1
|
Ryspayeva D, Seyhan AA, MacDonald WJ, Purcell C, Roady TJ, Ghandali M, Verovkina N, El-Deiry WS, Taylor MS, Graff SL. Signaling pathway dysregulation in breast cancer. Oncotarget 2025; 16:168-201. [PMID: 40080721 PMCID: PMC11906143 DOI: 10.18632/oncotarget.28701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
This article provides a comprehensive analysis of the signaling pathways implicated in breast cancer (BC), the most prevalent malignancy among women and a leading cause of cancer-related mortality globally. Special emphasis is placed on the structural dynamics of protein complexes that are integral to the regulation of these signaling cascades. Dysregulation of cellular signaling is a fundamental aspect of BC pathophysiology, with both upstream and downstream signaling cascade activation contributing to cellular process aberrations that not only drive tumor growth, but also contribute to resistance against current treatments. The review explores alterations within these pathways across different BC subtypes and highlights potential therapeutic strategies targeting these pathways. Additionally, the influence of specific mutations on therapeutic decision-making is examined, underscoring their relevance to particular BC subtypes. The article also discusses both approved therapeutic modalities and ongoing clinical trials targeting disrupted signaling pathways. However, further investigation is necessary to fully elucidate the underlying mechanisms and optimize personalized treatment approaches.
Collapse
Affiliation(s)
- Dinara Ryspayeva
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
| | - William J. MacDonald
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Connor Purcell
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Tyler J. Roady
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
| | - Maryam Ghandali
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Nataliia Verovkina
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
- Department of Medicine, Hematology/Oncology Division, Lifespan Health System and Brown University, RI 02903, USA
| | - Martin S. Taylor
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
- Brown Center on the Biology of Aging, Brown University, RI 02903, USA
| | - Stephanie L. Graff
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Department of Medicine, Hematology/Oncology Division, Lifespan Health System and Brown University, RI 02903, USA
| |
Collapse
|
2
|
Chen Z, He R, Huang S, Zhou Y, Zhang Z, Wang Z, Ding K. Discovery of CZY43 as a new small-molecule degrader of pseudokinase HER3. Eur J Med Chem 2025; 285:117258. [PMID: 39818014 DOI: 10.1016/j.ejmech.2025.117258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
The pseudokinase HER3 emerges as a promising anti-cancer target, especially for HER2-driven breast cancer and EGFR-mediated non-small cell lung cancer. However, it is challenging to target HER3 by ATP-competitive small molecules because HER3 is catalytically impaired. Herein, we report the discovery of a series of HER3 degraders by connecting a HER3 binder bosutinib with a hydrophobic tag adamantane. The optimal compound CZY43 effectively induced HER3 degradation in dose- and time-dependent manners in breast cancer SKBR3 cells. Mechanistic studies revealed compound CZY43 to induce HER3 degradation via autophagy. Importantly, compound CZY43 potently inhibited HER3-dependent signaling, cancer cell growth and cell adhesion, and was more potent than bosutinib. This study further suggested that HER3 can be modulated by small-molecule degraders, and compound CZY43 can serve as a lead compound for further optimization.
Collapse
Affiliation(s)
- Zhiyuan Chen
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd, Shanghai, 200032, China; University of Chinese Academy of Sciences, No. 1 Yanxihu Road Huairou District, Beijing, 101408, China
| | - Rui He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou, 511400, China
| | - Shengjie Huang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou, 511400, China
| | - Yang Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou, 511400, China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou, 511400, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd, Shanghai, 200032, China; Ningbo Zhongke Creation Center of New Materials, Ningbo, 315000, China
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd, Shanghai, 200032, China.
| |
Collapse
|
3
|
Gao L, Zhang Y, Feng M, Shen M, Yang L, Wei B, Zhou Y, Zhang Z. HER3: Updates and current biology function, targeted therapy and pathologic detecting methods. Life Sci 2024; 357:123087. [PMID: 39366553 DOI: 10.1016/j.lfs.2024.123087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
Being a member of the EGFR tyrosine kinase family, HER3 has been shown to be overexpressed in a number of cancers, including breast cancer (BC). The kinase activity of HER3 is extremely low, and it forms heterodimers with partners, HER2 in particular, that promote biological processes like cell migration, survival, and proliferation by activating downstream carcinogenic signaling pathways. The overexpression of HER3 is also directly linked to tumor invasion, metastasis, and a poor prognosis. Despite the relatively low expression of HER3 compared to EGFR and HER2, a lot of targeted drugs are making their way into clinical trials and seem to have a bright further. This review aims to summarize the relationship between HER3 overexpression, mutations, and carcinogenicity and drug resistance, starting from the unique structure and kinase activity of HER3. Simultaneously, numerous approaches to HER3 targeted therapy are enumerated, and the clinical detection methods for HER3 that are commonly employed in pathology are sorted and contrasted to offer physicians a range of options. We think that a better knowledge of the mechanisms underlying HER3 in tumors and the advancement of targeted HER3 therapy will contribute to an improved prognosis for cancer patients and an increase in the efficacy of anticancer therapies.
Collapse
Affiliation(s)
- Leyi Gao
- Department of Pathology, West China Hospital, Sichuan University, No.37, Guo Xue Xiang, Chengdu 610041, Sichuan, China
| | - Yu Zhang
- Department of Pathology, West China Hospital, Sichuan University, No.37, Guo Xue Xiang, Chengdu 610041, Sichuan, China
| | - Mengna Feng
- Department of Pathology, West China Hospital, Sichuan University, No.37, Guo Xue Xiang, Chengdu 610041, Sichuan, China
| | - Mengjia Shen
- Department of Pathology, West China Hospital, Sichuan University, No.37, Guo Xue Xiang, Chengdu 610041, Sichuan, China
| | - Libo Yang
- Department of Pathology, West China Hospital, Sichuan University, No.37, Guo Xue Xiang, Chengdu 610041, Sichuan, China
| | - Bing Wei
- Department of Pathology, West China Hospital, Sichuan University, No.37, Guo Xue Xiang, Chengdu 610041, Sichuan, China
| | - Yongjie Zhou
- Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Zhang Zhang
- Department of Pathology, West China Hospital, Sichuan University, No.37, Guo Xue Xiang, Chengdu 610041, Sichuan, China.
| |
Collapse
|
4
|
Singh PK, Kim S, Smith AW. HER4 is a high-affinity dimerization partner for all EGFR/HER/ErbB family proteins. Protein Sci 2024; 33:e5171. [PMID: 39276020 PMCID: PMC11401057 DOI: 10.1002/pro.5171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024]
Abstract
Human epidermal growth factor receptors (HER)-also known as EGFR or ErbB receptors-are a subfamily of receptor tyrosine kinases (RTKs) that play crucial roles in cell growth, division, and differentiation. HER4 (ErbB4) is the least studied member of this family, partly because its expression is lower in later stages of development. Recent work has suggested that HER4 can play a role in metastasis by regulating cell migration and invasiveness; however, unlike EGFR and HER2, the precise role that HER4 plays in tumorigenesis is still unresolved. Early work on HER family proteins suggested that there are direct interactions between the four members, but to date, there has been no single study of all four receptors in the same cell line with the same biophysical method. Here, we quantitatively measure the degree of association between HER4 and the other HER family proteins in live cells with a time-resolved fluorescence technique called pulsed interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS). PIE-FCCS is sensitive to the oligomerization state of membrane proteins in live cells, while simultaneously measuring single-cell protein expression levels and diffusion coefficients. Our PIE-FCCS results demonstrate that HER4 interacts directly with all HER family members in the cell plasma membrane. The interaction between HER4 and other HER family members intensified in the presence of a HER4-specific ligand. Our work suggests that HER4 is a preferred dimerization partner for all HER family proteins, even in the absence of ligands.
Collapse
Affiliation(s)
- Pradeep Kumar Singh
- Department of Chemistry and BiochemistryTexas Tech UniversityLubbockTexasUSA
| | - Soyeon Kim
- Division of Cancer Biology, Department of MedicineMetroHealth Medical CenterClevelandOhioUSA
- Department of MedicineCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Adam W. Smith
- Department of Chemistry and BiochemistryTexas Tech UniversityLubbockTexasUSA
| |
Collapse
|
5
|
Li WJ, Xie CY, Zhu X, Tang J, Wang L, Lou LG. SIBP-03, a novel anti-HER3 antibody, exerts antitumor effects and synergizes with EGFR- and HER2-targeted drugs. Acta Pharmacol Sin 2024; 45:857-866. [PMID: 38200149 PMCID: PMC10942974 DOI: 10.1038/s41401-023-01221-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
HER3 (human epidermal growth factor receptor 3) acts through heterodimerization with EGFR (epidermal growth factor receptor) or HER2 to play an essential role in activating phosphoinositide 3-kinase (PI3K) and AKT signaling-a crucial pathway that promotes tumor cell survival. HER3 is a promising target for cancer therapy, and several HER3-directed antibodies have already entered into clinical trials. In this study we characterized a novel anti-HER3 monoclonal antibody, SIBP-03. SIBP-03 (0.01-10 μg/mL) specifically and concentration-dependently blocked both neuregulin (NRG)-dependent and -independent HER3 activation, attenuated HER3-mediated downstream signaling and inhibited cell proliferation. This antitumor activity was dependent, at least in part, on SIBP-03-induced, cell-mediated cytotoxicity and cellular phagocytosis. Importantly, SIBP-03 enhanced the antitumor activity of EGFR- or HER2-targeted drugs (cetuximab or trastuzumab) in vitro and in vivo. The mechanisms underlying this synergy involve increased inhibition of HER3-mediated downstream signaling. Collectively, these results demonstrated that SIBP-03, which is currently undergoing a Phase I clinical trial in China, may offer a new treatment option for patients with cancers harboring activated HER3, particularly as part of a combinational therapeutic strategy.
Collapse
Affiliation(s)
- Wen-Jing Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng-Ying Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xi Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jiao Tang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lei Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Li-Guang Lou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Ten Haaft BH, Pedregal M, Prato J, Klümpen HJ, Moreno V, Lamarca A. Revolutionizing anti-HER2 therapies for extrahepatic cholangiocarcinoma and gallbladder cancer: Current advancements and future perspectives. Eur J Cancer 2024; 199:113564. [PMID: 38266541 DOI: 10.1016/j.ejca.2024.113564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
Biliary tract cancers (BTCs) encompass a heterogeneous group of rare tumors, including intrahepatic cholangiocarcinoma (iCCA), extrahepatic cholangiocarcinoma (eCCA), gallbladder cancer (GBC) and ampullary cancer (AC). The present first-line palliative treatment regimen comprises gemcitabine and cisplatin in combination with immunotherapy based on two randomized controlled studies. Despite the thorough investigation of these palliative treatments, long-term survival remains low. Moving beyond conventional chemotherapies and immunotherapies, the realm of precision medicine has demonstrated remarkable efficacy in malignancies such as breast and gastric cancers, characterized by notable HER2 overexpression rates. In the context of biliary tract cancer, significant HER2 alterations are observed, particularly within eCCA and GBC, heightening the interest in precision medicine. Various anti-HER2 therapies, including trastuzumab, pertuzumab, trastuzumab-deruxtecan, zanidatamab and neratinib, have undergone investigation. The objective of this review is to summarize the current evidence and outline future directions of targeted HER2 treatment therapy in patients with biliary tract tumors, specially extrahepatic cholangiocarcinoma and gallbladder cancer.
Collapse
Affiliation(s)
- Britte Hea Ten Haaft
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, the Netherlands; Cancer Center Amsterdam, the Netherlands
| | - Manuel Pedregal
- START Madrid-FJD Phase I Unit, Department of Medical Oncology, Fundación Jiménez Díaz University Hospital, Madrid Spain
| | - Javier Prato
- START Madrid-FJD Phase I Unit, Department of Medical Oncology, Fundación Jiménez Díaz University Hospital, Madrid Spain
| | - Heinz-Josef Klümpen
- Cancer Center Amsterdam, the Netherlands; Amsterdam UMC, location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
| | - Victor Moreno
- START Madrid-FJD Phase I Unit, Department of Medical Oncology, Fundación Jiménez Díaz University Hospital, Madrid Spain
| | - Angela Lamarca
- Department of Oncology, OncoHealth Institute, Fundación Jiménez Díaz University Hospital, Madrid Spain; Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom.
| |
Collapse
|
7
|
Wang F, Liu H, Xu Y, Liang Z, Wu Z, Liu Y, Zhang B. Detection of HER-3 with an AlGaN/GaN-Based Ion-Sensitive Heterostructure Field Effect Transistor Biosensor. MICROMACHINES 2023; 14:1186. [PMID: 37374771 DOI: 10.3390/mi14061186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Human epidermal growth factor receptor-3 (HER-3) plays a key role in the growth and metastasis of cancer cells. The detection of HER-3 is very important for early screening and treatment of cancer. The AlGaN/GaN-based ion-sensitive heterostructure field effect transistor (ISHFET) is sensitive to surface charges. This makes it a promising candidate for the detection of HER-3. In this paper, we developed a biosensor for the detection of HER-3 with AlGaN/GaN-based ISHFET. The AlGaN/GaN-based ISHFET biosensor exhibits a sensitivity of 0.53 ± 0.04 mA/dec in 0.01 M phosphate buffer saline (1× PBS) (pH = 7.4) solution with 4% bovine serum albumin (BSA) at a source and drain voltage of 2 V. The detection limit is 2 ng/mL. A higher sensitivity (2.20 ± 0.15 mA/dec) can be achieved in 1× PBS buffer solution at a source and drain voltage of 2 V. The AlGaN/GaN-based ISHFET biosensor can be used for micro-liter (5 μL) solution measurements and the measurement can be performed after incubation of 5 min.
Collapse
Affiliation(s)
- Fengge Wang
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Honghui Liu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Yanyan Xu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiwen Liang
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhisheng Wu
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Liu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Baijun Zhang
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
8
|
Gandullo-Sánchez L, Ocaña A, Pandiella A. HER3 in cancer: from the bench to the bedside. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:310. [PMID: 36271429 PMCID: PMC9585794 DOI: 10.1186/s13046-022-02515-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/07/2022] [Indexed: 11/15/2022]
Abstract
The HER3 protein, that belongs to the ErbB/HER receptor tyrosine kinase (RTK) family, is expressed in several types of tumors. That fact, together with the role of HER3 in promoting cell proliferation, implicate that targeting HER3 may have therapeutic relevance. Furthermore, expression and activation of HER3 has been linked to resistance to drugs that target other HER receptors such as agents that act on EGFR or HER2. In addition, HER3 has been associated to resistance to some chemotherapeutic drugs. Because of those circumstances, efforts to develop and test agents targeting HER3 have been carried out. Two types of agents targeting HER3 have been developed. The most abundant are antibodies or engineered antibody derivatives that specifically recognize the extracellular region of HER3. In addition, the use of aptamers specifically interacting with HER3, vaccines or HER3-targeting siRNAs have also been developed. Here we discuss the state of the art of the preclinical and clinical development of drugs aimed at targeting HER3 with therapeutic purposes.
Collapse
Affiliation(s)
- Lucía Gandullo-Sánchez
- grid.428472.f0000 0004 1794 2467Instituto de Biología Molecular y Celular del Cáncer, CSIC, IBSAL and CIBERONC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Alberto Ocaña
- grid.411068.a0000 0001 0671 5785Hospital Clínico San Carlos and CIBERONC, 28040 Madrid, Spain
| | - Atanasio Pandiella
- grid.428472.f0000 0004 1794 2467Instituto de Biología Molecular y Celular del Cáncer, CSIC, IBSAL and CIBERONC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
9
|
Hassani D, Jeddi-Tehrani M, Yousefi P, Mansouri-Fard S, Mobini M, Ahmadi-Zare H, Golsaz-Shirazi F, Amiri MM, Shokri F. Differential tumor inhibitory effects induced by HER3 extracellular subdomain-specific mouse monoclonal antibodies. Cancer Chemother Pharmacol 2022; 89:347-361. [PMID: 35079876 DOI: 10.1007/s00280-021-04390-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/15/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE The therapeutic potential of targeting the human epidermal growth factor receptor-3 (ErbB3/HER3) has long been ignored due to impaired tyrosine kinase function and low expression level in tumor cells compared with EGFR and HER2. Although recent investigations have explored the potential benefit of HER3 targeting and several anti-HER3 agents have been developed, there is still a critical need to design and produce more efficient therapeutics. This study was designed to develop tumor inhibitory monoclonal antibodies (MAbs) against different extracellular subdomains of HER3. METHODS Distinct extracellular subdomains of HER3 (DI+II and DIII+IV) were utilized to produce MAbs by hybridoma technology. Biochemical and functional characteristics of these MAbs were then investigated by various methodologies, including immunoblotting, flow cytometry, cell proliferation, cell signaling, and enzyme-linked immunosorbent assays. RESULTS Four anti-DI+II and six anti-DIII+IV MAbs were obtained, selected based on their ability to bind recombinant full HER3 extracellular domain (ECD). Our data showed that only one anti-DI+II and four anti-DIII+IV MAbs recognized the native form of HER3 by immunoblotting. Four MAbs recognized the membranous HER3 by flow cytometry leading to induction of different levels of receptor internalization and subsequent degradation. Results of cell proliferation assays using these MAbs indicated that they differentially inhibited proliferation of HER3-expressing cancer cells and showed considerable synergistic effects in combination with trastuzumab. Selected MAb with the highest inhibitory effect significantly inhibited the phosphorylation of AKT and ERK1/2 molecules. CONCLUSION Some of the anti-HER3 MAbs produced in this study displayed tumor inhibitory function and may be considered promising candidates for future HER3-targeted cancer therapy.
Collapse
Affiliation(s)
- Danesh Hassani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Parisa Yousefi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Samaneh Mansouri-Fard
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mobini
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hengameh Ahmadi-Zare
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Wu Y, Yi M, Zhu S, Wang H, Wu K. Recent advances and challenges of bispecific antibodies in solid tumors. Exp Hematol Oncol 2021; 10:56. [PMID: 34922633 PMCID: PMC8684149 DOI: 10.1186/s40164-021-00250-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/03/2021] [Indexed: 12/29/2022] Open
Abstract
Cancer immunotherapy has made remarkable progress in the past decade. Bispecific antibodies (BsAbs) have acquired much attention as the next generation strategy of antibody-target cancer immunotherapy, which overwhelmingly focus on T cell recruitment and dual receptors blockade. So far, BsAb drugs have been proved clinically effective and approved for the treatment of hematologic malignancies, but no BsAb have been approved in solid tumors. Numerous designed BsAb drugs for solid tumors are now undergoing evaluation in clinical trials. In this review, we will introduce the formats of bispecific antibodies, and then update the latest preclinical studies and clinical trials in solid tumors of BsAbs targeting EpCAM, CEA, PMSA, ErbB family, and so on. Finally, we discuss the BsAb-related adverse effects and the alternative strategy for future study.
Collapse
Affiliation(s)
- Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haiyong Wang
- Beijing Anjianxi Medicinal Technology Co., Ltd., No.2 Cuiwei Road, Haidian District, Beijing, 100036, China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
11
|
Eliseev IE, Ukrainskaya VM, Yudenko AN, Mikushina AD, Shmakov SV, Afremova AI, Ekimova VM, Vronskaia AA, Knyazev NA, Shamova OV. Targeting ErbB3 Receptor in Cancer with Inhibitory Antibodies from Llama. Biomedicines 2021; 9:biomedicines9091106. [PMID: 34572289 PMCID: PMC8467012 DOI: 10.3390/biomedicines9091106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/05/2023] Open
Abstract
The human ErbB3 receptor confers resistance to the pharmacological inhibition of EGFR and HER2 receptor tyrosine kinases in cancer, which makes it an important therapeutic target. Several anti-ErbB3 monoclonal antibodies that are currently being developed are all classical immunoglobulins. We took a different approach and discovered a group of novel heavy-chain antibodies targeting the extracellular domain of ErbB3 via a phage display of an antibody library from immunized llamas. We first produced three selected single-domain antibodies, named BCD090-P1, BCD090-M2, and BCD090-M456, in E. coli, as SUMO fusions that yielded up to 180 mg of recombinant protein per liter of culture. Then, we studied folding, aggregation, and disulfide bond formation, and showed their ultimate stability with half-denaturation of the strongest candidate, BCD090-P1, occurring in 8 M of urea. In surface plasmon resonance experiments, two most potent antibodies, BCD090-P1 and BCD090-M2, bound the extracellular domain of ErbB3 with 1.6 nM and 15 nM affinities for the monovalent interaction, respectively. The receptor binding was demonstrated by immunofluorescent confocal microscopy on four different ErbB3+ cancer cell lines. We observed that BCD090-P1 and BCD090-M2 bind noncompetitively to two distinct epitopes on the receptor. Both antibodies inhibited the ErbB3-driven proliferation of MCF-7 breast adenocarcinoma cells and HER2-overexpressing SK-BR-3 cells, with the EC50 in the range of 0.1–25 μg/mL. BCD090-M2 directly blocks ligand binding, whereas BCD090-P1 does not compete with the ligand and presumably acts through a distinct allosteric mechanism. We anticipate that these llama antibodies can be used to engineer new biparatopic anti-ErbB3 or bispecific anti-ErbB2/3 antibodies.
Collapse
Affiliation(s)
- Igor E. Eliseev
- Laboratory of Renewable Energy Sources, Alferov University, St. Petersburg 194021, Russia; (A.D.M.); (S.V.S.); (A.A.V.)
- Center for Personalized Medicine, FSBSI Institute of Experimental Medicine, St. Petersburg 197376, Russia;
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
- Correspondence:
| | - Valeria M. Ukrainskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
| | - Anna N. Yudenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia;
| | - Anna D. Mikushina
- Laboratory of Renewable Energy Sources, Alferov University, St. Petersburg 194021, Russia; (A.D.M.); (S.V.S.); (A.A.V.)
| | - Stanislav V. Shmakov
- Laboratory of Renewable Energy Sources, Alferov University, St. Petersburg 194021, Russia; (A.D.M.); (S.V.S.); (A.A.V.)
| | | | | | - Anna A. Vronskaia
- Laboratory of Renewable Energy Sources, Alferov University, St. Petersburg 194021, Russia; (A.D.M.); (S.V.S.); (A.A.V.)
| | - Nickolay A. Knyazev
- Saint-Petersburg Clinical Scientific and Practical Center for Specialized Types of Medical Care (Oncological), St. Petersburg 197758, Russia;
| | - Olga V. Shamova
- Center for Personalized Medicine, FSBSI Institute of Experimental Medicine, St. Petersburg 197376, Russia;
| |
Collapse
|
12
|
Hassani D, Amiri MM, Mohammadi M, Yousefi P, Judaki MA, Mobini M, Golsaz-Shirazi F, Jeddi-Tehrani M, Shokri F. A novel tumor inhibitory hybridoma monoclonal antibody with dual specificity for HER3 and HER2. Curr Res Transl Med 2021; 69:103277. [PMID: 33639587 DOI: 10.1016/j.retram.2021.103277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/19/2021] [Accepted: 01/31/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND The human epidermal growth factor receptor (HER/ErbB) family-targeted therapies result in a significant improvement in cancer immunotherapy. Monoclonal antibodies (MAb) against HER2 demonstrated a survival benefit for patients; however, drug resistance unavoidably occurs due to the overexpression of HER3, which leads to treatment failure. Effective inhibition of HER3 besides HER2 is thought to be required to overcome resistance and enhance therapeutic efficacy. OBJECTIVE The present study describes the production and characterization of a novel MAb, designated 1G5D2, which acts as a natural bispecific antibody targeting extracellular domains (ECD) of both HER2 and HER3. METHODS In this study, 1G5D2 was produced by hybridoma technology against HER3-ECD, and its structural and functional characteristics were studied by various methodologies, including enzyme linked-immunosorbent assays, flow cytometry, immunoblotting, cell signaling, and cell proliferation assays. RESULTS 1G5D2 specifically binds to both HER2 (subdomain III + IV) and HER3 (subdomain I + II) expressed on tumor cells, and these receptors compete with each other for binding to this MAb. Competition flow cytometry experiments demonstrated that 1G5D2 does not compete with heregulin and recognizes an epitope out of HER3 ligand-binding site. Evaluation of 1G5D2 inhibitory effects in tumor cell lines co-expressing HER2 and HER3 showed that 1G5D2 synergizes with trastuzumab to inhibit both PI3K/AKT and MAPK/ERK pathways and potently downregulates the proliferation of these tumor cells more efficiently than each MAb alone. CONCLUSION 1G5D2 is the first reported hybridoma antibody, which acts as a natural HER2/HER3 bispecific antibody. It might potentially be a suitable therapeutic candidate for HER2/HER3 overexpressing cancer types.
Collapse
Affiliation(s)
- Danesh Hassani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mehdi Mohammadi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Parisa Yousefi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mohammad Ali Judaki
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Mobini
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
García P, Lamarca A, Díaz J, Carrera E, Roa JC. Current and New Biomarkers for Early Detection, Prognostic Stratification, and Management of Gallbladder Cancer Patients. Cancers (Basel) 2020; 12:E3670. [PMID: 33297469 PMCID: PMC7762341 DOI: 10.3390/cancers12123670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 01/17/2023] Open
Abstract
Gallbladder cancer (GBC) is an aggressive disease that shows evident geographic variation and is characterized by a poor prognosis, mainly due to the late diagnosis and ineffective treatment. Genetic variants associated with GBC susceptibility, including polymorphisms within the toll-like receptors TLR2 and TLR4, the cytochrome P450 1A1 (CYP1A1), and the ATP-binding cassette (ABC) transporter ABCG8 genes, represent promising biomarkers for the stratification of patients at higher risk of GBC; thus, showing potential to prioritize cholecystectomy, particularly considering that early diagnosis is difficult due to the absence of specific signs and symptoms. Similarly, our better understanding of the gallbladder carcinogenic processes has led to identify several cellular and molecular events that may influence patient management, including HER2 aberrations, high tumor mutational burden, microsatellite instability, among others. Despite these reports on interesting and promising markers for risk assessment, diagnosis, and prognosis; there is an unmet need for reliable and validated biomarkers that can improve the management of GBC patients and support clinical decision-making. This review article examines the most potentially significant biomarkers of susceptibility, diagnosis, prognosis, and therapy selection for GBC patients, highlighting the need to find and validate existing and new molecular biomarkers to improve patient outcomes.
Collapse
Affiliation(s)
- Patricia García
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile;
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Division of Cancer Sciences, University of Manchester, Manchester M20 4BX, UK;
| | - Javier Díaz
- Departamento del Aparato Digestivo, Hospital Nacional Edgardo Rebagliati Martins-Essalud, School of Medicine, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru;
| | - Enrique Carrera
- Department of Gastroenterology, Hospital Especialidades Eugenio Espejo, Universidad San Francisco de Quito, Quito 170136, Ecuador;
| | - Juan Carlos Roa
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile;
| | | |
Collapse
|
14
|
Colomba A, Fitzek M, George R, Weitsman G, Roberts S, Zanetti-Domingues L, Hirsch M, Rolfe DJ, Mehmood S, Madin A, Claus J, Kjaer S, Snijders AP, Ng T, Martin-Fernandez M, Smith DM, Parker PJ. A small molecule inhibitor of HER3: a proof-of-concept study. Biochem J 2020; 477:3329-3347. [PMID: 32815546 PMCID: PMC7489893 DOI: 10.1042/bcj20200496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022]
Abstract
Despite being catalytically defective, pseudokinases are typically essential players of cellular signalling, acting as allosteric regulators of their active counterparts. Deregulation of a growing number of pseudokinases has been linked to human diseases, making pseudokinases therapeutic targets of interest. Pseudokinases can be dynamic, adopting specific conformations critical for their allosteric function. Interfering with their allosteric role, with small molecules that would lock pseudokinases in a conformation preventing their productive partner interactions, is an attractive therapeutic strategy to explore. As a well-known allosteric activator of epidermal growth factor receptor family members, and playing a major part in cancer progression, the pseudokinase HER3 is a relevant context in which to address the potential of pseudokinases as drug targets for the development of allosteric inhibitors. In this proof-of-concept study, we developed a multiplex, medium-throughput thermal shift assay screening strategy to assess over 100 000 compounds and identify selective small molecule inhibitors that would trap HER3 in a conformation which is unfavourable for the formation of an active HER2-HER3 heterodimer. As a proof-of-concept compound, AC3573 bound with some specificity to HER3 and abrogated HER2-HER3 complex formation and downstream signalling in cells. Our study highlights the opportunity to identify new molecular mechanisms of action interfering with the biological function of pseudokinases.
Collapse
Affiliation(s)
- Audrey Colomba
- Protein Phosphorylation Laboratory, The Francis Crick Institute, London, U.K
| | - Martina Fitzek
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park, Macclesfield, U.K
| | - Roger George
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, U.K
| | - Gregory Weitsman
- Richard Dimbleby Department of Cancer Research, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Campus, London, U.K
| | - Selene Roberts
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, U.K
| | - Laura Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, U.K
| | - Michael Hirsch
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, U.K
| | - Daniel J. Rolfe
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, U.K
| | - Shahid Mehmood
- Protein Analysis and Proteomics Science Technology Platform, The Francis Crick Institute, London, U.K
| | - Andrew Madin
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge, U.K
| | - Jeroen Claus
- Protein Phosphorylation Laboratory, The Francis Crick Institute, London, U.K
| | - Svend Kjaer
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, U.K
| | - Ambrosius P. Snijders
- Protein Analysis and Proteomics Science Technology Platform, The Francis Crick Institute, London, U.K
| | - Tony Ng
- Richard Dimbleby Department of Cancer Research, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Campus, London, U.K
| | - Marisa Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, U.K
| | - David M. Smith
- Emerging Innovations Unit, Discovery Sciences, R&D, AstraZeneca, Cambridge, U.K
| | - Peter J. Parker
- Protein Phosphorylation Laboratory, The Francis Crick Institute, London, U.K
- CRUK KHP Centre, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Campus, London, U.K
| |
Collapse
|
15
|
Bano S, Obaid G, Swain JWR, Yamada M, Pogue BW, Wang K, Hasan T. NIR Photodynamic Destruction of PDAC and HNSCC Nodules Using Triple-Receptor-Targeted Photoimmuno-Nanoconjugates: Targeting Heterogeneity in Cancer. J Clin Med 2020; 9:E2390. [PMID: 32726945 PMCID: PMC7464411 DOI: 10.3390/jcm9082390] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 12/22/2022] Open
Abstract
Receptor heterogeneity in cancer is a major limitation of molecular targeting for cancer therapeutics. Single-receptor-targeted treatment exerts selection pressures that result in treatment escape for low-receptor-expressing tumor subpopulations. To overcome this potential for heterogeneity-driven resistance to molecular targeted photodynamic therapy (PDT), we present for the first time a triple-receptor-targeted photoimmuno-nanoconjugate (TR-PIN) platform. TR-PIN functionalization with cetuximab, holo-transferrin, and trastuzumab conferred specificity for epidermal growth factor receptor (EGFR), transferrin receptor (TfR), and human epidermal growth factor receptor 2 (HER-2), respectively. The TR-PINs exhibited up to a 24-fold improvement in cancer cell binding compared with EGFR-specific cetuximab-targeted PINs (Cet-PINs) in low-EGFR-expressing cell lines. Photodestruction using TR-PINs was significantly higher than the monotargeted Cet-PINs in heterocellular 3D in vitro models of heterogeneous pancreatic ductal adenocarcinoma (PDAC; MIA PaCa-2 cells) and heterogeneous head and neck squamous cell carcinoma (HNSCC, SCC9 cells) containing low-EGFR-expressing T47D (high TfR) or SKOV-3 (high HER-2) cells. Through their capacity for multiple tumor target recognition, TR-PINs can serve as a unique and amenable platform for the effective photodynamic eradication of diverse tumor subpopulations in heterogeneous cancers to mitigate escape for more complete and durable treatment responses.
Collapse
Affiliation(s)
- Shazia Bano
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (S.B.); (G.O.); (J.W.R.S.); (M.Y.)
| | - Girgis Obaid
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (S.B.); (G.O.); (J.W.R.S.); (M.Y.)
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Joseph W. R. Swain
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (S.B.); (G.O.); (J.W.R.S.); (M.Y.)
| | - Marina Yamada
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (S.B.); (G.O.); (J.W.R.S.); (M.Y.)
- Department of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, USA;
| | - Kenneth Wang
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (S.B.); (G.O.); (J.W.R.S.); (M.Y.)
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
16
|
Lamarca A, Barriuso J, McNamara MG, Valle JW. Molecular targeted therapies: Ready for "prime time" in biliary tract cancer. J Hepatol 2020; 73:170-185. [PMID: 32171892 DOI: 10.1016/j.jhep.2020.03.007] [Citation(s) in RCA: 252] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
The prognosis for patients with biliary tract cancers (cholangiocarcinoma and gallbladder cancer) is poor, while the incidence of these cancers is increasing. Most patients are diagnosed with advanced disease when treatment options are limited to palliative approaches, mainly focused on chemotherapy. In recent years, novel treatment targets of relevance to biliary tract cancers, mainly present in patients with intrahepatic cholangiocarcinoma, have been identified and are rapidly changing the field. These include fibroblast growth factor receptor (FGFR) fusions and isocitrate dehydrogenase (IDH)-1 and -2 mutations which are each present in around 10-20% of patients with intrahepatic cholangiocarcinoma. In addition, inhibition of other pathways/molecules is currently being explored, including human epidermal growth factor receptor (HER) family members, the Wnt pathway, neurotropic tyrosine kinase receptor (NTRK) fusions and BRAF mutations. The IDH1 inhibitor ivosidenib has already been tested in a phase III clinical trial in pretreated cholangiocarcinoma and showed benefit in terms of progression-free survival. Multiple FGFR inhibitors have consistently shown high response rates in phase II/III trials, especially for patients harbouring FGFR2 fusions. Herein, we provide an overview of the status of targeted therapies in biliary tract cancers, discussing the current clinical development of IDH and FGFR inhibitors in detail, as well as reviewing current caveats and future steps.
Collapse
Affiliation(s)
- Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Jorge Barriuso
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Mairéad G McNamara
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
17
|
Rinne SS, Xu T, Dahlsson Leitao C, Ståhl S, Löfblom J, Orlova A, Tolmachev V, Vorobyeva A. Influence of Residualizing Properties of the Radiolabel on Radionuclide Molecular Imaging of HER3 Using Affibody Molecules. Int J Mol Sci 2020; 21:ijms21041312. [PMID: 32075258 PMCID: PMC7072899 DOI: 10.3390/ijms21041312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
Human epidermal growth factor receptor type 3 (HER3) is an emerging therapeutic target in several malignancies. To select potential responders to HER3-targeted therapy, radionuclide molecular imaging of HER3 expression using affibody molecules could be performed. Due to physiological expression of HER3 in normal organs, high imaging contrast remains challenging. Due to slow internalization of affibody molecules by cancer cells, we hypothesized that labeling (HE)3-ZHER3:08698-DOTAGA affibody molecule with non-residualizing [125I]-N-succinimidyl-4-iodobenzoate (PIB) label would improve the tumor-to-normal organs ratios compared to previously reported residualizing radiometal labels. The [125I]I-PIB-(HE)3-ZHER3:08698-DOTAGA was compared side-by-side with [111In]In-(HE)3-ZHER3:08698-DOTAGA. Both conjugates demonstrated specific high-affinity binding to HER3-expressing BxPC-3 and DU145 cancer cells. Biodistribution in mice bearing BxPC-3 xenografts at 4 and 24 h pi showed faster clearance of the [125I]I-PIB label compared to the indium-111 label from most tissues, except blood. This resulted in higher tumor-to-organ ratios in HER3-expressing organs for [125I]I-PIB-(HE)3-ZHER3:08698-DOTAGA at 4 h, providing the tumor-to-liver ratio of 2.4 ± 0.3. The tumor uptake of both conjugates was specific, however, it was lower for the [125I]I-PIB label. In conclusion, the use of non-residualizing [125I]I-PIB label for HER3-targeting affibody molecule provided higher tumor-to-liver ratio than the indium-111 label, however, further improvement in tumor uptake and retention is needed.
Collapse
Affiliation(s)
- Sara S. Rinne
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (S.S.R.); (A.O.)
| | - Tianqi Xu
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (V.T.)
| | - Charles Dahlsson Leitao
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden; (C.D.L.); (S.S.); (J.L.)
| | - Stefan Ståhl
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden; (C.D.L.); (S.S.); (J.L.)
| | - John Löfblom
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden; (C.D.L.); (S.S.); (J.L.)
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (S.S.R.); (A.O.)
- Science for Life Laboratory, Uppsala University, 751 23 Uppsala, Sweden
- Centrum for Oncotheranostics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (V.T.)
- Centrum for Oncotheranostics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (V.T.)
- Centrum for Oncotheranostics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
- Correspondence: ; Tel.: +46-18-471-3868
| |
Collapse
|
18
|
Mansouri-Fard S, Ghaedi M, Shokri MR, Bahadori T, Khoshnoodi J, Golsaz-Shirazi F, Jeddi-Tehrani M, Amiri MM, Shokri F. Inhibitory Effect of Polyclonal Antibodies Against HER3 Extracellular Subdomains on Breast Cancer Cell Lines. Asian Pac J Cancer Prev 2020; 21:439-447. [PMID: 32102522 PMCID: PMC7332115 DOI: 10.31557/apjcp.2020.21.2.439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Indexed: 11/25/2022] Open
Abstract
Objective: Human epidermal growth factor receptor 3 (HER3) is a unique member of the tyrosine kinase receptors with an inactive kinase domain and is the preferable dimerization partner for HER2 which lead to potent tumorigenic signaling. Methods: In this study, the expression plasmids coding for the human HER3 subdomains were transfected into CHO-K1 cells. Produced proteins were characterized by ELISA and SDS-PAGE. Rabbits were immunized and produced polyclonal antibodies (pAbs) that were characterized by ELISA, Immunoblotting and flowcytometry and their inhibitory effects were assessed by XTT on BT-474 and JIMT-1 breast cancer cell lines. Result: The recombinant subdomains were highly immunogenic in rabbits. The pAbs reacted with the recombinant subdomains as well as commercial HER3 and the native receptor on tumor cell membranes and could significantly inhibit growth of Trastuzumab sensitive (BT-474) and resistant (JIMT-1) breast cancer cell lines in vitro. Conclusion: It seems that HER3 extra cellular domains (ECD) induce a strong anti-tumor antibody response and may prove to be potentially useful for immunotherapeutic applications.
Collapse
Affiliation(s)
- Samaneh Mansouri-Fard
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Ghaedi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Shokri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tannaz Bahadori
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalal Khoshnoodi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
19
|
Thomas A, Virdee PS, Eatock M, Lord SR, Falk S, Anthoney DA, Turkington RC, Goff M, Elhussein L, Collins L, Love S, Moschandreas J, Middleton MR. Dual Erb B Inhibition in Oesophago-gastric Cancer (DEBIOC): A phase I dose escalating safety study and randomised dose expansion of AZD8931 in combination with oxaliplatin and capecitabine chemotherapy in patients with oesophagogastric adenocarcinoma. Eur J Cancer 2020; 124:131-141. [PMID: 31765988 PMCID: PMC6947485 DOI: 10.1016/j.ejca.2019.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/07/2019] [Accepted: 10/13/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND AZD8931 has equipotent activity against epidermal growth factor receptor, erbB2, and erbB3. Primary objectives were to determine the recommended phase II dose (RP2D) of AZD8931 + chemotherapy, and subsequently assess safety/preliminary clinical activity in patients with operable oesophagogastric cancer (OGC). METHODS AZD8931 (20 mg, 40 mg or 60 mg bd) was given with Xelox (oxaliplatin + capecitabine) for eight 21-day cycles, continuously or with intermittent schedule (4 days on/3 off every week; 14 days on/7 off, per cycle) in a rolling-six design. Subsequently, patients with OGC were randomised 2:1 to AZD8931 + Xelox at RP2D or Xelox only for two cycles, followed by radical oesophagogastric surgery. Secondary outcomes were safety, complete resection (R0) rate, six-month progression-free survival (PFS) and overall survival. RESULTS During escalation, four dose-limiting toxicities were observed among 24 patients: skin rash (1) and failure to deliver 100% of Xelox because of treatment-associated grade III-IV adverse events (AEs) (3: diarrhoea and vomiting; vomiting; fatigue). Serious adverse events (SAE) occurred in 15 of 24 (63%) patients. RP2D was 20-mg bd with the 4/3 schedule. In the expansion phase, 2 of 20 (10%) patients in the Xelox + AZD8931 group and 5/10 (50%) patients in the Xelox group had grade III-IV AEs. Six-month PFS was 85% (90% CI: 66%-94%) in Xelox + AZD8931 and 100% in Xelox alone. Seven deaths (35%) occurred with Xelox + AZD8931 and one (10%) with Xelox. R0 rate was 45% (9/20) with Xelox + AZD8931 and 90% (9/10) with Xelox-alone (P = 0.024). CONCLUSION Xelox + AZD8931 (20 mg bd 4/3 days) has an acceptable safety profile administered as neoadjuvant therapy in operable patients with OGC. (Trial registration: EudraCT 2011-003169-13, ISRCTN-68093791).
Collapse
Affiliation(s)
| | - Pradeep S Virdee
- Centre for Statistics in Medicine, University of Oxford, Oxford, UK
| | | | | | - Stephen Falk
- Bristol Haematology & Oncology Centre, Bristol, UK
| | | | - Richard C Turkington
- Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, UK
| | - Matthew Goff
- Oncology Clinical Trials Office, University of Oxford, Oxford, UK
| | - Leena Elhussein
- Centre for Statistics in Medicine, University of Oxford, Oxford, UK
| | - Linda Collins
- Oncology Clinical Trials Office, University of Oxford, Oxford, UK
| | - Sharon Love
- Centre for Statistics in Medicine, University of Oxford, Oxford, UK
| | | | - Mark R Middleton
- University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, UK
| |
Collapse
|
20
|
Saba NF, Chen ZG, Haigentz M, Bossi P, Rinaldo A, Rodrigo JP, Mäkitie AA, Takes RP, Strojan P, Vermorken JB, Ferlito A. Targeting the EGFR and Immune Pathways in Squamous Cell Carcinoma of the Head and Neck (SCCHN): Forging a New Alliance. Mol Cancer Ther 2019; 18:1909-1915. [PMID: 31676542 PMCID: PMC6830522 DOI: 10.1158/1535-7163.mct-19-0214] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/11/2019] [Accepted: 09/04/2019] [Indexed: 12/29/2022]
Abstract
Despite the recent approval of immune-modulatory agents, EGFR inhibition continues to be a cornerstone in the management of squamous cell carcinoma of the head and neck (SCCHN) namely in combination with radiotherapy in the treatment of locoregionally advanced disease as well as in platinum-sensitive recurrent or metastatic disease in the first-line setting. Importantly, recent evidence has emerged supporting also an immune-modulatory effect of EGFR inhibition, and interest has now focused on utilizing these effects in the current treatment approaches for SCCHN. In this report, we review the rationale and evidence supporting the forging of this new alliance in optimizing the treatment of SCCHN.
Collapse
Affiliation(s)
- Nabil F Saba
- Department of Hematology and Medical oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia.
| | - Zhuo Gerogia Chen
- Department of Hematology and Medical oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | | | - Paolo Bossi
- Medical Oncology Department, University of Brescia, Brescia, Italy
| | | | - Juan P Rodrigo
- Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Antti A Mäkitie
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
| | - Robert P Takes
- Radboud University Medical Center, Nijmegen, the Netherlands
| | | | | | - Alfio Ferlito
- Coordinator of the International Head and Neck Scientific Group, Padua, Italy
| |
Collapse
|
21
|
Improved contrast of affibody-mediated imaging of HER3 expression in mouse xenograft model through co-injection of a trivalent affibody for in vivo blocking of hepatic uptake. Sci Rep 2019; 9:6779. [PMID: 31043683 PMCID: PMC6494909 DOI: 10.1038/s41598-019-43145-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/12/2019] [Indexed: 11/08/2022] Open
Abstract
Human epidermal growth factor receptor type 3 (HER3) plays a crucial role in the progression of many cancer types. In vivo radionuclide imaging could be a reliable method for repetitive detection of HER3-expression in tumors. The main challenge of HER3-imaging is the low expression in tumors together with endogenous receptor expression in normal tissues, particularly the liver. A HER3-targeting affibody molecule labeled with radiocobalt via a NOTA chelator [57Co]Co-NOTA-Z08699 has demonstrated the most favorable biodistribution profile with the lowest unspecific hepatic uptake and high activity uptake in tumors. We hypothesized that specific uptake of labeled affibody monomer might be selectively blocked in the liver but not in tumors by a co-injection of non-labeled corresponding trivalent affibody (Z08699)3. Biodistribution of [57Co]Co-NOTA-Z08699 and [111In]In-DOTA-(Z08699)3 was studied in BxPC-3 xenografted mice. [57Co]Co-NOTA-Z08699 was co-injected with unlabeled trivalent affibody DOTA-(Z08699)3 at different monomer:trimer molar ratios. HER3-expression in xenografts was imaged using [57Co]Co-NOTA-Z08699 and [57Co]Co-NOTA-Z08699: DOTA-(Z08699)3. Hepatic activity uptake of [57Co]Co-NOTA-Z08699: DOTA-(Z08699)3 decreased with increasing monomer:trimer molar ratio. The tumor activity uptake and tumor-to-liver ratios were the highest for the 1:3 ratio. SPECT/CT images confirmed the biodistribution data. Imaging of HER3 expression can be improved by co-injection of a radiolabeled monomeric affibody-based imaging probe together with a trivalent affibody.
Collapse
|
22
|
Ducret A, James I, Wilson S, Feilke M, Tebbe A, Dybowski N, Elschenbroich S, Klammer M, Blackler A, Liao WL, Tian Y, Friess T, Bossenmaier B, Dietmann G, Schaab C, Hembrough T, Ceppi M. Translation and evaluation of a pre-clinical 5-protein response prediction signature in a breast cancer phase Ib clinical trial. PLoS One 2019; 14:e0213892. [PMID: 30897176 PMCID: PMC6428264 DOI: 10.1371/journal.pone.0213892] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/05/2019] [Indexed: 12/21/2022] Open
Abstract
Human protein biomarker discovery relies heavily on pre-clinical models, in particular established cell lines and patient-derived xenografts, but confirmation studies in primary tissue are essential to demonstrate clinical relevance. We describe in this study the process that was followed to clinically translate a 5-protein response signature predictive for the activity of an anti-HER3 monoclonal antibody (lumretuzumab) originally measured in fresh frozen xenograft tissue. We detail the development, qualification, and validation of the multiplexed targeted mass spectrometry assay used to assess the signature performance in formalin-fixed, paraffin-embedded human clinical samples collected in a phase Ib trial designed to evaluate lumretuzumab in patients with metastatic breast cancer. We believe that the strategy delineated here provides a path forward to avoid the time- and cost-consuming step of having to develop immunological reagents against unproven targets. We expect that mass spectrometry-based platforms may become part of a rational process to rapidly test and qualify large number of candidate biomarkers to identify the few that stand a chance for further development and validation.
Collapse
Affiliation(s)
- Axel Ducret
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Ian James
- A4P Consulting Ltd, Sandwich, United Kingdom
| | - Sabine Wilson
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Martina Feilke
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | | | | | | | | | - Adele Blackler
- Oncoplex Diagnostics, Rockville, MD, United States of America
| | - Wei-Li Liao
- Oncoplex Diagnostics, Rockville, MD, United States of America
| | - Yuan Tian
- Oncoplex Diagnostics, Rockville, MD, United States of America
| | - Thomas Friess
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Birgit Bossenmaier
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Gabriele Dietmann
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | | | - Todd Hembrough
- Oncoplex Diagnostics, Rockville, MD, United States of America
| | - Maurizio Ceppi
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
23
|
Molecular Design of HER3-Targeting Affibody Molecules: Influence of Chelator and Presence of HEHEHE-Tag on Biodistribution of 68Ga-Labeled Tracers. Int J Mol Sci 2019; 20:ijms20051080. [PMID: 30832342 PMCID: PMC6429182 DOI: 10.3390/ijms20051080] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/13/2019] [Accepted: 02/26/2019] [Indexed: 12/27/2022] Open
Abstract
Affibody-based imaging of HER3 is a promising approach for patient stratification. We investigated the influence of a hydrophilic HEHEHE-tag ((HE)3-tag) and two different gallium-68/chelator-complexes on the biodistribution of Z08698 with the aim to improve the tracer for PET imaging. Affibody molecules (HE)3-Z08698-X and Z08698-X (X = NOTA, NODAGA) were produced and labeled with gallium-68. Binding specificity and cellular processing were studied in HER3-expressing human cancer cell lines BxPC-3 and DU145. Biodistribution was studied 3 h p.i. in Balb/c nu/nu mice bearing BxPC-3 xenografts. Mice were imaged 3 h p.i. using microPET/CT. Conjugates were stably labeled with gallium-68 and bound specifically to HER3 in vitro and in vivo. Association to cells was rapid but internalization was slow. Uptake in tissues, including tumors, was lower for (HE)3-Z08698-X than for non-tagged variants. The neutral [68Ga]Ga-NODAGA complex reduced the hepatic uptake of Z08698 compared to positively charged [68Ga]Ga-NOTA-conjugated variants. The influence of the chelator was more pronounced in variants without (HE)3-tag. In conclusion, hydrophilic (HE)3-tag and neutral charge of the [68Ga]Ga-NODAGA complex promoted blood clearance and lowered hepatic uptake of Z08698. [68Ga]Ga-(HE)3-Z08698-NODAGA was considered most promising, providing the lowest blood and hepatic uptake and the best imaging contrast among the tested variants.
Collapse
|
24
|
Comparison of Antibodies for Immunohistochemistry-based Detection of HER3 in Breast Cancer. Appl Immunohistochem Mol Morphol 2019; 26:212-219. [PMID: 27389555 DOI: 10.1097/pai.0000000000000406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Growth factor receptor HER3 (ErbB3) lacks standardized immunohistochemistry (IHC)-based methods for formalin-fixed paraffin-embedded (FFPE) tissue samples. We compared 4 different anti-HER3 antibodies to explain the differences found in the staining results reported in the literature. MATERIALS AND METHODS Four commercial HER3 antibodies were tested on FFPE samples including mouse monoclonal antibody clones, DAK-H3-IC and RTJ1, rabbit monoclonal antibody clone SP71, and rabbit polyclonal antibody (SAB4500793). Membranous and cytoplasmic staining patterns were analyzed and scored as 0, 1+, or 2+ according to the intensity of the staining and completeness of membranous and cytoplasmic staining. A large collection of HER2-amplified breast cancers (n=177) was stained with the best performing HER3 antibody. The breast cancer cell line, MDA-453, and human prostate tissue were used as positive controls. IHC results were confirmed by analysis of flow cytometry performed on breast cancer cell lines. Staining results of FFPE samples were compared with samples fixed with an epitope-sensitive fixative (PAXgene). RESULTS Clear circumferential cell membrane staining was found only with the HER3 antibody clone DAK-H3-IC. Other antibodies (RTJ1, SP71, and polyclonal) yielded uncertain and nonreproducible staining results. In addition to cell membrane staining, DAK-H3-IC was also localized to the cytoplasm, but no nuclear staining was observed. In HER2-amplified breast cancers, 80% of samples were classified as 1+ or 2+ according to the HER3 staining on the cell membrane. The results from FFPE cell line samples were comparable to those obtained from unfixed cells in flow cytometry. IHC conducted on FFPE samples and on PAXgene-fixed samples showed equivalent results. CONCLUSIONS We conclude that IHC with the monoclonal antibody, DAK-H3-IC, on FFPE samples is a reliable staining method for use in translational research. Assessment of membranous HER3 expression may be clinically relevant in selecting patients who may most benefit from pertuzumab or other novel anti-HER3 therapies.
Collapse
|
25
|
Lamarca A, Galdy S, Barriuso J, Moghadam S, Beckett E, Rogan J, Backen A, Billington C, McNamara MG, Hubner RA, Cramer A, Valle JW. The HER3 pathway as a potential target for inhibition in patients with biliary tract cancers. PLoS One 2018; 13:e0206007. [PMID: 30335866 PMCID: PMC6193702 DOI: 10.1371/journal.pone.0206007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Expression of human epidermal growth factor receptor (HER)2 and HER3 have been investigated in small BTC studies using variable scoring systems. METHODS HER2 and HER3 overexpression/amplification were explored following internationally agreed guidelines using immunohistochemistry (IHC) and fluorescent in-situ hybridisation (FISH), respectively. Logistic regression and survival analysis (Kaplan Meier, Log rank test and Cox Regression) were used for statistical analysis. RESULTS Sixty-seven eligible patients with Stage I/II (31.3%) or III/IV (68.7%) disease at diagnosis were included. Membrane HER2 overexpression/amplification was identified in 1 patient (1%). HER3 overexpression was predominantly cytoplasmic; the rate of overexpression/amplification of HER3 in membrane and cytoplasm was 16% [ampullary cancer (AMP) (1/13; 8%), gallbladder cancer (GBC) (1/10; 10%), intra-hepatic cholangiocarcinoma (ICC) (6/26; 23%), extra-hepatic cholangiocarcinoma (ECC) (3/18; 17%)] and 24% [AMP (1/13; 8%), GBC (1/10; 10%), ICC (10/26; 38%), ECC (4/18; 22%)], respectively. CONCLUSIONS A significant subset of patients with BTC expressed HER3. Inhibition of HER3 warrants further investigation. A better understanding of the downstream effects of HER3 in BTC requires further mechanistic investigations to identify new biomarkers and improve patient selection for future clinical trials.
Collapse
Affiliation(s)
- Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Salvatore Galdy
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
- Unit of Gastrointestinal Medical Oncology and Neuroendocrine Tumours, European Institute of Oncology, Milan, Italy
| | - Jorge Barriuso
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Sharzad Moghadam
- Manchester Cancer Research Centre Biobank, University of Manchester, Manchester, United Kingdom
| | - Elizabeth Beckett
- The Christie Pathology Partnership, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Jane Rogan
- Manchester Cancer Research Centre Biobank, University of Manchester, Manchester, United Kingdom
| | - Alison Backen
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Catherine Billington
- The Christie Pathology Partnership, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Mairéad G. McNamara
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Richard A. Hubner
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Angela Cramer
- The Christie Pathology Partnership, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Juan W. Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
26
|
Orlova A, Bass TZ, Rinne SS, Leitao CD, Rosestedt M, Atterby C, Gudmundsdotter L, Frejd FY, Löfblom J, Tolmachev V, Ståhl S. Evaluation of the Therapeutic Potential of a HER3-Binding Affibody Construct TAM-HER3 in Comparison with a Monoclonal Antibody, Seribantumab. Mol Pharm 2018; 15:3394-3403. [PMID: 29995421 DOI: 10.1021/acs.molpharmaceut.8b00393] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human epidermal growth factor receptor type 3 (HER3) is recognized to be involved in resistance to HER-targeting therapies. A number of HER3-targeting monoclonal antibodies are under clinical investigation as potential cancer therapeutics. Smaller high-affinity scaffold proteins are attractive non-Fc containing alternatives to antibodies. A previous study indicated that anti-HER3 affibody molecules could delay the growth of xenografted HER3-positive tumors. Here, we designed a second-generation HER3-targeting construct (TAM-HER3), containing two HER3-specific affibody molecules bridged by an albumin-binding domain (ABD) for extension of blood circulation. Receptor blocking activity was demonstrated in vitro. In mice bearing BxPC-3 xenografts, the therapeutic efficacy of TAM-HER3 was compared to the HER3-specific monoclonal antibody seribantumab (MM-121). TAM-HER3 inhibited heregulin-induced phosphorylation in a panel of HER3-expressing cancer cells and was found to be equally as potent as seribantumab in terms of therapeutic efficacy in vivo and with a similar safety profile. Median survival times were 60 days for TAM-HER3, 54 days for seribantumab, and 41 days for the control group. No pathological changes were observed in cytopathological examination. The multimeric HER3-binding affibody molecule in fusion to ABD seems promising for further evaluation as candidate therapeutics for treatment of HER3-overexpressing tumors.
Collapse
Affiliation(s)
- Anna Orlova
- Department of Medicinal Chemistry , Uppsala University , Uppsala , Sweden.,Science for Life Laboratory , Uppsala University , Uppsala , Sweden
| | - Tarek Z Bass
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , Stockholm , Sweden
| | - Sara S Rinne
- Department of Medicinal Chemistry , Uppsala University , Uppsala , Sweden
| | - Charles Dahlsson Leitao
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , Stockholm , Sweden
| | - Maria Rosestedt
- Department of Medicinal Chemistry , Uppsala University , Uppsala , Sweden
| | - Christina Atterby
- Department of Immunology, Genetics and Pathology , Uppsala University , Uppsala , Sweden
| | | | - Fredrik Y Frejd
- Department of Immunology, Genetics and Pathology , Uppsala University , Uppsala , Sweden.,Affibody AB , Solna , Sweden
| | - John Löfblom
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , Stockholm , Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology , Uppsala University , Uppsala , Sweden
| | - Stefan Ståhl
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , Stockholm , Sweden
| |
Collapse
|
27
|
Henry KE, Ulaner GA, Lewis JS. Clinical Potential of Human Epidermal Growth Factor Receptor 2 and Human Epidermal Growth Factor Receptor 3 Imaging in Breast Cancer. PET Clin 2018; 13:423-435. [PMID: 30100080 PMCID: PMC6092024 DOI: 10.1016/j.cpet.2018.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Increased expression of the human epidermal growth factor receptor (HER) protein family are targets in breast cancer for imaging and therapy. Imaging modalities targeting HER2 and HER3 can diagnose breast cancer with a specific, biologically relevant target. Repeat biopsies do not address heterogeneity intratumorally or between primary disease and metastasis. HER2- and HER3-targeted PET is an important tool to diagnose disease in breast cancer and evaluate response to targeted therapies. PET and single photon emission computed tomography with radiolabeled biomolecules can be used to detect and quantify specific targets, conferring a better understanding of the behavior and effectiveness of treatments.
Collapse
Affiliation(s)
- Kelly E Henry
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Gary A Ulaner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Department of Radiology, Weill Cornell Medical College, 1275 York Avenue, New York, NY 10065, USA
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Department of Radiology, Weill Cornell Medical College, 1275 York Avenue, New York, NY 10065, USA; Program in Molecular Pharmacology and Chemistry, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Department of Pharmacology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA; Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
28
|
Steenbruggen TG, van Ramshorst MS, Kok M, Linn SC, Smorenburg CH, Sonke GS. Neoadjuvant Therapy for Breast Cancer: Established Concepts and Emerging Strategies. Drugs 2018; 77:1313-1336. [PMID: 28616845 DOI: 10.1007/s40265-017-0774-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the last decade, the systemic treatment approach for patients with early breast cancer has partly shifted from adjuvant treatment to neoadjuvant treatment. Systemic treatment administration started as a 'one size fits all' approach but is currently customized according to each breast cancer subtype. Systemic treatment in a neoadjuvant setting is at least as effective as in an adjuvant setting and has several additional advantages. First, it enables response monitoring and provides prognostic information; second, it downstages the tumor, allowing for less extensive surgery, improved cosmetic outcomes, and reduced postoperative complications such as lymphedema; and third, it enables early development of new treatment strategies by using pathological complete remission as a surrogate outcome of event-free and overall survival. In this review we give an overview of the current standard of neoadjuvant systemic treatment strategies for the three main subtypes of breast cancer: hormone receptor-positive, triple-negative, and human epidermal growth factor receptor 2-positive. Additionally, we summarize drugs that are under investigation for use in the neoadjuvant setting.
Collapse
Affiliation(s)
- Tessa G Steenbruggen
- Department of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Mette S van Ramshorst
- Department of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Marleen Kok
- Department of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Sabine C Linn
- Department of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Carolien H Smorenburg
- Department of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Gabe S Sonke
- Department of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.
| |
Collapse
|
29
|
Martins CD, Da Pieve C, Burley TA, Smith R, Ciobota DM, Allott L, Harrington KJ, Oyen WJG, Smith G, Kramer-Marek G. HER3-Mediated Resistance to Hsp90 Inhibition Detected in Breast Cancer Xenografts by Affibody-Based PET Imaging. Clin Cancer Res 2018; 24:1853-1865. [PMID: 29437790 PMCID: PMC6296444 DOI: 10.1158/1078-0432.ccr-17-2754] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/13/2017] [Accepted: 02/01/2018] [Indexed: 01/08/2023]
Abstract
Purpose: Recent studies have highlighted a role of HER3 in HER2-driven cancers (e.g., breast cancer), implicating the upregulation of the receptor in resistance to HER-targeted therapies and Hsp90 inhibitors (e.g., AUY922). Therefore, we have developed an affibody-based PET radioconjugate that quantitatively assesses HER3 changes induced by Hsp90 inhibition in vivoExperimental Design: ZHER3:8698 affibody molecules were conjugated via the C-terminus cysteine to DFO-maleimide for 89Zr radiolabeling. The probe was characterized in vitro and in vivo in a panel of human breast cell lines and xenograft models with varying HER3 receptor levels. In addition, the radioconjugate was investigated as a tool to monitor the outcome of AUY922, an Hsp90 inhibitor, in an MCF-7 xenograft model.Results: We demonstrated that 89Zr-DFO-ZHER3:8698 can track changes in receptor expression in HER3-positive xenograft models and monitor the outcome of AUY922 treatment. Our in vitro findings showed that MCF-7 cells, which are phenotypically different from BT474, develop resistance to treatment with AUY922 through HER3/IGF-1Rβ-mediated signaling. Of note, the lack of response in vitro due to HER3 recovery was confirmed in vivo using 89Zr-DFO-ZHER3:8698-based imaging. Upon AUY922 treatment, higher radioconjugate uptake was detected in treated MCF-7 xenografts, correlating with an AUY922-induced HER3 upregulation concomitant with an increase in IGF-1Rβ expression.Conclusions: These data underline the potential of HER3-based PET imaging to noninvasively provide information about HER3 expression and to identify patients not responding to targeted therapies due to HER3 recovery. Clin Cancer Res; 24(8); 1853-65. ©2018 AACR.
Collapse
Affiliation(s)
- Carlos D Martins
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Chiara Da Pieve
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Thomas A Burley
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Rhodri Smith
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Daniela M Ciobota
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Louis Allott
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Kevin J Harrington
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Wim J G Oyen
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
- Department of Nuclear Medicine, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Graham Smith
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Gabriela Kramer-Marek
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
30
|
Moradi-Kalbolandi S, Hosseinzade A, Salehi M, Merikhian P, Farahmand L. Monoclonal antibody-based therapeutics, targeting the epidermal growth factor receptor family: from herceptin to Pan HER. J Pharm Pharmacol 2018; 70:841-854. [DOI: 10.1111/jphp.12911] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/25/2018] [Indexed: 12/30/2022]
Abstract
Abstract
Objectives
Monoclonal antibody-based of cancer therapy has been considered as one of the most successful therapeutic strategies for both haematologic malignancies and solid tumours in the last two decades. Epidermal growth factor receptor (EGFR) family signalling pathways play a key role in the regulation of cell proliferation, survival and differentiation. Hence, anti-EGFR family mAbs is one of the most promising approaches in cancer therapy.
Key findings
Here, recent advances in anti-EGFR mAb including approved or successfully tested in preclinical and clinical studies have been reviewed. Although we focus on monoclonal antibodies against the EGF receptor, but the mechanisms underlying the effects of EGFR-specific mAb in cancer therapy, to some extend the resistance to existing anti-EGFR therapies and some therapeutic strategies to overcome resistance such as combination of mAbs on different pathways are briefly discussed as well.
Summary
The EGFR family receptors, is considered as an attractive target for mAb development to inhibit their consecutive activities in tumour growth and resistance. However, due to resistance mechanisms, the combination therapies may become a good candidate for targeting EGFR family receptors.
Collapse
Affiliation(s)
- Shima Moradi-Kalbolandi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Aysooda Hosseinzade
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Malihe Salehi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Parnaz Merikhian
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
31
|
Mancini M, Gal H, Gaborit N, Mazzeo L, Romaniello D, Salame TM, Lindzen M, Mahlknecht G, Enuka Y, Burton DG, Roth L, Noronha A, Marrocco I, Adreka D, Altstadter RE, Bousquet E, Downward J, Maraver A, Krizhanovsky V, Yarden Y. An oligoclonal antibody durably overcomes resistance of lung cancer to third-generation EGFR inhibitors. EMBO Mol Med 2018; 10:294-308. [PMID: 29212784 PMCID: PMC5801506 DOI: 10.15252/emmm.201708076] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 02/05/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) mutations identify patients with lung cancer who derive benefit from kinase inhibitors. However, most patients eventually develop resistance, primarily due to the T790M second-site mutation. Irreversible inhibitors (e.g., osimertinib/AZD9291) inhibit T790M-EGFR, but several mechanisms, including a third-site mutation, C797S, confer renewed resistance. We previously reported that a triple mixture of monoclonal antibodies, 3×mAbs, simultaneously targeting EGFR, HER2, and HER3, inhibits T790M-expressing tumors. We now report that 3×mAbs, including a triplet containing cetuximab and trastuzumab, inhibits C797S-expressing tumors. Unlike osimertinib, which induces apoptosis, 3×mAbs promotes degradation of the three receptors and induces cellular senescence. Consistent with distinct mechanisms, treatments combining 3×mAbs plus sub-inhibitory doses of osimertinib synergistically and persistently eliminated tumors. Thus, oligoclonal antibodies, either alone or in combination with kinase inhibitors, might preempt repeated cycles of treatment and rapid emergence of resistance.
Collapse
Affiliation(s)
- Maicol Mancini
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Hilah Gal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Nadège Gaborit
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Luigi Mazzeo
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Donatella Romaniello
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Tomer Meir Salame
- Department of Biological Services, Weizmann Institute of Science, Rehovot, Israel
| | - Moshit Lindzen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Georg Mahlknecht
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yehoshua Enuka
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Dominick Ga Burton
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lee Roth
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ashish Noronha
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ilaria Marrocco
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Dan Adreka
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | - Emilie Bousquet
- Oncogenic Pathways in Lung Cancer, Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Montpellier Cedex 5, France
| | - Julian Downward
- Signal Transduction Laboratory, Francis Crick Institute, London, UK
- Lung Cancer Group, The Institute of Cancer Research, London, UK
| | - Antonio Maraver
- Oncogenic Pathways in Lung Cancer, Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Montpellier Cedex 5, France
| | - Valery Krizhanovsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
32
|
Eliseev IE, Yudenko AN, Vysochinskaya VV, Svirina AA, Evstratyeva AV, Drozhzhachih MS, Krendeleva EA, Vladimirova AK, Nemankin TA, Ekimova VM, Ulitin AB, Lomovskaya MI, Yakovlev PA, Bukatin AS, Knyazev NA, Moiseenko FV, Chakchir OB. Crystal structures of a llama VHH antibody BCD090-M2 targeting human ErbB3 receptor. F1000Res 2018; 7:57. [PMID: 30430004 PMCID: PMC6097396 DOI: 10.12688/f1000research.13612.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2018] [Indexed: 01/26/2023] Open
Abstract
Background: The ability of ErbB3 receptor to functionally complement ErbB1-2 and induce tumor resistance to their inhibitors makes it a unique target in cancer therapy by monoclonal antibodies. Here we report the expression, purification and structural analysis of a new anti-ErbB3 single-chain antibody. Methods: The VHH fragment of the antibody was expressed in E. coli SHuffle cells as a SUMO fusion, cleaved by TEV protease and purified to homogeneity. Binding to the extracellular domain of ErbB3 was studied by surface plasmon resonance. For structural studies, the antibody was crystallized by hanging-drop vapor diffusion in two different forms. Results: We developed a robust and efficient system for recombinant expression of single-domain antibodies. The purified antibody was functional and bound ErbB3 with K D =15±1 nM. The crystal structures of the VHH antibody in space groups C2 and P1 were solved by molecular replacement at 1.6 and 1.9 Å resolution. The high-quality electron density maps allowed us to build precise atomic models of the antibody and the putative paratope. Surprisingly, the CDR H2 existed in multiple distant conformations in different crystal forms, while the more complex CDR H3 had a low structural variability. The structures were deposited under PDB entry codes 6EZW and 6F0D. Conclusions: Our results may facilitate further mechanistic studies of ErbB3 inhibition by single-chain antibodies. Besides, the solved structures will contribute to datasets required to develop new computational methods for antibody modeling and design.
Collapse
Affiliation(s)
- Igor E. Eliseev
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| | - Anna N. Yudenko
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| | - Vera V. Vysochinskaya
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| | - Anna A. Svirina
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| | | | | | | | | | | | | | | | | | | | - Anton S. Bukatin
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| | - Nickolay A. Knyazev
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| | - Fedor V. Moiseenko
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| | - Oleg B. Chakchir
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| |
Collapse
|
33
|
Eliseev IE, Yudenko AN, Vysochinskaya VV, Svirina AA, Evstratyeva AV, Drozhzhachih MS, Krendeleva EA, Vladimirova AK, Nemankin TA, Ekimova VM, Ulitin AB, Lomovskaya MI, Yakovlev PA, Bukatin AS, Knyazev NA, Moiseenko FV, Chakchir OB. Crystal structures of a llama VHH antibody BCD090-M2 targeting human ErbB3 receptor. F1000Res 2018; 7:57. [PMID: 30430004 PMCID: PMC6097396 DOI: 10.12688/f1000research.13612.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/10/2018] [Indexed: 12/31/2022] Open
Abstract
Background: The ability of ErbB3 receptor to functionally complement ErbB1-2 and induce tumor resistance to their inhibitors makes it a unique target in cancer therapy by monoclonal antibodies. Here we report the expression, purification and structural analysis of a new anti-ErbB3 single-chain antibody. Methods: The VHH fragment of the antibody was expressed in E. coli SHuffle cells as a SUMO fusion, cleaved by TEV protease and purified to homogeneity. Binding to the extracellular domain of ErbB3 was studied by surface plasmon resonance. For structural studies, the antibody was crystallized by hanging-drop vapor diffusion in two different forms. Results: We developed a robust and efficient system for recombinant expression of single-domain antibodies. The purified antibody was functional and bound ErbB3 with K D = 1 μM. The crystal structures of the VHH antibody in space groups C2 and P1 were solved by molecular replacement at 1.6 and 1.9 Å resolution. The high-quality electron density maps allowed us to build precise atomic models of the antibody and the putative paratope. Surprisingly, the CDR H2 existed in multiple distant conformations in different crystal forms, while the more complex CDR H3 had a low structural variability. The structures were deposited under PDB entry codes 6EZW and 6F0D. Conclusions: Our results may facilitate further mechanistic studies of ErbB3 inhibition by single-chain antibodies. Besides, the solved structures will contribute to datasets required to develop new computational methods for antibody modeling and design.
Collapse
Affiliation(s)
- Igor E. Eliseev
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| | - Anna N. Yudenko
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| | - Vera V. Vysochinskaya
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| | - Anna A. Svirina
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| | | | | | | | | | | | | | | | | | | | - Anton S. Bukatin
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| | - Nickolay A. Knyazev
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| | - Fedor V. Moiseenko
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| | - Oleg B. Chakchir
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| |
Collapse
|
34
|
Yu S, Liu Q, Han X, Qin S, Zhao W, Li A, Wu K. Development and clinical application of anti-HER2 monoclonal and bispecific antibodies for cancer treatment. Exp Hematol Oncol 2017; 6:31. [PMID: 29209558 PMCID: PMC5704598 DOI: 10.1186/s40164-017-0091-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/20/2017] [Indexed: 12/15/2022] Open
Abstract
HER2-targeted immunotherapy consists of monoclonal antibodies (e.g. trastuzumab, pertuzumab), bispecific antibodies (e.g. MM-111, ertumaxomab) and activated T cells armed with anti-HER2 bispecific antibody (HER2Bi-aATC). Trastuzumab is a classic drug for the treatment of HER2 positive metastatic breast cancer. The combined application of pertuzumab, trastuzumab and paclitaxel has been suggested as a standard therapy for HER2 positive advanced breast cancer. The resistance to anti-HER2 antibody has resulted in disease progression. HER2-directed bispecific antibody may be a promising therapeutic approach for these patients. Ertumaxomab enhanced the interaction of immune effector cells and tumor cells. MM-111 simultaneously binds to HER2 and HER3 and blocks downstream signaling. Besides, HER2Bi-aATC is also an alternative therapeutic approach for HER2 positive cancers. In this review, we summarized the recent advancement of HER2-targeted monoclonal antibodies (trastuzumab, pertuzumab and T-DM1) and bispecific antibodies (MM-111, ertumaxomab and HER2Bi-aATC), especially focus on clinical trial results.
Collapse
Affiliation(s)
- Shengnan Yu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 China
| | - Qian Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 China
| | - Xinwei Han
- Department of Interventional Radiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Shuang Qin
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 China
| | - Weiheng Zhao
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 China
| | - Anping Li
- Department of Interventional Radiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 China
| |
Collapse
|
35
|
Rosestedt M, Andersson KG, Mitran B, Rinne SS, Tolmachev V, Löfblom J, Orlova A, Ståhl S. Evaluation of a radiocobalt-labelled affibody molecule for imaging of human epidermal growth factor receptor 3 expression. Int J Oncol 2017; 51:1765-1774. [PMID: 29039474 DOI: 10.3892/ijo.2017.4152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/25/2017] [Indexed: 11/06/2022] Open
Abstract
The human epidermal growth factor receptor 3 (HER3) is involved in the development of cancer resistance towards tyrosine kinase-targeted therapies. Several HER3‑targeting therapeutics are currently under clinical evaluation. Non-invasive imaging of HER3 expression could improve patient management. Affibody molecules are small engineered scaffold proteins demonstrating superior properties as targeting probes for molecular imaging compared with monoclonal antibodies. Feasibility of in vivo HER3 imaging using affibody molecules has been previously demonstrated. Preclinical studies have shown that the contrast when imaging using anti-HER3 affibody molecules can be improved over time. We aim to develop an agent for PET imaging of HER3 expression using the long-lived positron-emitting radionuclide cobalt-55 (55Co) (T1/2=17.5 h). A long-lived cobalt isotope 57Co was used as a surrogate for 55Co in this study. The anti-HER3 affibody molecule HEHEHE-ZHER3-NOTA was labelled with radiocobalt with high yield, purity and stability. Biodistribution of 57Co-HEHEHE-ZHER3-NOTA was measured in mice bearing DU145 (prostate carcinoma) and LS174T (colorectal carcinoma) xenografts at 3 and 24 h post injection (p.i.). Tumour-to-blood ratios significantly increased between 3 and 24 h p.i. (p<0.05). At 24 h p.i., tumour-to-blood ratios were 6 for DU145 and 8 for LS174T xenografts, respectively. HER3‑expressing xenografts were clearly visualized in a preclinical imaging setting already 3 h p.i., and contrast further improved at 24 h p.i. In conclusion, the radiocobalt-labelled anti-HER3 affibody molecule, HEHEHE-ZHER3-NOTA, is a promising tracer for imaging of HER3 expression in tumours.
Collapse
Affiliation(s)
- Maria Rosestedt
- Division of Molecular Imaging, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
| | - Ken G Andersson
- Division of Protein Technology, KTH - Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Bogdan Mitran
- Division of Molecular Imaging, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
| | - Sara S Rinne
- Division of Molecular Imaging, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 83 Uppsala, Sweden
| | - John Löfblom
- Division of Protein Technology, KTH - Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Anna Orlova
- Division of Molecular Imaging, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
| | - Stefan Ståhl
- Division of Protein Technology, KTH - Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
36
|
Capone E, Giansanti F, Ponziani S, Lamolinara A, Iezzi M, Cimini A, Angelucci F, Sorda RL, Laurenzi VD, Natali PG, Ippoliti R, Iacobelli S, Sala G. EV20-Sap, a novel anti-HER-3 antibody-drug conjugate, displays promising antitumor activity in melanoma. Oncotarget 2017; 8:95412-95424. [PMID: 29221137 PMCID: PMC5707031 DOI: 10.18632/oncotarget.20728] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023] Open
Abstract
Melanoma is the most biologically aggressive skin cancer of well established constitutive and induced resistance to pharmacological treatment. Despite the recent progresses in immunotherapies, many advanced metastatic melanoma patients still face a significant mortality risk. The aggressive nature of this disease sustains an urgent need for more successful, effective drugs. HER-3 - one of the four member of the tyrosin kinase epidermal growth factor receptors (EGFRs) family- is frequently overexpressed in solid tumors, including melanoma. Moreover, up-regulation of HER-3 and its ligand NRGβ-1 are associated with poor prognosis, thus suggesting this receptor as a suitable target for cancer therapy. Several monoclonal antibodies targeting HER-3 are currently available, but preliminary results from clinical testing of these agents reveal a modest efficacy. Thus, a substantial improvement over this immunotherapeutic approach could be offered by an anti-HER-3 based Antibody-Drug Conjugate (ADC). In the present paper, we describe the generation of an ADC obtained by coupling the HER-3 targeting antibody EV20 linked to the plant toxin Saporin (Sap). In vitro, this ADC displays a powerful, specific and target-dependent cytotoxic activity which correlates with the degree of expression and internalization of HER-3 on tumor cells. Furthermore, in a murine melanoma model, EV20-Sap treatment leads to a significant reduction of the number of pulmonary metastasis.
Collapse
Affiliation(s)
- Emily Capone
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Francesco Giansanti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito (AQ) Italy
| | - Sara Ponziani
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito (AQ) Italy.,MediaPharma s.r.l., Via della Colonnetta, Chieti, Italy
| | - Alessia Lamolinara
- Department of Medicine and Aging Science, Center of Excellence on Aging and Translational Medicine (CeSi-Met), G. D'Annunzio University, Chieti-Pescara, Italy
| | - Manuela Iezzi
- Department of Medicine and Aging Science, Center of Excellence on Aging and Translational Medicine (CeSi-Met), G. D'Annunzio University, Chieti-Pescara, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito (AQ) Italy.,Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology Temple University, Philadelphia, USA.,National Institute for Nuclear Physics (INFN), Gran Sasso National Laboratory (LNGS), Assergi, Italy
| | - Francesco Angelucci
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito (AQ) Italy
| | | | - Vincenzo De Laurenzi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | | | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito (AQ) Italy
| | - Stefano Iacobelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy.,MediaPharma s.r.l., Via della Colonnetta, Chieti, Italy
| | - Gianluca Sala
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy.,MediaPharma s.r.l., Via della Colonnetta, Chieti, Italy
| |
Collapse
|
37
|
Pool M, Kol A, de Jong S, de Vries EGE, Lub-de Hooge MN, Terwisscha van Scheltinga AGT. 89Zr-mAb3481 PET for HER3 tumor status assessment during lapatinib treatment. MAbs 2017; 9:1370-1378. [PMID: 28873009 PMCID: PMC5680796 DOI: 10.1080/19420862.2017.1371382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Treatment of human epidermal growth factor receptor 2 (HER2)-driven breast cancer with tyrosine kinase inhibitor lapatinib can induce a compensatory HER3 increase, which may attenuate antitumor efficacy. Therefore, we explored in vivo HER3 tumor status assessment after lapatinib treatment with zirconium-89 (89Zr)-labeled anti-HER3 antibody mAb3481 positron emission tomography (PET). Lapatinib effects on HER3 cell surface expression and mAb3481 internalization were evaluated in human breast (BT474, SKBR3) and gastric (N87) cancer cell lines using flow cytometry. Next, in vivo effects of daily lapatinib treatment on89Zr-mAb3481 BT474 and N87 xenograft tumor uptake were studied. PET-scans (BT474 only) were made after daily lapatinib treatment for 9 days, starting 3 days prior to 89Zr-mAb3481 administration. Subsequently, ex vivo 89Zr-mAb3481 organ distribution analysis was performed and HER3 tumor levels were measured with Western blot and immunohistochemistry. In vitro, lapatinib increased membranous HER3 in BT474, SKBR3 and N87 cells, and consequently mAb3481 internalization 1.7-fold (BT474), 1.4-fold (SKBR3) and 1.4-fold (N87). 89Zr-mAb3481 BT474 tumor uptake was remarkably high at SUVmean 5.6±0.6 (51.8±7.7%ID/g) using a 10 μg 89Zr-mAb3481 protein dose in vehicle-treated mice. However, compared to vehicle, lapatinib did not affect 89Zr-mAb3481 ex vivo uptake in BT474 and N87 tumors, while HER3 tumor expression remained unchanged. In conclusion, lapatinib increased in vitro HER3 tumor cell expression, but not when these cells were xenografted. 89Zr-mAb3481 PET accurately reflected HER3 tumor status. 89Zr-mAb3481 PET showed high, HER3-specific tumor uptake, and such an approach might sensitively assess HER3 tumor heterogeneity and treatment response in patients.
Collapse
Affiliation(s)
- Martin Pool
- a Departments of Medical Oncology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Arjan Kol
- a Departments of Medical Oncology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Steven de Jong
- a Departments of Medical Oncology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Elisabeth G E de Vries
- a Departments of Medical Oncology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Marjolijn N Lub-de Hooge
- b Departments of Clinical Pharmacy and Pharmacology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands.,c Departments of Nuclear Medicine and Molecular Imaging , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Anton G T Terwisscha van Scheltinga
- b Departments of Clinical Pharmacy and Pharmacology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| |
Collapse
|
38
|
Bensch F, Lamberts LE, Smeenk MM, Jorritsma-Smit A, Lub-de Hooge MN, Terwisscha van Scheltinga AGT, de Jong JR, Gietema JA, Schröder CP, Thomas M, Jacob W, Abiraj K, Adessi C, Meneses-Lorente G, James I, Weisser M, Brouwers AH, de Vries EGE. 89Zr-Lumretuzumab PET Imaging before and during HER3 Antibody Lumretuzumab Treatment in Patients with Solid Tumors. Clin Cancer Res 2017; 23:6128-6137. [PMID: 28733442 DOI: 10.1158/1078-0432.ccr-17-0311] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/30/2017] [Accepted: 07/18/2017] [Indexed: 01/24/2023]
Abstract
Purpose: We evaluated biodistribution and tumor targeting of 89Zr-lumretuzumab before and during treatment with lumretuzumab, a human epidermal growth factor receptor 3 (HER3)-targeting monoclonal antibody.Experimental Design: Twenty patients with histologically confirmed HER3-expressing tumors received 89Zr-lumretuzumab and underwent positron emission tomography (PET). In part A, 89Zr-lumretuzumab was given with additional, escalating doses of unlabeled lumretuzumab, and scans were performed 2, 4, and 7 days after injection to determine optimal imaging conditions. In part B, patients were scanned following tracer injection before (baseline) and after a pharmacodynamic (PD)-active lumretuzumab dose for saturation analysis. HER3 expression was determined immunohistochemically in skin biopsies. Tracer uptake was calculated as standardized uptake value (SUV).Results: Optimal PET conditions were found to be 4 and 7 days after administration of 89Zr-lumretuzumab with 100-mg unlabeled lumretuzumab. At baseline using 100-mg unlabeled lumretuzumab, the tumor SUVmax was 3.4 (±1.9) at 4 days after injection. SUVmean values for normal blood, liver, lung, and brain tissues were 4.9, 6.4, 0.9 and 0.2, respectively. Saturation analysis (n = 7) showed that 4 days after lumretuzumab administration, tumor uptake decreased by 11.9% (±8.2), 10.0% (±16.5), and 24.6% (±20.9) at PD-active doses of 400, 800, and 1,600 mg, respectively, when compared with baseline. Membranous HER3 was completely downregulated in paired skin biopsies already at and above 400-mg lumretuzumab.Conclusions: PET imaging showed biodistribution and tumor-specific 89Zr-lumretuzumab uptake. Although, PD-active lumretuzumab doses decreased 89Zr-lumretuzumab uptake, there was no clear evidence of tumor saturation by PET imaging as the tumor SUV did not plateau with increasing doses. Clin Cancer Res; 23(20); 6128-37. ©2017 AACR.
Collapse
Affiliation(s)
- Frederike Bensch
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Laetitia E Lamberts
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Michaël M Smeenk
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Annelies Jorritsma-Smit
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, the Netherlands.,Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, the Netherlands
| | | | - Johan R de Jong
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Jourik A Gietema
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Carolien P Schröder
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Marlene Thomas
- Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Wolfgang Jacob
- Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Keelara Abiraj
- Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Celine Adessi
- Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | | | - Ian James
- A4P Consulting Ltd, Sandwich, United Kingdom
| | - Martin Weisser
- Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adrienne H Brouwers
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, the Netherlands.
| |
Collapse
|
39
|
Hayes DA, Kunde DA, Taylor RL, Pyecroft SB, Sohal SS, Snow ET. ERBB3: A potential serum biomarker for early detection and therapeutic target for devil facial tumour 1 (DFT1). PLoS One 2017; 12:e0177919. [PMID: 28591206 PMCID: PMC5462353 DOI: 10.1371/journal.pone.0177919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/05/2017] [Indexed: 12/13/2022] Open
Abstract
Devil Facial Tumour 1 (DFT1) is one of two transmissible neoplasms of Tasmanian devils (Sarcophilus harrisii) predominantly affecting their facial regions. DFT1's cellular origin is that of Schwann cell lineage where lesions are evident macroscopically late in the disease. Conversely, the pre-clinical timeframe from cellular transmission to appearance of DFT1 remains uncertain demonstrating the importance of an effective pre-clinical biomarker. We show that ERBB3, a marker expressed normally by the developing neural crest and Schwann cells, is immunohistohemically expressed by DFT1, therefore the potential of ERBB3 as a biomarker was explored. Under the hypothesis that serum ERBB3 levels may increase as DFT1 invades local and distant tissues our pilot study determined serum ERBB3 levels in normal Tasmanian devils and Tasmanian devils with DFT1. Compared to the baseline serum ERBB3 levels in unaffected Tasmanian devils, Tasmanian devils with DFT1 showed significant elevation of serum ERBB3 levels. Interestingly Tasmanian devils with cutaneous lymphoma (CL) also showed elevation of serum ERBB3 levels when compared to the baseline serum levels of Tasmanian devils without DFT1. Thus, elevated serum ERBB3 levels in otherwise healthy looking devils could predict possible DFT1 or CL in captive or wild devil populations and would have implications on the management, welfare and survival of Tasmanian devils. ERBB3 is also a therapeutic target and therefore the potential exists to consider modes of administration that may eradicate DFT1 from the wild.
Collapse
Affiliation(s)
- Dane A. Hayes
- Department of Primary Industries, Parks Water and Environment, Animal Health Laboratory, Launceston, Tasmania, Australia
- Save the Tasmanian Devil Program, University of Tasmania, Hobart, Tasmania, Australia
- School of Health Sciences, Faculty of Health, University of Tasmania, Launceston, Tasmania, Australia
| | - Dale A. Kunde
- School of Health Sciences, Faculty of Health, University of Tasmania, Launceston, Tasmania, Australia
| | - Robyn L. Taylor
- Save the Tasmanian Devil Program, University of Tasmania, Hobart, Tasmania, Australia
- Department of Primary Industries, Parks Water and Environment, Resource Management and Conservation, Hobart, Tasmania, Australia
| | - Stephen B. Pyecroft
- School of Animal & Veterinary Sciences, Faculty of Science, University of Adelaide, Roseworthy Campus, Roseworthy, South Australia
| | - Sukhwinder Singh Sohal
- School of Health Sciences, Faculty of Health, University of Tasmania, Launceston, Tasmania, Australia
| | - Elizabeth T. Snow
- School of Health Sciences, Faculty of Health, University of Tasmania, Launceston, Tasmania, Australia
| |
Collapse
|
40
|
Pool M, de Boer HR, Hooge MNLD, van Vugt MA, de Vries EG. Harnessing Integrative Omics to Facilitate Molecular Imaging of the Human Epidermal Growth Factor Receptor Family for Precision Medicine. Theranostics 2017; 7:2111-2133. [PMID: 28638489 PMCID: PMC5479290 DOI: 10.7150/thno.17934] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 03/02/2017] [Indexed: 12/13/2022] Open
Abstract
Cancer is a growing problem worldwide. The cause of death in cancer patients is often due to treatment-resistant metastatic disease. Many molecularly targeted anticancer drugs have been developed against 'oncogenic driver' pathways. However, these treatments are usually only effective in properly selected patients. Resistance to molecularly targeted drugs through selective pressure on acquired mutations or molecular rewiring can hinder their effectiveness. This review summarizes how molecular imaging techniques can potentially facilitate the optimal implementation of targeted agents. Using the human epidermal growth factor receptor (HER) family as a model in (pre)clinical studies, we illustrate how molecular imaging may be employed to characterize whole body target expression as well as monitor drug effectiveness and the emergence of tumor resistance. We further discuss how an integrative omics discovery platform could guide the selection of 'effect sensors' - new molecular imaging targets - which are dynamic markers that indicate treatment effectiveness or resistance.
Collapse
Affiliation(s)
- Martin Pool
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - H. Rudolf de Boer
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marjolijn N. Lub-de Hooge
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marcel A.T.M. van Vugt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elisabeth G.E. de Vries
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
41
|
Skegro D, Stutz C, Ollier R, Svensson E, Wassmann P, Bourquin F, Monney T, Gn S, Blein S. Immunoglobulin domain interface exchange as a platform technology for the generation of Fc heterodimers and bispecific antibodies. J Biol Chem 2017; 292:9745-9759. [PMID: 28450393 PMCID: PMC5465497 DOI: 10.1074/jbc.m117.782433] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/21/2017] [Indexed: 12/03/2022] Open
Abstract
Bispecific antibodies (bsAbs) are of significant importance to the development of novel antibody-based therapies, and heavy chain (Hc) heterodimers represent a major class of bispecific drug candidates. Current technologies for the generation of Hc heterodimers are suboptimal and often suffer from contamination by homodimers posing purification challenges. Here, we introduce a new technology based on biomimicry wherein the protein-protein interfaces of two different immunoglobulin (Ig) constant domain pairs are exchanged in part or fully to design new heterodimeric domains. The method can be applied across Igs to design Fc heterodimers and bsAbs. We investigated interfaces from human IgA CH3, IgD CH3, IgG1 CH3, IgM CH4, T-cell receptor (TCR) α/β, and TCR γ/δ constant domain pairs, and we found that they successfully drive human IgG1 CH3 or IgM CH4 heterodimerization to levels similar to or above those of reference methods. A comprehensive interface exchange between the TCR α/β constant domain pair and the IgG1 CH3 homodimer was evidenced by X-ray crystallography and used to engineer examples of bsAbs for cancer therapy. Parental antibody pairs were rapidly reformatted into scalable bsAbs that were free of homodimer traces by combining interface exchange, asymmetric Protein A binding, and the scFv × Fab format. In summary, we successfully built several new CH3- or CH4-based heterodimers that may prove useful for designing new bsAb-based therapeutics, and we anticipate that our approach could be broadly implemented across the Ig constant domain family. To our knowledge, CH4-based heterodimers have not been previously reported.
Collapse
Affiliation(s)
- Darko Skegro
- From the Department of Antibody Engineering, Biologics Research, Glenmark Pharmaceuticals S.A., Chemin de la Combeta 5, 2300 La Chaux-de-Fonds, Switzerland and
| | - Cian Stutz
- From the Department of Antibody Engineering, Biologics Research, Glenmark Pharmaceuticals S.A., Chemin de la Combeta 5, 2300 La Chaux-de-Fonds, Switzerland and
| | - Romain Ollier
- From the Department of Antibody Engineering, Biologics Research, Glenmark Pharmaceuticals S.A., Chemin de la Combeta 5, 2300 La Chaux-de-Fonds, Switzerland and
| | - Emelie Svensson
- From the Department of Antibody Engineering, Biologics Research, Glenmark Pharmaceuticals S.A., Chemin de la Combeta 5, 2300 La Chaux-de-Fonds, Switzerland and
| | - Paul Wassmann
- From the Department of Antibody Engineering, Biologics Research, Glenmark Pharmaceuticals S.A., Chemin de la Combeta 5, 2300 La Chaux-de-Fonds, Switzerland and
| | - Florence Bourquin
- From the Department of Antibody Engineering, Biologics Research, Glenmark Pharmaceuticals S.A., Chemin de la Combeta 5, 2300 La Chaux-de-Fonds, Switzerland and
| | - Thierry Monney
- From the Department of Antibody Engineering, Biologics Research, Glenmark Pharmaceuticals S.A., Chemin de la Combeta 5, 2300 La Chaux-de-Fonds, Switzerland and
| | - Sunitha Gn
- the Department of Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Centre, Plot No. A-607, T.T.C. Industrial Area, MIDC, Mahape, Navi Mumbai 400 709, India
| | - Stanislas Blein
- From the Department of Antibody Engineering, Biologics Research, Glenmark Pharmaceuticals S.A., Chemin de la Combeta 5, 2300 La Chaux-de-Fonds, Switzerland and
| |
Collapse
|
42
|
Schmitt LC, Rau A, Seifert O, Honer J, Hutt M, Schmid S, Zantow J, Hust M, Dübel S, Olayioye MA, Kontermann RE. Inhibition of HER3 activation and tumor growth with a human antibody binding to a conserved epitope formed by domain III and IV. MAbs 2017; 9:831-843. [PMID: 28421882 DOI: 10.1080/19420862.2017.1319023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human epidermal growth factor receptor 3 (HER3, also known as ErbB3) has emerged as relevant target for antibody-mediated tumor therapy. Here, we describe a novel human antibody, IgG 3-43, recognizing a unique epitope formed by domain III and parts of domain IV of the extracellular region of HER3, conserved between HER3 and mouse ErbB3. An affinity of 11 nM was determined for the monovalent interaction. In the IgG format, the antibody bound recombinant bivalent HER3 with subnanomolar affinity (KD = 220 pM) and HER3-expressing tumor cells with EC50 values in the low picomolar range (27 - 83 pM). The antibody competed with binding of heregulin to HER3-expressing cells, efficiently inhibited phosphorylation of HER3 as well as downstream signaling, and induced receptor internalization and degradation. Furthermore, IgG 3-43 inhibited heregulin-dependent proliferation of several HER3-positive cancer cell lines and heregulin-independent colony formation of HER2-overexpressing tumor cell lines. Importantly, inhibition of tumor growth and prolonged survival was demonstrated in a FaDu xenograft tumor model in SCID mice. These findings demonstrate that by binding to the membrane-proximal domains III and IV involved in ligand binding and receptor dimerization, IgG 3-43 efficiently inhibits activation of HER3, thereby blocking tumor cell growth both in vitro and in vivo.
Collapse
Affiliation(s)
- Lisa C Schmitt
- a Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany
| | - Alexander Rau
- a Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany
| | - Oliver Seifert
- a Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany
| | - Jonas Honer
- a Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany
| | - Meike Hutt
- a Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany
| | - Simone Schmid
- a Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany
| | - Jonas Zantow
- b Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig , Braunschweig , Germany
| | - Michael Hust
- b Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig , Braunschweig , Germany
| | - Stefan Dübel
- b Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig , Braunschweig , Germany
| | - Monilola A Olayioye
- a Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany.,c Stuttgart Research Center Systems Biology, University of Stuttgart , Stuttgart , Germany
| | - Roland E Kontermann
- a Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany.,c Stuttgart Research Center Systems Biology, University of Stuttgart , Stuttgart , Germany
| |
Collapse
|
43
|
Osada T, Morse MA, Hobeika A, Diniz MA, Gwin WR, Hartman Z, Wei J, Guo H, Yang XY, Liu CX, Kaneko K, Broadwater G, Lyerly HK. Vaccination targeting human HER3 alters the phenotype of infiltrating T cells and responses to immune checkpoint inhibition. Oncoimmunology 2017; 6:e1315495. [PMID: 28680745 DOI: 10.1080/2162402x.2017.1315495] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 02/07/2023] Open
Abstract
Expression of human epidermal growth factor family member 3 (HER3), a critical heterodimerization partner with EGFR and HER2, promotes more aggressive biology in breast and other epithelial malignancies. As such, inhibiting HER3 could have broad applicability to the treatment of EGFR- and HER2-driven tumors. Although lack of a functional kinase domain limits the use of receptor tyrosine kinase inhibitors, HER3 contains antigenic targets for T cells and antibodies. Using novel human HER3 transgenic mouse models of breast cancer, we demonstrate that immunization with recombinant adenoviral vectors encoding full length human HER3 (Ad-HER3-FL) induces HER3-specific T cells and antibodies, alters the T cell infiltrate in tumors, and influences responses to immune checkpoint inhibitions. Both preventative and therapeutic Ad-HER3-FL immunization delayed tumor growth but were associated with both intratumoral PD-1 expressing CD8+ T cells and regulatory CD4+ T cell infiltrates. Immune checkpoint inhibition with either anti-PD-1 or anti-PD-L1 antibodies increased intratumoral CD8+ T cell infiltration and eliminated tumor following preventive vaccination with Ad-HER3-FL vaccine. The combination of dual PD-1/PD-L1 and CTLA4 blockade slowed the growth of tumor in response to Ad-HER3-FL in the therapeutic model. We conclude that HER3-targeting vaccines activate HER3-specific T cells and induce anti-HER3 specific antibodies, which alters the intratumoral T cell infiltrate and responses to immune checkpoint inhibition.
Collapse
Affiliation(s)
- Takuya Osada
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Michael A Morse
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Amy Hobeika
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Marcio A Diniz
- Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - William R Gwin
- Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, Seattle, WA, USA
| | - Zachary Hartman
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Junping Wei
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Hongtao Guo
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Xiao-Yi Yang
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Cong-Xiao Liu
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Kensuke Kaneko
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Gloria Broadwater
- Duke University, Division of Biostatistics Duke Cancer Institute, Durham, NC, USA
| | - H Kim Lyerly
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
44
|
Warnders FJ, Terwisscha van Scheltinga AGT, Knuehl C, van Roy M, de Vries EFJ, Kosterink JGW, de Vries EGE, Lub-de Hooge MN. Human Epidermal Growth Factor Receptor 3-Specific Tumor Uptake and Biodistribution of 89Zr-MSB0010853 Visualized by Real-Time and Noninvasive PET Imaging. J Nucl Med 2017; 58:1210-1215. [PMID: 28360206 DOI: 10.2967/jnumed.116.181586] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/08/2017] [Indexed: 12/15/2022] Open
Abstract
The human epidermal growth factor receptor 3 (HER3) is an interesting target for antitumor therapy. For optimal HER3 signaling inhibition, a biparatopic Nanobody construct (MSB0010853) was developed that binds 2 different HER3 epitopes. In addition, MSB0010853 contains a third HER3 epitope that binds albumin to extend its circulation time. MSB0010853 is cross-reactive with HER3 and albumin of mouse origin. We aimed to gain insight into MSB0010853 biodistribution and tumor uptake by radiolabeling the Nanobody construct with 89Zr. Methods: MSB0010853 was radiolabeled with 89Zr. Dose- and time-dependent tumor uptake was studied in nude BALB/c mice bearing a subcutaneous HER3 overexpressing H441 non-small cell lung cancer xenograft. Dose-dependent biodistribution of 89Zr-MSB0010853 was assessed ex vivo at 24 h after intravenous injection. Protein doses of 5, 10, 25, 100, and 1,000 μg were used. Time-dependent biodistribution of MSB0010853 was analyzed ex vivo at 3, 6, 24, and 96 h after intravenous administration of 25 μg of 89Zr-MSB0010853. PET imaging and biodistribution were performed 24 h after administration of 25 μg of 89Zr-MSB0010853 to mice bearing human H441, FaDu (high HER3 expression), or Calu-1 (no HER3 expression) tumor xenografts. Results: Radiolabeling of MSB0010853 with 89Zr was performed with a radiochemical purity of greater than 95%. Ex vivo biodistribution showed protein dose- and time-dependent distribution of 89Zr-MSB0010853 in all organs. Uptake of 89Zr-MSB0010853 in H441 tumors was only time-dependent. Tumor could be visualized up to at least 96 h after injection. The highest mean SUV of 0.6 ± 0.2 was observed at 24 h after injection of 25 μg of 89Zr-MSB0010853. 89Zr-MSB0010853 tumor uptake correlated with HER3 expression and was highest in H441 (6.2 ± 1.1 percentage injected dose per gram [%ID/g]) and lowest in Calu-1 (2.3 ± 0.3 %ID/g) xenografts. Conclusion:89Zr-MSB0010853 organ distribution and tumor uptake in mice are time-dependent, and tumor uptake correlates with HER3 expression. In contrast to tumor uptake except for kidney uptake, organ distribution of 89Zr-MSB0010853 is protein dose-dependent for the tested doses. 89Zr-MSB0010853 PET imaging gives insight into the in vivo behavior of MSB0010853.
Collapse
Affiliation(s)
- Frank J Warnders
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jos G W Kosterink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, The Netherlands.,Unit PharmacoTherapy, Epidemiology and Economy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands; and
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands .,Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
45
|
Natural Products as Chemopreventive Agents by Potential Inhibition of the Kinase Domain in ErbB Receptors. Molecules 2017; 22:molecules22020308. [PMID: 28218686 PMCID: PMC6155853 DOI: 10.3390/molecules22020308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/04/2017] [Accepted: 02/06/2017] [Indexed: 01/24/2023] Open
Abstract
Small molecules found in natural products provide therapeutic benefits due to their pharmacological or biological activity, which may increase or decrease the expression of human epidermal growth factor receptor (HER), a promising target in the modification of signaling cascades involved in excessive cellular growth. In this study, in silico molecular protein-ligand docking protocols were performed with AutoDock Vina in order to evaluate the interaction of 800 natural compounds (NPs) from the NatProd Collection (http://www.msdiscovery.com/natprod.html), with four human HER family members: HER1 (PDB: 2ITW), HER2 (PDB: 3PP0), HER3 (PDB: 3LMG) and HER4 (PDB: 2R4B). The best binding affinity values (kcal/mol) for docking pairs were obtained for HER1-podototarin (−10.7), HER2-hecogenin acetate (−11.2), HER3-hesperidin (−11.5) and HER4-theaflavin (−10.7). The reliability of the theoretical calculations was evaluated employing published data on HER inhibition correlated with in silico binding calculations. IC50 values followed a significant linear relationship with the theoretical binding Affinity data for HER1 (R = 0.656, p < 0.0001) and HER2 (R = 0.543, p < 0.0001), but not for HER4 (R = 0.364, p > 0.05). In short, this methodology allowed the identification of several NPs as HER inhibitors, being useful in the discovery and design of more potent and selective anticancer drugs.
Collapse
|
46
|
LATTANZIO ROSSANO, VESCHI SERENA, ACETO GITANAMARIA, CURIA MARIACRISTINA, CAMA ALESSANDRO, DE LELLIS LAURA, FANTINI FABIANA, ANGELUCCI DOMENICO, IACOBELLI STEFANO, PIANTELLI MAURO, BATTISTA PASQUALE. Overexpression of PY1289-HER3 in sporadic pulmonary carcinoid from patients bearing MEN1 gene variants. Oncol Lett 2016; 12:453-458. [PMID: 27347164 PMCID: PMC4906803 DOI: 10.3892/ol.2016.4651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 04/29/2016] [Indexed: 02/05/2023] Open
Abstract
The present study aimed to investigate the expression of human epidermal growth factor receptors (HERs) (HER1/HER2/HER3/HER4) and their phosphorylated forms (p-HER1/p-HER2/p-HER3/p-HER4) in pulmonary carcinoids (PCs). HER and p-HER protein expression was assessed by immunohistochemistry on tissue microarrays in 37 specimens of sporadic PCs, 29 typical carcinoids (TCs) and 8 atypical carcinoids (ACs). When compared with the ACs, the TCs did not exhibit any differences in terms of HER/p-HER expression. The tumors of this study have previously been characterized for the expression of menin and the mutational status of menin 1 (MEN1), a gene strongly implicated in the pathogenesis of PCs. In the present study, it was found that the cytoplasmic ('disarrayed'), but not nuclear ('arrayed') expression of menin was positively correlated with HER3 (P=0.004), HER4 (P=0.015), p-HER1 (P=0.005), p-HER3 (P<0.001), and p-HER4 (P=0.001) expression. Moreover, HER3 and p-HER3 were found to be significantly more expressed in PCs with MEN1 variants, than in tumors with MEN1 wild-type (P=0.000 and P=0.025, respectively). These findings suggest the potential clinical use of HER inhibitors in the treatment of patients with PCs, particularly for individuals with p-HER3-positive PCs harboring MEN1 gene variants.
Collapse
Affiliation(s)
- ROSSANO LATTANZIO
- Department of Medical, Oral and Biotechnological Sciences, University ‘G. d'Annunzio’ - Chieti-Pescara, I-66010 Chieti, Italy
- Center of Excellence on Aging, University ‘G. d'Annunzio’ Foundation, I-66010 Chieti, Italy
| | - SERENA VESCHI
- Department of Medical, Oral and Biotechnological Sciences, University ‘G. d'Annunzio’ - Chieti-Pescara, I-66010 Chieti, Italy
- Center of Excellence on Aging, University ‘G. d'Annunzio’ Foundation, I-66010 Chieti, Italy
| | - GITANA MARIA ACETO
- Department of Medical, Oral and Biotechnological Sciences, University ‘G. d'Annunzio’ - Chieti-Pescara, I-66010 Chieti, Italy
| | - MARIA CRISTINA CURIA
- Department of Medical, Oral and Biotechnological Sciences, University ‘G. d'Annunzio’ - Chieti-Pescara, I-66010 Chieti, Italy
| | - ALESSANDRO CAMA
- Department of Pharmacy, University ‘G. d'Annunzio’ - Chieti-Pescara, I-66010 Chieti, Italy
| | - LAURA DE LELLIS
- Department of Pharmacy, University ‘G. d'Annunzio’ - Chieti-Pescara, I-66010 Chieti, Italy
| | - FABIANA FANTINI
- Department of Medical, Oral and Biotechnological Sciences, University ‘G. d'Annunzio’ - Chieti-Pescara, I-66010 Chieti, Italy
| | | | - STEFANO IACOBELLI
- Center of Excellence on Aging, University ‘G. d'Annunzio’ Foundation, I-66010 Chieti, Italy
- Mediapharma s.r.l., I-66010 Chieti, Italy
| | - MAURO PIANTELLI
- Department of Medical, Oral and Biotechnological Sciences, University ‘G. d'Annunzio’ - Chieti-Pescara, I-66010 Chieti, Italy
- Center of Excellence on Aging, University ‘G. d'Annunzio’ Foundation, I-66010 Chieti, Italy
- Mediapharma s.r.l., I-66010 Chieti, Italy
| | - PASQUALE BATTISTA
- Department of Medical, Oral and Biotechnological Sciences, University ‘G. d'Annunzio’ - Chieti-Pescara, I-66010 Chieti, Italy
| |
Collapse
|
47
|
Ferreira RB, Law ME, Jahn SC, Davis BJ, Heldermon CD, Reinhard M, Castellano RK, Law BK. Novel agents that downregulate EGFR, HER2, and HER3 in parallel. Oncotarget 2016; 6:10445-59. [PMID: 25865227 PMCID: PMC4496366 DOI: 10.18632/oncotarget.3398] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/16/2015] [Indexed: 11/25/2022] Open
Abstract
EGFR, HER2, and HER3 contribute to the initiation and progression of human cancers, and are therapeutic targets for monoclonal antibodies and tyrosine kinase inhibitors. An important source of resistance to these agents arises from functional redundancy among EGFR, HER2, and HER3. EGFR family members contain conserved extracellular structures that are stabilized by disulfide bonds. Compounds that disrupt extracellular disulfide bonds could inactivate EGFR, HER2, and HER3 in unison. Here we describe the identification of compounds that kill breast cancer cells that overexpress EGFR or HER2. Cell death parallels downregulation of EGFR, HER2, and HER3. These compounds disrupt disulfide bonds and are termed Disulfide Bond Disrupting Agents (DDAs). DDA RBF3 exhibits anticancer efficacy in vivo at 40 mg/kg without evidence of toxicity. DDAs may complement existing EGFR-, HER2-, and HER3-targeted agents that function through alternate mechanisms of action, and combination regimens with these existing drugs may overcome therapeutic resistance.
Collapse
Affiliation(s)
| | - Mary Elizabeth Law
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | | | - Bradley John Davis
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - Coy Don Heldermon
- Department of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Mary Reinhard
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL, 32610, USA
| | | | - Brian Keith Law
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
48
|
Karamouzis MV, Dalagiorgou G, Georgopoulou U, Nonni A, Kontos M, Papavassiliou AG. HER-3 targeting alters the dimerization pattern of ErbB protein family members in breast carcinomas. Oncotarget 2016; 7:5576-5597. [PMID: 26716646 PMCID: PMC4868707 DOI: 10.18632/oncotarget.6762] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/22/2015] [Indexed: 01/06/2023] Open
Abstract
Breast carcinogenesis is a multi-step process in which membrane receptor tyrosine kinases are crucial participants. Lots of research has been done on epidermal growth factor receptor (EGFR) and HER-2 with important clinical results. However, breast cancer patients present intrinsic or acquired resistance to available HER-2-directed therapies, mainly due to HER-3. Using new techniques, such as proximity ligation assay, herein we evaluate the dimerization pattern of HER-3 and the importance of context-dependent dimer formation between HER-3 and other HER protein family members. Additionally, we show that the efficacy of novel HER-3 targeting agents can be better predicted in certain breast cancer patient sub-groups based on the dimerization pattern of HER protein family members. Moreover, this model was also evaluated and reproduced in human paraffin-embedded breast cancer tissues.
Collapse
Affiliation(s)
- Michalis V Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgia Dalagiorgou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Urania Georgopoulou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Afroditi Nonni
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Michalis Kontos
- Department of Propaedeutic Surgery, Medical School, National and Kapodistrian University of Athens, 'Laikon' General Hospital, 11527 Athens, Greece
| | - Athanasios G Papavassiliou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
49
|
Zhang N, Chang Y, Rios A, An Z. HER3/ErbB3, an emerging cancer therapeutic target. Acta Biochim Biophys Sin (Shanghai) 2016; 48:39-48. [PMID: 26496898 DOI: 10.1093/abbs/gmv103] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/10/2015] [Indexed: 01/24/2023] Open
Abstract
HER3 is a member of the HER (EGFR/ErbB) receptor family consisting of four closely related type 1 transmembrane receptors (EGFR, HER2, HER3, and HER4). HER receptors are part of a complex signaling network intertwined with the Ras/Raf/MAPK, PI3K/AKT, JAK/STAT, and PKC signaling pathways. Aberrant activation of the HER receptors and downstream signaling molecules tips the balance on cellular events, leading to various types of cancers. Monoclonal antibodies (mAbs) and small molecule inhibitors targeting EGFR and HER2 tyrosine kinase activities exhibit clinical benefits in the treatment of several types of cancers, but their clinical efficacy is limited by the occurrence of drug resistance. HER3 is the preferred dimerization partner of HER2 and it is well established that HER3 plays an important role in drug resistance to EGFR- and HER2-targeting therapies. Since HER3 has limited kinase activity, mAbs are being explored to target HER3 for cancer therapy. Currently, approximately a dozen of anti-HER3 mAbs are at different stages of clinical development. However, the lack of established biomarkers has made it more challenging to stratify cancer patients to whom HER3-targeting therapies can be more effective. In this review, we focus on the validation of HER3 as a cancer drug target, the recent development in biomarker discovery for anti-HER3 therapies, and the progress made in the clinical development of HER3-targeting mAbs.
Collapse
Affiliation(s)
- Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | - Adan Rios
- Division of Oncology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
50
|
Rosestedt M, Andersson KG, Mitran B, Tolmachev V, Löfblom J, Orlova A, Ståhl S. Affibody-mediated PET imaging of HER3 expression in malignant tumours. Sci Rep 2015; 5:15226. [PMID: 26477646 PMCID: PMC4609989 DOI: 10.1038/srep15226] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/17/2015] [Indexed: 01/02/2023] Open
Abstract
Human epidermal growth factor receptor 3 (HER3) is involved in the progression of various cancers and in resistance to therapies targeting the HER family. In vivo imaging of HER3 expression would enable patient stratification for anti-HER3 immunotherapy. Key challenges with HER3-targeting are the relatively low expression in HER3-positive tumours and HER3 expression in normal tissues. The use of positron-emission tomography (PET) provides advantages of high resolution, sensitivity and quantification accuracy compared to SPECT. Affibody molecules, imaging probes based on a non-immunoglobulin scaffold, provide high imaging contrast shortly after injection. The aim of this study was to evaluate feasibility of PET imaging of HER3 expression using (68)Ga-labeled affibody molecules. The anti-HER3 affibody molecule HEHEHE-Z08698-NOTA was successfully labelled with (68)Ga with high yield, purity and stability. The agent bound specifically to HER3-expressing cancer cells in vitro and in vivo. At 3 h pi, uptake of (68)Ga-HEHEHE-Z08698-NOTA was significantly higher in xenografts with high HER3 expression (BT474, BxPC-3) than in xenografts with low HER3 expression (A431). In xenografts with high expression, tumour-to-blood ratios were >20, tumour-to-muscle >15, and tumour-to-bone >7. HER3-positive xenografts were visualised using microPET 3 h pi. In conclusion, PET imaging of HER3 expression is feasible using (68)Ga-HEHEHE-Z08698-NOTA shortly after administration.
Collapse
Affiliation(s)
- Maria Rosestedt
- Preclinical PET Platform, Uppsala University, Uppsala, Sweden
| | - Ken G Andersson
- Division of Protein Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Bogdan Mitran
- Preclinical PET Platform, Uppsala University, Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - John Löfblom
- Division of Protein Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Anna Orlova
- Preclinical PET Platform, Uppsala University, Uppsala, Sweden
| | - Stefan Ståhl
- Division of Protein Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|