset in one CNS disorder may differ, and sometimes contrast. Based on those recent and contradictory evidence, the conflicting roles of Th cells in multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, epilepsy, traumatic brain injury as well as some typical mental disorders will be reviewed herein. Research progress, limitations and novel approaches concerning different neuroinflammatory conditions will also be mentioned and compared.
Collapse
Affiliation(s)
- Wenbin Liu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meiyang Fan
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Wen Lu
- Department of Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenhua Zhu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Wenhua Zhu, ; Liesu Meng,
| | - Liesu Meng
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
- *Correspondence: Wenhua Zhu, ; Liesu Meng,
| | - Shemin Lu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
| |
Collapse
|
22
|
Grotemeyer A, McFleder RL, Wu J, Wischhusen J, Ip CW. Neuroinflammation in Parkinson's Disease - Putative Pathomechanisms and Targets for Disease-Modification. Front Immunol 2022; 13:878771. [PMID: 35663989 PMCID: PMC9158130 DOI: 10.3389/fimmu.2022.878771] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease (PD) is a progressive and debilitating chronic disease that affects more than six million people worldwide, with rising prevalence. The hallmarks of PD are motor deficits, the spreading of pathological α-synuclein clusters in the central nervous system, and neuroinflammatory processes. PD is treated symptomatically, as no causally-acting drug or procedure has been successfully established for clinical use. Various pathways contributing to dopaminergic neuron loss in PD have been investigated and described to interact with the innate and adaptive immune system. We discuss the possible contribution of interconnected pathways related to the immune response, focusing on the pathophysiology and neurodegeneration of PD. In addition, we provide an overview of clinical trials targeting neuroinflammation in PD.
Collapse
Affiliation(s)
| | | | - Jingjing Wu
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Jörg Wischhusen
- Section for Experimental Tumor Immunology, Department of Obstetrics and Gynecology, University Hospital of Würzburg, Würzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
23
|
He Y, Peng K, Li R, Zhang Z, Pan L, Zhang T, Lin A, Hong R, Nie Z, Guan Q, Jin L. Changes of T lymphocyte subpopulations and their roles in predicting the risk of Parkinson's disease. J Neurol 2022; 269:5368-5381. [PMID: 35608657 PMCID: PMC9467943 DOI: 10.1007/s00415-022-11190-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/29/2022]
Abstract
T lymphocytes are involved in the pathogenesis of Parkinson's disease (PD), while the heterogeneity of T-cell subpopulations remains elusive. In this study, we analyzed up to 22 subpopulations of T lymphocytes in 115 PD patients and 60 matched healthy controls (HC) using flow cytometry. We found that PD patients exhibited decreased naïve CD8+ T cells (CD3+ CD8+ CD45RA+ CD45RO-) and increased late-differentiated CD4+ T cells (CD3+ CD4+ CD28- CD27-), compared to HC, which were not affected by anti-parkinsonism medication administration. The proportion of naïve CD8+ T cells in PD patients was positively correlated with their severity of autonomic dysfunction and psychiatric complications, but negatively associated with the severity of rapid eye movement and sleep behavior disorder. The proportion of late-differentiated CD4+ T cells was negatively correlated with the onset age of the disease. We further developed individualized PD risk prediction models with high reliability and accuracy on the base of the T lymphocyte subpopulations. These data suggest that peripheral cellular immunity is disturbed in PD patients, and changes in CD8+ T cells and late-differentiated CD4+ T cells are representative and significant. Therefore, we recommend naïve CD8 + and late-differentiated CD4+ T cells as candidates for multicentric clinical study and pathomechanism study of PD.
Collapse
Affiliation(s)
- Yijing He
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, 200065, Shanghai, People's Republic of China
| | - Kangwen Peng
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, 200065, Shanghai, People's Republic of China
| | - Ruoyu Li
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, 200065, Shanghai, People's Republic of China
| | - Zhuoyu Zhang
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, 200065, Shanghai, People's Republic of China
| | - Lizhen Pan
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, 200065, Shanghai, People's Republic of China
| | - Tianyu Zhang
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, 200065, Shanghai, People's Republic of China
| | - Ao Lin
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, 200065, Shanghai, People's Republic of China
| | - Ronghua Hong
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, 200065, Shanghai, People's Republic of China
| | - Zhiyu Nie
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, 200065, Shanghai, People's Republic of China
| | - Qiang Guan
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, 200065, Shanghai, People's Republic of China.
| | - Lingjing Jin
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, 200065, Shanghai, People's Republic of China. .,Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China. .,Shanghai Clinical Research Center for Aging and Medicine, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
24
|
Contaldi E, Magistrelli L, Comi C. T Lymphocytes in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S65-S74. [PMID: 35253782 PMCID: PMC9535550 DOI: 10.3233/jpd-223152] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
T cells are key mediators of both humoral and cellular adaptive immune responses, and their role in Parkinson’s disease (PD) is being increasingly recognized. Several lines of evidence have highlighted how T cells are involved in both the central nervous system and the periphery, leading to a profound imbalance in the immune network in PD patients. This review discusses the involvement of T cells in both preclinical and clinical studies, their importance as feasible biomarkers of motor and non-motor progression of the disease, and recent therapeutic strategies addressing the modulation of T cell response.
Collapse
Affiliation(s)
- Elena Contaldi
- Department of Translational Medicine, Movement Disorders Centre, "Maggiore della Caritá" University Hospital, University of Piemonte Orientale, Novara, Italy.,Program in Medical Sciences and Biotechnology, University of Piemonte Orientale, Novara, Italy
| | - Luca Magistrelli
- Department of Translational Medicine, Movement Disorders Centre, "Maggiore della Caritá" University Hospital, University of Piemonte Orientale, Novara, Italy.,Program in Clinical and Experimental Medicine and Medical Humanities, University of Insubria, Varese, Italy
| | - Cristoforo Comi
- Department of Translational Medicine, Neurology Unit, S. Andrea Hospital, University of Piemonte Orientale, Vercelli, Italy
| |
Collapse
|
25
|
Abstract
The notion that autoimmune responses to α-synuclein may be involved in the pathogenesis of this disorder stems from reports that mutations in α-synuclein or certain alleles of the major histocompatibility complex (MHC) are associated with the disease and that dopaminergic and norepinephrinergic neurons in the midbrain can present antigenic epitopes. Here, we discuss recent evidence that a defined set of peptides derived from α-synuclein act as antigenic epitopes displayed by specific MHC alleles and drive helper and cytotoxic T cell responses in patients with PD. Moreover, phosphorylated α-synuclein may activate T cell responses in a less restricted manner in PD. While the roles for the acquired immune system in disease pathogenesis remain unknown, preclinical animal models and in vitro studies indicate that T cells may interact with neurons and exert effects related to neuronal death and neuroprotection. These findings suggest that therapeutics that target T cells and ameliorate the incidence or disease severity of inflammatory bowel disorders or CNS autoimmune diseases such as multiple sclerosis may be useful in PD.
Collapse
|
26
|
Ganguly U, Singh S, Chakrabarti S, Saini AK, Saini RV. Immunotherapeutic interventions in Parkinson's disease: Focus on α-Synuclein. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 129:381-433. [PMID: 35305723 DOI: 10.1016/bs.apcsb.2021.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized classically by motor manifestations. However, nonmotor symptoms appear early in the course of the disease progression, making both diagnosis and treatment difficult. The pathology of PD is complicated by the accumulation and aggregation of misfolded proteins in intracellular cytoplasmic inclusions called Lewy bodies (LBs). The main toxic component of LBs is the protein α-Synuclein which plays a pivotal role in PD pathogenesis. α-Synuclein can propagate from cell-to-cell exhibiting prion-like properties and spread PD pathology throughout the central nervous system. Immunotherapeutic interventions in PD, both active and passive immunization, have targeted α-Synuclein in both experimental models and clinical trials. In addition, targeting the hyperactive inflammation in PD also holds promise in designing potential immunotherapeutics. The inflammatory and proteotoxic pathways are interlinked and contribute immensely to the disease pathology. In this chapter, we critically review the targets of immunotherapeutic interventions in PD, focusing on the pathogenetic mechanisms of PD, particularly neuroinflammation and α-Synuclein misfolding, aggregation, and propagation. We thoroughly summarized the various immunotherapeutic strategies designed to treat PD-in vitro, in vivo, and clinical trials. The development of these targeted immunotherapies could open a new avenue in the treatment of patients with PD.
Collapse
Affiliation(s)
- Upasana Ganguly
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, India
| | - Sukhpal Singh
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, India
| | - Sasanka Chakrabarti
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, India
| | - Adesh K Saini
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, India
| | - Reena V Saini
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, India.
| |
Collapse
|
27
|
Roversi K, Callai-Silva N, Roversi K, Griffith M, Boutopoulos C, Prediger RD, Talbot S. Neuro-Immunity and Gut Dysbiosis Drive Parkinson's Disease-Induced Pain. Front Immunol 2021; 12:759679. [PMID: 34868000 PMCID: PMC8637106 DOI: 10.3389/fimmu.2021.759679] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, affecting 1-2% of the population aged 65 and over. Additionally, non-motor symptoms such as pain and gastrointestinal dysregulation are also common in PD. These impairments might stem from a dysregulation within the gut-brain axis that alters immunity and the inflammatory state and subsequently drives neurodegeneration. There is increasing evidence linking gut dysbiosis to the severity of PD's motor symptoms as well as to somatosensory hypersensitivities. Altogether, these interdependent features highlight the urgency of reviewing the links between the onset of PD's non-motor symptoms and gut immunity and whether such interplays drive the progression of PD. This review will shed light on maladaptive neuro-immune crosstalk in the context of gut dysbiosis and will posit that such deleterious interplays lead to PD-induced pain hypersensitivity.
Collapse
Affiliation(s)
- Katiane Roversi
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département d'Ophtalmologie, Université de Montréal, Montréal, QC, Canada.,Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Natalia Callai-Silva
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département d'Ophtalmologie, Université de Montréal, Montréal, QC, Canada
| | - Karine Roversi
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada
| | - May Griffith
- Centre de Recherche Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département d'Ophtalmologie, Université de Montréal, Montréal, QC, Canada
| | - Christos Boutopoulos
- Centre de Recherche Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département d'Ophtalmologie, Université de Montréal, Montréal, QC, Canada
| | - Rui Daniel Prediger
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Sébastien Talbot
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
28
|
Park J, Kim CH. Regulation of common neurological disorders by gut microbial metabolites. Exp Mol Med 2021; 53:1821-1833. [PMID: 34857900 PMCID: PMC8741890 DOI: 10.1038/s12276-021-00703-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/06/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
The gut is connected to the CNS by immunological mediators, lymphocytes, neurotransmitters, microbes and microbial metabolites. A mounting body of evidence indicates that the microbiome exerts significant effects on immune cells and CNS cells. These effects frequently result in the suppression or exacerbation of inflammatory responses, the latter of which can lead to severe tissue damage, altered synapse formation and disrupted maintenance of the CNS. Herein, we review recent progress in research on the microbial regulation of CNS diseases with a focus on major gut microbial metabolites, such as short-chain fatty acids, tryptophan metabolites, and secondary bile acids. Pathological changes in the CNS are associated with dysbiosis and altered levels of microbial metabolites, which can further exacerbate various neurological disorders. The cellular and molecular mechanisms by which these gut microbial metabolites regulate inflammatory diseases in the CNS are discussed. We highlight the similarities and differences in the impact on four major CNS diseases, i.e., multiple sclerosis, Parkinson's disease, Alzheimer's disease, and autism spectrum disorder, to identify common cellular and molecular networks governing the regulation of cellular constituents and pathogenesis in the CNS by microbial metabolites.
Collapse
Affiliation(s)
- Jeongho Park
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Chang H Kim
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA.
- Mary H. Weiser Food Allergy Center, Center for Gastrointestinal Research, and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
29
|
Su R, Zhou T. Alpha-Synuclein Induced Immune Cells Activation and Associated Therapy in Parkinson's Disease. Front Aging Neurosci 2021; 13:769506. [PMID: 34803660 PMCID: PMC8602361 DOI: 10.3389/fnagi.2021.769506] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/04/2021] [Indexed: 12/30/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder closely related to immunity. An important aspect of the pathogenesis of PD is the interaction between α-synuclein and a series of immune cells. Studies have shown that accumulation of α-synuclein can induce an autoimmune response that accelerates the progression of PD. This study discusses the mechanisms underlying the interaction between α-synuclein and the immune system. During the development of PD, abnormally accumulated α-synuclein becomes an autoimmune antigen that binds to Toll-like receptors (TLRs) that activate microglia, which differentiate into the microglia type 1 (M1) subtype. The microglia activate intracellular inflammatory pathways, induce the release of proinflammatory cytokines, and promote the differentiation of cluster of differentiation 4 + (CD4 +) T cells into proinflammatory T helper type 1 (Th1) and T helper type 17 (Th17) subtypes. Given the important role of α-synuclein in the immune system of the patients with PD, identifying potential targets of immunotherapy related to α-synuclein is critical for slowing disease progression. An enhanced understanding of immune-associated mechanisms in PD can guide the development of associated therapeutic strategies in the future.
Collapse
Affiliation(s)
- Ruichen Su
- Queen Mary School of Nanchang University, Nanchang University, Nanchang, China
| | - Tian Zhou
- School of Basic Medical Science, Nanchang University, Nanchang, China
| |
Collapse
|
30
|
Bhatia D, Grozdanov V, Ruf WP, Kassubek J, Ludolph AC, Weishaupt JH, Danzer KM. T-cell dysregulation is associated with disease severity in Parkinson's Disease. J Neuroinflammation 2021; 18:250. [PMID: 34717679 PMCID: PMC8556877 DOI: 10.1186/s12974-021-02296-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/13/2021] [Indexed: 12/17/2022] Open
Abstract
The dysregulation of peripheral immunity in Parkinson’s Disease (PD) includes changes in both the relative numbers and gene expression of T cells. The presence of peripheral T-cell abnormalities in PD is well-documented, but less is known about their association to clinical parameters, such as age, age of onset, progression rate or severity of the disease. We took a detailed look at T-cell numbers, gene expression and activation in cross-sectional cohorts of PD patients and age-matched healthy controls by means of flow cytometry and NanoString gene expression assay. We show that the well-pronounced decrease in relative T-cell numbers in PD blood is mostly driven by a decrease of CD8+ cytotoxic T cells and is primarily associated with the severity of the disease. In addition, we demonstrate that the expression of inflammatory genes in T cells from PD patients is also associated with disease severity. PD T cells presented with increased activation upon stimulation with phytohemagglutinin that also correlated with disease severity. In summary, our data suggest that the consequences of disease severity account for the changes in PD T cells, rather than age, age of onset, duration or the disease progression rate.
Collapse
Affiliation(s)
- Divisha Bhatia
- Neurology, University Clinic, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Veselin Grozdanov
- Neurology, University Clinic, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Wolfgang P Ruf
- Neurology, University Clinic, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Jan Kassubek
- Neurology, University Clinic, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Albert C Ludolph
- Neurology, University Clinic, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.,German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Jochen H Weishaupt
- Neurology, University Clinic, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.,Division for Neurodegenerative Diseases, Neurology Department, University Medicine Mannheim, Heidelberg University, Mannheim, Germany
| | - Karin M Danzer
- Neurology, University Clinic, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany. .,German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany.
| |
Collapse
|
31
|
Page MJ, Pretorius E. Platelet Behavior Contributes to Neuropathologies: A Focus on Alzheimer's and Parkinson's Disease. Semin Thromb Hemost 2021; 48:382-404. [PMID: 34624913 DOI: 10.1055/s-0041-1733960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The functions of platelets are broad. Platelets function in hemostasis and thrombosis, inflammation and immune responses, vascular regulation, and host defense against invading pathogens, among others. These actions are achieved through the release of a wide set of coagulative, vascular, inflammatory, and other factors as well as diverse cell surface receptors involved in the same activities. As active participants in these physiological processes, platelets become involved in signaling pathways and pathological reactions that contribute to diseases that are defined by inflammation (including by pathogen-derived stimuli), vascular dysfunction, and coagulation. These diseases include Alzheimer's and Parkinson's disease, the two most common neurodegenerative diseases. Despite their unique pathological and clinical features, significant shared pathological processes exist between these two conditions, particularly relating to a central inflammatory mechanism involving both neuroinflammation and inflammation in the systemic environment, but also neurovascular dysfunction and coagulopathy, processes which also share initiation factors and receptors. This triad of dysfunction-(neuro)inflammation, neurovascular dysfunction, and hypercoagulation-illustrates the important roles platelets play in neuropathology. Although some mechanisms are understudied in Alzheimer's and Parkinson's disease, a strong case can be made for the relevance of platelets in neurodegeneration-related processes.
Collapse
Affiliation(s)
- Martin J Page
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, South Africa
| |
Collapse
|
32
|
Jin M, Akgün K, Ziemssen T, Kipp M, Günther R, Hermann A. Interleukin-17 and Th17 Lymphocytes Directly Impair Motoneuron Survival of Wildtype and FUS-ALS Mutant Human iPSCs. Int J Mol Sci 2021; 22:ijms22158042. [PMID: 34360808 PMCID: PMC8348495 DOI: 10.3390/ijms22158042] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive disease leading to the degeneration of motor neurons (MNs). Neuroinflammation is involved in the pathogenesis of ALS; however, interactions of specific immune cell types and MNs are not well studied. We recently found a shift toward T helper (Th)1/Th17 cell-mediated, pro-inflammatory immune responses in the peripheral immune system of ALS patients, which positively correlated with disease severity and progression. Whether Th17 cells or their central mediator, Interleukin-17 (IL-17), directly affects human motor neuron survival is currently unknown. Here, we evaluated the contribution of Th17 cells and IL-17 on MN degeneration using the co-culture of iPSC-derived MNs of fused in sarcoma (FUS)-ALS patients and isogenic controls with Th17 lymphocytes derived from ALS patients, healthy controls, and multiple sclerosis (MS) patients (positive control). Only Th17 cells from MS patients induced severe MN degeneration in FUS-ALS as well as in wildtype MNs. Their main effector, IL-17A, yielded in a dose-dependent decline of the viability and neurite length of MNs. Surprisingly, IL-17F did not influence MNs. Importantly, neutralizing IL-17A and anti-IL-17 receptor A treatment reverted all effects of IL-17A. Our results offer compelling evidence that Th17 cells and IL-17A do directly contribute to MN degeneration.
Collapse
Affiliation(s)
- Mengmeng Jin
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; (M.J.); (K.A.); (T.Z.); (R.G.)
- Center for Clinical Neuroscience, University Hospital Carl Gustav Carus, 01307 Dresden, Germany
| | - Katja Akgün
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; (M.J.); (K.A.); (T.Z.); (R.G.)
- Center for Clinical Neuroscience, University Hospital Carl Gustav Carus, 01307 Dresden, Germany
| | - Tjalf Ziemssen
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; (M.J.); (K.A.); (T.Z.); (R.G.)
- Center for Clinical Neuroscience, University Hospital Carl Gustav Carus, 01307 Dresden, Germany
| | - Markus Kipp
- Institute of Anatomy, University Medical Center Rostock, Gertrudenstrasse 9, 18057 Rostock, Germany;
- Center for Transdisciplinary Neurosciences, University Medical Center Rostock, 18057 Rostock, Germany
| | - Rene Günther
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; (M.J.); (K.A.); (T.Z.); (R.G.)
- German Center for Neurodegenerative Diseases (DZNE), 01307 Dresden, Germany
| | - Andreas Hermann
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; (M.J.); (K.A.); (T.Z.); (R.G.)
- Center for Transdisciplinary Neurosciences, University Medical Center Rostock, 18057 Rostock, Germany
- Translational Neurodegeneration Section, “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, 18057 Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
- Correspondence: ; Tel.: +49-(0)381-494-9541
| |
Collapse
|
33
|
Yan Z, Yang W, Wei H, Dean MN, Standaert DG, Cutter GR, Benveniste EN, Qin H. Dysregulation of the Adaptive Immune System in Patients With Early-Stage Parkinson Disease. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/5/e1036. [PMID: 34301818 PMCID: PMC8299515 DOI: 10.1212/nxi.0000000000001036] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/05/2021] [Indexed: 01/25/2023]
Abstract
Objective To determine the activation status and cytokine profiles of CD4+ T cells, CD8+ T cells, and CD19+ B cells from patients with early-stage Parkinson disease (PD) compared with healthy controls (HCs). Methods Peripheral blood samples from 41 patients with early-stage PD and 40 HCs were evaluated. Peripheral blood mononuclear cells were analyzed by flow cytometry for surface markers and intracellular cytokine production. Correlations of immunologic changes and clinical parameters were analyzed. Results Adaptive immunity plays a role in the pathogenesis of PD, yet the contribution of T cells and B cells, especially cytokine production by these cells, is poorly understood. We demonstrate that naive CD4+ and naive CD8+ T cells are significantly decreased in patients with PD, whereas central memory CD4+ T cells are significantly increased in patients with PD. Furthermore, IL-17–producing CD4+ Th17 cells, IL-4–producing CD4+ Th2 cells, and IFN-γ–producing CD8+ T cells are significantly increased in patients with PD. Regarding B cells, we observed a decrease in naive B cells and an increase in nonswitched memory and double-negative B cells. As well, TNF-α–producing CD19+ B cells were significantly increased in patients with PD. Notably, some of the changes observed in CD4+ T cells and B cells were associated with clinical motor disease severity. Conclusions These findings suggest that alterations in the adaptive immune system may promote clinical disease in PD by skewing to a more proinflammatory state in the early-stage PD patient cohort. Our study may shed light on potential immunotherapies targeting dysregulated CD4+ T cells, CD8+ T cells, and CD19+ B cells in patients with PD.
Collapse
Affiliation(s)
- Zhaoqi Yan
- From the Department of Cell, Developmental and Integrative Biology (Z.Y., W.Y., H.W., E.N.B., H.Q.), Department of Neurology (M.N.D., D.G.S.), and Department of Biostatistics (G.R.C.), University of Alabama at Birmingham
| | - Wei Yang
- From the Department of Cell, Developmental and Integrative Biology (Z.Y., W.Y., H.W., E.N.B., H.Q.), Department of Neurology (M.N.D., D.G.S.), and Department of Biostatistics (G.R.C.), University of Alabama at Birmingham
| | - Hairong Wei
- From the Department of Cell, Developmental and Integrative Biology (Z.Y., W.Y., H.W., E.N.B., H.Q.), Department of Neurology (M.N.D., D.G.S.), and Department of Biostatistics (G.R.C.), University of Alabama at Birmingham
| | - Marissa N Dean
- From the Department of Cell, Developmental and Integrative Biology (Z.Y., W.Y., H.W., E.N.B., H.Q.), Department of Neurology (M.N.D., D.G.S.), and Department of Biostatistics (G.R.C.), University of Alabama at Birmingham
| | - David G Standaert
- From the Department of Cell, Developmental and Integrative Biology (Z.Y., W.Y., H.W., E.N.B., H.Q.), Department of Neurology (M.N.D., D.G.S.), and Department of Biostatistics (G.R.C.), University of Alabama at Birmingham
| | - Gary R Cutter
- From the Department of Cell, Developmental and Integrative Biology (Z.Y., W.Y., H.W., E.N.B., H.Q.), Department of Neurology (M.N.D., D.G.S.), and Department of Biostatistics (G.R.C.), University of Alabama at Birmingham
| | - Etty N Benveniste
- From the Department of Cell, Developmental and Integrative Biology (Z.Y., W.Y., H.W., E.N.B., H.Q.), Department of Neurology (M.N.D., D.G.S.), and Department of Biostatistics (G.R.C.), University of Alabama at Birmingham
| | - Hongwei Qin
- From the Department of Cell, Developmental and Integrative Biology (Z.Y., W.Y., H.W., E.N.B., H.Q.), Department of Neurology (M.N.D., D.G.S.), and Department of Biostatistics (G.R.C.), University of Alabama at Birmingham.
| |
Collapse
|
34
|
Izvolskaia M, Sharova V, Zakharova L. Perinatal Inflammation Reprograms Neuroendocrine, Immune, and Reproductive Functions: Profile of Cytokine Biomarkers. Inflammation 2021; 43:1175-1183. [PMID: 32279161 DOI: 10.1007/s10753-020-01220-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Viral and bacterial infections causing systemic inflammation are significant risk factors for developing body. Inflammatory processes can alter physiological levels of regulatory factors and interfere with developmental mechanisms. The brain is the main target for the negative impact of inflammatory products during critical ontogenetic periods. Subsequently, the risks of various neuropsychiatric diseases such as Alzheimer's and Parkinson's diseases, schizophrenia, and depression are increased in the offspring. Inflammation-induced physiological disturbances can cause immune and behavioral disorders, reproductive deficiencies, and infertility. The influence of maternal immune stress is mediated by the regulation of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, monocyte chemotactic protein 1, leukemia-inhibiting factor, and tumor necrosis factor-alpha secretion in the maternal-fetal system. The increasing number of patients with neuronal and reproductive disorders substantiates the identification of biomarkers for these disorders targeted at their therapy.
Collapse
Affiliation(s)
- Marina Izvolskaia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia
| | - Viktoriya Sharova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia.
| | - Liudmila Zakharova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia
| |
Collapse
|
35
|
Thome AD, Atassi F, Wang J, Faridar A, Zhao W, Thonhoff JR, Beers DR, Lai EC, Appel SH. Ex vivo expansion of dysfunctional regulatory T lymphocytes restores suppressive function in Parkinson's disease. NPJ Parkinsons Dis 2021; 7:41. [PMID: 33986285 PMCID: PMC8119976 DOI: 10.1038/s41531-021-00188-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammation is a pathological hallmark of Parkinson's disease (PD). Chronic pro-inflammatory responses contribute to the loss of neurons in the neurodegenerative process. The present study was undertaken to define the peripheral innate and adaptive immune contributions to inflammation in patients with PD. Immunophenotyping revealed a shift of peripheral myeloid and lymphoid cells towards a pro-inflammatory phenotype. Regulatory T cells (Tregs) were reduced in number, and their suppression of T responder proliferation decreased. The PD Tregs did not suppress activated pro-inflammatory myeloid cells. Ex vivo expansion of Tregs from patients with PD restored and enhanced their suppressive functions while expanded Tregs displayed increased expression of foxp3, il2ra (CD25), nt5e (CD73), il10, il13, ctla4, pdcd1 (PD1), and gzmb. Collectively, these findings documented a shift towards a pro-inflammatory peripheral immune response in patients with PD; the loss of Treg suppressive functions may contribute significantly to this response, supporting PD as a disorder with extensive systemic pro-inflammatory responses. The restoration and enhancement of Treg suppressive functions following ex vivo expansion may provide a potential cell therapeutic approach for patients with PD.
Collapse
Affiliation(s)
- Aaron D. Thome
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| | - Farah Atassi
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| | - Jinghong Wang
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| | - Alireza Faridar
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| | - Weihua Zhao
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| | - Jason R. Thonhoff
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| | - David R. Beers
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| | - Eugene C. Lai
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| | - Stanley H. Appel
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| |
Collapse
|
36
|
Pawelec G, Picard E, Bueno V, Verschoor CP, Ostrand-Rosenberg S. MDSCs, ageing and inflammageing. Cell Immunol 2021; 362:104297. [PMID: 33550187 DOI: 10.1016/j.cellimm.2021.104297] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/30/2020] [Accepted: 01/16/2021] [Indexed: 12/20/2022]
Abstract
The challenge of distinguishing between changes attributable to ageing and those attributable to pathology is even greater for the immune system than for many other organs, and this is especially true for myeloid-derived suppressor cells (MDSCs). Hematopoiesis is different in older adults with a bias towards myelopoiesis, and older adults also manifest "inflammageing" exacerbated by disease and contributing to MDSC induction. Hence, at least in humans, one can only investigate MDSCs in the context of ageing and disease states, and not in the context of ageing processes per se. This contribution provides a brief overview of the literature on MDSCs and ageing in humans.
Collapse
Affiliation(s)
- Graham Pawelec
- Department of Immunology, University of Tübingen, Tübingen, Germany; Health Sciences North Research Institute, Sudbury, Ontario, Canada.
| | - Emilie Picard
- Health Sciences North Research Institute, Sudbury, Ontario, Canada
| | - Valquiria Bueno
- Department of Microbiology, Immunology and Parasitology, UNIFESP Federal University of São Paulo, São Paulo, SP, Brazil
| | - Chris P Verschoor
- Health Sciences North Research Institute, Sudbury, Ontario, Canada; Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Suzanne Ostrand-Rosenberg
- Department of Pathology and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
37
|
Li D, Mastaglia FL, Fletcher S, Wilton SD. Progress in the molecular pathogenesis and nucleic acid therapeutics for Parkinson's disease in the precision medicine era. Med Res Rev 2020; 40:2650-2681. [PMID: 32767426 PMCID: PMC7589267 DOI: 10.1002/med.21718] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/02/2020] [Accepted: 07/25/2020] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders that manifest various motor and nonmotor symptoms. Although currently available therapies can alleviate some of the symptoms, the disease continues to progress, leading eventually to severe motor and cognitive decline and reduced life expectancy. The past two decades have witnessed rapid progress in our understanding of the molecular and genetic pathogenesis of the disease, paving the way for the development of new therapeutic approaches to arrest or delay the neurodegenerative process. As a result of these advances, biomarker‐driven subtyping is making it possible to stratify PD patients into more homogeneous subgroups that may better respond to potential genetic‐molecular pathway targeted disease‐modifying therapies. Therapeutic nucleic acid oligomers can bind to target gene sequences with very high specificity in a base‐pairing manner and precisely modulate downstream molecular events. Recently, nucleic acid therapeutics have proven effective in the treatment of a number of severe neurological and neuromuscular disorders, drawing increasing attention to the possibility of developing novel molecular therapies for PD. In this review, we update the molecular pathogenesis of PD and discuss progress in the use of antisense oligonucleotides, small interfering RNAs, short hairpin RNAs, aptamers, and microRNA‐based therapeutics to target critical elements in the pathogenesis of PD that could have the potential to modify disease progression. In addition, recent advances in the delivery of nucleic acid compounds across the blood–brain barrier and challenges facing PD clinical trials are also reviewed.
Collapse
Affiliation(s)
- Dunhui Li
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, University of Western Australia, Nedlands, Western Australia, Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Science, University of Western Australia, Nedlands, Western Australia, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, University of Western Australia, Nedlands, Western Australia, Australia
| | - Steve D Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
38
|
Griffiths JI, Wallet P, Pflieger LT, Stenehjem D, Liu X, Cosgrove PA, Leggett NA, McQuerry JA, Shrestha G, Rossetti M, Sunga G, Moos PJ, Adler FR, Chang JT, Sharma S, Bild AH. Circulating immune cell phenotype dynamics reflect the strength of tumor-immune cell interactions in patients during immunotherapy. Proc Natl Acad Sci U S A 2020; 117:16072-16082. [PMID: 32571915 PMCID: PMC7355015 DOI: 10.1073/pnas.1918937117] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The extent to which immune cell phenotypes in the peripheral blood reflect within-tumor immune activity prior to and early in cancer therapy is unclear. To address this question, we studied the population dynamics of tumor and immune cells, and immune phenotypic changes, using clinical tumor and immune cell measurements and single-cell genomic analyses. These samples were serially obtained from a cohort of advanced gastrointestinal cancer patients enrolled in a trial with chemotherapy and immunotherapy. Using an ecological population model, fitted to clinical tumor burden and immune cell abundance data from each patient, we find evidence of a strong tumor-circulating immune cell interaction in responder patients but not in those patients that progress on treatment. Upon initiation of therapy, immune cell abundance increased rapidly in responsive patients, and once the peak level is reached tumor burden decreases, similar to models of predator-prey interactions; these dynamic patterns were absent in nonresponder patients. To interrogate phenotype dynamics of circulating immune cells, we performed single-cell RNA sequencing at serial time points during treatment. These data show that peripheral immune cell phenotypes were linked to the increased strength of patients' tumor-immune cell interaction, including increased cytotoxic differentiation and strong activation of interferon signaling in peripheral T cells in responder patients. Joint modeling of clinical and genomic data highlights the interactions between tumor and immune cell populations and reveals how variation in patient responsiveness can be explained by differences in peripheral immune cell signaling and differentiation soon after the initiation of immunotherapy.
Collapse
Affiliation(s)
- Jason I Griffiths
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010
- Department of Mathematics, University of Utah, Salt Lake City, UT 84112
| | - Pierre Wallet
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010
| | - Lance T Pflieger
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010
| | - David Stenehjem
- College of Pharmacy, University of Minnesota, Duluth, MN 55812
| | - Xuan Liu
- Department of Integrative Biology and Pharmacology, School of Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Patrick A Cosgrove
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010
| | - Neena A Leggett
- Department of Integrative Biology and Pharmacology, School of Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Jasmine A McQuerry
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT 84112
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112
| | - Gajendra Shrestha
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112
| | - Maura Rossetti
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, Los Angeles, CA 90095
| | - Gemalene Sunga
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, Los Angeles, CA 90095
| | - Philip J Moos
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112
| | - Frederick R Adler
- Department of Mathematics, University of Utah, Salt Lake City, UT 84112
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, School of Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Sunil Sharma
- Translational Oncology Research & Drug Discovery, Translational Genomics Research Institute, Phoenix, AZ 85004
| | - Andrea H Bild
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010;
| |
Collapse
|
39
|
Zhou C, Zhou X, He D, Li Z, Xie X, Ren Y. Reduction of Peripheral Blood iNKT and γδT Cells in Patients With Parkinson's Disease: An Observational Study. Front Immunol 2020; 11:1329. [PMID: 32670293 PMCID: PMC7330172 DOI: 10.3389/fimmu.2020.01329] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/26/2020] [Indexed: 11/16/2022] Open
Abstract
Objective: To investigate the frequencies and numbers of invariant natural killer T (iNKT) cells and γδT cells in the peripheral blood of patients with the Parkinson's disease (PD), and to examine their association with the PD severity. Methods: Peripheral blood samples from 47 PD patients (PD group) and 47 age-matched healthy control subjects (HC group) were collected. The frequencies and the absolute cell numbers were analyzed by flow cytometry. Mann-Whitney U-test was used to test the difference between two groups, where P < 0.05 was considered as significant. An ordered probit regression method was used to examine the association of the iNKT and γδT cells with severity of PD. Results: Patients in the PD group showed significantly lower frequencies (0.039 vs. 0.139%; P = 0) and cell counts (308/mL vs. 1,371/mL; P = 0) of iNKT cells compared to the HC group. Moreover, the percentages and absolute numbers of γδT cells were significantly decreased in the PD group compared to the HC group (3.69 vs. 7.95% and 30/μL vs. 66/μL; P = 0). The iNKT cells were significantly reduced in PD patients with higher Unified Parkinson's Disease Rating Scale (UPDRS) scores or cognitive decline. Conclusions: Cell frequencies and absolute numbers of iNKT cells and γδT cells are significantly reduced in the peripheral blood samples of PD patients. Patients with high UPDRS scores or cognitive decline also showed significant reduction of iNKT cells. Our results suggest that iNKT cells and γδT cells may contribute to the development of PD.
Collapse
Affiliation(s)
- Chao Zhou
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Xinhua Zhou
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Dan He
- The Neurological Institute of Jiangxi Province, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Zhen Li
- The Neurological Institute of Jiangxi Province, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Xufang Xie
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yue Ren
- The Neurological Institute of Jiangxi Province, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| |
Collapse
|
40
|
Machhi J, Kevadiya BD, Muhammad IK, Herskovitz J, Olson KE, Mosley RL, Gendelman HE. Harnessing regulatory T cell neuroprotective activities for treatment of neurodegenerative disorders. Mol Neurodegener 2020; 15:32. [PMID: 32503641 PMCID: PMC7275301 DOI: 10.1186/s13024-020-00375-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence demonstrates that adaptive immunity influences the pathobiology of neurodegenerative disorders. Misfolded aggregated self-proteins can break immune tolerance leading to the induction of autoreactive effector T cells (Teffs) with associated decreases in anti-inflammatory neuroprotective regulatory T cells (Tregs). An imbalance between Teffs and Tregs leads to microglial activation, inflammation and neuronal injury. The cascade of such a disordered immunity includes the drainage of the aggregated protein antigens into cervical lymph nodes serving to amplify effector immune responses. Both preclinical and clinical studies demonstrate transformation of this altered immunity for therapeutic gain. We posit that the signs and symptoms of common neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, and stroke can be attenuated by boosting Treg activities.
Collapse
Affiliation(s)
- Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| | - Bhavesh D. Kevadiya
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
- Department of Radiology, School of Medicine, Stanford University, Palo Alto, 94304 USA
| | - Ijaz Khan Muhammad
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
- Department of Pharmacy, University of Swabi, Anbar Swabi, 23561 Pakistan
| | - Jonathan Herskovitz
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| | - Katherine E. Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| | - R. Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| |
Collapse
|
41
|
Wallings RL, Herrick MK, Tansey MG. LRRK2 at the Interface Between Peripheral and Central Immune Function in Parkinson's. Front Neurosci 2020; 14:443. [PMID: 32508566 PMCID: PMC7253584 DOI: 10.3389/fnins.2020.00443] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/09/2020] [Indexed: 12/20/2022] Open
Abstract
It is becoming increasingly accepted that there is an interplay between the peripheral immune response and neuroinflammation in the pathophysiology of Parkinson's disease (PD). Mutations in the leucine-rich-repeat kinase 2 (LRRK2) gene are associated with familial and sporadic cases of PD but are also found in immune-related disorders, such as inflammatory bowel disease (IBD) and leprosy. Furthermore, LRRK2 has been associated with bacterial infections such as Mycobacterium tuberculosis and Salmonella typhimurium. Recent evidence suggests a role of LRRK2 in the regulation of the immune system and modulation of inflammatory responses, at a systemic level, with LRRK2 functionally implicated in both the immune system of the central nervous system (CNS) and the periphery. It has therefore been suggested that peripheral immune signaling may play an important role in the regulation of neurodegeneration in LRRK2 as well as non-LRRK2-associated PD. This review will discuss the current evidence for this hypothesis and will provide compelling rationale for placing LRRK2 at the interface between peripheral immune responses and neuroinflammation.
Collapse
Affiliation(s)
- Rebecca L. Wallings
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, United States
| | - Mary K. Herrick
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, United States
- Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Malú Gámez Tansey
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
42
|
Rostami J, Fotaki G, Sirois J, Mzezewa R, Bergström J, Essand M, Healy L, Erlandsson A. Astrocytes have the capacity to act as antigen-presenting cells in the Parkinson's disease brain. J Neuroinflammation 2020; 17:119. [PMID: 32299492 PMCID: PMC7164247 DOI: 10.1186/s12974-020-01776-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 03/17/2020] [Indexed: 02/10/2023] Open
Abstract
Background Many lines of evidence suggest that accumulation of aggregated alpha-synuclein (αSYN) in the Parkinson’s disease (PD) brain causes infiltration of T cells. However, in which ways the stationary brain cells interact with the T cells remain elusive. Here, we identify astrocytes as potential antigen-presenting cells capable of activating T cells in the PD brain. Astrocytes are a major component of the nervous system, and accumulating data indicate that astrocytes can play a central role during PD progression. Methods To investigate the role of astrocytes in antigen presentation and T-cell activation in the PD brain, we analyzed post mortem brain tissue from PD patients and controls. Moreover, we studied the capacity of cultured human astrocytes and adult human microglia to act as professional antigen-presenting cells following exposure to preformed αSYN fibrils. Results Our analysis of post mortem brain tissue demonstrated that PD patients express high levels of MHC-II, which correlated with the load of pathological, phosphorylated αSYN. Interestingly, a very high proportion of the MHC-II co-localized with astrocytic markers. Importantly, we found both perivascular and infiltrated CD4+ T cells to be surrounded by MHC-II expressing astrocytes, confirming an astrocyte T cell cross-talk in the PD brain. Moreover, we showed that αSYN accumulation in cultured human astrocytes triggered surface expression of co-stimulatory molecules critical for T-cell activation, while cultured human microglia displayed very poor antigen presentation capacity. Notably, intercellular transfer of αSYN/MHC-II deposits occurred between astrocytes via tunneling nanotubes, indicating spreading of inflammation in addition to toxic protein aggregates. Conclusions In conclusion, our data from histology and cell culture studies suggest an important role for astrocytes in antigen presentation and T-cell activation in the PD brain, highlighting astrocytes as a promising therapeutic target in the context of chronic inflammation.
Collapse
Affiliation(s)
- Jinar Rostami
- Molecular Geriatrics, Department of Public Health and Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Grammatiki Fotaki
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Julien Sirois
- Neuroimmunology Unit, department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, 3801, Canada
| | - Ropafadzo Mzezewa
- Molecular Geriatrics, Department of Public Health and Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Joakim Bergström
- Molecular Geriatrics, Department of Public Health and Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Luke Healy
- Neuroimmunology Unit, department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, 3801, Canada
| | - Anna Erlandsson
- Molecular Geriatrics, Department of Public Health and Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden.
| |
Collapse
|
43
|
Álvarez-Luquín DD, Arce-Sillas A, Leyva-Hernández J, Sevilla-Reyes E, Boll MC, Montes-Moratilla E, Vivas-Almazán V, Pérez-Correa C, Rodríguez-Ortiz U, Espinoza-Cárdenas R, Fragoso G, Sciutto E, Adalid-Peralta L. Regulatory impairment in untreated Parkinson's disease is not restricted to Tregs: other regulatory populations are also involved. J Neuroinflammation 2019; 16:212. [PMID: 31711508 PMCID: PMC6849192 DOI: 10.1186/s12974-019-1606-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease in the world. Various studies have suggested that the immune response plays a key role in this pathology. While a predominantly pro-inflammatory peripheral immune response has been reported in treated and untreated PD patients, the study of the role of the regulatory immune response has been restricted to regulatory T cells. Other immune suppressive populations have been described recently, but their role in PD is still unknown. This study was designed to analyze the pro and anti-inflammatory immune response in untreated PD patients, with emphasis on the regulatory response. METHODS Thirty-two PD untreated patients and 20 healthy individuals were included in this study. Peripheral regulatory cells (CD4+Tregs, Bregs, CD8+Tregs, and tolerogenic dendritic cells), pro-inflammatory cells (Th1, Th2, and Th17 cells; active dendritic cells), and classical, intermediate, and non-classical monocytes were characterized by flow cytometry. Plasmatic levels of TNF-α, IFN-γ, IL-6, GM-CSF, IL-12p70, IL-4, IL-13, IL-17α, IL-1β, IL-10, TGF-β, and IL-35 were determined by ELISA. RESULTS Decreased levels of suppressor Tregs, active Tregs, Tr1 cells, IL-10-producer CD8regs, and tolerogenic PD-L1+ dendritic cells were observed. With respect to the pro-inflammatory response, a decrease in IL-17-α and an increase in IL-13 levels were observed. CONCLUSION A decrease in the levels of regulatory cell subpopulations in untreated PD patients is reported for the first time in this work. These results suggest that PD patients may exhibit a deficient suppression of the pro-inflammatory response, which could contribute to the pathophysiology of the disease.
Collapse
Affiliation(s)
- Diana D. Álvarez-Luquín
- Unidad Periférica para el Estudio de la Neuroinflamación en Patologías Neurológicas del Instituto de Investigaciones Biomédicas en el Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur 3877 La Fama, 14269 Ciudad de México, México
| | - Asiel Arce-Sillas
- Unidad Periférica para el Estudio de la Neuroinflamación en Patologías Neurológicas del Instituto de Investigaciones Biomédicas en el Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur 3877 La Fama, 14269 Ciudad de México, México
| | - Jaquelín Leyva-Hernández
- Unidad Periférica para el Estudio de la Neuroinflamación en Patologías Neurológicas del Instituto de Investigaciones Biomédicas en el Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur 3877 La Fama, 14269 Ciudad de México, México
| | - Edgar Sevilla-Reyes
- Clinica de Investigación en Enfermedades Infecciosas (CIENI), Instituto Nacional de Enfermedades Respiratorias, Calz. de Tlalpan 4502, Seccion XVI, 14080 Ciudad de México, México
| | - Marie Catherine Boll
- Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur 3877 La Fama, 14269 Ciudad de México, México
| | - Esteban Montes-Moratilla
- Unidad Periférica para el Estudio de la Neuroinflamación en Patologías Neurológicas del Instituto de Investigaciones Biomédicas en el Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur 3877 La Fama, 14269 Ciudad de México, México
| | - Viridiana Vivas-Almazán
- Unidad Periférica para el Estudio de la Neuroinflamación en Patologías Neurológicas del Instituto de Investigaciones Biomédicas en el Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur 3877 La Fama, 14269 Ciudad de México, México
| | - Citzielli Pérez-Correa
- Unidad Periférica para el Estudio de la Neuroinflamación en Patologías Neurológicas del Instituto de Investigaciones Biomédicas en el Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur 3877 La Fama, 14269 Ciudad de México, México
| | - Ulises Rodríguez-Ortiz
- Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur 3877 La Fama, 14269 Ciudad de México, México
| | - Raquel Espinoza-Cárdenas
- Unidad Periférica para el Estudio de la Neuroinflamación en Patologías Neurológicas del Instituto de Investigaciones Biomédicas en el Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur 3877 La Fama, 14269 Ciudad de México, México
| | - Gladis Fragoso
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Escolar, Ciudad de México, México
| | - Edda Sciutto
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Escolar, Ciudad de México, México
| | - Laura Adalid-Peralta
- Unidad Periférica para el Estudio de la Neuroinflamación en Patologías Neurológicas del Instituto de Investigaciones Biomédicas en el Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur 3877 La Fama, 14269 Ciudad de México, México
- Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur 3877 La Fama, 14269 Ciudad de México, México
| |
Collapse
|
44
|
Lee JH, Han K, Gee HY. The incidence rates and risk factors of Parkinson disease in patients with psoriasis: A nationwide population-based cohort study. J Am Acad Dermatol 2019; 83:1688-1695. [PMID: 31302182 DOI: 10.1016/j.jaad.2019.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 05/16/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The association between psoriasis and Parkinson disease has not been established. OBJECTIVE To determine the incidence rates and risk factors of Parkinson disease in patients with psoriasis. METHODS We conducted a nationwide population-based cohort study. The data from patients with psoriasis (N = 548,327, ≥20 years of age, 53.32% men and 46.68% women) and age- and sex-matched control patients (N = 2,741,635) without psoriasis were analyzed in this study. RESULTS The incidence rates of Parkinson disease per 1000 person-years were 0.673 and 0.768 in the control and psoriasis groups, respectively. The psoriasis group showed a significantly increased risk of developing Parkinson disease (hazard ratio [HR] 1.091, 95% confidence interval [CI] 1.029-1.115). The risk of Parkinson disease was significantly higher among the psoriasis patients who were not receiving systemic therapy (HR 1.093, 95% CI 1.031-1.159) and lower among the psoriasis patients on systemic therapy (HR 1.04, 95% CI 0.806-1.316). LIMITATIONS The limitations of this study included the retrospective design, patient inclusion solely on the basis of diagnostic codes, and unavailability of data on confounding factors. CONCLUSION Systemic anti-inflammatory agents might mitigate the risk of Parkinson disease in psoriasis patients.
Collapse
Affiliation(s)
- Ji Hyun Lee
- Department of Dermatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Kyungdo Han
- Department of Medical Statistics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Heon Yung Gee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
45
|
Pawelec G, Verschoor CP, Ostrand-Rosenberg S. Myeloid-Derived Suppressor Cells: Not Only in Tumor Immunity. Front Immunol 2019; 10:1099. [PMID: 31156644 PMCID: PMC6529572 DOI: 10.3389/fimmu.2019.01099] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
Since the realization that immature myeloid cells are powerful modulators of the immune response, many studies on “myeloid-derived suppressor cells” (MDSCs) have documented their ability to promote tumor progression in melanoma and other cancers. Whether MDSCs are induced solely pathologically in tumorigenesis, or whether they also represent physiological immune control mechanisms, is not well-understood, but is particularly important in the light of ongoing attempts to block their activities in order to enhance anti-tumor immunity. Here, we briefly review studies which explore (1) how best to identify MDSCs in the context of cancer and how this compares to other conditions in humans; (2) what the suppressive mechanisms of MDSCs are and how to target them pharmacologically; (3) whether levels of MDSCs with various phenotypes are informative for clinical outcome not only in cancer but also other diseases, and (4) whether MDSCs are only found under pathological conditions or whether they also represent a physiological regulatory mechanism for the feedback control of immunity. Studies unequivocally document that MDSCs strongly influence cancer outcomes, but are less informative regarding their relevance to infection, autoimmunity, transplantation and aging, especially in humans. So far, the results of clinical interventions to reverse their negative effects in cancer have been disappointing; thus, developing differential approaches to modulate MSDCs in cancer and other diseases without unduly comprising any normal physiological function requires further exploration.
Collapse
Affiliation(s)
- Graham Pawelec
- Department of Immunology, University of Tübingen, Tübingen, Germany.,Health Sciences North Research Institute, Sudbury, ON, Canada
| | - Chris P Verschoor
- Health Sciences North Research Institute, Sudbury, ON, Canada.,Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | - Suzanne Ostrand-Rosenberg
- Department of Pathology and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
46
|
Prots I, Winner B. Th17 cells: a promising therapeutic target for Parkinson's disease? Expert Opin Ther Targets 2019; 23:309-314. [PMID: 30871383 DOI: 10.1080/14728222.2019.1590336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Parkinson's disease (PD) is the most common neurodegenerative movement disorder caused by the progressive loss of neurons in the midbrain and other brain regions. Only symptomatic treatment is currently available. Mounting evidence suggests that T cells are a key contributor to PD pathogenesis and neurodegeneration by a mechanism that requires further elucidation. Areas covered: We discuss the evidence of imbalanced activation of effector T cell populations in PD and summarize the data of Th17 involvement and Th17-regulated mechanisms in PD pathology. Moreover, possible Th17-related molecular targets as possible neuroprotective immunomodulatory therapeutic targets for PD are examined. Expert Opinion: Existing data show that Th17 cells, their effector molecules, and signaling pathways are potentially effective therapeutic targets for neuroprotective immunomodulation in PD treatment. However, specificity of action within Th17-mediated signaling pathways for PD requires careful consideration.
Collapse
Affiliation(s)
- Iryna Prots
- a Department of Stem Cell Biology , Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg , Erlangen , Germany
| | - Beate Winner
- a Department of Stem Cell Biology , Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg , Erlangen , Germany
| |
Collapse
|
47
|
Garretti F, Agalliu D, Lindestam Arlehamn CS, Sette A, Sulzer D. Autoimmunity in Parkinson's Disease: The Role of α-Synuclein-Specific T Cells. Front Immunol 2019; 10:303. [PMID: 30858851 PMCID: PMC6397885 DOI: 10.3389/fimmu.2019.00303] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/06/2019] [Indexed: 12/23/2022] Open
Abstract
Evidence from a variety of studies implicates a role for the adaptive immune system in Parkinson's disease (PD). Similar to multiple sclerosis (MS) patients who display a high number of T cells in the brain attacking oligodendrocytes, PD patients show higher numbers of T cells in the ventral midbrain than healthy, age-matched controls. Mouse models of the disease also show the presence of T cells in the brain. The role of these infiltrating T cells in the propagation of disease is controversial; however, recent studies indicate that they may be autoreactive in nature, recognizing disease-altered self-proteins as foreign antigens. T cells of PD patients can generate an autoimmune response to α-synuclein, a protein that is aggregated in PD. α-Synuclein and other proteins are post-translationally modified in an environment in which protein processing is altered, possibly leading to the generation of neo-epitopes, or self-peptides that have not been identified by the host immune system as non-foreign. Infiltrating T cells may also be responding to such modified proteins. Genome-wide association studies (GWAS) have shown associations of PD with haplotypes of major histocompatibility complex (MHC) class II genes, and a polymorphism in a non-coding region that may increase MHC class II in PD patients. We speculate that the inflammation observed in PD may play both pathogenic and protective roles. Future studies on the adaptive immune system in neurodegenerative disorders may elucidate steps in disease pathogenesis and assist with the development of both biomarkers and treatments.
Collapse
Affiliation(s)
- Francesca Garretti
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Dritan Agalliu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States.,Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | | | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - David Sulzer
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States.,Department of Pharmacology, Columbia University Irving Medical Center, New York, NY, United States.,Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
48
|
Campos-Acuña J, Elgueta D, Pacheco R. T-Cell-Driven Inflammation as a Mediator of the Gut-Brain Axis Involved in Parkinson's Disease. Front Immunol 2019; 10:239. [PMID: 30828335 PMCID: PMC6384270 DOI: 10.3389/fimmu.2019.00239] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/28/2019] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder affecting mainly the dopaminergic neurons of the nigrostriatal pathway, a neuronal circuit involved in the control of movements, thereby the main manifestations correspond to motor impairments. The major molecular hallmark of this disease corresponds to the presence of pathological protein inclusions called Lewy bodies in the midbrain of patients, which have been extensively associated with neurotoxic effects. Importantly, different research groups have demonstrated that CD4+ T-cells infiltrate into the substantia nigra of PD patients and animal models. Moreover, several studies have consistently demonstrated that T-cell deficiency results in a strong attenuation of dopaminergic neurodegeneration in animal models of PD, thus indicating a key role of adaptive immunity in the neurodegenerative process. Recent evidence has shown that CD4+ T-cell response involved in PD patients is directed to oxidised forms of α-synuclein, one of the main constituents of Lewy bodies. On the other hand, most PD patients present a number of non-motor manifestations. Among non-motor manifestations, gastrointestinal dysfunctions result especially important as potential early biomarkers of PD, since they are ubiquitously found among confirmed patients and occur much earlier than motor symptoms. These gastrointestinal dysfunctions include constipation and inflammation of the gut mucosa and the most distinctive pathologic features associated are the loss of neurons of the enteric nervous system and the generation of Lewy bodies in the gut. Moreover, emerging evidence has recently shown a pivotal role of gut microbiota in triggering the development of PD in genetically predisposed individuals. Of note, PD has been positively correlated with inflammatory bowel diseases, a group of disorders involving a T-cell driven inflammation of gut mucosa, which is strongly dependent in the composition of gut microbiota. Here we raised the hypothesis that T-cell driven inflammation, which mediates dopaminergic neurodegeneration in PD, is triggered in the gut mucosa. Accordingly, we discuss how structural components of commensal bacteria or how different mediators produced by gut-microbiota, including short-chain fatty acids and dopamine, may affect the behaviour of T-cells, triggering the development of T-cell responses against Lewy bodies, initially confined to the gut mucosa but later extended to the brain.
Collapse
Affiliation(s)
- Javier Campos-Acuña
- Laboratorio de Neuroinmunología, Fundación Ciencia and Vida, Ñuñoa, Santiago, Chile
| | - Daniela Elgueta
- Laboratorio de Neuroinmunología, Fundación Ciencia and Vida, Ñuñoa, Santiago, Chile
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Fundación Ciencia and Vida, Ñuñoa, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
49
|
Storelli E, Cassina N, Rasini E, Marino F, Cosentino M. Do Th17 Lymphocytes and IL-17 Contribute to Parkinson's Disease? A Systematic Review of Available Evidence. Front Neurol 2019; 10:13. [PMID: 30733703 PMCID: PMC6353825 DOI: 10.3389/fneur.2019.00013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/07/2019] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive loss of dopaminergic neurons, appearance of Lewy bodies and presence of neuroinflammation. No treatments currently exist to prevent PD or delay its progression, and dopaminergic substitution treatments just relieve the consequences of dopaminergic neuron loss. Increasing evidence points to peripheral T lymphocytes as key players in PD, and recently there has been growing interest into the specific role of T helper (Th) 17 lymphocytes. Th17 are a proinflammatory CD4+ T cell lineage named after interleukin (IL)-17, the main cytokine produced by these cells. Th17 are involved in immune-related disease such as psoriasis, rheumatoid arthritis and inflammatory bowel disease, and drugs targeting Th17/IL-17 are currently approved for clinical use in such disease. In the present paper, we first summarized current knowledge about contribution of the peripheral immune system in PD, as well as about the physiopharmacology of Th17 and IL-17 together with its therapeutic relevance. Thereafter, we systematically retrieved and evaluated published evidence about Th17 and IL-17 in PD, to help assessing Th17/IL-17-targeting drugs as potentially novel antiparkinson agents. Critical appraisal of the evidence did not allow to reach definite conclusions: both animal as well as clinical studies are limited, just a few provide mechanistic evidence and none of them investigates the eventual relationship between Th17/IL-17 and clinically relevant endpoints such as disease progression, disability scores, intensity of dopaminergic substitution treatment. Careful assessment of Th17 in PD is anyway a priority, as Th17/IL-17-targeting therapeutics might represent a straightforward opportunity for the unmet needs of PD patients.
Collapse
Affiliation(s)
| | | | | | | | - Marco Cosentino
- Center of Research in Medical Pharmacology, University of Insubria, Varese, Italy
| |
Collapse
|
50
|
Budhwar S, Verma P, Verma R, Rai S, Singh K. The Yin and Yang of Myeloid Derived Suppressor Cells. Front Immunol 2018; 9:2776. [PMID: 30555467 PMCID: PMC6280921 DOI: 10.3389/fimmu.2018.02776] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023] Open
Abstract
In recent years, most of our knowledge about myeloid derived suppressor cells (MDSCs) has come from cancer studies, which depicts Yin side of MDSCs. In cancer, inherent immunosuppressive action of MDSCs favors tumor progression by inhibiting antitumor immune response. However, recently Yang side of MDSCs has also been worked out and suggests the role in maintenance of homeostasis during non-cancer situations like pregnancy, obesity, diabetes, and autoimmune disorders. Continued work in this area has armored the biological importance of these cells as master regulators of immune system and prompted scientists all over the world to look from a different perspective. Therefore, explicating Yin and Yang arms of MDSCs is obligatory to use it as a double edged sword in a much smarter way. This review is an attempt toward presenting a synergistic coalition of all the facts and controversies that exist in understanding MDSCs, bring them on the same platform and approach their "Yin and Yang" nature in a more comprehensive and coherent manner.
Collapse
Affiliation(s)
- Snehil Budhwar
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Priyanka Verma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Rachna Verma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sangeeta Rai
- Department of Obstetrics and Gynecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Kiran Singh
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|