1
|
Förster J, Nierhaus T, Schröder P, Blankenburg F. Perceptual experience in somatosensory temporal discrimination is indexed by a mid-latency fronto-central ERP difference. Sci Rep 2025; 15:7674. [PMID: 40044841 PMCID: PMC11882922 DOI: 10.1038/s41598-025-91580-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 02/21/2025] [Indexed: 03/09/2025] Open
Abstract
The neural correlates of conscious somatosensory perception are usually investigated using threshold detection tasks. However, it is largely unclear how other aspects of conscious somatosensory experience, such as localization, discrimination, and identification, are processed in the brain. Here, we go beyond mere stimulus detection and analyze the EEG data of 34 participants to investigate the event-related potential correlates of somatosensory experience in a temporal discrimination task. We show that the perceptual experience of feeling one vs. two pulses for identical pairs of electrical stimuli is reflected in positive fronto-central ERP activity after ~ 150 ms, even when controlling for task-relevance and post-perceptual processes such as decision-making and response preparation. This effect is a modulation of an ERP component that peaks considerably later at 170 ms and in a different sensor region than the detection-related so-called N140, which was not modulated by our task. Distributed source reconstruction of the sensor-level effect suggested the contralateral primary somatosensory cortex as its origin. We therefore propose that conscious detection and temporal discrimination are likely to both involve early sensory areas but recruit different neuronal processes. Our result adds to the growing body of research investigating the mechanisms underlying different aspects of conscious experience.
Collapse
Affiliation(s)
- Jona Förster
- Neurocomputation and Neuroimaging Unit, Freie Universität Berlin, Habelschwerdter Allee 45, 14195, Berlin, Germany.
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10117, Berlin, Germany.
| | - Till Nierhaus
- Neurocomputation and Neuroimaging Unit, Freie Universität Berlin, Habelschwerdter Allee 45, 14195, Berlin, Germany
| | - Pia Schröder
- Neurocomputation and Neuroimaging Unit, Freie Universität Berlin, Habelschwerdter Allee 45, 14195, Berlin, Germany
| | - Felix Blankenburg
- Neurocomputation and Neuroimaging Unit, Freie Universität Berlin, Habelschwerdter Allee 45, 14195, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| |
Collapse
|
2
|
Tang B, Tang J, Huang Y. Dexmedetomidine Reduces Presynaptic γ-Aminobutyric Acid Release and Prolongs Postsynaptic Responses in Layer 5 Pyramidal Neurons in the Primary Somatosensory Cortex of Mice. Int J Mol Sci 2025; 26:1931. [PMID: 40076557 PMCID: PMC11900034 DOI: 10.3390/ijms26051931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Dexmedetomidine (DEX) exhibits notable sedative, analgesic, and anesthetic-sparing properties. While growing evidence suggests these effects are linked to the modulation of γ-aminobutyric acid (GABA) system, the precise pre- and postsynaptic mechanisms of DEX action on cortical GABAergic signaling remain unclear. In this study, we applied whole-cell patch-clamp recording to investigate the impact of DEX on GABAergic transmission in layer 5 pyramidal neurons of the mouse primary somatosensory cortex. We recorded spontaneous inhibitory postsynaptic currents (sIPSCs), miniature IPSCs (mIPSCs), and evoked inhibitory postsynaptic potentials (eIPSPs) before and during DEX application. Our findings demonstrated that DEX reduced activity-dependent spontaneous GABAergic transmission, as evidenced by a decrease in sIPSC frequency, while mIPSC frequency was unaffected. eIPSPs were not significantly influenced by DEX either. Additionally, DEX prolonged the kinetics of both sIPSCs and mIPSCs, increasing the rise and decay times of sIPSCs and the decay time of mIPSCs. We proposed that DEX modulated cortical neuronal activity by limiting GABA release and altering GABAA receptor kinetics. Collectively, these results indicated that DEX modulated cortical GABAergic signaling at both presynaptic and postsynaptic sites, which likely underlined its sedative, analgesic, and anesthetic-sparing effects.
Collapse
Affiliation(s)
| | - Jiali Tang
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China;
| | - Yuguang Huang
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China;
| |
Collapse
|
3
|
Simacek CA, Kirischuk S, Mittmann T. Postnatal development of vasoactive intestinal polypeptide-expressing GABAergic interneurons in mouse somatosensory cortex. Acta Physiol (Oxf) 2025; 241:e14265. [PMID: 39803724 PMCID: PMC11726421 DOI: 10.1111/apha.14265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/30/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025]
Abstract
AIM Despite dysfunctional vasoactive intestinal polypeptide-positive interneurons (VIP-INs) being linked to the emergence of neurodevelopmental disorders, the temporal profile of VIP-IN functional maturation and cortical network integration remains unclear. METHODS Postnatal VIP-IN development was traced with patch clamp experiments in the somatosensory cortex of Vip-IRES-cre x tdTomato mice. Age groups were chosen during barrel field formation, before and after activation of main sensory inputs, and in adult animals (postnatal days (P) P3-4, P8-10, P14-16, and P30-36). RESULTS Changes in passive and active membrane properties show a maturation towards accelerated signal integrations. Excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) showed progressive VIP-IN integration into cortical networks, likely via synaptogenesis: mEPSC frequency increased before P8-10, while mIPSC frequency increased at P14-16. Only mIPSC kinetics became accelerated, and the E/I ratio of synaptic inputs, defined as a ratio of mEPSC to mIPSC charge transfer, remained constant throughout the investigated developmental stages. Evoked (e)EPSCs and (e)IPSCs showed increased amplitudes, while only eIPSCs demonstrated faster kinetics. eEPSCs and eIPSCs revealed a paired-pulse facilitation by P14-16, indicating probably a decrease in the presynaptic release probability (pr) and a paired-pulse depression in adulthood. eIPSCs also showed the latter, suggesting a decrease in pr for both signal transmission pathways at this time point. CONCLUSIONS VIP-INs mature towards faster signal integration and pursue different strategies to avoid overexcitation. Excitatory and inhibitory synaptic transmission become stronger and shorter via different pre- and postsynaptic alterations, likely promoting the execution of active whisking.
Collapse
Affiliation(s)
- Clara A. Simacek
- Institute for PhysiologyUniversity Medical Centre of the Johannes Gutenberg University MainzMainzGermany
| | - Sergei Kirischuk
- Institute for PhysiologyUniversity Medical Centre of the Johannes Gutenberg University MainzMainzGermany
| | - Thomas Mittmann
- Institute for PhysiologyUniversity Medical Centre of the Johannes Gutenberg University MainzMainzGermany
| |
Collapse
|
4
|
Allami P, Yazdanpanah N, Rezaei N. The role of neuroinflammation in PV interneuron impairments in brain networks; implications for cognitive disorders. Rev Neurosci 2025:revneuro-2024-0153. [PMID: 39842401 DOI: 10.1515/revneuro-2024-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025]
Abstract
Fast spiking parvalbumin (PV) interneuron is an inhibitory gamma-aminobutyric acid (GABA)ergic interneuron diffused in different brain networks, including the cortex and hippocampus. As a key component of brain networks, PV interneurons collaborate in fundamental brain functions such as learning and memory by regulating excitation and inhibition (E/I) balance and generating gamma oscillations. The unique characteristics of PV interneurons, like their high metabolic demands and long branching axons, make them too vulnerable to stressors. Neuroinflammation is one of the most significant stressors that have an adverse, long-lasting impact on PV interneurons. Neuroinflammation affects PV interneurons through specialized inflammatory pathways triggered by cytokines such as tumor necrosis factor (TNF) and interleukin 6 (IL-6). The crucial cells in neuroinflammation, microglia, also play a significant role. The destructive effect of inflammation on PV interneurons can have comprehensive effects and cause neurological disorders such as schizophrenia, Alzheimer's disease (AD), autism spectrum disorder (ASD), and bipolar disorder. In this article, we provide a comprehensive review of mechanisms in which neuroinflammation leads to PV interneuron hypofunction in these diseases. The integrated knowledge about the role of PV interneurons in cognitive networks of the brain and mechanisms involved in PV interneuron impairment in the pathology of these diseases can help us with better therapeutic interventions.
Collapse
Affiliation(s)
- Pantea Allami
- Student's Scientific Research Center, School of Medicine, 48439 Tehran University of Medical Sciences , Pour Sina St, Tehran 1416634793, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran
| | - Niloufar Yazdanpanah
- Student's Scientific Research Center, School of Medicine, 48439 Tehran University of Medical Sciences , Pour Sina St, Tehran 1416634793, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, 48439 Tehran University of Medical Sciences, Children's Medical Center Hospital , Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran
- Department of Immunology, School of Medicine, 48439 Tehran University of Medical Sciences , Pour Sina St, Tehran 1416634793, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, 48439 Tehran University of Medical Sciences, Children's Medical Center Hospital , Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran
- Department of Immunology, School of Medicine, 48439 Tehran University of Medical Sciences , Pour Sina St, Tehran 1416634793, Tehran, Iran
| |
Collapse
|
5
|
Páscoa dos Santos F, Verschure PFMJ. Excitatory-inhibitory homeostasis and bifurcation control in the Wilson-Cowan model of cortical dynamics. PLoS Comput Biol 2025; 21:e1012723. [PMID: 39761317 PMCID: PMC11737862 DOI: 10.1371/journal.pcbi.1012723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 01/16/2025] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Abstract
Although the primary function of excitatory-inhibitory (E-I) homeostasis is the maintenance of mean firing rates, the conjugation of multiple homeostatic mechanisms is thought to be pivotal to ensuring edge-of-bifurcation dynamics in cortical circuits. However, computational studies on E-I homeostasis have focused solely on the plasticity of inhibition, neglecting the impact of different modes of E-I homeostasis on cortical dynamics. Therefore, we investigate how the diverse mechanisms of E-I homeostasis employed by cortical networks shape oscillations and edge-of-bifurcation dynamics. Using the Wilson-Cowan model, we explore how distinct modes of E-I homeostasis maintain stable firing rates in models with varying levels of input and how it affects circuit dynamics. Our results confirm that E-I homeostasis can be leveraged to control edge-of-bifurcation dynamics and that some modes of homeostasis maintain mean firing rates under higher levels of input by modulating the distance to the bifurcation. Additionally, relying on multiple modes of homeostasis ensures stable activity while keeping oscillation frequencies within a physiological range. Our findings tie relevant features of cortical networks, such as E-I balance, the generation of gamma oscillations, and edge-of-bifurcation dynamics, under the framework of firing-rate homeostasis, providing a mechanistic explanation for the heterogeneity in the distance to the bifurcation found across cortical areas. In addition, we reveal the functional benefits of relying upon different homeostatic mechanisms, providing a robust method to regulate network dynamics with minimal perturbation to the generation of gamma rhythms and explaining the correlation between inhibition and gamma frequencies found in cortical networks.
Collapse
Affiliation(s)
- Francisco Páscoa dos Santos
- Eodyne Systems SL, Barcelona, Spain
- Department of Information and Communication Technologies, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Paul F. M. J. Verschure
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Nowakowska M, Jakešová M, Schmidt T, Opančar A, Polz M, Reimer R, Fuchs J, Patz S, Ziesel D, Scheruebel S, Kornmueller K, Rienmüller T, Đerek V, Głowacki ED, Schindl R, Üçal M. Light-Controlled Electric Stimulation with Organic Electrolytic Photocapacitors Achieves Complex Neuronal Network Activation: Semi-Chronic Study in Cortical Cell Culture and Rat Model. Adv Healthc Mater 2024; 13:e2401303. [PMID: 39139004 PMCID: PMC11582505 DOI: 10.1002/adhm.202401303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Neurostimulation employing photoactive organic semiconductors offers an appealing alternative to conventional techniques, enabling targeted action and wireless control through light. In this study, organic electrolytic photocapacitors (OEPC) are employed to investigate the effects of light-controlled electric stimulation on neuronal networks in vitro and in vivo. The interactions between the devices and biological systems are characterized. Stimulation of primary rat cortical neurons results in an elevated expression of c-Fos within a mature neuronal network. OEPC implantation for three weeks and subsequent stimulation of the somatosensory cortex leads to an increase of c-Fos in neurons at the stimulation site and in connected brain regions (entorhinal cortex, hippocampus), both in the ipsi- and contralateral hemispheres. Reactivity of glial and immune cells after semi-chronic implantation of OEPC in the rat brain is comparable to that of surgical controls, indicating minimal foreign body response. Device functionality is further substantiated through retained charging dynamics following explantation. OEPC-based, light-controlled electric stimulation has a significant impact on neural responsiveness. The absence of detrimental effects on both the brain and device encourages further use of OEPC as cortical implants. These findings highlight its potential as a novel mode of neurostimulation and instigate further exploration into applications in fundamental neuroscience.
Collapse
Affiliation(s)
- Marta Nowakowska
- Department of Neurosurgery, Medical University of Graz, Auenbruggerplatz 29, Graz, 8036, Austria
- BioTechMed-Graz, Mozartgasse 12/II, Graz, 8010, Austria
| | - Marie Jakešová
- Bioelectronics Materials and Devices Laboratory, CEITEC, Brno University of Technology, Purkyňova 123, Brno, 612 00, Czech Republic
| | - Tony Schmidt
- BioTechMed-Graz, Mozartgasse 12/II, Graz, 8010, Austria
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Medical Physics and Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6, Graz, 8010, Austria
| | - Aleksandar Opančar
- Bioelectronics Materials and Devices Laboratory, CEITEC, Brno University of Technology, Purkyňova 123, Brno, 612 00, Czech Republic
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička c. 32, Zagreb, 10000, Croatia
| | - Mathias Polz
- Institute of Health Care Engineering with European Testing Center of Medical Devices, Graz University of Technology, Stremayrgasse 16/II, Graz, 8010, Austria
| | - Robert Reimer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Medical Physics and Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6, Graz, 8010, Austria
| | - Julia Fuchs
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Medical Physics and Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6, Graz, 8010, Austria
- Institute of Health Care Engineering with European Testing Center of Medical Devices, Graz University of Technology, Stremayrgasse 16/II, Graz, 8010, Austria
| | - Silke Patz
- Department of Neurosurgery, Medical University of Graz, Auenbruggerplatz 29, Graz, 8036, Austria
| | - Daniel Ziesel
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Medical Physics and Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6, Graz, 8010, Austria
- Institute of Health Care Engineering with European Testing Center of Medical Devices, Graz University of Technology, Stremayrgasse 16/II, Graz, 8010, Austria
| | - Susanne Scheruebel
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Medical Physics and Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6, Graz, 8010, Austria
| | - Karin Kornmueller
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Medical Physics and Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6, Graz, 8010, Austria
| | - Theresa Rienmüller
- BioTechMed-Graz, Mozartgasse 12/II, Graz, 8010, Austria
- Institute of Health Care Engineering with European Testing Center of Medical Devices, Graz University of Technology, Stremayrgasse 16/II, Graz, 8010, Austria
| | - Vedran Đerek
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička c. 32, Zagreb, 10000, Croatia
| | - Eric D Głowacki
- Bioelectronics Materials and Devices Laboratory, CEITEC, Brno University of Technology, Purkyňova 123, Brno, 612 00, Czech Republic
| | - Rainer Schindl
- BioTechMed-Graz, Mozartgasse 12/II, Graz, 8010, Austria
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Medical Physics and Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6, Graz, 8010, Austria
| | - Muammer Üçal
- Department of Neurosurgery, Medical University of Graz, Auenbruggerplatz 29, Graz, 8036, Austria
- BioTechMed-Graz, Mozartgasse 12/II, Graz, 8010, Austria
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, Graz, 8036, Austria
| |
Collapse
|
7
|
Jiang HJ, Qi G, Duarte R, Feldmeyer D, van Albada SJ. A layered microcircuit model of somatosensory cortex with three interneuron types and cell-type-specific short-term plasticity. Cereb Cortex 2024; 34:bhae378. [PMID: 39344196 PMCID: PMC11439972 DOI: 10.1093/cercor/bhae378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 07/17/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Three major types of GABAergic interneurons, parvalbumin-, somatostatin-, and vasoactive intestinal peptide-expressing (PV, SOM, VIP) cells, play critical but distinct roles in the cortical microcircuitry. Their specific electrophysiology and connectivity shape their inhibitory functions. To study the network dynamics and signal processing specific to these cell types in the cerebral cortex, we developed a multi-layer model incorporating biologically realistic interneuron parameters from rodent somatosensory cortex. The model is fitted to in vivo data on cell-type-specific population firing rates. With a protocol of cell-type-specific stimulation, network responses when activating different neuron types are examined. The model reproduces the experimentally observed inhibitory effects of PV and SOM cells and disinhibitory effect of VIP cells on excitatory cells. We further create a version of the model incorporating cell-type-specific short-term synaptic plasticity (STP). While the ongoing activity with and without STP is similar, STP modulates the responses of Exc, SOM, and VIP cells to cell-type-specific stimulation, presumably by changing the dominant inhibitory pathways. With slight adjustments, the model also reproduces sensory responses of specific interneuron types recorded in vivo. Our model provides predictions on network dynamics involving cell-type-specific short-term plasticity and can serve to explore the computational roles of inhibitory interneurons in sensory functions.
Collapse
Affiliation(s)
- Han-Jia Jiang
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Institute of Zoology, University of Cologne, Albertus-Magnus-Platz, 50923 Cologne, Germany
| | - Guanxiao Qi
- JARA Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Renato Duarte
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Center for Neuroscience and Cell Biology (CNC-UC), University of Coimbra, Palace of Schools, 3004-531 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Palace of Schools, 3004-531 Coimbra, Portugal
| | - Dirk Feldmeyer
- JARA Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Sacha J van Albada
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Institute of Zoology, University of Cologne, Albertus-Magnus-Platz, 50923 Cologne, Germany
| |
Collapse
|
8
|
Mackey CA, O’Connell MN, Hackett TA, Schroeder CE, Kajikawa Y. Laminar organization of visual responses in core and parabelt auditory cortex. Cereb Cortex 2024; 34:bhae373. [PMID: 39300609 PMCID: PMC11412770 DOI: 10.1093/cercor/bhae373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Audiovisual (AV) interaction has been shown in many studies of auditory cortex. However, the underlying processes and circuits are unclear because few studies have used methods that delineate the timing and laminar distribution of net excitatory and inhibitory processes within areas, much less across cortical levels. This study examined laminar profiles of neuronal activity in auditory core (AC) and parabelt (PB) cortices recorded from macaques during active discrimination of conspecific faces and vocalizations. We found modulation of multi-unit activity (MUA) in response to isolated visual stimulation, characterized by a brief deep MUA spike, putatively in white matter, followed by mid-layer MUA suppression in core auditory cortex; the later suppressive event had clear current source density concomitants, while the earlier MUA spike did not. We observed a similar facilitation-suppression sequence in the PB, with later onset latency. In combined AV stimulation, there was moderate reduction of responses to sound during the visual-evoked MUA suppression interval in both AC and PB. These data suggest a common sequence of afferent spikes, followed by synaptic inhibition; however, differences in timing and laminar location may reflect distinct visual projections to AC and PB.
Collapse
Affiliation(s)
- Chase A Mackey
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, United States
| | - Monica N O’Connell
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, United States
- Department of Psychiatry, New York University School of Medicine, 145 E 32nd St., New York, NY 10016, United States
| | - Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, 1211 Medical Center Dr., Nashville, TN 37212, United States
| | - Charles E Schroeder
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, United States
- Departments of Psychiatry and Neurology, Columbia University College of Physicians, 630 W 168th St, New York, NY 10032, United States
| | - Yoshinao Kajikawa
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, United States
- Department of Psychiatry, New York University School of Medicine, 145 E 32nd St., New York, NY 10016, United States
| |
Collapse
|
9
|
Machold R, Rudy B. Genetic approaches to elucidating cortical and hippocampal GABAergic interneuron diversity. Front Cell Neurosci 2024; 18:1414955. [PMID: 39113758 PMCID: PMC11303334 DOI: 10.3389/fncel.2024.1414955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
GABAergic interneurons (INs) in the mammalian forebrain represent a diverse population of cells that provide specialized forms of local inhibition to regulate neural circuit activity. Over the last few decades, the development of a palette of genetic tools along with the generation of single-cell transcriptomic data has begun to reveal the molecular basis of IN diversity, thereby providing deep insights into how different IN subtypes function in the forebrain. In this review, we outline the emerging picture of cortical and hippocampal IN speciation as defined by transcriptomics and developmental origin and summarize the genetic strategies that have been utilized to target specific IN subtypes, along with the technical considerations inherent to each approach. Collectively, these methods have greatly facilitated our understanding of how IN subtypes regulate forebrain circuitry via cell type and compartment-specific inhibition and thus have illuminated a path toward potential therapeutic interventions for a variety of neurocognitive disorders.
Collapse
Affiliation(s)
- Robert Machold
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Bernardo Rudy
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
10
|
Yang D, Qi G, Ort J, Witzig V, Bak A, Delev D, Koch H, Feldmeyer D. Modulation of large rhythmic depolarizations in human large basket cells by norepinephrine and acetylcholine. Commun Biol 2024; 7:885. [PMID: 39033173 PMCID: PMC11271271 DOI: 10.1038/s42003-024-06546-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024] Open
Abstract
Rhythmic brain activity is critical to many brain functions and is sensitive to neuromodulation, but so far very few studies have investigated this activity on the cellular level in vitro in human brain tissue samples. This study reveals and characterizes a novel rhythmic network activity in the human neocortex. Using intracellular patch-clamp recordings of human cortical neurons, we identify large rhythmic depolarizations (LRDs) driven by glutamate release but not by GABA. These LRDs are intricate events made up of multiple depolarizing phases, occurring at ~0.3 Hz, have large amplitudes and long decay times. Unlike human tissue, rat neocortex layers 2/3 exhibit no such activity under identical conditions. LRDs are mainly observed in a subset of L2/3 interneurons that receive substantial excitatory inputs and are likely large basket cells based on their morphology. LRDs are highly sensitive to norepinephrine (NE) and acetylcholine (ACh), two neuromodulators that affect network dynamics. NE increases LRD frequency through β-adrenergic receptor activity while ACh decreases it via M4 muscarinic receptor activation. Multi-electrode array recordings show that NE enhances and synchronizes oscillatory network activity, whereas ACh causes desynchronization. Thus, NE and ACh distinctly modulate LRDs, exerting specific control over human neocortical activity.
Collapse
Affiliation(s)
- Danqing Yang
- Research Center Juelich, Institute of Neuroscience and Medicine 10, Research Center Juelich, 52425, Juelich, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Guanxiao Qi
- Research Center Juelich, Institute of Neuroscience and Medicine 10, Research Center Juelich, 52425, Juelich, Germany
| | - Jonas Ort
- Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
- Neurosurgical Artificial Intelligence Laboratory Aachen (NAILA), RWTH Aachen University Hospital, 52074, Aachen, Germany
- Center for Integrated Oncology, Universities Aachen, Bonn, Cologne, Düsseldorf (CIO ABCD), Bonn, Germany
| | - Victoria Witzig
- Department of Neurology, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Aniella Bak
- Department of Neurology, Section Epileptology, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Daniel Delev
- Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
- Neurosurgical Artificial Intelligence Laboratory Aachen (NAILA), RWTH Aachen University Hospital, 52074, Aachen, Germany
- Center for Integrated Oncology, Universities Aachen, Bonn, Cologne, Düsseldorf (CIO ABCD), Bonn, Germany
| | - Henner Koch
- Department of Neurology, Section Epileptology, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Dirk Feldmeyer
- Research Center Juelich, Institute of Neuroscience and Medicine 10, Research Center Juelich, 52425, Juelich, Germany.
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University Hospital, 52074, Aachen, Germany.
- Jülich-Aachen Research Alliance, Translational Brain Medicine (JARA Brain), Aachen, Germany.
| |
Collapse
|
11
|
Gauld OM, Packer AM, Russell LE, Dalgleish HWP, Iuga M, Sacadura F, Roth A, Clark BA, Häusser M. A latent pool of neurons silenced by sensory-evoked inhibition can be recruited to enhance perception. Neuron 2024; 112:2386-2403.e6. [PMID: 38729150 PMCID: PMC7616379 DOI: 10.1016/j.neuron.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/12/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024]
Abstract
To investigate which activity patterns in sensory cortex are relevant for perceptual decision-making, we combined two-photon calcium imaging and targeted two-photon optogenetics to interrogate barrel cortex activity during perceptual discrimination. We trained mice to discriminate bilateral whisker deflections and report decisions by licking left or right. Two-photon calcium imaging revealed sparse coding of contralateral and ipsilateral whisker input in layer 2/3, with most neurons remaining silent during the task. Activating pyramidal neurons using two-photon holographic photostimulation evoked a perceptual bias that scaled with the number of neurons photostimulated. This effect was dominated by optogenetic activation of non-coding neurons, which did not show sensory or motor-related activity during task performance. Photostimulation also revealed potent recruitment of cortical inhibition during sensory processing, which strongly and preferentially suppressed non-coding neurons. Our results suggest that a pool of non-coding neurons, selectively suppressed by network inhibition during sensory processing, can be recruited to enhance perception.
Collapse
Affiliation(s)
- Oliver M Gauld
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK; Sainsbury Wellcome Centre, University College London, London W1T 4JG, UK.
| | - Adam M Packer
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Lloyd E Russell
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Henry W P Dalgleish
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Maya Iuga
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Francisco Sacadura
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Arnd Roth
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Beverley A Clark
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK.
| |
Collapse
|
12
|
Báldi R, Muthuswamy S, Loomba N, Patel S. Synaptic Organization-Function Relationships of Amygdala Interneurons Supporting Associative Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599631. [PMID: 38948865 PMCID: PMC11212985 DOI: 10.1101/2024.06.18.599631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Coordinated activity of basolateral amygdala (BLA) GABAergic interneurons (INs) and glutamatergic principal cells (PCs) is critical for associative learning, however the microcircuit organization-function relationships of distinct IN classes remain uncertain. Here, we show somatostatin (SOM) INs provide inhibition onto, and are excited by, local PCs, whereas vasoactive intestinal peptide (VIP) INs are driven by extrinsic afferents. Parvalbumin (PV) INs inhibit PCs and are activated by local and extrinsic inputs. Thus, SOM and VIP INs exhibit complementary roles in feedback and feedforward inhibition, respectively, while PV INs contribute to both microcircuit motifs. Functionally, each IN subtype reveals unique activity patterns across fear- and extinction learning with SOM and VIP INs showing most divergent characteristics, and PV INs display an intermediate phenotype parallelling synaptic data. Finally, SOM and PV INs dynamically track behavioral state transitions across learning. These data provide insight into the synaptic microcircuit organization-function relationships of distinct BLA IN classes.
Collapse
|
13
|
Scheuer KS, Jansson AM, Zhao X, Jackson MB. Inter and intralaminar excitation of parvalbumin interneurons in mouse barrel cortex. PLoS One 2024; 19:e0289901. [PMID: 38870124 PMCID: PMC11175493 DOI: 10.1371/journal.pone.0289901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 04/29/2024] [Indexed: 06/15/2024] Open
Abstract
Parvalbumin (PV) interneurons are inhibitory fast-spiking cells with essential roles in directing the flow of information through cortical circuits. These neurons set the balance between excitation and inhibition and control rhythmic activity. PV interneurons differ between cortical layers in their morphology, circuitry, and function, but how their electrophysiological properties vary has received little attention. Here we investigate responses of PV interneurons in different layers of primary somatosensory barrel cortex (BC) to different excitatory inputs. With the genetically-encoded hybrid voltage sensor, hVOS, we recorded voltage changes in many L2/3 and L4 PV interneurons simultaneously, with stimulation applied to either L2/3 or L4. A semi-automated procedure was developed to identify small regions of interest corresponding to single responsive PV interneurons. Amplitude, half-width, and rise-time were greater for PV interneurons residing in L2/3 compared to L4. Stimulation in L2/3 elicited responses in both L2/3 and L4 with longer latency compared to stimulation in L4. These differences in latency between layers could influence their windows for temporal integration. Thus, PV interneurons in different cortical layers of BC respond in a layer specific and input specific manner, and these differences have potential roles in cortical computations.
Collapse
Affiliation(s)
- Katherine S. Scheuer
- Cellular and Molecular Biology PhD Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anna M. Jansson
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Xinyu Zhao
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Meyer B. Jackson
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
14
|
Kobayashi M, Nakaya Y, Kobayashi S. Functional roles of descending projections from the cerebral cortex to the trigeminal spinal subnucleus caudalis in orofacial nociceptive information processing. J Oral Biosci 2024; 66:304-307. [PMID: 38734177 DOI: 10.1016/j.job.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND The trigeminal spinal subnucleus caudalis (Sp5C), also known as the medullary dorsal horn, receives orofacial somatosensory inputs, particularly nociceptive inputs, from the trigeminal nerve. In the Sp5C, excitatory and inhibitory neurons, glutamatergic and GABAergic/glycinergic neurons, respectively, form the local circuits. The axons of the glutamatergic neurons in lamina I ascend toward the thalamic and parabrachial nuclei, and this projection is the main pathway of orofacial nociception. Additionally, the axons of the higher brain regions, including the locus coeruleus, dorsal raphe, and cerebral cortex, are sent to the Sp5C. HIGHLIGHT Among these descending projections, this review focuses on the functional profiles of the corticotrigeminal projections to the Sp5C, along with their anatomical aspects. The primary and secondary somatosensory and insular cortices are of particular interest. CONCLUSION Corticotrigeminal projections from the somatosensory cortex to the Sp5C play a suppressive role in nociceptive information processing, whereas recent studies have demonstrated a facilitative role of the insular cortex in nociceptive information processing at the Sp5C level.
Collapse
Affiliation(s)
- Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.
| | - Yuka Nakaya
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.
| | - Satomi Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Department of Biology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.
| |
Collapse
|
15
|
Mao X, Staiger JF. Multimodal cortical neuronal cell type classification. Pflugers Arch 2024; 476:721-733. [PMID: 38376567 PMCID: PMC11033238 DOI: 10.1007/s00424-024-02923-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/21/2024]
Abstract
Since more than a century, neuroscientists have distinguished excitatory (glutamatergic) neurons with long-distance projections from inhibitory (GABAergic) neurons with local projections and established layer-dependent schemes for the ~ 80% excitatory (principal) cells as well as the ~ 20% inhibitory neurons. Whereas, in the early days, mainly morphological criteria were used to define cell types, later supplemented by electrophysiological and neurochemical properties, nowadays. single-cell transcriptomics is the method of choice for cell type classification. Bringing recent insight together, we conclude that despite all established layer- and area-dependent differences, there is a set of reliably identifiable cortical cell types that were named (among others) intratelencephalic (IT), extratelencephalic (ET), and corticothalamic (CT) for the excitatory cells, which altogether comprise ~ 56 transcriptomic cell types (t-types). By the same means, inhibitory neurons were subdivided into parvalbumin (PV), somatostatin (SST), vasoactive intestinal polypeptide (VIP), and "other (i.e. Lamp5/Sncg)" subpopulations, which altogether comprise ~ 60 t-types. The coming years will show which t-types actually translate into "real" cell types that show a common set of multimodal features, including not only transcriptome but also physiology and morphology as well as connectivity and ultimately function. Only with the better knowledge of clear-cut cell types and experimental access to them, we will be able to reveal their specific functions, a task which turned out to be difficult in a part of the brain being so much specialized for cognition as the cerebral cortex.
Collapse
Affiliation(s)
- Xiaoyi Mao
- Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August-University, Kreuzbergring 36, 37075, Göttingen, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August-University, Kreuzbergring 36, 37075, Göttingen, Germany.
| |
Collapse
|
16
|
Kanigowski D, Urban-Ciecko J. Conditioning and pseudoconditioning differently change intrinsic excitability of inhibitory interneurons in the neocortex. Cereb Cortex 2024; 34:bhae109. [PMID: 38572735 PMCID: PMC10993172 DOI: 10.1093/cercor/bhae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Many studies indicate a broad role of various classes of GABAergic interneurons in the processes related to learning. However, little is known about how the learning process affects intrinsic excitability of specific classes of interneurons in the neocortex. To determine this, we employed a simple model of conditional learning in mice where vibrissae stimulation was used as a conditioned stimulus and a tail shock as an unconditioned one. In vitro whole-cell patch-clamp recordings showed an increase in intrinsic excitability of low-threshold spiking somatostatin-expressing interneurons (SST-INs) in layer 4 (L4) of the somatosensory (barrel) cortex after the conditioning paradigm. In contrast, pseudoconditioning reduced intrinsic excitability of SST-LTS, parvalbumin-expressing interneurons (PV-INs), and vasoactive intestinal polypeptide-expressing interneurons (VIP-INs) with accommodating pattern in L4 of the barrel cortex. In general, increased intrinsic excitability was accompanied by narrowing of action potentials (APs), whereas decreased intrinsic excitability coincided with AP broadening. Altogether, these results show that both conditioning and pseudoconditioning lead to plastic changes in intrinsic excitability of GABAergic interneurons in a cell-specific manner. In this way, changes in intrinsic excitability can be perceived as a common mechanism of learning-induced plasticity in the GABAergic system.
Collapse
Affiliation(s)
- Dominik Kanigowski
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology PAS, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Joanna Urban-Ciecko
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology PAS, 3 Pasteur Street, 02-093 Warsaw, Poland
| |
Collapse
|
17
|
Palicz R, Pater B, Truschow P, Witte M, Staiger JF. Intersectional strategy to study cortical inhibitory parvalbumin-expressing interneurons. Sci Rep 2024; 14:2829. [PMID: 38310185 PMCID: PMC10838283 DOI: 10.1038/s41598-024-52901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/24/2024] [Indexed: 02/05/2024] Open
Abstract
Parvalbumin-expressing (PV) interneurons are key neuronal elements to a global excitatory-inhibitory balance in normal cortical functioning. To better understand the circuit functions of PV interneurons, reliable animal models are needed. This study investigated the sensitivity and specificity of the most frequently used PV-Cre/tdTomato mouse line in this regard. The colocalization of the transgene (tdTomato) with the parvalbumin protein, with GAD1 (a conclusive inhibitory cell marker) and Vglut1 (a conclusive excitatory cell marker) as well as with a marker for perineuronal nets (WFA) was assessed and a substantial proportion of layer 5 PV neurons was found to be excitatory and not inhibitory in the PV-Cre/tdTomato mouse. The intersectional transgenic mouse line Vgat-Cre/PV-Flp/tdTomato provided a solution, since no colocalization of tdTomato with the Vglut1 probe was found there. In conclusion, the Vgat-Cre/PV-Flp/tdTomato mouse line seems to be a more reliable animal model for functional studies of GABAergic PV interneurons.
Collapse
Affiliation(s)
- Rebeka Palicz
- Center Anatomy, Institute for Neuroanatomy, University of Göttingen, Göttingen, Germany.
| | - Bettina Pater
- Center Anatomy, Institute for Neuroanatomy, University of Göttingen, Göttingen, Germany
| | - Pavel Truschow
- Center Anatomy, Institute for Neuroanatomy, University of Göttingen, Göttingen, Germany
| | - Mirko Witte
- Center Anatomy, Institute for Neuroanatomy, University of Göttingen, Göttingen, Germany
| | - Jochen F Staiger
- Center Anatomy, Institute for Neuroanatomy, University of Göttingen, Göttingen, Germany
| |
Collapse
|
18
|
Mishra W, Kheradpezhouh E, Arabzadeh E. Activation of M1 cholinergic receptors in mouse somatosensory cortex enhances information processing and detection behaviour. Commun Biol 2024; 7:3. [PMID: 38168628 PMCID: PMC10761830 DOI: 10.1038/s42003-023-05699-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
To optimise sensory representations based on environmental demands, the activity of cortical neurons is regulated by neuromodulators such as Acetylcholine (ACh). ACh is implicated in cognitive functions including attention, arousal and sleep cycles. However, it is not clear how specific ACh receptors shape the activity of cortical neurons in response to sensory stimuli. Here, we investigate the role of a densely expressed muscarinic ACh receptor M1 in information processing in the mouse primary somatosensory cortex and its influence on the animal's sensitivity to detect vibrotactile stimuli. We show that M1 activation results in faster and more reliable neuronal responses, manifested by a significant reduction in response latencies and the trial-to-trial variability. At the population level, M1 activation reduces the network synchrony, and thus enhances the capacity of cortical neurons in conveying sensory information. Consistent with the neuronal findings, we show that M1 activation significantly improves performances in a vibriotactile detection task.
Collapse
Affiliation(s)
- Wricha Mishra
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Ehsan Kheradpezhouh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Ehsan Arabzadeh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| |
Collapse
|
19
|
Sohn J. Synaptic configuration and reconfiguration in the neocortex are spatiotemporally selective. Anat Sci Int 2024; 99:17-33. [PMID: 37837522 PMCID: PMC10771605 DOI: 10.1007/s12565-023-00743-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/14/2023] [Indexed: 10/16/2023]
Abstract
Brain computation relies on the neural networks. Neurons extend the neurites such as dendrites and axons, and the contacts of these neurites that form chemical synapses are the biological basis of signal transmissions in the central nervous system. Individual neuronal outputs can influence the other neurons within the range of the axonal spread, while the activities of single neurons can be affected by the afferents in their somatodendritic fields. The morphological profile, therefore, binds the functional role each neuron can play. In addition, synaptic connectivity among neurons displays preference based on the characteristics of presynaptic and postsynaptic neurons. Here, the author reviews the "spatial" and "temporal" connection selectivity in the neocortex. The histological description of the neocortical circuitry depends primarily on the classification of cell types, and the development of gene engineering techniques allows the cell type-specific visualization of dendrites and axons as well as somata. Using genetic labeling of particular cell populations combined with immunohistochemistry and imaging at a subcellular spatial resolution, we revealed the "spatial selectivity" of cortical wirings in which synapses are non-uniformly distributed on the subcellular somatodendritic domains in a presynaptic cell type-specific manner. In addition, cortical synaptic dynamics in learning exhibit presynaptic cell type-dependent "temporal selectivity": corticocortical synapses appear only transiently during the learning phase, while learning-induced new thalamocortical synapses persist, indicating that distinct circuits may supervise learning-specific ephemeral synapse and memory-specific immortal synapse formation. The selectivity of spatial configuration and temporal reconfiguration in the neural circuitry may govern diverse functions in the neocortex.
Collapse
Affiliation(s)
- Jaerin Sohn
- Department of Systematic Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
20
|
Gonda S, Riedel C, Reiner A, Köhler I, Wahle P. Axons of cortical basket cells originating from dendrites develop higher local complexity than axons emerging from basket cell somata. Development 2023; 150:dev202305. [PMID: 37902086 PMCID: PMC10690106 DOI: 10.1242/dev.202305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023]
Abstract
Neuronal differentiation is regulated by neuronal activity. Here, we analyzed dendritic and axonal growth of Basket cells (BCs) and non-Basket cells (non-BCs) using sparse transfection of channelrhodopsin-YFP and repetitive optogenetic stimulation in slice cultures of rat visual cortex. Neocortical interneurons often display axon-carrying dendrites (AcDs). We found that the AcDs of BCs and non-BCs were, on average, the most complex dendrites. Further, the AcD configuration had an influence on BC axonal development. Axons originating from an AcD formed denser arborizations with more terminal endings within the dendritic field of the parent cell. Intriguingly, this occurred already in unstimulated BCs, and complexity was not increased further by optogenetic stimulation. However, optogenetic stimulation exerted a growth-promoting effect on axons emerging from BC somata. The axons of non-BCs neither responded to the AcD configuration nor to the optogenetic stimulation. The results suggest that the formation of locally dense BC plexuses is regulated by spontaneous activity. Moreover, in the AcD configuration, the AcD and the axon it carries mutually support each other's growth.
Collapse
Affiliation(s)
- Steffen Gonda
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Christian Riedel
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Andreas Reiner
- Cellular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Ina Köhler
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Petra Wahle
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
21
|
Lombardi A, Wang Q, Stüttgen MC, Mittmann T, Luhmann HJ, Kilb W. Recovery kinetics of short-term depression of GABAergic and glutamatergic synapses at layer 2/3 pyramidal cells in the mouse barrel cortex. Front Cell Neurosci 2023; 17:1254776. [PMID: 37817883 PMCID: PMC10560857 DOI: 10.3389/fncel.2023.1254776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction Short-term synaptic plasticity (STP) is a widespread mechanism underlying activity-dependent modifications of cortical networks. Methods To investigate how STP influences excitatory and inhibitory synapses in layer 2/3 of mouse barrel cortex, we combined whole-cell patch-clamp recordings from visually identified pyramidal neurons (PyrN) and parvalbumin-positive interneurons (PV-IN) of cortical layer 2/3 in acute slices with electrical stimulation of afferent fibers in layer 4 and optogenetic activation of PV-IN. Results These experiments revealed that electrical burst stimulation (10 pulses at 10 Hz) of layer 4 afferents to layer 2/3 neurons induced comparable short-term depression (STD) of glutamatergic postsynaptic currents (PSCs) in PyrN and in PV-IN, while disynaptic GABAergic PSCs in PyrN showed a stronger depression. Burst-induced depression of glutamatergic PSCs decayed within <4 s, while the decay of GABAergic PSCs required >11 s. Optogenetically-induced GABAergic PSCs in PyrN also demonstrated STD after burst stimulation, with a decay of >11 s. Excitatory postsynaptic potentials (EPSPs) in PyrN were unaffected after electrical burst stimulation, while a selective optogenetic STD of GABAergic synapses caused a transient increase of electrically evoked EPSPs in PyrN. Discussion In summary, these results demonstrate substantial short-term plasticity at all synapses investigated and suggest that the prominent STD observed in GABAergic synapses can moderate the functional efficacy of glutamatergic STD after repetitive synaptic stimulations. This mechanism may contribute to a reliable information flow toward the integrative layer 2/3 for complex time-varying sensory stimuli.
Collapse
Affiliation(s)
- Aniello Lombardi
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Qiang Wang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Maik C. Stüttgen
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Thomas Mittmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Heiko J. Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
22
|
Machold R, Dellal S, Valero M, Zurita H, Kruglikov I, Meng JH, Hanson JL, Hashikawa Y, Schuman B, Buzsáki G, Rudy B. Id2 GABAergic interneurons comprise a neglected fourth major group of cortical inhibitory cells. eLife 2023; 12:e85893. [PMID: 37665123 PMCID: PMC10581691 DOI: 10.7554/elife.85893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
Cortical GABAergic interneurons (INs) represent a diverse population of mainly locally projecting cells that provide specialized forms of inhibition to pyramidal neurons and other INs. Most recent work on INs has focused on subtypes distinguished by expression of Parvalbumin (PV), Somatostatin (SST), or Vasoactive Intestinal Peptide (VIP). However, a fourth group that includes neurogliaform cells (NGFCs) has been less well characterized due to a lack of genetic tools. Here, we show that these INs can be accessed experimentally using intersectional genetics with the gene Id2. We find that outside of layer 1 (L1), the majority of Id2 INs are NGFCs that express high levels of neuropeptide Y (NPY) and exhibit a late-spiking firing pattern, with extensive local connectivity. While much sparser, non-NGFC Id2 INs had more variable properties, with most cells corresponding to a diverse group of INs that strongly expresses the neuropeptide CCK. In vivo, using silicon probe recordings, we observed several distinguishing aspects of NGFC activity, including a strong rebound in activity immediately following the cortical down state during NREM sleep. Our study provides insights into IN diversity and NGFC distribution and properties, and outlines an intersectional genetics approach for further study of this underappreciated group of INs.
Collapse
Affiliation(s)
- Robert Machold
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Shlomo Dellal
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Manuel Valero
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Hector Zurita
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Ilya Kruglikov
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - John Hongyu Meng
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
- Center for Neural Science, New York UniversityNew YorkUnited States
| | - Jessica L Hanson
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Yoshiko Hashikawa
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Benjamin Schuman
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - György Buzsáki
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
- Department of Neuroscience and Physiology, New York University Grossman School of MedicineNew YorkUnited States
| | - Bernardo Rudy
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
- Department of Neuroscience and Physiology, New York University Grossman School of MedicineNew YorkUnited States
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of MedicineNew YorkUnited States
| |
Collapse
|
23
|
Luhmann HJ. Dynamics of neocortical networks: connectivity beyond the canonical microcircuit. Pflugers Arch 2023; 475:1027-1033. [PMID: 37336815 PMCID: PMC10409710 DOI: 10.1007/s00424-023-02830-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
The neocortical network consists of two types of excitatory neurons and a variety of GABAergic inhibitory interneurons, which are organized in distinct microcircuits providing feedforward, feedback, lateral inhibition, and disinhibition. This network is activated by layer- and cell-type specific inputs from first and higher order thalamic nuclei, other subcortical regions, and by cortico-cortical projections. Parallel and serial information processing occurs simultaneously in different intracortical subnetworks and is influenced by neuromodulatory inputs arising from the basal forebrain (cholinergic), raphe nuclei (serotonergic), locus coeruleus (noradrenergic), and ventral tegmentum (dopaminergic). Neocortical neurons differ in their intrinsic firing pattern, in their local and global synaptic connectivity, and in the dynamics of their synaptic interactions. During repetitive stimulation, synaptic connections between distinct neuronal cell types show short-term facilitation or depression, thereby activating or inactivating intracortical microcircuits. Specific networks are capable to generate local and global activity patterns (e.g., synchronized oscillations), which contribute to higher cognitive function and behavior. This review article aims to give a brief overview on our current understanding of the structure and function of the neocortical network.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany.
| |
Collapse
|
24
|
Scheuer KS, Jansson AM, Zhao X, Jackson MB. Inter and Intralaminar Excitation of Parvalbumin Interneurons in Mouse Barrel Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543448. [PMID: 37398428 PMCID: PMC10312540 DOI: 10.1101/2023.06.02.543448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Parvalbumin (PV) interneurons are inhibitory fast-spiking cells with essential roles in directing the flow of information through cortical circuits. These neurons set the balance between excitation and inhibition, control rhythmic activity, and have been linked to disorders including autism spectrum and schizophrenia. PV interneurons differ between cortical layers in their morphology, circuitry, and function, but how their electrophysiological properties vary has received little attention. Here we investigate responses of PV interneurons in different layers of primary somatosensory barrel cortex (BC) to different excitatory inputs. With the genetically-encoded hybrid voltage sensor, hVOS, we recorded voltage changes simultaneously in many L2/3 and L4 PV interneurons to stimulation in either L2/3 or L4. Decay-times were consistent across L2/3 and L4. Amplitude, half-width, and rise-time were greater for PV interneurons residing in L2/3 compared to L4. Stimulation in L2/3 elicited responses in both L2/3 and L4 with longer latency compared to stimulation in L4. These differences in latency between layers could influence their windows for temporal integration. Thus PV interneurons in different cortical layers of BC show differences in response properties with potential roles in cortical computations.
Collapse
Affiliation(s)
- Kate S Scheuer
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Anna M Jansson
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Meyer B Jackson
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| |
Collapse
|
25
|
Zhong W, Zheng W, Ji X. Spatial Distribution of Inhibitory Innervations of Excitatory Pyramidal Cells by Major Interneuron Subtypes in the Auditory Cortex. Bioengineering (Basel) 2023; 10:bioengineering10050547. [PMID: 37237617 DOI: 10.3390/bioengineering10050547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Mental disorders, characterized by the National Institute of Mental Health as disruptions in neural circuitry, currently account for 13% of the global incidence of such disorders. An increasing number of studies suggest that imbalances between excitatory and inhibitory neurons in neural networks may be a crucial mechanism underlying mental disorders. However, the spatial distribution of inhibitory interneurons in the auditory cortex (ACx) and their relationship with excitatory pyramidal cells (PCs) remain elusive. In this study, we employed a combination of optogenetics, transgenic mice, and patch-clamp recording on brain slices to investigate the microcircuit characteristics of different interneurons (PV, SOM, and VIP) and the spatial pattern of inhibitory inhibition across layers 2/3 to 6 in the ACx. Our findings revealed that PV interneurons provide the strongest and most localized inhibition with no cross-layer innervation or layer specificity. Conversely, SOM and VIP interneurons weakly regulate PC activity over a broader range, exhibiting distinct spatial inhibitory preferences. Specifically, SOM inhibitions are preferentially found in deep infragranular layers, while VIP inhibitions predominantly occur in upper supragranular layers. PV inhibitions are evenly distributed across all layers. These results suggest that the input from inhibitory interneurons to PCs manifests in unique ways, ensuring that both strong and weak inhibitory inputs are evenly dispersed throughout the ACx, thereby maintaining a dynamic excitation-inhibition balance. Our findings contribute to understanding the spatial inhibitory characteristics of PCs and inhibitory interneurons in the ACx at the circuit level, which holds significant clinical implications for identifying and targeting abnormal circuits in auditory system diseases.
Collapse
Affiliation(s)
- Wen Zhong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wenhong Zheng
- Department of Physiology, School of Basic Medical Sciences, Key Laboratory of Psychiatric Disorders of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China
| | - Xuying Ji
- Department of Physiology, School of Basic Medical Sciences, Key Laboratory of Psychiatric Disorders of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
26
|
Hostetler RE, Hu H, Agmon A. Genetically Defined Subtypes of Somatostatin-Containing Cortical Interneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526850. [PMID: 36778499 PMCID: PMC9915678 DOI: 10.1101/2023.02.02.526850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Inhibitory interneurons play a crucial role in proper development and function of the mammalian cerebral cortex. Of the different inhibitory subclasses, dendritic-targeting, somatostatin-containing (SOM) interneurons may be the most diverse. Earlier studies used transgenic mouse lines to identify and characterize subtypes of SOM interneurons by morphological, electrophysiological and neurochemical properties. More recently, large-scale studies classified SOM interneurons into 13 morpho-electro-transcriptomic (MET) types. It remains unclear, however, how these various classification schemes relate to each other, and experimental access to MET types has been limited by the scarcity of type-specific mouse driver lines. To begin to address these issues we crossed Flp and Cre driver mouse lines and a dual-color combinatorial reporter, allowing experimental access to genetically defined SOM subsets. Brains from adult mice of both sexes were retrogradely dye-labeled from the pial surface to identify layer 1-projecting neurons, and immunostained against several marker proteins, allowing correlation of genetic label, axonal target and marker protein expression in the same neurons. Using whole-cell recordings ex-vivo, we compared electrophysiological properties between intersectional and transgenic SOM subsets. We identified two layer 1-targeting intersectional subsets with non-overlapping marker protein expression and electrophysiological properties which, together with a previously characterized layer 4-targeting subtype, account for about half of all layer 5 SOM cells and >40% of all SOM cells, and appear to map onto 5 of the 13 MET types. Genetic access to these subtypes will allow researchers to determine their synaptic inputs and outputs and uncover their roles in cortical computations and animal behavior. SIGNIFICANCE STATEMENT Inhibitory neurons are critically important for proper development and function of the cerebral cortex. Although a minority population, they are highly diverse, which poses a major challenge to investigating their contributions to cortical computations and animal and human behavior. As a step towards understanding this diversity we crossed genetically modified mouse lines to allow detailed examination of genetically-defined groups of the most diverse inhibitory subtype, somatostatin-containing interneurons. We identified and characterized three somatostatin subtypes in the deep cortical layers with distinct combinations of anatomical, neurochemical and electrophysiological properties. Future studies could now use these genetic tools to examine how these different subtypes are integrated into the cortical circuit and what roles they play during sensory, cognitive or motor behavior.
Collapse
Affiliation(s)
- Rachel E Hostetler
- Dept. of Neuroscience, West Virginia University School of Medicine, WV Rockefeller Neuroscience Institute, Morgantown, WV 26506, USA
| | - Hang Hu
- Dept. of Neuroscience, West Virginia University School of Medicine, WV Rockefeller Neuroscience Institute, Morgantown, WV 26506, USA
| | - Ariel Agmon
- Dept. of Neuroscience, West Virginia University School of Medicine, WV Rockefeller Neuroscience Institute, Morgantown, WV 26506, USA
| |
Collapse
|
27
|
Histamine Release in the Prefrontal Cortex Excites Fast-Spiking Interneurons while GABA Released from the Same Axons Inhibits Pyramidal Cells. J Neurosci 2023; 43:187-198. [PMID: 36639899 PMCID: PMC9838703 DOI: 10.1523/jneurosci.0936-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/06/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022] Open
Abstract
We studied how histamine and GABA release from axons originating from the hypothalamic tuberomammillary nucleus (TMN) and projecting to the prefrontal cortex (PFC) influence circuit processing. We optostimulated histamine/GABA from genetically defined TMN axons that express the histidine decarboxylase gene (TMNHDC axons). Whole-cell recordings from PFC neurons in layer 2/3 of prelimbic, anterior cingulate, and infralimbic regions were used to monitor excitability before and after optostimulated histamine/GABA release in male and female mice. We found that histamine-GABA release influences the PFC through actions on distinct neuronal types: the histamine stimulates fast-spiking interneurons; and the released GABA enhances tonic (extrasynaptic) inhibition on pyramidal cells (PyrNs). For fast-spiking nonaccommodating interneurons, histamine released from TMNHDC axons induced additive gain changes, which were blocked by histamine H1 and H2 receptor antagonists. The excitability of other fast-spiking interneurons in the PFC was not altered. In contrast, the GABA released from TMNHDC axons predominantly produced divisive gain changes in PyrNs, increasing their resting input conductance, and decreasing the slope of the input-output relationship. This inhibitory effect on PyrNs was not blocked by histamine receptor antagonists but was blocked by GABAA receptor antagonists. Across the adult life span (from 3 to 18 months of age), the GABA released from TMNHDC axons in the PFC inhibited PyrN excitability significantly more in older mice. For individuals who maintain cognitive performance into later life, the increases in TMNHDC GABA modulation of PyrNs during aging could enhance information processing and be an adaptive mechanism to buttress cognition.SIGNIFICANCE STATEMENT The hypothalamus controls arousal state by releasing chemical neurotransmitters throughout the brain to modulate neuronal excitability. Evidence is emerging that the release of multiple types of neurotransmitters may have opposing actions on neuronal populations in key cortical regions. This study demonstrates for the first time that the neurotransmitters histamine and GABA are released in the prefrontal cortex from axons originating from the tuberomammillary nucleus of the hypothalamus. This work demonstrates how hypothalamic modulation of neuronal excitability is maintained throughout adult life, highlighting an unexpected aspect of the aging process that may help maintain cognitive abilities.
Collapse
|
28
|
Yeganeh F, Knauer B, Guimarães Backhaus R, Yang JW, Stroh A, Luhmann HJ, Stüttgen MC. Effects of optogenetic inhibition of a small fraction of parvalbumin-positive interneurons on the representation of sensory stimuli in mouse barrel cortex. Sci Rep 2022; 12:19419. [PMID: 36371511 PMCID: PMC9653449 DOI: 10.1038/s41598-022-24156-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
Inhibitory interneurons play central roles in the modulation of spontaneous network activity and in processing of neuronal information. In sensory neocortical areas, parvalbumin-positive (PV+) GABAergic interneurons control the representation and processing of peripheral sensory inputs. We studied the functional role of PV+ interneurons in the barrel cortex of anesthetized adult PVCre mice by combining extracellular multi-electrode recordings with optogenetic silencing of a small fraction of PV+ interneurons. In all cortical layers, optogenetic inhibition caused an increase in spontaneous network activity from theta to gamma frequencies. The spatio-temporal representation of sensory inputs was studied by stimulating one or two whiskers at different intervals and analyzing the resulting local field potential (LFP) and single unit (SU) response. Silencing PV+ interneurons caused an increase in LFP response to sensory stimulation and a decrease in temporal discrimination of consecutive whisker deflections. The combined effect of whisker deflection and optogenetic inhibition was highly similar to the linear sum of the individual effects of these two manipulations. SU recordings revealed that optogenetic silencing reduced stimulus detectability by increasing stimulus-evoked firing rate by a constant offset, suggesting that PV+ interneurons improve signal-to-noise ratio by reducing ongoing spiking activity, thereby sharpening the spatio-temporal representation of sensory stimuli.
Collapse
Affiliation(s)
- Fahimeh Yeganeh
- grid.410607.4Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany ,grid.410607.4Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Beate Knauer
- grid.410607.4Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | | | - Jenq-Wei Yang
- grid.410607.4Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Albrecht Stroh
- grid.410607.4Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany ,grid.509458.50000 0004 8087 0005Leibniz Institute for Resilience Research, Mainz, Germany
| | - Heiko J. Luhmann
- grid.410607.4Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Maik C. Stüttgen
- grid.410607.4Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| |
Collapse
|
29
|
Le Cong D, Sato D, Ikarashi K, Fujimoto T, Ochi G, Yamashiro K. Effect of whole-hand water flow stimulation on the neural balance between excitation and inhibition in the primary somatosensory cortex. Front Hum Neurosci 2022; 16:962936. [DOI: 10.3389/fnhum.2022.962936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Sustained peripheral somatosensory stimulations, such as high-frequency repetitive somatosensory stimulation (HF-RSS) and vibrated stimulation, are effective in altering the balance between excitation and inhibition in the somatosensory cortex (S1) and motor cortex (M1). A recent study reported that whole-hand water flow (WF) stimulation induced neural disinhibition in the M1. Based on previous results, we hypothesized that whole-hand WF stimulation would lead to neural disinhibition in the S1 because there is a strong neural connection between M1 and S1 and aimed to examine whether whole-hand WF stimulation would change the neural balance between excitation and inhibition in the S1. Nineteen healthy volunteers were studied by measuring excitation and inhibition in the S1 before and after each of the four 15-min interventions. The excitation and inhibition in the S1 were assessed using somatosensory evoked potentials (SEPs) and paired-pulse inhibition (PPI) induced by single- and paired-pulse stimulations, respectively. The four interventions were as follows: control, whole-hand water immersion, whole-hand WF, and HF-RSS. The results showed no significant changes in SEPs and PPI following any intervention. However, changes in PPI with an interstimulus interval (ISI) of 30 ms were significantly correlated with the baseline value before whole-hand WF. Thus, the present findings indicated that the whole-hand WF stimulation had a greater decreased neural inhibition in participants with higher neural inhibition in the S1 at baseline. Considering previous results on M1, the present results possibly show that S1 has lower plasticity than M1 and that the duration (15 min) of each intervention may not have been enough to alter the balance of excitation and inhibition in the S1.
Collapse
|
30
|
Connectivity concepts in neuronal network modeling. PLoS Comput Biol 2022; 18:e1010086. [PMID: 36074778 PMCID: PMC9455883 DOI: 10.1371/journal.pcbi.1010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/07/2022] [Indexed: 11/19/2022] Open
Abstract
Sustainable research on computational models of neuronal networks requires published models to be understandable, reproducible, and extendable. Missing details or ambiguities about mathematical concepts and assumptions, algorithmic implementations, or parameterizations hinder progress. Such flaws are unfortunately frequent and one reason is a lack of readily applicable standards and tools for model description. Our work aims to advance complete and concise descriptions of network connectivity but also to guide the implementation of connection routines in simulation software and neuromorphic hardware systems. We first review models made available by the computational neuroscience community in the repositories ModelDB and Open Source Brain, and investigate the corresponding connectivity structures and their descriptions in both manuscript and code. The review comprises the connectivity of networks with diverse levels of neuroanatomical detail and exposes how connectivity is abstracted in existing description languages and simulator interfaces. We find that a substantial proportion of the published descriptions of connectivity is ambiguous. Based on this review, we derive a set of connectivity concepts for deterministically and probabilistically connected networks and also address networks embedded in metric space. Beside these mathematical and textual guidelines, we propose a unified graphical notation for network diagrams to facilitate an intuitive understanding of network properties. Examples of representative network models demonstrate the practical use of the ideas. We hope that the proposed standardizations will contribute to unambiguous descriptions and reproducible implementations of neuronal network connectivity in computational neuroscience.
Collapse
|
31
|
Ostos S, Aparicio G, Fernaud-Espinosa I, DeFelipe J, Muñoz A. Quantitative analysis of the GABAergic innervation of the soma and axon initial segment of pyramidal cells in the human and mouse neocortex. Cereb Cortex 2022; 33:3882-3909. [PMID: 36058205 DOI: 10.1093/cercor/bhac314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 11/13/2022] Open
Abstract
Perisomatic GABAergic innervation in the cerebral cortex is carried out mostly by basket and chandelier cells, which differentially participate in the control of pyramidal cell action potential output and synchronization. These cells establish multiple synapses with the cell body (and proximal dendrites) and the axon initial segment (AIS) of pyramidal neurons, respectively. Using multiple immunofluorescence, confocal microscopy and 3D quantification techniques, we have estimated the number and density of GABAergic boutons on the cell body and AIS of pyramidal neurons located through cortical layers of the human and mouse neocortex. The results revealed, in both species, that there is clear variability across layers regarding the density and number of perisomatic GABAergic boutons. We found a positive linear correlation between the surface area of the soma, or the AIS, and the number of GABAergic terminals in apposition to these 2 neuronal domains. Furthermore, the density of perisomatic GABAergic boutons was higher in the human cortex than in the mouse. These results suggest a selectivity for the GABAergic innervation of the cell body and AIS that might be related to the different functional attributes of the microcircuits in which neurons from different layers are involved in both human and mouse.
Collapse
Affiliation(s)
- Sandra Ostos
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Guillermo Aparicio
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Isabel Fernaud-Espinosa
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Javier DeFelipe
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Alberto Muñoz
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain.,Departamento de Biología Celular, Universidad Complutense, José Antonio Novais 12, 28040 Madrid, Spain
| |
Collapse
|
32
|
Georgiou C, Kehayas V, Lee KS, Brandalise F, Sahlender DA, Blanc J, Knott G, Holtmaat A. A subpopulation of cortical VIP-expressing interneurons with highly dynamic spines. Commun Biol 2022; 5:352. [PMID: 35418660 PMCID: PMC9008030 DOI: 10.1038/s42003-022-03278-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/10/2022] [Indexed: 11/09/2022] Open
Abstract
Structural synaptic plasticity may underlie experience and learning-dependent changes in cortical circuits. In contrast to excitatory pyramidal neurons, insight into the structural plasticity of inhibitory neurons remains limited. Interneurons are divided into various subclasses, each with specialized functions in cortical circuits. Further knowledge of subclass-specific structural plasticity of interneurons is crucial to gaining a complete mechanistic understanding of their contribution to cortical plasticity overall. Here, we describe a subpopulation of superficial cortical multipolar interneurons expressing vasoactive intestinal peptide (VIP) with high spine densities on their dendrites located in layer (L) 1, and with the electrophysiological characteristics of bursting cells. Using longitudinal imaging in vivo, we found that the majority of the spines are highly dynamic, displaying lifetimes considerably shorter than that of spines on pyramidal neurons. Using correlative light and electron microscopy, we confirmed that these VIP spines are sites of excitatory synaptic contacts, and are morphologically distinct from other spines in L1.
Collapse
Affiliation(s)
- Christina Georgiou
- Department of Basic Neurosciences and the Center for Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,The Lemanic Neuroscience Graduate School, Universities of Geneva and Lausanne, Geneva, Switzerland
| | - Vassilis Kehayas
- Department of Basic Neurosciences and the Center for Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Computer Science, Foundation for Research and Technology - Hellas (FORTH), Heraklion, Crete, Greece
| | - Kok Sin Lee
- Department of Basic Neurosciences and the Center for Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,The Lemanic Neuroscience Graduate School, Universities of Geneva and Lausanne, Geneva, Switzerland
| | - Federico Brandalise
- Department of Basic Neurosciences and the Center for Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Bioscience, University of Milan, Milan, Italy
| | | | - Jerome Blanc
- Ecole Polytechnique Federale Lausanne, Lausanne, Switzerland
| | - Graham Knott
- Ecole Polytechnique Federale Lausanne, Lausanne, Switzerland
| | - Anthony Holtmaat
- Department of Basic Neurosciences and the Center for Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
33
|
Lado WE, Xu X, Hablitz JJ. Modulation of Epileptiform Activity by Three Subgroups of GABAergic Interneurons in Mouse Somatosensory Cortex. Epilepsy Res 2022; 183:106937. [DOI: 10.1016/j.eplepsyres.2022.106937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/05/2022] [Accepted: 04/24/2022] [Indexed: 11/29/2022]
|
34
|
Razenkova VA, Korzhevskii DE. Morphological Changes in GABAergic Structures of the Rat Brain during Postnatal Development. NEUROCHEM J+ 2022. [DOI: 10.1134/s181971242201010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Luhmann HJ. Neurophysiology of the Developing Cerebral Cortex: What We Have Learned and What We Need to Know. Front Cell Neurosci 2022; 15:814012. [PMID: 35046777 PMCID: PMC8761895 DOI: 10.3389/fncel.2021.814012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/09/2021] [Indexed: 11/15/2022] Open
Abstract
This review article aims to give a brief summary on the novel technologies, the challenges, our current understanding, and the open questions in the field of the neurophysiology of the developing cerebral cortex in rodents. In the past, in vitro electrophysiological and calcium imaging studies on single neurons provided important insights into the function of cellular and subcellular mechanism during early postnatal development. In the past decade, neuronal activity in large cortical networks was recorded in pre- and neonatal rodents in vivo by the use of novel high-density multi-electrode arrays and genetically encoded calcium indicators. These studies demonstrated a surprisingly rich repertoire of spontaneous cortical and subcortical activity patterns, which are currently not completely understood in their functional roles in early development and their impact on cortical maturation. Technological progress in targeted genetic manipulations, optogenetics, and chemogenetics now allow the experimental manipulation of specific neuronal cell types to elucidate the function of early (transient) cortical circuits and their role in the generation of spontaneous and sensory evoked cortical activity patterns. Large-scale interactions between different cortical areas and subcortical regions, characterization of developmental shifts from synchronized to desynchronized activity patterns, identification of transient circuits and hub neurons, role of electrical activity in the control of glial cell differentiation and function are future key tasks to gain further insights into the neurophysiology of the developing cerebral cortex.
Collapse
Affiliation(s)
- Heiko J. Luhmann
- Institute of Physiology, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
36
|
Theta activity paradoxically boosts gamma and ripple frequency sensitivity in prefrontal interneurons. Proc Natl Acad Sci U S A 2021; 118:2114549118. [PMID: 34903668 DOI: 10.1073/pnas.2114549118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2021] [Indexed: 11/18/2022] Open
Abstract
Fast oscillations in cortical circuits critically depend on GABAergic interneurons. Which interneuron types and populations can drive different cortical rhythms, however, remains unresolved and may depend on brain state. Here, we measured the sensitivity of different GABAergic interneurons in prefrontal cortex under conditions mimicking distinct brain states. While fast-spiking neurons always exhibited a wide bandwidth of around 400 Hz, the response properties of spike-frequency adapting interneurons switched with the background input's statistics. Slowly fluctuating background activity, as typical for sleep or quiet wakefulness, dramatically boosted the neurons' sensitivity to gamma and ripple frequencies. We developed a time-resolved dynamic gain analysis and revealed rapid sensitivity modulations that enable neurons to periodically boost gamma oscillations and ripples during specific phases of ongoing low-frequency oscillations. This mechanism predicts these prefrontal interneurons to be exquisitely sensitive to high-frequency ripples, especially during brain states characterized by slow rhythms, and to contribute substantially to theta-gamma cross-frequency coupling.
Collapse
|
37
|
Yamamoto K, Nakaya Y, Sugawara S, Kobayashi M. Synchronous inhibitory synaptic inputs to layer II/III pyramidal neurons in the murine barrel cortex. Brain Res 2021; 1773:147686. [PMID: 34637762 DOI: 10.1016/j.brainres.2021.147686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/15/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022]
Abstract
The barrel cortex exhibits obvious columnar organization. Although GABAergic inhibition plays a critical role in regulating neural excitation in response to mechanical stimuli applied to whiskers, the profiles of synchronous events for inhibitory synaptic transmission in intracolumnar and transcolumnar pyramidal neurons remain unknown. To explore a functional mechanism of synchronous inhibition of pyramidal neurons, we performed paired whole-cell patch-clamp recordings and recorded spontaneous inhibitory postsynaptic currents (sIPSCs) from layer II/III pyramidal neurons. A cross-correlogram of sIPSCs (1 ms bin) was used to detect synchronous sIPSCs. Synchronous neuron pairs were defined as those whose peak number of sIPSCs between -3 and 3 ms exceeded the mean + 2 SD of the number of sIPSCs in the period of -50 to 50 ms minus the number in that of -3 to 3 ms period. In the recording of pyramidal neurons located in the same column (intracolumn), 61.5% of neuron pairs were classified as synchronous neuron pairs, while 52.6% of pyramidal neuron pairs in adjacent columns (transcolumn) were defined as synchronous neuron pairs. The amplitude of synchronous sIPSCs was comparable to that of asynchronous sIPSCs in asynchronous neuron pairs, whereas that of synchronous sIPSCs was larger than that of asynchronous sIPSCs in synchronous neuron pairs. Synchronicity of sIPSCs did not depend on the distance of neuron pairs. These results suggest that layer II/III pyramidal neurons receive synchronous inhibitory synaptic inputs generated by a certain type of GABAergic interneuron that induces large IPSCs in pyramidal neurons, likely to be fast-spiking cells.
Collapse
Affiliation(s)
- Kiyofumi Yamamoto
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Yuka Nakaya
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Shiori Sugawara
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| |
Collapse
|
38
|
Setkowicz Z, Gzielo K, Kielbinski M, Janeczko K. Structural changes in the neocortex as correlates of variations in EEG spectra and seizure susceptibility in rat brains with different degrees of dysplasia. J Comp Neurol 2021; 530:1379-1398. [PMID: 34861050 PMCID: PMC9305260 DOI: 10.1002/cne.25282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 10/26/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022]
Abstract
Disturbances of the early stages of neurogenesis lead to irreversible changes in the structure of the mature brain and its functional impairment, including increased excitability, which may be the basis for drug‐resistant epilepsy. The range of possible clinical symptoms is as wide as the different stages of disturbed neurogenesis may be. In this study, we used a quadruple model of brain dysplasia by comparing structural and functional disorders in animals whose neurogenesis was disturbed with a single dose of 1 Gy of gamma rays at one of the four stages of neurogenesis, that is, on days 13, 15, 17, or 19 of prenatal development. When reached adulthood, the prenatally irradiated rats received EEG teletransmitter implantation. Thereafter, pilocarpine was administered and significant differences in susceptibility to seizure behavioral symptoms were detected depending on the degree of brain dysplasia. Before, during, and after the seizures significant correlations were found between the density of parvalbumin‐immunopositive neurons located in the cerebral cortex and the intensity of behavioral seizure symptoms or increases in the power of particular EEG bands. Neurons expressing calretinin or NPY showed also dysplasia‐related increases without, however, correlations with parameters of seizure intensity. The results point to significant roles of parvalbumin‐expressing interneurons, and also to expression of NPY—an endogenous anticonvulsant and neuroprotectant reducing susceptibility to seizures and supporting neuronal survival.
Collapse
Affiliation(s)
- Zuzanna Setkowicz
- Laboratory of Experimental Neuropathology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Kinga Gzielo
- Laboratory of Experimental Neuropathology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Michal Kielbinski
- Laboratory of Experimental Neuropathology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Krzysztof Janeczko
- Laboratory of Experimental Neuropathology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
39
|
Tzilivaki A, Kastellakis G, Schmitz D, Poirazi P. GABAergic Interneurons with Nonlinear Dendrites: From Neuronal Computations to Memory Engrams. Neuroscience 2021; 489:34-43. [PMID: 34843894 DOI: 10.1016/j.neuroscience.2021.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
GABAergic interneurons (INs) are a highly diverse class of neurons in the mammalian brain with a critical role in orchestrating multiple cognitive functions and maintaining the balance of excitation/inhibition across neuronal circuitries. In this perspective, we discuss recent findings regarding the ability of some IN subtypes to integrate incoming inputs in nonlinear ways within their dendritic branches. These recently discovered features may endow the specific INs with advanced computing capabilities, whose breadth and functional contributions remain an open question. Along these lines, we discuss theoretical and experimental evidence regarding the potential role of nonlinear IN dendrites in advancing single neuron computations and contributing to memory formation.
Collapse
Affiliation(s)
- Alexandra Tzilivaki
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; Einstein Center for Neurosciences Berlin, Charitéplatz 1, 10117 Berlin, Germany; Neurocure Cluster of Excellence, Charitéplatz 1, 10117 Berlin, Germany; Foundation for Research and Technology Hellas, Institute of Molecular Biology and Biotechnology, Greece
| | - George Kastellakis
- Foundation for Research and Technology Hellas, Institute of Molecular Biology and Biotechnology, Greece
| | - Dietmar Schmitz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; Einstein Center for Neurosciences Berlin, Charitéplatz 1, 10117 Berlin, Germany; Neurocure Cluster of Excellence, Charitéplatz 1, 10117 Berlin, Germany
| | - Panayiota Poirazi
- Foundation for Research and Technology Hellas, Institute of Molecular Biology and Biotechnology, Greece.
| |
Collapse
|
40
|
Nomura T. Interneuron Dysfunction and Inhibitory Deficits in Autism and Fragile X Syndrome. Cells 2021; 10:cells10102610. [PMID: 34685590 PMCID: PMC8534049 DOI: 10.3390/cells10102610] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/18/2023] Open
Abstract
The alteration of excitatory–inhibitory (E–I) balance has been implicated in various neurological and psychiatric diseases, including autism spectrum disorder (ASD). Fragile X syndrome (FXS) is a single-gene disorder that is the most common known cause of ASD. Understanding the molecular and physiological features of FXS is thought to enhance our knowledge of the pathophysiology of ASD. Accumulated evidence implicates deficits in the inhibitory circuits in FXS that tips E–I balance toward excitation. Deficits in interneurons, the main source of an inhibitory neurotransmitter, gamma-aminobutyric acid (GABA), have been reported in FXS, including a reduced number of cells, reduction in intrinsic cellular excitability, or weaker synaptic connectivity. Manipulating the interneuron activity ameliorated the symptoms in the FXS mouse model, which makes it reasonable to conceptualize FXS as an interneuronopathy. While it is still poorly understood how the developmental profiles of the inhibitory circuit go awry in FXS, recent works have uncovered several developmental alterations in the functional properties of interneurons. Correcting disrupted E–I balance by potentiating the inhibitory circuit by targeting interneurons may have a therapeutic potential in FXS. I will review the recent evidence about the inhibitory alterations and interneuron dysfunction in ASD and FXS and will discuss the future directions of this field.
Collapse
Affiliation(s)
- Toshihiro Nomura
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
41
|
|
42
|
Gutman-Wei AY, Brown SP. Mechanisms Underlying Target Selectivity for Cell Types and Subcellular Domains in Developing Neocortical Circuits. Front Neural Circuits 2021; 15:728832. [PMID: 34630048 PMCID: PMC8497978 DOI: 10.3389/fncir.2021.728832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/25/2021] [Indexed: 11/25/2022] Open
Abstract
The cerebral cortex contains numerous neuronal cell types, distinguished by their molecular identity as well as their electrophysiological and morphological properties. Cortical function is reliant on stereotyped patterns of synaptic connectivity and synaptic function among these neuron types, but how these patterns are established during development remains poorly understood. Selective targeting not only of different cell types but also of distinct postsynaptic neuronal domains occurs in many brain circuits and is directed by multiple mechanisms. These mechanisms include the regulation of axonal and dendritic guidance and fine-scale morphogenesis of pre- and postsynaptic processes, lineage relationships, activity dependent mechanisms and intercellular molecular determinants such as transmembrane and secreted molecules, many of which have also been implicated in neurodevelopmental disorders. However, many studies of synaptic targeting have focused on circuits in which neuronal processes target different lamina, such that cell-type-biased connectivity may be confounded with mechanisms of laminar specificity. In the cerebral cortex, each cortical layer contains cell bodies and processes from intermingled neuronal cell types, an arrangement that presents a challenge for the development of target-selective synapse formation. Here, we address progress and future directions in the study of cell-type-biased synaptic targeting in the cerebral cortex. We highlight challenges to identifying developmental mechanisms generating stereotyped patterns of intracortical connectivity, recent developments in uncovering the determinants of synaptic target selection during cortical synapse formation, and current gaps in the understanding of cortical synapse specificity.
Collapse
Affiliation(s)
- Alan Y. Gutman-Wei
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Solange P. Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
43
|
Prönneke A, Witte M, Möck M, Staiger JF. Neuromodulation Leads to a Burst-Tonic Switch in a Subset of VIP Neurons in Mouse Primary Somatosensory (Barrel) Cortex. Cereb Cortex 2021; 30:488-504. [PMID: 31210267 DOI: 10.1093/cercor/bhz102] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/14/2022] Open
Abstract
Neocortical GABAergic interneurons expressing vasoactive intestinal polypeptide (VIP) contribute to sensory processing, sensorimotor integration, and behavioral control. In contrast to other major subpopulations of GABAergic interneurons, VIP neurons show a remarkable diversity. Studying morphological and electrophysiological properties of VIP cells, we found a peculiar group of neurons in layer II/III of mouse primary somatosensory (barrel) cortex, which showed a highly dynamic burst firing behavior at resting membrane potential that switched to tonic mode at depolarized membrane potentials. Furthermore, we demonstrate that burst firing depends on T-type calcium channels. The burst-tonic switch could be induced by acetylcholine (ACh) and serotonin. ACh mediated a depolarization via nicotinic receptors whereas serotonin evoked a biphasic depolarization via ionotropic and metabotropic receptors in 48% of the population and a purely monophasic depolarization via metabotropic receptors in the remaining cells. These data disclose an electrophysiologically defined subpopulation of VIP neurons that via neuromodulator-induced changes in firing behavior is likely to regulate the state of cortical circuits in a profound manner.
Collapse
Affiliation(s)
- Alvar Prönneke
- Institute for Neuroanatomy, Universitätsmedizin Göttingen, Georg-August-Universität, D-37075 Göttingen, Germany
| | - Mirko Witte
- Institute for Neuroanatomy, Universitätsmedizin Göttingen, Georg-August-Universität, D-37075 Göttingen, Germany
| | - Martin Möck
- Institute for Neuroanatomy, Universitätsmedizin Göttingen, Georg-August-Universität, D-37075 Göttingen, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, Universitätsmedizin Göttingen, Georg-August-Universität, D-37075 Göttingen, Germany
| |
Collapse
|
44
|
Hoshino C, Konno A, Hosoi N, Kaneko R, Mukai R, Nakai J, Hirai H. GABAergic neuron-specific whole-brain transduction by AAV-PHP.B incorporated with a new GAD65 promoter. Mol Brain 2021; 14:33. [PMID: 33588899 PMCID: PMC7885384 DOI: 10.1186/s13041-021-00746-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/04/2021] [Indexed: 01/14/2023] Open
Abstract
GABAergic interneurons play a critical role in tuning neural networks in the central nervous system, and their defects are associated with neuropsychiatric disorders. Currently, the mDlx enhancer is solely used for adeno-associated virus (AAV) vector-mediated transgene delivery into cortical interneurons. Here, we developed a new inhibitory neuron-specific promoter (designated as the mGAD65 promoter), with a length of 2.5 kb, from a mouse genome upstream of exon 1 of the Gad2 gene encoding glutamic acid decarboxylase (GAD) 65. Intravenous infusion of blood-brain barrier-penetrating AAV-PHP.B expressing an enhanced green fluorescent protein under the control of the mGAD65 promoter transduced the whole brain in an inhibitory neuron-specific manner. The specificity and efficiency of the mGAD65 promoter for GABAergic interneurons, which was assessed at the motor cortex, were almost identical to or slightly higher than those of the mDlx enhancer. Immunohistochemical analysis revealed that the mGAD65 promoter preferentially transduced parvalbumin (PV)-expressing interneurons. Notably, the mGAD65 promoter transduced chandelier cells more efficiently than the mDlx enhancer and robustly labeled their synaptic boutons, called the cartridge, targeting the axon initial segments of excitatory pyramidal neurons. To test the ability of the mGAD65 promoter to express a functional molecule, we virally expressed G-CaMP, a fluorescent Ca2+ indicator, in the motor cortex, and this enabled us to monitor spontaneous and drug-induced Ca2+ activity in GABAergic inhibitory neurons. These results suggest that the mGAD65 promoter is useful for AAV-mediated targeting and manipulation of GABAergic neurons with the dominance of cortical PV-expressing neurons, including chandelier cells.
Collapse
Affiliation(s)
- Chiaki Hoshino
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, 3-39-22, Gunma, 371-8511 Japan
| | - Ayumu Konno
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, 3-39-22, Gunma, 371-8511 Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Gunma, 371-8511 Japan
| | - Nobutake Hosoi
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, 3-39-22, Gunma, 371-8511 Japan
| | - Ryosuke Kaneko
- Bioresource Center, Gunma University Graduate School of Medicine, Gunma, 371-8511 Japan
- Osaka University, Graduate School of Frontier Biosciences, 1-3 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Ryo Mukai
- Department of Ophthalmology, Gunma University Graduate School of Medicine, 3-39-22, Gunma, 371-8511 Japan
| | - Junichi Nakai
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai, 980-8575 Japan
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, 3-39-22, Gunma, 371-8511 Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Gunma, 371-8511 Japan
| |
Collapse
|
45
|
Pan H, Zhang S, Pan D, Ye Z, Yu H, Ding J, Wang Q, Sun Q, Hua T. Characterization of Feedback Neurons in the High-Level Visual Cortical Areas That Project Directly to the Primary Visual Cortex in the Cat. Front Neuroanat 2021; 14:616465. [PMID: 33488364 PMCID: PMC7820340 DOI: 10.3389/fnana.2020.616465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
Previous studies indicate that top-down influence plays a critical role in visual information processing and perceptual detection. However, the substrate that carries top-down influence remains poorly understood. Using a combined technique of retrograde neuronal tracing and immunofluorescent double labeling, we characterized the distribution and cell type of feedback neurons in cat's high-level visual cortical areas that send direct connections to the primary visual cortex (V1: area 17). Our results showed: (1) the high-level visual cortex of area 21a at the ventral stream and PMLS area at the dorsal stream have a similar proportion of feedback neurons back projecting to the V1 area, (2) the distribution of feedback neurons in the higher-order visual area 21a and PMLS was significantly denser than in the intermediate visual cortex of area 19 and 18, (3) feedback neurons in all observed high-level visual cortex were found in layer II-III, IV, V, and VI, with a higher proportion in layer II-III, V, and VI than in layer IV, and (4) most feedback neurons were CaMKII-positive excitatory neurons, and few of them were identified as inhibitory GABAergic neurons. These results may argue against the segregation of ventral and dorsal streams during visual information processing, and support "reverse hierarchy theory" or interactive model proposing that recurrent connections between V1 and higher-order visual areas constitute the functional circuits that mediate visual perception. Also, the corticocortical feedback neurons from high-level visual cortical areas to the V1 area are mostly excitatory in nature.
Collapse
Affiliation(s)
- Huijun Pan
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Shen Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Deng Pan
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Zheng Ye
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Hao Yu
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Jian Ding
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Qin Wang
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Qingyan Sun
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Tianmiao Hua
- College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
46
|
Ding C, Emmenegger V, Schaffrath K, Feldmeyer D. Layer-Specific Inhibitory Microcircuits of Layer 6 Interneurons in Rat Prefrontal Cortex. Cereb Cortex 2021; 31:32-47. [PMID: 32829414 PMCID: PMC7727376 DOI: 10.1093/cercor/bhaa201] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/06/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
GABAergic interneurons in different cortical areas play important roles in diverse higher-order cognitive functions. The heterogeneity of interneurons is well characterized in different sensory cortices, in particular in primary somatosensory and visual cortex. However, the structural and functional properties of the medial prefrontal cortex (mPFC) interneurons have received less attention. In this study, a cluster analysis based on axonal projection patterns revealed four distinct clusters of L6 interneurons in rat mPFC: Cluster 1 interneurons showed axonal projections similar to Martinotti-like cells extending to layer 1, cluster 2 displayed translaminar projections mostly to layer 5, and cluster 3 interneuron axons were confined to the layer 6, whereas those of cluster 4 interneurons extend also into the white matter. Correlations were found between neuron location and axonal distribution in all clusters. Moreover, all cluster 1 L6 interneurons showed a monotonically adapting firing pattern with an initial high-frequency burst. All cluster 2 interneurons were fast-spiking, while neurons in cluster 3 and 4 showed heterogeneous firing patterns. Our data suggest that L6 interneurons that have distinct morphological and physiological characteristics are likely to innervate different targets in mPFC and thus play differential roles in the L6 microcircuitry and in mPFC-associated functions.
Collapse
Affiliation(s)
- Chao Ding
- Institute of Neuroscience and Medicine, INM-10 Function of Cortical Microcircuits Group, Research Centre Jülich, 52425 Jülich, Germany
| | - Vishalini Emmenegger
- Institute of Neuroscience and Medicine, INM-10 Function of Cortical Microcircuits Group, Research Centre Jülich, 52425 Jülich, Germany
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Kim Schaffrath
- Institute of Neuroscience and Medicine, INM-10 Function of Cortical Microcircuits Group, Research Centre Jülich, 52425 Jülich, Germany
- Department of Ophthalmology, RWTH Aachen University Hospital, Medical School, 52074 Aachen, Germany
| | - Dirk Feldmeyer
- Institute of Neuroscience and Medicine, INM-10 Function of Cortical Microcircuits Group, Research Centre Jülich, 52425 Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University Hospital, 52074 Aachen, Germany
- JARA-Translational Brain Medicine, 52074 Aachen, Germany
| |
Collapse
|
47
|
Dahlqvist MK, Thomsen KJ, Postnov DD, Lauritzen MJ. Modification of oxygen consumption and blood flow in mouse somatosensory cortex by cell-type-specific neuronal activity. J Cereb Blood Flow Metab 2020; 40:2010-2025. [PMID: 31645177 PMCID: PMC7786843 DOI: 10.1177/0271678x19882787] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gamma activity arising from the interplay between pyramidal neurons and fast-spiking parvalbumin (PV) interneurons is an integral part of higher cognitive functions and is assumed to contribute significantly to brain metabolic responses. Cerebral metabolic rate of oxygen (CMRO2) responses were evoked by optogenetic stimulation of cortical PV interneurons and pyramidal neurons. We found that CMRO2 responses depended on neuronal activation, but not on the power of gamma activity induced by optogenetic stimulation. This implies that evoked gamma activity per se is not energy demanding. Optogenetic stimulation of PV interneurons during somatosensory stimulation reduced excitatory neuronal activity but did not potentiate O2 consumption as previously hypothesized. In conclusion, our data suggest that activity-driven CMRO2 responses depend on neuronal excitation rather than the cerebral rhythmic activity they induce. Excitation of both excitatory and inhibitory neurons requires energy, but inhibition of cortical excitatory neurons by interneurons does not potentiate activity-driven energy consumption.
Collapse
Affiliation(s)
| | - Kirsten J Thomsen
- Department of Neuroscience, University of Copenhagen, Copenhagen N, Denmark.,Department of Neurophysiology, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Dmitry D Postnov
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin J Lauritzen
- Department of Neuroscience, University of Copenhagen, Copenhagen N, Denmark.,Department of Neurophysiology, Rigshospitalet Glostrup, Glostrup, Denmark
| |
Collapse
|
48
|
Hoehne A, McFadden MH, DiGregorio DA. Feed-forward recruitment of electrical synapses enhances synchronous spiking in the mouse cerebellar cortex. eLife 2020; 9:57344. [PMID: 32990593 PMCID: PMC7524550 DOI: 10.7554/elife.57344] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 09/09/2020] [Indexed: 01/21/2023] Open
Abstract
In the cerebellar cortex, molecular layer interneurons use chemical and electrical synapses to form subnetworks that fine-tune the spiking output of the cerebellum. Although electrical synapses can entrain activity within neuronal assemblies, their role in feed-forward circuits is less well explored. By combining whole-cell patch-clamp and 2-photon laser scanning microscopy of basket cells (BCs), we found that classical excitatory postsynaptic currents (EPSCs) are followed by GABAA receptor-independent outward currents, reflecting the hyperpolarization component of spikelets (a synapse-evoked action potential passively propagating from electrically coupled neighbors). FF recruitment of the spikelet-mediated inhibition curtails the integration time window of concomitant excitatory postsynaptic potentials (EPSPs) and dampens their temporal integration. In contrast with GABAergic-mediated feed-forward inhibition, the depolarizing component of spikelets transiently increases the peak amplitude of EPSPs, and thus postsynaptic spiking probability. Therefore, spikelet transmission can propagate within the BC network to generate synchronous inhibition of Purkinje cells, which can entrain cerebellar output for driving temporally precise behaviors.
Collapse
Affiliation(s)
- Andreas Hoehne
- Laboratory of Synapse and Circuit Dynamics, Institut Pasteur, Paris Cedex, France.,Sorbonne University, ED3C, Paris, France
| | - Maureen H McFadden
- Laboratory of Synapse and Circuit Dynamics, Institut Pasteur, Paris Cedex, France
| | - David A DiGregorio
- Laboratory of Synapse and Circuit Dynamics, Institut Pasteur, Paris Cedex, France
| |
Collapse
|
49
|
Frandolig JE, Matney CJ, Lee K, Kim J, Chevée M, Kim SJ, Bickert AA, Brown SP. The Synaptic Organization of Layer 6 Circuits Reveals Inhibition as a Major Output of a Neocortical Sublamina. Cell Rep 2020; 28:3131-3143.e5. [PMID: 31533036 DOI: 10.1016/j.celrep.2019.08.048] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/24/2019] [Accepted: 08/13/2019] [Indexed: 12/21/2022] Open
Abstract
The canonical cortical microcircuit has principally been defined by interlaminar excitatory connections among the six layers of the neocortex. However, excitatory neurons in layer 6 (L6), a layer whose functional organization is poorly understood, form relatively rare synaptic connections with other cortical excitatory neurons. Here, we show that the vast majority of parvalbumin inhibitory neurons in a sublamina within L6 send axons through the cortical layers toward the pia. These interlaminar inhibitory neurons receive local synaptic inputs from both major types of L6 excitatory neurons and receive stronger input from thalamocortical afferents than do neighboring pyramidal neurons. The distribution of these interlaminar interneurons and their synaptic connectivity further support a functional subdivision within the standard six layers of the cortex. Positioned to integrate local and long-distance inputs in this sublayer, these interneurons generate an inhibitory interlaminar output. These findings call for a revision to the canonical cortical microcircuit.
Collapse
Affiliation(s)
- Jaclyn Ellen Frandolig
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chanel Joylae Matney
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kihwan Lee
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Juhyun Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Maxime Chevée
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Biochemistry, Cellular, and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Su-Jeong Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aaron Andrew Bickert
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Solange Pezon Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
50
|
Aru J, Suzuki M, Larkum ME. Cellular Mechanisms of Conscious Processing. Trends Cogn Sci 2020; 24:814-825. [PMID: 32855048 DOI: 10.1016/j.tics.2020.07.006] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 01/08/2023]
Abstract
Recent breakthroughs in neurobiology indicate that the time is ripe to understand how cellular-level mechanisms are related to conscious experience. Here, we highlight the biophysical properties of pyramidal cells, which allow them to act as gates that control the evolution of global activation patterns. In conscious states, this cellular mechanism enables complex sustained dynamics within the thalamocortical system, whereas during unconscious states, such signal propagation is prohibited. We suggest that the hallmark of conscious processing is the flexible integration of bottom-up and top-down data streams at the cellular level. This cellular integration mechanism provides the foundation for Dendritic Information Theory, a novel neurobiological theory of consciousness.
Collapse
Affiliation(s)
- Jaan Aru
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany; Institute of Computer Science, University of Tartu, Tartu, Estonia.
| | - Mototaka Suzuki
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| | - Matthew E Larkum
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany; Neurocure Center for Excellence, Charité Universitätsmedizin, Berlin, Germany.
| |
Collapse
|