1
|
Niu X, Qu W, Chen Z, Li H, Liu P, Sun M, Yang J, Xing Y, Li D. Condensed tannin from Caragana korshinskii extraction and protection effects on intestinal barrier function in mice. Front Vet Sci 2025; 12:1513371. [PMID: 39963270 PMCID: PMC11830745 DOI: 10.3389/fvets.2025.1513371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Caragana korshinskii tannins (CKT) were extracted by response surface methodology and the protection effect of CKT on the jejunal mucosal barrier function of mice was investigated. Firstly, this work presents the extraction, purification and characterization of CKT. The results show that the extraction conditions were as follows: extraction temperature was 52°C, extraction time was 95 min, liquid-solid ratio was 20:1 and acetone volume fraction was 62%. The extraction yield of the CKT was 5.34%. The CKT has a typical polyphenol peak with a molecular weight of 8.662 kDa and is composed of epigallocatechin, catechin, epigallocatechin gallate, epicatechin, gallocatechin, epicatechin-3-o-gallate and catechin gallate with a molar ratio of 1:8.88:2.65:1.55:1.92:0.49:0.14. Additionally, the CKT showed strong antioxidants capacity in vitro. Secondly, the protection effect of CKT on the growth performance and mucosal barrier function of the mouse jejunum was examined. Totally, sixty KM mice were randomly divided into six treatment groups (n = 10) using a single-factor completely randomized experimental design. The treatment groups were intragastrically administered with 0, 25, 50, 100, 200, and 400 mg/kg BW of CKT aqueous solution once a day. The gavage volume was set at 0.2 mL per 10 g of body weight, administered daily for 21 days. The results showed that CKT significantly improved growth performance and physiological state of mouse intestine. CKT strengthened the intestinal physical barrier by upregulating the expression of Occludin and ZO-1 and decreasing the levels of serum diamine oxidase (DAO) and D-lactate (D-LA). Regarding biochemical barrier, CKT could upregulate the activity and gene expression of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and decreasing the content of malondialdehyde (MDA) in jejunum tissues. Generally, CKT may be used as a functional feed additive to regulate intestinal mucosal function, thereby enhancing the health of the intestine and host.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuanyuan Xing
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Dabiao Li
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
2
|
Dobani S, Kirsty Pourshahidi L, Ternan NG, McDougall GJ, Pereira-Caro G, Bresciani L, Mena P, Almutairi TM, Crozier A, Tuohy KM, Del Rio D, Gill CIR. A review on the effects of flavan-3-ols, their metabolites, and their dietary sources on gut barrier integrity. Food Funct 2025; 16:815-830. [PMID: 39807528 DOI: 10.1039/d4fo04721d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Impairment of gut barrier integrity is associated with the pathogenesis of gastrointestinal diseases, including inflammatory bowel disease, colorectal cancer, and coeliac disease. While many aspects of diet have been linked to improved barrier function, (poly)phenols, a broad group of bioactive phytochemicals, are of potential interest. The (poly)phenolic sub-class, flavan-3-ols, have been investigated in some detail owing to their abundance in commonly consumed foods, including grapes, tea, apples, cocoa, berries, and nuts. This review summarises studies on the effects of flavan-3-ols, their microbiome-mediated metabolites, and food sources of these compounds, on gut barrier structure. Extensive evidence demonstrates that flavan-3-ol rich foods, individual flavan-3-ols (e.g., (epi)catechin, epi(gallo)catechin-3-O-gallate, and pro(antho)cyanidins), and their related microbiota-mediated metabolites, could be effective in protecting and restoring the integrity of the gut barrier. In this context, various endpoints are assessed, including transepithelial electrical resistance of the epithelial layer and expression of tight junction proteins and mucins, in ex vivo, in vitro, and animal models. The differences in bioactivity reported for barrier integrity are structure-function dependent, related to the (poly)phenolic source or the tested compound, as well as their dose, exposure time, and presence or absence of a stressor in the experimental system. Overall, these results suggest that flavan-3-ols and related compounds could help to maintain, protect, and restore gut barrier integrity, indicating that they might contribute to the beneficial properties associated with the intake of their dietary sources. However, rigorous and robustly designed human intervention studies are needed to confirm these experimental observations.
Collapse
Affiliation(s)
- Sara Dobani
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK.
| | - L Kirsty Pourshahidi
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK.
| | - Nigel G Ternan
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK.
| | - Gordon J McDougall
- Environmental and Biochemical Sciences Department, The James Hutton Institute, Invergowrie, Dundee, UK
| | - Gema Pereira-Caro
- Department of Agroindustry and Food Quality, IFAPA-Alameda Del Obispo, Córdoba, Spain
| | - Letizia Bresciani
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
- Microbiome Research Hub, Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Alan Crozier
- Department of Chemistry, King Saud University Riyadh, Saudi Arabia
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
| | - Kieran M Tuohy
- School of Food Science & Nutrition, University of Leeds, Leeds, UK
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
- Microbiome Research Hub, Department of Food and Drug, University of Parma, Parma, Italy
| | - Chris I R Gill
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK.
| |
Collapse
|
3
|
El-Saadony MT, Yang T, Saad AM, Alkafaas SS, Elkafas SS, Eldeeb GS, Mohammed DM, Salem HM, Korma SA, Loutfy SA, Alshahran MY, Ahmed AE, Mosa WFA, Abd El-Mageed TA, Ahmed AF, Fahmy MA, El-Tarabily MK, Mahmoud RM, AbuQamar SF, El-Tarabily KA, Lorenzo JM. Polyphenols: Chemistry, bioavailability, bioactivity, nutritional aspects and human health benefits: A review. Int J Biol Macromol 2024; 277:134223. [PMID: 39084416 DOI: 10.1016/j.ijbiomac.2024.134223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 06/17/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Polyphenols, including phenolics, alkaloids, and terpenes, are secondary metabolites that are commonly found in fruits, vegetables, and beverages, such as tea, coffee, wine, chocolate, and beer. These compounds have gained considerable attention and market demand because of their potential health benefits. However, their application is limited due to their low absorption rates and reduced tissue distribution efficiency. Engineering polyphenol-protein complexes or conjugates can enhance the antioxidant properties, bioavailability, and stability of polyphenols and improve digestive enzyme hydrolysis, target-specific delivery, and overall biological functions. Complex polyphenols, such as melanin, tannins, and ellagitannins, can promote gut microbiota balance, bolster antioxidant defense, and improve overall human health. Despite these benefits, the safety of polyphenol complexes must be thoroughly evaluated before their use as functional food additives or supplements. This review provides a detailed overview of the types of macromolecular polyphenols, their chemical composition, and their role in food enrichment. The mechanisms by which complex polyphenols act as antioxidative, anti-inflammatory, and anticancer agents have also been discussed.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Tao Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Shebin El Kom, 32511, Egypt; Faculty of Control System and Robotics, Information Technologies, Mechanics and Optics (ITMO) University, Saint-Petersburg, Russia
| | - Gehad S Eldeeb
- Department of Food Technology, Faculty of Agriculture, Suez Canal University, Ismailia, 41522, Egypt
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 12211, Egypt
| | - Mohammad Y Alshahran
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 9088, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Taia A Abd El-Mageed
- Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Atef F Ahmed
- Department of Biology, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Mohamed A Fahmy
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | | | - Reda M Mahmoud
- Dr Nutrition Pharmaceuticals (DNP), Dubai, 48685, United Arab Emirates
| | - Synan F AbuQamar
- Department of Biology, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Khaled A El-Tarabily
- Department of Biology, United Arab Emirates University, Al Ain, 15551, United Arab Emirates; Harry Butler Institute, Murdoch University, Murdoch, 6150, W.A., Australia
| | - José M Lorenzo
- Centro Tecnologico´ de La Carne de Galicia, Rúa Galicia No. 4, Parque Tecnologico de Galicia, San Cibrao das Vinas, Ourense, 32900, Spain; Universidad de Vigo, Area´ de Tecnología de Los Alimentos, Facultad de Ciencias de Ourense, Ourense, 32004, Spain
| |
Collapse
|
4
|
Talebi M, Esmaeeli H, İlgün S, Talebi M, Farkhondeh T, Mishra G, Samarghandian S. The Protective Role of Grape Seed in Obesity and Lipid Profile: An Updated Narrative Overview of Preclinical and Clinical Studies. Endocr Metab Immune Disord Drug Targets 2023; 23:46-62. [PMID: 35786197 DOI: 10.2174/1871530322666220630091859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022]
Abstract
Obesity and dyslipidemia are common disorders universally. According to the acquired outcomes of recent studies, dietary supplementations which have great content of phenolic compounds exert protective effects against obesity and dyslipidemia. Grape [Vitis vinifera] seeds are considered attractive sources of phenolic compounds with anti-oxidative stress and anti-inflammatory effects. There are also various experimental studies describing hepatoprotective, neuroprotective, anti-aging, cardioprotective, and anti-carcinogenic effects of polyphenols isolated from grape seed, highlighting the therapeutic and biological aspects of proanthocyanidins. The present review article first discusses pharmacological, botanical, toxicological, and phytochemical characteristics of Vitis vinifera seeds and afterward designates the protective properties which are attributed to the intake of grape seeds in obesity and hyperlipidemia. Overall valuable and updated findings of this study display that polyphenol of grape seeds has meaningful impacts on the regulation of lipid profile levels and management of obesity.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 1991953381, Iran
| | - Hadi Esmaeeli
- Research and Development Unit, NIAK Pharmaceutical Company, Gorgan, Iran.,Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Selen İlgün
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey
| | - Mohsen Talebi
- Viatris Pharmaceuticals Inc., 3300 Research Plaza, San Antonio, Texas, United States.,Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019, United States
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Gaurav Mishra
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
5
|
Zhu W, Oteiza PI. Proanthocyanidins at the gastrointestinal tract: mechanisms involved in their capacity to mitigate obesity-associated metabolic disorders. Crit Rev Food Sci Nutr 2022; 64:220-240. [PMID: 35943169 DOI: 10.1080/10408398.2022.2105802] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The prevalence of overweight and obesity is continually increasing worldwide. Obesity is a major public health concern given the multiple associated comorbidities. Finding dietary approaches to prevent/mitigate these conditions is of critical relevance. Proanthocyanidins (PACs), oligomers or polymers of flavan-3-ols that are extensively distributed in nature, represent a major part of total dietary polyphenols. Although current evidence supports the capacity of PACs to mitigate obesity-associated comorbidities, the underlying mechanisms remain speculative due to the complexity of PACs' structure. Given their limited bioavailability, the major site of the biological actions of intact PACs is the gastrointestinal (GI) tract. This review discusses the actions of PACs at the GI tract which could underlie their anti-obesity effects. These mechanisms include: i) inhibition of digestive enzymes at the GI lumen, including pancreatic lipase, α-amylase, α-glucosidase; ii) modification of gut microbiota composition; iii) modulation of inflammation- and oxidative stress-triggered signaling pathways, e.g. NF-κB and MAPKs; iv) protection of the GI barrier integrity. Further understanding of the mechanisms and biological activities of PACs at the GI tract can contribute to develop nutritional and pharmacological strategies oriented to mitigate the serious comorbidities of obesity.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Nutrition, University of California, Davis, California, USA
- Department of Environmental Toxicology, University of California, Davis, California, USA
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, California, USA
- Department of Environmental Toxicology, University of California, Davis, California, USA
| |
Collapse
|
6
|
Griffin LE, Kohrt SE, Rathore A, Kay CD, Grabowska MM, Neilson AP. Microbial Metabolites of Flavanols in Urine are Associated with Enhanced Anti-Proliferative Activity in Bladder Cancer Cells In Vitro. Nutr Cancer 2022; 74:194-210. [PMID: 33522303 PMCID: PMC8790827 DOI: 10.1080/01635581.2020.1869277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Flavanols are metabolized by the gut microbiota to bioavailable metabolites, and the absorbed fraction is excreted primarily via urine. Uroepithelial cells are thus a potential site of activity due to exposure to high concentrations of these compounds. Chemoprevention by flavanols may be partly due to these metabolites. In Vitro work in this area relies on a limited pool of commercially available microbial metabolites, and little has been done in bladder cancer. The impact of physiologically relevant mixtures of flavanols and their metabolites remains unknown. Rats were fed various flavanols and urine samples, approximating the bioavailable metabolome, were collected. Urines were profiled by UPLC-MS/MS, and their anti-proliferative activities were assayed In Vitro in four bladder cancer models. Significant interindividual variability was observed for composition and proliferation. Microbial metabolite concentrations (valerolactones, phenylalkyl acids and hippuric acids) were positively associated with reduced bladder cancer proliferation In Vitro, while native flavanols were poorly correlated with activity. These results suggest that microbial metabolites may be responsible for chemoprevention in uroepithelial cells following flavanol consumption. This highlights the potential to use individual genetics and microbial metabotyping to design personalized dietary interventions for cancer prevention and/or adjuvant therapy to reduce bladder cancer incidence and improve outcomes.
Collapse
Affiliation(s)
- Laura E. Griffin
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC
| | - Sarah E. Kohrt
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH,Department of Pharmacology, Case Western Reserve University, Cleveland, OH
| | - Atul Rathore
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC
| | - Colin D. Kay
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC
| | - Magdalena M. Grabowska
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH,Department of Pharmacology, Case Western Reserve University, Cleveland, OH,Department of Urology, Case Western Reserve University, Cleveland, OH,Department of Biochemistry, Case Western Reserve University, Cleveland, OH
| | - Andrew P. Neilson
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC,Corresponding author: Dr. Andrew Neilson, , Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, 704-250-5495
| |
Collapse
|
7
|
Ashwin K, Pattanaik AK, Howarth GS. Polyphenolic bioactives as an emerging group of nutraceuticals for promotion of gut health: A review. FOOD BIOSCI 2021; 44:101376. [DOI: 10.1016/j.fbio.2021.101376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Mu C, Hao X, Zhang X, Zhao J, Zhang J. Effects of high-concentrate diet supplemented with grape seed procyanidins on the colonic fermentation, colonic morphology, and inflammatory response in lambs. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Zorraquín-Peña I, Taladrid D, Tamargo A, Silva M, Molinero N, de Llano DG, Bartolomé B, Moreno-Arribas MV. Effects of Wine and Its Microbial-Derived Metabolites on Intestinal Permeability Using Simulated Gastrointestinal Digestion/Colonic Fermentation and Caco-2 Intestinal Cell Models. Microorganisms 2021; 9:microorganisms9071378. [PMID: 34202738 PMCID: PMC8306816 DOI: 10.3390/microorganisms9071378] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/04/2023] Open
Abstract
This paper explores the effects of wine polyphenols on intestinal permeability in in vitro conditions. A red wine (2500 mg/L of gallic acid equivalents) was sequentially subjected to gastrointestinal and colonic digestion in the Dynamic Gastrointestinal Simulator (simgi®) to obtain two simulated fluids: intestinal-digested wine (IDW) and colonic-digested wine (CDW). The two fluids were incubated with Caco-2 cell monolayers grown in Transwell® inserts, and paracellular permeability was measured as transport of FITC-dextran. Non-significant decreases (p > 0.05) in paracellular permeability were found, which was attributed to the relatively low phenolic concentration in the solutions tested (15.6 and 7.8 mg of gallic acid equivalents/L for IDW and CDW, respectively) as quercetin (200 µM) and one of its microbial-derived phenolic metabolites, 3,4-dihydroxyphenylacetic acid (200 µM), led to significant decreases (p < 0.05). The expression of tight junction (TJ) proteins (i.e., ZO-1 and occludin) in Caco-2 cells after incubation with IDW and CDW was also determined. A slight increase in mRNA levels for occludin for both IDW and CDW fluids, albeit without statistical significance (p > 0.05), was observed. Analysis of the microbiome and microbial activity during wine colonic fermentation revealed relevant changes in the relative abundance of some families/genera (i.e., reduction in Bacteroides and an increase in Veillonella, Escherichia/Shigella and Akkermansia) as well as in the microbial production of SCFA (i.e., a significant increase in propionic acid in the presence of IDW), all of which might affect paracellular permeability. Both direct and indirect (microbiota-mediated) mechanisms might be involved in the protective effects of (wine) polyphenols on intestinal barrier integrity. Overall, this paper reinforces (wine) polyphenols as a promising dietary strategy to improve gut functionality, although further studies are needed to evaluate the effect on the intestinal barrier under different conditions.
Collapse
|
10
|
Effects of probiotic supplementation on anthropometric and metabolic characteristics in adults with metabolic syndrome: A systematic review and meta-analysis of randomized clinical trials. Clin Nutr 2021; 40:4662-4673. [PMID: 34237694 DOI: 10.1016/j.clnu.2021.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 02/22/2021] [Accepted: 05/28/2021] [Indexed: 12/29/2022]
Abstract
AIMS We conducted a systematic review and meta-analysis to evaluate evidence from randomized controlled trials (RCTs) documenting the effectiveness of supplementation with pro-/synbiotics versus placebo controls on anthropometric and metabolic (glucoregulatory status, lipid profile) indices in adults with metabolic syndrome (MetS). METHODS Databases of MEDLINE, Scopus, Embase, Web of Science, and Cochrane Library were searched through March 2020 to identify eligible RCTs evaluating the effects of pro-/synbiotic consumption in adults (≥18 years) with MetS. Mean differences (MDs) and 95% confidence intervals (CIs) were pooled using random-effects models. RESULTS Ten eligible publications (9 RCTs, n = 344 participants) were included. Supplementation with pro-/synbiotics reduced total cholesterol (TC) in adults with MetS versus placebo (MD: -6.66 mg/dL, 95% CI: -13.25 to -0.07, P = 0.04, I2 = 28.8%, n = 7), without affecting weight, body mass index, waist circumference, fasting blood sugar, homeostasis model assessment for insulin resistance, insulin, triglyceride, low-density lipoprotein cholesterol, or high-density lipoprotein cholesterol (P > 0.05). CONCLUSIONS Pro-/synbiotic consumption may be beneficial in reducing TC levels in adults with MetS. However, our observations do not support the effectiveness of pro-/synbiotics consumption on other anthropometric or metabolic outcomes of MetS. Further investigations with larger sample sizes are required to confirm these findings.
Collapse
|
11
|
Macho-González A, Garcimartín A, Redondo N, Cofrades S, Bastida S, Nova E, Benedí J, Sánchez-Muniz FJ, Marcos A, Elvira López-Oliva M. Carob fruit extract-enriched meat, as preventive and curative treatments, improves gut microbiota and colonic barrier integrity in a late-stage T2DM model. Food Res Int 2021; 141:110124. [PMID: 33641991 DOI: 10.1016/j.foodres.2021.110124] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/19/2020] [Accepted: 01/07/2021] [Indexed: 12/28/2022]
Abstract
Epidemiological and experimental studies have suggested that dietary fiber and proanthocyanidins play an important role on gut microbiota (GM), colonic integrity and body health. Type 2 Diabetes Mellitus (T2DM) is a prevalent disease in which the modifications in the GM and colonic markers stand out. This manuscript hypothesizes the consumption of functional meat enriched in carob fruit extract [CFE; CFE-restructured meat (RM)] ameliorates the dysbiosis and colonic barrier integrity loss in a late-stage T2DM rat model induced by the conjoint action of a high-saturated-fat/high-cholesterol diet (Chol-diet) and a low dose of streptozotocin (STZ) plus a nicotinamide (NAD) injection. Three groups of eight rats were used: (1) D group, a T2DM control group, fed the Chol-diet; (2) ED group, a T2DM preventive strategy group fed the CFE-Chol-diet since the beginning of the study; and (3) DE group, a T2DM curative treatment group, fed the CFE-Chol-diet once the diabetic state was confirmed. The study lasted 8 weeks. Amount and variety of GM, feces short-chain-fatty acids (SCFAs), colonic morphology [crypt depth and density, goblet cells, proliferating cell nuclear antigen (PCNA) and transferase dUTP nick end labelling (TUNEL) indexes] and tight junctions were evaluated. A global colonic index combining 17 markers (GCindex) was calculated. ED rats displayed higher levels of GM richness, SCFAs production, crypt depth, and goblet cells than the D group. DE group showed lower Enterobacteriaceae abundance and greater TUNEL index and occludin expression in the distal colon than D counterpart. GCindex differentiated the colonic health status of the experimental groups in the order (ED > DE > D; P < 0.001) as a 17-51 range-quotation, ED, DE, and D groups displayed the values 43, 32.5, and 27, respectively. Thus, CFE-RM used as a T2DM preventive therapy could induce higher GM richness, more adequate SCFAs production, and better colonic barrier integrity. Furthermore, CFE-RM used with curative purposes induced more modest changes and mainly at the distal colonic mucosa. Further studies are needed to confirm this study's results, to ascertain the benefits of consuming proanthocyanidins-rich fiber during different T2DM stages.
Collapse
Affiliation(s)
- Adrián Macho-González
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain
| | - Alba Garcimartín
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, Madrid, Spain
| | - Noemí Redondo
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spain
| | - Susana Cofrades
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spain
| | - Sara Bastida
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain
| | - Esther Nova
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spain
| | - Juana Benedí
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, Madrid, Spain
| | - Francisco J Sánchez-Muniz
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain
| | - Ascensión Marcos
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spain
| | - M Elvira López-Oliva
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
12
|
Maalouly G, Hajal J, Noujeim C, Choueiry M, Nassereddine H, Smayra V, Saliba Y, Fares N. New insights in gut-liver axis in wild-type murine imiquimod-induced lupus. Lupus 2021; 30:926-936. [PMID: 33596715 DOI: 10.1177/0961203321995254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Intestinal and hepatic manifestations of lupus seem to be underestimated in comparison to other major organ lesions. Although recent data point to gut-liver axis involvement in lupus, gut permeability dysfunction and liver inflammation need to be more investigated. OBJECTIVE This study aims to assess fecal calprotectin, intestinal tight junction proteins and liver inflammation pathway in wild-type murine imiquimod- induced lupus. METHODS C57BL/6 mice were topically treated on their right ears with 1.25 mg of 5% imiquimod cream, three times per week for six weeks. Fecal calprotectin was collected at day 0, 22 and 45. Renal, liver and intestinal pathology, as well as inflammatory markers, intestinal tight junction proteins, and E. coli protein in liver were assessed at sacrifice. RESULTS At six weeks, lupus nephritis was confirmed on histopathology and NGAL and KIM-1 expression. Calprotectin rise started at day 22 and persists at day 45. Protein expression of Claudine, ZO-1 and occludin was significantly decreased. E. coli protein was significantly increased in liver with necro-inflammation and increased TLR4, TLR7, and pNFκB/NFκB liver expression. CONCLUSION This study is the first to demonstrate early fecal calprotectin increase and liver activation of TLR4- NFκB pathway in wild-type murine imiquimod-induced lupus.
Collapse
Affiliation(s)
- Georges Maalouly
- Faculty of Medicine, CHU Hotel Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
| | - Joelle Hajal
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Charbel Noujeim
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Michel Choueiry
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Hussein Nassereddine
- Faculty of Medicine, CHU Hotel Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
| | - Viviane Smayra
- Faculty of Medicine, CHU Hotel Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
| | - Youakim Saliba
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Nassim Fares
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| |
Collapse
|
13
|
Griffin LE, Essenmacher L, Racine KC, Iglesias-Carres L, Tessem JS, Smith SM, Neilson AP. Diet-induced obesity in genetically diverse collaborative cross mouse founder strains reveals diverse phenotype response and amelioration by quercetin treatment in 129S1/SvImJ, PWK/EiJ, CAST/PhJ, and WSB/EiJ mice. J Nutr Biochem 2021; 87:108521. [PMID: 33039581 DOI: 10.1016/j.jnutbio.2020.108521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/17/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022]
Abstract
Significant evidence suggests protective effects of flavonoids against obesity in animal models, but these often do not translate to humans. One explanation for this disconnect is use of a few mouse strains (notably C57BL/6 J) in obesity studies. Obesity is a multifactorial disease. The underlying causes are not fully replicated by the high-fat C57BL/6 J model, despite phenotypic similarities. Furthermore, the impact of genetic factors on the activities of flavonoids is unknown. This study was designed to explore how diverse mouse strains respond to diet-induced obesity when fed a representative flavonoid. A subset of Collaborative Cross founder strains (males and females) were placed on dietary treatments (low-fat, high-fat, high-fat with quercetin, high-fat with quercetin and antibiotics) longitudinally. Diverse responses were observed across strains and sexes. Quercetin appeared to moderately blunt weight gain in male C57 and both sexes of 129S1/SvImJ mice, and slightly increased weight gain in female C57 mice. Surprisingly, quercetin dramatically blunted weight gain in male, but not female, PWK/PhJ mice. For female mice, quercetin blunted weight gain (relative to the high-fat phase) in CAST/PhJ, PWK/EiJ and WSB/EiJ mice compared to C57. Antibiotics did not generally result in loss of protective effects of quercetin. This highlights complex interactions between genetic factors, sex, obesity stimuli, and flavonoid intake, and the need to move away from single inbred mouse models to enhance translatability to diverse humans. These data justify use of genetically diverse Collaborative Cross and Diversity Outbred models which are emerging as invaluable tools in the field of personalized nutrition.
Collapse
Affiliation(s)
- Laura E Griffin
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| | - Lauren Essenmacher
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Kathryn C Racine
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| | - Lisard Iglesias-Carres
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| | - Jeffery S Tessem
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA
| | - Susan M Smith
- Department of Nutrition, Nutrition Research Institute, The University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA
| | - Andrew P Neilson
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA.
| |
Collapse
|
14
|
Kale P, Palwankar S, Kadu P, Prabhavalkar K. Assessment of antidiabetic activity of combination of Murraya koenigii leaves extract and Vitis vinifera seeds extract in alloxan-induced diabetic rats. JOURNAL OF REPORTS IN PHARMACEUTICAL SCIENCES 2020. [DOI: 10.4103/jrptps.jrptps_50_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
15
|
Aykur M, Armagan G, Vardar R, Dagci H. Fecal calprotectin as a factor that supports the pathogenicity of Dientamoeba fragilis. Microb Pathog 2019; 139:103868. [PMID: 31730996 DOI: 10.1016/j.micpath.2019.103868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/21/2019] [Accepted: 11/11/2019] [Indexed: 10/25/2022]
Abstract
Calprotectin is a protein that is mostly released from neutrophils, monocytes, macrophages and submucosal epithelial cells. Fecal calprotectin (f-CP) is a marker of intestinal inflammation. There are some discussions about the pathogenicity of D. fragilis in the gastrointestinal tract. In this study, we investigated whether f-CP level is a factor supporting the pathogenicity of D. fragilis. The f-CP levels were evaluated in patients with only D. fragilis positive in comparison with healthy controls. Moreover, the levels of f-CP were investigated in fecal samples of D. fragilis negative patients with gastrointestinal complaints. The fecal samples were collected from three groups. Three groups of fecal samples were examined directly microscopy, trichrome staining, cultivation, enzyme immunoassay (EIA) and real-time PCR assay. In the first group (Group 1, n = 34), patient stool samples with gastrointestinal symptoms (without other pathogens) found only with D. fragilis were included. In the second group (Group 2, n = 31), there were patients' stool samples with gastrointestinal symptoms that D. fragilis was negative (but there may be other pathogenic agents). In the control group (Group 3, n = 23), we used fecal samples collected from healthy volunteers without any infection or gastrointestinal complaints. The collected fecal samples were stored at -20 °C until analysis. Levels of f-CP were determined by using human calprotectin ELISA kits. Total of 88 patients were enrolled in three different groups. We obtained f-CP levels as follows: 33.40 ng/mg protein in the group 1, 15.99 ng/mg protein in the group 2 and 1.54 ng/mg protein in the group 3. Statistically significant difference in f-CP levels of the group 1 and the group 2 were obtained when compared with healthy controls (p < 0.0001). However, the f-CP levels of the group 1 were not significantly different from the group 2 (p > 0.99). In conclusion, increased levels of f-CP are shown as a marker of an inflammatory disease of the lower gastrointestinal tract in infected humans. There is continues controversy about the pathogenicity of D. fragilis in symptomatic and asymptomatic patients. The findings of this study contribute to the ongoing debate about the pathogenicity of D. fragilis. In our study, the potential pathogenicity of D. fragilis is associated with increased f-CP concentrations with parasite detection in the fecal samples and therefore we assume that the parasite is not only a harmless commensal. In summary, higher levels of f-CP found in D. fragilis positive patients suggest the importance of researches that support the pathogenicity of indicated parasite.
Collapse
Affiliation(s)
- Mehmet Aykur
- Department of Parasitology, Ege University, Faculty of Medicine, Bornova, Izmir, Turkey; Department of Parasitology, Gaziosmanpaşa University, Faculty of Medicine, Tokat, Turkey.
| | - Guliz Armagan
- Department of Biochemistry, Ege University, Faculty of Pharmacy, Bornova, Izmir, Turkey
| | - Rukiye Vardar
- Department of Gastroenterology, Ege University, Faculty of Medicine, Bornova, Izmir, Turkey
| | - Hande Dagci
- Department of Parasitology, Ege University, Faculty of Medicine, Bornova, Izmir, Turkey
| |
Collapse
|
16
|
Griffin LE, Fausnacht DW, Tuzo JL, Addington AK, Racine KC, Zhang H, Hughes MD, England KM, Bruno RS, O'Keefe SF, Neilson AP, Stewart AC. Flavanol supplementation protects against obesity-associated increases in systemic interleukin-6 levels without inhibiting body mass gain in mice fed a high-fat diet. Nutr Res 2019; 66:32-47. [DOI: 10.1016/j.nutres.2019.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 02/21/2019] [Accepted: 03/18/2019] [Indexed: 12/21/2022]
|
17
|
Zhai Q, Yang L, Zhao J, Zhang H, Tian F, Chen W. Protective Effects of Dietary Supplements Containing Probiotics, Micronutrients, and Plant Extracts Against Lead Toxicity in Mice. Front Microbiol 2018; 9:2134. [PMID: 30254621 PMCID: PMC6141689 DOI: 10.3389/fmicb.2018.02134] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/21/2018] [Indexed: 11/13/2022] Open
Abstract
Lead (Pb) intoxication is a serious food safety issue, and the development of relevant dietary strategies is an area of ongoing research. In this study, two different dietary supplements were designed and evaluated for their effects against Pb toxicity in mice. Dietary supplement A contained grape seed extract, tea polyphenols and Lactobacillus plantarum CCFM8661, and dietary supplement B contained vitamin C, calcium carbonate, zinc acetate, and L. plantarum CCFM8661. The results showed that both dietary supplements could effectively decrease Pb levels, protect aminolevulinic acid dehydratase, superoxide dismutase and catalase activities and recover glutathione, zinc protoporphyrin and malondialdehyde levels in tissues and blood of mice. A step-through passive avoidance task confirmed that the dietary supplements could recover the learning and memory capacities of Pb-exposed mice. The protective effects of both dietary supplements to alleviate oxidative stress and cognitive impairments were superior to the chelator treatment. Administration of the dietary supplements during Pb exposure offered more significant protection than administration after Pb exposure. Animal safety evaluation also indicated that these dietary supplements barely induced side effects in the mice. This study provides evidence that dietary supplements containing probiotics, micronutrients, and plant extracts can be considered a new dietary strategy against Pb toxicity.
Collapse
Affiliation(s)
- Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, China
| | - Liu Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
18
|
Zhang C, Zhao XH, Yang L, Chen XY, Jiang RS, Jin SH, Geng ZY. Resveratrol alleviates heat stress-induced impairment of intestinal morphology, microflora, and barrier integrity in broilers. Poult Sci 2018; 96:4325-4332. [PMID: 29053872 DOI: 10.3382/ps/pex266] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/29/2017] [Indexed: 12/18/2022] Open
Abstract
This study was to investigate the effect of resveratrol on intestinal morphology, microfloras, and barrier integrity of broilers subjected to heat stress. Two-hundred-seventy 21-day-old Cobb male broilers were randomly allocated to 3 treatment groups, each of which included 6 replicates with 15 birds per replicate. The 3 treatment groups were as follows: the control group, in which birds were exposed to thermoneutral condition (22 ± 1°C), and the heat stress group and heat stress + resveratrol (400 mg/kg) group, in which birds were exposed to cyclic heat stress (33 ± 1°C for 10 h/d from 0800 to 1800 h and 22 ± 1°C for the remaining time. Compared with birds in the control group, birds in the heat stress group exhibited decreased (P < 0.05) final body weight, average daily gain, average daily feed intake, villus height, villus height to crypt depth ratio, goblet cells numbers, populations of Lactobacillus and Bifidobacterium, and mRNA levels of mucin-2, claudin-1, occludin, zona occludens-1, and E-cadherin, and increased (P < 0.05) crypt depth, serum D-lactic acid and fluorescein isothiocyanate dextran contents and diamine oxidase activity, and populations of Salmonella, Escherichia coli, and Clostridium. Compared with birds in the heat stress group, birds in the heat stress + resveratrol group exhibited decreased (P < 0.05) crypt depth, serum D-lactic acid and fluorescein isothiocyanate dextran contents, and populations of Escherichia coli, and increased (P < 0.05) final body weight, villus height, villus height to crypt depth ratio, goblet cells numbers, populations of Lactobacillus and Bifidobacterium, and mRNA levels of mucin-2, claudin-1, occludin, and E-cadherin. Taken together, these results indicated for the first time that dietary addition of resveratrol was effective in partially ameliorating the adverse effects of heat stress on intestinal barrier function in broilers by restoring the impaired villus-crypt structure, modifying the profiles of intestinal microfloras, and altering the mRNA expression of intestinal tight junctions- and adherence junctions-related genes.
Collapse
Affiliation(s)
- C Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - X H Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - L Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - X Y Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - R S Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - S H Jin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Z Y Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
19
|
Yang G, Bibi S, Du M, Suzuki T, Zhu MJ. Regulation of the intestinal tight junction by natural polyphenols: A mechanistic perspective. Crit Rev Food Sci Nutr 2017; 57:3830-3839. [PMID: 27008212 DOI: 10.1080/10408398.2016.1152230] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Impairment of the epithelial barrier function is closely linked to the pathogenesis of various gastrointestinal diseases, food allergies, type I diabetes, and other systematic diseases. Plant-derived polyphenols are natural secondary metabolites and exert various physiological benefits, including anti-inflammatory, anti-oxidative, anti-carcinogenic, and anti-aging effects. Recent studies also show the role of plant polyphenols in regulation of the intestinal barrier and prevention of intestinal inflammatory diseases. Here we summarize the regulatory pathways and mediators linking polyphenols to their beneficial effects on tight junction and gut epithelial barrier functions, and provide useful information about using polyphenols as nutraceuticals for intestinal diseases.
Collapse
Affiliation(s)
- Guan Yang
- a School of Food Science , Washington State University , Pullman , Washington , USA
| | - Shima Bibi
- a School of Food Science , Washington State University , Pullman , Washington , USA
| | - Min Du
- b Department of Animal Science , Washington State University , Pullman , Washington , USA
| | - Takuya Suzuki
- c Department of Biofunctional Science and Technology , Hiroshima University , Higashi-Hiroshima , Japan
| | - Mei-Jun Zhu
- a School of Food Science , Washington State University , Pullman , Washington , USA
| |
Collapse
|
20
|
Redan BW, Albaugh GP, Charron CS, Novotny JA, Ferruzzi MG. Adaptation in Caco-2 Human Intestinal Cell Differentiation and Phenolic Transport with Chronic Exposure to Blackberry (Rubus sp.) Extract. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2694-2701. [PMID: 28287259 DOI: 10.1021/acs.jafc.7b00027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
As evidence mounts for a health-protective role of dietary phenolics, the importance of understanding factors influencing bioavailability increases. Recent evidence has suggested chronic exposure to phenolics may impact their absorption and metabolism. To explore alterations occurring from chronic dietary exposure to phenolics, Caco-2 cell monolayers were differentiated on Transwell inserts with 0-10 μM blackberry (Rubus sp.) total phenolics extracts rich in anthocyanins, flavonols, and phenolic acids. Following differentiation, apical to basolateral transport of phenolics was assessed from an acute treatment of 100 μM blackberry phenolics from 0 to 4 h. Additionally, differences in gene expression of transport and phase II metabolizing systems including ABC transporters, organic anion transporters (OATs), and uridine 5'-diphospho (UDP) glucuronosyltransferases (UGTs) were probed. After 4 h, 1 μM pretreated monolayers showed a significant (P < 0.05) decrease in the percentage of cumulative transport including less epicatechin (42.1 ± 0.53), kaempferol glucoside (23.5 ± 0.29), and dicaffeoylquinic acid (31.9 ± 0.20) compared to control. Finally, significant (P < 0.05) alterations in mRNA expression of key phase II metabolizing enzymes and transport proteins were observed with treatment. Therefore, adaptation to blackberry extract exposure may impact intestinal transport and metabolism of phenolics.
Collapse
Affiliation(s)
- Benjamin W Redan
- Department of Nutrition Science, Purdue University , 700 W. State Street, West Lafayette, Indiana 47907, United States
| | - George P Albaugh
- Food Components and Health Laboratory, USDA-ARS , 10300 Baltimore Avenue, BLDG 307-B BARC-EAST, Beltsville, Maryland 20705, United States
| | - Craig S Charron
- Food Components and Health Laboratory, USDA-ARS , 10300 Baltimore Avenue, BLDG 307-B BARC-EAST, Beltsville, Maryland 20705, United States
| | - Janet A Novotny
- Food Components and Health Laboratory, USDA-ARS , 10300 Baltimore Avenue, BLDG 307-B BARC-EAST, Beltsville, Maryland 20705, United States
| | - Mario G Ferruzzi
- Department of Nutrition Science, Purdue University , 700 W. State Street, West Lafayette, Indiana 47907, United States
- Department of Food Science, Purdue University , 745 Agriculture Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
21
|
Gil-Cardoso K, Ginés I, Pinent M, Ardévol A, Arola L, Blay M, Terra X. Chronic supplementation with dietary proanthocyanidins protects from diet-induced intestinal alterations in obese rats. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201601039] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Katherine Gil-Cardoso
- MoBioFood Research Group; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Tarragona Spain
| | - Iris Ginés
- MoBioFood Research Group; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Tarragona Spain
| | - Montserrat Pinent
- MoBioFood Research Group; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Tarragona Spain
| | - Anna Ardévol
- MoBioFood Research Group; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Tarragona Spain
| | - Lluís Arola
- Nutrigenomics Research Group; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Tarragona Spain
| | - Mayte Blay
- MoBioFood Research Group; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Tarragona Spain
| | - Ximena Terra
- MoBioFood Research Group; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Tarragona Spain
| |
Collapse
|
22
|
Redan BW, Chegeni M, Ferruzzi MG. Differentiated Caco-2 cell monolayers exhibit adaptation in the transport and metabolism of flavan-3-ols with chronic exposure to both isolated flavan-3-ols and enriched extracts. Food Funct 2017; 8:111-121. [PMID: 27808339 DOI: 10.1039/c6fo01289b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic exposure to commonly consumed flavonoids changes their transport and metabolism in a small intestinal cell model.
Collapse
Affiliation(s)
| | | | - Mario G. Ferruzzi
- Department of Nutrition Science
- Purdue University
- West Lafayette
- USA
- Department of Food Science
| |
Collapse
|
23
|
Griffin LE, Witrick KA, Klotz C, Dorenkott MR, Goodrich KM, Fundaro G, McMillan RP, Hulver MW, Ponder MA, Neilson AP. Alterations to metabolically active bacteria in the mucosa of the small intestine predict anti-obesity and anti-diabetic activities of grape seed extract in mice. Food Funct 2017; 8:3510-3522. [DOI: 10.1039/c7fo01236e] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Grape seed extract changes small intestinal gut microbiota composition.
Collapse
Affiliation(s)
- Laura E. Griffin
- Department of Food Science and Technology
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Katherine A. Witrick
- Department of Food Science and Technology
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Courtney Klotz
- Department of Food Science and Technology
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Melanie R. Dorenkott
- Department of Food Science and Technology
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Katheryn M. Goodrich
- Department of Food Science and Technology
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Gabrielle Fundaro
- Department of Human Nutrition
- Foods and Exercise
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Ryan P. McMillan
- Department of Human Nutrition
- Foods and Exercise
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Matthew W. Hulver
- Department of Human Nutrition
- Foods and Exercise
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Monica A. Ponder
- Department of Food Science and Technology
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Andrew P. Neilson
- Department of Food Science and Technology
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| |
Collapse
|
24
|
Collins B, Hoffman J, Martinez K, Grace M, Lila MA, Cockrell C, Nadimpalli A, Chang E, Chuang CC, Zhong W, Mackert J, Shen W, Cooney P, Hopkins R, McIntosh M. A polyphenol-rich fraction obtained from table grapes decreases adiposity, insulin resistance and markers of inflammation and impacts gut microbiota in high-fat-fed mice. J Nutr Biochem 2016; 31:150-65. [PMID: 27133434 DOI: 10.1016/j.jnutbio.2015.12.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/07/2015] [Accepted: 12/29/2015] [Indexed: 12/29/2022]
Abstract
The objective of this study was to determine if consuming an extractable or nonextractable fraction of table grapes reduced the metabolic consequences of consuming a high-fat, American-type diet. Male C57BL/6J mice were fed a low fat (LF) diet, a high fat (HF) diet, or an HF diet containing whole table grape powder (5% w/w), an extractable, polyphenol-rich (HF-EP) fraction, a nonextractable, polyphenol-poor (HF-NEP) fraction or equal combinations of both fractions (HF-EP+NEP) from grape powder for 16weeks. Mice fed the HF-EP and HF-EP+NEP diets had lower percentages of body fat and amounts of white adipose tissue (WAT) and improved glucose tolerance compared to the HF-fed controls. Mice fed the HF-EP+NEP diet had lower liver weights and triglyceride (TG) levels compared to the HF-fed controls. Mice fed the HF-EP+NEP diets had higher hepatic mRNA levels of hormone sensitive lipase and adipose TG lipase, and decreased expression of c-reactive protein compared to the HF-fed controls. In epididymal (visceral) WAT, the expression levels of several inflammatory genes were lower in mice fed the HF-EP and HF-EP+NEP diets compared to the HF-fed controls. Mice fed the HF diets had increased myeloperoxidase activity and impaired localization of the tight junction protein zonula occludens-1 in ileal mucosa compared to the HF-EP and HF-NEP diets. Several of these treatment effects were associated with alterations in gut bacterial community structure. Collectively, these data demonstrate that the polyphenol-rich, EP fraction from table grapes attenuated many of the adverse health consequences associated with consuming an HF diet.
Collapse
Affiliation(s)
- Brian Collins
- Department of Nutrition, University of North Carolina at Greensboro (UNCG), Greensboro, NC
| | - Jessie Hoffman
- Department of Nutrition, University of North Carolina at Greensboro (UNCG), Greensboro, NC
| | | | - Mary Grace
- Plants for Human Health Institute, NCSU-NCRC, Kannapolis, NC
| | - Mary Ann Lila
- Plants for Human Health Institute, NCSU-NCRC, Kannapolis, NC
| | - Chase Cockrell
- Department of Medicine, University of Chicago, Chicago, IL
| | | | - Eugene Chang
- Department of Medicine, University of Chicago, Chicago, IL
| | - Chia-Chi Chuang
- Department of Internal Medicine/Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Wei Zhong
- Center for Translational Biomedical Research, UNCG-NCRC, Kannapolis, NC
| | - Jessica Mackert
- Department of Nutrition, University of North Carolina at Greensboro (UNCG), Greensboro, NC
| | - Wan Shen
- Department of Nutrition, University of North Carolina at Greensboro (UNCG), Greensboro, NC
| | - Paula Cooney
- Department of Nutrition, University of North Carolina at Greensboro (UNCG), Greensboro, NC
| | - Robin Hopkins
- Department of Nutrition, University of North Carolina at Greensboro (UNCG), Greensboro, NC
| | - Michael McIntosh
- Department of Nutrition, University of North Carolina at Greensboro (UNCG), Greensboro, NC.
| |
Collapse
|
25
|
Mechanisms by which cocoa flavanols improve metabolic syndrome and related disorders. J Nutr Biochem 2016; 35:1-21. [PMID: 27560446 DOI: 10.1016/j.jnutbio.2015.12.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 12/24/2022]
Abstract
Dietary administration of cocoa flavanols may be an effective complementary strategy for alleviation or prevention of metabolic syndrome, particularly glucose intolerance. The complex flavanol composition of cocoa provides the ability to interact with a variety of molecules, thus allowing numerous opportunities to ameliorate metabolic diseases. These interactions likely occur primarily in the gastrointestinal tract, where native cocoa flavanol concentration is high. Flavanols may antagonize digestive enzymes and glucose transporters, causing a reduction in glucose excursion, which helps patients with metabolic disorders maintain glucose homeostasis. Unabsorbed flavanols, and ones that undergo enterohepatic recycling, will proceed to the colon where they can exert prebiotic effects on the gut microbiota. Interactions with the gut microbiota may improve gut barrier function, resulting in attenuated endotoxin absorption. Cocoa may also positively influence insulin signaling, possibly by relieving insulin-signaling pathways from oxidative stress and inflammation and/or via a heightened incretin response. The purpose of this review is to explore the mechanisms that underlie these outcomes, critically review the current body of literature related to those mechanisms, explore the implications of these mechanisms for therapeutic utility, and identify emerging or needed areas of research that could advance our understanding of the mechanisms of action and therapeutic potential of cocoa flavanols.
Collapse
|
26
|
Bibi S, Kang Y, Yang G, Zhu MJ. Grape seed extract improves small intestinal health through suppressing inflammation and regulating alkaline phosphatase in IL-10-deficient mice. J Funct Foods 2016; 20:245-252. [DOI: 10.1016/j.jff.2015.10.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
27
|
Anhê FF, Varin TV, Le Barz M, Desjardins Y, Levy E, Roy D, Marette A. Gut Microbiota Dysbiosis in Obesity-Linked Metabolic Diseases and Prebiotic Potential of Polyphenol-Rich Extracts. Curr Obes Rep 2015; 4:389-400. [PMID: 26343880 DOI: 10.1007/s13679-015-0172-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Trillions of microorganisms inhabit the human body, strongly colonizing the gastro-intestinal tract and outnumbering our own cells. High-throughput sequencing techniques and new bioinformatic tools have enabled scientists to extend our knowledge on the relationship between the gut microbiota and host's physiology. Disruption of the ecological equilibrium in the gut (i.e., dysbiosis) has been associated with several pathological processes, including obesity and its related comorbidities, with diet being a strong determinant of gut microbial balance. In this review, we discuss the potential prebiotic effect of polyphenol-rich foods and extracts and how they can reshape the gut microbiota, emphasizing the novel role of the mucin-degrading bacterium Akkermansia muciniphila in their metabolic benefits.
Collapse
Affiliation(s)
- Fernando F Anhê
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, Quebec, Canada.
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 boulevard Hochelaga, Québec, QC, G1V 0A6, Canada.
- Hôpital Laval, Pavillon Marguerite d'Youville, Quebec, QC, G1V 4G5, Canada.
| | - Thibault V Varin
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 boulevard Hochelaga, Québec, QC, G1V 0A6, Canada.
| | - Mélanie Le Barz
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, Quebec, Canada.
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 boulevard Hochelaga, Québec, QC, G1V 0A6, Canada.
- Hôpital Laval, Pavillon Marguerite d'Youville, Quebec, QC, G1V 4G5, Canada.
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 boulevard Hochelaga, Québec, QC, G1V 0A6, Canada.
| | - Emile Levy
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 boulevard Hochelaga, Québec, QC, G1V 0A6, Canada.
- Research Centre, CHU-Sainte-Justine and Department of Nutrition, Université de Montréal, 3175, Chemin de la Côte Ste Catherine, bureau 5731A, Montreal, QC, H3T 1C5, Canada.
- Department of Nutrition, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.
| | - Denis Roy
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 boulevard Hochelaga, Québec, QC, G1V 0A6, Canada.
| | - André Marette
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, Quebec, Canada.
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 boulevard Hochelaga, Québec, QC, G1V 0A6, Canada.
- Hôpital Laval, Pavillon Marguerite d'Youville, Quebec, QC, G1V 4G5, Canada.
| |
Collapse
|
28
|
Stadlbauer V, Leber B, Lemesch S, Trajanoski S, Bashir M, Horvath A, Tawdrous M, Stojakovic T, Fauler G, Fickert P, Högenauer C, Klymiuk I, Stiegler P, Lamprecht M, Pieber TR, Tripolt NJ, Sourij H. Lactobacillus casei Shirota Supplementation Does Not Restore Gut Microbiota Composition and Gut Barrier in Metabolic Syndrome: A Randomized Pilot Study. PLoS One 2015; 10:e0141399. [PMID: 26509793 PMCID: PMC4625062 DOI: 10.1371/journal.pone.0141399] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/05/2015] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Metabolic syndrome is associated with disturbances in gut microbiota composition. We aimed to investigate the effect of Lactobacillus casei Shirota (LcS) on gut microbiota composition, gut barrier integrity, intestinal inflammation and serum bile acid profile in metabolic syndrome. In a single-centre, prospective, randomised controlled pilot study, 28 subjects with metabolic syndrome received either LcS for 12 weeks (n = 13) or no LcS (n = 15). Data were compared to healthy controls (n = 16). Gut microbiota composition was characterised from stool using 454 pyrosequencing of 16S rRNA genes. Serum bile acids were quantified by tandem mass spectrometry. Zonulin and calprotectin were measured in serum and stool by ELISA. Bacteroidetes/Firmicutes ratio was significantly higher in healthy controls compared to metabolic syndrome but was not influenced by LcS. LcS supplementation led to enrichment of Parabacteroides. Zonulin and calprotectin were increased in metabolic syndrome stool samples but not influenced by LcS supplementation. Serum bile acids were similar to controls and not influenced by LcS supplementation. Metabolic syndrome is associated with a higher Bacteroidetes/Firmicutes ratio and gut barrier dysfunction but LcS was not able to change this. LcS administration was associated with subtle microbiota changes at genus level. TRIAL REGISTRATION ClinicalTrials.gov NCT01182844.
Collapse
Affiliation(s)
- Vanessa Stadlbauer
- Medical University of Graz, Division of Gastroenterology and Hepatology, Graz, Austria
| | - Bettina Leber
- Medical University of Graz, Division of Transplantation Surgery, Graz, Austria
| | - Sandra Lemesch
- Medical University of Graz, Division of Gastroenterology and Hepatology, Graz, Austria
| | | | - Mina Bashir
- Medical University of Graz, Division of Endocrinology and Metabolism, Graz, Austria
| | - Angela Horvath
- Medical University of Graz, Division of Gastroenterology and Hepatology, Graz, Austria
| | - Monika Tawdrous
- Medical University of Graz, Division of Gastroenterology and Hepatology, Graz, Austria
| | - Tatjana Stojakovic
- Medical University of Graz, Clinical Institute of Medical and Chemical Laboratory Diagnostics, Graz, Austria
| | - Günter Fauler
- Medical University of Graz, Clinical Institute of Medical and Chemical Laboratory Diagnostics, Graz, Austria
| | - Peter Fickert
- Medical University of Graz, Division of Gastroenterology and Hepatology, Graz, Austria
| | - Christoph Högenauer
- Medical University of Graz, Division of Gastroenterology and Hepatology, Graz, Austria
| | | | - Philipp Stiegler
- Medical University of Graz, Division of Transplantation Surgery, Graz, Austria
| | - Manfred Lamprecht
- Medical University of Graz, Institute of Physiological Chemistry, Centre for Physiological Medicine, Graz, Austria
| | - Thomas R. Pieber
- Medical University of Graz, Division of Endocrinology and Metabolism, Graz, Austria
- Centre for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Norbert J. Tripolt
- Medical University of Graz, Division of Endocrinology and Metabolism, Graz, Austria
| | - Harald Sourij
- Medical University of Graz, Division of Endocrinology and Metabolism, Graz, Austria
- Centre for Biomarker Research in Medicine (CBmed), Graz, Austria
| |
Collapse
|
29
|
Mosele JI, Macià A, Motilva MJ. Metabolic and Microbial Modulation of the Large Intestine Ecosystem by Non-Absorbed Diet Phenolic Compounds: A Review. Molecules 2015; 20:17429-68. [PMID: 26393570 PMCID: PMC6331829 DOI: 10.3390/molecules200917429] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 08/31/2015] [Accepted: 09/11/2015] [Indexed: 12/11/2022] Open
Abstract
Phenolic compounds represent a diverse group of phytochemicals whose intake is associated with a wide spectrum of health benefits. As consequence of their low bioavailability, most of them reach the large intestine where, mediated by the action of local microbiota, a series of related microbial metabolites are accumulated. In the present review, gut microbial transformations of non-absorbed phenolic compounds are summarized. Several studies have reached a general consensus that unbalanced diets are associated with undesirable changes in gut metabolism that could be detrimental to intestinal health. In terms of explaining the possible effects of non-absorbed phenolic compounds, we have also gathered information regarded their influence on the local metabolism. For this purpose, a number of issues are discussed. Firstly, we consider the possible implications of phenolic compounds in the metabolism of colonic products, such as short chain fatty acids (SCFA), sterols (cholesterol and bile acids), and microbial products of non-absorbed proteins. Due to their being recognized as affective antioxidant and anti-inflammatory agents, the ability of phenolic compounds to counteract or suppress pro-oxidant and/or pro-inflammatory responses, triggered by bowel diseases, is also presented. The modulation of gut microbiota through dietetic maneuvers including phenolic compounds is also commented on. Although the available data seems to assume positive effects in terms of gut health protection, it is still insufficient for solid conclusions to be extracted, basically due to the lack of human trials to confirm the results obtained by the in vitro and animal studies. We consider that more emphasis should be focused on the study of phenolic compounds, particularly in their microbial metabolites, and their power to influence different aspects of gut health.
Collapse
Affiliation(s)
- Juana I Mosele
- Food Technology Department, Agrotecnio Research Center, University of Lleida, Av/Alcalde Rovira Roure 191, 25198-Lleida, Spain.
| | - Alba Macià
- Food Technology Department, Agrotecnio Research Center, University of Lleida, Av/Alcalde Rovira Roure 191, 25198-Lleida, Spain.
| | - Maria-José Motilva
- Food Technology Department, Agrotecnio Research Center, University of Lleida, Av/Alcalde Rovira Roure 191, 25198-Lleida, Spain.
| |
Collapse
|
30
|
Yang G, Xue Y, Zhang H, Du M, Zhu MJ. Favourable effects of grape seed extract on intestinal epithelial differentiation and barrier function in IL10-deficient mice. Br J Nutr 2015; 114:15-23. [PMID: 25990915 DOI: 10.1017/s0007114515001415] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The impairment in the rate of cell proliferation and differentiation leads to a negative consequence on the renewal of the intestinal epithelium, which is the aetiological factor of a number of digestive diseases. Grape seed extract (GSE), a rich source of proanthocyanidins, is known for its beneficial health effects. The present study evaluated the beneficial effects of GSE on colonic cell differentiation and barrier function in IL10-deficient mice. Female mice aged 6 weeks were randomised into two groups and given drinking-water containing 0 or 0.1 % GSE (w/v) for 12 weeks. GSE supplementation decreased serum TNF-α level and intestinal permeability, and increased the colonic goblet cell density that was associated with increased mRNA expression of mucin (Muc)-2. Immunohistochemical analyses showed lower accumulation of β-catenin in the crypts of colon tissues of the GSE-supplemented mice, which was associated with a decreased mRNA expression of two downstream effectors of Wingless and Int (Wnt)/catenin signalling, myelocytomatosis oncogene protein (Myc) and cyclin D1 (Ccnd1). Consistently, GSE supplementation decreased the number of colonic proliferating cell nuclear antigen-positive cells, a well-known cell proliferation marker, and a weakened extracellular signal-regulated kinases 1 and 2 (ERK1/2) signalling. In summary, these data indicate that supplementation of 0.1 % GSE for 12 weeks improved gut barrier function and colonic cell differentiation in the IL10-deficient mice probably via inhibiting Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Guan Yang
- School of Food Science, Washington State University,Pullman,WA99164,USA
| | - Yansong Xue
- School of Food Science, Washington State University,Pullman,WA99164,USA
| | - Hanying Zhang
- School of Food Science, Washington State University,Pullman,WA99164,USA
| | - Min Du
- Department of Animal Science,Washington State University,Pullman,WA99164,USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University,Pullman,WA99164,USA
| |
Collapse
|
31
|
Bitzer ZT, Glisan SL, Dorenkott MR, Goodrich KM, Ye L, O'Keefe SF, Lambert JD, Neilson AP. Cocoa procyanidins with different degrees of polymerization possess distinct activities in models of colonic inflammation. J Nutr Biochem 2015; 26:827-31. [PMID: 25869594 DOI: 10.1016/j.jnutbio.2015.02.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/02/2015] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
Abstract
Procyanidins are available in the diet from sources such as cocoa and grapes. Procyanidins are unique in that they are comprised of repeating monomeric units and can exist in various degrees of polymerization. The degree of polymerization plays a role in determining the biological activities of procyanidins. However, generalizations cannot be made regarding the correlation between procyanidin structure and bioactivity because the size-activity relationship appears to be system dependent. Our aim was to screen fractions of procyanidins with differing degrees of polymerization in vitro for anti-inflammatory activities in models of colonic inflammation. Monomeric, oligomeric and polymeric cocoa procyanidin fractions were screened using cell models of disrupted membrane integrity and inflammation in human colon cells. High-molecular-weight polymeric procyanidins were the most effective at preserving membrane integrity and reducing secretion of interleukin-8 in response to inflammatory stimuli. Conversely, oligomeric procyanidins appeared to be the least effective. These results suggest that polymeric cocoa procyanidins may be the most effective for preventing loss of gut barrier function and epithelial inflammation, which are critical steps in the pathogenesis of metabolic endotoxemia, inflammatory bowel disease and colon cancer. Therefore, further investigations of the potential health-protective benefits of cocoa procyanidins with distinct degrees of polymerization, particularly high-molecular-weight procyanidins, are warranted.
Collapse
Affiliation(s)
- Zachary T Bitzer
- Department of Food Science, Pennsylvania State University, 332 Rodney A. Erickson Food Science Building, University Park, PA 16802 USA
| | - Shannon L Glisan
- Department of Food Science, Pennsylvania State University, 332 Rodney A. Erickson Food Science Building, University Park, PA 16802 USA
| | - Melanie R Dorenkott
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1981 Kraft Dr., Blacksburg, VA 24060, USA
| | - Katheryn M Goodrich
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1981 Kraft Dr., Blacksburg, VA 24060, USA
| | - Liyun Ye
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1981 Kraft Dr., Blacksburg, VA 24060, USA
| | - Sean F O'Keefe
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1981 Kraft Dr., Blacksburg, VA 24060, USA
| | - Joshua D Lambert
- Department of Food Science, Pennsylvania State University, 332 Rodney A. Erickson Food Science Building, University Park, PA 16802 USA; Center for Molecular Toxicology and Carcinogenesis, Pennsylvania State University, University Park, PA 16802 USA
| | - Andrew P Neilson
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1981 Kraft Dr., Blacksburg, VA 24060, USA.
| |
Collapse
|
32
|
Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and Perspectives. Antioxidants (Basel) 2015; 4:204-47. [PMID: 26785346 PMCID: PMC4665566 DOI: 10.3390/antiox4010204] [Citation(s) in RCA: 372] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 02/06/2015] [Accepted: 03/09/2015] [Indexed: 12/16/2022] Open
Abstract
Silymarin (SM), an extract from the Silybum marianum (milk thistle) plant containing various flavonolignans (with silybin being the major one), has received a tremendous amount of attention over the last decade as a herbal remedy for liver treatment. In many cases, the antioxidant properties of SM are considered to be responsible for its protective actions. Possible antioxidant mechanisms of SM are evaluated in this review. (1) Direct scavenging free radicals and chelating free Fe and Cu are mainly effective in the gut. (2) Preventing free radical formation by inhibiting specific ROS-producing enzymes, or improving an integrity of mitochondria in stress conditions, are of great importance. (3) Maintaining an optimal redox balance in the cell by activating a range of antioxidant enzymes and non-enzymatic antioxidants, mainly via Nrf2 activation is probably the main driving force of antioxidant (AO) action of SM. (4) Decreasing inflammatory responses by inhibiting NF-κB pathways is an emerging mechanism of SM protective effects in liver toxicity and various liver diseases. (5) Activating vitagenes, responsible for synthesis of protective molecules, including heat shock proteins (HSPs), thioredoxin and sirtuins and providing additional protection in stress conditions deserves more attention. (6) Affecting the microenvironment of the gut, including SM-bacteria interactions, awaits future investigations. (7) In animal nutrition and disease prevention strategy, SM alone, or in combination with other hepatho-active compounds (carnitine, betaine, vitamin B12, etc.), might have similar hepatoprotective effects as described in human nutrition.
Collapse
|
33
|
Thompson-Witrick KA, Goodrich KM, Neilson AP, Hurley EK, Peck GM, Stewart AC. Characterization of the polyphenol composition of 20 cultivars of cider, processing, and dessert apples (Malus × domestica Borkh.) grown in Virginia. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:10181-10191. [PMID: 25228269 DOI: 10.1021/jf503379t] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Polyphenols and maturity parameters were determined in 20 apple cultivars with potential for hard cider production grown in Virginia, U.S.A. Concentrations of five classes of polyphenols were significantly different across cultivar for both peel and flesh. Total polyphenol concentration ranged from 0.9 μg/g wwb in flesh of Newtown Pippin to 453 μg/g wwb in peel of Red Delicious. Harrison, Granny Smith, Rome, Winesap, and Black Twig cultivars contained the highest concentration of total flavan-3-ols in flesh, indicating potential to impart desired astringency and bitterness to cider under processing conditions where extraction of polyphenols from peel is minimal. These results can inform selection of fruit juice, extracts, and byproducts for investigations of bioactivity and bioavailability of polyphenols, and provide baseline data for horticultural and processing research supporting the growing hard cider industry in Virginia. Based on these data, cultivars Harrison, Granny Smith, Rome, Winesap, and Black Twig show high potential for cider production in Virginia.
Collapse
Affiliation(s)
- Katherine A Thompson-Witrick
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University , 360 Duck Pond Drive, Blacksburg, Virginia 24061, United States
| | | | | | | | | | | |
Collapse
|
34
|
Yang G, Wang H, Kang Y, Zhu MJ. Grape seed extract improves epithelial structure and suppresses inflammation in ileum of IL-10-deficient mice. Food Funct 2014; 5:2558-2563. [PMID: 25137131 DOI: 10.1039/c4fo00451e] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Defect in intestinal epithelial structure is a critical etiological factor of several intestinal diseases such as inflammatory bowel disease. The objective of this study was to evaluate the effect of grape seed extract (GSE), which contains a mixture of polyphenols, on ileal mucosal structure and inflammation in interleukin (IL)-10-deficient mice, a common model for studying inflammatory bowel disease. Wild-type and IL-10-deficient mice were fed GSE at 0 or 1% (based on dry feed weight) for 16 weeks. GSE supplementation decreased crypt depth and increased (P < 0.05) the ratio of villus/crypt length in the terminal ileum. Consistently, the dietary GSE decreased (P < 0.05) proliferation and enhanced (P < 0.05) differentiation of epithelial cells. These changes in gut epithelium were associated with the suppression of nuclear factor kappa-light-chain-enhancer of activated B-cell (NF-κB) signaling. Furthermore, compared with WT mice, IL-10 deletion promoted beclin-1 and AMPK expression, both of which were decreased to normal by GSE supplementation. These changes were associated with alterations in epithelial barrier function as indicated by reduced pore forming claudin-2 protein expression and increased barrier forming claudin-1 protein expression in the ileum of GSE supplemented mice. In summary, our data indicates that GSE exerts protective effects to the ileal epithelial structure in IL-10-deficient mice possibly through the suppression of inflammatory response.
Collapse
Affiliation(s)
- Guan Yang
- School of Food Science, Washington State University, Pullman, WA 99164, USA.
| | | | | | | |
Collapse
|
35
|
Charradi K, Elkahoui S, Karkouch I, Limam F, Ben Hassine F, El May MV, Aouani E. Protective effect of grape seed and skin extract against high-fat diet-induced liver steatosis and zinc depletion in rat. Dig Dis Sci 2014; 59:1768-78. [PMID: 24705696 DOI: 10.1007/s10620-014-3128-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 03/20/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Obesity is a tremendous public health problem, characterized by ectopic deposition of fat into non-adipose tissues as liver generating an oxidative stress that could lead to steato-hepatitis. Grape seed and skin extract (GSSE) is a complex mixture of polyphenolics exhibiting robust antioxidative properties. AIM We hypothesize that GSSE could protect the liver from fat-induced lipotoxicity and have a beneficial effect on liver function. METHODS Hepatoprotective effect of GSSE was measured by using an experimental model of fat-induced rat liver steatosis. Male rats were fed a standard diet or a high-fat diet (HFD) during 6 weeks and treated or not with 500 mg/kg bw GSSE. Lipid deposition into the liver was assessed by triglyceride, cholesterol and phospholipid measurements. Fat-induced lipoperoxidation, carbonylation, depletion of glutathione and of antioxidant enzyme activities were used as oxidative stress markers with a special emphasis on transition metal distribution. RESULTS HFD induced liver hypertrophy and inflammation as assessed by high liver transaminases. HFD also induced an oxidative stress characterized by increased lipid and protein oxidation, a drop in glutathione and antioxidant enzyme activities as glutathione peroxidase and superoxide dismutase and a drastic depletion in liver zinc. Importantly, GSSE prevented all the deleterious effects of HFD treatment. CONCLUSIONS Data suggest that GSSE could be used as a safe preventive agent against fat-induced liver lipotoxicity which could also have potential applications in other non-alcoholic liver diseases.
Collapse
Affiliation(s)
- Kamel Charradi
- Laboratoire des Substances Bioactives (LSBA), Centre de Biotechnologie de Borj Cedria, BP-901, 2050, Hammam-Lif, Tunisia,
| | | | | | | | | | | | | |
Collapse
|
36
|
Wang B, Yang G, Liang X, Zhu M, Du M. Grape seed extract prevents skeletal muscle wasting in interleukin 10 knockout mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:162. [PMID: 24884473 PMCID: PMC4041050 DOI: 10.1186/1472-6882-14-162] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 05/13/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Muscle wasting is frequently a result of cancers, AIDS, chronic diseases and aging, which often links to muscle inflammation. Although grape seed extract (GSE) has been widely used as a human dietary supplement for health promotion and disease prevention primarily due to its anti-oxidative and anti-inflammative effects, it is unknown whether GSE affects muscle wasting. The objective is to test the effects of GSE supplementation on inflammation and muscle wasting in interleukin (IL)-10 knockout mice, a recently developed model for human frailty. METHODS Male IL-10 knockout (IL10KO) C57BL/6 mice at 6 weeks of age were assigned to either 0% or 0.1% GSE (in drinking water) groups (n=10) for 12 weeks, when skeletal muscle was sampled for analyses. Wild-type C57BL/6 male mice were used as controls. RESULTS Tibialis anterior muscle weight and fiber size of IL10KO mice were much lower than wild-type mice. IL10KO enhanced nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling and inflammasome formation when compared to wild-type mice. Phosphorylation of anabolic signaling was inhibited, whereas muscle specific ubiquitin ligase, AMP-activated protein kinase (AMPK) and apoptotic signaling were up-regulated in IL10KO mice. GSE supplementation effectively rectified these adverse changes in IL10KO muscle, which provide an explanation for the enhanced muscle mass, reduced protein degradation and apoptosis in GSE supplemented mice compared to IL10KO mice without supplementation. CONCLUSION GSE supplementation effectively prevents muscle wasting in IL10KO mice, showing that GSE can be used as an auxiliary treatment for muscle loss associated with chronic inflammation and frailty.
Collapse
Affiliation(s)
- Bo Wang
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA
| | - Guan Yang
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Xingwei Liang
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA
| | - Meijun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA
| |
Collapse
|
37
|
Dorenkott MR, Griffin LE, Goodrich KM, Thompson-Witrick KA, Fundaro G, Ye L, Stevens JR, Ali M, O'Keefe SF, Hulver MW, Neilson AP. Oligomeric cocoa procyanidins possess enhanced bioactivity compared to monomeric and polymeric cocoa procyanidins for preventing the development of obesity, insulin resistance, and impaired glucose tolerance during high-fat feeding. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:2216-2227. [PMID: 24559282 DOI: 10.1021/jf500333y] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
There is interest in the potential of cocoa flavanols, including monomers and procyanidins, to prevent obesity and type-2 diabetes. Fermentation and processing of cocoa beans influence the qualitative and quantitative profiles of individual cocoa constituents. Little is known regarding how different cocoa flavanols contribute to inhibition of obesity and type-2 diabetes. The objective of this study was to compare the impacts of long-term dietary exposure to cocoa flavanol monomers, oligomers, and polymers on the effects of high-fat feeding. Mice were fed a high-fat diet supplemented with either a cocoa flavanol extract or a flavanol fraction enriched with monomeric, oligomeric, or polymeric procyanidins for 12 weeks. The oligomer-rich fraction proved to be most effective in preventing weight gain, fat mass, impaired glucose tolerance, and insulin resistance in this model. This is the first long-term feeding study to examine the relative activities of cocoa constituents on diet-induced obesity and insulin resistance.
Collapse
Affiliation(s)
- Melanie R Dorenkott
- Department of Food Science and Technology, ‡Department of Human Nutrition, Foods and Exercise, and #Metabolic Phenotyping Core Facility Virginia Polytechnic Institute and State University , Blacksburg, Virginia 24060, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Georgiev V, Ananga A, Tsolova V. Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients 2014; 6:391-415. [PMID: 24451310 PMCID: PMC3916869 DOI: 10.3390/nu6010391] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 01/04/2014] [Accepted: 01/10/2014] [Indexed: 01/06/2023] Open
Abstract
Grape is one of the oldest fruit crops domesticated by humans. The numerous uses of grape in making wine, beverages, jelly, and other products, has made it one of the most economically important plants worldwide. The complex phytochemistry of the berry is characterized by a wide variety of compounds, most of which have been demonstrated to have therapeutic or health promoting properties. Among them, flavonoids are the most abundant and widely studied, and have enjoyed greater attention among grape researchers in the last century. Recent studies have shown that the beneficial health effects promoted by consumption of grape and grape products are attributed to the unique mix of polyphenolic compounds. As the largest group of grape polyphenols, flavonoids are the main candidates considered to have biological properties, including but not limited to antioxidant, anti-inflammatory, anti-cancer, antimicrobial, antiviral, cardioprotective, neuroprotective, and hepatoprotective activities. Here, we discuss the recent scientific advances supporting the beneficial health qualities of grape and grape-derived products, mechanisms of their biological activity, bioavailability, and their uses as nutraceuticals. The advantages of modern plant cell based biotechnology as an alternative method for production of grape nutraceuticals and improvement of their health qualities are also discussed.
Collapse
Affiliation(s)
- Vasil Georgiev
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A & M University, 6505 Mahan Drive, Tallahassee, FL 32317, USA.
| | - Anthony Ananga
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A & M University, 6505 Mahan Drive, Tallahassee, FL 32317, USA.
| | - Violeta Tsolova
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A & M University, 6505 Mahan Drive, Tallahassee, FL 32317, USA.
| |
Collapse
|
39
|
Effect of age, gestation and lactation on faecal IgA and calprotectin concentrations in dogs. J Nutr Sci 2014; 3:e41. [PMID: 26101610 PMCID: PMC4473140 DOI: 10.1017/jns.2014.44] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/14/2014] [Accepted: 03/21/2014] [Indexed: 12/25/2022] Open
Abstract
Faecal calprotectin and IgA have been suggested as non-invasive markers of gut health. Faecal calprotectin is a marker of intestinal inflammation in adults, whereas IgA has been suggested as a marker of intestinal immunity. The purpose of the present study was to evaluate the effect of gestation, lactation and age on faecal concentrations of these biomarkers. Thirty puppies, nineteen pregnant or lactating bitches and eighty-nine healthy control adult dogs were included in the study. Faeces were collected from the fourth week of gestation until the eighth week of lactation in pregnant and lactating bitches, and between 4 and 9 weeks of age in puppies. Faeces from the eighty-nine healthy control adult dogs were also collected. Faecal calprotectin and IgA concentrations were measured. Faecal calprotectin concentrations in control dogs were significantly lower than faecal calprotectin concentrations in puppies between 4 and 6 weeks of age (P < 0·001) or between 7 and 9 weeks of age (P = 0·004). Puppies between 4 and 6 weeks of age had significantly higher faecal IgA concentrations compared with puppies between 7 and 9 weeks of age (P = 0·001). Bitches during their second month of lactation had significantly lower faecal IgA concentrations compared with their first month of lactation (P = 0·049). Faecal calprotectin and IgA have been suggested as non-invasive and easily measured biomarkers of gut health in adults. However, the present study underlines that faecal IgA and calprotectin concentrations vary markedly depending of physiologic factors such as gestation, lactation and age. These factors need to be considered when these faecal biomarkers are used for evaluation of intestinal immunity or inflammation.
Collapse
|
40
|
Wang H, Xue Y, Zhang H, Huang Y, Yang G, Du M, Zhu MJ. Dietary grape seed extract ameliorates symptoms of inflammatory bowel disease in IL10-deficient mice. Mol Nutr Food Res 2013; 57:2253-2257. [PMID: 23963706 PMCID: PMC3976669 DOI: 10.1002/mnfr.201300146] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 06/13/2013] [Accepted: 06/15/2013] [Indexed: 12/13/2022]
Abstract
Grape seed extract (GSE) is a by-product of the wine industry, with abundant polyphenolic compounds known for their anti-inflammatory and anti-oxidative effects. Using IL10-deficient mice (IL10KO), here we showed that GSE (1% of dry feed weight) ameliorated inflammatory bowel disease indices, increased colonic goblet cell numbers and decreased myeloperoxidase levels in the large intestine. Concomitantly, GSE supplementation attenuated inflammation, decreased the expression of pore forming tight junction protein claudin2, and increased levels of Lactobacilli and Bacteroides in the gut microbiota of IL10KO mice. In summary, our study shows that GSE has protective roles on inflammatory bowel disease through altering gut inflammation, tight junction protein expression, and gut microbiota composition.
Collapse
Affiliation(s)
- Hui Wang
- Department of Animal Science, University of Wyoming, Laramie, WY82071, USA
| | - Yansong Xue
- School of Food Science, Washington State University/University of Idaho, Pullman, WA 99164, USA
| | - Hanying Zhang
- Department of Animal Science, University of Wyoming, Laramie, WY82071, USA
| | - Yan Huang
- Department of Animal Science, University of Wyoming, Laramie, WY82071, USA
| | - Guan Yang
- School of Food Science, Washington State University/University of Idaho, Pullman, WA 99164, USA
| | - Min Du
- Department of Animal Science, Washington State University, Pullman, WA 99164, USA
| | - Mei-Jun Zhu
- Department of Animal Science, University of Wyoming, Laramie, WY82071, USA
- School of Food Science, Washington State University/University of Idaho, Pullman, WA 99164, USA
| |
Collapse
|