1
|
Xie G, Okuda S, Gao JY, Wu T, Jeong J, Lu KP, Zhou XZ. The Central Role of Pin1 in Age-Related Cancer Signaling Pathways. Semin Cancer Biol 2025:S1044-579X(25)00072-0. [PMID: 40412492 DOI: 10.1016/j.semcancer.2025.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/05/2025] [Accepted: 05/13/2025] [Indexed: 05/27/2025]
Abstract
The prolyl-isomerase Pin1 is a unique enzyme that catalyzes cis-trans isomerization of phosphorylated Ser/Thr-Pro motifs. These motifs are present in many proteins, where isomerization of the typically rigid prolyl-peptide bond can lead to conformational changes, and subsequently regulate activity, stability, or localization. The specificity of Pin1 for phosphorylated motifs allows it to serve as a master regulator of proteins after phosphorylation, adding an additional layer of regulation to intricately control cellular signaling. As such, Pin1 plays an expansive role in numerous cancer and age-related signaling pathways, and is recognized as a major driver of cancer and promising therapeutic target. In this review, we discuss the role of Pin1 in regulation of age-related cancer signaling pathways, and we highlight the early development and current landscape of Pin1 inhibitors, and the prospect of Pin1 inhibition for cancer therapy.
Collapse
Affiliation(s)
- George Xie
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Sho Okuda
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Jing-Yan Gao
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; Department of Chemistry, Western University, London, ON N6A 5C1, Canada
| | - Timothy Wu
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Jessica Jeong
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, ON N6G 2V4, Canada.
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; Lawson Health Research Institute, Western University, London, ON N6C 2R5, Canada.
| |
Collapse
|
2
|
Cavalcanti de Albuquerque JP, Hunter J, Domingues RG, Harno E, Worth AA, Liguori FM, D'Alessio A, Aviello G, Bechtold D, White A, Luckman SM, Hepworth MR, D'Agostino G. Brain sensing of metabolic state regulates circulating monocytes. Sci Immunol 2025; 10:eadr3226. [PMID: 40184437 DOI: 10.1126/sciimmunol.adr3226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 03/13/2025] [Indexed: 04/06/2025]
Abstract
Changes in energy availability alter the dynamics of circulating immune cells. The existing view is that these effects are due to altered nutrient levels affecting peripheral tissue metabolism. Here, using mice and genetic approaches to manipulate the activity of distinct molecularly defined neurons, we show that the brain's perception of hunger and satiety alone is sufficient to drive these immune changes. Hunger-promoting Agouti-related peptide (AgRP) neurons in the hypothalamus were both sufficient and necessary to reduce circulating Ly6CHi classical monocytes during fasting. Mechanistically, these neurons suppressed hepatic mammalian target of rapamycin signaling via sympathetic regulation, decreasing circulating chemokine ligand 2 and monocyte numbers. AgRP neuron-induced corticosterone release and glucocorticoid receptor activation played a permissive role in this process. These changes in monocyte dynamics can occur independently of actual nutrient levels, revealing an unexpected brain-mediated control of peripheral immunity in response to perceived variation in energy state.
Collapse
Affiliation(s)
- Joao Paulo Cavalcanti de Albuquerque
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jenna Hunter
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Rita G Domingues
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PL, UK
| | - Erika Harno
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Amy A Worth
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Fabrizio Maria Liguori
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - Aurora D'Alessio
- Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - Gabriella Aviello
- Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - David Bechtold
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Anne White
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Simon M Luckman
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Matthew R Hepworth
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PL, UK
| | - Giuseppe D'Agostino
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
3
|
Peng P, Shen F, Peng B, Chen Z, Zhou L, Hao X, Liu Y. Genetic Evidence Supporting the Repurposing of mTOR Inhibitors for Reducing BMI. Biomedicines 2025; 13:839. [PMID: 40299431 PMCID: PMC12025023 DOI: 10.3390/biomedicines13040839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/30/2025] Open
Abstract
Background: Although mTOR has long been regarded as a promising target for cancer treatment, the efficacy of mTOR inhibitors in most clinical trials has been rather limited. Nevertheless, their favorable safety profile has opened up opportunities for drug repurposing, even as their potential applications across various diseases remain largely unexplored. Methods: We performed an MR-PheWAS analysis across 1431 phenotypes to explore drug repurposing opportunities. We analyzed GWAS data of 452 plasma metabolites, 731 immune traits, and 412 gut microbiota to uncover potential mechanisms for the causal link between the mTOR gene and body mass index (BMI). Results: A causal link between mTOR gene expression and BMI has been established. Additionally, mTOR-related vulnerabilities associated with BMI, including alterations in metabolites, immune traits, and gut microbiota, were identified. Conclusions: The identified causal relationship between mTOR and BMI suggests novel potential non-cancer applications for mTOR inhibitors.
Collapse
Affiliation(s)
- Ping Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (B.P.); (Z.C.); (L.Z.)
| | - Fan Shen
- Nursing Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Bi Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (B.P.); (Z.C.); (L.Z.)
| | - Ziqi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (B.P.); (Z.C.); (L.Z.)
| | - Lei Zhou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (B.P.); (Z.C.); (L.Z.)
| | - Xingjie Hao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Yuanhui Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (B.P.); (Z.C.); (L.Z.)
| |
Collapse
|
4
|
Wang J, Shao F, Yu QX, Ye L, Wusiman D, Wu R, Tuo Z, Wang Z, Li D, Cho WC, Wei W, Feng D. The Common Hallmarks and Interconnected Pathways of Aging, Circadian Rhythms, and Cancer: Implications for Therapeutic Strategies. RESEARCH (WASHINGTON, D.C.) 2025; 8:0612. [PMID: 40046513 PMCID: PMC11880593 DOI: 10.34133/research.0612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 03/17/2025]
Abstract
The intricate relationship between cancer, circadian rhythms, and aging is increasingly recognized as a critical factor in understanding the mechanisms underlying tumorigenesis and cancer progression. Aging is a well-established primary risk factor for cancer, while disruptions in circadian rhythms are intricately associated with the tumorigenesis and progression of various tumors. Moreover, aging itself disrupts circadian rhythms, leading to physiological changes that may accelerate cancer development. Despite these connections, the specific interplay between these processes and their collective impact on cancer remains inadequately explored in the literature. In this review, we systematically explore the physiological mechanisms of circadian rhythms and their influence on cancer development. We discuss how core circadian genes impact tumor risk and prognosis, highlighting the shared hallmarks of cancer and aging such as genomic instability, cellular senescence, and chronic inflammation. Furthermore, we examine the interplay between circadian rhythms and aging, focusing on how this crosstalk contributes to tumorigenesis, tumor proliferation, and apoptosis, as well as the impact on cellular metabolism and genomic stability. By elucidating the common pathways linking aging, circadian rhythms, and cancer, this review provides new insights into the pathophysiology of cancer and identifies potential therapeutic strategies. We propose that targeting the circadian regulation of cancer hallmarks could pave the way for novel treatments, including chronotherapy and antiaging interventions, which may offer important benefits in the clinical management of cancer.
Collapse
Affiliation(s)
- Jie Wang
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Fanglin Shao
- Department of Rehabilitation,
The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Qing Xin Yu
- Department of Pathology,
Ningbo Clinical Pathology Diagnosis Center, Ningbo, Zhejiang 315211, China
- Department of Pathology,
Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang 315040, China
| | - Luxia Ye
- Department of Public Research Platform,
Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Dilinaer Wusiman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47906, USA
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Zhouting Tuo
- Department of Urological Surgery, Daping Hospital, Army Medical Center of PLA,
Army Medical University, Chongqing, China
| | - Zhipeng Wang
- Department of Urology, Sichuan Provincial People’s Hospital,
University of Electronic Science and Technology of China, Chengdu, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
| | - William C. Cho
- Department of Clinical Oncology,
Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
- Division of Surgery and Interventional Science,
University College London, London W1W 7TS, UK
| |
Collapse
|
5
|
Tan B, Hedbacker K, Kelly L, Zhang Z, Moura-Assis A, Luo JD, Rabinowitz JD, Friedman JM. A cellular and molecular basis of leptin resistance. Cell Metab 2025; 37:723-741.e6. [PMID: 40043692 DOI: 10.1016/j.cmet.2025.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 09/09/2024] [Accepted: 01/02/2025] [Indexed: 05/13/2025]
Abstract
Similar to most humans with obesity, diet-induced obese (DIO) mice have high leptin levels and fail to respond to the exogenous hormone, suggesting that their obesity is caused by leptin resistance, the pathogenesis of which is unknown. We found that leptin treatment reduced plasma levels of leucine and methionine, mTOR-activating ligands, leading us to hypothesize that chronic mTOR activation might reduce leptin signaling. Rapamycin, an mTOR inhibitor, reduced fat mass and increased leptin sensitivity in DIO mice but not in mice with defects in leptin signaling. Rapamycin restored leptin's actions on POMC neurons and failed to reduce the weight of mice with defects in melanocortin signaling. mTOR activation in POMC neurons caused leptin resistance, whereas POMC-specific mutations in mTOR activators decreased weight gain of DIO mice. Thus, increased mTOR activity in POMC neurons is necessary and sufficient for the development of leptin resistance in DIO mice, establishing a key pathogenic mechanism leading to obesity.
Collapse
Affiliation(s)
- Bowen Tan
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Kristina Hedbacker
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Leah Kelly
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Zhaoyue Zhang
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Alexandre Moura-Assis
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Ji-Dung Luo
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Joshua D Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
6
|
Mori H, Yoshino Y, Okano M, Funahashi Y, Kumon H, Ochi S, Iga JI, Ueno SI. Association Between Stress-Induced Weight Loss and Autophagy-Related Gene Expression in the Hippocampus and Midbrain of Depression Model Mice. Neuropsychopharmacol Rep 2025; 45:e12515. [PMID: 39715728 DOI: 10.1002/npr2.12515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/28/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024] Open
Abstract
AIM Recent studies have implicated autophagy in both weight regulation and depression. This study aimed to investigate the relationship between stress-induced weight loss and autophagy-related gene expression in a mouse model of depression. METHOD Male C57BL/6 mice were subjected to a chronic immobilization stress (CIS) protocol for 14 days to induce depressive-like behavior. Body weight was measured before and after the CIS, and depressive-like behavior was assessed using the tail suspension test (TST). The expression levels of autophagy-related genes (Atg5, Atg7, Atg12, Becn1, Mmp9, Fkbp5, and Map1lc3b) in the hippocampus and midbrain were evaluated using reverse transcription-quantitative PCR (RT-qPCR). Serum cortisol levels were also measured. RESULTS The CIS resulted in significant weight loss and increased immobility time in the TST, indicating depressive-like behavior. Serum cortisol levels were not different between CIS-depression model and control mice. In the hippocampus, the expression levels of Fkbp5, Mmp9, and Map1lc3b were significantly higher in CIS-depression model mice than in control mice. In the midbrain, the expression levels of Fkbp5 and Mmp9 were significantly higher in CIS-depression model mice than in control mice. Increased autophagy-related gene expressions in CIS-depression model mice were consistent with the previous studies in the postmortem brains of patients with depression. A significant negative correlation was also found between Fkbp5 mRNA expression in the hippocampus and the weight change ratio before and after the CIS. CONCLUSION The findings suggest that enhanced autophagy may be related to the pathology of depression and that Fkbp5, an autophagy regulator, mediates stress-induced weight loss.
Collapse
Affiliation(s)
- Hiroaki Mori
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Toon, Japan
| | - Yuta Yoshino
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Toon, Japan
| | - Mariko Okano
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Toon, Japan
| | - Yu Funahashi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Toon, Japan
| | - Hiroshi Kumon
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Toon, Japan
| | - Shinichiro Ochi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Toon, Japan
| | - Jun-Ichi Iga
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Toon, Japan
| | - Shu-Ichi Ueno
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Toon, Japan
| |
Collapse
|
7
|
Li AH, Tsai WS, Tsai WH, Yang SB. Systemic Glucose Homeostasis Requires Pancreatic but Not Neuronal ATP-sensitive Potassium Channels. FUNCTION 2025; 6:zqaf002. [PMID: 39809576 PMCID: PMC11815579 DOI: 10.1093/function/zqaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/31/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025] Open
Abstract
The adenosine triphosphate (ATP)-sensitive potassium (KATP) channels, composed of Kir6.2 and sulfonylurea receptor 1 (SUR1) subunits, are essential for glucose homeostasis. While the role of pancreatic KATP channels in regulating insulin secretion is well-documented, the specific contributions of neuronal KATP channels remain unclear due to challenges in precisely targeting neuronal subpopulations. In this study, we utilized a Kir6.2 conditional knockout mouse model to distinguish the roles of KATP channels in different cell types. Our findings demonstrate that deletion of neuronal KATP channels does not impair glucose homeostasis, as glucose-sensing neurons retained their responsiveness despite the absence of functional KATP channels. In contrast, the deletion of KATP channels in pancreatic β cells led to significant hyperglycemia and glucose intolerance, indicating unstable blood glucose levels under varying physiological conditions. Importantly, we showed that restoring KATP channel function exclusively in pancreatic β cells within a global Kir6.2 knockout background effectively reversed glucose regulation defects. This underscores the critical role of pancreatic KATP channels in maintaining systemic glucose homeostasis. Our results challenge the previous hypothesis that neuronal KATP channels are essential for glucose regulation, suggesting that their primary function may be neuroprotective rather than homeostatic. These findings highlight pancreatic KATP channels as key regulators of glucose balance and potential therapeutic targets for correcting glucose dysregulation.
Collapse
Affiliation(s)
- Athena H Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 115, Taiwan
| | - Wen-Sheng Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Wen-Hao Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Shi-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
8
|
Laule C, Rahmouni K. Leptin and Associated Neural Pathways Underlying Obesity-Induced Hypertension. Compr Physiol 2025; 15:e8. [PMID: 40293220 PMCID: PMC12038170 DOI: 10.1002/cph4.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 04/30/2025]
Abstract
Obesity rates have surged to pandemic levels, placing tremendous burden on our society. This chronic and complex disease is related to the development of many life-threatening illnesses including cardiovascular diseases. Hypertension caused by obesity increases the risk for cardiovascular mortality and morbidity by promoting stroke, myocardial infarction, congestive heart failure, and end-stage renal disease. Overwhelming evidence supports neural origins for obesity-induced hypertension and pinpoints the adipose-derived hormone, leptin, and the sympathetic nervous system as major causal factors. Hyperleptinemia in obesity is associated with selective leptin resistance where leptin's renal sympathoexcitatory and pressor effects are preserved while the metabolic actions are impaired. Understanding the mechanisms driving this phenomenon is critical for developing effective therapeutics. This review describes the neural mechanisms of obesity-induced hypertension with a focus on the molecular and neuronal substrates of leptin action.
Collapse
Affiliation(s)
- Connor Laule
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Veterans Affairs Health Care System, Iowa City, Iowa
| |
Collapse
|
9
|
Guelfi G, Capaccia C, Tedeschi M, Bufalari A, Leonardi L, Cenci-Goga B, Maranesi M. Dog Aging: A Comprehensive Review of Molecular, Cellular, and Physiological Processes. Cells 2024; 13:2101. [PMID: 39768192 PMCID: PMC11675035 DOI: 10.3390/cells13242101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The aging process is a multifactorial biological phenomenon starting at birth and persisting throughout life, characterized by a decline in physiological functions and adaptability. This decline results in the diminished capacity of aging organisms to respond to environmental changes and stressors, leading to reduced efficiency in metabolic, immune, and hormonal functions. As behavioral flexibility wanes, older individuals face longer recovery times and increased vulnerability to diseases. While early research proposed nine core hallmarks of mammalian aging, recent studies have expanded this framework to twelve key characteristics: epigenetic changes, genomic instability, telomere shortening, loss of proteostasis, altered metabolism, mitochondrial dysfunction, cellular senescence, disrupted intercellular communication, stem cell depletion, immune system dysfunction, accumulation of toxic metabolites, and dysbiosis. Given the growing interest in the aging area, we propose to add a new hallmark: impaired water homeostasis. This potential hallmark could play a critical role in aging processes and might open new directions for future research in the field. This review enhances our understanding of the physiological aspects of aging in dogs, suggesting new clinical intervention strategies to prevent and control issues that may arise from the pathological degeneration of these hallmarks.
Collapse
Affiliation(s)
- Gabriella Guelfi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (C.C.); (M.T.); (L.L.); (B.C.-G.); (M.M.)
| | | | | | - Antonello Bufalari
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (C.C.); (M.T.); (L.L.); (B.C.-G.); (M.M.)
| | | | | | | |
Collapse
|
10
|
Smiles WJ, Ovens AJ, Oakhill JS, Kofler B. The metabolic sensor AMPK: Twelve enzymes in one. Mol Metab 2024; 90:102042. [PMID: 39362600 PMCID: PMC11752127 DOI: 10.1016/j.molmet.2024.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) is an evolutionarily conserved regulator of energy metabolism. AMPK is sensitive to acute perturbations to cellular energy status and leverages fundamental bioenergetic pathways to maintain cellular homeostasis. AMPK is a heterotrimer comprised of αβγ-subunits that in humans are encoded by seven individual genes (isoforms α1, α2, β1, β2, γ1, γ2 and γ3), permitting formation of at least 12 different complexes with personalised biochemical fingerprints and tissue expression patterns. While the canonical activation mechanisms of AMPK are well-defined, delineation of subtle, as well as substantial, differences in the regulation of heterogenous AMPK complexes remain poorly defined. SCOPE OF REVIEW Here, taking advantage of multidisciplinary findings, we dissect the many aspects of isoform-specific AMPK function and links to health and disease. These include, but are not limited to, allosteric activation by adenine nucleotides and small molecules, co-translational myristoylation and post-translational modifications (particularly phosphorylation), governance of subcellular localisation, and control of transcriptional networks. Finally, we delve into current debate over whether AMPK can form novel protein complexes (e.g., dimers lacking the α-subunit), altogether highlighting opportunities for future and impactful research. MAJOR CONCLUSIONS Baseline activity of α1-AMPK is higher than its α2 counterpart and is more sensitive to synergistic allosteric activation by metabolites and small molecules. α2 complexes however, show a greater response to energy stress (i.e., AMP production) and appear to be better substrates for LKB1 and mTORC1 upstream. These differences may explain to some extent why in certain cancers α1 is a tumour promoter and α2 a suppressor. β1-AMPK activity is toggled by a 'myristoyl-switch' mechanism that likely precedes a series of signalling events culminating in phosphorylation by ULK1 and sensitisation to small molecules or endogenous ligands like fatty acids. β2-AMPK, not entirely beholden to this myristoyl-switch, has a greater propensity to infiltrate the nucleus, which we suspect contributes to its oncogenicity in some cancers. Last, the unique N-terminal extensions of the γ2 and γ3 isoforms are major regulatory domains of AMPK. mTORC1 may directly phosphorylate this region in γ2, although whether this is inhibitory, especially in disease states, is unclear. Conversely, γ3 complexes might be preferentially regulated by mTORC1 in response to physical exercise.
Collapse
Affiliation(s)
- William J Smiles
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria; Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia.
| | - Ashley J Ovens
- Protein Engineering in Immunity & Metabolism, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia; Department of Medicine, University of Melbourne, Parkville, Australia
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
11
|
Hu H, Lu X, He Y, Li J, Wang S, Luo Z, Wang Y, Wei J, Huang H, Duan C, Sun N. Sestrin2 in POMC neurons modulates energy balance and obesity related metabolic disorders via mTOR signaling. J Nutr Biochem 2024; 133:109703. [PMID: 39025457 DOI: 10.1016/j.jnutbio.2024.109703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Sestrin2 is a highly conserved protein that can be induced under various stress conditions. Researches have revealed that the signaling pathway of the mammalian target of rapamycin (mTOR) is essential in modulating both glucose and lipid metabolism. However, the precise involvement of Sestrin2 in the hypothalamus, particularly in pro-opiomelanocortin (POMC) neurons, in control of energy homeostasis remains uncertain. In this study, we aimed to investigate the functional role of Sestrin2 in hypothalamic POMC neurons in regulation of energy balance, as well as revealing the underlying mechanisms. Therefore, cre-dependent AAV virus encoding or silencing Sestrin2 was injected into the hypothalamic ARC of pomc-cre transgenic mice. The results demonstrated that Sestrin2 overexpression in POMC neurons ameliorated high-fat diet (HFD)-induced obesity and increased energy expenditure. Conversely, Sestrin2 deficiency in POMC neurons predisposed mice to HFD induced obesity. Additionally, the thermogenesis of brown adipose tissue and lipolysis of inguinal white adipose tissue were both enhanced by the increased sympathetic nerve innervation in Sestrin2 overexpressed mice. Further exploration revealed that Sestrin2 overexpression inhibited the mTOR signaling pathway in hypothalamic POMC neurons, which may account for the alleviation of systematic metabolic disturbance induced by HFD in these mice. Collectively, our findings demonstrate that Sestrin2 in POMC neurons plays a pivotal role in maintaining energy balance in a context of HFD-induced obesity by inhibiting the mTOR pathway, providing new insights into how hypothalamic neurons respond to nutritional signals to protect against obesity-associated metabolic dysfunction.
Collapse
Affiliation(s)
- Huiling Hu
- Department of Clinical Laboratory, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoxia Lu
- Department of Clinical Laboratory, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuqing He
- Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Li
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Shoujie Wang
- Center for Precision Medicine, Platform of Metabolomics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhijun Luo
- Emergency Department, The Seventh Affiliated Hospital, Southern Medical University, Foshan, China
| | - Ying Wang
- Department of Clinical Laboratory, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jie Wei
- Department of Clinical Laboratory, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hao Huang
- Department of Laboratory Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Chaohui Duan
- Department of Clinical Laboratory, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Nannan Sun
- Department of Obstetrics and Gynecology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Guzmán TJ, Klöpper N, Gurrola-Díaz CM, Düfer M. Inhibition of mTOR prevents glucotoxicity-mediated increase of SA-beta-gal, p16 INK4a, and insulin hypersecretion, without restoring electrical features of mouse pancreatic islets. Biogerontology 2024; 25:819-836. [PMID: 38748336 PMCID: PMC11374829 DOI: 10.1007/s10522-024-10107-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/16/2024] [Indexed: 09/05/2024]
Abstract
An over-activation of the mechanistic target of rapamycin (mTOR) pathway promotes senescence and age-related diseases like type 2 diabetes. Besides, the regenerative potential of pancreatic islets deteriorates with aging. Nevertheless, the role of mTOR on senescence promoted by metabolic stress in islet cells as well as its relevance for electrophysiological aspects is not yet known. Here, we investigated whether parameters suggested to be indicative for senescence are induced in vitro in mouse islet cells by glucotoxicity and if mTOR inhibition plays a protective role against this. Islet cells exhibit a significant increase (~ 76%) in senescence-associated beta-galactosidase (SA-beta-gal) activity after exposure to glucotoxicity for 72 h. Glucotoxicity does not markedly influence p16INK4a protein within 72 h, but p16INK4a levels increase significantly after a 7-days incubation period. mTOR inhibition with a low rapamycin concentration (1 nM) entirely prevents the glucotoxicity-mediated increase of SA-beta-gal and p16INK4a. At the functional level, reactive oxygen species, calcium homeostasis, and electrical activity are disturbed by glucotoxicity, and rapamycin fails to prevent this. In contrast, rapamycin significantly attenuates the insulin hypersecretion promoted by glucotoxicity by modifying the mRNA levels of Vamp2 and Snap25 genes, related to insulin exocytosis. Our data indicate an influence of glucotoxicity on pancreatic islet-cell senescence and a reduction of the senescence markers by mTOR inhibition, which is relevant to preserve the regenerative potential of the islets. Decreasing the influence of mTOR on islet cells exposed to glucotoxicity attenuates insulin hypersecretion, but is not sufficient to prevent electrophysiological disturbances, indicating the involvement of mTOR-independent mechanisms.
Collapse
Affiliation(s)
- Tereso J Guzmán
- Department of Pharmacology, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany.
- Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro Universitario de Ciencias de la Salud, 44340, Guadalajara, Jalisco, México.
| | - Nina Klöpper
- Department of Pharmacology, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Carmen M Gurrola-Díaz
- Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro Universitario de Ciencias de la Salud, 44340, Guadalajara, Jalisco, México
| | - Martina Düfer
- Department of Pharmacology, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany.
| |
Collapse
|
13
|
Jayarathne HSM, Sullivan R, Stilgenbauer L, Debarba LK, Kuchumov A, Koshko L, Scofield S, Liu W, Ginsburg BC, Miller RA, Sadagurski M. Hypothalamic sex-specific metabolic shift by canagliflozin during aging. GeroScience 2024; 46:4479-4493. [PMID: 38801647 PMCID: PMC11335982 DOI: 10.1007/s11357-024-01214-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024] Open
Abstract
The hypothalamus undergoes significant changes with aging and plays crucial roles in age-related metabolic alterations. Sodium-glucose co-transporter 2 inhibitors (SGLT2i) are anti-diabetic agents that promote glucose excretion, and metabolic homeostasis. Recent studies have shown that a SGLT2i, Canagliflozin (Cana), can extend the median survival of genetically heterogeneous UM-HET3 male mice and improve central metabolic control via increases in hypothalamic insulin responsiveness in aged males, as well as reduced age-associated hypothalamic inflammation. We studied the long- and short-term effects of Cana on hypothalamic metabolic control in UM-HET3 mice. Starting the treatment from 7 months of age, we show that 4 weeks of Cana treatment significantly reduced body weight and fat mass in male but not female mice that was associated with enhanced glucose tolerance and insulin sensitivity observed by 12 months. Indirect calorimetry showed that Cana treatment increased energy expenditure in male, but not female mice, at 12 months of age. Long-term Cana treatment increased metabolic rates in both sexes, and markedly increasing formation of both orexigenic and anorexigenic projections to the paraventricular nucleus of the hypothalamus (PVH) mostly in females by 25 months. Hypothalamic RNA-sequencing analysis revealed increased sex-specific genes and signaling pathways related to insulin signaling, glycogen catabolic pathway, neuropeptide signaling, and mitochondrial function upregulated by Cana, with males showing a more pronounced and sustained effect on metabolic pathways at both age groups. Overall, our data provide critical evidence for sex-specific mechanisms that are affected by Cana during aging suggesting key targets of hypothalamic Cana-induced neuroprotection for metabolic control.
Collapse
Affiliation(s)
- Hashan S M Jayarathne
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Room 2418 IBio, 6135 Woodward, Detroit, MI, 48202, USA
| | - Ryan Sullivan
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Room 2418 IBio, 6135 Woodward, Detroit, MI, 48202, USA
| | - Lukas Stilgenbauer
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Room 2418 IBio, 6135 Woodward, Detroit, MI, 48202, USA
| | - Lucas K Debarba
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Room 2418 IBio, 6135 Woodward, Detroit, MI, 48202, USA
| | - Artur Kuchumov
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Room 2418 IBio, 6135 Woodward, Detroit, MI, 48202, USA
| | - Lisa Koshko
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Room 2418 IBio, 6135 Woodward, Detroit, MI, 48202, USA
| | - Sydney Scofield
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Room 2418 IBio, 6135 Woodward, Detroit, MI, 48202, USA
| | - Wanqing Liu
- Department of Pharmaceutical Science, Wayne State University, Detroit, MI, USA
| | - Brett C Ginsburg
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, San Antonio, TX, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Marianna Sadagurski
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Room 2418 IBio, 6135 Woodward, Detroit, MI, 48202, USA.
- Institute of Environmental Health Sciences, iBio (Integrative Biosciences Center), Wayne State University, Detroit, MI, USA.
| |
Collapse
|
14
|
Suda M, Paul KH, Tripathi U, Minamino T, Tchkonia T, Kirkland JL. Targeting Cell Senescence and Senolytics: Novel Interventions for Age-Related Endocrine Dysfunction. Endocr Rev 2024; 45:655-675. [PMID: 38500373 PMCID: PMC11405506 DOI: 10.1210/endrev/bnae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/11/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Multiple changes occur in hormonal regulation with aging and across various endocrine organs. These changes are associated with multiple age-related disorders and diseases. A better understanding of responsible underling biological mechanisms could help in the management of multiple endocrine disorders over and above hormone replacement therapy (HRT). Cellular senescence is involved in multiple biological aging processes and pathologies common in elderly individuals. Cellular senescence, which occurs in many older individuals but also across the lifespan in association with tissue damage, acute and chronic diseases, certain drugs, and genetic syndromes, may contribute to such endocrine disorders as osteoporosis, metabolic syndrome, and type 2 diabetes mellitus. Drugs that selectively induce senescent cell removal, "senolytics,", and drugs that attenuate the tissue-destructive secretory state of certain senescent cells, "senomorphics," appear to delay the onset of or alleviate multiple diseases, including but not limited to endocrine disorders such as diabetes, complications of obesity, age-related osteoporosis, and cancers as well as atherosclerosis, chronic kidney disease, neurodegenerative disorders, and many others. More than 30 clinical trials of senolytic and senomorphic agents have already been completed, are underway, or are planned for a variety of indications. Targeting senescent cells is a novel strategy that is distinct from conventional therapies such as HRT, and thus might address unmet medical needs and can potentially amplify effects of established endocrine drug regimens, perhaps allowing for dose decreases and reducing side effects.
Collapse
Affiliation(s)
- Masayoshi Suda
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Karl H Paul
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| | - Utkarsh Tripathi
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Tamara Tchkonia
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - James L Kirkland
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
15
|
Jiang X, Liu K, Luo P, Li Z, Xiao F, Jiang H, Wu S, Tang M, Yuan F, Li X, Shu Y, Peng B, Chen S, Ni S, Guo F. Hypothalamic SLC7A14 accounts for aging-reduced lipolysis in white adipose tissue of male mice. Nat Commun 2024; 15:7948. [PMID: 39261456 PMCID: PMC11391058 DOI: 10.1038/s41467-024-52059-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
The central nervous system has been implicated in the age-induced reduction in adipose tissue lipolysis. However, the underlying mechanisms remain unclear. Here, we show the expression of SLC7A14 is reduced in proopiomelanocortin (POMC) neurons of aged mice. Overexpression of SLC7A14 in POMC neurons alleviates the aging-reduced lipolysis, whereas SLC7A14 deletion mimics the age-induced lipolysis impairment. Metabolomics analysis reveals that POMC SLC7A14 increased taurochenodeoxycholic acid (TCDCA) content, which mediates the SLC7A14 knockout- or age-induced WAT lipolysis impairment. Furthermore, SLC7A14-increased TCDCA content is dependent on intestinal apical sodium-dependent bile acid transporter (ASBT), which is regulated by intestinal sympathetic afferent nerves. Finally, SLC7A14 regulates the intestinal sympathetic afferent nerves by inhibiting mTORC1 signaling through inhibiting TSC1 phosphorylation. Collectively, our study suggests the function for central SLC7A14 and an upstream mechanism for the mTORC1 signaling pathway. Moreover, our data provides insights into the brain-gut-adipose tissue crosstalk in age-induced lipolysis impairment.
Collapse
Affiliation(s)
- Xiaoxue Jiang
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Kan Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Peixiang Luo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zi Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fei Xiao
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Haizhou Jiang
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Shangming Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Min Tang
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Feixiang Yuan
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Xiaoying Li
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yousheng Shu
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Bo Peng
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Shanghai Chen
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Shihong Ni
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Feifan Guo
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
16
|
Aleksic S, Fleysher R, Weiss EF, Tal N, Darby T, Blumen HM, Vazquez J, Ye KQ, Gao T, Siegel SM, Barzilai N, Lipton ML, Milman S. Hypothalamic MRI-derived microstructure is associated with neurocognitive aging in humans. Neurobiol Aging 2024; 141:102-112. [PMID: 38850591 PMCID: PMC11295133 DOI: 10.1016/j.neurobiolaging.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 05/17/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
The hypothalamus regulates homeostasis across the lifespan and is emerging as a regulator of aging. In murine models, aging-related changes in the hypothalamus, including microinflammation and gliosis, promote accelerated neurocognitive decline. We investigated relationships between hypothalamic microstructure and features of neurocognitive aging, including cortical thickness and cognition, in a cohort of community-dwelling older adults (age range 65-97 years, n=124). Hypothalamic microstructure was evaluated with two magnetic resonance imaging diffusion metrics: mean diffusivity (MD) and fractional anisotropy (FA), using a novel image processing pipeline. Hypothalamic MD was cross-sectionally positively associated with age and it was negatively associated with cortical thickness. Hypothalamic FA, independent of cortical thickness, was cross-sectionally positively associated with neurocognitive scores. An exploratory analysis of longitudinal neurocognitive performance suggested that lower hypothalamic FA may predict cognitive decline. No associations between hypothalamic MD, age, and cortical thickness were identified in a younger control cohort (age range 18-63 years, n=99). To our knowledge, this is the first study to demonstrate that hypothalamic microstructure is associated with features of neurocognitive aging in humans.
Collapse
Affiliation(s)
- Sandra Aleksic
- Department of Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Roman Fleysher
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States; Department of Radiology, Albert Einstein College of Medicine, Gruss Magnetic Resonance Research Center, Bronx, NY, United States
| | - Erica F Weiss
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Noa Tal
- Department of Medicine, Cedars-Sinai, Los Angeles, CA, United States
| | - Timothy Darby
- Albert Einstein College of Medicine, Bronx, NY, United States
| | - Helena M Blumen
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Juan Vazquez
- Department of Internal Medicine, John Hopkins University, Baltimore, MD, United States
| | - Kenny Q Ye
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Tina Gao
- Department of Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Shira M Siegel
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States
| | - Nir Barzilai
- Department of Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Michael L Lipton
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States; Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Sofiya Milman
- Department of Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
17
|
Masliukov PM. Functional properties of aged hypothalamic cells. VITAMINS AND HORMONES 2024; 127:207-243. [PMID: 39864942 DOI: 10.1016/bs.vh.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The hypothalamus, in addition to controlling the main body's vital functions, is also involved in aging regulation. The aging process in the hypothalamus is accompanied by disturbed intracellular pathways, including Ca2+ signaling and neuronal excitability in the brain. Intrinsic electrophysiological properties of individual neurons and synaptic transmission between cells is disrupted in the central nervous system of old animals. However, changes in neuronal excitability and excitation/inhibition balance with aging are specific to the type of neurons, brain region, and species. Glia-neuron interactions play a significant role in the brain and undergo remodeling accompanied by advanced loss of function with aging. In the current review, I have summarized the current understanding of the changes in the brain and especially in the hypothalamus with aging.
Collapse
Affiliation(s)
- Petr M Masliukov
- Department Normal Physiology, Yaroslavl State Medical University, Yaroslavl, Russia.
| |
Collapse
|
18
|
Allard C, Miralpeix C, López-Gambero AJ, Cota D. mTORC1 in energy expenditure: consequences for obesity. Nat Rev Endocrinol 2024; 20:239-251. [PMID: 38225400 DOI: 10.1038/s41574-023-00934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 01/17/2024]
Abstract
In eukaryotic cells, the mammalian target of rapamycin complex 1 (sometimes referred to as the mechanistic target of rapamycin complex 1; mTORC1) orchestrates cellular metabolism in response to environmental energy availability. As a result, at the organismal level, mTORC1 signalling regulates the intake, storage and use of energy by acting as a hub for the actions of nutrients and hormones, such as leptin and insulin, in different cell types. It is therefore unsurprising that deregulated mTORC1 signalling is associated with obesity. Strategies that increase energy expenditure offer therapeutic promise for the treatment of obesity. Here we review current evidence illustrating the critical role of mTORC1 signalling in the regulation of energy expenditure and adaptive thermogenesis through its various effects in neuronal circuits, adipose tissue and skeletal muscle. Understanding how mTORC1 signalling in one organ and cell type affects responses in other organs and cell types could be key to developing better, safer treatments targeting this pathway in obesity.
Collapse
Affiliation(s)
- Camille Allard
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | | | | | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France.
| |
Collapse
|
19
|
Li AH, Kuo YY, Yang SB, Chen PC. Central Channelopathies in Obesity. CHINESE J PHYSIOL 2024; 67:15-26. [PMID: 38780269 DOI: 10.4103/ejpi.ejpi-d-23-00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/18/2024] [Indexed: 05/25/2024] Open
Abstract
As obesity has raised heightening awareness, researchers have attempted to identify potential targets that can be treated for therapeutic intervention. Focusing on the central nervous system (CNS), the key organ in maintaining energy balance, a plethora of ion channels that are expressed in the CNS have been inspected and determined through manipulation in different hypothalamic neural subpopulations for their roles in fine-tuning neuronal activity on energy state alterations, possibly acting as metabolic sensors. However, a remaining gap persists between human clinical investigations and mouse studies. Despite having delineated the pathways and mechanisms of how the mouse study-identified ion channels modulate energy homeostasis, only a few targets overlap with the obesity-related risk genes extracted from human genome-wide association studies. Here, we present the most recently discovered CNS-specific metabolism-correlated ion channels using reverse and forward genetics approaches in mice and humans, respectively, in the hope of illuminating the prospects for future therapeutic development.
Collapse
Affiliation(s)
- Athena Hsu Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Ying Kuo
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shi-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Pei-Chun Chen
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
20
|
Xin S, Xiaoxuan L, Yixuan Z, Zhikang C. Leptin promotes proliferation of human undifferentiated spermatogonia by activating the PI3K/AKT/mTOR pathway. Am J Reprod Immunol 2024; 91:e13811. [PMID: 38282611 DOI: 10.1111/aji.13811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/17/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Male infertility is a common disease affecting male reproductive health. Leptin is an important hormone that regulates various physiological processes, including reproductive function. However, few experimental studies have been carried out to elucidate the mechanism of leptin's effects on male reproductive function. OBJECTIVE The purpose of this study was to investigate the effects of leptin on testicular spermatogenesis and its mechanism, so as to provide potential targets for the treatment of patients with spermatogenic dysfunction. METHODS Testicular tissues were collected from eight prostate cancer patients undergoing surgical castration. GPR125-positive spermatogonia were isolated by two consecutive magnetic activated cell sorting (MACS), followed by incubation with conditioned medium. To identify the signaling pathway(s) involved in the effects of leptin, undifferentiated spermatogonia were treated with different concentrations of leptin and antagonists of leptin-related pathways. The proliferative effect of leptin was evaluated by cell counting using a hemocytometer. Expressions of p-AKT, p-ERK, p-STAT, and p-S6K were determined by western blotting analysis. RESULTS Leptin promoted the growth of human GPR125-positive spermatogonia in a concentration-dependent manner. The most significant proliferative effect was observed using 100 ng/mL leptin after 6 days of culture. Leptin significantly increased the phosphorylation of STAT3, AKT, and ERK in undifferentiated spermatogonia. Phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 inhibited the leptin-induced activation of AKT, ERK, and downstream S6K. Treatment with the mammalian target of rapamycin (mTOR) inhibitor rapamycin also inhibited S6K phosphorylation. Moreover, both LY294002 and rapamycin were found to inhibit the leptin-induced proliferation of undifferentiated spermatogonia. These results suggested that the leptin-induced proliferation of GPR125-positive spermatogonia was dependent on the PI3K/AKT/mTOR pathway. Further exploration of proliferation and apoptotic markers suggested that leptin may alleviate cell apoptosis by regulating the expression of Bax and FasL. CONCLUSIONS A certain concentration of leptin (25∼100 ng/mL) could promote proliferation of undifferentiated spermatogonia, which was mediated by PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Song Xin
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Li Xiaoxuan
- School of Medicine, Qingdao University, Qingdao, China
| | - Zhang Yixuan
- School of Medicine, Qingdao University, Qingdao, China
| | - Cai Zhikang
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| |
Collapse
|
21
|
Ang MY, Takeuchi F, Kato N. Deciphering the genetic landscape of obesity: a data-driven approach to identifying plausible causal genes and therapeutic targets. J Hum Genet 2023; 68:823-833. [PMID: 37620670 PMCID: PMC10678330 DOI: 10.1038/s10038-023-01189-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
OBJECTIVES Genome-wide association studies (GWAS) have successfully revealed numerous susceptibility loci for obesity. However, identifying the causal genes, pathways, and tissues/cell types responsible for these associations remains a challenge, and standardized analysis workflows are lacking. Additionally, due to limited treatment options for obesity, there is a need for the development of new pharmacological therapies. This study aimed to address these issues by performing step-wise utilization of knowledgebase for gene prioritization and assessing the potential relevance of key obesity genes as therapeutic targets. METHODS AND RESULTS First, we generated a list of 28,787 obesity-associated SNPs from the publicly available GWAS dataset (approximately 800,000 individuals in the GIANT meta-analysis). Then, we prioritized 1372 genes with significant in silico evidence against genomic and transcriptomic data, including transcriptionally regulated genes in the brain from transcriptome-wide association studies. In further narrowing down the gene list, we selected key genes, which we found to be useful for the discovery of potential drug seeds as demonstrated in lipid GWAS separately. We thus identified 74 key genes for obesity, which are highly interconnected and enriched in several biological processes that contribute to obesity, including energy expenditure and homeostasis. Of 74 key genes, 37 had not been reported for the pathophysiology of obesity. Finally, by drug-gene interaction analysis, we detected 23 (of 74) key genes that are potential targets for 78 approved and marketed drugs. CONCLUSIONS Our results provide valuable insights into new treatment options for obesity through a data-driven approach that integrates multiple up-to-date knowledgebases.
Collapse
Affiliation(s)
- Mia Yang Ang
- Department of Clinical Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- Department of Gene Diagnostics and Therapeutics, Medical Genomics Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.
| | - Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Medical Genomics Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norihiro Kato
- Department of Clinical Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Gene Diagnostics and Therapeutics, Medical Genomics Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
22
|
Tschöp MH, Friedman JM. Seeking satiety: From signals to solutions. Sci Transl Med 2023; 15:eadh4453. [PMID: 37992155 DOI: 10.1126/scitranslmed.adh4453] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
Remedies for the treatment of obesity date to Hippocrates, when patients with obesity were directed to "reduce food and avoid drinking to fullness" and begin "running during the night." Similar recommendations have been repeated ever since, despite the fact that they are largely ineffective. Recently, highly effective therapeutics were developed that may soon enable physicians to manage body weight in patients with obesity in a manner similar to the way that blood pressure is controlled in patients with hypertension. These medicines have grown out of a revolution in our understanding of the molecular and neural control of appetite and body weight, reviewed here.
Collapse
Affiliation(s)
- Matthias H Tschöp
- Helmholtz Munich and Technical University Munich, Munich, 85758 Germany
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, Rockefeller University, New York, NY 10065 USA
| |
Collapse
|
23
|
Navarro-Hortal MD, Romero-Márquez JM, Jiménez-Trigo V, Xiao J, Giampieri F, Forbes-Hernández TY, Grosso G, Battino M, Sánchez-González C, Quiles JL. Molecular bases for the use of functional foods in the management of healthy aging: Berries, curcumin, virgin olive oil and honey; three realities and a promise. Crit Rev Food Sci Nutr 2023; 63:11967-11986. [PMID: 35816321 DOI: 10.1080/10408398.2022.2098244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As the number of older people has grown in recent decades, the search for new approaches to manage or delay aging is also growing. Among the modifiable factors, diet plays a crucial role in healthy aging and in the prevention of age-related diseases. Thus, the interest in the use of foods, which are rich in bioactive compounds such as functional foods with anti-aging effects is a growing market. This review summarizes the current knowledge about the molecular mechanisms of action of foods considered as functional foods in aging, namely berries, curcumin, and virgin olive oil. Moreover, honey is also analyzed as a food with well-known healthy benefits, but which has not been deeply evaluated from the point of view of aging. The effects of these foods on aging are analyzed from the point of view of molecular mechanisms including oxidative stress, mitochondrial dysfunction, inflammation, genomic stability, telomere attrition, cellular senescence, and deregulated nutrient-sensing. A comprehensive study of the scientific literature shows that the aforementioned foods have demonstrated positive effects on certain aspects of aging, which might justify their use as functional foods in elderly. However, more research is needed, especially in humans, designed to understand in depth the mechanisms of action through which they act.
Collapse
Affiliation(s)
- María D Navarro-Hortal
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Jose M Romero-Márquez
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Victoria Jiménez-Trigo
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
| | - Francesca Giampieri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Tamara Y Forbes-Hernández
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Maurizio Battino
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, China
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Cristina Sánchez-González
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - José L Quiles
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| |
Collapse
|
24
|
Liu Z, Xiao T, Liu H. Leptin signaling and its central role in energy homeostasis. Front Neurosci 2023; 17:1238528. [PMID: 38027481 PMCID: PMC10644276 DOI: 10.3389/fnins.2023.1238528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Leptin plays a critical role in regulating appetite, energy expenditure and body weight, making it a key factor in maintaining a healthy balance. Despite numerous efforts to develop therapeutic interventions targeting leptin signaling, their effectiveness has been limited, underscoring the importance of gaining a better understanding of the mechanisms through which leptin exerts its functions. While the hypothalamus is widely recognized as the primary site responsible for the appetite-suppressing and weight-reducing effects of leptin, other brain regions have also been increasingly investigated for their involvement in mediating leptin's action. In this review, we summarize leptin signaling pathways and the neural networks that mediate the effects of leptin, with a specific emphasis on energy homeostasis.
Collapse
Affiliation(s)
- Zhaoxun Liu
- Nursing Department, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tao Xiao
- Nursing Department, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hailan Liu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
25
|
de Souza GO, Teixeira PDS, Câmara NOS, Donato J. mTORC1 Signaling in AgRP Neurons Is Not Required to Induce Major Neuroendocrine Adaptations to Food Restriction. Cells 2023; 12:2442. [PMID: 37887286 PMCID: PMC10605346 DOI: 10.3390/cells12202442] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Hypothalamic mTORC1 signaling is involved in nutrient sensing. Neurons that express the agouti-related protein (AgRP) are activated by food restriction and integrate interoceptive and exteroceptive signals to control food intake, energy expenditure, and other metabolic responses. To determine whether mTORC1 signaling in AgRP neurons is necessary for regulating energy and glucose homeostasis, especially in situations of negative energy balance, mice carrying ablation of the Raptor gene exclusively in AgRP-expressing cells were generated. AgRPΔRaptor mice showed no differences in body weight, fat mass, food intake, or energy expenditure; however, a slight improvement in glucose homeostasis was observed compared to the control group. When subjected to 5 days of food restriction (40% basal intake), AgRPΔRaptor female mice lost less lean body mass and showed a blunted reduction in energy expenditure, whereas AgRPΔRaptor male mice maintained a higher energy expenditure compared to control mice during the food restriction and 5 days of refeeding period. AgRPΔRaptor female mice did not exhibit the food restriction-induced increase in serum corticosterone levels. Finally, although hypothalamic fasting- or refeeding-induced Fos expression showed no differences between the groups, AgRPΔRaptor mice displayed increased hyperphagia during refeeding. Thus, some metabolic and neuroendocrine responses to food restriction are disturbed in AgRPΔRaptor mice.
Collapse
Affiliation(s)
- Gabriel O. de Souza
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (G.O.d.S.); (P.D.S.T.)
| | - Pryscila D. S. Teixeira
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (G.O.d.S.); (P.D.S.T.)
| | - Niels O. S. Câmara
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, SP, Brazil;
| | - Jose Donato
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (G.O.d.S.); (P.D.S.T.)
| |
Collapse
|
26
|
Muhammad T, Wan Y, Lv Y, Li H, Naushad W, Chan WY, Lu G, Chen ZJ, Liu H. Maternal obesity: A potential disruptor of female fertility and current interventions to reduce associated risks. Obes Rev 2023; 24:e13603. [PMID: 37452501 DOI: 10.1111/obr.13603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
Currently, obesity has achieved epidemic levels in reproductive-aged women with a myriad of consequences. Obesity is susceptible to several reproductive complications that eventually affect fertility rates. These complications originate from the deteriorated quality of oocytes from mothers with obesity, which increases the probability of chromosomal aneuploidy, elevated reactive oxygen species production, compromised embryonic developmental competency, and eventually reduced fertility. Maternal obesity is linked to pregnancy complications such as implantation error, abortion, miscarriage, and early pregnancy loss. This review highlights the adverse effects of maternal obesity on female fertility, with a focus on the mechanistic link between maternal obesity and oocyte quality and discusses possible measures to reduce its associated risks.
Collapse
Affiliation(s)
- Tahir Muhammad
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong, 250012, China
- Department of Cell Biology and Anatomy, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54000, Pakistan
| | - Yanling Wan
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong, 250012, China
| | - Yue Lv
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Hanzhen Li
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong, 250012, China
| | - Wasifa Naushad
- Department of Pathology, Microbiology and Immunology, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA
| | - Wai-Yee Chan
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong, 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Gang Lu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong, 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, 999077, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200000, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong, 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, 999077, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, China
| |
Collapse
|
27
|
Al-Katat A, Bergeron A, Parent L, Lorenzini M, Fiset C, Calderone A. Rapamycin treatment unmasks a sex-specific pattern of scar expansion of the infarcted rat heart: The relationship between mTOR and K ATP channel. IUBMB Life 2023; 75:717-731. [PMID: 36988388 DOI: 10.1002/iub.2722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/24/2023] [Indexed: 03/30/2023]
Abstract
Inhibition of the mammalian target of rapamycin (mTOR) with the macrolide rapamycin or pharmacological suppression of KATP channel opening translated to scar expansion of the myocardial infarcted (MI) adult female rodent heart. The present study tested the hypotheses that rapamycin-mediated scar expansion was sex-specific and that mTOR signaling directly influenced KATP channel subunit expression/activity. Scar size was significantly larger in post-MI male rats as compared to the previous data reported in post-MI female rats. The reported scar expansion of rapamycin-treated post-MI female rats was not observed following the administration of the macrolide to post-MI male rats. Protein levels of the KATP channel subunits Kir6.2 and SUR2A and phosphorylation of the serine2448 residue of mTOR were similar in the normal heart of adult male and female rats. By contrast, greater tuberin inactivation characterized by the increased phosphorylation of the threonine1462 residue and reduced raptor protein levels were identified in the normal heart of adult female rats. Rapamycin pretreatment of phorbol 12,13-dibutyrate (PDBu)-treated neonatal rat ventricular cardiomyocytes (NNVMs) suppressed hypertrophy, inhibited p70S6K phosphorylation, and attenuated SUR2A protein upregulation. In the presence of low ATP levels, KATP channel activity detected in untreated NNVMs was significantly attenuated in PDBu-induced hypertrophied NNVMs via a rapamycin-independent pathway. Thus, rapamycin administration to post-MI rats unmasked a sex-specific pattern of scar expansion and mTOR signaling in PDBu-induced hypertrophied NNVMs significantly increased SUR2A protein levels. However, the biological advantage associated with SUR2A protein upregulation was partially offset by an mTOR-independent pathway that attenuated KATP channel activity in PDBu-induced hypertrophied NNVMs.
Collapse
Affiliation(s)
- Aya Al-Katat
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Québec, Canada
| | - Alexandre Bergeron
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Lucie Parent
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Québec, Canada
| | - Maxime Lorenzini
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Celine Fiset
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
- Faculté de Pharmacie, Université de Montréal, Montréal, Québec, Canada
| | - Angelino Calderone
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
28
|
Metaxakis A, Pavlidis M, Tavernarakis N. Neuronal atg1 Coordinates Autophagy Induction and Physiological Adaptations to Balance mTORC1 Signalling. Cells 2023; 12:2024. [PMID: 37626835 PMCID: PMC10453232 DOI: 10.3390/cells12162024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
The mTORC1 nutrient-sensing pathway integrates metabolic and endocrine signals into the brain to evoke physiological responses to food deprivation, such as autophagy. Nevertheless, the impact of neuronal mTORC1 activity on neuronal circuits and organismal metabolism remains obscure. Here, we show that mTORC1 inhibition acutely perturbs serotonergic neurotransmission via proteostatic alterations evoked by the autophagy inducer atg1. Neuronal ATG1 alters the intracellular localization of the serotonin transporter, which increases the extracellular serotonin and stimulates the 5HTR7 postsynaptic receptor. 5HTR7 enhances food-searching behaviour and ecdysone-induced catabolism in Drosophila. Along similar lines, the pharmacological inhibition of mTORC1 in zebrafish also stimulates food-searching behaviour via serotonergic activity. These effects occur in parallel with neuronal autophagy induction, irrespective of the autophagic activity and the protein synthesis reduction. In addition, ectopic neuronal atg1 expression enhances catabolism via insulin pathway downregulation, impedes peptidergic secretion, and activates non-cell autonomous cAMP/PKA. The above exert diverse systemic effects on organismal metabolism, development, melanisation, and longevity. We conclude that neuronal atg1 aligns neuronal autophagy induction with distinct physiological modulations, to orchestrate a coordinated physiological response against reduced mTORC1 activity.
Collapse
Affiliation(s)
- Athanasios Metaxakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
| | - Michail Pavlidis
- Department of Biology, University of Crete, 71409 Heraklion, Crete, Greece;
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, 71110 Heraklion, Crete, Greece
| |
Collapse
|
29
|
Jin K, Yao Z, van Velthoven CTJ, Kaplan ES, Glattfelder K, Barlow ST, Boyer G, Carey D, Casper T, Chakka AB, Chakrabarty R, Clark M, Departee M, Desierto M, Gary A, Gloe J, Goldy J, Guilford N, Guzman J, Hirschstein D, Lee C, Liang E, Pham T, Reding M, Ronellenfitch K, Ruiz A, Sevigny J, Shapovalova N, Shulga L, Sulc J, Torkelson A, Tung H, Levi B, Sunkin SM, Dee N, Esposito L, Smith K, Tasic B, Zeng H. Cell-type specific molecular signatures of aging revealed in a brain-wide transcriptomic cell-type atlas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550355. [PMID: 38168182 PMCID: PMC10760145 DOI: 10.1101/2023.07.26.550355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Biological aging can be defined as a gradual loss of homeostasis across various aspects of molecular and cellular function. Aging is a complex and dynamic process which influences distinct cell types in a myriad of ways. The cellular architecture of the mammalian brain is heterogeneous and diverse, making it challenging to identify precise areas and cell types of the brain that are more susceptible to aging than others. Here, we present a high-resolution single-cell RNA sequencing dataset containing ~1.2 million high-quality single-cell transcriptomic profiles of brain cells from young adult and aged mice across both sexes, including areas spanning the forebrain, midbrain, and hindbrain. We find age-associated gene expression signatures across nearly all 130+ neuronal and non-neuronal cell subclasses we identified. We detect the greatest gene expression changes in non-neuronal cell types, suggesting that different cell types in the brain vary in their susceptibility to aging. We identify specific, age-enriched clusters within specific glial, vascular, and immune cell types from both cortical and subcortical regions of the brain, and specific gene expression changes associated with cell senescence, inflammation, decrease in new myelination, and decreased vasculature integrity. We also identify genes with expression changes across multiple cell subclasses, pointing to certain mechanisms of aging that may occur across wide regions or broad cell types of the brain. Finally, we discover the greatest gene expression changes in cell types localized to the third ventricle of the hypothalamus, including tanycytes, ependymal cells, and Tbx3+ neurons found in the arcuate nucleus that are part of the neuronal circuits regulating food intake and energy homeostasis. These findings suggest that the area surrounding the third ventricle in the hypothalamus may be a hub for aging in the mouse brain. Overall, we reveal a dynamic landscape of cell-type-specific transcriptomic changes in the brain associated with normal aging that will serve as a foundation for the investigation of functional changes in the aging process and the interaction of aging and diseases.
Collapse
Affiliation(s)
- Kelly Jin
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | - Daniel Carey
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Max Departee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Amanda Gary
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jessica Gloe
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Changkyu Lee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | - Josh Sevigny
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Josef Sulc
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Herman Tung
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Boaz Levi
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| |
Collapse
|
30
|
Fico BG, Maharaj A, Pena GS, Huang CJ. The Effects of Obesity on the Inflammatory, Cardiovascular, and Neurobiological Responses to Exercise in Older Adults. BIOLOGY 2023; 12:865. [PMID: 37372149 DOI: 10.3390/biology12060865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Obesity with advancing age leads to increased health complications that are involved in various complex physiological processes. For example, inflammation is a critical cardiovascular disease risk factor that plays a role in the stages of atherosclerosis in both aging and obesity. Obesity can also induce profound changes to the neural circuitry that regulates food intake and energy homeostasis with advancing age. Here we discuss how obesity in older adults impacts inflammatory, cardiovascular, and neurobiological functions with an emphasis on how exercise mediates each topic. Although obesity is a reversible disorder through lifestyle changes, it is important to note that early interventions are crucial to prevent pathological changes seen in the aging obese population. Lifestyle modifications such as physical activity (including aerobic and resistance training) should be considered as a main intervention to minimize the synergistic effect of obesity on age-related conditions, such as cerebrovascular disease.
Collapse
Affiliation(s)
- Brandon G Fico
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Arun Maharaj
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Gabriel S Pena
- Department of Kinesiology, University of Maryland, College Park, MD 20742, USA
| | - Chun-Jung Huang
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
31
|
Yang H, Fang B, Wang Z, Chen Y, Dong Y. The Timing Sequence and Mechanism of Aging in Endocrine Organs. Cells 2023; 12:cells12070982. [PMID: 37048056 PMCID: PMC10093290 DOI: 10.3390/cells12070982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
The world is increasingly aging, and there is an urgent need to find a safe and effective way to delay the aging of the body. It is well known that the endocrine glands are one of the most important organs in the context of aging. Failure of the endocrine glands lead to an abnormal hormonal environment, which in turn leads to many age-related diseases. The aging of endocrine glands is closely linked to oxidative stress, cellular autophagy, genetic damage, and hormone secretion. The first endocrine organ to undergo aging is the pineal gland, at around 6 years old. This is followed in order by the hypothalamus, pituitary gland, adrenal glands, gonads, pancreatic islets, and thyroid gland. This paper summarises the endocrine gland aging-related genes and pathways by bioinformatics analysis. In addition, it systematically summarises the changes in the structure and function of aging endocrine glands as well as the mechanisms of aging. This study will advance research in the field of aging and help in the intervention of age-related diseases.
Collapse
Affiliation(s)
- He Yang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100193, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100193, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yulan Dong
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
32
|
Fang X, Chen Y, Wang J, Zhang Z, Bai Y, Denney K, Gan L, Guo M, Weintraub NL, Lei Y, Lu XY. Increased intrinsic and synaptic excitability of hypothalamic POMC neurons underlies chronic stress-induced behavioral deficits. Mol Psychiatry 2023; 28:1365-1382. [PMID: 36473997 PMCID: PMC10005948 DOI: 10.1038/s41380-022-01872-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022]
Abstract
Chronic stress exposure induces maladaptive behavioral responses and increases susceptibility to neuropsychiatric conditions. However, specific neuronal populations and circuits that are highly sensitive to stress and trigger maladaptive behavioral responses remain to be identified. Here we investigate the patterns of spontaneous activity of proopiomelanocortin (POMC) neurons in the arcuate nucleus (ARC) of the hypothalamus following exposure to chronic unpredictable stress (CUS) for 10 days, a stress paradigm used to induce behavioral deficits such as anhedonia and behavioral despair [1, 2]. CUS exposure increased spontaneous firing of POMC neurons in both male and female mice, attributable to reduced GABA-mediated synaptic inhibition and increased intrinsic neuronal excitability. While acute activation of POMC neurons failed to induce behavioral changes in non-stressed mice of both sexes, subacute (3 days) and chronic (10 days) repeated activation of POMC neurons was sufficient to induce anhedonia and behavioral despair in males but not females under non-stress conditions. Acute activation of POMC neurons promoted susceptibility to subthreshold unpredictable stress in both male and female mice. Conversely, acute inhibition of POMC neurons was sufficient to reverse CUS-induced anhedonia and behavioral despair in both sexes. Collectively, these results indicate that chronic stress induces both synaptic and intrinsic plasticity of POMC neurons, leading to neuronal hyperactivity. Our findings suggest that POMC neuron dysfunction drives chronic stress-related behavioral deficits.
Collapse
Affiliation(s)
- Xing Fang
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Yuting Chen
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Jiangong Wang
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Ziliang Zhang
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Yu Bai
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Kirstyn Denney
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Lin Gan
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Ming Guo
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Neal L Weintraub
- Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Yun Lei
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Xin-Yun Lu
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|
33
|
Plakkot B, Di Agostino A, Subramanian M. Implications of Hypothalamic Neural Stem Cells on Aging and Obesity-Associated Cardiovascular Diseases. Cells 2023; 12:cells12050769. [PMID: 36899905 PMCID: PMC10000584 DOI: 10.3390/cells12050769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/14/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The hypothalamus, one of the major regulatory centers in the brain, controls various homeostatic processes, and hypothalamic neural stem cells (htNSCs) have been observed to interfere with hypothalamic mechanisms regulating aging. NSCs play a pivotal role in the repair and regeneration of brain cells during neurodegenerative diseases and rejuvenate the brain tissue microenvironment. The hypothalamus was recently observed to be involved in neuroinflammation mediated by cellular senescence. Cellular senescence, or systemic aging, is characterized by a progressive irreversible state of cell cycle arrest that causes physiological dysregulation in the body and it is evident in many neuroinflammatory conditions, including obesity. Upregulation of neuroinflammation and oxidative stress due to senescence has the potential to alter the functioning of NSCs. Various studies have substantiated the chances of obesity inducing accelerated aging. Therefore, it is essential to explore the potential effects of htNSC dysregulation in obesity and underlying pathways to develop strategies to address obesity-induced comorbidities associated with brain aging. This review will summarize hypothalamic neurogenesis associated with obesity and prospective NSC-based regenerative therapy for the treatment of obesity-induced cardiovascular conditions.
Collapse
|
34
|
Niraula A, Fasnacht RD, Ness KM, Frey JM, Cuschieri SA, Dorfman MD, Thaler JP. Prostaglandin PGE2 Receptor EP4 Regulates Microglial Phagocytosis and Increases Susceptibility to Diet-Induced Obesity. Diabetes 2023; 72:233-244. [PMID: 36318114 PMCID: PMC10090268 DOI: 10.2337/db21-1072] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
In rodents, susceptibility to diet-induced obesity requires microglial activation, but the molecular components of this pathway remain incompletely defined. Prostaglandin PGE2 levels increase in the mediobasal hypothalamus during high-fat-diet (HFD) feeding, and the PGE2 receptor EP4 regulates microglial activation state and phagocytic activity, suggesting a potential role for microglial EP4 signaling in obesity pathogenesis. To test the role of microglial EP4 in energy balance regulation, we analyzed the metabolic phenotype in a microglia-specific EP4 knockout (MG-EP4 KO) mouse model. Microglial EP4 deletion markedly reduced weight gain and food intake in response to HFD feeding. Corresponding with this lean phenotype, insulin sensitivity was also improved in HFD-fed MG-EP4 KO mice, though glucose tolerance remained surprisingly unaffected. Mechanistically, EP4-deficient microglia showed an attenuated phagocytic state marked by reduced CD68 expression and fewer contacts with pro-opiomelanocortin (POMC) neuron processes. These cellular changes observed in the MG-EP4 KO mice corresponded with an increased density of POMC neurites extending into the paraventricular nucleus (PVN). These findings reveal that microglial EP4 signaling promotes body weight gain and insulin resistance during HFD feeding. Furthermore, the data suggest that curbing microglial phagocytic function may preserve POMC cytoarchitecture and PVN input to limit overconsumption during diet-induced obesity.
Collapse
Affiliation(s)
- Anzela Niraula
- UW Medicine Diabetes Institute, University of Washington, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Rachael D. Fasnacht
- UW Medicine Diabetes Institute, University of Washington, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Kelly M. Ness
- UW Medicine Diabetes Institute, University of Washington, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Jeremy M. Frey
- UW Medicine Diabetes Institute, University of Washington, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Sophia A. Cuschieri
- UW Medicine Diabetes Institute, University of Washington, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Mauricio D. Dorfman
- UW Medicine Diabetes Institute, University of Washington, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Joshua P. Thaler
- UW Medicine Diabetes Institute, University of Washington, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
35
|
Effect of Sirolimus/Metformin Co-Treatment on Hyperglycemia and Cellular Respiration in BALB/c Mice. Int J Mol Sci 2023; 24:ijms24021223. [PMID: 36674739 PMCID: PMC9866855 DOI: 10.3390/ijms24021223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Sirolimus (SRL) is widely used as an immunosuppressant to prevent graft rejection, despite the risk of impairing glucose metabolism. Metformin (MET) can reduce the detrimental effects of SRL in many patients, including diabetes and renal transplant recipients. Limited in vivo studies have reported on SRL and MET therapy, particularly in relation to cellular bioenergetics, glucose metabolism, and insulin resistance. Herein, we investigated the efficacy of SRL and MET co-treatment in BALB/c mice over 4 weeks. Balb/c mice (4-6 weeks old) were divided into four groups and injected intraperitoneally (i.p.) with water (control, CTRL), MET (200 µg/g), SRL (5 µg/g), or MET (200 µg/g) +SRL (5 µg/g) over a period of one month. We evaluated the body weight, food consumption rate, random blood glucose (BG), insulin levels, serum biochemistry parameters (ALT, Albumin, BUN, Creatinine), and histomorphology in all groups using standardized techniques and assays. All drug-treated groups showed a statistically significant decrease in weight gain compared to the CTRL group, despite normal food intake. Treatment with SRL caused elevated BG and insulin levels, which were restored with SRL + MET combination. Serum biochemical parameters were within the normal range in all the studied groups. SRL+ MET co-treatment decreased liver cellular respiration and increased cellular ATP levels in the liver. In the pancreas, co-treatment resulted in increased cellular respiration and decreased cellular ATP levels. Liver and pancreatic histology were unchanged in all groups. This study showed that co-treatment of SRL with MET alleviates hyperglycemia induced by SRL without any deleterious effects. These results provide initial insights into the potential use of SRL + MET therapy in various settings.
Collapse
|
36
|
López-Otín C, Pietrocola F, Roiz-Valle D, Galluzzi L, Kroemer G. Meta-hallmarks of aging and cancer. Cell Metab 2023; 35:12-35. [PMID: 36599298 DOI: 10.1016/j.cmet.2022.11.001] [Citation(s) in RCA: 230] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/11/2022] [Accepted: 11/07/2022] [Indexed: 01/05/2023]
Abstract
Both aging and cancer are characterized by a series of partially overlapping "hallmarks" that we subject here to a meta-analysis. Several hallmarks of aging (i.e., genomic instability, epigenetic alterations, chronic inflammation, and dysbiosis) are very similar to specific cancer hallmarks and hence constitute common "meta-hallmarks," while other features of aging (i.e., telomere attrition and stem cell exhaustion) act likely to suppress oncogenesis and hence can be viewed as preponderantly "antagonistic hallmarks." Disabled macroautophagy and cellular senescence are two hallmarks of aging that exert context-dependent oncosuppressive and pro-tumorigenic effects. Similarly, the equivalence or antagonism between aging-associated deregulated nutrient-sensing and cancer-relevant alterations of cellular metabolism is complex. The agonistic and antagonistic relationship between the processes that drive aging and cancer has bearings for the age-related increase and oldest age-related decrease of cancer morbidity and mortality, as well as for the therapeutic management of malignant disease in the elderly.
Collapse
Affiliation(s)
- Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Federico Pietrocola
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - David Roiz-Valle
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
37
|
Shaw BI, Lee HJ, Ettenger R, Grimm P, Reed EF, Sarwal M, Stempora L, Warshaw B, Zhao C, Martinez OM, MacIver NJ, Kirk AD, Chambers ET. Malnutrition and immune cell subsets in children undergoing kidney transplantation. Pediatr Transplant 2022; 26:e14371. [PMID: 35938682 PMCID: PMC9669171 DOI: 10.1111/petr.14371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Malnutrition, including obesity and undernutrition, among children is increasing in prevalence and is common among children on renal replacement therapy. The effect of malnutrition on the pre-transplant immune system and how the pediatric immune system responds to the insult of both immunosuppression and allotransplantation is unknown. We examined the relationship of nutritional status with post-transplant outcomes and characterized the peripheral immune cell phenotypes of children from the Immune Development of Pediatric Transplant (IMPACT) study. METHODS Ninety-eight patients from the IMPACT study were classified as having obesity, undernutrition, or normal nutrition-based pre-transplant measurements. Incidence of infectious and alloimmune outcomes at 1-year post-transplantation was compared between nutritional groups using Gray's test and Fine-Gray subdistribution hazards model. Event-free survival was estimated by Kaplan-Meier method and compared between groups. Differences in immune cell subsets between nutritional groups over time were determined using generalized estimating equations accounting for the correlation between repeated measurements. RESULTS We did not observe that nutritional status was associated with infectious or alloimmune events or event-free survival post-transplant. We demonstrated that children with obesity had distinct T-and B-cell signatures relative to those with undernutrition and normal nutrition, even when controlling for immunosuppression. Children with obesity had a lower frequency of CD8 Tnaive cells 9-month post-transplant (p < .001), a higher frequency of CD4 CD57 + PD1- T cells, and lower frequencies of CD57-PD1+ CD8 and CD57-PD1- CD8 T cells at 12-month transplant (p < .05 for all). CONCLUSIONS Children with obesity have distinct immunophenotypes that may influence the tailoring of immunosuppression.
Collapse
Affiliation(s)
- Brian I Shaw
- Department of Surgery, Duke University, Durham, NC, United States
| | - Hui-Jie Lee
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC United States
| | - Robert Ettenger
- Department of Pediatrics, University of California Los Angeles, CA, United States
| | - Paul Grimm
- Department of Pediatrics, Stanford University, CA, United States
| | - Elaine F Reed
- Department of Pathology, University of California, Los Angeles, CA, United States
| | - Minnie Sarwal
- Department of Surgery, University of California, San Francisco, CA, United States
| | - Linda Stempora
- Department of Surgery, Duke University, Durham, NC, United States
| | - Barry Warshaw
- Department of Pediatrics, Children’s Healthcare Atlanta, Atlanta, GA, United States
| | - Congwen Zhao
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC United States
| | - Olivia M Martinez
- Department of Surgery, Stanford University School of Medicine, CA, United States
| | - Nancie J MacIver
- Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Allan D Kirk
- Department of Surgery, Duke University, Durham, NC, United States
- Department of Pediatrics, Duke University, CA, United States
| | | |
Collapse
|
38
|
Mitochondrial function and nutrient sensing pathways in ageing: enhancing longevity through dietary interventions. Biogerontology 2022; 23:657-680. [PMID: 35842501 DOI: 10.1007/s10522-022-09978-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022]
Abstract
Ageing is accompanied by alterations in several biochemical processes, highly influenced by its environment. It is controlled by the interactions at various levels of biological hierarchy. To maintain homeostasis, a number of nutrient sensors respond to the nutritional status of the cell and control its energy metabolism. Mitochondrial physiology is influenced by the energy status of the cell. The alterations in mitochondrial physiology and the network of nutrient sensors result in mitochondrial damage leading to age related metabolic degeneration and diseases. Calorie restriction (CR) has proved to be as the most successful intervention to achieve the goal of longevity and healthspan. CR elicits a hormetic response and regulates metabolism by modulating these networks. In this review, the authors summarize the interdependent relationship between mitochondrial physiology and nutrient sensors during the ageing process and their role in regulating metabolism.
Collapse
|
39
|
Bai L, Wu Y, Wang R, Liu R, Liu M, Li Q, Ba Y, Zhang H, Zhou G, Yu F, Huang H. Prepubertal exposure to Pb alters autophagy in the brain of aging mice: A time-series based model. Brain Res Bull 2022; 189:22-33. [PMID: 35987294 DOI: 10.1016/j.brainresbull.2022.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 12/09/2022]
Abstract
As a ubiquitous toxic heavy metal, lead (Pb) exposure is known to be implicated in the onset and development of neurodegenerative diseases which may cause more serious health hazards with age and the accumulation of Pb in the body. Autophagy is the main degradation route for abnormal aggregated proteins and damaged cell organelles. Here, we aimed to study the effects of adolescent Pb exposure on autophagy at different life nodes. In this study, we developed a time-series model of Pb exposure in mice and randomly divided 4-week-old male C57BL/6 mice into six groups (4 C, 13 C, 16 C, 4Pb, 13Pb and 16Pb). Mice in Pb groups was consumed deionized water containing 0.2 % Pb(Ac)2 for 3 months and then reared to anticipated life nodes, while the control group consumed deionized water. Western blot and Real-time qPCR were used to assess the effects of developmental Pb exposure on individual components of the autophagy machinery and modulation of microtubule-associated protein 1 light chain 3 (LC3) at each age stage. Our results showed that Pb exposure during adolescence reduced the p-mTOR/mTOR ratios with enhanced expression of Beclin-1, Atg12 and Atg7in both the hippocampus (HPC) and prefrontal cortex (PFC) of senescent mice while upregulation of LC3II/LC3I ratios and p62 suggested that autophagy mediates degradation was interrupted. Overall, we confirm that Pb exposure during adolescence promotes autophagic processes in the aged mice brain and that autophagic degradation is hindered, ultimately leading to a failure of autophagic degradation.
Collapse
Affiliation(s)
- Lin Bai
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Yingying Wu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Ruike Wang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Rundong Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Mengchen Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Qiong Li
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Huizhen Zhang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Guoyu Zhou
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Fangfang Yu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| |
Collapse
|
40
|
Yao J, Yan X, Xiao X, You X, Li Y, Yang Y, Zhang W, Li Y. Electroacupuncture induces weight loss by regulating tuberous sclerosis complex 1-mammalian target of rapamycin methylation and hypothalamic autophagy in high-fat diet-induced obese rats. Front Pharmacol 2022; 13:1015784. [PMID: 36313328 PMCID: PMC9596966 DOI: 10.3389/fphar.2022.1015784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Obesity can be caused by abnormalities of hypothalamic autophagy, which is closely regulated by the epigenetic modification of TSC1-mTOR. However, whether the weight-reducing effect of EA may relate to the modification of TSC1-mTOR methylation and hypothalamic autophagy remain unclear. This study was conducted to reveal the possible mechanism by which EA reduces BW by measuring the levels of TSC1-mTOR methylation and hypothalamic autophagy-related components.Methods: The weight-reducing effect of EA was investigated in high-fat diet (HFD)-induced obese (DIO) rats by monitoring the BW, food consumption, and epididymal white adipose tissue (eWAT)/BW ratio. Hematoxylin and eosin staining was performed for morphological evaluation of eWAT. Immunofluorescence was utilized to observe the localization of LC3 in the hypothalamus. The expressions of autophagy components (Beclin-1, LC3, and p62) and mTOR signaling (mTOR, p-mTOR, p70S6K, and p-p70S6K) were assessed by western blot. The methylation rate of the TSC1 promoter was detected by bisulfite genomic sequencing.Results: Treatment with EA significantly reduced the BW, food consumption, and eWAT/BW ratio; attenuated the morphological alternations in the adipocytes of DIO rats. While HFD downregulated the expression levels of Beclin-1 and LC3 and upregulated those of p62, these changes were normalized by EA treatment. EA markedly decreased the methylation rate of the TSC1 gene promoter and suppressed the protein expressions of mTOR, p-mTOR, p70S6K, and p-p70S6K in the hypothalamus.Conclusion: EA could reduce BW and fat accumulation in DIO rats. This ameliorative effect of EA may be associated with its demethylation effect on TSC1-mTOR and regulation of autophagy in the hypothalamus.
Collapse
Affiliation(s)
- Junpeng Yao
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiangyun Yan
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianjun Xiao
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi You
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanqiu Li
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuqing Yang
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Zhang
- Academic Affairs Office, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Li
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Ying Li,
| |
Collapse
|
41
|
Chen YF, Lee CW, Wu HH, Lin WT, Lee OK. Immunometabolism of macrophages regulates skeletal muscle regeneration. Front Cell Dev Biol 2022; 10:948819. [PMID: 36147742 PMCID: PMC9485946 DOI: 10.3389/fcell.2022.948819] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Sarcopenia is an age-related progressive loss of skeletal muscle mass, quality, and strength disease. In addition, sarcopenia is tightly correlated with age-associated pathologies, such as sarcopenic obesity and osteoporosis. Further understanding of disease mechanisms and the therapeutic strategies in muscle regeneration requires a deeper knowledge of the interaction of skeletal muscle and other cells in the muscle tissue. Skeletal muscle regeneration is a complex process that requires a series of highly coordinated events involving communication between muscle stem cells and niche cells, such as muscle fibro/adipogenic progenitors and macrophages. Macrophages play a critical role in tissue regeneration and the maintenance of muscle homeostasis by producing growth factors and cytokines that regulate muscle stem cells and myofibroblast activation. Furthermore, the aging-related immune dysregulation associated with the release of trophic factors and the polarization in macrophages transiently affect the inflammatory phase and impair muscle regeneration. In this review, we focus on the role and regulation of macrophages in skeletal muscle regeneration and homeostasis. The aim of this review is to highlight the important roles of macrophages as a therapeutic target in age-related sarcopenia and the increasing understanding of how macrophages are regulated will help to advance skeletal muscle regeneration.
Collapse
Affiliation(s)
- Yu-Fan Chen
- Center for Translational Genomics Research, China Medical University Hospital, Taichung, Taiwan
| | - Chien-Wei Lee
- Center for Translational Genomics Research, China Medical University Hospital, Taichung, Taiwan
| | - Hao-Hsiang Wu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Ting Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Doctoral Degree Program of Translational Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Oscar K. Lee
- Center for Translational Genomics Research, China Medical University Hospital, Taichung, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Orthopedics, China Medical University Hospital, Taichung, Taiwan
- *Correspondence: Oscar K. Lee,
| |
Collapse
|
42
|
Hydrogen Sulfide Attenuates High-Fat Diet-Induced Obesity: Involvement of mTOR/IKK/NF-κB Signaling Pathway. Mol Neurobiol 2022; 59:6903-6917. [PMID: 36053437 DOI: 10.1007/s12035-022-03004-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/16/2022] [Indexed: 10/14/2022]
Abstract
Obesity has become a public health epidemic worldwide and is associated with many diseases with high mortality including hypertension, diabetes, and heart disease. High-fat diet (HFD)-induced energy imbalance is one of the primary causes of obesity, but the underlying mechanisms are not fully elucidated. Our study showed that HFD reduced the level of hydrogen sulfide (H2S) and its catalytic enzyme cystathionine β-synthase (CBS) in mouse hypothalamus and plasma. We found that HFD activated mTOR, IKK/NF-κB, the main pathway regulating inflammation. Activation of inflammatory pathway promoted the production of pro-inflammatory cytokines including IL-6, IL-1β, and TNF-α, which caused cell damage and loss in the hypothalamus. The disturbance of the hypothalamic neuron circuits resulted in body weight gain in HFD-induced mice. Importantly, we also showed that restoration of H2S level with NaHS or activation of CBS with SAMe attenuated HFD-induced activation of mTOR, IKK/NF-κB signaling, which reduced the inflammation and the neuronal cell loss in the hypothalamus, and also inhibited body weight gain in mice. The same effects were obtained by inhibiting mTOR or NF-κB, which suggested that mTOR and NF-κB were the critical molecular factors involved in hypothalamic inflammation. Taken together, this study identified that HFD-induced hypothalamus inflammation plays a critical role in the development of obesity. Moreover, the inhibition of hypothalamic inflammation by regaining H2S level could be a potential therapeutic to prevent the development of obesity.
Collapse
|
43
|
Signaling pathways in obesity: mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022; 7:298. [PMID: 36031641 PMCID: PMC9420733 DOI: 10.1038/s41392-022-01149-x] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Obesity is a complex, chronic disease and global public health challenge. Characterized by excessive fat accumulation in the body, obesity sharply increases the risk of several diseases, such as type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease, and is linked to lower life expectancy. Although lifestyle intervention (diet and exercise) has remarkable effects on weight management, achieving long-term success at weight loss is extremely challenging, and the prevalence of obesity continues to rise worldwide. Over the past decades, the pathophysiology of obesity has been extensively investigated, and an increasing number of signal transduction pathways have been implicated in obesity, making it possible to fight obesity in a more effective and precise way. In this review, we summarize recent advances in the pathogenesis of obesity from both experimental and clinical studies, focusing on signaling pathways and their roles in the regulation of food intake, glucose homeostasis, adipogenesis, thermogenesis, and chronic inflammation. We also discuss the current anti-obesity drugs, as well as weight loss compounds in clinical trials, that target these signals. The evolving knowledge of signaling transduction may shed light on the future direction of obesity research, as we move into a new era of precision medicine.
Collapse
|
44
|
Kosillo P, Ahmed KM, Aisenberg EE, Karalis V, Roberts BM, Cragg SJ, Bateup HS. Dopamine neuron morphology and output are differentially controlled by mTORC1 and mTORC2. eLife 2022; 11:e75398. [PMID: 35881440 PMCID: PMC9328766 DOI: 10.7554/elife.75398] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/08/2022] [Indexed: 02/07/2023] Open
Abstract
The mTOR pathway is an essential regulator of cell growth and metabolism. Midbrain dopamine neurons are particularly sensitive to mTOR signaling status as activation or inhibition of mTOR alters their morphology and physiology. mTOR exists in two distinct multiprotein complexes termed mTORC1 and mTORC2. How each of these complexes affect dopamine neuron properties, and whether they have similar or distinct functions is unknown. Here, we investigated this in mice with dopamine neuron-specific deletion of Rptor or Rictor, which encode obligatory components of mTORC1 or mTORC2, respectively. We find that inhibition of mTORC1 strongly and broadly impacts dopamine neuron structure and function causing somatodendritic and axonal hypotrophy, increased intrinsic excitability, decreased dopamine production, and impaired dopamine release. In contrast, inhibition of mTORC2 has more subtle effects, with selective alterations to the output of ventral tegmental area dopamine neurons. Disruption of both mTOR complexes leads to pronounced deficits in dopamine release demonstrating the importance of balanced mTORC1 and mTORC2 signaling for dopaminergic function.
Collapse
Affiliation(s)
- Polina Kosillo
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Kamran M Ahmed
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Erin E Aisenberg
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Vasiliki Karalis
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Bradley M Roberts
- Department of Physiology, Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| | - Stephanie J Cragg
- Department of Physiology, Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| | - Helen S Bateup
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
- Chan Zuckerberg Biohub, San FranciscoSan FranciscoUnited States
| |
Collapse
|
45
|
Liu T, Xu Y, Yi CX, Tong Q, Cai D. The hypothalamus for whole-body physiology: from metabolism to aging. Protein Cell 2022; 13:394-421. [PMID: 33826123 PMCID: PMC9095790 DOI: 10.1007/s13238-021-00834-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/01/2021] [Indexed: 01/05/2023] Open
Abstract
Obesity and aging are two important epidemic factors for metabolic syndrome and many other health issues, which contribute to devastating diseases such as cardiovascular diseases, stroke and cancers. The brain plays a central role in controlling metabolic physiology in that it integrates information from other metabolic organs, sends regulatory projections and orchestrates the whole-body function. Emerging studies suggest that brain dysfunction in sensing various internal cues or processing external cues may have profound effects on metabolic and other physiological functions. This review highlights brain dysfunction linked to genetic mutations, sex, brain inflammation, microbiota, stress as causes for whole-body pathophysiology, arguing brain dysfunction as a root cause for the epidemic of aging and obesity-related disorders. We also speculate key issues that need to be addressed on how to reveal relevant brain dysfunction that underlines the development of these disorders and diseases in order to develop new treatment strategies against these health problems.
Collapse
Affiliation(s)
- Tiemin Liu
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, Institute of Metabolism and Integrative Biology, Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yong Xu
- grid.39382.330000 0001 2160 926XChildren’s Nutrition Research Center, Department of Pediatrics, Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Chun-Xia Yi
- grid.7177.60000000084992262Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, Netherlands
| | - Qingchun Tong
- grid.453726.10000 0004 5906 7293Brown Foundation Institute of Molecular Medicine, Department of Neurobiology and Anatomy, University of Texas McGovern Medical School, Graduate Program in Neuroscience of MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030 USA
| | - Dongsheng Cai
- grid.251993.50000000121791997Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 USA
| |
Collapse
|
46
|
Fasting and Fasting Mimicking Diets in Obesity and Cardiometabolic Disease Prevention and Treatment. Phys Med Rehabil Clin N Am 2022; 33:699-717. [DOI: 10.1016/j.pmr.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Vagena E, Crneta J, Engström P, He L, Yulyaningsih E, Korpel NL, Cheang RT, Bachor TP, Huang A, Michel G, Attal K, Berrios DI, Valdearcos M, Koliwad SK, Olson DP, Yi CX, Xu AW. ASB4 modulates central melanocortinergic neurons and calcitonin signaling to control satiety and glucose homeostasis. Sci Signal 2022; 15:eabj8204. [PMID: 35536884 DOI: 10.1126/scisignal.abj8204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Variants in the gene encoding ankyrin repeat and SOCS box-containing 4 (ASB4) are linked to human obesity. Here, we characterized the pathways underlying the metabolic functions of ASB4. Hypothalamic Asb4 expression was suppressed by fasting in wild-type mice but not in mice deficient in AgRP, which encodes Agouti-related protein (AgRP), an appetite-stimulating hormone, suggesting that ASB4 is a negative target of AgRP. Many ASB4 neurons in the brain were adjacent to AgRP terminals, and feeding induced by AgRP neuronal activation was disrupted in Asb4-deficient mice. Acute knockdown of Asb4 in the brain caused marked hyperphagia due to increased meal size, and Asb4 deficiency led to increased meal size and food intake at the onset of refeeding, when very large meals were consumed. Asb4-deficient mice were resistant to the meal-terminating effects of exogenously administered calcitonin and showed decreased neuronal expression of Calcr, which encodes the calcitonin receptor. Pro-opiomelanocortin (POMC) neurons in the arcuate nucleus in mice are involved in glucose homeostasis, and Asb4 deficiency specifically in POMC neurons resulted in glucose intolerance that was independent of obesity. Furthermore, individuals with type 2 diabetes showed reduced ASB4 abundance in the infundibular nuclei, the human equivalent of the arcuate nucleus. Together, our results indicate that ASB4 acts in the brain to improve glucose homeostasis and to induce satiety after substantial meals, particularly those after food deprivation.
Collapse
Affiliation(s)
- Eirini Vagena
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jasmina Crneta
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Pauline Engström
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Li He
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ernie Yulyaningsih
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nikita L Korpel
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Meibergdreef 9, Amsterdam 1105 AZ, Netherlands
| | - Rachel T Cheang
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tomas P Bachor
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alyssa Huang
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Guillermina Michel
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kush Attal
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David I Berrios
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Martin Valdearcos
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Suneil K Koliwad
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David P Olson
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI 48109, USA
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Meibergdreef 9, Amsterdam 1105 AZ, Netherlands
| | - Allison W Xu
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
48
|
Pelton R. Rapamycin: Extending Health Span and Life Span. Integr Med (Encinitas) 2022; 21:48-52. [PMID: 35702488 PMCID: PMC9173851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
49
|
Ma Y, Murgia N, Liu Y, Li Z, Sirakawin C, Konovalov R, Kovzel N, Xu Y, Kang X, Tiwari A, Mwangi PM, Sun D, Erfle H, Konopka W, Lai Q, Najam SS, Vinnikov IA. Neuronal miR-29a protects from obesity in adult mice. Mol Metab 2022; 61:101507. [PMID: 35490865 PMCID: PMC9114687 DOI: 10.1016/j.molmet.2022.101507] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/12/2022] [Accepted: 04/25/2022] [Indexed: 12/30/2022] Open
Abstract
Objective Obesity, a growing threat to the modern society, represents an imbalance of metabolic queues that normally signal to the arcuate hypothalamic nucleus, a critical brain region sensing and regulating energy homeostasis. This is achieved by various neurons many of which developmentally originate from the proopiomelanocortin (POMC)-expressing lineage. Within the mature neurons originating from this lineage, we aimed to identify non-coding genes in control of metabolic function in the adulthood. Methods In this work, we used microRNA mimic delivery and POMCCre-dependent CRISPR-Cas9 knock-out strategies in young or aged mice. Importantly, we also used CRISPR guides directing suicide cleavage of Cas9 to limit the off-target effects. Results Here we found that mature neurons originating from the POMC lineage employ miR-29a to protect against insulin resistance obesity, hyperphagia, decreased energy expenditure and obesity. Moreover, we validated the miR-29 family as a prominent regulator of the PI3K-Akt-mTOR pathway. Within the latter, we identified a direct target of miR-29a-3p, Nras, which was up-regulated in those and only those mature POMCCreCas9 neurons that were effectively transduced by anti-miR-29 CRISPR-equipped construct. Moreover, POMCCre-dependent co-deletion of Nras in mature neurons attenuated miR-29 depletion-induced obesity. Conclusions Thus, the first to our knowledge case of in situ Cre-dependent CRISPR-Cas9-mediated knock-out of microRNAs in a specific hypothalamic neuronal population helped us to decipher a critical metabolic circuit in adult mice. This work significantly extends our understanding about the involvement of neuronal microRNAs in homeostatic regulation. Delivery of miR-29a-3p to the arcuate hypothalamic nucleus attenuates obesity. Knock-out of genes in mature neurons by Cre-dependent CRISPR/Cas9 technique involving Cas9-cleaving sgRNAs to limit off-target effects. Deletion of miR-29a in mature PomcCre neurons leads to early-onset insulin resistance and later to hyperphagia and decreased energy expenditure. POMCCre-restricted deletion of miR-29a causes cell-autonomous Nras up-regulation leading to obesity. POMCCre-restricted knock-out of Nras, a direct target of miR-29a-3p, attenuates obesity in mice.
Collapse
Affiliation(s)
- Yuan Ma
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Nicola Murgia
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Liu
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zixuan Li
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chaweewan Sirakawin
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ruslan Konovalov
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Nikolai Kovzel
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Xu
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuejia Kang
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Anshul Tiwari
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Patrick Malonza Mwangi
- Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Donglei Sun
- Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Holger Erfle
- Advanced Biological Screening Facility, BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Witold Konopka
- Laboratory of Neuroplasticity and Metabolism, Department of Life Sciences and Biotechnology, Łukasiewicz PORT Polish Center for Technology Development, Wrocław, Poland
| | - Qingxuan Lai
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Syeda Sadia Najam
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ilya A Vinnikov
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
50
|
Lin CH, Lin YC, Yang SB, Chen PC. Carbamazepine promotes surface expression of mutant Kir6.2-A28V ATP-sensitive potassium channels by modulating Golgi retention and autophagy. J Biol Chem 2022; 298:101904. [PMID: 35398096 PMCID: PMC9065613 DOI: 10.1016/j.jbc.2022.101904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 11/21/2022] Open
Abstract
Pancreatic β-cells express ATP-sensitive potassium (KATP) channels, consisting of octamer complexes containing four sulfonylurea receptor 1 (SUR1) and four Kir6.2 subunits. Loss of KATP channel function causes persistent hyperinsulinemic hypoglycemia of infancy (PHHI), a rare but debilitating condition if not treated. We previously showed that the sodium-channel blocker carbamazepine (Carb) corrects KATP channel surface expression defects induced by PHHI-causing mutations in SUR1. In this study, we show that Carb treatment can also ameliorate the trafficking deficits associated with a recently discovered PHHI-causing mutation in Kir6.2 (Kir6.2-A28V). In human embryonic kidney 293 or INS-1 cells expressing this mutant KATP channel (SUR1 and Kir6.2-A28V), biotinylation and immunostaining assays revealed that Carb can increase surface expression of the mutant KATP channels. We further examined the subcellular distributions of mutant KATP channels before and after Carb treatment; without Carb treatment, we found that mutant KATP channels were aberrantly accumulated in the Golgi apparatus. However, after Carb treatment, coimmunoprecipitation of mutant KATP channels and Golgi marker GM130 was diminished, and KATP staining was also reduced in lysosomes. Intriguingly, Carb treatment also simultaneously increased autophagic flux and p62 accumulation, suggesting that autophagy-dependent degradation of the mutant channel was not only stimulated but also interrupted. In summary, our data suggest that surface expression of Kir6.2-A28V KATP channels is rescued by Carb treatment via promotion of mutant KATP channel exit from the Golgi apparatus and reduction of autophagy-mediated protein degradation.
Collapse
|