1
|
Oliveira-Valença VM, Roberts JM, Fernandes-Cerqueira VM, Colmerauer CH, de Toledo BC, Santos-França PL, Linden R, Martins RAP, Rocha-Martins M, Bosco A, Vetter ML, da Silveira MS. POU4F2 overexpression promotes the genesis of retinal ganglion cell-like projection neurons from late progenitors. Development 2025; 152:DEV204297. [PMID: 39946314 DOI: 10.1242/dev.204297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/03/2025] [Indexed: 03/04/2025]
Abstract
Retinal ganglion cells (RGCs) are the projection neurons of the retina, and their death promotes an irreversible blindness. Several factors were described to control their genesis during retinal development. These include Atoh7, a major orchestrator of the RGC program, and downstream targets of this transcription factor, including Pou4f factors, that in turn regulate key aspects of terminal differentiation. The absence of POU4F family genes results in defects in RGC differentiation, aberrant axonal elaboration and, ultimately, RGC death. This confirms the requirement of POU4F factors for RGC development and survival, with a crucial role in regulating RGC axon outgrowth and pathfinding. Here, we have investigated in vivo whether ectopic Pou4f2 expression in late retinal progenitor cells (late RPCs) is sufficient to induce the generation of cells with RGC properties, including long-range axon projections. We show that Pou4f2 overexpression generates RGC-like cells that share morphological and transcriptional features with RGCs that are normally generated during early development and extend axonal projections up to the brain. In conclusion, these results show that POU4F2 alone is sufficient to promote the crucial properties of projection neurons that arise from retinal progenitors outside their developmental window.
Collapse
Affiliation(s)
- Viviane Medeiros Oliveira-Valença
- Laboratory for Investigation in Neuroregeneration and Development (LINDes), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Jacqueline Marie Roberts
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Vitória Melo Fernandes-Cerqueira
- Laboratory for Investigation in Neuroregeneration and Development (LINDes), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Carolina Herkenhoff Colmerauer
- Laboratory for Investigation in Neuroregeneration and Development (LINDes), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Beatriz Cardoso de Toledo
- Laboratory for Investigation in Neuroregeneration and Development (LINDes), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Pedro Lucas Santos-França
- Laboratory for Investigation in Neuroregeneration and Development (LINDes), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Rafael Linden
- Neurogenesis Lab, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Rodrigo Alves Portela Martins
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Maurício Rocha-Martins
- Laboratory for Investigation in Neuroregeneration and Development (LINDes), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Alejandra Bosco
- Department of Neurobiology, University of Utah, School of Medicine, Salt Lake City, UT 84112, USA
| | - Monica Lynn Vetter
- Department of Neurobiology, University of Utah, School of Medicine, Salt Lake City, UT 84112, USA
| | - Mariana Souza da Silveira
- Laboratory for Investigation in Neuroregeneration and Development (LINDes), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Liu ZG, Zhou LY, Sun YQ, Ma YH, Liu CM, Zhang BY. Unlocking the potential for optic nerve regeneration over long distances: a multi-therapeutic intervention. Front Neurol 2025; 15:1526973. [PMID: 39850731 PMCID: PMC11754882 DOI: 10.3389/fneur.2024.1526973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/24/2024] [Indexed: 01/25/2025] Open
Abstract
Retinal ganglion cells (RGCs) generally fail to regenerate axons, resulting in irreversible vision loss after optic nerve injury. While many studies have shown that modulating specific genes can enhance RGCs survival and promote optic nerve regeneration, inducing long-distance axon regeneration in vivo through single-gene manipulation remains challenging. Nevertheless, combined multi-gene therapies have proven effective in significantly enhancing axonal regeneration. At present, research on promoting optic nerve regeneration remains slow, with most studies unable to achieve axonal growth beyond the optic chiasm or reestablish connections with the brain. Future research priorities include directing axonal growth along correct pathways, facilitating synapse formation and myelination, and modifying the inhibitory microenvironment. These strategies are crucial not only for optic nerve regeneration but also for broader applications in central nervous system repair. In this review, we discuss multifactors therapeutic strategies for optic nerve regeneration, offering insights into advancing nerve regeneration research.
Collapse
Affiliation(s)
- Zhen-Gang Liu
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lai-Yang Zhou
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yong-Quan Sun
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yi-Hang Ma
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chang-Mei Liu
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Bo-Yin Zhang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Ebrahimi M, Ahmadieh H, Rezaei Kanavi M, Safi S, Alipour-Parsa S, Advani S, Sorenson CM, Sheibani N. Shared signaling pathways and comprehensive therapeutic approaches among diabetes complications. Front Med (Lausanne) 2025; 11:1497750. [PMID: 39845838 PMCID: PMC11750824 DOI: 10.3389/fmed.2024.1497750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
The growing global prevalence of diabetes mellitus (DM), along with its associated complications, continues to rise. When clinically detected most DM complications are irreversible. It is therefore crucial to detect and address these complications early and systematically in order to improve patient care and outcomes. The current clinical practice often prioritizes DM complications by addressing one complication while overlooking others that could occur. It is proposed that the commonly targeted cell types including vascular cells, immune cells, glial cells, and fibroblasts that mediate DM complications, might share early responses to diabetes. In addition, the impact of one complication could be influenced by other complications. Recognizing and focusing on the shared early responses among DM complications, and the impacted cellular constituents, will allow to simultaneously address all DM-related complications and limit adverse treatment impacts. This review explores the current understanding of shared pathological signaling mechanisms among DM complications and recognizes new concepts that will benefit from further investigation in both basic and clinical settings. The ultimate goal is to develop more comprehensive treatment strategies, which effectively impact DM complications in multiple organs and improve patient care and outcomes.
Collapse
Affiliation(s)
- Moein Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhgan Rezaei Kanavi
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sare Safi
- Ophthalmic Epidemiology Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Alipour-Parsa
- Cardiovascular Research Center, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soroor Advani
- Neurology Department, Shohada Tajrish Hospital, Shahid-Beheshti University of Medical Sciences, Tehran, Iran
| | - Christine M. Sorenson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
4
|
Rao M, Luo Z, Liu CC, Chen CY, Wang S, Nahmou M, Tanasa B, Virmani A, Byrne L, Goldberg JL, Sahel JA, Chang KC. Tppp3 is a novel molecule for retinal ganglion cell identification and optic nerve regeneration. Acta Neuropathol Commun 2024; 12:204. [PMID: 39734233 PMCID: PMC11684310 DOI: 10.1186/s40478-024-01917-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/14/2024] [Indexed: 12/31/2024] Open
Abstract
Mammalian central nervous system (CNS) axons cannot spontaneously regenerate after injury, creating an unmet need to identify molecular regulators to promote axon regeneration and reduce the lasting impact of CNS injuries. While tubulin polymerization promoting protein family member 3 (Tppp3) is known to promote axon outgrowth in amphibians, its role in mammalian axon regeneration remains unknown. Here we investigated Tppp3 in retinal ganglion cells (RGCs) neuroprotection and axonal regeneration using an optic nerve crush (ONC) model in the rodent. Single-cell RNA sequencing identified the expression of Tppp3 in RGCs of mice, macaques, and humans. Tppp3 overexpression enhanced neurite outgrowth in mouse primary RGCs in vitro, promoted axon regeneration, and improved RGC survival after ONC. Bulk RNA sequencing indicated that Tppp3 overexpression upregulates axon regeneration genes such as Bmp4 and neuroinflammatory pathways. Our findings advance regenerative medicine by developing a new therapeutic strategy for RGC neuroprotection and axon regeneration.
Collapse
Affiliation(s)
- Mishal Rao
- Department of Ophthalmology, UPMC Vision Institute, University of Pittsburgh School of Medicine, 1622 Locust Street, Pittsburgh, PA, 15219, USA
| | - Ziming Luo
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA, 94305, USA
| | - Chia-Chun Liu
- Department of Ophthalmology, UPMC Vision Institute, University of Pittsburgh School of Medicine, 1622 Locust Street, Pittsburgh, PA, 15219, USA
| | - Chi-Yu Chen
- Department of Ophthalmology, UPMC Vision Institute, University of Pittsburgh School of Medicine, 1622 Locust Street, Pittsburgh, PA, 15219, USA
| | - Shining Wang
- Department of Ophthalmology, UPMC Vision Institute, University of Pittsburgh School of Medicine, 1622 Locust Street, Pittsburgh, PA, 15219, USA
| | - Michael Nahmou
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA, 94305, USA
| | - Bogdan Tanasa
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA, 94305, USA
| | - Aman Virmani
- Department of Ophthalmology, UPMC Vision Institute, University of Pittsburgh School of Medicine, 1622 Locust Street, Pittsburgh, PA, 15219, USA
| | - Leah Byrne
- Department of Ophthalmology, UPMC Vision Institute, University of Pittsburgh School of Medicine, 1622 Locust Street, Pittsburgh, PA, 15219, USA
- Department of Neurobiology, Center of Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA, 94305, USA
| | - José-Alain Sahel
- Department of Ophthalmology, UPMC Vision Institute, University of Pittsburgh School of Medicine, 1622 Locust Street, Pittsburgh, PA, 15219, USA
| | - Kun-Che Chang
- Department of Ophthalmology, UPMC Vision Institute, University of Pittsburgh School of Medicine, 1622 Locust Street, Pittsburgh, PA, 15219, USA.
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA, 94305, USA.
- Department of Neurobiology, Center of Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
5
|
Montaser AB, Gao F, Peters D, Vainionpää K, Zhibin N, Skowronska-Krawczyk D, Figeys D, Palczewski K, Leinonen H. Retinal Proteome Profiling of Inherited Retinal Degeneration Across Three Different Mouse Models Suggests Common Drug Targets in Retinitis Pigmentosa. Mol Cell Proteomics 2024; 23:100855. [PMID: 39389360 PMCID: PMC11602984 DOI: 10.1016/j.mcpro.2024.100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/14/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024] Open
Abstract
Inherited retinal degenerations (IRDs) are a leading cause of blindness among the population of young people in the developed world. Approximately half of IRDs initially manifest as gradual loss of night vision and visual fields, characteristic of retinitis pigmentosa (RP). Due to challenges in genetic testing, and the large heterogeneity of mutations underlying RP, targeted gene therapies are an impractical largescale solution in the foreseeable future. For this reason, identifying key pathophysiological pathways in IRDs that could be targets for mutation-agnostic and disease-modifying therapies (DMTs) is warranted. In this study, we investigated the retinal proteome of three distinct IRD mouse models, in comparison to sex- and age-matched wild-type mice. Specifically, we used the Pde6βRd10 (rd10) and RhoP23H/WT (P23H) mouse models of autosomal recessive and autosomal dominant RP, respectively, as well as the Rpe65-/- mouse model of Leber's congenital amaurosis type 2 (LCA2). The mice were housed at two distinct institutions and analyzed using LC-MS in three separate facilities/instruments following data-dependent and data-independent acquisition modes. This cross-institutional and multi-methodological approach signifies the reliability and reproducibility of the results. The large-scale profiling of the retinal proteome, coupled with in vivo electroretinography recordings, provided us with a reliable basis for comparing the disease phenotypes and severity. Despite evident inflammation, cellular stress, and downscaled phototransduction observed consistently across all three models, the underlying pathologies of RP and LCA2 displayed many differences, sharing only four general KEGG pathways. The opposite is true for the two RP models in which we identify remarkable convergence in proteomic phenotype even though the mechanism of primary rod death in rd10 and P23H mice is different. Our data highlights the cAMP and cGMP second-messenger signaling pathways as potential targets for therapeutic intervention. The proteomic data is curated and made publicly available, facilitating the discovery of universal therapeutic targets for RP.
Collapse
Affiliation(s)
- Ahmed B Montaser
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Fangyuan Gao
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, California, USA; Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Danielle Peters
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Katri Vainionpää
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ning Zhibin
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Dorota Skowronska-Krawczyk
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, California, USA; Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Krzysztof Palczewski
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, California, USA; Department of Physiology and Biophysics, University of California, Irvine, California, USA; Department of Chemistry, University of California, Irvine, California, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Henri Leinonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
6
|
Hu L, Zhang Q. Mechanism of TBK1 activation in cancer cells. CELL INSIGHT 2024; 3:100197. [PMID: 39279883 PMCID: PMC11402294 DOI: 10.1016/j.cellin.2024.100197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024]
Abstract
TANK-binding kinase 1 (TBK1) is a serine/threonine kinase with well-established roles as a central player in innate immune signaling. Dysregulation of TBK1 activity has been implicated in a variety of pathophysiologic conditions, including cancer. Generally, TBK1 acts as an oncogene and increased TBK1 activity, indicated by increased phosphorylation at the Ser172 residue, can be observed in multiple human cancers. TBK1 can be activated either by autophosphorylation of Ser172 or transphosphorylation at this site by upstream kinases. Serving as a hub for integrating numerous extracellular and intracellular signals, TBK1 can be activated through multiple signaling pathways. However, the direct upstream kinase responsible for TBK1 activation remains elusive, which limits our comprehensive understanding of its activation mechanism and potential therapeutic application targeting TBK1-related signaling especially in cancer. In this review, we summarize the findings on mechanisms of TBK1 activation in cancer cells and recent discoveries that shed light on the direct upstream kinases promoting TBK1 activation.
Collapse
Affiliation(s)
- Lianxin Hu
- Department of Urology and Institute of Urologic Science and Technology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
7
|
Sun M, Huang X, Ruan X, Shang X, Zhang M, Liu L, Wang P, An P, Lin Y, Yang J, Xue Y. Cpeb4-mediated Dclk2 promotes neuronal pyroptosis induced by chronic cerebral ischemia through phosphorylation of Ehf. J Cereb Blood Flow Metab 2024; 44:1655-1673. [PMID: 38513137 PMCID: PMC11418732 DOI: 10.1177/0271678x241240590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 03/23/2024]
Abstract
Chronic cerebral ischemia (CCI) is a clinical syndrome characterised by brain dysfunction due to decreased chronic cerebral perfusion. CCI initiates several inflammatory pathways, including pyroptosis. RNA-binding proteins (RBPs) play important roles in CCI. This study aimed to explore whether the interaction between RBP-Cpeb4 and Dclk2 affected Ehf phosphorylation to regulate neuronal pyroptosis. HT22 cells and mice were used to construct oxygen glucose deprivation (OGD)/CCI models. We found that Cpeb4 and Dclk2 were upregulated in OGD-treated HT22 cells and CCI-induced hippocampal CA1 tissues. Cpeb4 upregulated Dclk2 expression by increasing Dclk2 mRNA stability. Knockdown of Cpeb4 or Dclk2 inhibited neuronal pyroptosis in OGD-treated HT22 cells and CCI-induced hippocampal CA1 tissues. By binding to the promoter regions of Caspase1 and Caspase3, the transcription factor Ehf reduced their promoter activities and inhibited the transcription. Dclk2 phosphorylated Ehf and changed its nucleoplasmic distribution, resulting in the exit of p-Ehf from the nucleus and decreased Ehf levels. It promoted the expression of Caspase1 and Caspase3 and stimulated neuronal pyroptosis of HT22 cells induced by OGD. Cpeb4/Dclk2/Ehf pathway plays an important role in the regulation of cerebral ischemia-induced neuronal pyroptosis.
Collapse
Affiliation(s)
- Miao Sun
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Xin Huang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuelei Ruan
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Xiuli Shang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mengyang Zhang
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Libo Liu
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Ping Wang
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Ping An
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Yang Lin
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Jin Yang
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| |
Collapse
|
8
|
Vien KM, Duan Q, Yeung C, Barish S, Volkan PC. Atypical cadherin, Fat2, regulates axon terminal organization in the developing Drosophila olfactory receptor neurons. iScience 2024; 27:110340. [PMID: 39055932 PMCID: PMC11269957 DOI: 10.1016/j.isci.2024.110340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/08/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The process of how neuronal identity confers circuit organization is intricately related to the mechanisms underlying neurodegeneration and neuropathologies. Modeling this process, the olfactory circuit builds a functionally organized topographic map, which requires widely dispersed neurons with the same identity to converge their axons into one a class-specific neuropil, a glomerulus. In this article, we identified Fat2 (also known as Kugelei) as a regulator of class-specific axon organization. In fat2 mutants, axons belonging to the highest fat2-expressing classes present with a more severe phenotype compared to axons belonging to low fat2-expressing classes. In extreme cases, mutations lead to neural degeneration. Lastly, we found that Fat2 intracellular domain interactors, APC1/2 (Adenomatous polyposis coli) and dop (Drop out), likely orchestrate the cytoskeletal remodeling required for axon condensation. Altogether, we provide a potential mechanism for how cell surface proteins' regulation of cytoskeletal remodeling necessitates identity specific circuit organization.
Collapse
Affiliation(s)
- Khanh M. Vien
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Qichen Duan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Chun Yeung
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Scott Barish
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Pelin Cayirlioglu Volkan
- Department of Biology, Duke University, Durham, NC 27708, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
9
|
Kraus JEM, Busengdal H, Kraus Y, Hausen H, Rentzsch F. Doublecortin-like kinase is required for cnidocyte development in Nematostella vectensis. Neural Dev 2024; 19:11. [PMID: 38909268 PMCID: PMC11193195 DOI: 10.1186/s13064-024-00188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024] Open
Abstract
The complex morphology of neurons requires precise control of their microtubule cytoskeleton. This is achieved by microtubule-associated proteins (MAPs) that regulate the assembly and stability of microtubules, and transport of molecules and vesicles along them. While many of these MAPs function in all cells, some are specifically or predominantly involved in regulating microtubules in neurons. Here we use the sea anemone Nematostella vectensis as a model organism to provide new insights into the early evolution of neural microtubule regulation. As a cnidarian, Nematostella belongs to an outgroup to all bilaterians and thus occupies an informative phylogenetic position for reconstructing the evolution of nervous system development. We identified an ortholog of the microtubule-binding protein doublecortin-like kinase (NvDclk1) as a gene that is predominantly expressed in neurons and cnidocytes (stinging cells), two classes of cells belonging to the neural lineage in cnidarians. A transgenic NvDclk1 reporter line revealed an elaborate network of neurite-like processes emerging from cnidocytes in the tentacles and the body column. A transgene expressing NvDclk1 under the control of the NvDclk1 promoter suggests that NvDclk1 localizes to microtubules and therefore likely functions as a microtubule-binding protein. Further, we generated a mutant for NvDclk1 using CRISPR/Cas9 and show that the mutants fail to generate mature cnidocytes. Our results support the hypothesis that the elaboration of programs for microtubule regulation occurred early in the evolution of nervous systems.
Collapse
Affiliation(s)
- Johanna E M Kraus
- Michael Sars Centre, University of Bergen, Thormøhlensgt 55, Bergen, 5006, Norway
| | - Henriette Busengdal
- Michael Sars Centre, University of Bergen, Thormøhlensgt 55, Bergen, 5006, Norway
| | - Yulia Kraus
- Department of Evolutionary Biology, Biological Faculty, Moscow State University, Leninskiye gory 1/12, Moscow, 119234, Russia
| | - Harald Hausen
- Michael Sars Centre, University of Bergen, Thormøhlensgt 55, Bergen, 5006, Norway
- Department of Earth Science, University of Bergen, Allégaten 41, Bergen, 5007, Norway
| | - Fabian Rentzsch
- Michael Sars Centre, University of Bergen, Thormøhlensgt 55, Bergen, 5006, Norway.
- Department for Biological Sciences, University of Bergen, Thormøhlensgate 53, Bergen, 5006, Norway.
| |
Collapse
|
10
|
Lee DH, Lee EC, Park SW, Lee JY, Kim KP, Oh JS. Prospero Homeobox 1 and Doublecortin Correlate with Neural Damage after Ischemic Stroke. J Korean Neurosurg Soc 2024; 67:333-344. [PMID: 37867430 PMCID: PMC11079562 DOI: 10.3340/jkns.2023.0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023] Open
Abstract
OBJECTIVE Markers of neuroinflammation during ischemic stroke are well characterized, but additional markers of neural damage are lacking. The study identified associations of behavioral disorders after stroke with histologic neural damage and molecular biological change. METHODS Eight-week-old, 25 g male mice of the C57BL/6J strain were subjected to middle cerebral artery occlusion (MCAO) to induce ischemic stroke. The control group was a healthy wild type (WT), and the experimental group were designed as a low severity MCAO1 and a high severity MCAO2 based on post-stroke neurological scoring. All groups underwent behavioral tests, realtime polymerase chain reaction, triphenyltetrazolium chloride (TTC) staining and Hematoxylin and Eosin staining. One-way analysis of variance was used to analyze statistical significance between groups. RESULTS In TTC staining, MCAO1 showed 29.02% and MCAO2 showed 38.94% infarct volume (p<0.0001). The pro-inflammatory cytokine interleukin (IL)-1β was most highly expressed in MCAO2 (WT 0.44 vs. MCAO1 2.69 vs. MCAO2 5.02, p<0.0001). From the distance to target in the Barnes maze test, WT had a distance of 178 cm, MCAO1 had a distance of 276 cm, and MCAO2 had a distance of 1051 (p=0.0015). The latency to target was 13.3 seconds for WT, 27.9 seconds for MCAO1, and 87.9 seconds for MCAO2 (p=0.0007). Prospero homeobox 1 (Prox1) was most highly expressed in MCAO2 (p=0.0004). Doublecortin (Dcx) was most highly expressed in MCAO2 (p<0.0001). CONCLUSION The study demonstrated that histological damage to neural cells and changes in brain mRNA expression were associated with behavioral impairment after ischemic stroke. Prox1 and Dcx may be biomarkers of neural damage associated with long-term cognitive decline, and increased expression at the mRNA level was consistent with neural damage and long-term cognitive dysfunction.
Collapse
Affiliation(s)
- Dong-Hun Lee
- Department of Neurosurgery, Soonchunhyang University Cheonan Hospital, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Eun Chae Lee
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang-Won Park
- Department of Neurosurgery, Soonchunhyang University Cheonan Hospital, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Ji young Lee
- Department of Neurosurgery, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kee-Pyo Kim
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jae Sang Oh
- Department of Neurosurgery, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
11
|
Zhi X, Wu F, Qian J, Ochiai Y, Lian G, Malagola E, Chen D, Ryeom SW, Wang TC. Nociceptive neurons interact directly with gastric cancer cells via a CGRP/Ramp1 axis to promote tumor progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583209. [PMID: 38496544 PMCID: PMC10942283 DOI: 10.1101/2024.03.04.583209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Cancer cells have been shown to exploit neurons to modulate their survival and growth, including through establishment of neural circuits within the central nervous system (CNS) 1-3 . Here, we report a distinct pattern of cancer-nerve interactions between the peripheral nervous system (PNS) and gastric cancer (GC). In multiple GC mouse models, nociceptive nerves demonstrated the greatest degree of nerve expansion in an NGF-dependent manner. Neural tracing identified CGRP+ peptidergic neurons as the primary gastric sensory neurons. Three-dimensional co-culture models showed that sensory neurons directly connect with gastric cancer spheroids through synapse-like structures. Chemogenetic activation of sensory neurons induced the release of calcium into the cytoplasm of cancer cells, promoting tumor growth and metastasis. Pharmacological ablation of sensory neurons or treatment with CGRP inhibitors suppressed tumor growth and extended survival. Depolarization of gastric tumor membranes through in vivo optogenetic activation led to enhanced calcium flux in nodose ganglia and CGRP release, defining a cancer cell-peptidergic neuronal circuit. Together, these findings establish the functional connectivity between cancer and sensory neurons, identifying this pathway as a potential therapeutic target.
Collapse
|
12
|
Hu L, Zhang Y, Guo L, Zhong H, Xie L, Zhou J, Liao C, Yao H, Fang J, Liu H, Zhang C, Zhang H, Zhu X, Luo M, von Kriegsheim A, Li B, Luo W, Zhang X, Chen X, Mendell JT, Xu L, Kapur P, Baldwin AS, Brugarolas J, Zhang Q. Kinome-wide siRNA screen identifies a DCLK2-TBK1 oncogenic signaling axis in clear cell renal cell carcinoma. Mol Cell 2024; 84:776-790.e5. [PMID: 38211588 PMCID: PMC10922811 DOI: 10.1016/j.molcel.2023.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/23/2023] [Accepted: 12/10/2023] [Indexed: 01/13/2024]
Abstract
TANK-binding kinase 1 (TBK1) is a potential therapeutic target in multiple cancers, including clear cell renal cell carcinoma (ccRCC). However, targeting TBK1 in clinical practice is challenging. One approach to overcome this challenge would be to identify an upstream TBK1 regulator that could be targeted therapeutically in cancer specifically. In this study, we perform a kinome-wide small interfering RNA (siRNA) screen and identify doublecortin-like kinase 2 (DCLK2) as a TBK1 regulator in ccRCC. DCLK2 binds to and directly phosphorylates TBK1 on Ser172. Depletion of DCLK2 inhibits anchorage-independent colony growth and kidney tumorigenesis in orthotopic xenograft models. Conversely, overexpression of DCLK2203, a short isoform that predominates in ccRCC, promotes ccRCC cell growth and tumorigenesis in vivo. Mechanistically, DCLK2203 elicits its oncogenic signaling via TBK1 phosphorylation and activation. Taken together, these results suggest that DCLK2 is a TBK1 activator and potential therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Lianxin Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yanfeng Zhang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lei Guo
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hua Zhong
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ling Xie
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jin Zhou
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chengheng Liao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hongwei Yao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Fang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hongyi Liu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cheng Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hui Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoqiang Zhu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maowu Luo
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alex von Kriegsheim
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Bufan Li
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Weibo Luo
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xuewu Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Payal Kapur
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Albert S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - James Brugarolas
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
13
|
Hong E, Tian F, Glynn C, Tsekov S, Huang S, Zhou S, He Z, Rao S, Wang Q. Biologically Driven In Vivo Occlusion Design Provides a Reliable Experimental Glaucoma Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576306. [PMID: 38328239 PMCID: PMC10849511 DOI: 10.1101/2024.01.18.576306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Fluid flow transport through the trabecular meshwork tissues is a major regulator of intraocular pressure (IOP) modulation in healthy and glaucomatous individuals. Microbead occlusion models of ocular hypertension regulate aqueous humor drainage to induce high IOP to allow for in vivo study of pressure-related glaucomatous pathology. However, the reliability and application of current injectable microbeads are hindered by inadequate design of the beads-tissue interfaces to maintain a stable IOP elevation over the long term. Considering the graded, porous architecture and fluid transport of the trabecular meshwork, we developed a tailored, injectable "viscobeads" technique, which induced a sustained elevation of IOP for at least 8 weeks. These composite viscobeads contain a non-degradable polystyrene (PS) core for structural support and a biodegradable polylactic-co-glycolic acid (PLGA) viscoelastic surface. This approach enhances the obstruction of aqueous humor drainage through heterogeneous sizes of trabecular meshwork fenestrations and reliably modulates the magnitude and duration of ocular hypertension. In a mouse model, a single viscobeads injection resulted in sustained IOP elevation (average 21.4±1.39 mm Hg), leading to a 34% retinal ganglion cell (RGC) loss by 56 days. In an earlier stage of glaucoma progression, we conducted non-invasive electroretinography (ERG) recording and revealed glaucomatous progression by analyzing high-frequency oscillatory potentials. To further explore the application of the viscobeads glaucoma models, we assayed a series of genes through adeno-associated virus (AAV)-mediated screening in mice and assessed the impact of genetic manipulation on RGC survivals. CRISPR mediated disruption of the genes, PTEN, ATF3 and CHOP enhanced RGC survival while LIN 28 disruption negatively impacted RGC survival. This biologically driven viscobeads design provides an accessible approach to investigate chronic intraocular hypertension and glaucoma-like neurodegeneration and ultimately tenders the opportunity to evaluate genetic and pharmacological therapeutics.
Collapse
|
14
|
Ye L, Liu B, Huang J, Zhao X, Wang Y, Xu Y, Wang S. DCLK1 and its oncogenic functions: A promising therapeutic target for cancers. Life Sci 2024; 336:122294. [PMID: 38007147 DOI: 10.1016/j.lfs.2023.122294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023]
Abstract
Doublecortin-like kinase 1 (DCLK1), a significant constituent of the protein kinase superfamily and the doublecortin family, has been recognized as a prooncogenic factor that exhibits a strong association with the malignant progression and clinical prognosis of various cancers. DCLK1 serves as a stem cell marker that governs tumorigenesis, tumor cell reprogramming, and epithelial-mesenchymal transition. Multiple studies have indicated the capable of DCLK1 in regulating the DNA damage response and facilitating DNA damage repair. Additionally, DCLK1 is involved in the regulation of the immune microenvironment and the promotion of tumor immune evasion. Recently, DCLK1 has emerged as a promising therapeutic target for a multitude of cancers. Several small-molecule inhibitors of DCLK1 have been identified. Nevertheless, the biological roles of DCLK1 are mainly ambiguous, particularly with the disparities between its α- and β-form transcripts in the malignant progression of cancers, which impedes the development of more precisely targeted drugs. This article focuses on tumor stem cells, tumor epithelial-mesenchymal transition, the DNA damage response, and the tumor microenvironment to provide a comprehensive overview of the association between DCLK1 and tumor malignant progression, address unsolved questions and current challenges, and project future directions for targeting DCLK1 for the diagnosis and treatment of cancers.
Collapse
Affiliation(s)
- Liu Ye
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Beibei Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jingling Huang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xiaolin Zhao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yuan Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yungen Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Shuping Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
15
|
Chen D, Sun YY, Zhou LY, Han X, Yang S, Hong FY, Yuan Y, Wu XH, Huang GH, Cheng YC, Huang J, Feng DF. Knockdown of Porf-2 restores visual function after optic nerve crush injury. Cell Death Dis 2023; 14:570. [PMID: 37640747 PMCID: PMC10462692 DOI: 10.1038/s41419-023-06087-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
Retinal ganglion cells (RGCs), the sole output neurons in the eyes, are vulnerable to diverse insults in many pathological conditions, which can lead to permanent vision dysfunction. However, the molecular and cellular mechanisms that contribute to protecting RGCs and their axons from injuries are not completely known. Here, we identify that Porf-2, a member of the Rho GTPase activating protein gene group, is upregulated in RGCs after optic nerve crush. Knockdown of Porf-2 protects RGCs from apoptosis and promotes long-distance optic nerve regeneration after crush injury in both young and aged mice in vivo. In vitro, we find that inhibition of Porf-2 induces axon growth and growth cone formation in retinal explants. Inhibition of Porf-2 provides long-term and post-injury protection to RGCs and eventually promotes the recovery of visual function after crush injury in mice. These findings reveal a neuroprotective impact of the inhibition of Porf-2 on RGC survival and axon regeneration after optic nerve injury, providing a potential therapeutic strategy for vision restoration in patients with traumatic optic neuropathy.
Collapse
Affiliation(s)
- Di Chen
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China
| | - Yi-Yu Sun
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Lai-Yang Zhou
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Xu Han
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200030, China
| | - Shuo Yang
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Fei-Yang Hong
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuan Yuan
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiao-Hua Wu
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guo-Hui Huang
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China
| | - Yuan-Chi Cheng
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Ju Huang
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Dong-Fu Feng
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China.
| |
Collapse
|
16
|
Zhu Y, Luan C, Gong L, Gu Y, Wang X, Sun H, Chen Z, Zhou Q, Liu C, Shan Q, Gu X, Zhou S. SnRNA-seq reveals the heterogeneity of spinal ventral horn and mechanism of motor neuron axon regeneration. iScience 2023; 26:107264. [PMID: 37502257 PMCID: PMC10368823 DOI: 10.1016/j.isci.2023.107264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/02/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Spinal motor neurons, the distinctive neurons of the central nervous system, extend into the peripheral nervous system and have outstanding ability of axon regeneration after injury. Here, we explored the heterogeneity of spinal ventral horn cells after rat sciatic nerve crush via single-nuclei RNA sequencing. Interestingly, regeneration mainly occurred in a Sncg+ and Anxa2+ motor neuron subtype (MN2) surrounded by a newly emerged microglia subtype (Mg6) after injury. Subsequently, microglia depletion slowed down the regeneration of sciatic nerve. OPCs were also involved into the regeneration process. Knockdown of Cacna2d2 in vitro and systemic blocking of Cacna2d2 in vivo improved the axon growth ability, hinting us the importance of Ca2+. Ultimately, we proposed three possible phases of motor neuron axon regeneration: preparation stage, early regeneration stage, and regeneration stage. Taken together, our study provided a resource for deciphering the underlying mechanism of motor neuron axon regeneration in a single cell dimension.
Collapse
Affiliation(s)
- Ye Zhu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300000, China
| | - Chengcheng Luan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300000, China
| | - Leilei Gong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Yun Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Xinghui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Zhifeng Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Qiang Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Chang Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Qi Shan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300000, China
| | - Xiaosong Gu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300000, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
17
|
Yu J, Lu K, Huang H, Wang J, Yang Q. Feasibility evaluation of hsa_circ_0005480 as an auxiliary diagnostic and prognostic indicator for gastric cancer. Biomark Med 2023; 17:585-595. [PMID: 37902590 DOI: 10.2217/bmm-2023-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023] Open
Abstract
Aim: To explore the potential role of hsa_circ_0005480 as a marker for gastric cancer (GC). Methods: GSE83521, GSE93541 and GSE131414 were combined to screen the most potential circRNAs in GC. The expression of hsa_circ_0005480 was verified in clinical plasma samples and its diagnostic performance was evaluated by receiver operating characteristic (ROC) curve. Results: Hsa_circ_0005480 was upregulated in newly diagnosed GC patients, and performed well in distinguishing GC patients from healthy donors. Combination of hsa_circ_0005480 with traditional laboratory metrics showed increased sensitivity and accuracy than standalone application. In addition, hsa_circ_0005480 expression was low in GC patients treated with chemoradiotherapy or surgery, and decreased dynamically about 1 week postoperatively. Conclusion: Hsa_circ_0005480 may prove to be a marker for auxiliary diagnosis and prognostic evaluation of GC.
Collapse
Affiliation(s)
- Jiajia Yu
- Centre of Clinical Laboratory, First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Kang Lu
- Department of Haematology, Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Huifang Huang
- Centre of Clinical Laboratory, First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Junyi Wang
- Centre of Clinical Laboratory, First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Qian Yang
- Centre of Clinical Laboratory, First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| |
Collapse
|
18
|
Ameen SS, Griem-Krey N, Dufour A, Hossain MI, Hoque A, Sturgeon S, Nandurkar H, Draxler DF, Medcalf RL, Kamaruddin MA, Lucet IS, Leeming MG, Liu D, Dhillon A, Lim JP, Basheer F, Zhu HJ, Bokhari L, Roulston CL, Paradkar PN, Kleifeld O, Clarkson AN, Wellendorph P, Ciccotosto GD, Williamson NA, Ang CS, Cheng HC. N-Terminomic Changes in Neurons During Excitotoxicity Reveal Proteolytic Events Associated With Synaptic Dysfunctions and Potential Targets for Neuroprotection. Mol Cell Proteomics 2023; 22:100543. [PMID: 37030595 PMCID: PMC10199228 DOI: 10.1016/j.mcpro.2023.100543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 02/23/2023] [Accepted: 04/04/2023] [Indexed: 04/10/2023] Open
Abstract
Excitotoxicity, a neuronal death process in neurological disorders such as stroke, is initiated by the overstimulation of ionotropic glutamate receptors. Although dysregulation of proteolytic signaling networks is critical for excitotoxicity, the identity of affected proteins and mechanisms by which they induce neuronal cell death remain unclear. To address this, we used quantitative N-terminomics to identify proteins modified by proteolysis in neurons undergoing excitotoxic cell death. We found that most proteolytically processed proteins in excitotoxic neurons are likely substrates of calpains, including key synaptic regulatory proteins such as CRMP2, doublecortin-like kinase I, Src tyrosine kinase and calmodulin-dependent protein kinase IIβ (CaMKIIβ). Critically, calpain-catalyzed proteolytic processing of these proteins generates stable truncated fragments with altered activities that potentially contribute to neuronal death by perturbing synaptic organization and function. Blocking calpain-mediated proteolysis of one of these proteins, Src, protected against neuronal loss in a rat model of neurotoxicity. Extrapolation of our N-terminomic results led to the discovery that CaMKIIα, an isoform of CaMKIIβ, undergoes differential processing in mouse brains under physiological conditions and during ischemic stroke. In summary, by identifying the neuronal proteins undergoing proteolysis during excitotoxicity, our findings offer new insights into excitotoxic neuronal death mechanisms and reveal potential neuroprotective targets for neurological disorders.
Collapse
Affiliation(s)
- S Sadia Ameen
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Nane Griem-Krey
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Antoine Dufour
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - M Iqbal Hossain
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia; Department of Pharmacology and Toxicology, University of Alabama, Birmingham, Alabama, USA
| | - Ashfaqul Hoque
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Sharelle Sturgeon
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Harshal Nandurkar
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Dominik F Draxler
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Robert L Medcalf
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Mohd Aizuddin Kamaruddin
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Isabelle S Lucet
- Chemical Biology Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Michael G Leeming
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Dazhi Liu
- Department of Neurology, School of Medicine, University of California, Davis, California, USA
| | - Amardeep Dhillon
- Faculty of Health, Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Jet Phey Lim
- Faculty of Health, Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Faiza Basheer
- Faculty of Health, Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Hong-Jian Zhu
- Department of Surgery (Royal Melbourne Hospital), University of Melbourne, Parkville, Victoria, Australia
| | - Laita Bokhari
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Carli L Roulston
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Prasad N Paradkar
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, East Geelong, Victoria, Australia
| | - Oded Kleifeld
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Andrew N Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Giuseppe D Ciccotosto
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia.
| | - Nicholas A Williamson
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia.
| | - Ching-Seng Ang
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia.
| | - Heung-Chin Cheng
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
19
|
He Y, Dai X, Li S, Zhang X, Gong K, Song K, Shi J. Doublecortin-like kinase 2 promotes breast cancer cell invasion and metastasis. Clin Transl Oncol 2023; 25:1102-1113. [PMID: 36477947 DOI: 10.1007/s12094-022-03018-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Doublecortin-like kinase 2 (DCLK2) is a microtubule-associated protein kinase that participates in neural development and maturation; however, whether it is involved in tumour progression remains unclear. METHODS DCLK2 overexpression and knockdown clones were established by lentivirus transfection. Western blot, PCR assays and bioinformatics analyses were conducted to observe the expression of DCLK2. CCK8, colony formation, scratch migration and Transwell assays were used to detect cell proliferation, migration and invasion, respectively. Tumour metastasis was evaluated in vivo using a tail vein metastasis model. Bioinformatics analyses were performed to analyse the expression correlation between DCLK2 and TCF4, or EMT markers in breast cancer. RESULTS Our data indicate that DCLK2 is highly expressed in breast cancer cells and is associated with poor prognosis. Silencing DCLK2 does not affect the proliferation rate of tumour cells, but significantly suppresses migration and invasion as well as lung metastasis processes. Overexpression of DCLK2 can enhance the migratory and invasive abilities of normal breast epithelial cells. Moreover, TCF4/β-catenin inhibitor LF3 downregulates the expression of DCLK2 and inhibits the migration and invasion of breast cancer cells. Furthermore, we found that the downregulation of DCLK2 blocks the epithelial-mesenchymal transition (EMT) process. CONCLUSION Our study indicates that DCLK2 plays an important role in EMT, cell invasion and metastasis, suggesting that DCLK2 is a potential target for the treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Yanling He
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Xiaoqin Dai
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shengnan Li
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- Guangzhou F.Q. PATHOTECH Co., Ltd, Guangzhou, Guangdong, China
| | - Xinyuan Zhang
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Kunxiang Gong
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Kai Song
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Jian Shi
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China.
| |
Collapse
|
20
|
Decourt C, Schaeffer J, Blot B, Paccard A, Excoffier B, Pende M, Nawabi H, Belin S. The RSK2-RPS6 axis promotes axonal regeneration in the peripheral and central nervous systems. PLoS Biol 2023; 21:e3002044. [PMID: 37068088 PMCID: PMC10109519 DOI: 10.1371/journal.pbio.3002044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/21/2023] [Indexed: 04/18/2023] Open
Abstract
Unlike immature neurons and the ones from the peripheral nervous system (PNS), mature neurons from the central nervous system (CNS) cannot regenerate after injury. In the past 15 years, tremendous progress has been made to identify molecules and pathways necessary for neuroprotection and/or axon regeneration after CNS injury. In most regenerative models, phosphorylated ribosomal protein S6 (p-RPS6) is up-regulated in neurons, which is often associated with an activation of the mTOR (mammalian target of rapamycin) pathway. However, the exact contribution of posttranslational modifications of this ribosomal protein in CNS regeneration remains elusive. In this study, we demonstrate that RPS6 phosphorylation is essential for PNS and CNS regeneration in mice. We show that this phosphorylation is induced during the preconditioning effect in dorsal root ganglion (DRG) neurons and that it is controlled by the p90S6 kinase RSK2. Our results reveal that RSK2 controls the preconditioning effect and that the RSK2-RPS6 axis is key for this process, as well as for PNS regeneration. Finally, we demonstrate that RSK2 promotes CNS regeneration in the dorsal column, spinal cord synaptic plasticity, and target innervation leading to functional recovery. Our data establish the critical role of RPS6 phosphorylation controlled by RSK2 in CNS regeneration and give new insights into the mechanisms related to axon growth and circuit formation after traumatic lesion.
Collapse
Affiliation(s)
- Charlotte Decourt
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Julia Schaeffer
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Beatrice Blot
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Antoine Paccard
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Blandine Excoffier
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Mario Pende
- Institut Necker Enfants Malades, INSERM U1151, Université de Paris, Paris, France
| | - Homaira Nawabi
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Stephane Belin
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| |
Collapse
|
21
|
Sha Z, Schijven D, Fisher SE, Francks C. Genetic architecture of the white matter connectome of the human brain. SCIENCE ADVANCES 2023; 9:eadd2870. [PMID: 36800424 PMCID: PMC9937579 DOI: 10.1126/sciadv.add2870] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
White matter tracts form the structural basis of large-scale brain networks. We applied brain-wide tractography to diffusion images from 30,810 adults (U.K. Biobank) and found significant heritability for 90 node-level and 851 edge-level network connectivity measures. Multivariate genome-wide association analyses identified 325 genetic loci, of which 80% had not been previously associated with brain metrics. Enrichment analyses implicated neurodevelopmental processes including neurogenesis, neural differentiation, neural migration, neural projection guidance, and axon development, as well as prenatal brain expression especially in stem cells, astrocytes, microglia, and neurons. The multivariate association profiles implicated 31 loci in connectivity between core regions of the left-hemisphere language network. Polygenic scores for psychiatric, neurological, and behavioral traits also showed significant multivariate associations with structural connectivity, each implicating distinct sets of brain regions with trait-relevant functional profiles. This large-scale mapping study revealed common genetic contributions to variation in the structural connectome of the human brain.
Collapse
Affiliation(s)
- Zhiqiang Sha
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | - Dick Schijven
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | - Simon E. Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
22
|
Zheng B, Tuszynski MH. Regulation of axonal regeneration after mammalian spinal cord injury. Nat Rev Mol Cell Biol 2023; 24:396-413. [PMID: 36604586 DOI: 10.1038/s41580-022-00562-y] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 01/06/2023]
Abstract
One hundred years ago, Ramón y Cajal, considered by many as the founder of modern neuroscience, stated that neurons of the adult central nervous system (CNS) are incapable of regenerating. Yet, recent years have seen a tremendous expansion of knowledge in the molecular control of axon regeneration after CNS injury. We now understand that regeneration in the adult CNS is limited by (1) a failure to form cellular or molecular substrates for axon attachment and elongation through the lesion site; (2) environmental factors, including inhibitors of axon growth associated with myelin and the extracellular matrix; (3) astrocyte responses, which can both limit and support axon growth; and (4) intraneuronal mechanisms controlling the establishment of an active cellular growth programme. We discuss these topics together with newly emerging hypotheses, including the surprising finding from transcriptomic analyses of the corticospinal system in mice that neurons revert to an embryonic state after spinal cord injury, which can be sustained to promote regeneration with neural stem cell transplantation. These gains in knowledge are steadily advancing efforts to develop effective treatment strategies for spinal cord injury in humans.
Collapse
Affiliation(s)
- Binhai Zheng
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA. .,VA San Diego Research Service, San Diego, CA, USA.
| | - Mark H Tuszynski
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA. .,VA San Diego Research Service, San Diego, CA, USA.
| |
Collapse
|
23
|
Gruver S, Rata S, Peshkin L, Kirschner MW. Identification of kinases activated by multiple pro-angiogenic growth factors. Front Pharmacol 2023; 13:1022722. [PMID: 36686695 PMCID: PMC9847502 DOI: 10.3389/fphar.2022.1022722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/25/2022] [Indexed: 01/05/2023] Open
Abstract
Antiangiogenic therapy began as an effort to inhibit VEGF signaling, which was thought to be the sole factor driving tumor angiogenesis. It has become clear that there are more pro-angiogenic growth factors that can substitute for VEGF during tumor vascularization. This has led to the development of multi-kinase inhibitors which simultaneously target multiple growth factor receptors. These inhibitors perform better than monotherapies yet to date no multi-kinase inhibitor targets all receptors known to be involved in pro-angiogenic signaling and resistance inevitably occurs. Given the large number of pro-angiogenic growth factors identified, it may be impossible to simultaneously target all pro-angiogenic growth factor receptors. Here we search for kinase targets, some which may be intracellularly localized, that are critical in endothelial cell proliferation irrespective of the growth factor used. We develop a quantitative endothelial cell proliferation assay and combine it with "kinome regression" or KIR, a recently developed method capable of identifying kinases that influence a quantitative phenotype. We report the kinases implicated by KIR and provide orthogonal evidence of their importance in endothelial cell proliferation. Our approach may point to a new strategy to develop a more complete anti-angiogenic blockade.
Collapse
Affiliation(s)
- Scott Gruver
- Department of Systems Biology, Harvard University Medical School, Boston, MA, United States
| | - Scott Rata
- Department of Systems Biology, Harvard University Medical School, Boston, MA, United States
| | - Leonid Peshkin
- Department of Systems Biology, Harvard University Medical School, Boston, MA, United States
| | - Marc W Kirschner
- Department of Systems Biology, Harvard University Medical School, Boston, MA, United States
| |
Collapse
|
24
|
Restoring After Central Nervous System Injuries: Neural Mechanisms and Translational Applications of Motor Recovery. Neurosci Bull 2022; 38:1569-1587. [DOI: 10.1007/s12264-022-00959-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/29/2022] [Indexed: 11/06/2022] Open
Abstract
AbstractCentral nervous system (CNS) injuries, including stroke, traumatic brain injury, and spinal cord injury, are leading causes of long-term disability. It is estimated that more than half of the survivors of severe unilateral injury are unable to use the denervated limb. Previous studies have focused on neuroprotective interventions in the affected hemisphere to limit brain lesions and neurorepair measures to promote recovery. However, the ability to increase plasticity in the injured brain is restricted and difficult to improve. Therefore, over several decades, researchers have been prompted to enhance the compensation by the unaffected hemisphere. Animal experiments have revealed that regrowth of ipsilateral descending fibers from the unaffected hemisphere to denervated motor neurons plays a significant role in the restoration of motor function. In addition, several clinical treatments have been designed to restore ipsilateral motor control, including brain stimulation, nerve transfer surgery, and brain–computer interface systems. Here, we comprehensively review the neural mechanisms as well as translational applications of ipsilateral motor control upon rehabilitation after CNS injuries.
Collapse
|
25
|
Guidance landscapes unveiled by quantitative proteomics to control reinnervation in adult visual system. Nat Commun 2022; 13:6040. [PMID: 36229455 PMCID: PMC9561644 DOI: 10.1038/s41467-022-33799-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
In the injured adult central nervous system (CNS), activation of pro-growth molecular pathways in neurons leads to long-distance regeneration. However, most regenerative fibers display guidance defects, which prevent reinnervation and functional recovery. Therefore, the molecular characterization of the proper target regions of regenerative axons is essential to uncover the modalities of adult reinnervation. In this study, we use mass spectrometry (MS)-based quantitative proteomics to address the proteomes of major nuclei of the adult visual system. These analyses reveal that guidance-associated molecules are expressed in adult visual targets. Moreover, we show that bilateral optic nerve injury modulates the expression of specific proteins. In contrast, the expression of guidance molecules remains steady. Finally, we show that regenerative axons are able to respond to guidance cues ex vivo, suggesting that these molecules possibly interfere with brain target reinnervation in adult. Using a long-distance regeneration model, we further demonstrate that the silencing of specific guidance signaling leads to rerouting of regenerative axons in vivo. Altogether, our results suggest ways to modulate axon guidance of regenerative neurons to achieve circuit repair in adult.
Collapse
|
26
|
Au NPB, Kumar G, Asthana P, Gao F, Kawaguchi R, Chang RCC, So KF, Hu Y, Geschwind DH, Coppola G, Ma CHE. Clinically relevant small-molecule promotes nerve repair and visual function recovery. NPJ Regen Med 2022; 7:50. [PMID: 36182946 PMCID: PMC9526721 DOI: 10.1038/s41536-022-00233-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 07/01/2022] [Indexed: 12/01/2022] Open
Abstract
Adult mammalian injured axons regenerate over short-distance in the peripheral nervous system (PNS) while the axons in the central nervous system (CNS) are unable to regrow after injury. Here, we demonstrated that Lycium barbarum polysaccharides (LBP), purified from Wolfberry, accelerated long-distance axon regeneration after severe peripheral nerve injury (PNI) and optic nerve crush (ONC). LBP not only promoted intrinsic growth capacity of injured neurons and function recovery after severe PNI, but also induced robust retinal ganglion cell (RGC) survival and axon regeneration after ONC. By using LBP gene expression profile signatures to query a Connectivity map database, we identified a Food and Drug Administration (FDA)-approved small-molecule glycopyrrolate, which promoted PNS axon regeneration, RGC survival and sustained CNS axon regeneration, increased neural firing in the superior colliculus, and enhanced visual target re-innervations by regenerating RGC axons leading to a partial restoration of visual function after ONC. Our study provides insights into repurposing of FDA-approved small molecule for nerve repair and function recovery.
Collapse
Affiliation(s)
- Ngan Pan Bennett Au
- grid.35030.350000 0004 1792 6846Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Gajendra Kumar
- grid.35030.350000 0004 1792 6846Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Pallavi Asthana
- grid.35030.350000 0004 1792 6846Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Fuying Gao
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Riki Kawaguchi
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Raymond Chuen Chung Chang
- grid.194645.b0000000121742757Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR ,grid.194645.b0000000121742757State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Kwok Fai So
- grid.194645.b0000000121742757State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR ,grid.194645.b0000000121742757Department of Ophthalmology, The University of Hong Kong, Pokfulam, Hong Kong ,grid.258164.c0000 0004 1790 3548Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yang Hu
- grid.168010.e0000000419368956Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, USA
| | - Daniel H. Geschwind
- grid.19006.3e0000 0000 9632 6718Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA ,grid.19006.3e0000 0000 9632 6718Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Giovanni Coppola
- grid.19006.3e0000 0000 9632 6718Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA ,grid.19006.3e0000 0000 9632 6718Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Chi Him Eddie Ma
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR.
| |
Collapse
|
27
|
Romaus-Sanjurjo D, Saikia JM, Kim HJ, Tsai KM, Le GQ, Zheng B. Overexpressing eukaryotic elongation factor 1 alpha (eEF1A) proteins to promote corticospinal axon repair after injury. Cell Death Discov 2022; 8:390. [PMID: 36123349 PMCID: PMC9485247 DOI: 10.1038/s41420-022-01186-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/08/2022] Open
Abstract
Although protein synthesis is hypothesized to have a pivotal role in axonal repair after central nervous system (CNS) injury, the role of core components of the protein synthesis machinery has not been examined. Notably, some elongation factors possess non-canonical functions that may further impact axonal repair. Here, we examined whether overexpressing eukaryotic elongation factor 1 alpha (eEF1A) proteins enhances the collateral sprouting of corticospinal tract (CST) neurons after unilateral pyramidotomy, along with the underlying molecular mechanisms. We found that overexpressing eEF1A proteins in CST neurons increased the levels of pS6, an indicator for mTOR activity, but not pSTAT3 and pAKT levels, in neuronal somas. Strikingly, overexpressing eEF1A2 alone, but neither eEF1A1 alone nor both factors simultaneously, increased protein synthesis and actin rearrangement in CST neurons. While eEF1A1 overexpression only slightly enhanced CST sprouting after pyramidotomy, eEF1A2 overexpression substantially enhanced this sprouting. Surprisingly, co-overexpression of both eEF1A1 and eEF1A2 led to a sprouting phenotype similar to wild-type controls, suggesting an antagonistic effect of overexpressing both proteins. These data provide the first evidence that overexpressing a core component of the translation machinery, eEF1A2, enhances CST sprouting, likely by a combination of increased protein synthesis, mTOR signaling and actin cytoskeleton rearrangement.
Collapse
Affiliation(s)
- Daniel Romaus-Sanjurjo
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratories (LINCs), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Junmi M Saikia
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Hugo J Kim
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kristen M Tsai
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Geneva Q Le
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Binhai Zheng
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
- VA San Diego Research Service, San Diego, CA, 92161, USA.
| |
Collapse
|
28
|
Tian F, Cheng Y, Zhou S, Wang Q, Monavarfeshani A, Gao K, Jiang W, Kawaguchi R, Wang Q, Tang M, Donahue R, Meng H, Zhang Y, Jacobi A, Yan W, Yin J, Cai X, Yang Z, Hegarty S, Stanicka J, Dmitriev P, Taub D, Zhu J, Woolf CJ, Sanes JR, Geschwind DH, He Z. Core transcription programs controlling injury-induced neurodegeneration of retinal ganglion cells. Neuron 2022; 110:2607-2624.e8. [PMID: 35767995 PMCID: PMC9391318 DOI: 10.1016/j.neuron.2022.06.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/10/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023]
Abstract
Regulatory programs governing neuronal death and axon regeneration in neurodegenerative diseases remain poorly understood. In adult mice, optic nerve crush (ONC) injury by severing retinal ganglion cell (RGC) axons results in massive RGC death and regenerative failure. We performed an in vivo CRISPR-Cas9-based genome-wide screen of 1,893 transcription factors (TFs) to seek repressors of RGC survival and axon regeneration following ONC. In parallel, we profiled the epigenetic and transcriptional landscapes of injured RGCs by ATAC-seq and RNA-seq to identify injury-responsive TFs and their targets. These analyses converged on four TFs as critical survival regulators, of which ATF3/CHOP preferentially regulate pathways activated by cytokines and innate immunity and ATF4/C/EBPγ regulate pathways engaged by intrinsic neuronal stressors. Manipulation of these TFs protects RGCs in a glaucoma model. Our results reveal core transcription programs that transform an initial axonal insult into a degenerative process and suggest novel strategies for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Feng Tian
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Yuyan Cheng
- Departments of Neurology, Psychiatry and Human Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095-1761, USA
| | - Songlin Zhou
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Qianbin Wang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Aboozar Monavarfeshani
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Kun Gao
- Departments of Neurology, Psychiatry and Human Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095-1761, USA
| | - Weiqian Jiang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Riki Kawaguchi
- Departments of Neurology, Psychiatry and Human Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095-1761, USA
| | - Qing Wang
- Departments of Neurology, Psychiatry and Human Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095-1761, USA
| | - Mingjun Tang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Ryan Donahue
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Huyan Meng
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Yu Zhang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Anne Jacobi
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Wenjun Yan
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Jiani Yin
- Departments of Neurology, Psychiatry and Human Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095-1761, USA
| | - Xinyi Cai
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Zhiyun Yang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Shane Hegarty
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Joanna Stanicka
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Phillip Dmitriev
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Daniel Taub
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Junjie Zhu
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Joshua R Sanes
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| | - Daniel H Geschwind
- Departments of Neurology, Psychiatry and Human Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095-1761, USA.
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Li L, Fang F, Feng X, Zhuang P, Huang H, Liu P, Liu L, Xu AZ, Qi LS, Cong L, Hu Y. Single-cell transcriptome analysis of regenerating RGCs reveals potent glaucoma neural repair genes. Neuron 2022; 110:2646-2663.e6. [PMID: 35952672 PMCID: PMC9391304 DOI: 10.1016/j.neuron.2022.06.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/05/2022] [Accepted: 06/24/2022] [Indexed: 12/17/2022]
Abstract
Axon regeneration holds great promise for neural repair of CNS axonopathies, including glaucoma. Pten deletion in retinal ganglion cells (RGCs) promotes potent optic nerve regeneration, but only a small population of Pten-null RGCs are actually regenerating RGCs (regRGCs); most surviving RGCs (surRGCs) remain non-regenerative. Here, we developed a strategy to specifically label and purify regRGCs and surRGCs, respectively, from the same Pten-deletion mice after optic nerve crush, in which they differ only in their regeneration capability. Smart-Seq2 single-cell transcriptome analysis revealed novel regeneration-associated genes that significantly promote axon regeneration. The most potent of these, Anxa2, acts synergistically with its ligand tPA in Pten-deletion-induced axon regeneration. Anxa2, its downstream effector ILK, and Mpp1 dramatically protect RGC somata and axons and preserve visual function in a clinically relevant model of glaucoma, demonstrating the exciting potential of this innovative strategy to identify novel effective neural repair candidates.
Collapse
Affiliation(s)
- Liang Li
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Fang Fang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xue Feng
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Pei Zhuang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Haoliang Huang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Pingting Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Liang Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Adam Z Xu
- Saratoga High School, Saratoga, CA 95070, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Stanford ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Le Cong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA 94305, USA
| | - Yang Hu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA.
| |
Collapse
|
30
|
Lin S, Gao W, Zhu C, Lou Q, Ye C, Ren Y, Mehmood R, Huang B, Nan K. Efficiently suppress of ferroptosis using deferoxamine nanoparticles as a new method for retinal ganglion cell protection after traumatic optic neuropathy. BIOMATERIALS ADVANCES 2022; 138:212936. [PMID: 35913229 DOI: 10.1016/j.bioadv.2022.212936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/30/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Traumatic optic neuropathy (TON) is the major contributor to optic nerve damage, where the retinal ganglion cells (RGCs) are substantially lost. However, the underlying pathological mechanisms for these conditions remain largely elusive. Present work conducted a study on TON rat model, where the iron-dependent cyclooxygenase-2 (COX-2) overexpression and lipid peroxidation were observed in RGCs, suggesting ferroptosis, an iron-dependent non-apoptotic cell death, is involved in TON-induced death of RGCs. Hence, the newly formulated hyaluronic acid (HA)-based deferoxamine (DFO) nanoparticles (DFO-NPs) were intravitreally administrated in the rat model. It was hypothesized that the effective delivery of DFO, iron chelator, to the RGCs might rescue RGC ferroptosis from TON-induced injury. Also, since DFO is poor in bioavailability and of very short half-life in vivo, its safe and efficient intravitreal delivery is critical. Therefore, DFO-NPs were prepared by chemical grafting DFO onto HA molecules, and then crosslinking them in microemulsion bubbles for nanoparticles formulation. The nanoparticles were highly accumulated around the ganglionic cells and DFO uptake was increased in RGCs, accompanied by the significantly inhibited the overexpression of COX-2 and inactivation of glutathione peroxidase 4 (GPX4). These results indicate that DFO-NPs acted as an effective ferroptosis inhibitor, for the prevention of TON-induced RGC death. The current study provides new insights into the underlying mechanism of TON-induced RGC death, which may help to explore a novel strategy for the treatment of TON.
Collapse
Affiliation(s)
- Sen Lin
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; School of Biomedical and Engineering, Wenzhou Medical University, Wenzhou 325027, China.
| | - Wa Gao
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Tianjin Medical University Eye Hospital and Institute, Tianjin 300384, PR China
| | - Chenchen Zhu
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Qi Lou
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Cong Ye
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; School of Biomedical and Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Yueping Ren
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Rashid Mehmood
- School of Materials Science and Engineering, UNSW Sydney, High Street, Building E10, Kensington, NSW 2052, Australia; Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Corner Botany & High Streets, Kensington, NSW 2052, Australia
| | - Baoshan Huang
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; School of Biomedical and Engineering, Wenzhou Medical University, Wenzhou 325027, China.
| | - Kaihui Nan
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; School of Biomedical and Engineering, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
31
|
Middelhoff M, Valenti G, Tomassoni L, Ochiai Y, Belin B, Takahashi R, Malagola E, Nienhüser H, Finlayson M, Hayakawa Y, Zamechek LB, Renz BW, Westphalen CB, Quante M, Margolis KG, Sims PA, Laise P, Califano A, Rao M, Gershon MD, Wang TC. Adult enteric Dclk1-positive glial and neuronal cells reveal distinct responses to acute intestinal injury. Am J Physiol Gastrointest Liver Physiol 2022; 322:G583-G597. [PMID: 35319286 PMCID: PMC9109794 DOI: 10.1152/ajpgi.00244.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 01/31/2023]
Abstract
Intestinal ganglionic cells in the adult enteric nervous system (ENS) are continually exposed to stimuli from the surrounding microenvironment and need at times to respond to disturbed homeostasis following acute intestinal injury. The kinase DCLK1 and intestinal Dclk1-positive cells have been reported to contribute to intestinal regeneration. Although Dclk1-positive cells are present in adult enteric ganglia, their cellular identity and response to acute injury have not been investigated in detail. Here, we reveal the presence of distinct Dclk1-tdTom+/CD49b+ glial-like and Dclk1-tdTom+/CD49b- neuronal cell types in adult myenteric ganglia. These ganglionic cells demonstrate distinct patterns of tracing over time yet show a similar expansion in response to elevated serotonergic signaling. Interestingly, Dclk1-tdTom+ glial-like and neuronal cell types appear resistant to acute irradiation injury-mediated cell death. Moreover, Dclk1-tdTom+/CD49b+ glial-like cells show prominent changes in gene expression profiles induced by injury, in contrast to Dclk1-tdTom+/CD49b- neuronal cell types. Finally, subsets of Dclk1-tdTom+/CD49b+ glial-like cells demonstrate prominent overlap with Nestin and p75NTR and strong responses to elevated serotonergic signaling or acute injury. These findings, together with their role in early development and their neural crest-like gene expression signature, suggest the presence of reserve progenitor cells in the adult Dclk1 glial cell lineage.NEW & NOTEWORTHY The kinase DCLK1 identifies glial-like and neuronal cell types in adult murine enteric ganglia, which resist acute injury-mediated cell death yet differ in their cellular response to injury. Interestingly, Dclk1-labeled glial-like cells show prominent transcriptional changes in response to injury and harbor features reminiscent of previously described enteric neural precursor cells. Our data thus add to recently emerging evidence of reserve cellular plasticity in the adult enteric nervous system.
Collapse
Affiliation(s)
- Moritz Middelhoff
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Giovanni Valenti
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Lorenzo Tomassoni
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Yosuke Ochiai
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Bryana Belin
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Ryota Takahashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Henrik Nienhüser
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Finlayson
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Leah B Zamechek
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Bernhard W Renz
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Munich, Germany
| | - C Benedikt Westphalen
- Department of Internal Medicine, Comprehensive Cancer Center, Hospital of the University of Munich, Munich, Germany
| | - Michael Quante
- Klinik für Innere Medizin II, Gastrointestinale Onkologie, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Kara G Margolis
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York
| | - Peter A Sims
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, New York, New York
- Department of Biochemistry and Molecular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York
| | - Pasquale Laise
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, New York, New York
- DarwinHealth Inc., New York, New York
| | - Andrea Califano
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Meenakshi Rao
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children´s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael D Gershon
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| |
Collapse
|
32
|
Amygdala DCX and blood Cdk14 are implicated as cross-species indicators of individual differences in fear, extinction, and resilience to trauma exposure. Mol Psychiatry 2022; 27:956-966. [PMID: 34728797 PMCID: PMC9058038 DOI: 10.1038/s41380-021-01353-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 09/18/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022]
Abstract
Doublecortin (DCX) has long been implicated in, and employed as a marker for, neurogenesis, yet little is known about its function in non-neurogenic brain regions, including the amygdala. This study sought first to explore, in rodents, whether fear learning and extinction modulate amygdala DCX expression and, second, to assess the utility of peripheral DCX correlates as predictive biomarkers of trauma response in rodents and humans. Pavlovian conditioning was found to alter DCX protein levels in mice 24 h later, resulting in higher DCX expression associated with enhanced learning in paradigms examining both the acquisition and extinction of fear (p < 0.001). This, in turn, is associated with differences in freezing on subsequent fear expression tests, and the same relationship between DCX and fear extinction was replicated in rats (p < 0.001), with higher amygdala DCX levels associated with more rapid extinction of fear. RNAseq of amygdala and blood from mice identified 388 amygdala genes that correlated with DCX (q < 0.001) and which gene ontology analyses revealed were significantly over-represented for neurodevelopmental processes. In blood, DCX-correlated genes included the Wnt signaling molecule Cdk14 which was found to predict freezing during both fear acquisition (p < 0.05) and brief extinction protocols (p < 0.001). High Cdk14 measured in blood immediately after testing was also associated with less freezing during fear expression testing (p < 0.01). Finally, in humans, Cdk14 expression in blood taken shortly after trauma was found to predict resilience in males for up to a year post-trauma (p < 0.0001). These data implicate amygdala DCX in fear learning and suggest that Cdk14 may serve as a predictive biomarker of trauma response.
Collapse
|
33
|
Nelke A, García-López S, Martínez-Serrano A, Pereira MP. Multifactoriality of Parkinson's Disease as Explored Through Human Neural Stem Cells and Their Transplantation in Middle-Aged Parkinsonian Mice. Front Pharmacol 2022; 12:773925. [PMID: 35126116 PMCID: PMC8807563 DOI: 10.3389/fphar.2021.773925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is an age-associated neurodegenerative disorder for which there is currently no cure. Cell replacement therapy is a potential treatment for PD; however, this therapy has more clinically beneficial outcomes in younger patients with less advanced PD. In this study, hVM1 clone 32 cells, a line of human neural stem cells, were characterized and subsequently transplanted in middle-aged Parkinsonian mice in order to examine cell replacement therapy as a treatment for PD. In vitro analyses revealed that these cells express standard dopamine-centered markers as well as others associated with mitochondrial and peroxisome function, as well as glucose and lipid metabolism. Four months after the transplantation of the hVM1 clone 32 cells, striatal expression of tyrosine hydroxylase was minimally reduced in all Parkinsonian mice but that of dopamine transporter was decreased to a greater extent in buffer compared to cell-treated mice. Behavioral tests showed marked differences between experimental groups, and cell transplant improved hyperactivity and gait alterations, while in the striatum, astroglial populations were increased in all groups due to age and a higher amount of microglia were found in Parkinsonian mice. In the motor cortex, nonphosphorylated neurofilament heavy was increased in all Parkinsonian mice. Overall, these findings demonstrate that hVM1 clone 32 cell transplant prevented motor and non-motor impairments and that PD is a complex disorder with many influencing factors, thus reinforcing the idea of novel targets for PD treatment that tend to be focused on dopamine and nigrostriatal damage.
Collapse
Affiliation(s)
- Anna Nelke
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Madrid, Spain
- Department of Molecular Biology, Faculty of Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Silvia García-López
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Madrid, Spain
- Department of Molecular Biology, Faculty of Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Martínez-Serrano
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Madrid, Spain
- Department of Molecular Biology, Faculty of Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta P. Pereira
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Madrid, Spain
- Department of Molecular Biology, Faculty of Science, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
34
|
Varadarajan SG, Hunyara JL, Hamilton NR, Kolodkin AL, Huberman AD. Central nervous system regeneration. Cell 2022; 185:77-94. [PMID: 34995518 PMCID: PMC10896592 DOI: 10.1016/j.cell.2021.10.029] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023]
Abstract
Neurons of the mammalian central nervous system fail to regenerate. Substantial progress has been made toward identifying the cellular and molecular mechanisms that underlie regenerative failure and how altering those pathways can promote cell survival and/or axon regeneration. Here, we summarize those findings while comparing the regenerative process in the central versus the peripheral nervous system. We also highlight studies that advance our understanding of the mechanisms underlying neural degeneration in response to injury, as many of these mechanisms represent primary targets for restoring functional neural circuits.
Collapse
Affiliation(s)
| | - John L Hunyara
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Natalie R Hamilton
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alex L Kolodkin
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Andrew D Huberman
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Ophthalmology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
35
|
Pereira Zambalde E, Bayraktar R, Schultz Jucoski T, Ivan C, Rodrigues AC, Mathias C, knutsen E, Silveira de Lima R, Fiori Gradia D, de Souza Fonseca Ribeiro EM, Hannash S, Adrian Calin G, Carvalhode Oliveira J. A novel lncRNA derived from an ultraconserved region: lnc- uc.147, a potential biomarker in luminal A breast cancer. RNA Biol 2021; 18:416-429. [PMID: 34387142 PMCID: PMC8677017 DOI: 10.1080/15476286.2021.1952757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 06/02/2021] [Accepted: 07/04/2021] [Indexed: 02/06/2023] Open
Abstract
The human genome contains 481 ultraconserved regions (UCRs), which are genomic stretches of over 200 base pairs conserved among human, rat, and mouse. The majority of these regions are transcriptionally active (T-UCRs), and several have been found to be differentially expressed in tumours. Some T-UCRs have been functionally characterized, but of those few have been associated to breast cancer (BC). Using TCGA data, we found 302 T-UCRs related to clinical features in BC: 43% were associated with molecular subtypes, 36% with oestrogen-receptor positivity, 17% with HER2 expression, 12% with stage, and 10% with overall survival. The expression levels of 12 T-UCRs were further analysed in a cohort of 82 Brazilian BC patients using RT-qPCR. We found that uc.147 is high expressed in luminal A and B patients. For luminal A, a subtype usually associated with better prognosis, high uc.147 expression was associated with a poor prognosis and suggested as an independent prognostic factor. The lncRNA from uc.147 (lnc-uc.147) is located in the nucleus. Northern blotting results show that uc.147 is a 2,8 kb monoexonic trancript, and its sequence was confirmed by RACE. The silencing of uc.147 increases apoptosis, arrests cell cycle, and reduces cell viability and colony formation in BC cell lines. Additionally, we identifed 19 proteins that interact with lnc-uc.147 through mass spectrometry and demonstrated a high correlation of lnc-uc.147 with the neighbour gene expression and miR-18 and miR-190b. This is the first study to analyse the expression of all T-UCRs in BC and to functionally assess the lnc-uc.147.
Collapse
Affiliation(s)
- Erika Pereira Zambalde
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Recep Bayraktar
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Tayana Schultz Jucoski
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | - Cristina Ivan
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ana Carolina Rodrigues
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | - Carolina Mathias
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | - Erik knutsen
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
- Department of Medical Biology, Faculty of Health Sciences, UiT - the Arctic University of Norway, Tromsø, Norway
| | | | - Daniela Fiori Gradia
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | | | - Samir Hannash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George Adrian Calin
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaqueline Carvalhode Oliveira
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
36
|
Growth Hormone (GH) Enhances Endogenous Mechanisms of Neuroprotection and Neuroplasticity after Oxygen and Glucose Deprivation Injury (OGD) and Reoxygenation (OGD/R) in Chicken Hippocampal Cell Cultures. Neural Plast 2021; 2021:9990166. [PMID: 34567109 PMCID: PMC8461227 DOI: 10.1155/2021/9990166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/14/2021] [Indexed: 11/18/2022] Open
Abstract
As a classical growth promoter and metabolic regulator, growth hormone (GH) is involved in development of the central nervous system (CNS). This hormone might also act as a neurotrophin, since GH is able to induce neuroprotection, neurite growth, and synaptogenesis during the repair process that occurs in response to neural injury. After an ischemic insult, the neural tissue activates endogenous neuroprotective mechanisms regulated by local neurotrophins that promote tissue recovery. In this work, we investigated the neuroprotective effects of GH in cultured hippocampal neurons exposed to hypoxia-ischemia injury and further reoxygenation. Hippocampal cell cultures obtained from chick embryos were incubated under oxygen-glucose deprivation (OGD, <5% O2, 1 g/L glucose) conditions for 24 h and simultaneously treated with GH. Then, cells were either collected for analysis or submitted to reoxygenation and normal glucose incubation conditions (OGD/R) for another 24 h, in the presence of GH. Results showed that OGD injury significantly reduced cell survival, the number of cells, dendritic length, and number of neurites, whereas OGD/R stage restored most of those adverse effects. Also, OGD/R increased the mRNA expression of several synaptogenic markers (i.e., NRXN1, NRXN3, NLG1, and GAP43), as well as the growth hormone receptor (GHR). The expression of BDNF, IGF-1, and BMP4 mRNAs was augmented in response to OGD injury, and exposure to OGD/R returned it to normoxic control levels, while the expression of NT-3 increased in both conditions. The addition of GH (10 nM) to hippocampal cultures during OGD reduced apoptosis and induced a significant increase in cell survival, number of cells, and doublecortin immunoreactivity (DCX-IR), above that observed in the OGD/R stage. GH treatment also protected dendrites and neurites during OGD, inducing plastic changes reflected in an increase and complexity of their outgrowths during OGD/R. Furthermore, GH increased the expression of NRXN1, NRXN3, NLG1, and GAP43 after OGD injury. GH also increased the BDNF expression after OGD, but reduced it after OGD/R. Conversely, BMP4 was upregulated by GH after OGD/R. Overall, these results indicate that GH protective actions in the neural tissue may be explained by a synergic combination between its own effect and that of other local neurotrophins regulated by autocrine/paracrine mechanisms, which together accelerate the recovery of tissue damaged by hypoxia-ischemia.
Collapse
|
37
|
Neurotherapeutic Potential of Cervus elaphus Sibericus on Axon Regeneration and Growth Cone Reformation after H 2O 2-Induced Injury in Rat Primary Cortical Neurons. BIOLOGY 2021; 10:biology10090833. [PMID: 34571710 PMCID: PMC8471249 DOI: 10.3390/biology10090833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022]
Abstract
Cervus elaphus sibericus (CES), commonly known as deer antler, has been used as a medicinal herb because of its various pharmacological activities, including its anti-infective, anti-arthritic, anti-allergic, and anti-oxidative properties. However, the precise mechanisms by which CES functions as a potent anti-oxidative agent remain unknown; particularly, the effects of CES on cortical neurons and its neurobiological mechanism have not been examined. We used primary cortical neurons from the embryonic rat cerebral cortex and hydrogen peroxide to induce oxidative stress and damage in neurons. After post-treatment of CES at three concentrations (10, 50, and 200 µg/mL), the influence of CES on the neurobiological mechanism was assessed by immunocytochemistry, flow cytometry, and real-time PCR. CES effectively prevented neuronal death caused by hydrogen peroxide-induced damage by regulating oxidative signaling. In addition, CES significantly induced the expression of brain-derived neurotrophic factor and neurotrophin nerve growth factor, as well as regeneration-associated genes. We also observed newly processing elongated axons after CES treatment under oxidative conditions. In addition, filopodia tips generally do not form a retraction bulb, called swollen endings. Thus, CES shows therapeutic potential for treating neurological diseases by stimulating neuron repair and regeneration.
Collapse
|
38
|
Abstract
The damage or loss of retinal ganglion cells (RGCs) and their axons accounts for the visual functional defects observed after traumatic injury, in degenerative diseases such as glaucoma, or in compressive optic neuropathies such as from optic glioma. By using optic nerve crush injury models, recent studies have revealed the cellular and molecular logic behind the regenerative failure of injured RGC axons in adult mammals and suggested several strategies with translational potential. This review summarizes these findings and discusses challenges for developing clinically applicable neural repair strategies.
Collapse
Affiliation(s)
- Philip R Williams
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Larry I Benowitz
- Laboratories for Neuroscience Research in Neurosurgery, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California 94303, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
39
|
EFA6 in Axon Regeneration, as a Microtubule Regulator and as a Guanine Nucleotide Exchange Factor. Cells 2021; 10:cells10061325. [PMID: 34073530 PMCID: PMC8226579 DOI: 10.3390/cells10061325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
Axon regeneration after injury is a conserved biological process that involves a large number of molecular pathways, including rapid calcium influx at injury sites, retrograde injury signaling, epigenetic transition, transcriptional reprogramming, polarized transport, and cytoskeleton reorganization. Despite the numerous efforts devoted to understanding the underlying cellular and molecular mechanisms of axon regeneration, the search continues for effective target molecules for improving axon regeneration. Although there have been significant historical efforts towards characterizing pro-regenerative factors involved in axon regeneration, the pursuit of intrinsic inhibitors is relatively recent. EFA6 (exchange factor for ARF6) has been demonstrated to inhibit axon regeneration in different organisms. EFA6 inhibition could be a promising therapeutic strategy to promote axon regeneration and functional recovery after axon injury. This review summarizes the inhibitory role on axon regeneration through regulating microtubule dynamics and through affecting ARF6 (ADP-ribosylation factor 6) GTPase-mediated integrin transport.
Collapse
|
40
|
Anderson MA. Targeting Central Nervous System Regeneration with Cell Type Specificity. Neurosurg Clin N Am 2021; 32:397-405. [PMID: 34053727 DOI: 10.1016/j.nec.2021.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There have been tremendous advances in identifying cellular and molecular mechanisms constraining axon growth and strategies have been developed to overcome regenerative failure. However, reproducible and meaningful functional recovery remains elusive. An emerging reason is that neurons possess subtype-specific activation requirements. Much of this evidence comes from studying retinal ganglion cells following optic nerve injury. This review summarizes key neuropathologic events following spinal cord injury, and draws on findings from the optic nerve to suggest how a similar framework may be used to dissect and manipulate the heterogeneous and subtype-specific responses of neurons useful to target for spinal cord injury.
Collapse
Affiliation(s)
- Mark A Anderson
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Féderale de Lausanne (EPFL), Lausanne, Switzerland; Neural Repair Unit, NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| |
Collapse
|
41
|
Łuczkowska K, Sokolowska KE, Taryma-Lesniak O, Pastuszak K, Supernat A, Bybjerg-Grauholm J, Hansen LL, Paczkowska E, Wojdacz TK, Machaliński B. Bortezomib induces methylation changes in neuroblastoma cells that appear to play a significant role in resistance development to this compound. Sci Rep 2021; 11:9846. [PMID: 33972578 PMCID: PMC8110815 DOI: 10.1038/s41598-021-89128-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
The anticancer activity of bortezomib (BTZ) has been increasingly studied in a number of indications and promising results for the use of this treatment have been shown in neuroblastoma. As BTZ treatment is usually administered in cycles, the development of resistance and side effects in patients undergoing therapy with BTZ remains a major challenge for the clinical usage of this compound. Common resistance development also means that certain cells are able to survive BTZ treatment and bypass molecular mechanisms that render BTZ anticancer activity. We studied the methylome of neuroblastoma cells that survived BTZ treatment. Our results indicate that BTZ induces pronounced genome wide methylation changes in cells which recovered from the treatment. Functional analyses of identified methylation changes demonstrated they were involved in key cancer pathology pathways. These changes may allow the cells to bypass the primary anticancer activity of BTZ and develop a treatment resistant and proliferative phenotype. To study whether cells surviving BTZ treatment acquire a proliferative phenotype, we repeatedly treated cells which recovered from the first round of BTZ treatment. The repetitive treatment led to induction of the extraordinary proliferative potential of the cells, that increased with subsequent treatments. As we did not observe similar effects in cells that survived treatment with lenalidomide, and non-treated cells cultured under the same experimental conditions, this phenomenon seems to be BTZ specific. Overall, our results indicate that methylation changes may play major role in the development of BTZ resistance.
Collapse
Affiliation(s)
- Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Katarzyna Ewa Sokolowska
- Independent Clinical Epigenetics Laboratory, Pomeranian Medical University, Unii Lubelskiej 1, 71-252, Szczecin, Poland
| | - Olga Taryma-Lesniak
- Independent Clinical Epigenetics Laboratory, Pomeranian Medical University, Unii Lubelskiej 1, 71-252, Szczecin, Poland
| | - Krzysztof Pastuszak
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland.,Department of Algorithms and Systems Modelling, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Anna Supernat
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Jonas Bybjerg-Grauholm
- Department for Congenital Disorders, Statens Serum Institut, Artillerivej 5, 2300, København S Copenhagen, Denmark
| | - Lise Lotte Hansen
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000, Aarhus, Denmark
| | - Edyta Paczkowska
- Department of General Pathology, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Tomasz K Wojdacz
- Independent Clinical Epigenetics Laboratory, Pomeranian Medical University, Unii Lubelskiej 1, 71-252, Szczecin, Poland. .,Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000, Aarhus, Denmark. .,Aarhus Institute of Advanced Studies, Hoegh-Guldbergs Gade 6B, 8000, Aarhus, Denmark.
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111, Szczecin, Poland.
| |
Collapse
|
42
|
Afanasyeva EA, Gartlgruber M, Ryl T, Decaesteker B, Denecker G, Mönke G, Toprak UH, Florez A, Torkov A, Dreidax D, Herrmann C, Okonechnikov K, Ek S, Sharma AK, Sagulenko V, Speleman F, Henrich KO, Westermann F. Kalirin-RAC controls nucleokinetic migration in ADRN-type neuroblastoma. Life Sci Alliance 2021; 4:e201900332. [PMID: 33658318 PMCID: PMC8017594 DOI: 10.26508/lsa.201900332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The migrational propensity of neuroblastoma is affected by cell identity, but the mechanisms behind the divergence remain unknown. Using RNAi and time-lapse imaging, we show that ADRN-type NB cells exhibit RAC1- and kalirin-dependent nucleokinetic (NUC) migration that relies on several integral components of neuronal migration. Inhibition of NUC migration by RAC1 and kalirin-GEF1 inhibitors occurs without hampering cell proliferation and ADRN identity. Using three clinically relevant expression dichotomies, we reveal that most of up-regulated mRNAs in RAC1- and kalirin-GEF1-suppressed ADRN-type NB cells are associated with low-risk characteristics. The computational analysis shows that, in a context of overall gene set poverty, the upregulomes in RAC1- and kalirin-GEF1-suppressed ADRN-type cells are a batch of AU-rich element-containing mRNAs, which suggests a link between NUC migration and mRNA stability. Gene set enrichment analysis-based search for vulnerabilities reveals prospective weak points in RAC1- and kalirin-GEF1-suppressed ADRN-type NB cells, including activities of H3K27- and DNA methyltransferases. Altogether, these data support the introduction of NUC inhibitors into cancer treatment research.
Collapse
Affiliation(s)
- Elena A Afanasyeva
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Moritz Gartlgruber
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Tatsiana Ryl
- Department of Neurosurgery, University of Duisburg Essen, Essen, Germany
| | - Bieke Decaesteker
- Center for Medical Genetics, Ghent University, and Cancer Research Institute Ghent, Ghent, Belgium
| | - Geertrui Denecker
- Center for Medical Genetics, Ghent University, and Cancer Research Institute Ghent, Ghent, Belgium
| | - Gregor Mönke
- European Molecular Biology Laboratories, Heidelberg, Germany
| | - Umut H Toprak
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Andres Florez
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
- Center for Systems Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Alica Torkov
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Daniel Dreidax
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Carl Herrmann
- Group of Cancer Regulatory Genomics B086, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Konstantin Okonechnikov
- Department of Pediatric Neurooncology, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Sara Ek
- Department of Immunotechnology, CREATE Health, Faculty of Engineering, Lund University, Lund, Sweden
| | - Ashwini Kumar Sharma
- Institute for Pharmacy and Molecular Biotechnology and BioQuant, Heidelberg University, Heidelberg, Germany
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vitaliya Sagulenko
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Frank Speleman
- Center for Medical Genetics, Ghent University, and Cancer Research Institute Ghent, Ghent, Belgium
| | - Kai-Oliver Henrich
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Frank Westermann
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| |
Collapse
|
43
|
Xu D, Wavreil FDM, Waldron A, Yajima M. Functional contribution of DCLKs in sea urchin development. Dev Dyn 2021; 250:1160-1172. [PMID: 33587303 DOI: 10.1002/dvdy.316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Doublecortin-like kinase1 and 2 (DCLKs) are protein Ser/Thr kinases important for neuronal development. More recently, they are also reported to regulate plasticity such as cell proliferation and differentiation of stem cells and cancer cells, but the details of their functions in this biological context are still unclear. With an attempt to reveal the functions of DCLKs in plasticity regulation, we here used the sea urchin embryo that undergoes highly regulative development as an experimental model. RESULTS We found that both the transcripts and the proteins of DCLKs are uniformly present during early embryogenesis and with some enrichment in mesenchymal cells after gastrula stage. Knockdown of DCLKs induced general developmental delay and defects at day 2. Further, the damage on the embryo/larva induced ectopic expression of DCLKs in the ectoderm where the damage was most severe. Under a tumor-prone or -suppressive condition, DCLKs expression was upregulated or downregulated, respectively, after damage. In both cases, the embryos showed severe developmental defects. CONCLUSIONS Taken together, a transient upregulation of DCLKs appears to be involved in a damage response both during normal and abnormal development, and which could result in different phenotypes in a context dependent manner.
Collapse
Affiliation(s)
- Derek Xu
- MCB Department, Brown University, Providence, Rhode Island, USA
| | | | - Ashley Waldron
- MCB Department, Brown University, Providence, Rhode Island, USA
| | - Mamiko Yajima
- MCB Department, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
44
|
Cao T, Wang J, Wu Y, Wang L, Zhang H. Antiglaucoma Potential of β-Glucogallin Is Mediated by Modulating Mitochondrial Responses in Experimentally Induced Glaucoma. Neuroimmunomodulation 2021; 27:142-151. [PMID: 33571990 DOI: 10.1159/000512992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/09/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The use of phytochemicals for the treatment of various bodily ailments has been in practice since ancient days. Even though in practice, scientific studies on the protective effect of β-glucogallin (BG) against glaucoma is limited. OBJECTIVES In the present study, the in vitro glaucoma model (hydrostatic pressure) using PC12 neuronal cells exposed to BG were used to elucidate its protective effects. METHOD The cultured cells were analyzed for the mitochondrial responses, oxidant-antioxidant status, and expression of caveolin-1, ANGPTL7, the glaucoma markers, and cytokines. RESULTS We demonstrated a significant increase in the expression of glial fibrillary acidic protein, ANGPTL7, with altered mitochondrial enzymes in glaucoma cells compared to the control. Moreover, cells predisposed to hydrostatic pressure demonstrated an increase in oxidative stress with augmented (p < 0.01) inflammatory cytokines such as IL-2, CXCR4, IL-6, IL-8, MCP-1, and TNF-α. On the other hand, cells pretreated with BG attenuated the reactive oxygen species levels with improved antioxidant enzymes. Simultaneously, the levels of inflammatory cytokines and ANGPTL7 proteins were found attenuated with restored mitochondrial responses in BG pretreated cells. CONCLUSION Thus, the results of the present study demonstrate that the use of BG on retinal cells against relieving the intraocular pressure may be a promising therapeutic for controlling the disease progression.
Collapse
Affiliation(s)
- Tingting Cao
- Department of Ophthalmology, Cangzhou Central Hospital, Cangzhou, China,
| | - Jun Wang
- Department of Orthopedic, Cangzhou Central Hospital, Cangzhou, China
| | - Yuanyuan Wu
- Department of Tumour, Cangzhou Central Hospital, Cangzhou, China
| | - Lianfeng Wang
- Department of Ophthalmology, Cangzhou Central Hospital, Cangzhou, China
| | - Huiqin Zhang
- Department of Ophthalmology, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
45
|
Belin S, Nawabi H. CNS Disease and Regeneration: When Growing Is Not Enough. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11529-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
46
|
Schaeffer J, Delpech C, Albert F, Belin S, Nawabi H. Adult Mouse Retina Explants: From ex vivo to in vivo Model of Central Nervous System Injuries. Front Mol Neurosci 2020; 13:599948. [PMID: 33324161 PMCID: PMC7723849 DOI: 10.3389/fnmol.2020.599948] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022] Open
Abstract
In mammals, adult neurons fail to regenerate following any insult to adult central nervous system (CNS), which leads to a permanent and irreversible loss of motor and cognitive functions. For a long time, much effort has been deployed to uncover mechanisms of axon regeneration in the CNS. Even if some cases of functional recovery have been reported, there is still a discrepancy regarding the functionality of a neuronal circuit upon lesion. Today, there is a need not only to identify new molecules implicated in adult CNS axon regeneration, but also to decipher the fine molecular mechanisms associated with regeneration failure. Here, we propose to use cultures of adult retina explants to study all molecular and cellular mechanisms that occur during CNS regeneration. We show that adult retinal explant cultures have the advantages to (i) recapitulate all the features observed in vivo, including axon regeneration induced by intrinsic factors, and (ii) be an ex vivo set-up with high accessibility and many downstream applications. Thanks to several examples, we demonstrate that adult explants can be used to address many questions, such as axon guidance, growth cone formation and cytoskeleton dynamics. Using laser guided ablation of a single axon, axonal injury can be performed at a single axon level, which allows to record early and late molecular events that occur after the lesion. Our model is the ideal tool to study all molecular and cellular events that occur during CNS regeneration at a single-axon level, which is currently not doable in vivo. It is extremely valuable to address unanswered questions of neuroprotection and neuroregeneration in the context of CNS lesion and neurodegenerative diseases.
Collapse
|
47
|
Zhang S, Shuai L, Wang D, Huang T, Yang S, Miao M, Liu F, Xu J. Pim-1 Protects Retinal Ganglion Cells by Enhancing Their Regenerative Ability Following Optic Nerve Crush. Exp Neurobiol 2020; 29:249-272. [PMID: 32624507 PMCID: PMC7344373 DOI: 10.5607/en20019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 11/19/2022] Open
Abstract
Provirus integration site Moloney murine leukemia virus (Pim-1) is a proto-oncogene reported to be associated with cell proliferation, differentiation and survival. This study was to explore the neuroprotective role of Pim-1 in a rat model subjected to optic nerve crush (ONC), and discuss its related molecules in improving the intrinsic regeneration ability of retinal ganglion cells (RGCs). Immunofluorescence staining showed that AAV2- Pim-1 infected 71% RGCs and some amacrine cells in the retina. Real-time PCR and Western blotting showed that retina infection with AAV2- Pim-1 up-regulated the Pim-1 mRNA and protein expressions compared with AAV2-GFP group. Hematoxylin-Eosin (HE) staining, γ-synuclein immunohistochemistry, Cholera toxin B (CTB) tracing and TUNEL showed that RGCs transduction with AAV2-Pim-1 prior to ONC promoted the survival of damaged RGCs and decreased cell apoptosis. RITC anterograde labeling showed that Pim-1 overexpression increased axon regeneration and promoted the recovery of visual function by pupillary light reflex and flash visual evoked potential. Western blotting showed that Pim- 1 overexpression up-regulated the expression of Stat3, p-Stat3, Akt1, p-Akt1, Akt2 and p-Akt2, as well as βIII-tubulin, GAP-43 and 4E-BP1, and downregulated the expression of SOCS1 and SOCS3, Cleaved caspase 3, Bad and Bax. These results demonstrate that Pim-1 exerted a neuroprotective effect by promoting nerve regeneration and functional recovery of RGCs. In addition, it enhanced the intrinsic regeneration capacity of RGCs after ONC by activating Stat3, Akt1 and Akt2 pathways, and inhibiting the mitochondrial apoptosis pathways. These findings suggest that Pim-1 may prove to be a potential therapeutic target for the clinical treatment of optic nerve injury.
Collapse
Affiliation(s)
- Shoumei Zhang
- Department of Anatomy, Second Military Medical University, Shanghai 200433, China.,Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Li Shuai
- Department of Health Administration, Second Military Medical University, Shanghai 200433, China
| | - Dong Wang
- Department of Anatomy, Second Military Medical University, Shanghai 200433, China
| | - Tingting Huang
- Department of Anatomy, Second Military Medical University, Shanghai 200433, China
| | - Shengsheng Yang
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai 200433, China
| | - Mingyong Miao
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai 200433, China
| | - Fang Liu
- Department of Anatomy, Second Military Medical University, Shanghai 200433, China
| | - Jiajun Xu
- Department of Anatomy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
48
|
Yang SG, Li CP, Peng XQ, Teng ZQ, Liu CM, Zhou FQ. Strategies to Promote Long-Distance Optic Nerve Regeneration. Front Cell Neurosci 2020; 14:119. [PMID: 32477071 PMCID: PMC7240020 DOI: 10.3389/fncel.2020.00119] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Mammalian retinal ganglion cells (RGCs) in the central nervous system (CNS) often die after optic nerve injury and surviving RGCs fail to regenerate their axons, eventually resulting in irreversible vision loss. Manipulation of a diverse group of genes can significantly boost optic nerve regeneration of mature RGCs by reactivating developmental-like growth programs or suppressing growth inhibitory pathways. By injury of the vision pathway near their brain targets, a few studies have shown that regenerated RGC axons could form functional synapses with targeted neurons but exhibited poor neural conduction or partial functional recovery. Therefore, the functional restoration of eye-to-brain pathways remains a greatly challenging issue. Here, we review recent advances in long-distance optic nerve regeneration and the subsequent reconnecting to central targets. By summarizing our current strategies for promoting functional recovery, we hope to provide potential insights into future exploration in vision reformation after neural injuries.
Collapse
Affiliation(s)
- Shu-Guang Yang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Chang-Ping Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xue-Qi Peng
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhao-Qian Teng
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chang-Mei Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng-Quan Zhou
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.,The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
49
|
Smith TP, Sahoo PK, Kar AN, Twiss JL. Intra-axonal mechanisms driving axon regeneration. Brain Res 2020; 1740:146864. [PMID: 32360100 DOI: 10.1016/j.brainres.2020.146864] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/27/2022]
Abstract
Traumatic injury to the peripheral and central nervous systems very often causes axotomy, where an axon loses connections with its target resulting in loss of function. The axon segments distal to the injury site lose connection with the cell body and degenerate. Axotomized neurons in the periphery can spontaneously mount a regenerative response and reconnect to their denervated target tissues, though this is rarely complete in humans. In contrast, spontaneous regeneration rarely occurs after axotomy in the spinal cord and brain. Here, we concentrate on the mechanisms underlying this spontaneous regeneration in the peripheral nervous system, focusing on events initiated from the axon that support regenerative growth. We contrast this with what is known for axonal injury responses in the central nervous system. Considering the neuropathy focus of this special issue, we further draw parallels and distinctions between the injury-response mechanisms that initiate regenerative gene expression programs and those that are known to trigger axon degeneration.
Collapse
Affiliation(s)
- Terika P Smith
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Amar N Kar
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
50
|
Kole C, Brommer B, Nakaya N, Sengupta M, Bonet-Ponce L, Zhao T, Wang C, Li W, He Z, Tomarev S. Activating Transcription Factor 3 (ATF3) Protects Retinal Ganglion Cells and Promotes Functional Preservation After Optic Nerve Crush. Invest Ophthalmol Vis Sci 2020; 61:31. [PMID: 32084268 PMCID: PMC7326601 DOI: 10.1167/iovs.61.2.31] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose To investigate the possible role of activating transcription factor 3 (ATF3) in retinal ganglion cell (RGC) neuroprotection and optic nerve regeneration after optic nerve crush (ONC). Methods Overexpression of proteins of interest (ATF3, phosphatase and tensin homolog [PTEN], placental alkaline phosphatase, green fluorescent protein) in the retina was achieved by intravitreal injections of recombinant adenovirus-associated viruses (rAAVs) expressing corresponding proteins. The number of RGCs and αRGCs was evaluated by immunostaining retinal sections and whole-mount retinas with antibodies against RNA binding protein with multiple splicing (RBPMS) and osteopontin, respectively. Axonal regeneration was assessed via fluorophore-coupled cholera toxin subunit B labeling. RGC function was evaluated by recording positive scotopic threshold response. Results The level of ATF3 is preferentially elevated in osteopontin+/RBPMS+ αRGCs following ONC. Overexpression of ATF3 by intravitreal injection of rAAV 2 weeks before ONC promoted RBPMS+ RGC survival and preserved RGC function as assessed by positive scotopic threshold response recordings 2 weeks after ONC. However, overexpression of ATF3 and simultaneous downregulation of PTEN, a negative regulator of the mTOR pathway, combined with ONC, only moderately promoted short distance RGC axon regeneration (200 μm from the lesion site) but did not provide additional RGC neuroprotection compared with PTEN downregulation alone. Conclusions These results reveal a neuroprotective effect of ATF3 in the retina following injury and identify ATF3 as a promising agent for potential treatments of optic neuropathies.
Collapse
|