1
|
Özbaşak H, Paliokha R, Dekhtiarenko R, Grinchii D, Dremencov E. Agmatine Enhances Dorsal Raphe Serotonergic Neuronal Activity via Dual Regulation of 5-HT 1B and 5-HT 2A Receptors. Int J Mol Sci 2025; 26:3087. [PMID: 40243752 PMCID: PMC11988524 DOI: 10.3390/ijms26073087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Agmatine is a naturally occurring biogenic amine that acts primarily as an inhibitor of neuronal nitric oxide synthase (nNOS). Previous studies have shown that both acute and chronic agmatine administration induced anxiolytic and antidepressant-like effects in rodents. In the dorsal raphe nucleus (DRN), nitric oxide (NO) donors inhibit serotonergic (5-HT) neuronal activity, with the nNOS-expressing 5-HT neurons showing lower baseline firing rates than the non-nNOS expressing neurons. Our study aimed to test the hypothesis that the psychoactive effects of agmatine are mediated, at least in part, via a mechanism involving the stimulation of the DRN 5-HT neurons, as well as to assess the molecular pathway allowing agmatine to modulate the excitability of 5-HT neurons. Using extracellular in vivo electrophysiology, we demonstrated that both acute (1-3 mg/kg, i.v.) and chronic (40 mg/kg/day, i.p., 14 days) agmatine administration significantly increased the firing rate of DRN 5-HT neurons. Quantitative PCR (qPCR) analysis revealed that chronic agmatine treatment selectively upregulated the expression of serotonin-1B (5-HT1B) and serotonin-2A (5-HT2A) receptor mRNA in the DRN. Previous studies have shown that DRN 5-HT2A receptor activation stimulates 5-HT neurons and produces antidepressant-like effects; our findings suggest that agmatine's excitatory effect on DRN 5-HT neurons may be partially 5-HT2A receptor-dependent. Given that modulation of the 5-HT neuronal firing activity is critical for the proper antidepressant efficacy, nNOS inhibitors can be potential antidepressants by their own and/or effective adjuncts to other antidepressant drugs.
Collapse
Affiliation(s)
| | | | | | | | - Eliyahu Dremencov
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia; (H.Ö.); (R.P.); (R.D.); (D.G.)
| |
Collapse
|
2
|
Xie T, Schorn RE, Kitto KF, Florio SK, Peterson CD, Wilcox GL, Vulchanova L, Fairbanks CA. Agmatine inhibits NMDA receptor-mediated calcium transients in mouse spinal cord dorsal horn via intact PSD95-nNOS signaling. J Pharmacol Exp Ther 2024; 392:100061. [PMID: 39969272 PMCID: PMC11969267 DOI: 10.1016/j.jpet.2024.100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 12/10/2024] [Indexed: 02/20/2025] Open
Abstract
Intrathecal administration of agmatine, an NMDA receptor (NMDAr) antagonist and nitric oxide synthase inhibitor, prevents neuropathic pain behavior in a dose-dependent manner by acting at the GluN2B subunit of the NMDAr. The present study investigated the pharmacological mechanism of agmatine's inhibitory effect using calcium imaging and an in vivo assay of nociceptive responses induced by NMDA. The application of NMDA-evoked calcium transients in the mouse spinal cord dorsal horn slice was inhibited by the NMDAr antagonist, 2-amino-5-phosphonovalerate. Agmatine also concentration-dependently inhibited NMDA-evoked calcium responses. To evaluate the role of the GluN2B subunit of the NMDAr in the agmatine response, we conditionally knocked-down Grin2B, the gene encoding GluN2B, in spinal cord dorsal horn neurons (GluN2B knockdown [GluN2B-KD]). In control spinal cord slices, ifenprodil inhibited NMDAr-mediated calcium transients, but it was not effective in GluN2B-KD. Surprisingly, agmatine was equally effective in reducing calcium transients in control and GluN2B-KD mouse spinal cord slices. To determine whether the effect of agmatine could be attributed to an action downstream of the NMDAr (eg, neuronal nitric oxide synthase [nNOS]), we used the PSD95-nNOS tethering inhibitor, IC87201, to disrupt the link between NMDAr and nNOS. In the presence of IC87201, agmatine's attenuation of NMDA-evoked calcium transients in ex vivo spinal cord dorsal horn was significantly reversed as was agmatine's antihyperalgesic effect in the intrathecal NMDA-evoked thermal hyperalgesia in vivo model. These results indicated that agmatine requires an intact NMDAr-PSD95-nNOS pathway to attenuate NMDAr-mediated calcium transients and thermal hyperalgesia induced by intrathecal NMDA. SIGNIFICANCE STATEMENT: Chronic pain is an urgent public health concern, and effective long-term treatments are still needed. Agmatine reduces pain in preclinical models without the side effects of motor dysfunction or addiction. Clarifying the pharmacological mechanism of agmatine's analgesic effect in spinal neurotransmission may facilitate the development of novel pain-alleviating therapeutics.
Collapse
Affiliation(s)
- Tongzhen Xie
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota
| | - Rachel E Schorn
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Kelley F Kitto
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | | | - Cristina D Peterson
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota; Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - George L Wilcox
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota; Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota; Department of Dermatology, University of Minnesota, Minneapolis, Minnesota
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Carolyn A Fairbanks
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota; Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota; Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota; Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
3
|
Gilad VH, Béres E, Vértesi A, Hirka G, Gilad GM. Evidence for safety of the dietary ingredient agmatine sulfate as assessed by mutagenicity and genotoxicity studies. Toxicol Rep 2024; 13:101720. [PMID: 39286406 PMCID: PMC11403453 DOI: 10.1016/j.toxrep.2024.101720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Agmatine, 1-Amino-4-guanidinobutane, is a ubiquitous naturally occurring molecule present in low amounts in a wide variety of foodstuff. Clinical trials have demonstrated the safety of oral agmatine sulfate and have led to its development as an effective dietary ingredient for promoting resilient nerve functions. Although clearly required, the mutagenic and genotoxic effects of agmatine have not been previously reported. The present study, therefore, undertook to assess the safety profile of agmatine using currently accepted in vitro and in vivo mutagenicity and genotoxicity tests. The test item was G-Agmatine®, a proprietary brand of agmatine sulfate. Using the bacterial reverse mutation assay (Ames test), the study found that G-Agmatine® has no mutagenic effects. It had no clastogenic effects as observed by the in vitro chromosomal aberration test using Chinese Hamster lung cells. And it lacked genotoxic effects as evidenced by the lack of increased frequency of micronucleated polychromatic immature erythrocytes following oral administration in the mouse micronucleus test. Taken together with previously published data, results of the present study further support the safety of agmatine sulfate as a dietary ingredient.
Collapse
Affiliation(s)
- Varda H Gilad
- Research, Gilad&Gilad LLC, 9149 Claretta Dr., Las Vegas, NV 89129, USA
| | - Erzsébet Béres
- Toxi-Coop ZRT., Arácsi út 97, Balatonfüred 8230, Hungary
| | - Adél Vértesi
- Toxi-Coop ZRT., Arácsi út 97, Balatonfüred 8230, Hungary
| | - Gábor Hirka
- Toxi-Coop ZRT., Arácsi út 97, Balatonfüred 8230, Hungary
| | - Gad M Gilad
- Research, Gilad&Gilad LLC, 9149 Claretta Dr., Las Vegas, NV 89129, USA
| |
Collapse
|
4
|
Rafi H, Rafiq H, Farhan M. Agmatine Improves Oxidative Stress Profiles in Rat Brain Tissues Induced by Sodium Azide. CURRENT CHEMICAL BIOLOGY 2024; 18:129-143. [DOI: 10.2174/0122127968308662240926114002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/31/2024] [Accepted: 08/30/2024] [Indexed: 05/04/2025]
Abstract
Introduction:
The brain is highly susceptible to oxidative damage due to excessive oxygen
tension, a high concentration of oxidizable substrates, and low antioxidant capacity. Consequently,
oxidative stress is linked to several brain disorders and neurodegeneration. Sodium azide is
a cytochrome oxidase inhibitor that promotes neurodegeneration by enhancing the release of excitotoxins
and inducing oxidative stress through the peroxidation of membrane lipids. This process
results in the release of intra-mitochondrial Ca+2 and H2O2 (ROS Dependent-Ca+2 release). Agmatine,
a biogenic amine, is also referred to as a free radical scavenger, protecting the brain from
membrane collapse, apoptosis, and mitochondrial swelling.
Objective:
This study was designed to identify the antioxidative effects of agmatine on sodium azide-
induced oxidative stress in brain tissues.
Methodology:
Twenty-four male albino Wistar rats were allocated into two groups: a control group
receiving water and a test group administered sodium azide (5 mg/kg, intraperitoneally) for a duration
of 14 days. Subsequently, the animals were further subdivided and treated for an additional two
weeks with either water or agmatine (100 mg/kg). Behavioral assessments were performed onehour
post-agmatine administration, and brain homogenates were prepared for biochemical analyses.
Results:
The agmatine-treated group exhibited a significant increase (P<0.01) in both the number of
entries and the time spent in the light box and the open arms of the light/dark transition box and elevated
plus maze tests, respectively. Additionally, agmatine administration significantly enhanced
(P<0.01) the total number of squares crossed in the open field test. Biochemical assessments revealed
that agmatine treatment significantly reduced (P<0.01) the levels of reactive oxygen species
and malondialdehyde. Moreover, it significantly increased (P<0.01) the levels of antioxidant enzymes
(superoxide dismutase, catalase, and glutathione peroxidase) and glutathione compared to
the control group.
Conclusion:
The present study revealed that agmatine has substantial effects on oxidative and antioxidant
enzyme levels in sodium azide-induced oxidative stress. Agmatine-treated rats exhibited
decreased reactive oxygen species levels and improvements in behavioral impairments resulting
from sodium azide administration.
Collapse
Affiliation(s)
- Hira Rafi
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of
Karachi, Karachi, Pakistan
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hamna Rafiq
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of
Karachi, Karachi, Pakistan
| | - Muhammad Farhan
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of
Karachi, Karachi, Pakistan
| |
Collapse
|
5
|
Rahangdale S, Deshmukh P, Sammeta S, Aglawe M, Kale M, Umekar M, Kotagale N, Taksande B. Agmatine modulation of gut-brain axis alleviates dysbiosis-induced depression-like behavior in rats. Eur J Pharmacol 2024; 981:176884. [PMID: 39134294 DOI: 10.1016/j.ejphar.2024.176884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/20/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Depression is a global health concern affecting nearly 280 million individuals. It not only imposes a significant burden on economies and healthcare systems but also manifests complex physiological connections and consequences. Agmatine, a putative neuromodulator derived primarily from beneficial gut microbes specially Lactobacillus, has emerged as a potential therapeutic agent for mental health. The microbiota-gut-brain axis is involved in the development of depression through the peripheral nervous system, endocrine system, and immune system and may be a key factor in the effect of agmatine. Therefore, this study aimed to investigate the potential mechanism of agmatine in antibiotic-induced dysbiosis and depression-like behavior in rats, focusing on its modulation of the gut-brain axis. Depression-like behavior associated with dysbiosis was induced through a seven-day regimen of the broad-spectrum antibiotic, comprising ampicillin and metronidazole and validated through microbial, biochemical, and behavioral alterations. On day 8, antibiotic-treated rats exhibited loose fecal consistency, altered fecal microbiota, and depression-like behavior in forced swim test. Pro-inflammatory cytokines were elevated, while agmatine and monoamine levels decreased in the hippocampus and prefrontal cortex. Antibiotic administration disrupted tight junction proteins in the ileum, affecting gut architecture. Oral administration of agmatine alone or combined with probiotics significantly reversed antibiotic-induced dysbiosis, restoring gut microbiota and mitigating depression-like behaviors. This intervention also restored neuro-inflammatory markers, increased agmatine and monoamine levels, and preserved gut integrity. The study highlights the regulatory role of endogenous agmatine in the gut-brain axis in broad-spectrum antibiotic induced dysbiosis and associated depression-like behavior.
Collapse
Affiliation(s)
- Sandip Rahangdale
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S., 441 002, India
| | - Pankaj Deshmukh
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S., 441 002, India
| | - Shivkumar Sammeta
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S., 441 002, India
| | - Manish Aglawe
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S., 441 002, India
| | - Mayur Kale
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S., 441 002, India
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S., 441 002, India
| | - Nandkishor Kotagale
- Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, M.S., 44604, India
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S., 441 002, India.
| |
Collapse
|
6
|
Zamanian MY, Nazifi M, Khachatryan LG, Taheri N, Ivraghi MS, Menon SV, Husseen B, Prasad KDV, Petkov I, Nikbakht N. The Neuroprotective Effects of Agmatine on Parkinson's Disease: Focus on Oxidative Stress, Inflammation and Molecular Mechanisms. Inflammation 2024:10.1007/s10753-024-02139-7. [PMID: 39225914 DOI: 10.1007/s10753-024-02139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Agmatine (AGM), a naturally occurring polyamine derived from L-arginine, has shown significant potential for neuroprotection in Parkinson's Disease (PD) due to its multifaceted biological activities, including antioxidant, anti-inflammatory, and anti-apoptotic effects. This review explores the therapeutic potential of AGM in treating PD, focusing on its neuroprotective mechanisms and evidence from preclinical studies. AGM has been demonstrated to mitigate the neurotoxic effects of rotenone (ROT) by improving motor function, reducing oxidative stress markers, and decreasing levels of pro-inflammatory cytokines in animal models. Additionally, AGM protects against the loss of TH + neurons, crucial for dopamine synthesis. The neuroprotective properties of AGM are attributed to its ability to modulate several key pathways implicated in PD pathogenesis, such as inhibition of NMDA receptors, activation of Nrf2, and suppression of the HMGB1/ RAGE/ TLR4/ MyD88/ NF-κB signaling cascade. Furthermore, the potential of agmatine to promote neurorestoration is highlighted by its role in enhancing neuroplasticity elements such as CREB, BDNF, and ERK1/2. This review highlights agmatine's promising therapeutic potential in PD management, suggesting that it could offer both symptomatic relief and neuroprotective benefits, thereby modifying the disease course and improving the quality of life for patients. Further research is warranted to translate these preclinical findings into clinical applications.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
| | - Mozhgan Nazifi
- Department of Neurology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Lusine G Khachatryan
- Department of Pediatric Diseases, Filatov Clinical Institute of Children's Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), N.F, Moscow, Russia
| | - Niloofar Taheri
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| | - K D V Prasad
- Symbiosis Institute of Business Management, Hyderabad, India
- Symbiosis International (Deemed University), Pune, India
| | - Iliya Petkov
- Department of Neurology, Medical University - Sofia, Sofia, Bulgaria
| | - Nikta Nikbakht
- Department of Physical Medicine and Rehabilitation, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
7
|
Pochini L. Involvement of mammalian SoLute Carriers (SLC) in the traffic of polyamines. Front Mol Biosci 2024; 11:1452184. [PMID: 39130372 PMCID: PMC11310933 DOI: 10.3389/fmolb.2024.1452184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
Polyamines interact with different molecular targets to regulate a vast range of cellular processes. A network of enzymes and transport systems is crucial for the maintenance of polyamine homeostasis. Indeed, polyamines after synthesis must be distributed to the various tissues and some intracellular organelles. Differently from the well characterized enzymes devoted to polyamine synthesis, the transport systems are not unequivocally identified or characterized. Besides some ATPases which have been identified as polyamine transporters, much less is known about solute carriers (SLC) involved in the transport of these compounds. Only two SLCs have been unequivocally identified as polyamine transporters: SLC18B1 (VPAT) and SLC22A4 (OCTN1). Transport studies have been performed with cells transfected with the cDNAs encoding the two and other SLCs or, in the case of OCTN1, also by in vitro assay using proteoliposomes harboring the recombinant human protein. According to the role proposed for OCTN1, polyamines have been associated with prolonged and quality of life. This review provides an update on the most recent findings concerning the polyamine transporters or the prediction of the putative ones.
Collapse
Affiliation(s)
- Lorena Pochini
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze Della Terra), University of Calabria, Rende, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Bari, Italy
| |
Collapse
|
8
|
Rafi H, Rafiq H, Farhan M. Pharmacological profile of agmatine: An in-depth overview. Neuropeptides 2024; 105:102429. [PMID: 38608401 DOI: 10.1016/j.npep.2024.102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
Agmatine, a naturally occurring polyamine derived from arginine via arginine decarboxylase, has been shown to play multifaceted roles in the mammalian body, impacting a wide range of physiological and pathological processes. This comprehensive review delineates the significant insights into agmatine's pharmacological profile, emphasizing its structure and metabolism, neurotransmission and regulation, and pharmacokinetics and function. Agmatine's biosynthesis is highly conserved across species, highlighting its fundamental role in cellular functions. In the brain, comparable to established neurotransmitters, agmatine acts as a neuromodulator, influencing the regulation, metabolism, and reabsorption of neurotransmitters that are key to mood disorders, learning, cognition, and the management of anxiety and depression. Beyond its neuromodulatory functions, agmatine exhibits protective effects across various cellular and systemic contexts, including neuroprotection, nephroprotection, cardioprotection, and cytoprotection, suggesting a broad therapeutic potential. The review explores agmatine's interaction with multiple receptor systems, including NMDA, α2-adrenoceptors, and imidazoline receptors, elucidating its role in enhancing cell viability, neuronal protection, and synaptic plasticity. Such interactions underpin agmatine's potential in treating neurological diseases and mood disorders, among other conditions. Furthermore, agmatine's pharmacokinetics, including its absorption, distribution, metabolism, and excretion, are discussed, underlining the complexity of its action and the potential for therapeutic application. The safety and efficacy of agmatine supplementation, demonstrated through various animal and human studies, affirm its potential as a beneficial therapeutic agent. Conclusively, the diverse physiological and therapeutic effects of agmatine, spanning neurotransmission, protection against cellular damage, and modulation of various receptor pathways, position it as a promising candidate for further research and clinical application. This review underscores the imperative for continued exploration into agmatine's mechanisms of action and its potential in pharmacology and medicine, promising advances in the treatment of numerous conditions.
Collapse
Affiliation(s)
- Hira Rafi
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biochemistry, University of Karachi, Pakistan.
| | - Hamna Rafiq
- Department of Biochemistry, University of Karachi, Pakistan
| | | |
Collapse
|
9
|
Fathima S, Al Hakeem WG, Selvaraj RK, Shanmugasundaram R. Beyond protein synthesis: the emerging role of arginine in poultry nutrition and host-microbe interactions. Front Physiol 2024; 14:1326809. [PMID: 38235383 PMCID: PMC10791986 DOI: 10.3389/fphys.2023.1326809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024] Open
Abstract
Arginine is a functional amino acid essential for various physiological processes in poultry. The dietary essentiality of arginine in poultry stems from the absence of the enzyme carbamoyl phosphate synthase-I. The specific requirement for arginine in poultry varies based on several factors, such as age, dietary factors, and physiological status. Additionally, arginine absorption and utilization are also influenced by the presence of antagonists. However, dietary interventions can mitigate the effect of these factors affecting arginine utilization. In poultry, arginine is utilized by four enzymes, namely, inducible nitric oxide synthase arginase, arginine decarboxylase and arginine: glycine amidinotransferase (AGAT). The intermediates and products of arginine metabolism by these enzymes mediate the different physiological functions of arginine in poultry. The most studied function of arginine in humans, as well as poultry, is its role in immune response. Arginine exerts immunomodulatory functions primarily through the metabolites nitric oxide (NO), ornithine, citrulline, and polyamines, which take part in inflammation or the resolution of inflammation. These properties of arginine and arginine metabolites potentiate its use as a nutraceutical to prevent the incidence of enteric diseases in poultry. Furthermore, arginine is utilized by the poultry gut microbiota, the metabolites of which might have important implications for gut microbial composition, immune regulation, metabolism, and overall host health. This comprehensive review provides insights into the multifaceted roles of arginine and arginine metabolites in poultry nutrition and wellbeing, with particular emphasis on the potential of arginine in immune regulation and microbial homeostasis in poultry.
Collapse
Affiliation(s)
- Shahna Fathima
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | | | - Ramesh K. Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | | |
Collapse
|
10
|
Saha P, Panda S, Holkar A, Vashishth R, Rana SS, Arumugam M, Ashraf GM, Haque S, Ahmad F. Neuroprotection by agmatine: Possible involvement of the gut microbiome? Ageing Res Rev 2023; 91:102056. [PMID: 37673131 DOI: 10.1016/j.arr.2023.102056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Agmatine, an endogenous polyamine derived from L-arginine, elicits tremendous multimodal neuromodulant properties. Alterations in agmatinergic signalling are closely linked to the pathogeneses of several brain disorders. Importantly, exogenous agmatine has been shown to act as a potent neuroprotectant in varied pathologies, including brain ageing and associated comorbidities. The antioxidant, anxiolytic, analgesic, antidepressant and memory-enhancing activities of agmatine may derive from its ability to regulate several cellular pathways; including cell metabolism, survival and differentiation, nitric oxide signalling, protein translation, oxidative homeostasis and neurotransmitter signalling. This review briefly discusses mammalian metabolism of agmatine and then proceeds to summarize our current understanding of neuromodulation and neuroprotection mediated by agmatine. Further, the emerging exciting bidirectional links between agmatine and the resident gut microbiome and their implications for brain pathophysiology and ageing are also discussed.
Collapse
Affiliation(s)
- Priyanka Saha
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Subhrajita Panda
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Aayusha Holkar
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Rahul Vashishth
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sandeep Singh Rana
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Mohanapriya Arumugam
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Ghulam Md Ashraf
- University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, Sharjah 27272, United Arab Emirates.
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
11
|
Ganjalikhan‐hakemi S, Asadi‐Shekaari M, Pourjafari F, Asadikaram G, Nozari M. Agmatine improves liver function, balance performance, and neuronal damage in a hepatic encephalopathy induced by bile duct ligation. Brain Behav 2023; 13:e3124. [PMID: 37337713 PMCID: PMC10498069 DOI: 10.1002/brb3.3124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/21/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023] Open
Abstract
INTRODUCTION In the current study, we investigate whether oral administration of agmatine (AGM) could effectively reduce motor and cognitive deficits induced by bile duct ligation (BDL) in an animal model of hepatic encephalopathy (HE) through neuroprotective mechanisms. METHODS The Wistar rats were divided into four groups: sham, BDL, BDL+ 40 mg/kg AGM, and BDL+ 80 mg/kg AGM. The BDL rats were treated with AGM from 2 weeks after the surgery for 4 consecutive weeks. The open field, rotarod, and wire grip tests were used to assess motor function and muscle strength. The novel object recognition test (NOR) was performed to evaluate learning and memory. Finally, blood samples were collected for the analysis of the liver markers, the animals were sacrificed, and brain tissues were removed; the CA1 regions of the hippocampus and cerebellum were processed to identify apoptosis and neuronal damage rate using caspase-3 immunocytochemistry and Nissl staining. RESULTS The serological assay results showed that BDL severely impaired the function of the liver. Based on histochemical findings, BDL increased the neuronal damage in CA1 and Purkinje cells, whereas apoptosis was significantly observed only in the cerebellum. AGM treatment prevented the increase of serum liver enzymes, balance deficits, and neuronal damage in the brain areas. Apoptosis partially decreased by AGM, and there were no differences in the performance of animals in different groups in the NOR. CONCLUSIONS The study suggests AGM as a potential treatment candidate for HE because of its neuroprotective properties and/or its direct effects on liver function.
Collapse
Affiliation(s)
- Sepideh Ganjalikhan‐hakemi
- Student Research Committee, Department of Anatomical Sciences, Afzalipour School of MedicineKerman University of Medical SciencesKermanIran
| | - Majid Asadi‐Shekaari
- Neuroscience Research Center, Institute of NeuropharmacologyKerman University of Medical SciencesKermanIran
| | - Fahimeh Pourjafari
- Student Research Committee, Department of Anatomical Sciences, Afzalipour School of MedicineKerman University of Medical SciencesKermanIran
| | - Gholamreza Asadikaram
- Department of Biochemistry, Afzalipour School of MedicineKerman University of Medical SciencesKermanIran
| | - Masoumeh Nozari
- Neuroscience Research Center, Institute of NeuropharmacologyKerman University of Medical SciencesKermanIran
| |
Collapse
|
12
|
Yan S, Xu C, Yang M, Zhang H, Cheng Y, Xue Z, He Z, Wang T, Bai S, Wang G, Wu J, Tong Z, Cai X. The expression of agmatinase manipulates the affective state of rats subjected to chronic restraint stress. Neuropharmacology 2023; 229:109476. [PMID: 36849038 DOI: 10.1016/j.neuropharm.2023.109476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Agmatine is an endogenous polyamine produced from l-arginine and degraded by agmatinase (AGMAT). Studies in humans and animals have shown that agmatine has neuroprotective, anxiolytic, and antidepressant-like actions. However, little is known about the role of AGMAT in the action of agmatine or in the pathophysiology of psychiatric disorders. Therefore, this study aimed to investigate the role of AGMAT in the pathophysiology of MDD. In this study, we observed that AGMAT expression increased in the ventral hippocampus rather than in the medial prefrontal cortex in the chronic restraint stress (CRS) animal model of depression. Furthermore, we found that AGMAT overexpression in the ventral hippocampus elicited depressive- and anxiety-like behaviors, whereas knockdown of AGMAT exhibited antidepressant and anxiolytic effects in CRS animals. Field and whole-cell recordings of hippocampal CA1 revealed that AGMAT blockage increased Schaffer collateral-CA1 excitatory synaptic transmission, which was expressed both pre- and post-synaptically and was probably due to the inhibition of AGMAT-expressing local interneurons. Therefore, our results suggest that dysregulation of AGMAT is involved in the pathophysiology of depression and is a potential target for designing more effective antidepressants with fewer adverse effects to offer a better therapy for depression.
Collapse
Affiliation(s)
- Shi Yan
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorder, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Chang Xu
- College of Life Science, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Mengli Yang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorder, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Huiqiang Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorder, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Ye Cheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorder, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Zeping Xue
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorder, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Zecong He
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorder, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Tiantian Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorder, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Shangying Bai
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorder, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Gang Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorder, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders Beijing Anding Hospital Capital Medical University, Beijing 100088, China
| | - Jianping Wu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei 430070, China; Advanced Innovation Center for Human Brain Protection, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Zhiqian Tong
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiang Cai
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Beijing Institute of Brain Disorders, Advanced Innovation Center for Human Brain Protection, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
13
|
Characterization of a Novel Shewanella algae Arginine Decarboxylase Expressed in Escherichia coli. Mol Biotechnol 2021; 64:57-65. [PMID: 34532832 DOI: 10.1007/s12033-021-00397-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 09/08/2021] [Indexed: 01/13/2023]
Abstract
Arginine decarboxylase (ADC) catalyzes the decarboxylation of arginine to form agmatine, an important physiological and pharmacological amine, and attracts attention to the enzymatic production of agmatine. In this study, we for the first time overexpressed and characterized the marine Shewanella algae ADC (SaADC) in Escherichia coli. The recombinant SaADC showed the maximum activity at pH 7.5 and 40 °C. The SaADC displayed previously unreported substrate inhibition when the substrate concentration was higher than 50 mM, which was the upper limit of testing condition in other reports. In the range of 1-80 mM L-arginine, the SaADC showed the Km, kcat, Ki, and kcat/Km values of 72.99 ± 6.45 mM, 42.88 ± 2.63 s-1, 20.56 ± 2.18 mM, and 0.59 s/mM, respectively, which were much higher than the Km (14.55 ± 1.45 mM) and kcat (12.62 ± 0.68 s-1) value obtained by assaying at 1-50 mM L-arginine without considering substrate inhibition. Both the kcat values of SaADC with and without substrate inhibition are the highest ones to the best of our knowledge. This provides a reference for the study of substrate inhibition of ADCs.
Collapse
|
14
|
Suarez-Roca H, Mamoun N, Sigurdson MI, Maixner W. Baroreceptor Modulation of the Cardiovascular System, Pain, Consciousness, and Cognition. Compr Physiol 2021; 11:1373-1423. [PMID: 33577130 DOI: 10.1002/cphy.c190038] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Baroreceptors are mechanosensitive elements of the peripheral nervous system that maintain cardiovascular homeostasis by coordinating the responses to external and internal environmental stressors. While it is well known that carotid and cardiopulmonary baroreceptors modulate sympathetic vasomotor and parasympathetic cardiac neural autonomic drive, to avoid excessive fluctuations in vascular tone and maintain intravascular volume, there is increasing recognition that baroreceptors also modulate a wide range of non-cardiovascular physiological responses via projections from the nucleus of the solitary tract to regions of the central nervous system, including the spinal cord. These projections regulate pain perception, sleep, consciousness, and cognition. In this article, we summarize the physiology of baroreceptor pathways and responses to baroreceptor activation with an emphasis on the mechanisms influencing cardiovascular function, pain perception, consciousness, and cognition. Understanding baroreceptor-mediated effects on cardiac and extra-cardiac autonomic activities will further our understanding of the pathophysiology of multiple common clinical conditions, such as chronic pain, disorders of consciousness (e.g., abnormalities in sleep-wake), and cognitive impairment, which may result in the identification and implementation of novel treatment modalities. © 2021 American Physiological Society. Compr Physiol 11:1373-1423, 2021.
Collapse
Affiliation(s)
- Heberto Suarez-Roca
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University, Durham, North Carolina, USA
| | - Negmeldeen Mamoun
- Department of Anesthesiology, Division of Cardiothoracic Anesthesia and Critical Care Medicine, Duke University, Durham, North Carolina, USA
| | - Martin I Sigurdson
- Department of Anesthesiology and Critical Care Medicine, Landspitali, University Hospital, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - William Maixner
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University, Durham, North Carolina, USA
| |
Collapse
|
15
|
Jędrejko K, Lazur J, Muszyńska B. Risk Associated with the Use of Selected Ingredients in Food Supplements. Chem Biodivers 2021; 18:e2000686. [PMID: 33410585 DOI: 10.1002/cbdv.202000686] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/05/2021] [Indexed: 12/30/2022]
Abstract
This review focuses on four new product categories of food supplements: pre-workout, fat burner/thermogenic, brain/cognitive booster, and hormone/testosterone booster. Many food supplements have been shown to be contaminated with unauthorized substances. In some cases, the ingredients in the new categories of dietary supplements were medicinal products or new synthetic compounds added without performing clinical trials. Some of the new ingredients in dietary supplements are plant materials that are registered in the pharmacopoeia as herbal medicines. In other cases, dietary supplements may contain plant materials that have no history of human use and are often used as materials to 'camouflage' stimulants. In the European Union, new ingredients of dietary supplements, according to European Food Safety Authority or unauthorized novel food. Furthermore, selected ingredients in dietary supplements may be prohibited in sports and are recognized as doping agents by World Anti-Doping Agency.
Collapse
Affiliation(s)
- Karol Jędrejko
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Botany, Medyczna 9 Street, PL, 30-688, Kraków, Poland
| | - Jan Lazur
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Botany, Medyczna 9 Street, PL, 30-688, Kraków, Poland
| | - Bożena Muszyńska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Botany, Medyczna 9 Street, PL, 30-688, Kraków, Poland
| |
Collapse
|
16
|
|
17
|
Krzystek-Korpacka M, G. Fleszar M, Bednarz-Misa I, Lewandowski Ł, Szczuka I, Kempiński R, Neubauer K. Transcriptional and Metabolomic Analysis of L-Arginine/Nitric Oxide Pathway in Inflammatory Bowel Disease and Its Association with Local Inflammatory and Angiogenic Response: Preliminary Findings. Int J Mol Sci 2020; 21:ijms21051641. [PMID: 32121248 PMCID: PMC7084352 DOI: 10.3390/ijms21051641] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
L-arginine/nitric oxide pathway in Crohn's disease (CD) and ulcerative colitis (UC) is poorly investigated. The aim of current study is to quantify pathway serum metabolites in 52 CD (40 active), 48 UC (33 active), and 18 irritable bowel syndrome patients and 40 controls using mass spectrometry and at determining mRNA expression of pathway-associated enzymes in 91 bowel samples. Arginine and symmetric dimethylarginine decreased (p < 0.05) in active-CD (129 and 0.437 µM) compared to controls (157 and 0.494 µM) and active-UC (164 and 0.52 µM). Citrulline and dimethylamine increased (p < 0.05) in active-CD (68.7 and 70.9 µM) and active-UC (65.9 and 73.9 µM) compared to controls (42.7 and 50.4 µM). Compared to normal, CD-inflamed small bowel had downregulated (p < 0.05) arginase-2 by 2.4-fold and upregulated dimethylarginine dimethylaminohydrolase (DDAH)-2 (1.5-fold) and arginine N-methyltransferase (PRMT)-2 (1.6-fold). Quiescent-CD small bowel had upregulated (p < 0.05) arginase-2 (1.8-fold), DDAH1 (2.9-fold), DDAH2 (1.5-fold), PRMT1 (1.5-fold), PRMT2 (1.7-fold), and PRMT5 (1.4-fold). Pathway enzymes were upregulated in CD-inflamed/quiescent and UC-inflamed colon as compared to normal. Compared to inflamed, quiescent CD-colon had upregulated DDAH1 (5.7-fold) and ornithine decarboxylase (1.6-fold). Concluding, the pathway is deregulated in CD and UC, also in quiescent bowel, reflecting inflammation severity and angiogenic potential. Functional analysis of PRMTs and DDAHs as potential targets for therapy is warranted.
Collapse
Affiliation(s)
- Małgorzata Krzystek-Korpacka
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wrocław, Poland; (M.G.F.); (I.B.-M.); (Ł.L.); (I.S.)
- Correspondence: ; Tel.: +48-71-784-1375
| | - Mariusz G. Fleszar
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wrocław, Poland; (M.G.F.); (I.B.-M.); (Ł.L.); (I.S.)
| | - Iwona Bednarz-Misa
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wrocław, Poland; (M.G.F.); (I.B.-M.); (Ł.L.); (I.S.)
| | - Łukasz Lewandowski
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wrocław, Poland; (M.G.F.); (I.B.-M.); (Ł.L.); (I.S.)
| | - Izabela Szczuka
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wrocław, Poland; (M.G.F.); (I.B.-M.); (Ł.L.); (I.S.)
| | - Radosław Kempiński
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, 50-556 Wrocław, Poland; (R.K.); (K.N.)
| | - Katarzyna Neubauer
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, 50-556 Wrocław, Poland; (R.K.); (K.N.)
| |
Collapse
|
18
|
Li X, Zhu J, Tian L, Ma X, Fan X, Luo L, Yu J, Sun Y, Yang X, Tang W, Ma W, Yan J, Xu X, Liang H. Agmatine Protects Against the Progression of Sepsis Through the Imidazoline I2 Receptor-Ribosomal S6 Kinase 2-Nuclear Factor-κB Signaling Pathway. Crit Care Med 2020; 48:e40-e47. [PMID: 31634234 DOI: 10.1097/ccm.0000000000004065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The knowledge that agmatine is found in the human body has existed for several years; however, its role in sepsis has not yet been studied. In the present study, we investigate the role of agmatine in the progression and treatment of sepsis. DESIGN Clinical/laboratory investigations. SETTING Medical centers/University-based research laboratory. SUBJECTS Elective ICU patients with severe sepsis and healthy volunteers; C57BL/6 mice weighing 18-22 g. INTERVENTIONS Serum agmatine level and its associations with inflammatory markers were assessed in patients with sepsis. Agmatine was administered intraperitoneally to mice before a lipopolysaccharide challenge. Human peripheral blood mononuclear cells and murine macrophages were pretreated with agmatine followed by lipopolysaccharide stimulation. MEASUREMENTS AND MAIN RESULTS Serum agmatine levels were significantly decreased in patients with sepsis and lipopolysaccharide-induced mice, and correlated with Acute Physiology and Chronic Health Evaluation II score, procalcitonin, tumor necrosis factor-α, and interleukin-6 levels. In a therapeutic experiment, exogenous agmatine attenuated the cytokine production of peripheral blood mononuclear cells from patients with sepsis and healthy controls. Agmatine also exerted a significant beneficial effect in the inflammatory response and organ damage and reduced the death rate in lipopolysaccharide-induced mice. Imidazoline I2 receptor agonist 2-benzofuran-2-yl blocked the pharmacological action of agmatine; whereas, other imidazoline receptor ligands did not. Furthermore, agmatine significantly impaired the inflammatory response by inactivating nuclear factor-κB, but not protein 38 mitogen-activated protein kinase, c-Jun N-terminal kinase, extracellular signal-regulated kinase, and inducible nitric oxide synthase signaling in macrophages. Activation of imidazoline I2 receptor or knockdown of ribosomal S6 kinase 2 counteracted the effects of agmatine on phosphorylation and degradation of inhibitor of nuclear factor-κBα. CONCLUSIONS Endogenous agmatine metabolism correlated with the progression of sepsis. Supplemental exogenous agmatine could ameliorate the lipopolysaccharide-induced systemic inflammatory responses and multiple organ injuries through the imidazoline I2 receptor-ribosomal S6 kinase 2-nuclear factor-κB pathway. Agmatine could be used as both a clinical biomarker and a promising pharmaconutrient in patients with severe sepsis.
Collapse
Affiliation(s)
- Xuanfei Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Junyu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Lixing Tian
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Xiaoyuan Ma
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Xia Fan
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Li Luo
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Jing Yu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Yu Sun
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Xue Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Wanqi Tang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Wei Ma
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Jun Yan
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Xiang Xu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Huaping Liang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| |
Collapse
|
19
|
Sahin Ozkartal C, Tuzun E, Kucukali CI, Ulusoy C, Giris M, Aricioglu F. Antidepressant-like effects of agmatine and NOS inhibitors in chronic unpredictable mild stress model of depression in rats: The involvement of NLRP inflammasomes. Brain Res 2019; 1725:146438. [DOI: 10.1016/j.brainres.2019.146438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/27/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022]
|
20
|
Martinis P, Grancara S, Kanamori Y, García-Argáez AN, Pacella E, Dalla Via L, Toninello A, Agostinelli E. Involvement of the biogenic active amine agmatine in mitochondrial membrane permeabilization and release of pro-apoptotic factors. Amino Acids 2019; 52:161-169. [DOI: 10.1007/s00726-019-02791-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 09/30/2019] [Indexed: 10/25/2022]
|
21
|
The therapeutic and nutraceutical potential of agmatine, and its enhanced production using Aspergillus oryzae. Amino Acids 2019; 52:181-197. [DOI: 10.1007/s00726-019-02720-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/05/2019] [Indexed: 12/30/2022]
|
22
|
Cobos-Puc L, Aguayo-Morales H. Cardiovascular Effects Mediated by Imidazoline Drugs: An Update. Cardiovasc Hematol Disord Drug Targets 2019; 19:95-108. [PMID: 29962350 DOI: 10.2174/1871529x18666180629170336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/05/2017] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE Clonidine is a centrally acting antihypertensive drug. Hypotensive effect of clonidine is mediated mainly by central α2-adrenoceptors and/or imidazoline receptors located in a complex network of the brainstem. Unfortunately, clonidine produces side effects such as sedation, mouth dry, and depression. Moxonidine and rilmenidine, compounds of the second generation of imidazoline drugs, with fewer side effects, display a higher affinity for the imidazoline receptors compared with α2-adrenoceptors. The antihypertensive action of these drugs is due to inhibition of the sympathetic outflow primarily through central I1-imidazoline receptors in the RVLM, although others anatomical sites and mechanisms/receptors are involved. Agmatine is regarded as the endogenous ligand for imidazoline receptors. This amine modulates the cardiovascular function. Indeed, when administered in the RVLM mimics the hypotension of clonidine. RESULTS Recent findings have shown that imidazoline drugs also exert biological response directly on the cardiovascular tissues, which can contribute to their antihypertensive response. Currently, new imidazoline receptors ligands are in development. CONCLUSION In the present review, we provide a brief update on the cardiovascular effects of clonidine, moxonidine, rilmenidine, and the novel imidazoline agents since representing an important therapeutic target for some cardiovascular diseases.
Collapse
Affiliation(s)
- Luis Cobos-Puc
- Department of Pharmacology, Faculty of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| | - Hilda Aguayo-Morales
- Department of Pharmacology, Faculty of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| |
Collapse
|
23
|
Binding of Glyprolines to L-Arginine Inverts Its Analgesic and Antiagressogenic Effects. Bull Exp Biol Med 2018; 165:621-624. [PMID: 30225713 DOI: 10.1007/s10517-018-4227-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 10/28/2022]
Abstract
We studied the effects of intraperitoneal administration of L-arginine in doses of 5, 15, and 50 μg/kg and peptides in doses containing equimolar amount of this amino acid on aggressive-defensive behavior of rats (footshock model). The peptides were synthesized by binding of Pro-Gly-Pro sequence to one or both ends of the L-arginine molecule. The analgesic and antiagressogenic effects of L-arginine and opposite effects of arginine-containing peptides (except Pro-Gly-Pro tripeptide) were demonstrated. The combination of arginine with glyprolines yielded peptides with intrinsic regulatory properties. This expands the possibilities of synthesis of drugs for correction of pain and aggression caused by pain.
Collapse
|
24
|
Agmatine attenuates rhabdomyolysis-induced acute kidney injury in rats in a dose dependent manner. Life Sci 2018; 208:79-86. [DOI: 10.1016/j.lfs.2018.07.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 02/07/2023]
|
25
|
Kerksick CM, Wilborn CD, Roberts MD, Smith-Ryan A, Kleiner SM, Jäger R, Collins R, Cooke M, Davis JN, Galvan E, Greenwood M, Lowery LM, Wildman R, Antonio J, Kreider RB. ISSN exercise & sports nutrition review update: research & recommendations. J Int Soc Sports Nutr 2018; 15:38. [PMID: 30068354 PMCID: PMC6090881 DOI: 10.1186/s12970-018-0242-y] [Citation(s) in RCA: 450] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/17/2018] [Indexed: 12/18/2022] Open
Abstract
Background Sports nutrition is a constantly evolving field with hundreds of research papers published annually. In the year 2017 alone, 2082 articles were published under the key words ‘sport nutrition’. Consequently, staying current with the relevant literature is often difficult. Methods This paper is an ongoing update of the sports nutrition review article originally published as the lead paper to launch the Journal of the International Society of Sports Nutrition in 2004 and updated in 2010. It presents a well-referenced overview of the current state of the science related to optimization of training and performance enhancement through exercise training and nutrition. Notably, due to the accelerated pace and size at which the literature base in this research area grows, the topics discussed will focus on muscle hypertrophy and performance enhancement. As such, this paper provides an overview of: 1.) How ergogenic aids and dietary supplements are defined in terms of governmental regulation and oversight; 2.) How dietary supplements are legally regulated in the United States; 3.) How to evaluate the scientific merit of nutritional supplements; 4.) General nutritional strategies to optimize performance and enhance recovery; and, 5.) An overview of our current understanding of nutritional approaches to augment skeletal muscle hypertrophy and the potential ergogenic value of various dietary and supplemental approaches. Conclusions This updated review is to provide ISSN members and individuals interested in sports nutrition with information that can be implemented in educational, research or practical settings and serve as a foundational basis for determining the efficacy and safety of many common sport nutrition products and their ingredients.
Collapse
Affiliation(s)
- Chad M Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, USA.
| | - Colin D Wilborn
- Exercise & Sport Science Department, University of Mary-Hardin Baylor, Belton, TX, USA
| | | | - Abbie Smith-Ryan
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | | | | | - Rick Collins
- Collins Gann McCloskey and Barry PLLC, Mineola, NY, USA
| | - Mathew Cooke
- Department of Health and Medical Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Jaci N Davis
- Exercise & Sport Science Department, University of Mary-Hardin Baylor, Belton, TX, USA
| | - Elfego Galvan
- University of Texas Medical Branch, Galveston, TX, USA
| | - Mike Greenwood
- Exercise & Sports Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX, USA
| | - Lonnie M Lowery
- Department of Human Performance & Sport Business, University of Mount Union, Alliance, OH, USA
| | | | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL, USA
| | - Richard B Kreider
- Exercise & Sports Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
26
|
Agmatine modulates calcium handling in cardiomyocytes of hibernating ground squirrels through calcium-sensing receptor signaling. Cell Signal 2018; 51:1-12. [PMID: 30030121 DOI: 10.1016/j.cellsig.2018.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 11/20/2022]
Abstract
True hibernators are remarkable group of mammals whose hearts are resistant to such stressors as deep hypothermia, ischemia, arrhythmia. Capability of cardiac cells from hibernating species to effectively rule Ca2+ homeostasis during torpor is poorly studied. Better understanding of these mechanisms could allow to introduce new strategies for improvement the cardiac performance and may be useful for cardiovascular medicine. Here for the first time we have shown that the regulation of Ca2+ handling and thereby cardiomyocyte contractility by endogenous neurotransmitter agmatine occurs through the modulation of calcium-sensing receptor (CaSR). In isolated cardiocytes of hibernating ground squirrels generating stationary Ca2+ transients in the absence of actual myocellular excitation, low doses of this polyamine (up to 500 μM) induce the Gβγ-dependent activation of PI3-kinase with subsequent stimulation of Akt-kinase and nitric oxide (NO) production by endothelial NO-synthase (eNOS). NO production abolishes Ca2+ oscillations in virtue of the enhancement of Ca2+ reuptake by sarco(endo)plasmic Ca2+ ATPase (SERCA). Simultaneously, the activation of phospholipase A2 (PLA2) and arachidonic-acid dependent Ca2+ entry occur providing replenishment of Ca2+ store. High concentrations of agmatine (> 2 mM) induce other CaSR-mediated pathways involving phospholipase C (PLC) pathway, the formation of inositoltriphosphate (IP3) and diacylglicerol (DAG) followed by induction of their targets: IP3 receptors and protein kinase C isoforms (PKC), respectively. Furthermore, it is also responsible for the stimulation of PLA2 and elevation of intracellular calcium caused by arachidonic acid-regulated Ca2+-permeable (ARC) channels. Additionally, there is a potent store-operated Ca2+ entry (SOC) in cardiomyocyte. Negative (NPS 2143) and positive (R 568) allosteric modulators of CaSR recapitulate effects of low and high agmatine doses on Ca2+ handling and NO synthesis. These facts and the alteration of agmatine influence in response to an increase of extracellular Ca2+, which is the direct agonist of CaSR, may confirm the participation of CaSR in regulation of Ca2+ handling and excitability of cardiomyocytes by agmatine.
Collapse
|
27
|
Abstract
Trace amines are endogenous compounds classically regarded as comprising β-phenylethyalmine, p-tyramine, tryptamine, p-octopamine, and some of their metabolites. They are also abundant in common foodstuffs and can be produced and degraded by the constitutive microbiota. The ability to use trace amines has arisen at least twice during evolution, with distinct receptor families present in invertebrates and vertebrates. The term "trace amine" was coined to reflect the low tissue levels in mammals; however, invertebrates have relatively high levels where they function like mammalian adrenergic systems, involved in "fight-or-flight" responses. Vertebrates express a family of receptors termed trace amine-associated receptors (TAARs). Humans possess six functional isoforms (TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9), whereas some fish species express over 100. With the exception of TAAR1, TAARs are expressed in olfactory epithelium neurons, where they detect diverse ethological signals including predators, spoiled food, migratory cues, and pheromones. Outside the olfactory system, TAAR1 is the most thoroughly studied and has both central and peripheral roles. In the brain, TAAR1 acts as a rheostat of dopaminergic, glutamatergic, and serotonergic neurotransmission and has been identified as a novel therapeutic target for schizophrenia, depression, and addiction. In the periphery, TAAR1 regulates nutrient-induced hormone secretion, suggesting its potential as a novel therapeutic target for diabetes and obesity. TAAR1 may also regulate immune responses by regulating leukocyte differentiation and activation. This article provides a comprehensive review of the current state of knowledge of the evolution, physiologic functions, pharmacology, molecular mechanisms, and therapeutic potential of trace amines and their receptors in vertebrates and invertebrates.
Collapse
Affiliation(s)
- Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Marius C Hoener
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Mark D Berry
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| |
Collapse
|
28
|
Hosseini M, Anaeigoudari A, Beheshti F, Soukhtanloo M, Nosratabadi R. Protective effect against brain tissues oxidative damage as a possible mechanism for beneficial effects of L-arginine on lipopolysaccharide induced memory impairment in rats. Drug Chem Toxicol 2018; 41:175-181. [PMID: 28640652 DOI: 10.1080/01480545.2017.1336173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 05/24/2017] [Indexed: 01/08/2023]
Abstract
L-Arginine (LA) and nitric oxide (NO) have been suggested to have some effects on learning, memory, brain tissues oxidative damage, and neuroinflammation. In this study, protective effect against brain tissues oxidative damage as a possible mechanism for beneficial effects of LA on lipopolysaccharide (LPS) induced memory impairment was investigated. The rats were grouped into and treated by (1) control (saline), (2) LPS (1 mg/kg, IP), (3) LA (200 mg/kg) - LPS (4) LA. In passive avoidance (PA) test, LPS administration shortened the latency to enter the dark compartment in LPS group compared to control (p < .001) which was accompanied with a high level of malondialdehyde (MDA) and NO metabolite concentrations in the hippocampal tissues (p < .001and p < .05, respectively). Pretreatment with LA prolonged the latency in LA-LPS group compared with LPS group (p < .01-.001) and re-stored MDA and NO metabolites in the hippocampal tissues (p < .05). LPS also reduced superoxide dismutase (SOD) and catalase (CAT) activities and thiol content in the hippocampal tissues in LPS group compared to control (p < .05 and p < .001, respectively) which improved by LA when it was administered before LPS in LA-LPS group (p < .05 and p < .001). Finally, the serum TNFα level of LPS group was higher than the control (p < .01) while, in LA-LPS group it was lower than LPS group (p < .01). It seems that the beneficial effects of LA on memory impairment of LPS-treated rats may be due to its protective effects against brain tissues oxidative damage.
Collapse
Affiliation(s)
- Mahmoud Hosseini
- a Division of Neurocognitive Sciences , Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Akbar Anaeigoudari
- b Department of Physiology, School of Medicine , Jiroft University of medical Sciences , Jiroft , Iran
| | - Farimah Beheshti
- c Neurogenic Inflammation Research Center and Department of Physiology, School of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mohammad Soukhtanloo
- d Department of Biochemistry, School of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Reza Nosratabadi
- e Immunology of Infectious Diseases Research Center , Rafsanjan University of Medical Sciences , Rafsanjan , Iran
| |
Collapse
|
29
|
Donertas B, Cengelli Unel C, Aydin S, Ulupinar E, Ozatik O, Kaygisiz B, Yildirim E, Erol K. Agmatine co-treatment attenuates allodynia and structural abnormalities in cisplatin-induced neuropathy in rats. Fundam Clin Pharmacol 2018; 32:288-296. [DOI: 10.1111/fcp.12351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/09/2018] [Accepted: 01/23/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Basak Donertas
- Department of Medical Pharmacology; Faculty of Medicine; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| | - Cigdem Cengelli Unel
- Department of Medical Pharmacology; Faculty of Medicine; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| | - Sule Aydin
- Department of Medical Pharmacology; Faculty of Medicine; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| | - Emel Ulupinar
- Department of Anatomy; Faculty of Medicine; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| | - Orhan Ozatik
- Department of Histology and Embryology; Faculty of Medicine; Dumlupinar University; Kutahya 43000 Turkey
| | - Bilgin Kaygisiz
- Department of Medical Pharmacology; Faculty of Medicine; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| | - Engin Yildirim
- Department of Medical Pharmacology; Faculty of Medicine; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| | - Kevser Erol
- Department of Medical Pharmacology; Faculty of Medicine; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| |
Collapse
|
30
|
Lenis YY, Elmetwally MA, Tang W, Satterfield C, Dunlap K, Wu G, Bazer FW. Functional roles of agmatinase during the peri-implantation period of pregnancy in sheep. Amino Acids 2017; 50:293-308. [PMID: 29196820 DOI: 10.1007/s00726-017-2515-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/21/2017] [Indexed: 01/15/2023]
Abstract
This study investigated the effect of agmatine (Agm) in proliferation of ovine trophecdoderm cells (oTr1) as well as the importance of the arginine decarboxylase (ADC) and agmatinase (AGMAT) alternative pathway for synthesis of polyamines in ovine conceptuses during the peri-implantation period of pregnancy. Morpholino antisense oligonucleotides (MAOs) were used to inhibit translation of mRNAs for ODC1 alone, AGMAT alone, and their combination. Rambouillet ewes (N = 50) were assigned randomly to the following treatments on Day 8 of pregnancy: MAO control (n = 10); MAO-ODC1 (n = 8); MAO-ADC (n = 6); MAO-ODC1:MAO-ADC (n = 9); or MAO-ODC1:MAO-AGMAT (n = 9). Ewes were ovario-hysterectomized on Day 16 of pregnancy to obtain uterine flushings, uterine endometrium, and conceptus tissues. Inhibition of translation of both ODC1 and AGMAT resulted in 22% of ewes having morphologically and functionally normal (elongated and healthy) conceptuses designated MAO-ODC1:MAO-AGMAT (A). But, 78% of the MAO-ODC1:MAO-AGMAT ewes had morphologically and functionally abnormal (not elongated and fragmented) conceptuses designated MAO-ODC1:MAO-AGMAT (B). The pregnancy rate was less (22%; P < 0.05) for MAO-ODC1:MAO-AGMAT ewes than for MAO-control (80%), MAO-ODC1 (75%), MAO-ADC (84%), and MAO-ODC1:MAO-ADC (44%) ewes. Moreover, inhibition of translational of both ODC1 and AGMAT mRNAs increased expression of ADC, SLC22A1, SLC22A2, and SLC22A3 mRNAs, as well as abundances of agmatine, putrescine, spermindine, and spermine in conceptus tissue. However, MAO-ODC1:AGMAT(B) ewes had greater abundances of agmatine, putrescine, and spermidine and reduced amounts of spermine in uterine flushes. Thus, in vivo knockdown of translation of ODC1 and AGMAT mRNAs increased expression of genes for the synthesis and transport of polyamines in ovine conceptuses during the peri-implantation period of pregnancy.
Collapse
Affiliation(s)
- Yasser Y Lenis
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA.,Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX, 77843, USA.,Centauro Research Group, School of Veterinary Medicine, Faculty of Agrarian Science, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia.,Faculty of Agricultural Sciences, UDCA, Calle 222 No. 55-37, Bogota, Colombia
| | - Mohammed A Elmetwally
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA.,Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX, 77843, USA.,Faculty of Veterinary Medicine, Department of Theriogenology, Mansoura University, Mansoura, 35516, Egypt
| | - Wanjin Tang
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA.,Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX, 77843, USA
| | - Carey Satterfield
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Kathrin Dunlap
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA.,Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX, 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA. .,Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
31
|
Berry MD, Gainetdinov RR, Hoener MC, Shahid M. Pharmacology of human trace amine-associated receptors: Therapeutic opportunities and challenges. Pharmacol Ther 2017; 180:161-180. [DOI: 10.1016/j.pharmthera.2017.07.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Dempsey DR, Nichols DA, Battistini MR, Pemberton O, Ospina SR, Zhang X, Carpenter AM, O'Flynn BG, Leahy JW, Kanwar A, Lewandowski EM, Chen Y, Merkler DJ. Structural and Mechanistic Analysis of Drosophila melanogaster Agmatine N-Acetyltransferase, an Enzyme that Catalyzes the Formation of N-Acetylagmatine. Sci Rep 2017; 7:13432. [PMID: 29044148 PMCID: PMC5647378 DOI: 10.1038/s41598-017-13669-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 09/26/2017] [Indexed: 02/05/2023] Open
Abstract
Agmatine N-acetyltransferase (AgmNAT) catalyzes the formation of N-acetylagmatine from acetyl-CoA and agmatine. Herein, we provide evidence that Drosophila melanogaster AgmNAT (CG15766) catalyzes the formation of N-acetylagmatine using an ordered sequential mechanism; acetyl-CoA binds prior to agmatine to generate an AgmNAT•acetyl-CoA•agmatine ternary complex prior to catalysis. Additionally, we solved a crystal structure for the apo form of AgmNAT with an atomic resolution of 2.3 Å, which points towards specific amino acids that may function in catalysis or active site formation. Using the crystal structure, primary sequence alignment, pH-activity profiles, and site-directed mutagenesis, we evaluated a series of active site amino acids in order to assign their functional roles in AgmNAT. More specifically, pH-activity profiles identified at least one catalytically important, ionizable group with an apparent pKa of ~7.5, which corresponds to the general base in catalysis, Glu-34. Moreover, these data led to a proposed chemical mechanism, which is consistent with the structure and our biochemical analysis of AgmNAT.
Collapse
Affiliation(s)
- Daniel R Dempsey
- Department of Chemistry, University of South Florida, Tampa, Florida, 33620, United States.,Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Derek A Nichols
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, 33612, United States.,Moffitt Cancer Center, Tampa, FL, 33612, United States
| | - Matthew R Battistini
- Department of Chemistry, University of South Florida, Tampa, Florida, 33620, United States
| | - Orville Pemberton
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, 33612, United States
| | | | - Xiujun Zhang
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, 33612, United States
| | - Anne-Marie Carpenter
- Department of Chemistry, University of South Florida, Tampa, Florida, 33620, United States.,University of Florida, College of Medicine, Gainesville, FL, 32610-0216, United States
| | - Brian G O'Flynn
- Department of Chemistry, University of South Florida, Tampa, Florida, 33620, United States
| | - James W Leahy
- Department of Chemistry, University of South Florida, Tampa, Florida, 33620, United States.,Department of Molecular Medicine, University of South Florida, Tampa, Florida, 33612, United States.,Florida Center of Excellence for Drug Discovery and Innovation, 3720 Spectrum Boulevard, Suite 305, Tampa, FL, 33612, United States
| | - Ankush Kanwar
- Department of Chemistry, University of South Florida, Tampa, Florida, 33620, United States
| | - Eric M Lewandowski
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, 33612, United States
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, 33612, United States.
| | - David J Merkler
- Department of Chemistry, University of South Florida, Tampa, Florida, 33620, United States.
| |
Collapse
|
33
|
Liu Y, Lu GY, Chen WQ, Li YF, Wu N, Li J. Agmatine inhibits chronic morphine exposure-induced impairment of hippocampal neural progenitor proliferation in adult rats. Eur J Pharmacol 2017; 818:50-56. [PMID: 29031903 DOI: 10.1016/j.ejphar.2017.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 02/09/2023]
Abstract
Our previous studies have shown that agmatine inhibited opioid dependence, yet the neural mechanism remains unclear. Growing evidence showed that opioids decrease neurogenesis in the adult hippocampal subgranular zone by inhibiting neural progenitor proliferation. However, whether agmatine affects chronic opioid exposure-induced impairment to hippocampal neural progenitor cell proliferation remains unknown. In the present study, we investigated the role of agmatine in hippocampal neural progenitors in morphine dependence rats. We found that chronic administration of morphine for 12 days induced morphine dependence in rats. This treatment not only decreased the proliferation of hippocampal neural progenitors in the granule cell layer, but also decreased the levels of hippocampal cAMP, pCREB and BDNF. However, these alterations can be restored to normal levels by co-treatment of agmatine (10mg/kg, s.c.). In vitro treatment with agmatine (10µM) for two days significantly increased proliferation of the cultured hippocampal neural progenitors. Concurrent treatment of agmatine (10µM) with morphine (10 or 50µM) reversed the supression of morphine-induced neural progenitor proliferation. In conclusion, we found that agmatine abolished chronic morphine-induced decrease in proliferation of hippocampal progenitors in vivo and in vitro, which may be due to the increase in cAMP-CREB-BDNF signaling. The enhancement of agmatine to proliferation of hippocampal progenitors may be one of the important mechanisms involved in the inhibition of morphine dependence by agmatine.
Collapse
Affiliation(s)
- Ying Liu
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, PR China
| | - Guan-Yi Lu
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, PR China
| | - Wen-Qiang Chen
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, PR China
| | - Yun-Feng Li
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, PR China
| | - Ning Wu
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, PR China.
| | - Jin Li
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, PR China.
| |
Collapse
|
34
|
Abstract
Microbial endocrinology represents the intersection of two seemingly disparate fields, microbiology and neurobiology, and is based on the shared presence of neurochemicals that are exactly the same in host as well as in the microorganism. The ability of microorganisms to not only respond to, but also produce, many of the same neurochemicals that are produced by the host, such as during periods of stress, has led to the introduction of this evolutionary-based mechanism which has a role in the pathogenesis of infectious disease. The consideration of microbial endocrinology-based mechanisms has demonstrated, for example, that the prevalent use of catecholamine-based synthetic drugs in the clinical setting contributes to the formation of biofilms in indwelling medical devices. Production of neurochemicals by microorganisms most often employs the same biosynthetic pathways as those utilized by the host, indicating that acquisition of host neurochemical-based signaling system in the host may have been acquired due to lateral gene transfer from microorganisms. That both host and microorganism produce and respond to the very same neurochemicals means that there is bidirectionality contained with the theoretical underpinnings of microbial endocrinology. This can be seen in the role of microbial endocrinology in the microbiota-gut-brain axis and its relevance to infectious disease. Such shared pathways argue for a role of microorganism-neurochemical interactions in infectious disease.
Collapse
|
35
|
Cobos-Puc L, Aguayo-Morales H, Ventura-Sobrevilla J, Luque-Contreras D, Chin-Chan M. Further analysis of the inhibition by agmatine on the cardiac sympathetic outflow: Role of the α 2-adrenoceptor subtypes. Eur J Pharmacol 2017; 805:75-83. [PMID: 28315344 DOI: 10.1016/j.ejphar.2017.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/16/2017] [Accepted: 03/10/2017] [Indexed: 11/28/2022]
Abstract
This study has investigated the role of the α2-adrenoceptor subtypes involved in the inhibition of the cardiac sympathetic outflow induced by intravenous (i.v) infusions of agmatine. Therefore, we analysed the effect of an i.v. bolus injections of the selective antagonists BRL 44408 (300μg/kg; α2A), imiloxan (3000μg/kg; α2B), and JP-1302 (300μg/kg; α2C) given separately, and their combinations: BRL 44408 plus Imiloxan, JP 1302 plus imiloxan, BRL 44408 plus JP-1302, BRL 44408 plus imiloxan plus JP-1302 on the cardiac sympatho-inhibition of agmatine. Also, the effect of the combination BRL 44408 plus JP-1302 plus AGN 192403 (3000μg/kg; I1 antagonist) was evaluated. In this way, i.v. infusions of 1000μg/kg min of agmatine, but not 300, inhibited the tachycardic response induced by electrical stimulation. Furthermore, the antagonists used or their combinations had no effect on the electrically-induced tachycardic response. On the other hand, the inhibitory response of agmatine was: (1) partially antagonized by BRL 44408 or JP-1302 given separately, a similar response was observed when we administered their combination with imiloxan, but not by imiloxan alone, (2) antagonized in greater magnitude by the combination BRL 44408 plus JP-1302 or the combination BRL 44408 plus imiloxan plus JP-1302, and (3) abolished by the combination BRL 44408 plus JP-1302 plus AGN 192403. Taken together, these results demonstrate that the α2A- and α2C-adrenoceptor subtypes and I1-imidazoline receptors are involved in the inhibition of the cardiac sympathetic outflow induced by agmatine.
Collapse
Affiliation(s)
- Luis Cobos-Puc
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza esquina con Ing. José Cárdenas Valdés, Colonia República, C.P. 25280 Saltillo, Coahuila, Mexico.
| | - Hilda Aguayo-Morales
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza esquina con Ing. José Cárdenas Valdés, Colonia República, C.P. 25280 Saltillo, Coahuila, Mexico
| | - Janeth Ventura-Sobrevilla
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza esquina con Ing. José Cárdenas Valdés, Colonia República, C.P. 25280 Saltillo, Coahuila, Mexico
| | - Diana Luque-Contreras
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza esquina con Ing. José Cárdenas Valdés, Colonia República, C.P. 25280 Saltillo, Coahuila, Mexico
| | - Miguel Chin-Chan
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Campeche, Av. Universidad s/n, Col. Buenavista, C.P. 24039 Campeche, Campeche, Mexico
| |
Collapse
|
36
|
Baruteau J, Jameson E, Morris AA, Chakrapani A, Santra S, Vijay S, Kocadag H, Beesley CE, Grunewald S, Murphy E, Cleary M, Mundy H, Abulhoul L, Broomfield A, Lachmann R, Rahman Y, Robinson PH, MacPherson L, Foster K, Chong WK, Ridout DA, Bounford KM, Waddington SN, Mills PB, Gissen P, Davison JE. Expanding the phenotype in argininosuccinic aciduria: need for new therapies. J Inherit Metab Dis 2017; 40:357-368. [PMID: 28251416 PMCID: PMC5393288 DOI: 10.1007/s10545-017-0022-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVES This UK-wide study defines the natural history of argininosuccinic aciduria and compares long-term neurological outcomes in patients presenting clinically or treated prospectively from birth with ammonia-lowering drugs. METHODS Retrospective analysis of medical records prior to March 2013, then prospective analysis until December 2015. Blinded review of brain MRIs. ASL genotyping. RESULTS Fifty-six patients were defined as early-onset (n = 23) if symptomatic < 28 days of age, late-onset (n = 23) if symptomatic later, or selectively screened perinatally due to a familial proband (n = 10). The median follow-up was 12.4 years (range 0-53). Long-term outcomes in all groups showed a similar neurological phenotype including developmental delay (48/52), epilepsy (24/52), ataxia (9/52), myopathy-like symptoms (6/52) and abnormal neuroimaging (12/21). Neuroimaging findings included parenchymal infarcts (4/21), focal white matter hyperintensity (4/21), cortical or cerebral atrophy (4/21), nodular heterotopia (2/21) and reduced creatine levels in white matter (4/4). 4/21 adult patients went to mainstream school without the need of additional educational support and 1/21 lives independently. Early-onset patients had more severe involvement of visceral organs including liver, kidney and gut. All early-onset and half of late-onset patients presented with hyperammonaemia. Screened patients had normal ammonia at birth and received treatment preventing severe hyperammonaemia. ASL was sequenced (n = 19) and 20 mutations were found. Plasma argininosuccinate was higher in early-onset compared to late-onset patients. CONCLUSIONS Our study further defines the natural history of argininosuccinic aciduria and genotype-phenotype correlations. The neurological phenotype does not correlate with the severity of hyperammonaemia and plasma argininosuccinic acid levels. The disturbance in nitric oxide synthesis may be a contributor to the neurological disease. Clinical trials providing nitric oxide to the brain merit consideration.
Collapse
Affiliation(s)
- Julien Baruteau
- Gene Transfer Technology Group, Institute for Women’s Health, University College London, London, UK
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, WC1N 3JH London, UK
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Elisabeth Jameson
- Metabolic Medicine Department, Royal Manchester Children Hospital NHS Foundation Trust, Manchester, UK
| | - Andrew A. Morris
- Metabolic Medicine Department, Royal Manchester Children Hospital NHS Foundation Trust, Manchester, UK
| | - Anupam Chakrapani
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, WC1N 3JH London, UK
- Metabolic Medicine Department, Birmingham Children’s Hospital NHS Foundation Trust, Birmingham, UK
| | - Saikat Santra
- Metabolic Medicine Department, Birmingham Children’s Hospital NHS Foundation Trust, Birmingham, UK
| | - Suresh Vijay
- Metabolic Medicine Department, Birmingham Children’s Hospital NHS Foundation Trust, Birmingham, UK
| | - Huriye Kocadag
- Gene Transfer Technology Group, Institute for Women’s Health, University College London, London, UK
| | - Clare E. Beesley
- North East Thames Regional Genetic Services, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Stephanie Grunewald
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, WC1N 3JH London, UK
| | - Elaine Murphy
- Charles Dent Metabolic Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - Maureen Cleary
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, WC1N 3JH London, UK
| | - Helen Mundy
- Metabolic Medicine Department, Evelina Children’s Hospital, London, UK
| | - Lara Abulhoul
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, WC1N 3JH London, UK
| | - Alexander Broomfield
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, WC1N 3JH London, UK
- Metabolic Medicine Department, Royal Manchester Children Hospital NHS Foundation Trust, Manchester, UK
| | - Robin Lachmann
- Charles Dent Metabolic Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - Yusof Rahman
- Metabolic Medicine Department, St Thomas Hospital, London, UK
| | - Peter H. Robinson
- Paediatric Metabolic Medicine, Royal Hospital for Sick Children, Glasgow, UK
| | - Lesley MacPherson
- Neuroradiology Department, Birmingham Children’s Hospital NHS Foundation Trust, Birmingham, UK
| | - Katharine Foster
- Neuroradiology Department, Birmingham Children’s Hospital NHS Foundation Trust, Birmingham, UK
| | - W. Kling Chong
- Neuroradiology Department, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Deborah A. Ridout
- Population, Policy and Practice Programme, UCL Institute of Child Health, London, UK
| | | | - Simon N. Waddington
- Gene Transfer Technology Group, Institute for Women’s Health, University College London, London, UK
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Philippa B. Mills
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Paul Gissen
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, WC1N 3JH London, UK
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - James E. Davison
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, WC1N 3JH London, UK
| |
Collapse
|
37
|
Bağcı B, Utkan T, Yazir Y, Aricioglu F, Öztürk GS, Sarioglu Y. Effects of agmatine on cognitive functions during vascular dementia in biological aging through eNOS and BDNF expression. PSYCHIAT CLIN PSYCH 2017. [DOI: 10.1080/24750573.2017.1309090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
| | - Tijen Utkan
- Department of Pharmacology and Experimental Medical Research and Application Unit, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Yusufhan Yazir
- Department of Histology and Embryology and Stem Cell and Gene Therapy Research and Application Center, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Feyza Aricioglu
- Faculty of Pharmacy, Department of Pharmacology and Psychopharmacology Research Unit, Marmara University, Istanbul, Turkey
| | - Gökçe Sevim Öztürk
- Department of Medical Pharmacology, Gazi University, Medical School, Ankara, Turkey
| | - Yusuf Sarioglu
- Istinye University Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
38
|
Structure and stability of complexes of agmatine with some functional receptor residues of proteins. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Neuroprotective property of low molecular weight fraction from B. jararaca snake venom in H 2 O 2 -induced cytotoxicity in cultured hippocampal cells. Toxicon 2017; 129:134-143. [DOI: 10.1016/j.toxicon.2017.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/13/2017] [Accepted: 02/16/2017] [Indexed: 12/16/2022]
|
40
|
Ferreira RB, de Oliveira MG, Antunes E, Almeida WP, Ibrahim BM, Abdel-Rahman AA. New 2-Aminothiazoline derivatives lower blood pressure of spontaneously hypertensive rats (SHR) via I 1-imidazoline and alpha-2 adrenergic receptors activation. Eur J Pharmacol 2016; 791:803-810. [PMID: 27729248 DOI: 10.1016/j.ejphar.2016.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 01/20/2023]
Abstract
2-Aminothiazolines share an isosteric relationship with imidazolines and oxazolines with antihypertensive activity mainly mediated by the imidazoline I1-receptor. In the present work, we have prepared five aminothiazolines, following a previously described synthetic pathway. Aminothiazolines derived from dicyclopropylmethylamine (ATZ1) and cyclohexylamine (3) are unprecedented in the literature. Competitive radioligand assay was carried out with all synthetic compounds, and the I1 receptor affinity in comparison to rilmenidine in PC12 cells was determined. Surprisingly, the rilmenidine isoster (ATZ1) showed no I1-receptor interaction. Diethyl (ATZ4) and 2-ethyl-hexylamine (ATZ5) derivatives bind to the receptor with 11.98 and 10.94nmol/l, respectively. These compounds were selected for in vivo experiments. Both compounds reduced the blood pressure of spontaneously hypertensive rats (SHR). The hypotensive effect of these compounds was abrogated in the presence of α2 adrenergic (yohimbine) and I1 (efaroxan) receptor antagonists suggesting that both aminothiazolines bind to the adrenergic and imidazoline receptors. Lipinski's descriptors of the synthesized aminothiazolines were calculated and are similar to the known imidazoline I1 receptor ligands. 3D-Similarity between ATZ5 and agmatine, the natural imidazoline receptor ligand, was also observed.
Collapse
Affiliation(s)
- Renan B Ferreira
- Institute of Chemistry, University of Campinas, PO Box 6194, ZC 13083-970 Campinas, SP, Brazil
| | - Mariana G de Oliveira
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Wanda P Almeida
- Faculty of Pharmaceutical Sciences, University of Campinas, PO Box 6029, ZC 13083-859 Campinas, SP, Brazil.
| | - Badr M Ibrahim
- Department of Pharmacology and Toxicology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Abdel A Abdel-Rahman
- Department of Pharmacology and Toxicology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
41
|
El-Sherbeeny NA, Nader MA, Attia GM, Ateyya H. Agmatine protects rat liver from nicotine-induced hepatic damage via antioxidative, antiapoptotic, and antifibrotic pathways. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:1341-1351. [PMID: 27638633 DOI: 10.1007/s00210-016-1284-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 08/05/2016] [Indexed: 01/07/2023]
Abstract
Tobacco smoking with its various forms is a global problem with proved hazardous effects to human health. The present work was planned to study the defending role of agmatine (AGM) on hepatic oxidative stress and damage induced by nicotine in rats. Thirty-two rats divided into four groups were employed: control group, nicotine-only group, AGM group, and AGM-nicotine group. Measurements of serum hepatic biochemical markers, lipid profile, and vascular cell adhesion molecule-1 were done. In addition, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH) activity, and nitrate/nitrite (NOx) levels were estimated in the liver homogenates. Immunohistochemistry for Bax and transforming growth factor beta (TGF-β1) and histopathology of the liver were also included. Data of the study demonstrated that nicotine administration exhibited marked liver deterioration, an increase in liver enzymes, changes in lipid profile, and an elevation in MDA with a decline in levels of SOD, GSH, and NOx (nitrate/nitrite). Also, levels of proapoptotic Bax and profibrotic TGF-β1 showed marked elevation in the liver. AGM treatment to rats in nicotine-only group ameliorated all the previous changes. These findings indicate that AGM could successfully overcome the nicotine-evoked hepatic oxidative stress and tissue injury, apoptosis, and fibrosis.
Collapse
Affiliation(s)
- Nagla A El-Sherbeeny
- Pharmacology and Toxicology, College of Pharmacy, Taibah University, El-Madinah El-Munawarah, Saudi Arabia.,Faculty of Medicine, Suez Canal University, Ismailia Governorate, Egypt
| | - Manar A Nader
- Pharmacology and Toxicology, College of Pharmacy, Taibah University, El-Madinah El-Munawarah, Saudi Arabia.,Faculty of Pharmacy, Mansoura University, Dakahlia Governorate, Egypt
| | - Ghalia M Attia
- Department of Anatomy, Faculty of Medicine, Taibah University, El-Madinah El-Munawarah, Saudi Arabia. .,Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Hayam Ateyya
- Pharmacology and Toxicology, College of Pharmacy, Taibah University, El-Madinah El-Munawarah, Saudi Arabia.,Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
42
|
Andreasson KI, Bachstetter AD, Colonna M, Ginhoux F, Holmes C, Lamb B, Landreth G, Lee DC, Low D, Lynch MA, Monsonego A, O’Banion MK, Pekny M, Puschmann T, Russek-Blum N, Sandusky LA, Selenica MLB, Takata K, Teeling J, Town T, Van Eldik LJ, Russek-Blum N, Monsonego A, Low D, Takata K, Ginhoux F, Town T, O’Banion MK, Lamb B, Colonna M, Landreth G, Andreasson KI, Sandusky LA, Selenica MLB, Lee DC, Holmes C, Teeling J, Lynch MA, Van Eldik LJ, Bachstetter AD, Pekny M, Puschmann T. Targeting innate immunity for neurodegenerative disorders of the central nervous system. J Neurochem 2016; 138:653-93. [PMID: 27248001 PMCID: PMC5433264 DOI: 10.1111/jnc.13667] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/01/2016] [Accepted: 04/30/2016] [Indexed: 12/21/2022]
Abstract
Neuroinflammation is critically involved in numerous neurodegenerative diseases, and key signaling steps of innate immune activation hence represent promising therapeutic targets. This mini review series originated from the 4th Venusberg Meeting on Neuroinflammation held in Bonn, Germany, 7-9th May 2015, presenting updates on innate immunity in acute brain injury and chronic neurodegenerative disorders, such as traumatic brain injury and Alzheimer disease, on the role of astrocytes and microglia, as well as technical developments that may help elucidate neuroinflammatory mechanisms and establish clinical relevance. In this meeting report, a brief overview of physiological and pathological microglia morphology is followed by a synopsis on PGE2 receptors, insights into the role of arginine metabolism and further relevant aspects of neuroinflammation in various clinical settings, and concluded by a presentation of technical challenges and solutions when working with microglia and astrocyte cultures. Microglial ontogeny and induced pluripotent stem cell-derived microglia, advances of TREM2 signaling, and the cytokine paradox in Alzheimer's disease are further contributions to this article. Neuroinflammation is critically involved in numerous neurodegenerative diseases, and key signaling steps of innate immune activation hence represent promising therapeutic targets. This mini review series originated from the 4th Venusberg Meeting on Neuroinflammation held in Bonn, Germany, 7-9th May 2015, presenting updates on innate immunity in acute brain injury and chronic neurodegenerative disorders, such as traumatic brain injury and Alzheimer's disease, on the role of astrocytes and microglia, as well as technical developments that may help elucidate neuroinflammatory mechanisms and establish clinical relevance. In this meeting report, a brief overview on physiological and pathological microglia morphology is followed by a synopsis on PGE2 receptors, insights into the role of arginine metabolism and further relevant aspects of neuroinflammation in various clinical settings, and concluded by a presentation of technical challenges and solutions when working with microglia cultures. Microglial ontogeny and induced pluripotent stem cell-derived microglia, advances of TREM2 signaling, and the cytokine paradox in Alzheimer's disease are further contributions to this article.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Niva Russek-Blum
- The Dead Sea and Arava Science Center, Central Arava Branch, Yair Station, Hazeva, Israel
| | - Alon Monsonego
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, The Faculty of Health Sciences: The National Institute of Biotechnology in the Negev, and Zlotowski Center for Neuroscience, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Donovan Low
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Kazuyuki Takata
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Terrence Town
- Departments of Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089,
| | - M. Kerry O’Banion
- Departments of Neuroscience and Neurology, Del Monte Neuromedicine Institute, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642,
| | - Bruce Lamb
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH 44106
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Gary Landreth
- Department of Neurosciences, Case Western Reserve University 44106
| | - Katrin I. Andreasson
- Department of Neurology and Neurological Sciences, Stanford Neuroscience Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leslie A. Sandusky
- USF Health Byrd Alzheimer’s Institute, Tampa, FL 33613
- College of Pharmacy & Pharmaceutical Sciences, Tampa, FL 33613
| | - Maj-Linda B. Selenica
- USF Health Byrd Alzheimer’s Institute, Tampa, FL 33613
- College of Pharmacy & Pharmaceutical Sciences, Tampa, FL 33613
| | - Daniel C. Lee
- USF Health Byrd Alzheimer’s Institute, Tampa, FL 33613
- College of Pharmacy & Pharmaceutical Sciences, Tampa, FL 33613
| | - Clive Holmes
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 7YD, United Kingdom
| | - Jessica Teeling
- Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 7YD, United Kingdom
| | | | | | | | - Milos Pekny
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, SE-405 30 Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Hunter Medical Research Institute, University of Newcastle, New South Wales, Australia
| | - Till Puschmann
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
43
|
Bratislav D, Irena L, Milica N, Ivana S, Ana D, Sanda D, Ivana S. Effects of agmatine on chlorpromazine toxicity in the liver of Wistar rats: the possible role of oxidant/antioxidant imbalance. Exp Anim 2016; 66:17-27. [PMID: 27523096 PMCID: PMC5300998 DOI: 10.1538/expanim.16-0010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Chlorpromazine (CPZ) is a member of a widely used class of antipsychotic agents. The
metabolic pathways of CPZ toxicity were examined by monitoring oxidative/nitrosative
stress markers. The aim of the study was to investigate the hypothesis that agmatine (AGM)
prevents oxidative stress in the liver of Wistar rats 48 h after administration of CPZ.
All tested compounds were administered intraperitoneally (i.p.) in one single dose. The
animals were divided into control (C, 0.9% saline solution), CPZ (CPZ, 38.7 mg/kg b.w.),
CPZ+AGM (AGM, 75 mg/kg b.w. immediately after CPZ, 38.7 mg/kg b.w. i.p.), and AGM (AGM, 75
mg/kg b.w.) groups. Rats were sacrificed by decapitation 48 h after treatment. The CPZ and
CPZ+AGM treatments significantly increased thiobarbituric acid reactive substances
(TBARS), the nitrite and nitrate (NO2+NO3) concentration, and
superoxide anion (O2•-) production in rat liver homogenates compared
with C values. CPZ injection decreased the capacity of the antioxidant defense system:
superoxide dismutase (SOD) activity, catalase (CAT) activity, total glutathione (GSH)
content, glutathione peroxidase (GPx) activity, and glutathione reductase (GR) activity
compared with the values of the C group. However, treatment with AGM increased antioxidant
capacity in the rat liver; it increased the CAT activity, GSH concentration, GPx activity,
and GR activity compared with the values of the CPZ rats. Immunohistochemical staining of
ED1 in rats showed an increase in the number of positive cells 48 h after acute CPZ
administration compared with the C group. Our results showed that AGM has no protective
effects on parameters of oxidative and/or nitrosative stress in the liver but that it
absolutely protective effects on the antioxidant defense system and restores the
antioxidant capacity in liver tissue after administration of CPZ.
Collapse
|
44
|
Agmatine attenuates the discriminative stimulus and hyperthermic effects of methamphetamine in male rats. Behav Pharmacol 2016; 27:542-8. [PMID: 27232669 DOI: 10.1097/fbp.0000000000000244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Methamphetamine abuse remains an alarming public heath challenge, with no approved pharmacotherapies available. Agmatine is a naturally occurring cationic polyamine that has previously been shown to attenuate the rewarding and psychomotor-sensitizing effects of methamphetamine. This study examined the effects of agmatine on the discriminative stimulus and hyperthermic effects of methamphetamine. Adult male rats were trained to discriminate 0.32 mg/kg methamphetamine from saline. Methamphetamine dose dependently increased drug-associated lever responding. The nonselective dopamine receptor antagonist haloperidol (0.1 mg/kg) significantly attenuated the discriminative stimulus effects of methamphetamine (5.9-fold rightward shift). Agmatine (10-100 mg/kg) did not substitute for methamphetamine, but significantly attenuated the stimulus effects of methamphetamine, leading to a maximum of a 3.5-fold rightward shift. Acute 10 mg/kg methamphetamine increased the rectal temperature by a maximum of 1.96±0.17°C. Agmatine (10-32 mg/kg) pretreatment significantly attenuated the hyperthermic effect of methamphetamine. Agmatine (10 mg/kg) also significantly reversed methamphetamine-induced temperature increase. Together, these results support further exploration of the value that agmatine may have for the treatment of methamphetamine abuse and overdose.
Collapse
|
45
|
Patil MD, Bhaumik J, Babykutty S, Banerjee UC, Fukumura D. Arginine dependence of tumor cells: targeting a chink in cancer's armor. Oncogene 2016; 35:4957-72. [PMID: 27109103 DOI: 10.1038/onc.2016.37] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 12/14/2022]
Abstract
Arginine, one among the 20 most common natural amino acids, has a pivotal role in cellular physiology as it is being involved in numerous cellular metabolic and signaling pathways. Dependence on arginine is diverse for both tumor and normal cells. Because of decreased expression of argininosuccinate synthetase and/or ornithine transcarbamoylase, several types of tumor are auxotrophic for arginine. Deprivation of arginine exploits a significant vulnerability of these tumor cells and leads to their rapid demise. Hence, enzyme-mediated arginine depletion is a potential strategy for the selective destruction of tumor cells. Arginase, arginine deiminase and arginine decarboxylase are potential enzymes that may be used for arginine deprivation therapy. These arginine catabolizing enzymes not only reduce tumor growth but also make them susceptible to concomitantly administered anti-cancer therapeutics. Most of these enzymes are currently under clinical investigations and if successful will potentially be advanced as anti-cancer modalities.
Collapse
Affiliation(s)
- M D Patil
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Punjab, India
| | - J Bhaumik
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Punjab, India
| | - S Babykutty
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - U C Banerjee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Punjab, India
| | - D Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
46
|
Guerra GP, Rubin MA, Mello CF. Modulation of learning and memory by natural polyamines. Pharmacol Res 2016; 112:99-118. [PMID: 27015893 DOI: 10.1016/j.phrs.2016.03.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 01/08/2023]
Abstract
Spermine and spermidine are natural polyamines that are produced mainly via decarboxylation of l-ornithine and the sequential transfer of aminopropyl groups from S-adenosylmethionine to putrescine by spermidine synthase and spermine synthase. Spermine and spermidine interact with intracellular and extracellular acidic residues of different nature, including nucleic acids, phospholipids, acidic proteins, carboxyl- and sulfate-containing polysaccharides. Therefore, multiple actions have been suggested for these polycations, including modulation of the activity of ionic channels, protein synthesis, protein kinases, and cell proliferation/death, within others. In this review we summarize these neurochemical/neurophysiological/morphological findings, particularly those that have been implicated in the improving and deleterious effects of spermine and spermidine on learning and memory of naïve animals in shock-motivated and nonshock-motivated tasks, from a historical perspective. The interaction with the opioid system, the facilitation and disruption of morphine-induced reward and the effect of polyamines and putative polyamine antagonists on animal models of cognitive diseases, such as Alzheimer's, Huntington, acute neuroinflammation and brain trauma are also reviewed and discussed. The increased production of polyamines in Alzheimer's disease and the biphasic nature of the effects of polyamines on memory and on the NMDA receptor are also considered. In light of the current literature on polyamines, which include the description of an inborn error of the metabolism characterized by mild-to moderate mental retardation and polyamine metabolism alterations in suicide completers, we can anticipate that polyamine targets may be important for the development of novel strategies and approaches for understanding the etiopathogenesis of important central disorders and their pharmacological treatment.
Collapse
Affiliation(s)
- Gustavo Petri Guerra
- Department of Food Technology, Federal Technological University of Paraná, Campus Medianeira, Medianeira, PR 85884-000, Brazil
| | - Maribel Antonello Rubin
- Department of Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil.
| | - Carlos Fernando Mello
- Department of Physiology and Pharmacology, Center of Health Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
47
|
Bicho D, Caramelo-Nunes C, Sousa A, Sousa F, Queiroz J, Tomaz C. Purification of influenza deoxyribonucleic acid-based vaccine using agmatine monolith. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1012-1013:153-61. [DOI: 10.1016/j.jchromb.2015.12.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/14/2015] [Accepted: 12/18/2015] [Indexed: 01/04/2023]
|
48
|
Li Y, Cheng KC, Asakawa A, Amitani H, Takimoto Y, Runtuwene J, Inui A. Activation of imidazoline-I3 receptors ameliorates pancreatic damage. Clin Exp Pharmacol Physiol 2015; 42:964-971. [PMID: 26112210 DOI: 10.1111/1440-1681.12441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/25/2015] [Accepted: 06/09/2015] [Indexed: 01/09/2023]
Abstract
Agmatine, an endogenous ligand of imidazoline receptors, is reported to exhibit anti-hyperglycaemic and many other effects. It has been established that the imidazoline I3 receptor is involved in insulin secretion. The current study characterizes the role of the imidazoline I3 receptor in the protection of pancreatic islets. The activity effect of agmatine against on streptozotocin (STZ)-induced (5 mmol/L) rat β cell apoptosis was examined by using ApoTox-Glo triplex assay, live/dead cell double staining assay, flow cytometric analysis, and western blot. Imidazoline I3 receptors antagonist KU14R and the phospholipase C inhibitor named U73122 were treated in β cells to investigate the potential signalling pathways. The serum glucose and recovery of insulin secretion were measured in STZ-treated rats after continuously injected agmatine. The apoptosis in rat β cells was reduced by agmatine in a dose-dependent manner, cell viability was improved after treatment with agmatine and these effects were suppressed after the blockade of KU14R and U73122. Western blot analysis confirmed that agmatine could decrease caspase-3 expression and increase the p-BAD levels. In STZ-treated rats, injection of agmatine for 4 weeks may significantly lower the serum glucose and recovery of insulin secretion. This improvement of pancreatic islets induced by agmatine was deleted by KU14R in vivo. Agmatine can activate the imidazoline I3 receptor linked with the phospholipase C pathway to induce cell protection against apoptosis induced by a low dose of STZ. This finding provides new insight into the prevention of early stage pancreatic islet damage.
Collapse
Affiliation(s)
- Yingxiao Li
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kai-Chun Cheng
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Asakawa
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Haruka Amitani
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yoshiyuki Takimoto
- Department of Stress Sciences and Psychosomatic Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Joshua Runtuwene
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akio Inui
- Department of Stress Sciences and Psychosomatic Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
49
|
Bazer FW, Wang X, Johnson GA, Wu G. Select nutrients and their effects on conceptus development in mammals. ACTA ACUST UNITED AC 2015; 1:85-95. [PMID: 29767122 PMCID: PMC5945975 DOI: 10.1016/j.aninu.2015.07.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 07/30/2015] [Indexed: 11/30/2022]
Abstract
The dialogue between the mammalian conceptus (embryo/fetus and associated membranes) involves signaling for pregnancy recognition and maintenance of pregnancy during the critical peri-implantation period of pregnancy when the stage is set for implantation and placentation that precedes fetal development. Uterine epithelial cells secrete and/or transport a wide range of molecules, including nutrients, collectively referred to as histotroph that are transported into the fetal-placental vascular system to support growth and development of the conceptus. The availability of uterine-derived histotroph has long-term consequences for the health and well-being of the fetus and the prevention of adult onset of metabolic diseases. Histotroph includes numerous amino acids, but arginine plays a particularly important role as a source of nitric oxide and polyamines required for fetal-placental development in rodents, swine and humans through mechanisms that remain to be fully elucidated. Mechanisms whereby arginine regulates expression of genes via the mechanistic target of rapamycin cell signaling pathways critical to conceptus development, implantation and placentation are discussed in detail in this review.
Collapse
Affiliation(s)
- Fuller W Bazer
- Departments of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Xiaoqiu Wang
- Departments of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Greg A Johnson
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Guoyao Wu
- Departments of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| |
Collapse
|
50
|
Nedeljko P, Turel M, Lobnik A. Fluorescence-Based Determination of Agmatine in Dietary Supplements. ANAL LETT 2015. [DOI: 10.1080/00032719.2014.991962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|