1
|
Kim HW, Shin S, Park SH, Park JH, Kim SM, Lee YH, Lee MJ. Next-generation adjuvant systems containing furfurman drives potent adaptive immunity and host defense as a foot-and-mouth disease vaccine adjuvant. Front Immunol 2024; 15:1491043. [PMID: 39742276 PMCID: PMC11687127 DOI: 10.3389/fimmu.2024.1491043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Many countries use commercial foot-and-mouth disease (FMD) vaccines to prevent FMD pandemics, but these vaccines have disadvantages, such as repeated vaccinations due to the short persistence of antibody (Ab) titers and incomplete host defense despite high Ab titers. To address these shortcomings, we aimed to develop a novel FMD vaccine containing furfurman as an adjuvant. Method To demonstrate the efficacy of the test vaccine, adaptive immunity was evaluated by measuring Ab and neutralizing Ab titers and host defense against viral infections in experimental and target animals. In addition, the expression levels of cytokines [interferon (IFN)α, IFNβ, IFNγ, interleukin (IL)-1β, IL-2, and IL-12p40] were evaluated at the early stages of vaccination to confirm the simultaneous induction of cellular and humoral immune responses induced by the test vaccine. Result The groups that received vaccine containing furfurman showed a strong early, mid-term, and long-term immune response and host defense against viral infections compared to the control groups. The significant upregulation observed in cytokine levels in the furfurman group compared to those in the control groups strongly suggest that the test vaccine strengthens cellular immune response and effectively induces a humoral immune response. Conclusion Our study demonstrated that furfurman, as an FMD vaccine adjuvant, achieves long-lasting immunity and host defense against viral infections by eliciting potent cellular and humoral immune responses. Therefore, our findings contribute to the design of next-generation FMD vaccines and highlight the potential application of furfurman as an adjuvant for other viral diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Min Ja Lee
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
2
|
Zheng Y, Zhang X, Wang Z, Zhang R, Wei H, Yan X, Jiang X, Yang L. MCC950 as a promising candidate for blocking NLRP3 inflammasome activation: A review of preclinical research and future directions. Arch Pharm (Weinheim) 2024; 357:e2400459. [PMID: 39180246 DOI: 10.1002/ardp.202400459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
The NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome is a key component of the innate immune system that triggers inflammation and pyroptosis and contributes to the development of several diseases. Therefore, blocking the activation of the NLRP3 inflammasome has therapeutic potential for the treatment of these diseases. MCC950, a selective small molecule inhibitor, has emerged as a promising candidate for blocking NLRP3 inflammasome activation. Ongoing research is focused on elucidating the specific targets of MCC950 as well as assessfing its metabolism and safety profile. This review discusses the diseases that have been studied in relation to MCC950, with a focus on stroke, Alzheimer's disease, liver injury, atherosclerosis, diabetes mellitus, and sepsis, using bibliometric analysis. It then summarizes the potential pharmacological targets of MCC950 and discusses its toxicity. Furthermore, it traces the progression from preclinical to clinical research for the treatment of these diseases. Overall, this review provides a solid foundation for the clinical therapeutic potential of MCC950 and offers insights for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Yujia Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Ziyu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Ruifeng Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Huayuan Wei
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xu Yan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Lin Yang
- School of Medicial Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, Jinghai, China
| |
Collapse
|
3
|
Santana PT, de Lima IS, da Silva e Souza KC, Barbosa PHS, de Souza HSP. Persistent Activation of the P2X7 Receptor Underlies Chronic Inflammation and Carcinogenic Changes in the Intestine. Int J Mol Sci 2024; 25:10874. [PMID: 39456655 PMCID: PMC11507540 DOI: 10.3390/ijms252010874] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Aberrant signaling through damage-associated molecular patterns (DAMPs) has been linked to several health disorders, attracting considerable research interest over the last decade. Adenosine triphosphate (ATP), a key extracellular DAMP, activates the purinergic receptor P2X7, which acts as a danger sensor in immune cells and is implicated in distinct biological functions, including cell death, production of pro-inflammatory cytokines, and defense against microorganisms. In addition to driving inflammation mediated by immune and non-immune cells, the persistent release of endogenous DAMPs, including ATP, has been shown to result in epigenetic modifications. In intestinal diseases such as inflammatory bowel disease (IBD) and colorectal cancer (CRC), consequent amplification of the inflammatory response and the resulting epigenetic reprogramming may impact the development of pathological changes associated with specific disease phenotypes. P2X7 is overexpressed in the gut mucosa of patients with IBD, whereas the P2X7 blockade prevents the development of chemically induced experimental colitis. Recent data suggest a role for P2X7 in determining gut microbiota composition. Regulatory mechanisms downstream of the P2X7 receptor, combined with signals from dysbiotic microbiota, trigger intracellular signaling pathways and inflammasomes, intensify inflammation, and foster colitis-associated CRC development. Preliminary studies targeting the ATP-P2X7 pathway have shown favorable therapeutic effects in human IBD and experimental colitis.
Collapse
Affiliation(s)
- Patricia Teixeira Santana
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
- D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, Rio de Janeiro 22281-100, Brazil
| | - Isadora Schmukler de Lima
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
| | - Karen Cristina da Silva e Souza
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
| | - Pedro Henrique Sales Barbosa
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
| | - Heitor Siffert Pereira de Souza
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
- D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, Rio de Janeiro 22281-100, Brazil
| |
Collapse
|
4
|
Merlo Pich LM, Ziogas A, Netea MG. Genetic and epigenetic dysregulation of innate immune mechanisms in autoinflammatory diseases. FEBS J 2024; 291:4414-4432. [PMID: 38468589 DOI: 10.1111/febs.17116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/17/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
Dysregulation and hyperactivation of innate immune responses can lead to the onset of systemic autoinflammatory diseases. Monogenic autoinflammatory diseases are caused by inborn genetic errors and based on molecular mechanisms at play, can be divided into inflammasomopathies, interferonopathies, relopathies, protein misfolding, and endogenous antagonist deficiencies. On the other hand, more common autoinflammatory diseases are multifactorial, with both genetic and non-genetic factors playing an important role. During the last decade, long-term memory characteristics of innate immune responses have been described (also called trained immunity) that in physiological conditions provide enhanced host protection from pathogenic re-infection. However, if dysregulated, induction of trained immunity can become maladaptive, perpetuating chronic inflammatory activation. Here, we describe the mechanisms of genetic and epigenetic dysregulation of the innate immune system and maladaptive trained immunity that leads to the onset and perpetuation of the most common and recently described systemic autoinflammatory diseases.
Collapse
Affiliation(s)
- Laura M Merlo Pich
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Athanasios Ziogas
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Germany
| |
Collapse
|
5
|
Zheng H, Xiao X, Han Y, Wang P, Zang L, Wang L, Zhao Y, Shi P, Yang P, Guo C, Xue J, Zhao X. Research progress of propofol in alleviating cerebral ischemia/reperfusion injury. Pharmacol Rep 2024; 76:962-980. [PMID: 38954373 DOI: 10.1007/s43440-024-00620-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
Ischemic stroke is a leading cause of adult disability and death worldwide. The primary treatment for cerebral ischemia patients is to restore blood supply to the ischemic region as quickly as possible. However, in most cases, more severe tissue damage occurs, which is known as cerebral ischemia/reperfusion (I/R) injury. The pathological mechanisms of brain I/R injury include mitochondrial dysfunction, oxidative stress, excitotoxicity, calcium overload, neuroinflammation, programmed cell death and others. Propofol (2,6-diisopropylphenol), a short-acting intravenous anesthetic, possesses not only sedative and hypnotic effects but also immunomodulatory and neuroprotective effects. Numerous studies have reported the protective properties of propofol during brain I/R injury. In this review, we summarize the potential protective mechanisms of propofol to provide insights for its better clinical application in alleviating cerebral I/R injury.
Collapse
Affiliation(s)
- Haijing Zheng
- Basic Medical College, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
- Zhengzhou Central Hospital, Zhengzhou, China
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Xian Xiao
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Yiming Han
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Pengwei Wang
- Department of Pharmacy, the First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Weihui, Henan, 453100, China
| | - Lili Zang
- Department of Surgery, the First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Weihui, China
| | - Lilin Wang
- Department of Pediatric Surgery, the First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Weihui, China
| | - Yinuo Zhao
- Basic Medical College, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Peijie Shi
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Pengfei Yang
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China.
| | - Chao Guo
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China.
| | - Jintao Xue
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China.
| | - Xinghua Zhao
- Basic Medical College, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China.
| |
Collapse
|
6
|
Ai D, Yin Y, Xia X, Yang S, Sun Y, Zhou J, Qin H, Xu X, Song J. Validation of a physiological type 2 diabetes model in human periodontal ligament stem cells. Oral Dis 2024; 30:3363-3375. [PMID: 37794779 DOI: 10.1111/odi.14766] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023]
Abstract
OBJECTIVES Type 2 diabetes (T2DM), a recognized risk factor for periodontitis, is characterized by insulin resistance. However, the molecular mechanisms concerning the role of insulin resistance in linking T2DM and periodontitis remain poorly elucidated due to the absence of an appropriate T2DM cell model. We aimed to explore an appropriate model of T2DM in human periodontal ligament stem cells (hPDLSCs) and uncover the involved mechanisms. MATERIALS AND METHODS hPDLSCs were incubated with common reagents for recapitulating insulin resistance state including high glucose (HG) (15, 25, 35, 45 mM), glucosamine (0.8, 8, 18, 28, 38 mM), or palmitic acid (PA; 100, 200, 400, 800 μM), combined with LPS for 48 h. The insulin signaling pathway, inflammation, and pyroptosis were detected by western blots and quantitative real-time polymerase chain reaction (RT-qPCR). The effects on osteogenesis were evaluated by alkaline phosphatase staining, alizarin red S staining, RT-qPCR, and western blots. RESULTS HG failed to recapitulate insulin resistance. Glucosamine was sufficient to induce insulin resistance but failed to trigger inflammation. In total, 100 and 200 μM PA exhibited the most proinflammatory, insulin resistance, and pyroptosis induced role, and inhibited the osteogenic differentiation of hPDLSCs. CONCLUSION Palmitic acid is a promising candidate for developing T2DM model in hPDLSCs.
Collapse
Affiliation(s)
- Dongqing Ai
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yuanyuan Yin
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xuyun Xia
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Sihan Yang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yu Sun
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Zhou
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Han Qin
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiaohui Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
7
|
Ke W, Wu J, Li H, Huang S, Li H, Wang Y, Wu Y, Yuan J, Zhang S, Tang H, Lei K. Network pharmacology and experimental validation to explore the mechanism of Changji'an formula against irritable bowel syndrome with predominant diarrhea. Heliyon 2024; 10:e33102. [PMID: 39005919 PMCID: PMC11239594 DOI: 10.1016/j.heliyon.2024.e33102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/16/2024] Open
Abstract
Changji'an Formula (CJAF) is a Chinese herbal compound, which is effective against irritable bowel syndrome with predominant diarrhea (IBS-D) in clinic. However, the molecular mechanism has not been well defined. In the current study, the potential targets and signaling pathways of CJAF against IBS-D were predicted using network pharmacology analysis. The pharmacological mechanisms of CJAF against IBS-D and the potential mechanism were validated by using an IBS-D mouse model induced by enema with trinitrobenzene-sulfonic acid (TNBS) plus with restraint stress and further intervened with CJAF. A total of 232 active compounds of CJAF were obtained, a total of 397 potential targets for the active ingredients were retrieved and a total of 219 common targets were obtained as the potential targets of CJAF against IBS-D. GO and KEGG enrichment analyses showed that multiple targets were enriched and could be experimentally validated in a mouse model of IBS-D. The mechanisms were mainly converged on the immune and inflammatory pathways, especially the NF-κB, TNF and IL-17 signaling pathway, which were closely involved in the treatment of CJAF against IBS-D. Animal experiment showed that CJAF alleviated visceral hypersensitivity and diarrhea symptom of IBS-D. CJAF also restored the histological and ultrastructure damage of IBS-D. The result of Western blot showed that CJAF upregulated colonic tight junction proteins of ZO-1, Occludin and Claudin-1. Further results demonstrated that CJAF inhibited the protein expression of NF-κB/NLRP3 inflammasome pathway targets and downregulated proinflammatory mediators of IL-1β, IL-18, TNF-α. In conclusion, CJAF could effectively reduce inflammatory response and alleviate visceral hypersensitivity as well as diarrhea symptom of IBS-D by inhibiting the NF-κB/NLRP3 signaling pathway. This study not only reveals the mechanism of CJAF against IBS-D, but also provides a novel therapeutic strategy for IBS-D.
Collapse
Affiliation(s)
- Wei Ke
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, Guangdong, China
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, China
| | - Jinjun Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Hongbin Li
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Siyu Huang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Huibiao Li
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Yongfu Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yingxiu Wu
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, Guangdong, China
| | - Jie Yuan
- Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, China
| | - Shuncong Zhang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Hongmei Tang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Kaijun Lei
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, Guangdong, China
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, China
| |
Collapse
|
8
|
Hasaniani N, Nouri S, Shirzad M, Rostami-Mansoor S. Potential therapeutic and diagnostic approaches of exosomes in multiple sclerosis pathophysiology. Life Sci 2024; 347:122668. [PMID: 38670451 DOI: 10.1016/j.lfs.2024.122668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Exosomes are bilayer lipid vesicles that are released by cells and contain proteins, nucleic acids, and lipids. They can be internalized by other cells, inducing inflammatory responses and instigating toxicities in the recipient cells. Exosomes can also serve as therapeutic vehicles by transporting protective cargo to maintain homeostasis. Multiple studies have shown that exosomes can initiate and participate in the regulation of neuroinflammation, improve neurogenesis, and are closely related to the pathogenesis of central nervous system (CNS) diseases, including multiple sclerosis (MS). Exosomes can be secreted by both neurons and glial cells in the CNS, and their contents change with disease occurrence. Due to their ability to penetrate the blood-brain barrier and their stability in peripheral fluids, exosomes are attractive biomarkers of CNS diseases. In recent years, exosomes have emerged as potential therapeutic agents for CNS diseases, including MS. However, the molecular pathways in the pathogenesis of MS are still unknown, and further research is needed to fully understand the role of exosomes in the occurrence or improvement of MS disease. Thereby, in this review, we intend to provide a more complete understanding of the pathways in which exosomes are involved and affect the occurrence or improvement of MS disease.
Collapse
Affiliation(s)
- Nima Hasaniani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sina Nouri
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Urmia University of Medical Sciences, Urmia, Iran
| | - Moein Shirzad
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sahar Rostami-Mansoor
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
9
|
Chen T, Jin L, Li J, Liu Y. Pyroptosis mediates osteoporosis via the inflammation immune microenvironment. Front Immunol 2024; 15:1371463. [PMID: 38895114 PMCID: PMC11184911 DOI: 10.3389/fimmu.2024.1371463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Osteoporosis represents a systemic imbalance in bone metabolism, augmenting the susceptibility to fractures among patients and emerging as a notable mortality determinant in the elderly population. It has evolved into a worldwide concern impacting the physical well-being of the elderly, imposing a substantial burden on both human society and the economy. Presently, the precise pathogenesis of osteoporosis remains inadequately characterized and necessitates further exploration. The advancement of osteoporosis is typically linked to the initiation of an inflammatory response. Cells in an inflammatory environment can cause inflammatory death including pyroptosis. Pyroptosis is a recently identified form of programmed cell death with inflammatory properties, mediated by the caspase and gasdermin families. It is regarded as the most inflammatory form of cell death in contemporary medical research. Under the influence of diverse cytokines, macrophages, and other immune cells may undergo pyroptosis, releasing inflammatory factors, such as IL-1β and IL-18. Numerous lines of evidence highlight the pivotal role of pyroptosis in the pathogenesis of inflammatory diseases, including cancer, intestinal disorders, hepatic conditions, and cutaneous ailments. Osteoporosis progression is frequently associated with inflammation; hence, pyroptosis may also play a role in the pathogenesis of osteoporosis to a certain extent, making it a potential target for treatment. This paper has provided a comprehensive summary of pertinent research concerning pyroptosis and its impact on osteoporosis. The notion proposing that pyroptosis mediates osteoporosis via the inflammatory immune microenvironment is advanced, and we subsequently investigate potential targets for treating osteoporosis through the modulation of pyroptosis.
Collapse
Affiliation(s)
- Te Chen
- Division of Joint Surgery, Department of Orthopaedics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Linyu Jin
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jingyi Li
- Division of Joint Surgery, Department of Orthopaedics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yikai Liu
- Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
10
|
Chen J, Gao Y, Liu N, Hai D, Wei W, Liu Y, Lan X, Jin X, Yu J, Ma L. Mechanism of NLRP3 Inflammasome in Epilepsy and Related Therapeutic Agents. Neuroscience 2024; 546:157-177. [PMID: 38574797 DOI: 10.1016/j.neuroscience.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/05/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Epilepsy is one of the most widespread and complex diseases in the central nervous system (CNS), affecting approximately 65 million people globally, an important factor resulting in neurological disability-adjusted life year (DALY) and progressive cognitive dysfunction. Medication is the most essential treatment. The currently used drugs have shown drug resistance in some patients and only control symptoms; the development of novel and more efficacious pharmacotherapy is imminent. Increasing evidence suggests neuroinflammation is involved in the occurrence and development of epilepsy, and high expression of NLRP3 inflammasome has been observed in the temporal lobe epilepsy (TLE) brain tissue of patients and animal models. The inflammasome is a crucial cause of neuroinflammation by activating IL-1β and IL-18. Many preclinical studies have confirmed that regulating NLRP3 inflammasome pathway can prevent the development of epilepsy, reduce the severity of epilepsy, and play a neuroprotective role. Therefore, regulating NLRP3 inflammasome could be a potential target for epilepsy treatment. In summary, this review describes the priming and activation of inflammasome and its biological function in the progression of epilepsy. In addition, we reviewes the current pharmacological researches for epilepsy based on the regulation of NLRP3 inflammasome, aiming to provide a basis and reference for developing novel antiepileptic drugs.
Collapse
Affiliation(s)
- Juan Chen
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Yuan Gao
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Ning Liu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Dongmei Hai
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Wei Wei
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Yue Liu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaobing Lan
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Xueqin Jin
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| | - Jianqiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| | - Lin Ma
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
11
|
Pi S, Xiong S, Yuan Y, Deng H. The Role of Inflammasome in Abdominal Aortic Aneurysm and Its Potential Drugs. Int J Mol Sci 2024; 25:5001. [PMID: 38732221 PMCID: PMC11084561 DOI: 10.3390/ijms25095001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) has been recognized as a serious chronic inflammatory degenerative aortic disease in recent years. At present, there is no other effective intervention except surgical treatment for AAA. With the aging of the human population, its incidence is increasing year by year, posing a serious threat to human health. Modern studies suggest that vascular chronic inflammatory response is the core process in AAA occurrence and development. Inflammasome, a multiprotein complex located in the cytoplasm, mediates the expression of various inflammatory cytokines like interleukin (IL)-1β and IL-18, and thus plays a pivotal role in inflammation regulation. Therefore, inflammasome may exert a crucial influence on the progression of AAA. This article reviews some mechanism studies to investigate the role of inflammasome in AAA and then summarizes several potential drugs targeting inflammasome for the treatment of AAA, aiming to provide new ideas for the clinical prevention and treatment of AAA beyond surgical methods.
Collapse
Affiliation(s)
- Suyu Pi
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.P.); (S.X.); (Y.Y.)
- Aortic Abdominal Aneurysm (AAA) Translational Medicine Research Center of Hubei Province, Wuhan 430060, China
| | - Sizheng Xiong
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.P.); (S.X.); (Y.Y.)
- Aortic Abdominal Aneurysm (AAA) Translational Medicine Research Center of Hubei Province, Wuhan 430060, China
| | - Yan Yuan
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.P.); (S.X.); (Y.Y.)
- Aortic Abdominal Aneurysm (AAA) Translational Medicine Research Center of Hubei Province, Wuhan 430060, China
| | - Hongping Deng
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.P.); (S.X.); (Y.Y.)
- Aortic Abdominal Aneurysm (AAA) Translational Medicine Research Center of Hubei Province, Wuhan 430060, China
| |
Collapse
|
12
|
Zhao J, Lu N, Qu Y, Liu W, Zhong H, Tang N, Li J, Wang L, Xi D, He F. Calcium-sensing receptor-mediated macrophage polarization improves myocardial remodeling in spontaneously hypertensive rats. Exp Biol Med (Maywood) 2024; 249:10112. [PMID: 38715976 PMCID: PMC11075494 DOI: 10.3389/ebm.2024.10112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/13/2023] [Indexed: 06/04/2024] Open
Abstract
Chronic inflammation is a key element in the progression of essential hypertension (EH). Calcium plays a key role in inflammation, so its receptor, the calcium-sensing receptor (CaSR), is an essential mediator of the inflammatory process. Compelling evidence suggests that CaSR mediates inflammation in tissues and immune cells, where it mediates their activity and chemotaxis. Macrophages (Mφs) play a major role in the inflammatory response process. This study provided convincing evidence that R568, a positive regulator of CaSR, was effective in lowering blood pressure in spontaneously hypertensive rats (SHRs), improving cardiac function by alleviating cardiac hypertrophy and fibrosis. R568 can increase the content of CaSR and M2 macrophages (M2Mφs, exert an anti-inflammatory effect) in myocardial tissue, reduce M1 macrophages (M1Mφs), which have a pro-inflammatory effect in this process. In contrast, NPS2143, a negative state regulator of CaSR, exerted the opposite effect in all of the above experiments. Following this study, R568 increased CaSR content in SHR myocardial tissue, lowered blood pressure, promoted macrophages to M2Mφs and improved myocardial fibrosis, but interestingly, both M1Mφs and M2Mφs were increased in the peritoneal cavity of SHRs, the number of M2Mφs remained lower than M1Mφs. In vitro, R568 increased CaSR content in RAW264.7 cells (a macrophage cell line), regulating intracellular Ca2+ ([Ca2+]i) inhibited NOD-like receptor family protein 3 (NLRP3) inflammasome activation and ultimately prevented its conversion to M1Mφs. The results showed that a decrease in CaSR in hypertensive rats causes further development of hypertension and cardiac damage. EH myocardial remodeling can be improved by CaSR overexpression by suppressing NLRP3 inflammasome activation and macrophage polarization toward M1Mφs and increasing M2Mφs.
Collapse
Affiliation(s)
- Jiaqi Zhao
- Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory for Prevention and Treatment of Central Asia High Incidence Diseases, Department of Pathophysiology, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Ning Lu
- School of Medicine, Tarim University, Alaer, Xinjiang, China
| | - Yuanyuan Qu
- Department of Respiratory Medicine, The First Affiliated Hospital of Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Wei Liu
- Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory for Prevention and Treatment of Central Asia High Incidence Diseases, Department of Pathophysiology, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Hua Zhong
- Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory for Prevention and Treatment of Central Asia High Incidence Diseases, Department of Pathophysiology, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Na Tang
- Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory for Prevention and Treatment of Central Asia High Incidence Diseases, Department of Pathophysiology, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Jiayi Li
- Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory for Prevention and Treatment of Central Asia High Incidence Diseases, Department of Pathophysiology, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Lamei Wang
- Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory for Prevention and Treatment of Central Asia High Incidence Diseases, Department of Pathophysiology, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Dongmei Xi
- Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory for Prevention and Treatment of Central Asia High Incidence Diseases, Department of Pathophysiology, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Fang He
- Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory for Prevention and Treatment of Central Asia High Incidence Diseases, Department of Pathophysiology, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
13
|
La Bella S, Di Ludovico A, Di Donato G, Basaran O, Ozen S, Gattorno M, Chiarelli F, Breda L. The pyrin inflammasome, a leading actor in pediatric autoinflammatory diseases. Front Immunol 2024; 14:1341680. [PMID: 38250061 PMCID: PMC10796709 DOI: 10.3389/fimmu.2023.1341680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
The activation of the pyrin inflammasome represents a highly intriguing mechanism employed by the innate immune system to effectively counteract pathogenic agents. Despite its key role in innate immunity, pyrin has also garnered significant attention due to its association with a range of autoinflammatory diseases (AIDs) including familial Mediterranean fever caused by disruption of the MEFV gene, or in other genes involved in its complex regulation mechanisms. Pyrin activation is strictly dependent on homeostasis-altering molecular processes, mostly consisting of the disruption of the small Ras Homolog Family Member A (RhoA) GTPases by pathogen toxins. The downstream pathways are regulated by the phosphorylation of specific pyrin residues by the kinases PKN1/2 and the binding of the chaperone 14-3-3. Furthermore, a key role in pyrin activation is played by the cytoskeleton and gasdermin D, which is responsible for membrane pores in the context of pyroptosis. In addition, recent evidence has highlighted the role of steroid hormone catabolites and alarmins S100A8/A9 and S100A12 in pyrin-dependent inflammation. The aim of this article is to offer a comprehensive overview of the most recent evidence on the pyrin inflammasome and its molecular pathways to better understand the pathogenesis behind the significant group of pyrin-related AIDs.
Collapse
Affiliation(s)
- Saverio La Bella
- Department of Pediatrics, "G. D'Annunzio" University of Chieti, Chieti, Italy
| | - Armando Di Ludovico
- Department of Pediatrics, "G. D'Annunzio" University of Chieti, Chieti, Italy
| | - Giulia Di Donato
- Department of Pediatrics, "G. D'Annunzio" University of Chieti, Chieti, Italy
| | - Ozge Basaran
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - Seza Ozen
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - Marco Gattorno
- UOC Rheumatology and Autoinflammatory Diseases, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Francesco Chiarelli
- Department of Pediatrics, "G. D'Annunzio" University of Chieti, Chieti, Italy
| | - Luciana Breda
- Department of Pediatrics, "G. D'Annunzio" University of Chieti, Chieti, Italy
| |
Collapse
|
14
|
Liu W, Liu A, Li X, Sun Z, Sun Z, Liu Y, Wang G, Huang D, Xiong H, Yu S, Zhang X, Fan C. Dual-engineered cartilage-targeting extracellular vesicles derived from mesenchymal stem cells enhance osteoarthritis treatment via miR-223/NLRP3/pyroptosis axis: Toward a precision therapy. Bioact Mater 2023; 30:169-183. [PMID: 37593145 PMCID: PMC10429745 DOI: 10.1016/j.bioactmat.2023.06.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/24/2023] [Accepted: 06/19/2023] [Indexed: 08/19/2023] Open
Abstract
Osteoarthritis (OA) is the most common disabling joint disease with no effective disease modifying drugs. Extracellular vesicles released by several types of mesenchymal stem cells could promote cartilage repair and ameliorate OA pathology in animal models, representing a novel therapeutic strategy. In this study, we demonstrated that extracellular vesicles derived from human umbilical cord mesenchymal stem cells (hUC-EVs) could maintain chondrocyte homeostasis and alleviate OA, and further revealed a novel molecular mechanism of this therapeutic effect. miR-223, which could directly bind with the 3'UTR of NLRP3 mRNA, was found to be a key miRNA for hUC-EVs to exert beneficial effects on inflammation inhibiting and cartilage protecting. For enhancing the effect on mitigating osteoarthritis, exogenous miR-223 was loaded into hUC-EVs by electroporation, and a collagen II-targeting peptide (WYRGRL) was modified onto the surface of hUC-EVs by genetic engineering to achieve a more targeted and efficient RNA delivery to the cartilage. The dual-engineered EVs showed a maximal effect on inhibiting the NLRP3 inflammasome activation and chondrocyte pyroptosis, and offered excellent results for the treatment of OA. This study provides a novel theoretical basis and a promising therapeutic strategy for the application of engineered extracellular vesicles in OA treatment.
Collapse
Affiliation(s)
- Weixuan Liu
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
| | - Anqi Liu
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Xujun Li
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Ziyang Sun
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhenghua Sun
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
| | - Yaru Liu
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
| | - Gang Wang
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
| | - Dan Huang
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
| | - Hao Xiong
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Shiyang Yu
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xintao Zhang
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Cunyi Fan
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
15
|
Maghsoudlou P, Abraham AR, El-Ashry M, Chew C, Mohd N, Ramanan AV, Dick AD. Uveitis Associated with Monogenic Autoinflammatory Syndromes in Children. Ocul Immunol Inflamm 2023; 31:1930-1943. [PMID: 38051595 PMCID: PMC11166052 DOI: 10.1080/09273948.2023.2282610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023]
Abstract
Monogenic autoinflammatory syndromes (MAISs), are caused by pathogenic genetic variants in the innate immune system, leading to dysregulation and aberrant inflammasome activation spontaneously or with minimal triggering. The diagnosis and treatment of MAISs can be intricate, relying on an increased recognition of potential differential diagnoses. This review examines the clinical features of MAIS, with a special focus on uveitis. It also evaluates treatment options and assesses the effects of activating molecular and cytokine pathways.
Collapse
Affiliation(s)
- P Maghsoudlou
- Academic Unit of Ophthalmology, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - A R Abraham
- Academic Unit of Ophthalmology, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - M El-Ashry
- Department of Paediatric Ophthalmology, Bristol Eye Hospital, Bristol, UK
| | - C Chew
- Department of Paediatric Rheumatology, University of Bristol, Bristol, UK
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol, UK
| | - N Mohd
- Department of Paediatric Ophthalmology, Bristol Eye Hospital, Bristol, UK
| | - A V Ramanan
- Department of Paediatric Rheumatology, University of Bristol, Bristol, UK
| | - A D Dick
- Academic Unit of Ophthalmology, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol, UK
- UCL Institute of Ophthalmology, London, UK
- NIHR - Biomedical Research Centre, Moorfields and UCL - Institute of Ophthalmology, London, UK
| |
Collapse
|
16
|
Zhang J, Zhu Y, Chen S, Xu Z, Zhang B, Liu A, He Q, Zhan J. Activation of cannabinoid receptors 2 alleviates myocardial damage in cecal ligation and puncture-induced sepsis by inhibiting pyroptosis. Immunol Lett 2023; 264:17-24. [PMID: 37918639 DOI: 10.1016/j.imlet.2023.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/15/2023] [Accepted: 10/28/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND It has been reported that cannabinoid receptors 2 (CB2 receptors) play an important role in the pathophysiological process of sepsis, which may also be associated with the regulation of pyroptosis, an inflammatory programmed cell death. The present study aimed to investigate the protective effect of CB2 receptors on myocardial damage in a model of septic mice by inhibiting pyroptosis. METHODS The C57BL/6 mice underwent cecal ligation and puncture (CLP) to induce sepsis. All mice were randomly divided into the sham, CLP, or CLP+HU308 group. Blood and heart tissue samples were collected 12 h after surgery. Hematoxylin and eosin staining was used for analyzing histopathological results. Creatine kinase isoenzymes (CK-MB) and IL-1β were measured using ELISA, while lactate dehydrogenase (LDH) level was determined using photoelectric colorimetry. The expression levels of CB2 receptors and pyroptosis-associated proteins (NLRP3, caspase-1, and GSDMD) were measured using western blotting. The location and distribution of CB2 receptors and caspase-1 in myocardial tissues were assessed by immunofluorescence. TUNEL staining was used to quantify the number of dead cells in myocardial tissues. RESULTS The CLP procedure increased CB2 receptor expression in mice. CB2 receptors were located in myocardial macrophages. Activating CB2 receptors decreased the levels of myocardial damage mediator LDH, CK-MB, and inflammatory cytokine IL-1β. The results also showed that CLP increased the pyroptosis in myocardial tissues, while CB2 agonist HU308 inhibited pyroptosis by decreasing the level of NLRP3 and activating caspase-1 and GSDMD. CONCLUSIONS CB2 receptor activation has a protective effect on the myocardium of mice with sepsis by inhibiting pyroptosis.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Yali Zhu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Shuxian Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Zujin Xu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Bin Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Anpeng Liu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Qianwen He
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China.
| | - Jia Zhan
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China.
| |
Collapse
|
17
|
Napodano C, Carnazzo V, Basile V, Pocino K, Stefanile A, Gallucci S, Natali P, Basile U, Marino M. NLRP3 Inflammasome Involvement in Heart, Liver, and Lung Diseases-A Lesson from Cytokine Storm Syndrome. Int J Mol Sci 2023; 24:16556. [PMID: 38068879 PMCID: PMC10706560 DOI: 10.3390/ijms242316556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Inflammation and inflammasomes have been proposed as important regulators of the host-microorganism interaction, playing a key role in morbidity and mortality due to the coronavirus disease 2019 (COVID-19) in subjects with chronic conditions and compromised immune system. The inflammasome consists of a multiprotein complex that finely regulates the activation of caspase-1 and the production and secretion of potent pro-inflammatory cytokines such as IL-1β and IL-18. The pyrin containing NOD (nucleotide-binding oligomerization domain) like receptor (NLRP) is a family of intracellular receptors, sensing patterns associated to pathogens or danger signals and NLRP3 inflammasome is the most deeply analyzed for its involvement in the innate and adaptive immune system as well as its contribution to several autoinflammatory and autoimmune diseases. It is highly expressed in leukocytes and up-regulated in sentinel cells upon inflammatory stimuli. NLRP3 expression has also been reported in B and T lymphocytes, in epithelial cells of oral and genital mucosa, in specific parenchymal cells as cardiomyocytes, and keratinocytes, and chondrocytes. It is well known that a dysregulated activation of the inflammasome is involved in the pathogenesis of different disorders that share the common red line of inflammation in their pathogenetic fingerprint. Here, we review the potential roles of the NLRP3 inflammasome in cardiovascular events, liver damage, pulmonary diseases, and in that wide range of systemic inflammatory syndromes named as a cytokine storm.
Collapse
Affiliation(s)
- Cecilia Napodano
- Department of Laboratory of Medicine and Pathology, S. Agostino Estense Hospital, 41126 Modena, Italy;
| | - Valeria Carnazzo
- Department of Clinical Pathology, Santa Maria Goretti Hospital, AUSL Latina, 04100 Latina, Italy; (V.C.); (U.B.)
| | - Valerio Basile
- Clinical Pathology Unit and Cancer Biobank, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Krizia Pocino
- Unità Operativa Complessa di Patologia Clinica, Ospedale Generale di Zona San Pietro Fatebenefratelli, 00189 Rome, Italy; (K.P.); (A.S.)
| | - Annunziata Stefanile
- Unità Operativa Complessa di Patologia Clinica, Ospedale Generale di Zona San Pietro Fatebenefratelli, 00189 Rome, Italy; (K.P.); (A.S.)
| | - Stefania Gallucci
- Laboratory of Dendritic Cell Biology, Division of Innate Immunity, Department of Medicine, UMass Chan Medical School, Worcester, MA 01655, USA;
| | - Patrizia Natali
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy;
| | - Umberto Basile
- Department of Clinical Pathology, Santa Maria Goretti Hospital, AUSL Latina, 04100 Latina, Italy; (V.C.); (U.B.)
| | - Mariapaola Marino
- Dipartimento di Medicina e Chirurgia Traslazionale, Sezione di Patologia Generale, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
18
|
Zeng N, Wang Q, Zhang C, Zhou Y, Yan J. A review of studies on the implication of NLRP3 inflammasome for Parkinson's disease and related candidate treatment targets. Neurochem Int 2023; 170:105610. [PMID: 37704080 DOI: 10.1016/j.neuint.2023.105610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease for which the prevalence is second only to Alzheimer's disease (AD). This disease primarily affects people of middle and old age, significantly impacting their health and quality of life. The main pathological features include the degenerative nigrostriatal dopaminergic (DA) neuron loss and Lewy body (LB) formation. Currently, available PD medications primarily aim to alleviate clinical symptoms, however, there is no universally recognized therapy worldwide that effectively prevents, clinically treats, stops, or reverses the disease. Consequently, the evaluation and exploration of potential therapeutic targets for PD are of utmost importance. Nevertheless, the pathophysiology of PD remains unknown, and neuroinflammation mediated by inflammatory cytokines that prompts neuron death is fundamental for the progression of PD. The nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome is a key complex of proteins linking the neuroinflammatory cascade in PD. Moreover, mounting evidence suggests that traditional Chinese medicine (TCM) alleviates PD by suppressing the NLRP3 inflammasome. This article aims to comprehensively review the available studies on the composition and activating mechanism of the NLRP3 inflammasome, along with its significance in PD pathogenesis and potential treatment targets. We also review natural products or synthetic compounds which reduce neuroinflammation via modulating NLRP3 inflammasome activity, aiming to identify new targets for future PD diagnosis and treatment through the exploration of NLRP3 inhibitors. Additionally, this review offers valuable references for developing new PD treatment methods.
Collapse
Affiliation(s)
- Nannan Zeng
- Department of Physiology, Guilin Medical University, Guilin, 541004, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541004, China
| | - Qi Wang
- Department of Physiology, Guilin Medical University, Guilin, 541004, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541004, China
| | - Chong Zhang
- Department of Neurology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541100, China
| | - Yali Zhou
- Department of Microbiology, Guilin Medical University, Guilin, 541004, China.
| | - Jianguo Yan
- Department of Physiology, Guilin Medical University, Guilin, 541004, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541004, China.
| |
Collapse
|
19
|
Li B, Yang Z, Zhao X, Chen Y, Li D, Zhang L, Min H, Yu W, Shen M. Early onset drusen and RPE dysfunction in a patient with NLRP3-AID. Ocul Immunol Inflamm 2023; 31:1877-1880. [PMID: 36395369 DOI: 10.1080/09273948.2022.2113804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022]
Abstract
Retinal pigment epithelium (RPE) dysfunction, manifested as drusen formation and RPE mottling, is a characteristic lesion of aging. The mechanism of RPE dysfunction remains unknown. Previous animal studies have proven that the activation of NLRP3 inflammasome in RPE leads to apoptosis and pyroptosis, which may play a very important role in the development of age-related macular degeneration (AMD). However, there is a lack of clinical evidence to support the above hypothesis. Herein, we report a 38-year-old Chinese Han woman who had NLRP3-associated autoinflammatory disease (NLRP3-AID) with widely scattered drusen at the posterior pole in both eyes. NLRP3-AID is a rare disease caused by mutations of the NLRP3 gene, leading to NLRP3 inflammasome activation. This report of early-onset drusen provides clinical evidence that the NLRP3 inflammasome might contribute to the occurrence of RPE dysfunction and is a potential cause of age-related macular degeneration (AMD).
Collapse
Affiliation(s)
- Bing Li
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, Hebei, China
| | - Zhikun Yang
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, Hebei, China
| | - Xufeng Zhao
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, Hebei, China
| | - Youxin Chen
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, Hebei, China
| | - Donghui Li
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, Hebei, China
| | - Li Zhang
- Department of Rheumatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, Hebei, China
| | - Hanyi Min
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, Hebei, China
| | - Weihong Yu
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, Hebei, China
| | - Min Shen
- Department of Rheumatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, Hebei, China
| |
Collapse
|
20
|
Nazari S, Pourmand SM, Motevaseli E, Hassanzadeh G. Mesenchymal stem cells (MSCs) and MSC-derived exosomes in animal models of central nervous system diseases: Targeting the NLRP3 inflammasome. IUBMB Life 2023; 75:794-810. [PMID: 37278718 DOI: 10.1002/iub.2759] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023]
Abstract
The NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome is a multimeric protein complex that is engaged in the innate immune system and plays a vital role in inflammatory reactions. Activation of the NLRP3 inflammasome and subsequent release of proinflammatory cytokines can be triggered by microbial infection or cellular injury. The NLRP3 inflammasome has been implicated in the pathogenesis of many disorders affecting the central nervous system (CNS), ranging from stroke, traumatic brain injury, and spinal cord injury to Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, and depression. Furthermore, emerging evidence has suggested that mesenchymal stem cells (MSCs) and their exosomes may modulate NLRP3 inflammasome activation in a way that might be promising for the therapeutic management of CNS diseases. In the present review, particular focus is placed on highlighting and discussing recent scientific evidence regarding the regulatory effects of MSC-based therapies on the NLRP3 inflammasome activation and their potential to counteract proinflammatory responses and pyroptotic cell death in the CNS, thereby achieving neuroprotective impacts and improvement in behavioral impairments.
Collapse
Affiliation(s)
- Shahrzad Nazari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Pourmand
- School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Zhang X, Lan Q, Zhang M, Wang F, Shi K, Li X, Kuang E. Inhibition of AIM2 inflammasome activation by SOX/ORF37 promotes lytic replication of Kaposi's sarcoma-associated herpesvirus. Proc Natl Acad Sci U S A 2023; 120:e2300204120. [PMID: 37364111 PMCID: PMC10318979 DOI: 10.1073/pnas.2300204120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Inflammasomes are one kind of important innate immune defense against viral and bacterial infections. Several inflammasome-forming sensors detect molecular patterns of invading pathogens and then trigger inflammasome activation and/or pyroptosis in infected cells, and viruses employ unique strategies to hijack or subvert inflammasome activation. Infection with herpesviruses induces the activation of diverse inflammasomes, including AIM2 and IFI16 inflammasomes; however, how Kaposi's sarcoma-associated herpesvirus (KSHV) counteracts inflammasome activation largely remains unclear. Here, we reveal that the KSHV ORF37-encoded SOX protein suppresses AIM2 inflammasome activation independent of its viral DNA exonuclease activity and host mRNA turnover. SOX interacts with the AIM2 HIN domain through the C-terminal Motif VII region and disrupts AIM2:dsDNA polymerization and ASC recruitment and oligomerization. The Y443A or F444A mutation of SOX abolishes the inhibition of AIM2 inflammasome without disrupting SOX nuclease activity, and a short SOX peptide is capable of inhibiting AIM2 inflammasome activation; consequently, infection with SOX-null, Y443A, or F444A Bac16 recombinant viruses results in robust inflammasome activation, suppressed lytic replication, and increased pyroptosis in human lymphatic endothelial cells in an AIM2-dependent manner. These results reveal that KSHV SOX suppresses AIM2 inflammasome activation to promote KSHV lytic replication and inhibit pyroptosis, representing a unique mechanism for evasion of inflammasome activation during KSHV lytic cycle.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong510080, China
| | - Qingping Lan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong510080, China
| | - Mingyu Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong510080, China
| | - Fan Wang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong510080, China
| | - Keyi Shi
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong510080, China
| | - Xiaojuan Li
- College of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei430061, China
| | - Ersheng Kuang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong510080, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong510080, China
| |
Collapse
|
22
|
Tian J, Chang S, Wang J, Chen J, Xu H, Huang T, Wang J, Kang J, Fan W, Wang Y. S1P/S1PR1 axis promotes macrophage M1 polarization through NLRP3 inflammasome activation in Lupus nephritis. Mol Immunol 2023; 160:55-66. [PMID: 37379683 DOI: 10.1016/j.molimm.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Lupus nephritis (LN) is a common complication of systemic lupus erythematosus (SLE) as well as the leading cause of mortality in patients. Previous studies revealed that S1P level is elevated in plasma samples of SLE patients and murine lupus models. FTY720, targeting S1P receptors, exhibited therapeutic effects in improving the nephritis symptoms of lupus mouse models. However, few studies have discussed the potential relevance of S1P/S1PR to the pathogenesis of LN. Macrophages have been shown to be an important causative agent of renal inflammation, while the pro-inflammatory M1-type promotes kidney injury and inflammation during LN. Importantly, macrophages express various S1P receptors, and how they respond to S1P in the setting of LN remains unclear. Therefore, we examined the level of S1P in the lupus MRL/lpr mice and explored the ensuing interaction of macrophages and S1P. We found that S1P level was elevated in the MRL/lpr mice with a subsequent enhancement of the S1PR1 expression, and blocking S1PR1 by FTY720, the nephritis symptoms of MRL/lpr mice were improved. Mechanistically, we demonstrated that elevated S1P level increase the M1-type macrophage accumulation. And the in-vitro studies proved that S1P/S1PR1 was involved in the promotion of macrophage polarization towards M1 type through activation of NLRP3 inflammasome. These findings confer a novel role to macrophage S1PR1 and provide a new perspective for targeting S1P during LN.
Collapse
Affiliation(s)
- Jihua Tian
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Sijia Chang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jingshu Chen
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huanyu Xu
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Taiping Huang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Juanjuan Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weiping Fan
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Yanhong Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
23
|
Dri E, Lampas E, Lazaros G, Lazarou E, Theofilis P, Tsioufis C, Tousoulis D. Inflammatory Mediators of Endothelial Dysfunction. Life (Basel) 2023; 13:1420. [PMID: 37374202 PMCID: PMC10305352 DOI: 10.3390/life13061420] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Endothelial dysfunction (ED) is characterized by imbalanced vasodilation and vasoconstriction, elevated reactive oxygen species (ROS), and inflammatory factors, as well as deficiency of nitric oxide (NO) bioavailability. It has been reported that the maintenance of endothelial cell integrity serves a significant role in human health and disease due to the involvement of the endothelium in several processes, such as regulation of vascular tone, regulation of hemostasis and thrombosis, cell adhesion, smooth muscle cell proliferation, and vascular inflammation. Inflammatory modulators/biomarkers, such as IL-1α, IL-1β, IL-6, IL-12, IL-15, IL-18, and tumor necrosis factor α, or alternative anti-inflammatory cytokine IL-10, and adhesion molecules (ICAM-1, VCAM-1), involved in atherosclerosis progression have been shown to predict cardiovascular diseases. Furthermore, several signaling pathways, such as NLRP3 inflammasome, that are associated with the inflammatory response and the disrupted H2S bioavailability are postulated to be new indicators for endothelial cell inflammation and its associated endothelial dysfunction. In this review, we summarize the knowledge of a plethora of reviews, research articles, and clinical trials concerning the key inflammatory modulators and signaling pathways in atherosclerosis due to endothelial dysfunction.
Collapse
Affiliation(s)
- Eirini Dri
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| | - Evangelos Lampas
- Department of Cardiology, Konstantopouleio General Hospital, 14233 Athens, Greece
| | - George Lazaros
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| | - Emilia Lazarou
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| | - Panagiotis Theofilis
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| | - Costas Tsioufis
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| |
Collapse
|
24
|
Akbaba TH, Akkaya-Ulum YZ, Batu ED, Penco F, Wittkowski H, Kant B, van Gijn ME, Foell D, Gattorno M, Ozen S, Balci-Peynircioglu B. Dysregulation of miRNA-30e-3p targeting IL-1β in an international cohort of systemic autoinflammatory disease patients. J Mol Med (Berl) 2023:10.1007/s00109-023-02327-2. [PMID: 37212859 DOI: 10.1007/s00109-023-02327-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/23/2023]
Abstract
Autoinflammation is the standard mechanism seen in systemic autoinflammatory disease (SAID) patients. This study aimed to investigate the effect of a candidate miRNA, miR-30e-3p, which was identified in our previous study, on the autoinflammation phenotype seen in SAID patients and to analyze its expression in a larger group of European SAID patients. We examined the potential anti-inflammatory effect of miR-30e-3p, which we had defined as one of the differentially expressed miRNAs in microarray analysis involved in inflammation-related pathways. This study validated our previous microarray results of miR-30e-3p in a cohort involving European SAID patients. We performed cell culture transfection assays for miR-30e-3p. Then, in transfected cells, we analyzed expression levels of pro-inflammatory genes; IL-1β, TNF-α, TGF-β, and MEFV. We also performed functional experiments, caspase-1 activation by fluorometric assay kit, apoptosis assay by flow cytometry, and cell migration assays by wound healing and filter system to understand the possible effect of miR-30e-3p on inflammation. Following these functional assays, 3'UTR luciferase activity assay and western blotting were carried out to identify the target gene of the aforementioned miRNA. MiR-30e-3p was decreased in severe European SAID patients like the Turkish patients. The functional assays associated with inflammation suggested that miR-30e-3p has an anti-inflammatory effect. 3'UTR luciferase activity assay demonstrated that miR-30e-3p directly binds to interleukin-1-beta (IL-1β), one of the critical molecules of inflammatory pathways, and reduces both RNA and protein levels of IL-1β. miR-30e-3p, which has been associated with IL-1β, a principal component of inflammation, might be of potential diagnostic and therapeutic value for SAIDs. KEY MESSAGES: miR-30e-3p, which targets IL-1β, could have a role in the pathogenesis of SAID patients. miR-30e-3p has a role in regulating inflammatory pathways like migration, caspase-1 activation. miR-30e-3p has the potential to be used for future diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Tayfun Hilmi Akbaba
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Yeliz Z Akkaya-Ulum
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ezgi Deniz Batu
- Department of Pediatric Rheumatology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Federica Penco
- Unit of Rheumatology and Autoinflammatory Diseases, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Helmut Wittkowski
- Department for Pediatric Rheumatology & Immunology, University Hospital Muenster, Muenster, Germany
| | - Benjamin Kant
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marielle E van Gijn
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Genetics, University Medical Center Groningen, Groningen, Netherlands
| | - Dirk Foell
- Department for Pediatric Rheumatology & Immunology, University Hospital Muenster, Muenster, Germany
| | - Marco Gattorno
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Seza Ozen
- Department of Pediatric Rheumatology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | |
Collapse
|
25
|
Cao H, Yang D, Nie K, Lin R, Peng L, Zhou X, Zhang M, Zeng Y, Liu L, Huang W. Hesperidin may improve depressive symptoms by binding NLRP3 and influencing the pyroptosis pathway in a rat model. Eur J Pharmacol 2023:175670. [PMID: 37169143 DOI: 10.1016/j.ejphar.2023.175670] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/13/2023]
Abstract
OBJECTIVE Major depressive disorder (MDD) is a debilitating psychiatric disorder which is common and endangers human physical and mental health. Studies have shown that hesperidin could improve the symptoms of depression with unclear mechanisms. METHOD In this study, hesperidin was administered to chronic unpredictable mild stress (CUMS) depressed mice before behavioral test, network pharmacology analysis, RNA expression microarray analysis, pathway validation and molecular docking experiments. RESULTS we found that hesperidin intervention could significantly improve the depressive symptoms and downregulate the expression level of pyroptosis pathway including caspase 1 (Casp1), interleukin 18 (IL18), interleukin-1β (IL-1β) and NOD-like receptor thermal protein domain associated protein 3 (NLRP3). In addition, we found that hesperidin could possibly bind to NLRP3. CONCLUSIONS Our study demonstrated that hesperidin had huge potential as anti-depressive neuroprotectant, and may play a role in treating MDD by regulating NLRP3-mediated pyroptosis.
Collapse
Affiliation(s)
- Hui Cao
- Department of Psychiatry, Brain Hospital of Hunan Province, The Second People's Hospital of Hunan Province, Changsha, China
| | - Dong Yang
- Department of Psychiatry, Brain Hospital of Hunan Province, The Second People's Hospital of Hunan Province, Changsha, China
| | - Kechao Nie
- Department of Integrated Traditional Chinese & Western Internal Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ruoheng Lin
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Luqi Peng
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Xuhui Zhou
- Department of Psychiatry, Brain Hospital of Hunan Province, The Second People's Hospital of Hunan Province, Changsha, China
| | - Mei Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Zeng
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Lini Liu
- Department of Psychiatry, Brain Hospital of Hunan Province, The Second People's Hospital of Hunan Province, Changsha, China
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
26
|
La Bella S, Di Ludovico A, Di Donato G, Scorrano G, Chiarelli F, Vivarelli M, Breda L. Renal involvement in monogenic autoinflammatory diseases: A narrative review. Nephrology (Carlton) 2023. [PMID: 37142240 DOI: 10.1111/nep.14166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
Autoinflammatory diseases (AIDs) are mostly caused by dysfunctions in single genes encoding for proteins with a prominent role in the regulation of innate immunity, such as complement factors, inflammasome components, tumour necrosis factor (TNF)-α, and proteins belonging to type I-interferon (IFN) signalling pathways. Due to the deposition of amyloid A (AA) fibrils in the glomeruli, unprovoked inflammation in AIDs frequently affects renal health. In fact, secondary AA amyloidosis is the most common form of amyloidosis in children. It is caused by the extracellular deposition of fibrillar low-molecular weight protein subunits resulting from the degradation and accumulation of serum amyloid A (SAA) in numerous tissues and organs, primarily the kidneys. The molecular mechanisms underlying AA amyloidosis in AIDs are the elevated levels of SAA, produced by the liver in response to pro-inflammatory cytokines, and a genetic predisposition due to specific SAA isoforms. Despite the prevalence of amyloid kidney disease, non-amyloid kidney diseases may also be responsible for chronic renal damage in children with AIDs, albeit with distinct characteristics. Glomerular damage can result in various forms of glomerulonephritis with distinct histologic characteristics and a different underlying pathophysiology. This review aims to describe the potential renal implications in patients with inflammasomopathies, type-I interferonopathies, and other rare AIDs in an effort to improve the clinical course and quality of life in paediatric patients with renal involvement.
Collapse
Affiliation(s)
- Saverio La Bella
- Department of Pediatrics, University of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Armando Di Ludovico
- Department of Pediatrics, University of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Giulia Di Donato
- Department of Pediatrics, University of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Giovanna Scorrano
- Department of Pediatrics, University of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Marina Vivarelli
- Division of Nephrology, Laboratory of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Luciana Breda
- Department of Pediatrics, University of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| |
Collapse
|
27
|
Tsubokawa D. Immunomodulators secreted from parasitic helminths act on pattern recognition receptors. FRONTIERS IN PARASITOLOGY 2023; 1:1091596. [PMID: 39816467 PMCID: PMC11731691 DOI: 10.3389/fpara.2022.1091596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2025]
Abstract
Excretory-secretory (ES) products from parasitic helminths contain immunomodulatory molecules, which can regulate host immune responses. These immunomodulatory molecules are crucial for successful parasitism, and play roles in tissue migration, maturation, and reproduction. Some target pattern recognition receptors (PRRs), including toll-like receptor, C-type lectin receptor, receptor for advanced glycation end products, and nucleotide-binding oligomerization domain-like receptor. PRRs trigger activation of signaling cascades, inducing innate inflammatory responses and adaptive immunity in hosts. This article reviews ES immunomodulators identified in parasitic helminths that act on PRRs, and their PRR-facilitated immune-regulatory mechanisms. In addition, we describe the therapeutic potential of ES immunomodulators for allergic and inflammatory diseases.
Collapse
Affiliation(s)
- Daigo Tsubokawa
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
28
|
Li W, Xu H, Shao J, Chen J, Lin Y, Zheng Z, Wang Y, Luo W, Liang G. Discovery of alantolactone as a naturally occurring NLRP3 inhibitor to alleviate NLRP3-driven inflammatory diseases in mice. Br J Pharmacol 2023; 180:1634-1647. [PMID: 36668704 DOI: 10.1111/bph.16036] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/14/2022] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND PURPOSE The NLR family pyrin domain-containing 3 (NLRP3) inflammasome is activated in many inflammatory conditions. So far, no low MW compounds inhibiting NLRP3 have entered clinical use. Identification of naturally occurring NLRP3 inhibitors may be beneficial to the design and development of compounds targeting NLRP3. Alantolactone is a phytochemical from a traditional Chinese medicinal plant with anti-inflammatory activity, but its precise target remains unclear. EXPERIMENTAL APPROACH A bank of phytochemicals was screened for inhibitors of NLRP3-driven production of IL-1β in cultures of bone-marrow-derived macrophages from female C57BL/6 mice. Models of gouty arthritis and acute lung injury in male C57BL/6J mice were used to determine the in vivo effects of the most potent compound. KEY RESULTS Among the 150 compounds screened in vitro, alantolactone exhibited the highest inhibitory activity against LPS + ATP-induced production of IL-1β in macrophages, suppressing IL-1β secretion, caspase-1 activation and pyroptosis. Alantolactone directly bound to the NACHT domain of NLRP3 to inhibit activation and assembly of NLRP3 inflammasomes. Molecular simulation analysis suggested that Arg335 in NLRP3 was a critical residue for alantolactone binding, leading to suppression of NLRP3-NEK7 interaction. In vivo studies confirmed significant alleviation by alantolactone of two NLRP3-driven inflammatory conditions, acute lung injury and gouty arthritis. CONCLUSION AND IMPLICATIONS The phytochemical alantolactone inhibited activity of NLRP3 inflammasomes by directly targeting the NACHT domain of NLRP3. Alantolactone shows great potential in the treatment of NLRP3-driven diseases and could lead to the development of novel NLRP3 inhibitors.
Collapse
Affiliation(s)
- Weifeng Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haowen Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jingjing Shao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiahao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yimin Lin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiwei Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
29
|
Ren X, Tao M, Liu X, Zhang L, Li M, Hai Z. Caspase-1-responsive fluorescence biosensors for monitoring endogenous inflammasome activation. Biosens Bioelectron 2023; 219:114812. [PMID: 36272346 DOI: 10.1016/j.bios.2022.114812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
Abstract
The activation of inflammasome leads to secretion of inflammatory factors and cell pyroptosis that are critical in the pathogenesis of various chronic and acute inflammatory diseases. Recruitment and activation of caspase-1 is a marker of inflammasome activation. However, there is still lack of real-time and efficient methods to detect the activation of inflammasome, especially in vivo. Herein, we developed two activatable caspase-1-responsive fluorescence biosensors, WEHD-HCy and YVAD-HCy, to specifically monitor the activation of inflammasome in vivo. Our in vitro study demonstrated that WEHD-HCy and YVAD-HCy can sensitively and specifically respond to caspase-1 activation. Moreover, these biosensors can efficiency and specifically activated in the common inflammatory disease model, including inflammatory bowel disease, Salmonella infection, and acute arthritis. In particular, WEHD-HCy is more advantageous than YVAD-HCy to specifically image of caspase-1 activity both in vitro and in vivo. These caspase-1-responsive fluorescence biosensors provide an efficient, rapid, and in situ tool for monitoring inflammasome activation, and have the potential to be suitable for clinical diagnosis of various inflammatory diseases associated with inflammasome activation.
Collapse
Affiliation(s)
- Xingxing Ren
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510145, China
| | - Menglin Tao
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Xiaoming Liu
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510145, China
| | - Lele Zhang
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Mingsong Li
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510145, China.
| | - Zijuan Hai
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China.
| |
Collapse
|
30
|
Zhang Y, Xu X, Cheng H, Zhou F. AIM2 and Psoriasis. Front Immunol 2023; 14:1085448. [PMID: 36742336 PMCID: PMC9889639 DOI: 10.3389/fimmu.2023.1085448] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease occurring worldwide, with multiple systemic complications, which seriously affect the quality of life and physical and mental health of patients. The pathogenesis of psoriasis is related to the environment, genetics, epigenetics, and dysregulation of immune cells such as T cells, dendritic cells (DCs), and nonimmune cells such as keratinocytes. Absent in melanoma 2 (AIM2), a susceptibility gene locus for psoriasis, has been strongly linked to the genetic and epigenetic aspects of psoriasis and increased in expression in psoriatic keratinocytes. AIM2 was found to be activated in an inflammasome-dependent way to release IL-1β and IL-18 to mediate inflammation, and to participate in immune regulation in psoriasis, or in an inflammasome-independent way by regulating the function of regulatory T(Treg) cells or programming cell death in keratinocytes as well as controlling the proliferative state of different cells. AIM2 may also play a role in the recurrence of psoriasis by trained immunity. In this review, we will elaborate on the characteristics of AIM2 and how AIM2 mediates the development of psoriasis.
Collapse
Affiliation(s)
- Yuxi Zhang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xiaoqing Xu
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hui Cheng
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Fusheng Zhou
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| |
Collapse
|
31
|
Zhang J, Zeng S, Wang P, Chen Y, Zeng C. NLRP3: A Promising Therapeutic Target for Inflammatory Bowel Disease. Curr Drug Targets 2023; 24:1106-1116. [PMID: 37946354 DOI: 10.2174/0113894501255960231101105113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/06/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023]
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis, is an intestinal disease with complicated pathological mechanisms. The incidence of IBD has been increasing in recent years, which has a significant negative impact on the lives of patients. Therefore, it is particularly important to find new therapeutic targets and innovative drugs for the development of IBD. Recent studies have revealed that NLRP3 inflammatory vesicles can play an important role in maintaining intestinal homeostasis and sustaining the intestinal immune response in IBD. On the one hand, aberrant activation of NLRP3 inflammatory vesicles may cause excessive immune response by converting caspase-1, proIL-18, and proIL-1β to their active forms and releasing pro-inflammatory cytokines to stimulate the development and progression of IBD, and we can improve IBD by targeting blockade of NLRP3 activation. On the other hand, NLRP3 may also play an enter protective role by maintaining the homeostasis of the intestinal immune system. In this paper, we reviewed the activation mechanism of NLRP3 inflammasome, and the effects of NLRP3 inflammasome activation on IBD are discussed from two different perspectives: pathology and protection. At the same time, we listed the effects of direct inhibitors, indirect inhibitors, and natural inhibitors of NLRP3 inflammasome on IBD in combination with cutting-edge advances and clinical practice results, providing new targets and new ideas for the clinical treatment of IBD.
Collapse
Affiliation(s)
- Jiayu Zhang
- Department of Gastroenterology, Digestive Disease Hospital, the First Affiliated Hospital of Nanchang University, Nanchang, China
- Huankui Academy of Nanchang University, Nanchang, China
| | - Shuyan Zeng
- Department of Gastroenterology, Digestive Disease Hospital, the First Affiliated Hospital of Nanchang University, Nanchang, China
- Huankui Academy of Nanchang University, Nanchang, China
| | - Peng Wang
- Department of Gastroenterology, Digestive Disease Hospital, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Youxiang Chen
- Department of Gastroenterology, Digestive Disease Hospital, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chunyan Zeng
- Department of Gastroenterology, Digestive Disease Hospital, the First Affiliated Hospital of Nanchang University, Nanchang, China
- Huankui Academy of Nanchang University, Nanchang, China
| |
Collapse
|
32
|
Paeoniflorin alleviates inflammatory response in IBS-D mouse model via downregulation of the NLRP3 inflammasome pathway with involvement of miR-29a. Heliyon 2022; 8:e12312. [PMID: 36590561 PMCID: PMC9800317 DOI: 10.1016/j.heliyon.2022.e12312] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Paeoniflorin has been traditionally used to treat pain and immunologic derangement in China. However, its detailed mechanism remains to be illuminated. We investigated the mechanism by which paeoniflorin alleviates the inflammatory response in a mouse model of irritable bowel syndrome with predominant diarrhea (IBS-D). C57BL/6 wild type (WT) and miR-29a knockout (KO) mice were randomly divided into control, model, rifaximin, and paeoniflorin groups (n = 7). IBS-D model was induced by single intracolonic instillation of 0.1 mL trinitro-benzene-sulfonic acid (TNBS, 50 mg/mL) combined with restraint stress for seven consecutive days. The treatment groups received rifaximin (100 mg/kg) and paeoniflorin (50 mg/kg) via intragastric administration for seven days, respectively. The results showed that the fecal water content, fecal pellet output, visceral sensitivity, and histopathological score after paeoniflorin treatment were lower than those of the model group in both WT and miR-29a KO mice (P < 0.05). In both lineage mice, damage was observed in the colon tissues of model group, while paeoniflorin treatment partially ameliorated the tissue damage. Serum levels of DAO, DLA, IL-1β, IL-18, TNF-α, and MPO were decreased after paeoniflorin treatment (P < 0.05), with miR-29a KO mice in a lower level compared with that of WT mice. RT-PCR showed that the relative expression of miR-29a, NF-κB (p65), NLRP3, ASC, caspase-1, IL-1β, and TNF-α was downregulated while NKRF was upregulated after paeoniflorin treatment (P < 0.05). Immunohistochemistry showed that intestinal epithelial protein levels of NLRP3, ASC, and caspase-1 decreased while those of Claudin-1 and ZO-1 increased in the paeoniflorin treatment group (P < 0.05). In general, compared with WT mice, NLRP3 inflammasome pathway targets was in much lower expression level than miR-29a KO mice. In conclusion, paeoniflorin could inhibit abnormal activation of the NLRP3 inflammasome pathway by inhibiting miR-29a in IBS-D, thereby relieving the inflammatory response of the intestinal mucosa and reconstructing the intestinal epithelial barrier.
Collapse
|
33
|
Knepp B, Ander BP, Jickling GC, Hull H, Yee AH, Ng K, Rodriguez F, Carmona-Mora P, Amini H, Zhan X, Hakoupian M, Alomar N, Sharp FR, Stamova B. Gene expression changes implicate specific peripheral immune responses to Deep and Lobar Intracerebral Hemorrhages in humans. BRAIN HEMORRHAGES 2022; 3:155-176. [PMID: 36936603 PMCID: PMC10019834 DOI: 10.1016/j.hest.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The peripheral immune system response to Intracerebral Hemorrhage (ICH) may differ with ICH in different brain locations. Thus, we investigated peripheral blood mRNA expression of Deep ICH, Lobar ICH, and vascular risk factor-matched control subjects (n = 59). Deep ICH subjects usually had hypertension. Some Lobar ICH subjects had cerebral amyloid angiopathy (CAA). Genes and gene networks in Deep ICH and Lobar ICH were compared to controls. We found 774 differentially expressed genes (DEGs) and 2 co-expressed gene modules associated with Deep ICH, and 441 DEGs and 5 modules associated with Lobar ICH. Pathway enrichment showed some common immune/inflammatory responses between locations including Autophagy, T Cell Receptor, Inflammasome, and Neuroinflammation Signaling. Th2, Interferon, GP6, and BEX2 Signaling were unique to Deep ICH. Necroptosis Signaling, Protein Ubiquitination, Amyloid Processing, and various RNA Processing terms were unique to Lobar ICH. Finding amyloid processing pathways in blood of Lobar ICH patients suggests peripheral immune cells may participate in processes leading to perivascular/vascular amyloid in CAA vessels and/or are involved in its removal. This study identifies distinct peripheral blood transcriptome architectures in Deep and Lobar ICH, emphasizes the need for considering location in ICH studies/clinical trials, and presents potential location-specific treatment targets.
Collapse
Affiliation(s)
- Bodie Knepp
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Bradley P. Ander
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Glen C. Jickling
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada
| | - Heather Hull
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Alan H. Yee
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Kwan Ng
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Fernando Rodriguez
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Paulina Carmona-Mora
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Hajar Amini
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Xinhua Zhan
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Marisa Hakoupian
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Noor Alomar
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Frank R. Sharp
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Boryana Stamova
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| |
Collapse
|
34
|
Pagliari C, Kanashiro-Galo L, Sotto MN. Inflammasome and Inflammatory Programmed Cell Death in Chromoblastomycosis. Mycopathologia 2022; 188:63-70. [PMID: 36273348 DOI: 10.1007/s11046-022-00679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/05/2022] [Indexed: 10/24/2022]
Abstract
Chromoblastomycosis (CBM) is a chronic, progressive fungal disease of the skin and subcutaneous tissue caused by a group of dematiaceous fungi. Verrucous lesions present parasite-rich granulomas and predominance of a Th2 patterns of cytokines. The inflammasome constitutes a macromolecular protein complex that play a role in the activation of caspase 1 that cleaves pro-IL1β and pro-IL18, essential mediators of inflammation, and also activates pyroptosis. We intended to explore the presence and a possible role of inflammasome elements in cutaneous human lesions in CBM, considering the expression of IL1β, IL18, caspase 1, NLRP1, and also RIPK3, a key downstream component of necroptosis signaling. 35 skin biopsies of cutaneous lesions of verrucous form of CBM and 10 biopsies from normal skin were selected. The diagnosis was based on histological and clinical analysis. An immunohistochemical protocol was performed. The histopathological analysis evidenced epidermis with hyperkeratosis, irregular acanthosis, and micro abscesses. The dermis presented suppurative granulomas and inflammatory infiltrate composed by giant cells, macrophages, epithelioid cells, lymphocytes, and some eosinophils. Positive cells were distributed in the inflammatory infiltrate, with an increased number of cells expressing caspase 1, IL1β and IL18. Cells expressing RIPK3 and NLRP1 were less frequent. The intense presence of caspase 1, IL1β and IL18, allied to NLRP1 expression, suggest that inflammasome and pyroptosis could play a role in the immune response against fungal agents of CBM. Our results, allied to data from literature, could suggest that inflammasome-mediated response and pyroptosis could be a target to be explored to decrease CBM lesions.
Collapse
|
35
|
Qin Y, Pan L, Qin T, Ruan H, Zhang Y, Zhang Y, Li J, Yang J, Li W. Pan-cancer analysis of AIM2 inflammasomes with potential implications for immunotherapy in human cancer: A bulk omics research and single cell sequencing validation. Front Immunol 2022; 13:998266. [PMID: 36248785 PMCID: PMC9559585 DOI: 10.3389/fimmu.2022.998266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe absent in melanoma 2 (AIM2) inflammasome is a multi-protein platform that recognizes aberrant cytoplasmic double-stranded DNA(dsDNA) and induces cytokine maturation, release, and pyroptosis. Some studies found that the AIM2 inflammasome was a double-edged sword in many cancers. However, there have been fewer studies on AIM2 inflammasomes in pan-cancer.MethodsGene expression was analyzed using The Cancer Genome Atlas (TCGA) database and The Genotype-Tissue Expression (GTEx) database. Immunohistochemistry (IHC) was used to validate the expression of the AIM2. We used the survival curve to explore the prognostic significance of the AIM2 inflammasomes in pan-cancer. Mutations and methylation of AIM2 inflammasome-related genes (AIM2i-RGs) were also comprehensively analyzed. Single sample gene set enrichment analysis was used to calculate the AIM2 inflammasomes score and explore the correlation of the AIM2 inflammasomes score with immune-related genes and immune infiltrations. The function of AIM2 inflammasomes in pan-cancer was analyzed at the single-cell level. Single-cell transcriptome sequencing (scRNA-seq) data was used to assess the activation state of the AIM2 inflammasomes in the tumor microenvironment.ResultsWe found that AIM2i-RGs were aberrantly expressed in tumors and were strongly associated with prognosis. In pan-cancer, the expression of AIM2i-RGs was positively associated with copy number variation and negatively associated with methylation. In AIM2i-RGs, missense mutations were the predominant type of single nucleotide polymorphism. Moreover, we found that the drugs dimethyloxallyl glycine (DMOG) and Z-LNle-CHO may be sensitive to the AIM2 inflammasomes. The AIM2 inflammasomes score was significantly and positively correlated with the tumor immunity score and the stroma score. In most tumors, the AIM2 inflammasomes score was significantly and positively correlated with CD8+ T cell abundance in the tumor microenvironment. Additionally, the AIM2 inflammasomes score was significantly correlated with immune checkpoint genes in pan-cancer as well as immune checkpoint therapy-related markers including tumor mutational burden (TMB), microsatellite instability(MSI), and tumor immune dysfunction and exclusion(TIDE). scRNA-seq analysis suggested that AIM2 inflammasomes differ significantly among different cells in the tumor microenvironment. IHC confirmed low expression of AIM2 in colorectal cancer.DiscussionAIM2 inflammasomes may be a new target for future tumor therapy It is likely involved in tumor development, and its high expression may serve as a predictor of tumor immunotherapy efficacy.
Collapse
Affiliation(s)
- Yan Qin
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region & Research center of Health Management, Guangxi Academy of Medical Sciences, Nanning, China
| | - Liuxian Pan
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region & Research center of Health Management, Guangxi Academy of Medical Sciences, Nanning, China
| | - Tianyu Qin
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hanyi Ruan
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yujie Zhang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yan Zhang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jianli Li
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region & Research center of Health Management, Guangxi Academy of Medical Sciences, Nanning, China
| | - Jianrong Yang
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region & Research center of Health Management, Guangxi Academy of Medical Sciences, Nanning, China
- *Correspondence: Wei Li, ; Jianrong Yang,
| | - Wei Li
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region & Research center of Health Management, Guangxi Academy of Medical Sciences, Nanning, China
- *Correspondence: Wei Li, ; Jianrong Yang,
| |
Collapse
|
36
|
Li W, Jin K, Luo J, Xu W, Wu Y, Zhou J, Wang Y, Xu R, Jiao L, Wang T, Yang G. NF-κB and its crosstalk with endoplasmic reticulum stress in atherosclerosis. Front Cardiovasc Med 2022; 9:988266. [PMID: 36204587 PMCID: PMC9530249 DOI: 10.3389/fcvm.2022.988266] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis (AS) is a common cardiovascular disease with complex pathogenesis, in which multiple pathways and their interweaving regulatory mechanism remain unclear. The primary transcription factor NF-κB plays a critical role in AS via modulating the expression of a series of inflammatory mediators under various stimuli such as cytokines, microbial antigens, and intracellular stresses. Endoplasmic reticulum (ER) stress, caused by the disrupted synthesis and secretion of protein, links inflammation, metabolic signals, and other cellular processes via the unfolded protein response (UPR). Both NF-κB and ER stress share the intersection regarding their molecular regulation and function and are regarded as critical individual contributors to AS. In this review, we summarize the multiple interactions between NF-κB and ER stress activation, including the UPR, NLRP3 inflammasome, and reactive oxygen species (ROS) generation, which have been ignored in the pathogenesis of AS. Given the multiple links between NF-κB and ER stress, we speculate that the integrated network contributes to the understanding of molecular mechanisms of AS. This review aims to provide an insight into these interactions and their underlying roles in the progression of AS, highlighting potential pharmacological targets against the atherosclerotic inflammatory process.
Collapse
Affiliation(s)
- Wenjing Li
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Kehan Jin
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jichang Luo
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Wenlong Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Yujie Wu
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jia Zhou
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yilin Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ran Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Department of Interventional Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Liqun Jiao,
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Tao Wang,
| | - Ge Yang
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
- Tao Wang,
| |
Collapse
|
37
|
NLRP3 Inflammasome/Pyroptosis: A Key Driving Force in Diabetic Cardiomyopathy. Int J Mol Sci 2022; 23:ijms231810632. [PMID: 36142531 PMCID: PMC9501057 DOI: 10.3390/ijms231810632] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Diabetic cardiomyopathy (DCM), a serious diabetic complication, is a kind of low-grade inflammatory cardiovascular disorder. Due to the high risk of morbidity and mortality, DCM has demanded the attention of medical researchers worldwide. The pathophysiological nature of DCM is intricate, and the genesis and development of which are a consequence of the coaction of many factors. However, the exact pathogenesis mechanism of DCM remains unclear. Pyroptosis is a newly identified programmed cell death (PCD) that is directly related to gasdermin D(GSDMD). It is characterized by pore formation on the cell plasma membrane, the release of inflammatory mediators, and cell lysis. The initiation of pyroptosis is closely correlated with NOD-like receptor 3 (NLRP3) activation, which activates caspase-1 and promotes the cleaving of GSDMD. In addition to adjusting the host’s immune defense, NLRP3 inflammasome/pyroptosis plays a critical role in controlling the systemic inflammatory response. Recent evidence has indicated that NLRP3 inflammasome/pyroptosis has a strong link with DCM. Targeting the activation of NLRP3 inflammasome or pyroptosis may be a hopeful therapeutic strategy for DCM. The focus of this review is to summarize the relevant mechanisms of pyroptosis and the relative contributions in DCM, highlighting the potential therapeutic targets in this field.
Collapse
|
38
|
Yu Y, Dong H, Zhang Y, Sun J, Li B, Chen Y, Feng M, Yang X, Gao S, Jiang W. MicroRNA-223 downregulation promotes HBx-induced podocyte pyroptosis by targeting the NLRP3 inflammasome. Arch Virol 2022; 167:1841-1854. [PMID: 35731327 DOI: 10.1007/s00705-022-05499-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/21/2022] [Indexed: 11/02/2022]
Abstract
Hepatitis B virus (HBV) and its related protein, HBV X (HBx), play an important role in podocyte injury in HBV-associated glomerulonephritis (HBV-GN). The microRNA MiR-223 is expressed in several diseases, including HBV-associated disease, while the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome plays a major role in pyroptosis. In this study, we investigated the function and mechanism of action of miR-223 in HBx-induced podocyte pyroptosis. A quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) assay showed that miR-223 was downregulated in HBx-transfected podocytes. Transfection with an miR-223 mimic abolished the expression of the NLRP3 inflammasome and the cytokines that are released as a result of NLRP3 overexpression. Moreover, transfection with HBx and NLRP3 overexpression plasmids increased the expression of pyroptosis-related proteins, especially in the presence of miR-223 inhibitors. Thus, miR-223 downregulation plays an important role in HBx-induced podocyte pyroptosis by targeting the NLRP3 inflammasome, suggesting that miR-223 is a potential therapeutic target for alleviating HBV-GN inflammation.
Collapse
Affiliation(s)
- Yani Yu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Hui Dong
- Health Management Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Yue Zhang
- Department of Stomatology, Qingdao Municipal Hospital Group, Qingdao, 266003, Shandong, China
| | - Jingyi Sun
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Baoshuang Li
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Yueqi Chen
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Moxuan Feng
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Xiaoqian Yang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Shengbo Gao
- Department of Nephrology, The People's Hospital of Changle County, Weifang, 262400, Shandong, China
| | - Wei Jiang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China.
| |
Collapse
|
39
|
miR-181a-5p Inhibits Pyroptosis in Sepsis-Induced Acute Kidney Injury through Downregulation of NEK7. J Immunol Res 2022; 2022:1825490. [PMID: 35991122 PMCID: PMC9385359 DOI: 10.1155/2022/1825490] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/27/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by the uncontrolled inflammation, easily affecting the kidney. Sepsis-induced acute kidney injury (S-AKI) has high morbidity and mortality, of which the pathophysiological mechanisms have not been completely illuminated, leading to nonspecific therapies. Specific microRNAs were related with the pathogenesis of AKI. However, only limited studies focused on the pyroptosis in the context of S-AKI. The in vitro LPS-induced HK-2 cell model and in vivo CLP-induced mouse model were established. qRT-PCR, Western blot, ELISA, and RNA pulldown were used for expression examination. Multiple biological databases were used for miRNA screening. H&E staining and IHC staining were performed. The LPS-induced HK-2 cells showed significantly increased (P < 0.01) fluorescence intensity of N-GSDMD and ASC compared with the HK-2 cells. The expression of NLRP3, NEK7, ASC, active caspase-1, and N-GSDMD was significantly enhanced (P < 0.05) and the inflammatory factors including IL-18, IL-1β, and THF-α were all increased in LPS-induced HK-2 cells and CLP-induced mice. Renal edema, serum Cr and BUN, and expression of KIM-1 and NGAL were significantly higher (P < 0.05) in CLP-induced S-AKI mice than the sham group. miR-101-3p, miR-144-3p, miR-181a-5p, miR-4262, and miR-513b-5p could inhibit NEK7. NEK7 is an interacting protein of miRNA-181a-5p. miR-181a-5p inhibits pyroptosis of the LPS-induced HK-2 cells through downregulation of NEK7. Pyroptosis of HK-2 cells promotes inflammation. miR-181a-5p inhibits pyroptosis through downregulation of NEK7 in LPS-induced HK-2 cells and CLP-induced mice. Our study indicated miR-181a-5p as a new potential therapeutic target for S-AKI therapy.
Collapse
|
40
|
Li H, Guan Y, Liang B, Ding P, Hou X, Wei W, Ma Y. Therapeutic potential of MCC950, a specific inhibitor of NLRP3 inflammasome. Eur J Pharmacol 2022; 928:175091. [PMID: 35714692 DOI: 10.1016/j.ejphar.2022.175091] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
Abstract
NOD-like receptor protein 3 (NLRP3), an important intracellular pattern recognition receptor, is a component of the NLRP3 inflammasome along with apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) and pro-caspase-1. Previous studies have shown that dysregulation of NLRP3 inflammasome may be associated with several human diseases, and therefore blocking NLRP3 inflammasome activation may represent a therapeutic strategy for various diseases. MCC950 is a specific small-molecule inhibitor that selectively blocks activation of the NLRP3 inflammasome. In recent years, research on MCC950 has expanded; its targets are gradually being elucidated, and its metabolism and toxicity have been a focus of study. Preclinical research of MCC950 has yielded promising findings, and MCC950 has shown good efficacy in the treatment of autoimmune diseases, cardiovascular diseases, metabolic diseases and other diseases. Furthermore, clinical trials of MCC950 and other inhibitors of NLRP3 inflammasome have also been conducted. In this review, we discuss the drug targets, metabolism, toxicity and preclinical and clinical research advances of MCC950. We further discuss the clinical therapeutic potential of MCC950 to provide insights for the further study and application of MCC950.
Collapse
Affiliation(s)
- Hao Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Yanling Guan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Bo Liang
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, No.81 Meishan Road, Hefei, Anhui, 230032, China
| | - Peng Ding
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, 230032, Anhui, China
| | - Xin Hou
- School of Medicine, Ningbo University, Ningbo, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China.
| | - Yang Ma
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China.
| |
Collapse
|
41
|
Cui Y, Yu H, Bu Z, Wen L, Yan L, Feng J. Focus on the Role of the NLRP3 Inflammasome in Multiple Sclerosis: Pathogenesis, Diagnosis, and Therapeutics. Front Mol Neurosci 2022; 15:894298. [PMID: 35694441 PMCID: PMC9175009 DOI: 10.3389/fnmol.2022.894298] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/05/2022] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is initiated with an aberrant innate immune response in the central nervous system (CNS) and is involved in many neurological diseases. Inflammasomes are intracellular multiprotein complexes that can be used as platforms to induce the maturation and secretion of proinflammatory cytokines and pyroptosis, thus playing a pivotal role in neuroinflammation. Among the inflammasomes, the nucleotide-binding oligomerization domain-, leucine-rich repeat- and pyrin domain-containing 3 (NLRP3) inflammasome is well-characterized and contributes to many neurological diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD), and ischemic stroke. MS is a chronic autoimmune disease of the CNS, and its hallmarks include chronic inflammation, demyelination, and neurodegeneration. Studies have demonstrated a relationship between MS and the NLRP3 inflammasome. To date, the pathogenesis of MS is not fully understood, and clinical studies on novel therapies are still underway. Here, we review the activation mechanism of the NLRP3 inflammasome, its role in MS, and therapies targeting related molecules, which may be beneficial in MS.
Collapse
|
42
|
Challagundla N, Saha B, Agrawal-Rajput R. Insights into inflammasome regulation: cellular, molecular, and pathogenic control of inflammasome activation. Immunol Res 2022; 70:578-606. [PMID: 35610534 DOI: 10.1007/s12026-022-09286-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
Maintenance of immune homeostasis is an intricate process wherein inflammasomes play a pivotal role by contributing to innate and adaptive immune responses. Inflammasomes are ensembles of adaptor proteins that can trigger a signal following innate sensing of pathogens or non-pathogens eventuating in the inductions of IL-1β and IL-18. These inflammatory cytokines substantially influence the antigen-presenting cell's costimulatory functions and T helper cell differentiation, contributing to adaptive immunity. As acute and chronic disease conditions may accompany parallel tissue damage, we analyze the critical role of extracellular factors such as cytokines, amyloids, cholesterol crystals, etc., intracellular metabolites, and signaling molecules regulating inflammasome activation/inhibition. We develop an operative framework for inflammasome function and regulation by host cell factors and pathogens. While inflammasomes influence the innate and adaptive immune components' interplay modulating the anti-pathogen adaptive immune response, pathogens may target inflammasome inhibition as a survival strategy. As trapped between health and diseases, inflammasomes serve as promising therapeutic targets and their modus operandi serves as a scientific rationale for devising better therapeutic strategies.
Collapse
Affiliation(s)
- Naveen Challagundla
- Immunology lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382007, India
| | - Bhaskar Saha
- National Centre for Cell Science, Lab-5, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Reena Agrawal-Rajput
- Immunology lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382007, India.
| |
Collapse
|
43
|
A Pro-Inflammatory Signature Constitutively Activated in Monogenic Autoinflammatory Diseases. Int J Mol Sci 2022; 23:ijms23031828. [PMID: 35163749 PMCID: PMC8836675 DOI: 10.3390/ijms23031828] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 12/03/2022] Open
Abstract
Autoinflammatory diseases (AIDs) are disorders characterised by recurrent inflammatory episodes in charge of different organs with no apparent involvement of autoantibodies or antigen-specific T lymphocytes. Few common clinical features have been identified among all monogenic AIDs (mAIDs), while the search for a common molecular pattern is still ongoing. The aim of this study was to increase knowledge on the inflammatory pathways in the development of mAIDs in order to identify possible predictive or diagnostic biomarkers for each disease and to develop future preventive and therapeutic strategies. Using protein array-based systems, we evaluated two signalling pathways known to be involved in inflammation and a wide range of inflammatory mediators (pro-inflammatory cytokines and chemokines) in a cohort of 23 patients affected by different mAIDs, as FMF, TRAPS, MKD, Blau syndrome (BS), and NLRP12D. Overall, we observed upregulation of multiple signalling pathway intermediates at protein levels in mAIDs patients’ PBMCs, compared with healthy controls, with significant differences also between patients. FMF, TRAPS, and BS presented also peculiar activations of inflammatory pathways that can distinguish them. MAPK pathway activation, however, seems to be a common feature. The serum level of cytokines and chemokines produced clear differences between patients with distinct diseases, which can help distinguish each autoinflammatory disease. The FMF cytokine production profile appears broader than that of TRAPS, which, in turn, has higher cytokine levels than BS. Our findings suggest an ongoing subclinical inflammation related to the abnormal and constitutive signalling pathways and define an elevated inflammatory cytokine signature. Moreover, the upregulation of Th17-related cytokines emphasises the important role for Th17 and/or Th17-like cells also in monogenic AIDs.
Collapse
|
44
|
Wang JY, Xing Y, Li MY, Zhang ZH, Jin HL, Ma J, Lee JJ, Zhong Y, Zuo HX, Jin X. Panaxadiol inhibits IL-1β secretion by suppressing zinc finger protein 91-regulated activation of non-canonical caspase-8 inflammasome and MAPKs in macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114715. [PMID: 34648898 DOI: 10.1016/j.jep.2021.114715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The use of Panax ginseng C.A.Mey. in traditional Chinese medicine dates back to about 5000 years ago thanks to its several beneficial and healing properties. Panaxadiol is a triterpenoid sapogenin monomer found in the roots of Panax ginseng C.A.Mey. and has been proven to have various bio-activities such as anti-inflammatory, anti-tumour and neuroprotective effects. AIM OF THE STUDY The present study focuses on investigating the inflammation inhibitory effect and mechanism of panaxadiol by regulating zinc finger protein 91-regulated activation of non-canonical caspase-8 inflammasome and MAPKs in macrophages. MATERIALS AND METHODS In vitro, the underlying mechanisms by which panaxadiol inhibits ZFP91-regulated IL-1β expression were investigated using molecular docking, western blotting, RT-PCR, ELISA, immunofluorescence, and immunoprecipitation assays. In vivo, colitis was induced by oral administration of DSS in drinking water, and peritonitis was induced by an intraperitoneal injection of alum. Recombinant adeno-associated virus (AAV serotype 9) vector was used to establish ZFP91 knockdown mouse. RESULTS We confirmed that panaxadiol inhibited IL-1β secretion by suppressing ZFP91 in macrophages. Further analysis revealed that panaxadiol inhibited IL-1β secretion by suppressing ZFP91-regulated activation of non-canonical caspase-8 inflammasome. Meanwhile, panaxadiol inhibited IL-1β secretion by suppressing ZFP91-regulated activation of MAPKs. In vivo, prominent anti-inflammatory effects of panaxadiol were demonstrated in a DSS induced acute colitis mouse model and in an alum-induced peritonitis model by suppressing ZFP91-regulated secretion of inflammatory mediators, consistent with the results of the AAV-ZFP91 knockdown in mice. CONCLUSIONS We report for the first time that panaxadiol inhibited IL-1β secretion by suppressing ZFP91-regulated activation of non-canonical caspase-8 inflammasome and MAPKs, providing evidence for anti-inflammation mechanism of panaxadiol treatment for inflammatory diseases.
Collapse
Affiliation(s)
- Jing Ying Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Yue Xing
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Ming Yue Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Zhi Hong Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Hong Lan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Jung Joon Lee
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Yi Zhong
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Hong Xiang Zuo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
45
|
Deets KA, Nichols Doyle R, Rauch I, Vance RE. Inflammasome activation leads to cDC1-independent cross-priming of CD8 T cells by epithelial cell-derived antigen. eLife 2021; 10:e72082. [PMID: 34939932 PMCID: PMC8719880 DOI: 10.7554/elife.72082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022] Open
Abstract
The innate immune system detects pathogens and initiates adaptive immune responses. Inflammasomes are central components of the innate immune system, but whether inflammasomes provide sufficient signals to activate adaptive immunity is unclear. In intestinal epithelial cells (IECs), inflammasomes activate a lytic form of cell death called pyroptosis, leading to epithelial cell expulsion and the release of cytokines. Here, we employed a genetic system to show that simultaneous antigen expression and inflammasome activation specifically in IECs is sufficient to activate CD8+ T cells. By genetic elimination of direct T cell priming by IECs, we found that IEC-derived antigens were cross-presented to CD8+ T cells. However, cross-presentation of IEC-derived antigen to CD8+ T cells only partially depended on IEC pyroptosis. In the absence of inflammasome activation, cross-priming of CD8+ T cells required Batf3+ dendritic cells (conventional type one dendritic cells [cDC1]), whereas cross-priming in the presence of inflammasome activation required a Zbtb46+ but Batf3-independent cDC population. These data suggest the existence of parallel inflammasome-dependent and inflammasome-independent pathways for cross-presentation of IEC-derived antigens.
Collapse
Affiliation(s)
- Katherine A Deets
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Randilea Nichols Doyle
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Isabella Rauch
- Department of Molecular Microbiology and Immunology, Oregon Health and Science UniversityPortlandUnited States
| | - Russell E Vance
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Cancer Research Laboratory, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
46
|
Sun R, Zhou Y, Cui Q. Comparative analysis of aneurysm subtypes associated genes based on protein-protein interaction network. BMC Bioinformatics 2021; 22:587. [PMID: 34895131 PMCID: PMC8665538 DOI: 10.1186/s12859-021-04513-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/01/2021] [Indexed: 11/10/2022] Open
Abstract
The arterial aneurysm refers to localized dilation of blood vessel wall and is common in general population. The majority of aneurysm cases remains asymptomatic until a sudden rupture which is usually fatal and of extremely high mortality (~ 50-60%). Therefore, early diagnosis, prevention and management of aneurysm are in urgent need. Unfortunately, current understanding of disease driver genes of various aneurysm subtypes is still limited, and without appropriate biomarkers and drug targets no specialized drug has been developed for aneurysm treatment. In this research, aneurysm subtypes were analyzed based on protein-protein interaction network to better understand aneurysm pathogenesis. By measuring network-based proximity of aneurysm subtypes, we identified a relevant closest relationship between aortic aneurysm and aortic dissection. An improved random walk method was performed to prioritize candidate driver genes of each aneurysm subtype. Thereafter, transcriptomes of 6 human aneurysm subtypes were collected and differential expression genes were identified to further filter potential driver genes. Functional enrichment of above driver genes indicated a general role of ubiquitination and programmed cell death in aneurysm pathogenesis. Especially, we further observed participation of BCL-2-mediated apoptosis pathway and caspase-1 related pyroptosis in the development of cerebral aneurysm and aneurysmal subarachnoid hemorrhage in corresponding transcriptomes.
Collapse
Affiliation(s)
- Ruya Sun
- Department of Biomedical Informatics, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-Coding RNA Medicine, Peking University Health Science Center Beijing, Beijing, China.
| | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-Coding RNA Medicine, Peking University Health Science Center Beijing, Beijing, China
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-Coding RNA Medicine, Peking University Health Science Center Beijing, Beijing, China.
| |
Collapse
|
47
|
Inhibitory Role of Berberine, an Isoquinoline Alkaloid, on NLRP3 Inflammasome Activation for the Treatment of Inflammatory Diseases. Molecules 2021; 26:molecules26206238. [PMID: 34684819 PMCID: PMC8537060 DOI: 10.3390/molecules26206238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/26/2022] Open
Abstract
The pyrin domain-containing multiprotein complex NLRP3 inflammasome, consisting of the NLRP3 protein, ASC adaptor, and procaspase-1, plays a vital role in the pathophysiology of several inflammatory disorders, including neurological and metabolic disorders, chronic inflammatory diseases, and cancer. Several phytochemicals act as promising anti-inflammatory agents and are usually regarded to have potential applications as complementary or alternative therapeutic agents against chronic inflammatory disorders. Various in vitro and in vivo studies have reported the anti-inflammatory role of berberine (BRB), an organic heteropentacyclic phytochemical and natural isoquinoline, in inhibiting NLRP3 inflammasome-dependent inflammation against many disorders. This review summarizes the mechanism and regulation of NLRP3 inflammasome activation and its involvement in inflammatory diseases, and discusses the current scientific evidence on the repressive role of BRB on NLRP3 inflammasome pathways along with the possible mechanism(s) and their potential in counteracting various inflammatory diseases.
Collapse
|
48
|
Zhang B, Zheng F, Liu A, Li Z, Zheng F, Liu Q, Yang L, Chen K, Wang Y, Zhang Z, He Q, Zhan J. Activation of CB2 receptor inhibits pyroptosis and subsequently ameliorates cecal ligation and puncture-induced sepsis. Int Immunopharmacol 2021; 99:108038. [PMID: 34364304 DOI: 10.1016/j.intimp.2021.108038] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/12/2021] [Accepted: 07/29/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND Cannabinoid receptor 2 (CB2), whose activities are upregulated during sepsis, may be related to the regulation of inflammatory programmed cell death called pyroptosis. The aim of this study is to investigate the role of CB2 activation in attenuation of inflammation through inhibiting pyroptosis in cecal ligation puncture (CLP)-induced sepsis andlipopolysaccharide (LPS) + ATP-stimulated macrophages. METHODS C57BL/6 mice were subjected to CLP procedure and treated with CB2 agonist HU308 and CB2 antagonist AM630. Lung tissues were collected for analyses of lung W/D ratio, inflammatory factors levels, and pyroptosis-related protein expression. Murine bone-marrow-derived macrophages (BMDM) were treated with LPS and ATP to construct a septic model in vitro in the presence of HU308 and AM630 for assessment of cell injury, cytokine levels and pyroptosis-related protein expression accordingly. To verify the relationship between CB2 receptors and pyroptosis in the process of inflammatory response, BMDM were transduced with CB2 receptors knockdown lentiviral vectors in the presence of HU308 and AM630 for assessment of pyroptosis-related protein expression. RESULTS CB2 activation ameliorated the release of inflammatory mediators. The results showed that CLP-induced pyroptosis was elevated, and CB2 agonist HU308 treatment inhibited the pyroptosis activity through a decrease of the protein levels of NLRP3 as well as caspase-1 and GSDMD activation. Similar results were obtained in BMDM after LPS and ATP treatment. Treatment with CB2 knockdown lentiviral particles prevented the HU308-induced decreases in cell pyroptosis, demonstrating that endogenous CB2 receptors are required for the cannabinoid-induced cell protection. CONCLUSIONS CB2 receptors activation plays a protective role in sepsis through inhibition of pyroptosis. The effect of CB2 receptors against pyroptosis depends on the existence of endogenous CB2 receptors.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Feng Zheng
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Anpeng Liu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Zhen Li
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Fei Zheng
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Qiangsheng Liu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Liu Yang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Kai Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Yanlin Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Qianwen He
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, Hubei, People's Republic of China.
| | - Jia Zhan
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
49
|
Jafarzadeh A, Jafarzadeh S, Nemati M. Therapeutic potential of ginger against COVID-19: Is there enough evidence? JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2021. [PMCID: PMC8492833 DOI: 10.1016/j.jtcms.2021.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In addition to the respiratory system, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strikes other systems, including the digestive, circulatory, urogenital, and even the central nervous system, as its receptor angiotensin-converting enzyme 2 (ACE2) is expressed in various organs, such as lungs, intestine, heart, esophagus, kidneys, bladder, testis, liver, and brain. Different mechanisms, in particular, massive virus replication, extensive apoptosis and necrosis of the lung-related epithelial and endothelial cells, vascular leakage, hyper-inflammatory responses, overproduction of pro-inflammatory mediators, cytokine storm, oxidative stress, downregulation of ACE2, and impairment of the renin-angiotensin system contribute to the COVID-19 pathogenesis. Currently, COVID-19 is a global pandemic with no specific anti-viral treatment. The favorable capabilities of the ginger were indicated in patients suffering from osteoarthritis, neurodegenerative disorders, rheumatoid arthritis, type 2 diabetes, respiratory distress, liver diseases and primary dysmenorrheal. Ginger or its compounds exhibited strong anti-inflammatory and anti-oxidative influences in numerous animal models. This review provides evidence regarding the potential effects of ginger against SARS-CoV-2 infection and highlights its antiviral, anti-inflammatory, antioxidative, and immunomodulatory impacts in an attempt to consider this plant as an alternative therapeutic agent for COVID-19 treatment.
Collapse
|
50
|
Keshavarz Shahbaz S, Koushki K, Ayati SH, Bland AR, Bezsonov EE, Sahebkar A. Inflammasomes and Colorectal Cancer. Cells 2021; 10:2172. [PMID: 34571825 PMCID: PMC8467678 DOI: 10.3390/cells10092172] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/22/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammasomes are important intracellular multiprotein signaling complexes that modulate the activation of caspase-1 and induce levels of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18 in response to pathogenic microorganisms and molecules that originated from host proteins. Inflammasomes play contradictory roles in the development of inflammation-induced cancers. Based on several findings, inflammasomes can initiate and promote carcinogenesis. On the contrary, inflammasomes also exhibit anticancer effects by triggering pyroptosis and immunoregulatory functions. Herein, we review extant studies delving into different functions of inflammasomes in colorectal cancer development.
Collapse
Affiliation(s)
- Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Science, Qazvin 3419759811, Iran;
| | - Khadijeh Koushki
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
| | - Seyed Hassan Ayati
- Immunobiochemistry Lab, Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
| | - Abigail R. Bland
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand;
| | - Evgeny E. Bezsonov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia;
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 1313199137, Iran
- School of Medicine, The University of Western Australia, Perth 6009, Australia
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| |
Collapse
|