1
|
Chen JJ, Shi P, Cui ZC, Jiang N, Ma J. CircRNA_0044556 affects the sensitivity of triple-negative breast cancer cells to paclitaxel by regulating miR-665. J Chemother 2025; 37:238-246. [PMID: 38850033 DOI: 10.1080/1120009x.2024.2345028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 06/09/2024]
Abstract
CircRNAs have been implicated in the development of resistance in triple-negative breast cancer (TNBC). However, the association between circRNA_0044556 and paclitaxel (PTX) resistance in TNBC is still limited. Therefore, the purpose of this study was to investigate the effect of circRNA_0044556 on biological function and PTX resistance in TNBC cells. PTX-resistant TNBC cells (MDA-MB-231/PTX) were obtained by continuously exposing MDA-MB-231 cells to increasing paclitaxel levels. The expression levels of circRNA_0044556 and miR-665 were measured by qRT-PCR. The regulatory relationship between miR-665 and circRNA_0044556 was verified by biological information website analysis and double-luciferase reporter gene detection experiments. MTT assay, clone assay, flow cytometry and Western blot analysis were used to evaluate the influence of cell biological function. Elevated circRNA_0044556 was observed in TNBC, and paclitaxel increased the expression of circRNA_0044556 in TNBC cells. In TNBC, circRNA_0044556 acted as a ceRNA for miR-665. In addition, low expression of circRNA_0044556 combined with miR-665 inhibited the proliferation of TNBC cells and paclitaxel-resistant TNBC cells while inducing cell death. Our study demonstrated that the downregulation of circRNA_0044556 inhibits the malignant progression of TNBC cells and paclitaxel resistance via miR-665. Thus, circRNA_0044556 may be a potential therapeutic target for PTX-resistance TNBC.
Collapse
Affiliation(s)
- Jing-Jing Chen
- Department of Breast Surgery (No.1), Tangshan People's Hospital, Tangshan, China
| | - Peng Shi
- Department of Urology, Tangshan People's Hospital, Tangshan, China
| | - Zhi-Chao Cui
- Department of Breast Surgery (No.1), Tangshan People's Hospital, Tangshan, China
| | - Nan Jiang
- Department of Breast Surgery (No.1), Tangshan People's Hospital, Tangshan, China
| | - Jie Ma
- Department of Breast Surgery (No.1), Tangshan People's Hospital, Tangshan, China
| |
Collapse
|
2
|
Xu Q, Ma L, Streuer A, Altrock E, Schmitt N, Rapp F, Klär A, Nowak V, Obländer J, Weimer N, Palme I, Göl M, Zhu HH, Hofmann WK, Nowak D, Riabov V. Machine learning-based in-silico analysis identifies signatures of lysyl oxidases for prognostic and therapeutic response prediction in cancer. Cell Commun Signal 2025; 23:169. [PMID: 40186284 PMCID: PMC11971788 DOI: 10.1186/s12964-025-02176-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/26/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Lysyl oxidases (LOX/LOXL1-4) are crucial for cancer progression, yet their transcriptional regulation, potential therapeutic targeting, prognostic value and involvement in immune regulation remain poorly understood. This study comprehensively evaluates LOX/LOXL expression in cancer and highlights cancer types where targeting these enzymes and developing LOX/LOXL-based prognostic models could have significant clinical relevance. METHODS We assessed the association of LOX/LOXL expression with survival and drug sensitivity via analyzing public datasets (including bulk and single-cell RNA sequencing data of six datasets from Gene Expression Omnibus (GEO), Chinese Glioma Genome Atlas (CGGA) and Cancer Genome Atlas Program (TCGA)). We performed comprehensive machine learning-based bioinformatics analyses, including unsupervised consensus clustering, a total of 10 machine-learning algorithms for prognostic prediction and the Connectivity map tool for drug sensitivity prediction. RESULTS The clinical significance of the LOX/LOXL family was evaluated across 33 cancer types. Overexpression of LOX/LOXL showed a strong correlation with tumor progression and poor survival, particularly in glioma. Therefore, we developed a novel prognostic model for glioma by integrating LOX/LOXL expression and its co-expressed genes. This model was highly predictive for overall survival in glioma patients, indicating significant clinical utility in prognostic assessment. Furthermore, our analysis uncovered a distinct LOXL2-overexpressing malignant cell population in recurrent glioma, characterized by activation of collagen, laminin, and semaphorin-3 pathways, along with enhanced epithelial-mesenchymal transition. Apart from glioma, our data revealed the role of LOXL3 overexpression in macrophages and in predicting the response to immune checkpoint blockade in bladder and renal cancers. Given the pro-tumor role of LOX/LOXL genes in most analyzed cancers, we identified potential therapeutic compounds, such as the VEGFR inhibitor cediranib, to target pan-LOX/LOXL overexpression in cancer. CONCLUSIONS Our study provides novel insights into the potential value of LOX/LOXL in cancer pathogenesis and treatment, and particularly its prognostic significance in glioma.
Collapse
Affiliation(s)
- Qingyu Xu
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany.
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Ling Ma
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Alexander Streuer
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Eva Altrock
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Nanni Schmitt
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Felicitas Rapp
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Alessa Klär
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Verena Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Julia Obländer
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Nadine Weimer
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Iris Palme
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Melda Göl
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Hong-Hu Zhu
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Chinese Institutes for Medical Research, Beijing, China
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Vladimir Riabov
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| |
Collapse
|
3
|
Liu M, Wang J, Liu M. Lysyl oxidase inhibitors in colorectal cancer progression. Transl Oncol 2025; 52:102233. [PMID: 39675250 PMCID: PMC11713484 DOI: 10.1016/j.tranon.2024.102233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/29/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024] Open
Abstract
The lysine oxidase (LOX) family, consisting of LOX and LOX-like-1-4 (LOXL1-LOXL4), catalyses the cross-linking reaction of collagen and elastin in the extracellular matrix (ECM). Numerous studies have demonstrated that LOX family members are dysregulated in a variety of cancers, including colorectal cancer (CRC), and play a key role in cancer cell migration, proliferation, invasion and metastasis. Targeting LOX family proteins with specific inhibitors has therefore been developed as a new therapeutic strategy for cancer. In this paper, we review the role of LOX enzymes in the development and progression of CRC. In addition, we address recent advances in the development of LOX/LOXL inhibitors, highlighting the potential use of this inhibitor as an effective and complementary treatment for CRC.
Collapse
Affiliation(s)
- Muxian Liu
- Department of Gastroenterology, Dongguan Tungwah Hospital, Dongguan City 523000, Guangdong, China
| | - Jie Wang
- Department of Gastroenterology, Dongguan Tungwah Hospital, Dongguan City 523000, Guangdong, China
| | - Meihong Liu
- Department of Gastroenterology, Dongguan Tungwah Hospital, Dongguan City 523000, Guangdong, China.
| |
Collapse
|
4
|
Dorjkhorloo G, Shiraishi T, Erkhem-Ochir B, Sohda M, Okami H, Yamaguchi A, Shioi I, Komine C, Nakazawa N, Shibasaki Y, Okada T, Osone K, Sano A, Sakai M, Ogawa H, Katayama A, Oyama T, Yokobori T, Shirabe K, Saeki H. High levels of fibrotic tumor components are associated with recurrence and intratumoral immune status in advanced colorectal cancer patients. Sci Rep 2024; 14:30735. [PMID: 39730445 DOI: 10.1038/s41598-024-80489-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/19/2024] [Indexed: 12/29/2024] Open
Abstract
The importance of collagen and elastin remains incompletely understood concerning tumor immunity in cancer tissues. This study explored the clinical significance of collagen and elastin deposition on tumor immunity in advanced colorectal cancer patients. The collagen and elastin contents were assessed simultaneously using elastic van Gieson (EVG) histochemical staining. Immunohistochemical staining was performed to measure the immune cell markers CD3, CD8, CD86, and CD163 in surgically resected primary tumors from 78 pT4 colorectal cancer patients. High collagen, elastin, and EVG scores are associated with aggressive characteristics and short disease-free survival. A high EVG score was identified as an independent predictor of poor disease-free survival. Furthermore, tumors with high collagen and EVG scores exhibited significantly fewer intratumoral CD3 + and CD8 + cells. Evaluating tumor fibrosis using the classical and straightforward EVG staining method could be a reliable predictor of recurrence in high-risk colorectal cancer patients with tumor immune tolerance.
Collapse
Affiliation(s)
- Gendensuren Dorjkhorloo
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Takuya Shiraishi
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Bilguun Erkhem-Ochir
- Research Program for Omics-based Medical Science, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Makoto Sohda
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | - Haruka Okami
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Arisa Yamaguchi
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Ikuma Shioi
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Chika Komine
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Nobuhiro Nakazawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Yuta Shibasaki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Takuhisa Okada
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Katsuya Osone
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Akihiko Sano
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Makoto Sakai
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hiroomi Ogawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Ayaka Katayama
- Department of Diagnostic Pathology, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Takehiko Yokobori
- Research Program for Omics-based Medical Science, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | - Ken Shirabe
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hiroshi Saeki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
5
|
Zou R, Lu J, Bai X, Yang Y, Zhang S, Wu S, Tang Z, Li K, Hua X. The epigenetic-modified downregulation of LOXL1 protein mediates EMT in bladder epithelial cells exposed to benzo[a]pyrene and its metabolite BPDE. Int Immunopharmacol 2024; 142:113232. [PMID: 39340995 DOI: 10.1016/j.intimp.2024.113232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Benzo[a]pyrene (B[a]P) is a well-known polycyclic aromatic hydrocarbon (PAH) pollutant with high carcinogenicity, widespread environmental presence, and significant threat to public health. Epidemiological studies have linked exposure to B[a]P and its metabolite 7,8-dihydroxy-9,10-epoxybenzo[a]pyrene (BPDE) to the development and progression of various cancers, including bladder cancer. However, its underlying mechanism remains unclear. Our study revealed that B[a]P and BPDE induced epithelial-mesenchymal transition (EMT), a critical early event in cell malignant transformation, involving a decrease in E-Cadherin and upregulation of N-Cadherin protein levels, leading to increased cell motility and migration in bladder epithelial cells. Further studies have indicated that LOXL1 DNA undergoes methylation and modification influenced by methyltransferase 3a (DNMT3a) and DNMT3b, resulting in decreased LOXL1 protein levels. The decreased LOXL1 promotes the zinc finger transcription factor SLUG, which then inhibits E-Cadherin protein levels and initiates the EMT process. Moreover, DNMT3a/3b expression appears to be influenced by intracellular oxidative stress levels. These findings suggest that exposure to B[a]P/BPDE promotes the EMT process through the pivotal factor LOXL1, thereby contributing to bladder carcinogenesis. Our study provides a theoretical basis for considering LOXL1 as a potential biomarker for early diagnosis and a novel target for the precise diagnosis and treatment of bladder cancer.
Collapse
Affiliation(s)
- Ronghao Zou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Juan Lu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xiaoyue Bai
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yuyao Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Shouyue Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Shuai Wu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhixin Tang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Kang Li
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xiaohui Hua
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
6
|
Sun Z, Chen G. Impact of heterogeneity in liver matrix and intrahepatic cells on the progression of hepatic fibrosis. Tissue Cell 2024; 91:102559. [PMID: 39293139 DOI: 10.1016/j.tice.2024.102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/05/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
Liver fibrosis is a disease with a high prevalence worldwide. The development of hepatic fibrosis results from a combination of factors within the liver, such as extracellular matrix (ECM) deposition, hepatic stellate cells (HSCs) activation, collagen cross-linking, and inflammatory response. Heterogeneity in fibrotic liver is the result of a combination of heterogeneity in the intrahepatic microenvironment as well as heterogeneous expression of fibrosis-associated enzymes and cells, complicating the study of the mechanisms underlying the progression of liver fibrosis. The role of this heterogeneity on the crosstalk between cells and matrix and on the fibrotic process is worth exploring. In this paper, we will describe the phenomenon and mechanism of heterogeneity of liver matrix and intrahepatic cells in the process of hepatic fibrosis and discuss the crosstalk between heterogeneous factors on the development of fibrosis. The elucidation of heterogeneity is important for a deeper understanding of the pathological mechanisms of liver fibrosis as well as for clinical diagnosis and targeted therapies.
Collapse
Affiliation(s)
- Zhongtao Sun
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
7
|
Jia X, Wang Y, Qiao Y, Jiang X, Li J. Nanomaterial-based regulation of redox metabolism for enhancing cancer therapy. Chem Soc Rev 2024; 53:11590-11656. [PMID: 39431683 DOI: 10.1039/d4cs00404c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Altered redox metabolism is one of the hallmarks of tumor cells, which not only contributes to tumor proliferation, metastasis, and immune evasion, but also has great relevance to therapeutic resistance. Therefore, regulation of redox metabolism of tumor cells has been proposed as an attractive therapeutic strategy to inhibit tumor growth and reverse therapeutic resistance. In this respect, nanomedicines have exhibited significant therapeutic advantages as intensively reported in recent studies. In this review, we would like to summarize the latest advances in nanomaterial-assisted strategies for redox metabolic regulation therapy, with a focus on the regulation of redox metabolism-related metabolite levels, enzyme activity, and signaling pathways. In the end, future expectations and challenges of such emerging strategies have been discussed, hoping to enlighten and promote their further development for meeting the various demands of advanced cancer therapies. It is highly expected that these therapeutic strategies based on redox metabolism regulation will play a more important role in the field of nanomedicine.
Collapse
Affiliation(s)
- Xiaodan Jia
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Wang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Qiao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xiue Jiang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Jinghong Li
- Beijing Institute of Life Science and Technology, Beijing 102206, P. R. China
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
8
|
Svajda L, Ranđelović I, Surguta SE, Baranyi M, Cserepes M, Tóvári J. Targeting hypoxia in combination with paclitaxel to enhance therapeutic efficacy in breast and ovarian cancer. Biomed Pharmacother 2024; 180:117601. [PMID: 39476764 DOI: 10.1016/j.biopha.2024.117601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/14/2024] Open
Abstract
The poor vascularization of solid tumors results in oxygen-deprived areas within the tumor mass. This phenomenon is defined as tumor hypoxia and is considered to be a major contributor to tumor progression in breast and ovarian cancers due to hypoxia-cascade-promoted increased metastasizing capacity. Hence, targeting hypoxia is a strategic cancer treatment approach, however, the hypoxia-modulating drugs face several limitations in monotherapies. Here, we investigated the impact of the potent hypoxia-inducible factor inhibitory compound acriflavine on tumor cell proliferation, migration, and metabolism under hypoxic conditions. We identified that acriflavine inhibited the proliferation of breast and ovarian tumor cells. To model the potential benefits of additional hypoxia response inhibition next to standard chemotherapy, we combined acriflavine with a frequently used chemotherapeutic agent, paclitaxel. In most breast and ovarian cancer cell lines used, we identified additive effects between the two drugs. The most significant findings were detected in triple-negative breast cancer cell lines, where we observed synergism. The drug combination effectively impeded tumor growth and metastasis formation in an in vivo orthotopic triple-negative breast cancer model as well. Additionally, we demonstrated that an epithelial-mesenchymal transition inhibitory drug, rolipram, combined with acriflavine and paclitaxel, notably reduced the motility of hypoxic triple-negative breast cancer cells. In conclusion, we identified novel drug combinations that can potentially combat triple-negative breast cancer by inhibiting hypoxia signaling and hindering cell migration and metastasis formation.
Collapse
Affiliation(s)
- Laura Svajda
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary; Doctoral School of Semmelweis University, Budapest, Hungary.
| | - Ivan Ranđelović
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Sára Eszter Surguta
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Marcell Baranyi
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Mihály Cserepes
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary; Doctoral School of Semmelweis University, Budapest, Hungary
| | - József Tóvári
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary; Doctoral School of Semmelweis University, Budapest, Hungary
| |
Collapse
|
9
|
Shen Y, Guan X, Li S, Hou X, Yu J, Yin H, Shan X, Han X, Wang L, Zhou B, Li X, Sun L, Zhang Y, Xu H, Yue W. Exploiting a tumor softening targeted bomb for mechanical gene therapy of chemoresistant Triple-Negative breast cancer. CHEMICAL ENGINEERING JOURNAL 2024; 498:155217. [DOI: 10.1016/j.cej.2024.155217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
10
|
Jiang D, Zhao J, Zheng J, Zhao Y, Le M, Qin D, Huang Q, Huang J, Zhao Q, Wang L, Dong X. LOX-mediated ECM mechanical stress induces Piezo1 activation in hypoxic-ischemic brain damage and identification of novel inhibitor of LOX. Redox Biol 2024; 76:103346. [PMID: 39260063 PMCID: PMC11414707 DOI: 10.1016/j.redox.2024.103346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) poses a significant challenge in neonatal medicine, often resulting in profound and lasting neurological deficits. Current therapeutic strategies for hypoxia-ischemia brain damage (HIBD) remain limited. Ferroptosis has been reported to play a crucial role in HIE and serves as a potential therapeutic target. However, the mechanisms underlying ferroptosis in HIBD remain largely unclear. In this study, we found that elevated lysyl oxidase (LOX) expression correlates closely with the severity of HIE, suggesting LOX as a potential biomarker for HIE. LOX expression levels and enzymatic activity were significantly increased in HI-induced neuronal models both in vitro and in vivo. Notably, we discovered that HI-induced brain tissue injury results in increased stiffness and observed a selective upregulation of the mechanosensitive ion channel Piezo1 in both brain tissue of HIBD and primary cortex neurons. Mechanistically, LOX increases its catalytic substrates, the Collagen I/III components, promoting extracellular matrix (ECM) remodeling and possibly mediating ECM cross-linking, which leads to increased stiffness at the site of injury and subsequent activation of the Piezo1 channel. Piezo1 senses these stiffness stimuli and then induces neuronal ferroptosis in a GPX4-dependent manner. Pharmacological inhibition of LOX or Piezo1 ameliorated brain neuronal ferroptosis and improved learning and memory impairments. Furthermore, we identified traumatic acid (TA) as a novel LOX inhibitor that effectively suppresses LOX enzymatic activity, mitigating neuronal ferroptosis and promoting synaptic plasticity. In conclusion, our findings elucidate a critical role for LOX-mediated ECM mechanical stress-induced Piezo1 activation in regulating ferroptotic cell death in HIBD. This mechanistic insight provides a basis for developing targeted therapies aimed at ameliorating neurological outcomes in neonates affected by HIBD.
Collapse
Affiliation(s)
- Dongya Jiang
- Model Animal Research Center, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Jing Zhao
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zheng
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingmin Zhao
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang, China
| | - Meini Le
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dani Qin
- Department of Pediatrics, Yixing People's Hospital, Yixing, China
| | - Qiong Huang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinyu Huang
- Department of Cardiology, Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University
| | - Qingshun Zhao
- Model Animal Research Center, Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Long Wang
- Department of Cardiology, Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University.
| | - Xiaohua Dong
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
11
|
Kozbor D, Winkler M, Malhotra N, Mistarz A, Wang S, Hutson A, Gambotto A, Abrams S, Singh P, Liu S, Odunsi K, Wang J. Consequences of the perivascular niche remodeling for tumoricidal T-cell trafficking into metastasis of ovarian cancer. RESEARCH SQUARE 2024:rs.3.rs-4940287. [PMID: 39372930 PMCID: PMC11451647 DOI: 10.21203/rs.3.rs-4940287/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The treatment-induced activation level within the perivascular tumor microenvironment (TME) that supports T-cell trafficking and optimal T-cell differentiation is unknown. We investigated the mechanisms by which inflammatory responses generated by tumor-specific T cells delivered to ovarian tumor-bearing mice alone or after oncolytic vaccinia virus-driven immunogenic cancer cell death affect antitumor efficacy. Analyses of the perivascular TME by spatially resolved omics technologies revealed reduced immunosuppression and increased tumoricidal T-cell trafficking and function after moderate inflammatory responses driven by a CXCR4 antagonist-armed oncolytic virus. Neither weak nor high inflammation created a permissive TME for T-cell trafficking. Notably, treatment-mediated differences in T-cell effector programs acquired within the perivascular TME contrasted with comparable antigenic priming in the tumor-draining lymph nodes regardless of the activation mode of antigen-presenting cells. These findings provide new insights into combinatorial treatment strategies that enable tumor-specific T cells to overcome multiple barriers for enhanced trafficking and control of tumor growth.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Song Liu
- Roswell Park Comprehensive Cancer Center
| | - Kunle Odunsi
- University of Chicago Medicine Comprehensive Cancer Center
| | | |
Collapse
|
12
|
Bharadwaj D, Mandal M. Tumor microenvironment: A playground for cells from multiple diverse origins. Biochim Biophys Acta Rev Cancer 2024; 1879:189158. [PMID: 39032537 DOI: 10.1016/j.bbcan.2024.189158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Tumor microenvironment is formed by various cellular and non-cellular components which interact with one another and form a complex network of interactions. Some of these cellular components also attain a secretory phenotype and release growth factors, cytokines, chemokines etc. in the surroundings which are capable of inducing even greater number of signalling networks. All these interactions play a decisive role in determining the course of tumorigenesis. The treatment strategies against cancer also exert their impact on the local microenvironment. Such interactions and anticancer therapies have been found to induce more deleterious outcomes like immunosuppression and chemoresistance in the process of tumor progression. Hence, understanding the tumor microenvironment is crucial for dealing with cancer and chemoresistance. This review is an attempt to develop some understanding about the tumor microenvironment and different factors which modulate it, thereby contributing to tumorigenesis. Along with summarising the major components of tumor microenvironment and various interactions taking place between them, it also throws some light on how the existing and potential therapies exert their impact on these dynamics.
Collapse
Affiliation(s)
- Deblina Bharadwaj
- Department of Biotechnology, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, Tamil Nadu, India.
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India.
| |
Collapse
|
13
|
Chu Y, Huang J, Pan D. LOXL3 Silencing Hampers the Metastasis and Angiogenesis of Gastric Cancer Cells Dependent on Ferroptosis Activation. Mol Biotechnol 2024:10.1007/s12033-024-01229-z. [PMID: 39192165 DOI: 10.1007/s12033-024-01229-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/21/2024] [Indexed: 08/29/2024]
Abstract
Gastric cancer (GC) remains a major unmet clinical problem accountable for considerable incidence and fatality rate. Lysyl oxidase-like 3 (LOXL3) has been recognized to be overexpressed in GC. Our work was meant to disclose the significance of LOXL3 in the advancement of GC and the likely action mechanism. LOXL3 expression in GC tissues and its correlation with the outcome of GC patients were investigated through bioinformatics tools. RT-qPCR and western blotting inspected LOXL3 expression in GC cells. CCK-8 method, EDU, as well as colony formation assays assayed cell proliferation. The capacities of cells to migrate and invade were appraised by wound healing and transwell assays, severally. Tube formation assay and ELISA measured angiogenesis. TBARS, C11 BODIPY staining, and FerroOrange estimated ferroptosis. Western blotting examined the expression of proteins implicated in metastasis and ferroptosis. The up-regulation of LOXL3 expression was noticed in GC tissues and cells, which was also associated with the poor outcome of GC patients. When LOXL3 was underexpressed, the proliferation, migration, invasion, epithelial-mesenchymal transition, and angiogenesis of GC cells were all halted. In addition, LOXL3 deletion resulted in the activation of ferroptosis in GC cells, and ferrostatin-1 (Fer-1), the specific ferroptosis inhibitor, compensated the suppressive role of LOXL3 down-regulation in the proliferation, metastasis, and angiogenesis of GC cells in vitro. All in all, knockdown of LOXL3 may serve an activator of ferroptosis to obstruct the aggressive process of GC.
Collapse
Affiliation(s)
- Yinyue Chu
- Department of Oncology, Suizhou Hospital, Hubei University of Medicine, 60 Longmen Street, Suizhou, 441300, Hubei, China
| | - Jian Huang
- Department of Gastrointestinal Surgery, Suizhou Hospital, Hubei University of Medicine, Suizhou, 441300, Hubei, China
| | - Dongfeng Pan
- Department of Oncology, Suizhou Hospital, Hubei University of Medicine, 60 Longmen Street, Suizhou, 441300, Hubei, China.
| |
Collapse
|
14
|
Shen Y, Yan J, Li L, Sun H, Zhang L, Li G, Wang X, Liu R, Wu X, Han B, Sun X, Liu J, Fan X. LOXL2-induced PEAR1 Ser891 phosphorylation suppresses CD44 degradation and promotes triple-negative breast cancer metastasis. J Clin Invest 2024; 134:e177357. [PMID: 39145451 PMCID: PMC11324313 DOI: 10.1172/jci177357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/20/2024] [Indexed: 08/16/2024] Open
Abstract
CD44 is associated with a high risk of metastasis, recurrence, and drug resistance in various cancers. Here we report that platelet endothelial aggregation receptor 1 (PEAR1) is a CD44 chaperone protein that protected CD44 from endocytosis-mediated degradation and enhances cleavage of the CD44 intracellular domain (CD44-ICD). Furthermore, we found that lysyl oxidase-like protein 2 (LOXL2), an endogenous ligand of PEAR1, bound to the PEAR1-EMI domain and facilitated the interaction between PEAR1 and CD44 by inducing PEAR1 Ser891 phosphorylation in a manner that was independent of its enzyme activity. Levels of PEAR1 protein and PEAR1 phosphorylation at Ser891 were increased in patients with triple-negative breast cancer (TNBC), were positively correlated with expression of LOXL2 and CD44, and were negatively correlated with overall survival. The level of PEAR1 Ser891 phosphorylation was identified as the best independent prognostic factor in TNBC patients. The prognostic efficacy of the combination of PEAR1 phosphorylation at Ser891 and CD44 expression was superior to that of PEAR1 phosphorylation at Ser891 alone. Blocking the interaction between LOXL2 and PEAR1 with monoclonal antibodies significantly inhibited TNBC metastasis, representing a promising therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Yingzhi Shen
- Department of Biochemistry and Molecular Cell Biology
| | - Jie Yan
- Department of Biochemistry and Molecular Cell Biology
| | - Lin Li
- Department of Biochemistry and Molecular Cell Biology
| | - Huiyan Sun
- Department of Biochemistry and Molecular Cell Biology
| | - Lin Zhang
- Department of Biochemistry and Molecular Cell Biology
| | - Guoming Li
- Department of Biochemistry and Molecular Cell Biology
| | - Xinxia Wang
- Department of Biochemistry and Molecular Cell Biology
| | - Ruoyan Liu
- Department of Biochemistry and Molecular Cell Biology
| | - Xuefeng Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and
| | - Baosan Han
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueqing Sun
- Department of Biochemistry and Molecular Cell Biology
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology
- Shanghai Synvida Biotechnology Co., Shanghai, China
| | - Xuemei Fan
- Department of Biochemistry and Molecular Cell Biology
| |
Collapse
|
15
|
Burchard PR, Ruffolo LI, Ullman NA, Dale BS, Dave YA, Hilty BK, Ye J, Georger M, Jewell R, Miller C, De Las Casas L, Jarolimek W, Perryman L, Byrne MM, Loria A, Marin C, Chávez Villa M, Yeh JJ, Belt BA, Linehan DC, Hernandez-Alejandro R. Pan-lysyl oxidase inhibition disrupts fibroinflammatory tumor stroma, rendering cholangiocarcinoma susceptible to chemotherapy. Hepatol Commun 2024; 8:e0502. [PMID: 39101793 PMCID: PMC11299993 DOI: 10.1097/hc9.0000000000000502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/11/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) features highly desmoplastic stroma that promotes structural and functional resistance to therapy. Lysyl oxidases (LOX, LOXL1-4) catalyze collagen cross-linking, thereby increasing stromal rigidity and facilitating therapeutic resistance. Here, we evaluate the role of lysyl oxidases in stromal desmoplasia and the effects of pan-lysyl oxidase (pan-LOX) inhibition in CCA. METHODS Resected CCA and normal liver specimens were analyzed from archival tissues. Spontaneous and orthotopic murine models of intrahepatic CCA (iCCA) were used to assess the impact of the pan-LOX inhibitor PXS-5505 in treatment and correlative studies. The functional role of pan-LOX inhibition was interrogated through in vivo and ex vivo assays. RESULTS All 5 lysyl oxidases are upregulated in CCA and reduced lysyl oxidase expression is correlated with an improved prognosis in resected patients with CCA. Spontaneous and orthotopic murine models of intrahepatic cholangiocarcinoma upregulate all 5 lysyl oxidase isoforms. Pan-LOX inhibition reversed mechanical compression of tumor vasculature, resulting in improved chemotherapeutic penetrance and cytotoxic efficacy. The combination of chemotherapy with pan-LOX inhibition increased damage-associated molecular pattern release, which was associated with improved antitumor T-cell responses. Pan-LOX inhibition downregulated macrophage invasive signatures in vitro, rendering tumor-associated macrophages more susceptible to chemotherapy. Mice bearing orthotopic and spontaneously occurring intrahepatic cholangiocarcinoma tumors exhibited delayed tumor growth and improved survival following a combination of pan-LOX inhibition with chemotherapy. CONCLUSIONS CCA upregulates all 5 lysyl oxidase isoforms, and pan-LOX inhibition reverses tumor-induced mechanical forces associated with chemotherapy resistance to improve chemotherapeutic efficacy and reprogram antitumor immune responses. Thus, combination therapy with pan-LOX inhibition represents an innovative therapeutic strategy in CCA.
Collapse
Affiliation(s)
- Paul R. Burchard
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Luis I. Ruffolo
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Nicholas A. Ullman
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Benjamin S. Dale
- Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Yatee A. Dave
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Bailey K. Hilty
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Jian Ye
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Mary Georger
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Rachel Jewell
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Christine Miller
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Luis De Las Casas
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Lara Perryman
- Drug Discovery, Syntara Ltd., Sydney, New South Wales, Australia
| | - Matthew M. Byrne
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Anthony Loria
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Chelsea Marin
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Mariana Chávez Villa
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Jen Jen Yeh
- Departments of Surgery and Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina System, Chapel Hill, North Carolina, USA
| | - Brian A. Belt
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - David C. Linehan
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, Division of Surgical Oncology, University of Rochester Medical Center, Rochester, New York, USA
| | - Roberto Hernandez-Alejandro
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Division of Solid Organ Transplant Surgery, Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
16
|
Serra-Bardenys G, Blanco E, Escudero-Iriarte C, Serra-Camprubí Q, Querol J, Pascual-Reguant L, Morancho B, Escorihuela M, Tissera NS, Sabé A, Martín L, Segura-Bayona S, Verde G, Aiese Cigliano R, Millanes-Romero A, Jerónimo C, Cebrià-Costa JP, Nuciforo P, Simonetti S, Viaplana C, Dienstmann R, Oliveira M, Peg V, Stracker TH, Arribas J, Canals F, Villanueva J, Di Croce L, García de Herreros A, Tian TV, Peiró S. LOXL2-mediated chromatin compaction is required to maintain the oncogenic properties of triple-negative breast cancer cells. FEBS J 2024; 291:2423-2448. [PMID: 38451841 DOI: 10.1111/febs.17112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/02/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Oxidation of histone H3 at lysine 4 (H3K4ox) is catalyzed by lysyl oxidase homolog 2 (LOXL2). This histone modification is enriched in heterochromatin in triple-negative breast cancer (TNBC) cells and has been linked to the maintenance of compacted chromatin. However, the molecular mechanism underlying this maintenance is still unknown. Here, we show that LOXL2 interacts with RuvB-Like 1 (RUVBL1), RuvB-Like 2 (RUVBL2), Actin-like protein 6A (ACTL6A), and DNA methyltransferase 1associated protein 1 (DMAP1), a complex involved in the incorporation of the histone variant H2A.Z. Our experiments indicate that this interaction and the active form of RUVBL2 are required to maintain LOXL2-dependent chromatin compaction. Genome-wide experiments showed that H2A.Z, RUVBL2, and H3K4ox colocalize in heterochromatin regions. In the absence of LOXL2 or RUVBL2, global levels of the heterochromatin histone mark H3K9me3 were strongly reduced, and the ATAC-seq signal in the H3K9me3 regions was increased. Finally, we observed that the interplay between these series of events is required to maintain H3K4ox-enriched heterochromatin regions, which in turn is key for maintaining the oncogenic properties of the TNBC cell line tested (MDA-MB-231).
Collapse
Affiliation(s)
- Gemma Serra-Bardenys
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Institut Bonanova FP Sanitaria, Consorci Mar Parc de Salut de Barcelona, Spain
| | - Enrique Blanco
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Spain
| | | | | | - Jessica Querol
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Laura Pascual-Reguant
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Spain
| | | | | | | | - Anna Sabé
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Luna Martín
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Gaetano Verde
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Alba Millanes-Romero
- Institute for Research in Biomedicine (IRB Barcelona) and Barcelona Institute of Science and Technology, Spain
| | - Celia Jerónimo
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Spain
- Institut de Recherches Cliniques de Montréal, Canada
| | | | - Paolo Nuciforo
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Sara Simonetti
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | | | - Mafalda Oliveira
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Vicente Peg
- Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Barcelona, Spain
- Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Travis H Stracker
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Joaquín Arribas
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Francesc Canals
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Tian V Tian
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Sandra Peiró
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
17
|
Wang L, Jiang W, Zhao S, Xie D, Chen Q, Zhao Q, Wu H, Luo J, Yang L. Sorafenib inhibits ossification of the posterior longitudinal ligament by blocking LOXL2-mediated vascularization. Bone Res 2024; 12:24. [PMID: 38594260 PMCID: PMC11004159 DOI: 10.1038/s41413-024-00327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 03/10/2024] [Accepted: 03/16/2024] [Indexed: 04/11/2024] Open
Abstract
Ossification of the Posterior Longitudinal Ligament (OPLL) is a degenerative hyperostosis disease characterized by the transformation of the soft and elastic vertebral ligament into bone, resulting in limited spinal mobility and nerve compression. Employing both bulk and single-cell RNA sequencing, we elucidate the molecular characteristics, cellular components, and their evolution during the OPLL process at a single-cell resolution, and validate these findings in clinical samples. This study also uncovers the capability of ligament stem cells to exhibit endothelial cell-like phenotypes in vitro and in vivo. Notably, our study identifies LOXL2 as a key regulator in this process. Through gain-and loss-of-function studies, we elucidate the role of LOXL2 in the endothelial-like differentiation of ligament cells. It acts via the HIF1A pathway, promoting the secretion of downstream VEGFA and PDGF-BB. This function is not related to the enzymatic activity of LOXL2. Furthermore, we identify sorafenib, a broad-spectrum tyrosine kinase inhibitor, as an effective suppressor of LOXL2-mediated vascular morphogenesis. By disrupting the coupling between vascularization and osteogenesis, sorafenib demonstrates significant inhibition of OPLL progression in both BMP-induced and enpp1 deficiency-induced animal models while having no discernible effect on normal bone mass. These findings underscore the potential of sorafenib as a therapeutic intervention for OPLL.
Collapse
Affiliation(s)
- Longqing Wang
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, PR China
| | - Wenhao Jiang
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, PR China
| | - Siyuan Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Dong Xie
- Department of Orthopaedics, No. 905 Hospital of PLA Navy, Shanghai, PR China
| | - Qing Chen
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, PR China
| | - Qi Zhao
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, PR China
| | - Hao Wu
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, PR China
| | - Jian Luo
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, PR China.
| | - Lili Yang
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, PR China.
| |
Collapse
|
18
|
Li C, Chen S, Fang X, Du Y, Guan XY, Lin R, Xu L, Lan P, Yan Q. LOXL1 promotes tumor cell malignancy and restricts CD8 + T cell infiltration in colorectal cancer. Cell Biol Toxicol 2024; 40:6. [PMID: 38267662 PMCID: PMC10808464 DOI: 10.1007/s10565-024-09840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is a leading cause of cancer mortality globally. Lymph node metastasis and immunosuppression are main factors of poor prognosis in CRC patients. Lysyl oxidase like 1 (LOXL1), part of the lysyl oxidase (LOX) family, plays a yet unclear role in CRC. This study aimed to identify effective biomarkers predictive of prognosis and efficacy of immunotherapy in CRC patients, and to elucidate the prognostic value, clinical relevance, functional and molecular features, and immunotherapy predictive role of LOXL1 in CRC and pan-cancer. METHODS Weighted gene co-expression network analysis (WGCNA) was employed to explore gene modules related to tumor metastasis and CD8 + T cell infiltration. LOXL1 emerged as a hub gene through differential gene expression and survival analysis. The molecular signatures, functional roles, and immunological characteristics affected by LOXL1 were analyzed in multiple CRC cohorts, cell lines and clinical specimens. Additionally, LOXL1's potential as an immunotherapy response indicator was assessed, along with its role in pan-cancer. RESULTS Turquoise module in WGCNA analysis was identified as the hub module associated with lymph node metastasis and CD8 + T cell infiltration. Aberrant elevated LOXL1 expression was observed in CRC and correlated with poorer differentiation status and prognosis. Molecular and immunological characterization found that LOXL1 might mediate epithelial-mesenchymal transition (EMT) process and immunosuppressive phenotypes of CRC. Functional study found that LOXL1 enhanced tumor cell proliferation, migration and invasion. Moreover, high LOXL1 levels corresponded to reduced CD8 + T cell infiltration and predicted poor clinical outcomes of immunotherapy. Similar trends were also observed at the pan-cancer level. CONCLUSIONS Our findings underscore the critical role of LOXL1 in modulating both malignancy and immunosuppression in CRC. This positions LOXL1 as a promising biomarker for predicting prognosis and the response to immunotherapy in CRC patients.
Collapse
Affiliation(s)
- Chenxi Li
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Room 703, Building No. 3, 26 Yuancun ERheng Road, Guangzhou, 510655, China
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Room 703, Building No. 3, 26 Yuancun ERheng Road, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Room 703, Building No. 3, 26 Yuancun ERheng Road, Guangzhou, 510655, China
| | - Siqi Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Room 703, Building No. 3, 26 Yuancun ERheng Road, Guangzhou, 510655, China
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Room 703, Building No. 3, 26 Yuancun ERheng Road, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Room 703, Building No. 3, 26 Yuancun ERheng Road, Guangzhou, 510655, China
| | - Xiaona Fang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yaqing Du
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | - Runhua Lin
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Liang Xu
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Ping Lan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Room 703, Building No. 3, 26 Yuancun ERheng Road, Guangzhou, 510655, China.
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Room 703, Building No. 3, 26 Yuancun ERheng Road, Guangzhou, 510655, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Room 703, Building No. 3, 26 Yuancun ERheng Road, Guangzhou, 510655, China.
- State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, China.
| | - Qian Yan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Room 703, Building No. 3, 26 Yuancun ERheng Road, Guangzhou, 510655, China.
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Room 703, Building No. 3, 26 Yuancun ERheng Road, Guangzhou, 510655, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Room 703, Building No. 3, 26 Yuancun ERheng Road, Guangzhou, 510655, China.
| |
Collapse
|
19
|
Fang C, Peng Z, Sang Y, Ren Z, Ding H, Yuan H, Hu K. Copper in Cancer: from transition metal to potential target. Hum Cell 2024; 37:85-100. [PMID: 37751026 DOI: 10.1007/s13577-023-00985-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
In recent years, with the continuous in-depth exploration of the molecular mechanisms of tumorigenesis, numerous potential new targets for cancer treatment have been identified, some of which have been further developed in clinical practice and have produced positive outcomes. Notably, researchers' initial motivation for studying copper metabolism in cancer stems from the fact that copper is a necessary trace element for organisms and is closely connected to body growth and metabolism. Moreover, over the past few decades, considerable progress has been made in understanding the molecular processes and correlations between copper and cancer. Certain achievements have been made in the development and use of relevant clinical medications. The concept of "cuproptosis," a novel concept that differs from previous forms of cell death, was first proposed by a group of scientists last year, offering fresh perspectives on the targeting capabilities of copper in the treatment of cancer. In this review, we introduced the fundamental physiological functions of copper, the key components of copper metabolism, and a summary of the current research contributions on the connection between copper and cancer. In addition, the development of new copper-based nanomaterials and their associated mechanisms of action are discussed. Finally, we described how the susceptibility of cancer cells to this metallic nutrition could be leveraged to further improve the existing cancer treatment paradigm in the new setting.
Collapse
Affiliation(s)
- Can Fang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Zhiwei Peng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Yaru Sang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zihao Ren
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Huiming Ding
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Haibo Yuan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Kongwang Hu
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, China.
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China.
| |
Collapse
|
20
|
Georgescu D, Lighezan DF, Rosca CI, Nistor D, Ancusa OE, Suceava I, Iancu MA, Kundnani NR. NASH/NAFLD-Related Hepatocellular Carcinoma: An Added Burden. Life (Basel) 2023; 14:25. [PMID: 38255641 PMCID: PMC10817629 DOI: 10.3390/life14010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequently found primary malignancy of the liver, showing an accelerated upward trend over the past few years and exhibiting an increasing relationship with metabolic syndrome, obesity, dyslipidemia and type 2 diabetes mellitus. The connection between these risk factors and the occurrence of HCC is represented by the occurrence of non-alcoholic fatty liver disease (NAFLD) which later, based on genetic predisposition and various triggers (including the presence of chronic inflammation and changes in the intestinal microbiome), may evolve into HCC. HCC in many cases is diagnosed at an advanced stage and can be an incidental finding. We present such a scenario in the case of a 41-year-old male patient who had mild obesity and mixed dyslipidemia, no family or personal records of digestive pathologies and who recently developed a history of progressive fatigue, dyspepsia and mild upper abdominal discomfort initially thought to be linked to post-COVID syndrome, as the patient had COVID-19 pneumonia a month prior. The abdominal ultrasound revealed a mild hepatomegaly with bright liver aspect of the right lobe (diffuse steatosis), a large zone of focal steatosis (segments IV, III and II) and a left lobe tumoral mass, highly suggestive of malignancy. Point shear wave elastography at the right lobe ruled out an end-stage chronic liver disease. Additional laboratory investigations, imaging studies (magnetic resonance imaging) and histopathological examination of liver fragments confirmed a highly aggressive HCC, with poorly differentiation-G3, (T4, N 1M 0) and stage IVA, associated with nonalcoholic steatohepatitis (NASH). A sorafenib course of treatment was attempted, but the patient discontinued it due to severe side effects. The subsequent evolution was extremely unfavorable, with rapid degradation, a few episodes of upper digestive bleeding, hepatic insufficiency and mortality in a couple of months. Conclusions: Diagnosis of NASH-related HCC is either an accidental finding or is diagnosed at an advanced stage. In order to earn time for a proper treatment, it becomes important to diagnose it at an early stage, for which regular check-ups should be performed in groups having the risk factors related to it. Patients suffering from obesity and mixed dyslipidemia should undergo periodic abdominal ultrasound examinations. This should be emphasized even more in the cases showing NASH. Complaints of any kind post-COVID-19 should be dealt with keenly as little is yet known about its virulence and its long-term side effects.
Collapse
Affiliation(s)
- Doina Georgescu
- Department of Internal Medicine I—Medical Semiotics I, Centre for Advanced Research in Cardiovascular Diseases and Hemostaseology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Daniel Florin Lighezan
- Department of Internal Medicine I—Medical Semiotics I, Centre for Advanced Research in Cardiovascular Diseases and Hemostaseology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Ciprian Ilie Rosca
- Department of Internal Medicine I—Medical Semiotics I, Centre for Advanced Research in Cardiovascular Diseases and Hemostaseology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Daciana Nistor
- Department of Functional Sciences, Physiology, Centre of Imuno-Physiology and Biotechnologies (CIFBIOTEH), “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Centre for Gene and Cellular Therapies in Cancer, 3000723 Timisoara, Romania
| | - Oana Elena Ancusa
- Department of Internal Medicine I—Medical Semiotics I, Centre for Advanced Research in Cardiovascular Diseases and Hemostaseology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Ioana Suceava
- Department of Internal Medicine I—Medical Semiotics I, Centre for Advanced Research in Cardiovascular Diseases and Hemostaseology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Mihaela Adela Iancu
- Department 5, Carol Davila University of Medicine and Pharmacy, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania
| | - Nilima Rajpal Kundnani
- Department of Cardiology—Discipline of Internal Medicine and Ambulatory Care, Prevention and Cardiovascular Recovery, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
- Research Centre of Timisoara Institute of Cardiovascular Diseases, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| |
Collapse
|
21
|
Ong KH, Hsieh YY, Lai HY, Sun DP, Chen TJ, Huang SKH, Tian YF, Chou CL, Shiue YL, Wu HC, Chan TC, Tsai HH, Li CF, Kuo YH. LAMC2 is a potential prognostic biomarker for cholangiocarcinoma. Oncol Lett 2023; 26:533. [PMID: 38020294 PMCID: PMC10655064 DOI: 10.3892/ol.2023.14120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Cholangiocarcinoma is a common malignancy with increasing incidence worldwide. Most patients are diagnosed at the advanced stage with poor survival rate. Laminin subunit γ2 (LAMC2) is a heparin binding-associated gene involved in tumorigenesis and has been implicated in the prognosis of various types of cancers. However, it is unclear whether expression of LAMC2 is associated with the clinical outcome of patients with cholangiocarcinoma. In the present study, the role and prognostic value of LAMC2 expression in patients with cholangiocarcinoma was investigated. Clinical information and pathological characteristics were analyzed and the association between LAMC2 expression and clinical characteristics, pathological findings and patient outcomes, including metastasis-free and disease-specific survival, were investigated. Data from 182 patients with cholangiocarcinoma were evaluated. High LAMC2 expression was associated with higher tumor stage (P<0.001), large duct type (P=0.024) and poor histological grade (P=0.002). Kaplan-Meier analysis showed high LAMC2 expression was associated with lower overall (P=0.003), disease-specific (P=0.0025), local recurrence-free (P<0.0001) and metastasis-free survival (P<0.0001). Moreover, multivariate analysis demonstrated that increased LAMC2 expression was a significant predictive risk factor for overall [hazard ratio (HR) 1.713; P=0.034], disease-specific (HR 2.011; P=0.039), local recurrence-free (HR 2.721; P<0.001) and metastasis-free survival (HR 3.117; P<0.001). Gene enrichment analysis using Gene Ontology showed that terms associated with LAMC2 upregulation were 'regulation of platelet-derived growth factor receptor-βsignaling pathway' and 'platelet-derived growth factor receptor-β signaling pathway'. The present study indicated that LAMC2 was upregulated in cholangiocarcinoma tumor tissue and had an inverse association with overall, disease-specific, local recurrence-free and metastasis-free survival in patients with cholangiocarcinoma. These results suggested that LAMC2 may serve as a potential biomarker for cholangiocarcinoma.
Collapse
Affiliation(s)
- Khaa Hoo Ong
- Department of Surgery, Division of Gastroenterology and General Surgery, Chi Mei Medical Center, Tainan 710, Taiwan, R.O.C
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan 717, Taiwan, R.O.C
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan, R.O.C
| | - Yao-Yu Hsieh
- Division of Hematology and Oncology, Taipei Medical University Shuang Ho Hospital, New Taipei 23561, Taiwan, R.O.C
- Department of Internal Medicine, Division of Hematology and Oncology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Hong-Yue Lai
- Department of Pharmacology, School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Ding-Ping Sun
- Department of Surgery, Division of Gastroenterology and General Surgery, Chi Mei Medical Center, Tainan 710, Taiwan, R.O.C
| | - Tzu-Ju Chen
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan 717, Taiwan, R.O.C
- Department of Clinical Pathology, Division of Urology, Chi Mei Medical Center, Tainan 710, Taiwan, R.O.C
| | - Steven Kuan-Hua Huang
- Department of Surgery, Division of Urology, Chi Mei Medical Center, Tainan 710, Taiwan, R.O.C
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan, R.O.C
| | - Yu-Feng Tian
- Department of Surgery, Division of Colon and Rectal Surgery, Chi Mei Medical Center, Tainan 710, Taiwan, R.O.C
| | - Chia-Lin Chou
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan 717, Taiwan, R.O.C
- Department of Surgery, Division of Colon and Rectal Surgery, Chi Mei Medical Center, Tainan 710, Taiwan, R.O.C
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan, R.O.C
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan, R.O.C
| | - Hung-Chang Wu
- Department of Internal Medicine, Division of Hematology and Oncology, Chi-Mei Medical Center, Tainan 71004, Taiwan, R.O.C
- College of Pharmacy and Science, Chia Nan University, Tainan 71710, Taiwan, R.O.C
| | - Ti-Chun Chan
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan, R.O.C
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan, R.O.C
| | - Hsin-Hwa Tsai
- Department of Laboratory Medicine, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Chien-Feng Li
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan, R.O.C
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan, R.O.C
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan, R.O.C
- Trans-Omic Laboratory for Precision Medicine, Chi Mei Medical Center, Tainan 710, Taiwan, R.O.C
| | - Yu-Hsuan Kuo
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan, R.O.C
- Department of Internal Medicine, Division of Hematology and Oncology, Chi-Mei Medical Center, Tainan 71004, Taiwan, R.O.C
- College of Pharmacy and Science, Chia Nan University, Tainan 71710, Taiwan, R.O.C
| |
Collapse
|
22
|
Mitrofanova L, Makarov I, Goncharova E, Makarova T, Starshinova A, Kudlay D, Shlaykhto E. High Risk of Heart Tumors after COVID-19. Life (Basel) 2023; 13:2087. [PMID: 37895467 PMCID: PMC10608002 DOI: 10.3390/life13102087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
An emergence of evidence suggests that severe COVID-19 is associated with an increased risk of developing breast and gastrointestinal cancers. The aim of this research was to assess the risk of heart tumors development in patients who have had COVID-19. METHODS A comparative analysis of 173 heart tumors was conducted between 2016 and 2023. Immunohistochemical examination with antibodies against spike SARS-CoV-2 was performed on 21 heart tumors: 10 myxomas operated before 2020 (the control group), four cardiac myxomas, one proliferating myxoma, three papillary fibroelastomas, two myxofibrosarcomas, one chondrosarcoma resected in 2022-2023. Immunohistochemical analysis with antibodies against CD34 and CD68 was also conducted on the same 11 Post-COVID period heart tumors. Immunofluorescent examination with a cocktail of antibodies against spike SARS-CoV-2/CD34 and spike SARS-CoV-2/CD68 was performed in 2 cases out of 11 (proliferating myxoma and classic myxoma). RESULTS A 1.5-fold increase in the number of heart tumors by 2023 was observed, with a statistically significant increase in the number of myxomas. There was no correlation with vaccination, and no significant differences were found between patients from 2016-2019 and 2021-2023 in terms of gender, age, and cardiac rhythm dis-orders. Morphological examination revealed the expression of spike SARS-CoV-2 in tumor cells, endothelial cells, and macrophages in 10 out of 11 heart tumors. CONCLUSION The detection of SARS-CoV-2 persistence in endothelium and macrophages as well as in tumor cells of benign and malignant cardiac neoplasms, the increase in the number of these tumors, especially cardiac myxomas, after the pandemic by 2023 may indicate a trend toward an increased risk of cardiac neoplasms in COVID-19 patients, which re-quires further research on this issue and a search for new evidence.
Collapse
Affiliation(s)
- Lubov Mitrofanova
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (L.M.); (I.M.); (E.G.); (T.M.); (E.S.)
| | - Igor Makarov
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (L.M.); (I.M.); (E.G.); (T.M.); (E.S.)
| | - Ekaterina Goncharova
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (L.M.); (I.M.); (E.G.); (T.M.); (E.S.)
| | - Taiana Makarova
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (L.M.); (I.M.); (E.G.); (T.M.); (E.S.)
| | - Anna Starshinova
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (L.M.); (I.M.); (E.G.); (T.M.); (E.S.)
| | - Dmitry Kudlay
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University, 119992 Moscow, Russia;
- Institute of Immunology, 115478 Moscow, Russia
| | - Evgeny Shlaykhto
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (L.M.); (I.M.); (E.G.); (T.M.); (E.S.)
| |
Collapse
|
23
|
Lu Y, Deng Y, Ko H, Peng H, Lee H, Kuo MY, Cheng S. Lysyl oxidase-like 2 promotes stemness and enhances antitumor effects of gefitinib in head and neck cancer via IFIT1 and IFIT3. Cancer Sci 2023; 114:3957-3971. [PMID: 37496288 PMCID: PMC10551584 DOI: 10.1111/cas.15912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 06/22/2023] [Accepted: 07/09/2023] [Indexed: 07/28/2023] Open
Abstract
Lysyl oxidase-like 2 (LOXL2) is a matrix-remodeling enzyme that has recently been identified as an important regulator of tumor progression and metastasis. This study discovered that LOXL2 expression in oral squamous cell carcinoma (OSCC) tissues was significantly associated with tumor clinical stage, lymph node metastasis and patients' overall survival time. LOXL2-overexpressing human buccal SCC TW2.6 (TW2.6/LOXL2) and hypopharyngeal SCC FaDu (FaDu/LOXL2) cells exhibited enhanced migration, invasion, epithelial-mesenchymal transition (EMT), and cancer stem cell (CSC) phenotypes, independently of its enzymatic activity. Moreover, TW2.6/LOXL2 significantly increased tumor-initiating frequency in SCID mice. We further demonstrated that LOXL2 increased the levels of interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) and IFIT3 in TW2.6/LOXL2 and FaDu/LOXL2 cells. We also identified IFIT1 and IFIT3 as key downstream components of LOXL2 action in migration, invasion, EMT, and CSC phenotypes in TW2.6 and FaDu cells. Furthermore, a significant positive correlation between LOXL2 expression and IFIT1 and IFIT3 overexpression in human OSCC tissues was observed. In addition, TW2.6/LOXL2 and FaDu/LOXL2 cells were 3.3- to 3.6-fold more susceptible to the epidermal growth factor receptor (EGFR) inhibitor gefitinib than were their respective control cells. The antitumor effect of gefitinib on orthotopic TW2.6/LOXL2 xenograft tumor was fourfold higher than that on controls. Our results indicate that LOXL2 expression is a strong prognostic factor for OSCC and may be used as a marker to identify patients most likely to respond to EGFR-targeted therapy.
Collapse
Affiliation(s)
- Yi‐Jie Lu
- Graduate Institute of Oral Biology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Yi‐Ting Deng
- Department of DentistryNational Taiwan University Hospital Hsin‐Chu BranchHsin‐ChuTaiwan
| | - Hui‐Hsin Ko
- Department of DentistryNational Taiwan University Hospital Hsin‐Chu BranchHsin‐ChuTaiwan
| | - Hsin‐Hui Peng
- Department of DentistryNational Taiwan University Hospital Hsin‐Chu BranchHsin‐ChuTaiwan
| | - Hsiang‐Chieh Lee
- Graduate Institute of Photonics and OptoelectronicsNational Taiwan UniversityTaipeiTaiwan
| | - Mark Yen‐Ping Kuo
- Department of Dentistry, College of MedicineNational Taiwan UniversityTaipeiTaiwan
- Department of DentistryNational Taiwan University HospitalTaipeiTaiwan
| | - Shih‐Jung Cheng
- Graduate Institute of Oral Biology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
- Department of Dentistry, College of MedicineNational Taiwan UniversityTaipeiTaiwan
- Department of DentistryNational Taiwan University HospitalTaipeiTaiwan
| |
Collapse
|
24
|
Liu E, Li W, Jian LP, Yin S, Yang S, Zhao H, Huang W, Zhang Y, Zhou H. Identification of LOX as a candidate prognostic biomarker in Glioblastoma multiforme. Transl Oncol 2023; 36:101739. [PMID: 37544033 PMCID: PMC10423882 DOI: 10.1016/j.tranon.2023.101739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most malignant type of glioma. GBM tumors grow rapidly, have a high degree of malignancy, and are characterized by a fast disease progression. Unfortunately, there is a lack of effective treatments. An effective strategy for the treatment of GBM would be to identify key biomarkers correlating with the occurrence and progression of GBM and developing these biomarkers into therapeutic targets. METHOD AND RESULTS In this study, using integrated bioinformatics analysis, we identified differentially expressed genes (DEGs), including 130 genes that were upregulated in GBM compared to normal brain tissue, and 128 genes that were downregulated in GBM. Based on Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis, these genes were associated with regulation of tumor cell adhesion, differentiation, morphology in GBM and were mainly enriched in Complement and coagulation cascades pathway. The Search Tool for the Retrieval of Interacting Genes (STRING) database was used to construct a Protein-Protein Interaction network. Ten hub genes were identified, including FN1, CD44, MYC, CDK1, SERPINE1, COL3A1, COL1A2, LOX, POSTN and EZH2, all of which were significantly upregulated in GBM, these results were confirmed by oncomine database exploration. Alteration analysis of hub genes found that patients with alteration in at least one of the hub genes showed shorter median survival times (p = 0.013) and shorter median disease-free survival times (p = 2.488E-3) than patients without alterations in any of the hub genes. Multiple tests for survival analysis showed that among individual hub genes only expression of LOX was correlated with patient survival (P < 0.05).GDS4467 data set was used to analyze the expression of LOX in gliomas with different degrees of malignancy, and it was found that the expression level of LOX was positively correlated with the malignant degree of gliomas.By analyzing GDS 4535 data set showed that the expression level of LOX was positively correlated with the differentiation degree of GBM cells CONCLUSION: This research suggests that FN1, CD44, MYC, CDK1, SERPINE1, COL3A1, COL1A2, LOX, POSTN and EZH2 are key genes in GBM. However, only LOX is correlated with patient survival and promotes glioblastoma cell differentiation and tumor recurrence. LOX may be a candidate prognostic biomarker and potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Erheng Liu
- Neurosurgery Department, The First People's Hospital of Yunnan Province
| | - Wenjuan Li
- Department of Chemical Biology, Yunnan Technician College, Kunming 650500, Yunnan, China.
| | - Li-Peng Jian
- Neurosurgery Department, The First People's Hospital of Yunnan Province.
| | - Shi Yin
- Neurosurgery Department, The First People's Hospital of Yunnan Province.
| | - Shuaifeng Yang
- Neurosurgery Department, The First People's Hospital of Yunnan Province
| | - Heng Zhao
- Neurosurgery Department, The First People's Hospital of Yunnan Province
| | - Wei Huang
- Neurosurgery Department, The First People's Hospital of Yunnan Province.
| | - Yongfa Zhang
- Neurosurgery Department, The First People's Hospital of Yunnan Province.
| | - Hu Zhou
- Neurosurgery Department, The First People's Hospital of Yunnan Province.
| |
Collapse
|
25
|
Löser R, Kuchar M, Wodtke R, Neuber C, Belter B, Kopka K, Santhanam L, Pietzsch J. Lysyl Oxidases as Targets for Cancer Therapy and Diagnostic Imaging. ChemMedChem 2023; 18:e202300331. [PMID: 37565736 DOI: 10.1002/cmdc.202300331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/12/2023]
Abstract
The understanding of the contribution of the tumour microenvironment to cancer progression and metastasis, in particular the interplay between tumour cells, fibroblasts and the extracellular matrix has grown tremendously over the last years. Lysyl oxidases are increasingly recognised as key players in this context, in addition to their function as drivers of fibrotic diseases. These insights have considerably stimulated drug discovery efforts towards lysyl oxidases as targets over the last decade. This review article summarises the biochemical and structural properties of theses enzymes. Their involvement in tumour progression and metastasis is highlighted from a biochemical point of view, taking into consideration both the extracellular and intracellular action of lysyl oxidases. More recently reported inhibitor compounds are discussed with an emphasis on their discovery, structure-activity relationships and the results of their biological characterisation. Molecular probes developed for imaging of lysyl oxidase activity are reviewed from the perspective of their detection principles, performance and biomedical applications.
Collapse
Affiliation(s)
- Reik Löser
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Manuela Kuchar
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Robert Wodtke
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Christin Neuber
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Birgit Belter
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Klaus Kopka
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Lakshmi Santhanam
- Departments of Anesthesiology and Critical Care Medicine and Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Jens Pietzsch
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| |
Collapse
|
26
|
Ogarek N, Oboza P, Olszanecka-Glinianowicz M, Kocelak P. SARS-CoV-2 infection as a potential risk factor for the development of cancer. Front Mol Biosci 2023; 10:1260776. [PMID: 37753372 PMCID: PMC10518417 DOI: 10.3389/fmolb.2023.1260776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
The COVID-19 pandemic has a significant impact on public health and the estimated number of excess deaths may be more than three times higher than documented in official statistics. Numerous studies have shown an increased risk of severe COVID-19 and death in patients with cancer. In addition, the role of SARS-CoV-2 as a potential risk factor for the development of cancer has been considered. Therefore, in this review, we summarise the available data on the potential effects of SARS-CoV-2 infection on oncogenesis, including but not limited to effects on host signal transduction pathways, immune surveillance, chronic inflammation, oxidative stress, cell cycle dysregulation, potential viral genome integration, epigenetic alterations and genetic mutations, oncolytic effects and reactivation of dormant cancer cells. We also investigated the potential long-term effects and impact of the antiviral therapy used in COVID-19 on cancer development and its progression.
Collapse
Affiliation(s)
- Natalia Ogarek
- Pathophysiology Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, The Medical University of Silesia, Katowice, Poland
| | - Paulina Oboza
- Students’ Scientific Society at the Pathophysiology Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, The Medical University of Silesia, Katowice, Poland
| | - Magdalena Olszanecka-Glinianowicz
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, The Medical University of Silesia, Katowice, Poland
| | - Piotr Kocelak
- Pathophysiology Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, The Medical University of Silesia, Katowice, Poland
| |
Collapse
|
27
|
Kim EK, Koo JS. Expression of Amine Oxidase Proteins in Adrenal Cortical Neoplasm and Pheochromocytoma. Biomedicines 2023; 11:1896. [PMID: 37509535 PMCID: PMC10376964 DOI: 10.3390/biomedicines11071896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
We delved into the expression of amine oxidase family proteins and their potential significance in adrenal gland neoplasm. Tissue microarrays were prepared for 132 cases of adrenal cortical neoplasm (ACN) consisting of 115 cases of adrenal cortical adenoma (ACA), 17 cases of adrenal cortical carcinoma (ACC), and 163 cases of pheochromocytoma (PCC). Immunohistochemical stainings for MAOA, MAOB, LOX, and AOC3 were performed to evaluate the H-scores and compare them with clinicopathological parameters. The H-scores of MAOA (T; p = 0.005) and MAOB (T; p = 0.006) in tumor cells (T) were high in ACN, whereas LOX (T, S; p < 0.001) in tumor and stromal cells (S) and AOC3 (T; p < 0.001) were higher in PCC. In stromal cells, MAOA (S; p < 0.001) and AOC3 (S; p = 0.010) were more expressed in ACA than in ACC. MAOB (S) in PCC showed higher H-scores when the grading of adrenal pheochromocytoma and paraganglioma (GAPP) score was 3 or higher (p = 0.027). In the univariate analysis, low MAOA expression in stromal cells of ACN was associated with shorter overall survival (p = 0.008). In conclusion, monoamine oxidase proteins revealed differences in expression between ACN and PCC and also between benign and malignant cells.
Collapse
Affiliation(s)
- Eun Kyung Kim
- Department of Pathology, National Health Insurance Service Ilsan Hospital, Goyang 10444, Republic of Korea
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
28
|
Xi S, Oyetunji S, Wang H, Azoury S, Liu Y, Hsiao SH, Zhang M, Carr SR, Hoang CD, Chen H, Schrump DS. Cigarette Smoke Enhances the Malignant Phenotype of Esophageal Adenocarcinoma Cells by Disrupting a Repressive Regulatory Interaction Between miR-145 and LOXL2. J Transl Med 2023; 103:100014. [PMID: 36870293 PMCID: PMC10121750 DOI: 10.1016/j.labinv.2022.100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/24/2022] [Accepted: 09/19/2022] [Indexed: 01/11/2023] Open
Abstract
Although linked to esophageal carcinogenesis, the mechanisms by which cigarette smoke mediates initiation and progression of esophageal adenocarcinomas (EAC) have not been fully elucidated. In this study, immortalized esophageal epithelial cells and EAC cells (EACCs) were cultured with or without cigarette smoke condensate (CSC) under relevant exposure conditions. Endogenous levels of microRNA (miR)-145 and lysyl-likeoxidase 2 (LOXL2) were inversely correlated in EAC lines/tumors compared with that in immortalized cells/normal mucosa. The CSC repressed miR-145 and upregulated LOXL2 in immortalized esophageal epithelial cells and EACCs. Knockdown or constitutive overexpression of miR-145 activated or depleted LOXL2, respectively, which enhanced or reduced proliferation, invasion, and tumorigenicity of EACC, respectively. LOXL2 was identified as a novel target of miR-145 as well as a negative regulator of this miR in EAC lines/Barrett's epithelia. Mechanistically, CSC induced recruitment of SP1 to the LOXL2 promoter; LOXL2 upregulation coincided with LOXL2 enrichment and concomitant reduction of H3K4me3 levels within the promoter of miR143HG (host gene for miR-145). Mithramycin downregulated LOXL2 and restored miR-145 expression in EACC and abrogated LOXL2-mediated repression of miR-145 by CSC. These findings implicate cigarette smoke in the pathogenesis of EAC and demonstrate that oncogenic miR-145-LOXL2 axis dysregulation is potentially druggable for the treatment and possible prevention of these malignancies.
Collapse
Affiliation(s)
- Sichuan Xi
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Shakirat Oyetunji
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Haitao Wang
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Said Azoury
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Yi Liu
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Shih-Hsin Hsiao
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mary Zhang
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Shamus R Carr
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Chuong D Hoang
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Haobin Chen
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - David S Schrump
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
29
|
Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, Zhang Z, Yang S, Xiao M. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol Cancer 2023; 22:48. [PMID: 36906534 PMCID: PMC10007858 DOI: 10.1186/s12943-023-01744-8] [Citation(s) in RCA: 273] [Impact Index Per Article: 136.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/11/2023] [Indexed: 03/13/2023] Open
Abstract
The malignant tumor is a multi-etiological, systemic and complex disease characterized by uncontrolled cell proliferation and distant metastasis. Anticancer treatments including adjuvant therapies and targeted therapies are effective in eliminating cancer cells but in a limited number of patients. Increasing evidence suggests that the extracellular matrix (ECM) plays an important role in tumor development through changes in macromolecule components, degradation enzymes and stiffness. These variations are under the control of cellular components in tumor tissue via the aberrant activation of signaling pathways, the interaction of the ECM components to multiple surface receptors, and mechanical impact. Additionally, the ECM shaped by cancer regulates immune cells which results in an immune suppressive microenvironment and hinders the efficacy of immunotherapies. Thus, the ECM acts as a barrier to protect cancer from treatments and supports tumor progression. Nevertheless, the profound regulatory network of the ECM remodeling hampers the design of individualized antitumor treatment. Here, we elaborate on the composition of the malignant ECM, and discuss the specific mechanisms of the ECM remodeling. Precisely, we highlight the impact of the ECM remodeling on tumor development, including proliferation, anoikis, metastasis, angiogenesis, lymphangiogenesis, and immune escape. Finally, we emphasize ECM "normalization" as a potential strategy for anti-malignant treatment.
Collapse
Affiliation(s)
- Zhennan Yuan
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yingpu Li
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Sifan Zhang
- Department of Neurobiology, Harbin Medical University, Harbin, 150081, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - He Dou
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xi Yu
- Department of Gynecological Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhiren Zhang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, 150001, China
| | - Shanshan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, 150000, China.
| | - Min Xiao
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
30
|
Qiu Z, Qiu S, Mao W, Lin W, Peng Q, Chang H. LOXL2 reduces 5-FU sensitivity through the Hedgehog/BCL2 signaling pathway in colorectal cancer. Exp Biol Med (Maywood) 2023; 248:457-468. [PMID: 36573458 PMCID: PMC10281539 DOI: 10.1177/15353702221139203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/16/2022] [Indexed: 09/29/2023] Open
Abstract
Elevated expression of lysyl oxidase-like 2 (LOXL2) contributes to the malignant tumor progression in multiple cancers. However, the role of LOXL2 in the 5-fluorouracil (5-FU) resistance of colorectal cancer (CRC) remains unclear. This study aimed to explore the effects of LOXL2 on 5-FU sensitivity in CRC. The mRNA and protein levels of LOXL2 were explored in public databases by bioinformatics, validated in clinical tissues using immunohistochemistry, and detected in 5-FU treated cell lines. The 50% inhibitory concentrations (IC50) values were quantified based on the cell viability at different concentrations of 5-FU with CCK-8 assays. Colony formation and flow cytometry assays were performed to measure the proliferation and apoptosis rates. Gene set enrichment and correlation analyses were conducted to identify the probable mechanism of LOXL2 in TCGA samples. Critical molecules of the Hedgehog signaling pathway and anti-apoptotic BCL2 in protein levels were detected with Western blotting. It concluded that LOXL2 was up-regulated and positively linked to the unfavorable prognosis of CRC patients. The LOXL2 expression increased with the rising 5-FU concentrations, especially at 20 and 40 μM. Elevated LOXL2 promoted the resistance to 5-FU, augmented the proliferation, and inhibited 5-FU-induced apoptosis of CRC cells. LOXL2 activated the Hedgehog signaling pathway by promoting the expression of SMO, GLI1, and GLI2, leading to the upregulation of downstream target gene BCL2 in CRC cells. Moreover, the Hedgehog signaling pathway inhibitor cyclopamine blocked the BCL2 upregulation mediated by LOXL2. This study has demonstrated that LOXL2 can reduce 5-FU sensitivity through the Hedgehog/BCL2 signaling pathway in CRC.
Collapse
Affiliation(s)
- Zhize Qiu
- Department of General Surgery, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai 519000, China
| | - Shiqi Qiu
- Department of General Surgery, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai 519000, China
| | - Wenli Mao
- Department of General Internal Medicine, The People’s Hospital of Xiangzhou District, Zhuhai 519000, China
| | - Wu Lin
- Department of General Surgery, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai 519000, China
| | - Qiqi Peng
- Department of General Surgery, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai 519000, China
| | - Hao Chang
- Department of Cancer Research, Hanyu Biomed Center Beijing, Beijing, 102488, China
| |
Collapse
|
31
|
Applewhite B, Gupta A, Wei Y, Yang X, Martinez L, Rojas MG, Andreopoulos F, Vazquez-Padron RI. Periadventitial β-aminopropionitrile-loaded nanofibers reduce fibrosis and improve arteriovenous fistula remodeling in rats. Front Cardiovasc Med 2023; 10:1124106. [PMID: 36926045 PMCID: PMC10011136 DOI: 10.3389/fcvm.2023.1124106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/07/2023] [Indexed: 03/04/2023] Open
Abstract
Background Arteriovenous fistula (AVF) postoperative stenosis is a persistent healthcare problem for hemodialysis patients. We have previously demonstrated that fibrotic remodeling contributes to AVF non-maturation and lysyl oxidase (LOX) is upregulated in failed AVFs compared to matured. Herein, we developed a nanofiber scaffold for the periadventitial delivery of β-aminopropionitrile (BAPN) to determine whether unidirectional periadventitial LOX inhibition is a suitable strategy to promote adaptive AVF remodeling in a rat model of AVF remodeling. Methods Bilayer poly (lactic acid) ([PLA)-]- poly (lactic-co-glycolic acid) ([PLGA)] scaffolds were fabricated with using a two-step electrospinning process to confer directionality. BAPN-loaded and vehicle control scaffolds were wrapped around the venous limb of a rat femoral-epigastric AVF during surgery. AVF patency and lumen diameter were followed monitored using Doppler ultrasound surveillance and flow was measured before euthanasia. AVFs were harvested after 21 days for histomorphometry and immunohistochemistry. AVF compliance was measured using pressure myography. RNA from AVF veins was sequenced to analyze changes in gene expression due to LOX inhibition. Results Bilayer periadventitial nanofiber scaffolds extended BAPN release compared to the monolayer design (p < 0.005) and only released BAPN in one direction. Periadventitial LOX inhibition led to significant increases in AVF dilation and flow after 21 days. Histologically, BAPN trended toward increased lumen and significantly reduced fibrosis compared to control scaffolds (p < 0.01). Periadventitial BAPN reduced downregulated markers associated with myofibroblast differentiation including SMA, FSP-1, LOX, and TGF-β while increasing the contractile marker MYH11. RNA sequencing revealed differential expression of matrisome genes. Conclusion Periadventitial BAPN treatment reduces fibrosis and promotes AVF compliance. Interestingly, the inhibition of LOX leads to increased accumulation of contractile VSMC while reducing myofibroblast-like cells. Periadventitial LOX inhibition alters the matrisome to improve AVF vascular remodeling.
Collapse
Affiliation(s)
- Brandon Applewhite
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Aavni Gupta
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yuntao Wei
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Xiaofeng Yang
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Laisel Martinez
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Miguel G. Rojas
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Fotios Andreopoulos
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | | |
Collapse
|
32
|
Alonso-Nocelo M, Ruiz-Cañas L, Sancho P, Görgülü K, Alcalá S, Pedrero C, Vallespinos M, López-Gil JC, Ochando M, García-García E, David Trabulo SM, Martinelli P, Sánchez-Tomero P, Sánchez-Palomo C, Gonzalez-Santamaría P, Yuste L, Wörmann SM, Kabacaoğlu D, Earl J, Martin A, Salvador F, Valle S, Martin-Hijano L, Carrato A, Erkan M, García-Bermejo L, Hermann PC, Algül H, Moreno-Bueno G, Heeschen C, Portillo F, Cano A, Sainz B. Macrophages direct cancer cells through a LOXL2-mediated metastatic cascade in pancreatic ductal adenocarcinoma. Gut 2023; 72:345-359. [PMID: 35428659 PMCID: PMC9872246 DOI: 10.1136/gutjnl-2021-325564] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 03/21/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE The lysyl oxidase-like protein 2 (LOXL2) contributes to tumour progression and metastasis in different tumour entities, but its role in pancreatic ductal adenocarcinoma (PDAC) has not been evaluated in immunocompetent in vivo PDAC models. DESIGN Towards this end, we used PDAC patient data sets, patient-derived xenograft in vivo and in vitro models, and four conditional genetically-engineered mouse models (GEMMS) to dissect the role of LOXL2 in PDAC. For GEMM-based studies, K-Ras +/LSL-G12D;Trp53 LSL-R172H;Pdx1-Cre mice (KPC) and the K-Ras +/LSL-G12D;Pdx1-Cre mice (KC) were crossed with Loxl2 allele floxed mice (Loxl2Exon2 fl/fl) or conditional Loxl2 overexpressing mice (R26Loxl2 KI/KI) to generate KPCL2KO or KCL2KO and KPCL2KI or KCL2KI mice, which were used to study overall survival; tumour incidence, burden and differentiation; metastases; epithelial to mesenchymal transition (EMT); stemness and extracellular collagen matrix (ECM) organisation. RESULTS Using these PDAC mouse models, we show that while Loxl2 ablation had little effect on primary tumour development and growth, its loss significantly decreased metastasis and increased overall survival. We attribute this effect to non-cell autonomous factors, primarily ECM remodelling. Loxl2 overexpression, on the other hand, promoted primary and metastatic tumour growth and decreased overall survival, which could be linked to increased EMT and stemness. We also identified tumour-associated macrophage-secreted oncostatin M (OSM) as an inducer of LOXL2 expression, and show that targeting macrophages in vivo affects Osm and Loxl2 expression and collagen fibre alignment. CONCLUSION Taken together, our findings establish novel pathophysiological roles and functions for LOXL2 in PDAC, which could be potentially exploited to treat metastatic disease.
Collapse
Affiliation(s)
- Marta Alonso-Nocelo
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Laura Ruiz-Cañas
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Patricia Sancho
- Translational Research Unit, Hospital Miguel Servet, Instituto de Investigacion Sanitaria Aragon, Zaragoza, Spain
| | - Kıvanç Görgülü
- Comprehensive Cancer Center München, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Sonia Alcalá
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Coral Pedrero
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Mireia Vallespinos
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Juan Carlos López-Gil
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Marina Ochando
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Elena García-García
- Departamento de Anatomía Patológica, Hospital Universitario Fundación Alcorcón, Alcorcón, Spain
| | - Sara Maria David Trabulo
- Stem Cells and Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Paola Martinelli
- Institute for Cancer Research, Comprehensive Cancer Center, Medizinische Universitat Wien, Wien, Austria
| | - Patricia Sánchez-Tomero
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carmen Sánchez-Palomo
- Departamento de Anatomía, Histologia y Neurociencia, Universidad Autónoma de Madrid, Madrid, Spain
| | - Patricia Gonzalez-Santamaría
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer and Human Molecular Genetics, Instituto de Investigación Sanitaria IdiPAZ, Madrid, Spain
| | - Lourdes Yuste
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Cancer and Human Molecular Genetics, Instituto de Investigación Sanitaria IdiPAZ, Madrid, Spain
| | - Sonja Maria Wörmann
- Ahmed Cancer Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Derya Kabacaoğlu
- Comprehensive Cancer Center München, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Julie Earl
- Molecular Epidemiology and Predictive Tumor Markers Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain, Madrid, Spain
- Gastrointestinal Tumours Research Programme, Biomedical Research Network in Cancer (CIBERONC), Madrid, Spain
| | - Alberto Martin
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Fernando Salvador
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Sandra Valle
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Laura Martin-Hijano
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Alfredo Carrato
- Molecular Epidemiology and Predictive Tumor Markers Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain, Madrid, Spain
- Gastrointestinal Tumours Research Programme, Biomedical Research Network in Cancer (CIBERONC), Madrid, Spain
- Alcala University, Madrid, Spain
| | - Mert Erkan
- University Research Center for Translational Medicine - KUTTAM, Istanbul, Turkey
| | - Laura García-Bermejo
- Biomarkers and Therapeutic Targets Group, Area 4, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | - Hana Algül
- Comprehensive Cancer Center München, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Gema Moreno-Bueno
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer and Human Molecular Genetics, Instituto de Investigación Sanitaria IdiPAZ, Madrid, Spain
- Breast Cancer Research Programme, Biomedical Research Network in Cancer (CIBERONC), Madrid, Spain
- Fundación MD Anderson Internacional, Madrid, Spain
| | - Christopher Heeschen
- Stem Cells and Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Center for Single-Cell Omics and Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Francisco Portillo
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Breast Cancer Research Programme, Biomedical Research Network in Cancer (CIBERONC), Madrid, Spain
| | - Amparo Cano
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer and Human Molecular Genetics, Instituto de Investigación Sanitaria IdiPAZ, Madrid, Spain
- Breast Cancer Research Programme, Biomedical Research Network in Cancer (CIBERONC), Madrid, Spain
| | - Bruno Sainz
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Gastrointestinal Tumours Research Programme, Biomedical Research Network in Cancer (CIBERONC), Madrid, Spain
| |
Collapse
|
33
|
Gattupalli M, Dey P, Poovizhi S, Patel RB, Mishra D, Banerjee S. The Prospects of RNAs and Common Significant Pathways in Cancer Therapy and Regenerative Medicine. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
34
|
Serra-Bardenys G, Peiró S. Enzymatic lysine oxidation as a posttranslational modification. FEBS J 2022; 289:8020-8031. [PMID: 34535954 PMCID: PMC10078733 DOI: 10.1111/febs.16205] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 01/14/2023]
Abstract
Oxidoreductases catalyze oxidation-reduction reactions and comprise a very large and diverse group of enzymes, which can be subclassified depending on the catalytic mechanisms of the enzymes. One of the most prominent oxidative modifications in proteins is carbonylation, which involves the formation of aldehyde and keto groups in the side chain of lysines. This modification can alter the local macromolecular structure of proteins, thereby regulating their function, stability, and/or localization, as well as the nature of any protein-protein and/or protein-nucleic acid interactions. In this review, we focus on copper-dependent amine oxidases, which catalyze oxidative deamination of amines to aldehydes. In particular, we discuss oxidation reactions that involve lysine residues and that are regulated by members of the lysyl oxidase (LOX) family of proteins. We summarize what is known about the newly identified substrates and how this posttranslational modification regulates protein function in different contexts.
Collapse
Affiliation(s)
| | - Sandra Peiró
- Vall d´Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
35
|
Shi H, Xiong J, Gan L, Zhang Y, Zhang C, Kong Y, Miao Q, Tian C, Li R, Liu J, Zhang E, Bu W, Wang Y, Cheng X, Sun J, Chen H. N6-methyladenosine reader YTHDF3 regulates melanoma metastasis via its 'executor'LOXL3. Clin Transl Med 2022; 12:e1075. [PMID: 36324258 PMCID: PMC9630608 DOI: 10.1002/ctm2.1075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND A number of studies have demonstrated that N6-methyladenosine (m6A) plays a vital role in the pathological process of various tumours. Recently, it was found that m6A writers or erasers affect the tumourigenesis of melanoma. However, the relationship between m6A readers such as YTH domain family (YTHDF) proteins and melanoma was still elusive. METHODS RT-qPCR, Western blot and immunohistochemistry were conducted to measure the expression level of YTH N6-methyladenosine RNA binding protein 3 (YTHDF3) and lysyl oxidase-like 3 (LOXL3) in melanoma tissues and cells. The effects of YTHDF3 and LOXL3 on melanoma were verified in vitro and in vivo. Multi-omics analysis including RNA-seq, MeRIP-seq, RIP-seq and mass spectrometry analyses was performed to identify the target. The interaction between YTHDF3 and LOXL3 was verified by RT-PCR, Western blot, MeRIP-qPCR, RIP-qPCR and CRISPR-Cas13b-based epitranscriptome engineering. RESULTS In this study, we found that m6A reader YTHDF3 could affect the metastasis of melanoma both in vitro and in vivo. The downstream targets of YTHDF3, such as LOXL3, phosphodiesterase 3A (PDE3A) and chromodomain helicase DNA-binding protein 7 (CHD7) were identified by means of RNA-seq, MeRIP-seq, RIP-seq and mass spectrometry analyses. Besides, RT-qPCR, Western blot, RIP-qPCR and MeRIP-qPCR were performed for subsequent validation. Among various targets of YTHDF3, LOXL3 was found to be the optimal target of YTHDF3. With the application of CRISPR-Cas13b-based epitranscriptome engineering, we further confirmed that the transcript of LOXL3 was captured and regulated by YTHDF3 via m6A binding sites. YTHDF3 augmented the protein expression of LOXL3 without affecting its mRNA level via the enrichment of eukaryotic translation initiation factor 3 subunit A (eIF3A) on the transcript of LOXL3. LOXL3 downregulation inhibited the metastatic ability of melanoma cells, and overexpression of LOXL3 ameliorated the inhibition of melanoma metastasis caused by YTHDF3 downregulation. CONCLUSIONS The YTHDF3-LOXL3 axis could serve as a promising target to be interfered with to inhibit the metastasis of melanoma.
Collapse
Affiliation(s)
- Hao‐ze Shi
- Department of Pathology, Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Jing‐shu Xiong
- Laboratory of Mycobacteriology, Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Lu Gan
- Department of Sexually Transmitted Disease, Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Ying Zhang
- Department of Pathology, Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Cong‐cong Zhang
- Department of Pathology, Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Ying‐qi Kong
- Department of Pathology, Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Qiu‐ju Miao
- Department of Pathology, Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Cui‐cui Tian
- Department of Pathology, Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Rong Li
- Department of Physiotherapy, Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Jin‐quan Liu
- National Center for STD ControlChina CDCNanjingChina
| | - Er‐jia Zhang
- Department of DermatologyChina Aerospace Science & Industry Corporation 731 HospitalBeijingChina
| | - Wen‐bo Bu
- Department of Surgery, Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Yan Wang
- Department of Surgery, Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Xian‐feng Cheng
- Department of Clinical Laboratory, Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Jian‐fang Sun
- Department of Pathology, Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Hao Chen
- Department of Pathology, Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| |
Collapse
|
36
|
Lysyl Oxidase Family Proteins: Prospective Therapeutic Targets in Cancer. Int J Mol Sci 2022; 23:ijms232012270. [PMID: 36293126 PMCID: PMC9602794 DOI: 10.3390/ijms232012270] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022] Open
Abstract
The lysyl oxidase (LOX) family, consisting of LOX and LOX-like proteins 1–4 (LOXL1–4), is responsible for the covalent crosslinking of collagen and elastin, thus maintaining the stability of the extracellular matrix (ECM) and functioning in maintaining connective tissue function, embryonic development, and wound healing. Recent studies have found the aberrant expression or activity of the LOX family occurs in various types of cancer. It has been proved that the LOX family mainly performs tumor microenvironment (TME) remodeling function and is extensively involved in tumor invasion and metastasis, immunomodulation, proliferation, apoptosis, etc. With relevant translational research in progress, the LOX family is expected to be an effective target for tumor therapy. Here, we review the research progress of the LOX family in tumor progression and therapy to provide novel insights for future exploration of relevant tumor mechanism and new therapeutic targets.
Collapse
|
37
|
Lu PY, Niu GJ, Hong PP, Wang JX. Lysyl Oxidase-like Protein Recognizes Viral Envelope Proteins and Bacterial Polysaccharides against Pathogen Infection via Induction of Expression of Antimicrobial Peptides. Viruses 2022; 14:2072. [PMID: 36146878 PMCID: PMC9500624 DOI: 10.3390/v14092072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Lysyl oxidases (LOXs) are copper-dependent monoamine oxidases, and they play critical roles in extracellular matrix (ECM) remodeling. The LOX and LOX-like (LOXL) proteins also have a variety of biological functions, such as development and growth regulation, tumor suppression, and cellular senescence. However, the functions of LOXLs containing repeated scavenger receptor cysteine-rich (SRCR) domains in immunity are rarely reported. In this study, we characterized the antiviral and antibacterial functions of a lysyl oxidase-like (LOXL) protein containing tandem SRCR domains in Marsupenaeus japonicus. The mRNA level of LoxL was significantly upregulated in the hemocytes and intestines of shrimp challenged using white spot syndrome virus (WSSV) or bacteria. After the knockdown of LoxL via RNA interference, WSSV replication and bacterial loads were apparently increased, and the survival rate of the shrimp decreased significantly, suggesting that LOXL functions against pathogen infection in shrimp. Mechanistically, LOXL interacted with the envelope proteins of WSSV or with lipopolysaccharide and peptidoglycan from bacteria in shrimp challenged using WSSV or bacteria, and it promoted the expression of a battery of antimicrobial peptides (AMPs) via the induction of Dorsal nuclear translocation against viral and bacterial infection. Moreover, LOXL expression was also positively regulated by Dorsal in the shrimp challenged by pathogens. These results indicate that, by acting as a pattern recognition receptor, LOXL plays vital roles in antiviral and antibacterial innate immunity by enhancing the expression of AMPs in shrimp.
Collapse
Affiliation(s)
- Peng-Yuan Lu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Guo-Juan Niu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Pan-Pan Hong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
38
|
Noncoding RNAs: Regulating the crosstalk between tumor-associated macrophages and gastrointestinal cancer. Biomed Pharmacother 2022; 153:113370. [DOI: 10.1016/j.biopha.2022.113370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 01/19/2023] Open
|
39
|
Zhao R, Jiang H, Cao J, Li B, Xu L, Dai S. Prediction of Axillary Lymph Node Metastasis in Invasive Breast Cancer by Sound Touch Elastography. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1879-1887. [PMID: 35691734 DOI: 10.1016/j.ultrasmedbio.2022.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The aims of this study were to investigate the value of sound touch elastography (STE) in predicting axillary lymph node metastasis (ALNM) in patients with invasive breast cancer (IBC) and to explore whether lysyl oxidase (LOX) is correlated with increasing stiffness and promotion of metastasis in IBC. A total of 142 lesions in 142 patients were assessed by STE. The STE values of IBCs in the two groups were compared and the best cutoff values for diagnosing ALNM determined. Immunohistochemistry was used to detect LOX expression. Collagen fiber and elastic fiber content was determined by Masson and Weigert elastic fiber staining. Correlation analyses were performed to identify the associations of the data. The optimal cutoff values of Emax (maximum stiffness value of the tumor) and Smax (maximum stiffness value of the shell) for predicting ALNM of IBC were 94.58 and 148.78 kPa. Immunohistochemistry and Masson and Weigert elastic fiber staining were performed on 67 samples. LOX expression and collagen volume fraction were significantly higher in the ALNM+ group than in the ALNM- group (p = 0.04 and 0.03), except for elastic fiber content (p = 0.628). Moreover, Emax, Smax and LOX expression were positively correlated with collagen volume fraction (r = 0.624, 0.512, and 0.533, respectively). Emax and Smax were found to be predictors for ALNM of IBC. STE could serve as a non-invasive method for assessing lymph node status before surgery. Overexpression of LOX and increased collagen fiber contributed to the increased stiffness in the lesions and metastases of IBC.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Huan Jiang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jingyan Cao
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bo Li
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lili Xu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shaochun Dai
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
40
|
LOX and Its Methylation Impact Prognosis of Diseases and Correlate with TAM Infiltration in ESCA. JOURNAL OF ONCOLOGY 2022; 2022:5111237. [PMID: 36090891 PMCID: PMC9452977 DOI: 10.1155/2022/5111237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022]
Abstract
Background ESCA is one of the digestive tract tumors with a high fatality. It is implicated in an intricate gene regulation process, but the pathogenesis remains ambiguous. Methods The study used the packages of Limma from R software to analyze DEGs of ESCA in the GEO database and TCGA database. We employed the DAVID website for enrichment analysis, and the string database constructed the PPI network. Hub genes were identified from ESCA DEGs with Cytoscape MCODE. We evaluated the clinical relevance of LOX expression and its DNA methylation in the cBioPortal database and explored the roles of LOX in ESCA immunity, especially immune cell infiltration levels and immune checkpoint expression, by immunedeconv package of R software. Conclusions The overexpression of LOX in ESCA is regulated by DNA hypomethylation; LOX overexpression or LOX hypomethylation can predict a worse prognosis in patients with ESCA. Besides, LOX may be involved in TIME regulation, promoting the infiltration levels and function of TAM. Hence, high LOX expression affected by DNA hypomethylation has an essential role in patients with ESCA, which may become an effective prognostic marker and therapeutic target.
Collapse
|
41
|
Vahidi S, Mirzajani E, Norollahi SE, Aziminezhad M, Samadani AA. Performance of DNA Methylation on the Molecular Pathogenesis of Helicobacter pylori in Gastric Cancer; targeted therapy approach. J Pharmacopuncture 2022; 25:88-100. [PMID: 35837145 PMCID: PMC9240405 DOI: 10.3831/kpi.2022.25.2.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ebrahim Mirzajani
- Department of Biochemistry, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohsen Aziminezhad
- Non-Communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- UMR INSERM U 1122, Gene Environment Interactions in Cardiovascular Pathophysiology (IGE-PCV), University of Lorraine, Nancy, France
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
42
|
Loxl2 and Loxl3 Paralogues Play Redundant Roles during Mouse Development. Int J Mol Sci 2022; 23:ijms23105730. [PMID: 35628534 PMCID: PMC9144032 DOI: 10.3390/ijms23105730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
Abstract
Lysyl oxidase-like 2 (LOXL2) and 3 (LOXL3) are members of the lysyl oxidase family of enzymes involved in the maturation of the extracellular matrix. Both enzymes share a highly conserved catalytic domain, but it is unclear whether they perform redundant functions in vivo. In this study, we show that mice lacking Loxl3 exhibit perinatal lethality and abnormal skeletal development. Additionally, analysis of the genotype of embryos carrying double knockout of Loxl2 and Loxl3 genes suggests that both enzymes have overlapping functions during mouse development. Furthermore, we also show that ubiquitous expression of Loxl2 suppresses the lethality associated with Loxl3 knockout mice.
Collapse
|
43
|
CircNRIP1 Exerts Oncogenic Functions in Papillary Thyroid Carcinoma by Sponging miR-653-5p and Regulating PBX3 Expression. JOURNAL OF ONCOLOGY 2022; 2022:2081501. [PMID: 35646117 PMCID: PMC9135513 DOI: 10.1155/2022/2081501] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 12/04/2022]
Abstract
Background Circular RNA circ_0004771 (termed circNRIP1) was identified by RNA-Seq previously and was elevated in papillary thyroid carcinoma (PTC) tissues. A series of studies also showed that circNRIP1 was upregulated in some tumors and could promote the malignant progression of tumors. This research intended to focus on the role of circNRIP1 in PTC progression and explore the mechanisms underlying circNRIP1 functions. Methods RT-PCR or western blot determined circNRIP1, miR-653-5p, and pre-B-cell leukemia homeobox 3 (PBX3) expression. EdU, CCK-8, Tunel, and transwell assays determined cell proliferation, apoptosis, invasion, and migration, respectively. Luciferase reporter assay, RNA immunoprecipitation (RIP), and RNA pull down assays clarified the target relation between miR-653-5p and circNRIP1 or PBX3. Xenograft models were applied to explore the role of circNRIP1 in vivo. Results circNRIP1 significantly increased in PTC tissues and PTC cell lines than that in normal ones. Higher circNRIP1 expression was associated with the TNM stage and poorer overall survival. circNRIP1 knockdown attenuated the malignant progression of PTC, specifically by inhibiting proliferation and invasion/migration and promoting apoptosis. circNRIP1 was a miR-653-5p sponge; miR-653-5p knockdown reversed the suppressive role of circNRIP1 silence in PTC progression. PBX3, a target of miR-653-5p, was positively medicated through circNRIP1 via competitively sponging miR-653-5p. Knockdown of circNRIP1 attenuated the PTC tumor progression via miR-653-5p/PBX3 axis. Conclusion Silencing of circNRIP1 suppressed PTC development via miR-653-5p elevation and PBX3 reduction, providing a novel perspective for understanding PTC pathogenesis.
Collapse
|
44
|
Zhao YY, Wang MM, Cui JF. New progress in the mechanism of microenvironment-driven chemoradiotherapy resistance in digestive system tumors. Shijie Huaren Xiaohua Zazhi 2022; 30:341-348. [DOI: 10.11569/wcjd.v30.i8.341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tumor microenvironment (TME) is the cornerstone of the survival of tumor cells. It generally presents unique physical and chemical characteristics such as hypoxia, immunosuppression, metabolic reprogramming, and matrix stiffening, which not only offer suitable soil to support tumorigenesis and progression, but also resist the effects of radiotherapy and chemotherapy. Here, we summarize new progress in the mechanism of hypoxia, immunosuppression, metabolic reprogramming, and matrix stiffness-driven chemoradiotherapy resistance in digestive system tumors, and discuss the new intervention strategy against matrix stiffness-driven chemoradiotherapy resistance, which underlines the contribution of physical and chemical characteristics of tumor microenvironment in drug resistance.
Collapse
Affiliation(s)
- Ying-Ying Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mi-Mi Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jie-Feng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
45
|
Sun C, Ma S, Chen Y, Kim NH, Kailas S, Wang Y, Gu W, Chen Y, Tuason JPW, Bhan C, Manem N, Huang Y, Cheng C, Zhou Z, Zhou Q, Zhu Y. Diagnostic Value, Prognostic Value, and Immune Infiltration of LOX Family Members in Liver Cancer: Bioinformatic Analysis. Front Oncol 2022; 12:843880. [PMID: 35311155 PMCID: PMC8931681 DOI: 10.3389/fonc.2022.843880] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
Background Liver cancer (LC) is well known for its prevalence as well as its poor prognosis. The aberrant expression of lysyl oxidase (LOX) family is associated with liver cancer, but their function and prognostic value in LC remain largely unclear. This study aimed to explore the function and prognostic value of LOX family in LC through bioinformatics analysis and meta-analysis. Results The expression levels of all LOX family members were significantly increased in LC. Area under the receiver operating characteristic curve (AUC) of LOXL2 was 0.946 with positive predictive value (PPV) of 0.994. LOX and LOXL3 were correlated with worse prognosis. Meta-analysis also validated effect of LOX on prognosis. Nomogram of these two genes and other predictors was also plotted. There was insufficient data from original studies to conduct meta-analysis on LOXL3. The functions of LOX family members in LC were mostly involved in extracellular and functions and structures. The expressions of LOX family members strongly correlated with various immune infiltrating cells and immunomodulators in LC. Conclusions For LC patients, LOXL2 may be a potential diagnostic biomarker, while LOX and LOXL3 have potential prognostic and therapeutic values. Positive correlation between LOX family and infiltration of various immune cells and immunomodulators suggests the need for exploration of their roles in the tumor microenvironment and for potential immunotherapeutic to target LOX family proteins.
Collapse
Affiliation(s)
- Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, Chicago, IL, United States
| | - Shaodi Ma
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Yue Chen
- Department of Clinical Medicine, School of the First Clinical Medicine, Anhui Medical University, Hefei, China
| | - Na Hyun Kim
- AMITA Health Saint Joseph Hospital Chicago, Chicago, IL, United States
| | - Sujatha Kailas
- Gastroenterology, AMITA Health Saint Joseph Hospital Chicago, Chicago, IL, United States
| | - Yichen Wang
- Mercy Internal Medicine Service, Trinity Health of New England, Springfield, MA, United States
| | - Wenchao Gu
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yisheng Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | | | - Chandur Bhan
- AMITA Health Saint Joseph Hospital Chicago, Chicago, IL, United States
| | - Nikitha Manem
- AMITA Health Saint Joseph Hospital Chicago, Chicago, IL, United States
| | - Yuting Huang
- University of Maryland Medical Center Midtown Campus, Baltimore, MD, United States
| | - Ce Cheng
- College of Medicine, The University of Arizona, Tucson, AZ, United States
- Banner-University Medical Center South, Tucson, AZ, United States
| | - Zhen Zhou
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Qin Zhou
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Yanzhe Zhu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Yanzhe Zhu,
| |
Collapse
|
46
|
MiR-29a Curbs Hepatocellular Carcinoma Incidence via Targeting of HIF-1α and ANGPT2. Int J Mol Sci 2022; 23:ijms23031636. [PMID: 35163556 PMCID: PMC8835722 DOI: 10.3390/ijms23031636] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 12/11/2022] Open
Abstract
A high-fat diet is responsible for hepatic fat accumulation that sustains chronic liver damage and increases the risks of steatosis and hepatocellular carcinoma (HCC). MicroRNA-29a (miR-29a), a key regulator of cellular behaviors, is present in anti-fibrosis and modulator tumorigenesis. However, the increased transparency of the correlation between miR-29a and the progression of human HCC is still further investigated. In this study, we predicted HIF-1α and ANGPT2 as regulators of HCC by the OncoMir cancer database and showed a strong positive correlation with HIF-1α and ANGPT2 gene expression in HCC patients. Mice fed the western diet (WD) while administered CCl4 for 25 weeks induced chronic liver damage and higher HCC incidence than without fed WD mice. HCC section staining revealed signaling upregulation in ki67, severe fibrosis, and steatosis in WD and CCl4 mice and detected Col3a1 gene expressions. HCC tissues significantly attenuated miR-29a but increased in HIF-1α, ANGPT2, Lox, Loxl2, and VEGFA expression. Luciferase activity analysis confirms that miR-29a specific binding 3′UTR of HIF-1α and ANGPT2 to repress expression. In summary, miR-29a control HIF-1α and ANGPT2 signaling in HCC formation. This study insight into a novel molecular pathway by which miR-29a targeting HIF-1α and ANGPT2 counteracts the incidence of HCC development.
Collapse
|
47
|
Rahimmanesh I, Shariati L, Dana N, Esmaeili Y, Vaseghi G, Haghjooy Javanmard S. Cancer Occurrence as the Upcoming Complications of COVID-19. Front Mol Biosci 2022; 8:813175. [PMID: 35155571 PMCID: PMC8831861 DOI: 10.3389/fmolb.2021.813175] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Previous studies suggested that patients with comorbidities including cancer had a higher risk of mortality or developing more severe forms of COVID-19. The interaction of cancer and COVID-19 is unrecognized and potential long-term effects of COVID-19 on cancer outcome remain to be explored. Furthermore, whether COVID-19 increases the risk of cancer in those without previous history of malignancies, has not yet been studied. Cancer progression, recurrence and metastasis depend on the complex interaction between the tumor and the host inflammatory response. Extreme proinflammatory cytokine release (cytokine storm) and multi-organ failure are hallmarks of severe COVID-19. Besides impaired T-Cell response, elevated levels of cytokines, growth factors and also chemokines in the plasma of patients in the acute phase of COVID-19 as well as tissue damage and chronic low-grade inflammation in "long COVID-19" syndrome may facilitate cancer progression and recurrence. Following a systemic inflammatory response syndrome, some counterbalancing compensatory anti-inflammatory mechanisms will be activated to restore immune homeostasis. On the other hand, there remains the possibility of the integration of SARS- CoV-2 into the host genome, which potentially may cause cancer. These mechanisms have also been shown to be implicated in both tumorigenesis and metastasis. In this review, we are going to focus on potential mechanisms and the molecular interplay, which connect COVID-19, inflammation, and immune-mediated tumor progression that may propose a framework to understand the possible role of COVID-19 infection in tumorgenesis and cancer progression.
Collapse
Affiliation(s)
- Ilnaz Rahimmanesh
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yasaman Esmaeili
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
48
|
Nai A, Zeng H, Wu Q, He Z, Zeng S, Bashir S, Ma F, He J, Wan W, Xu M. lncRNA/miR-29c-Mediated High Expression of LOX Can Influence the Immune Status and Chemosensitivity and Can Forecast the Poor Prognosis of Gastric Cancer. Front Cell Dev Biol 2022; 9:760470. [PMID: 35047494 PMCID: PMC8762233 DOI: 10.3389/fcell.2021.760470] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/22/2021] [Indexed: 12/20/2022] Open
Abstract
Gastric carcinoma is the fourth most prevalent cause of cancer-related deaths worldwide because of dismal prognosis and few therapeutic options. Accumulated studies have indicated that targeting lysyl oxidase (LOX) family members may serve as an anticancer strategy. Nevertheless, the specific mechanisms of LOX in stomach carcinoma are still unclear. In this study, we demonstrated that LOX is significantly different in 13 types of cancers and may act as a potential therapeutic target, especially in stomach carcinoma. Moreover, overexpression of LOX in gastric carcinoma was validated by multiple databases and contributed to the poor overall survival (OS), progression-free survival (PFS) and post-progression survival (PPS) of stomach adenocarcinoma (STAD) patients. Next, based on the ceRNA hypothesis, the HIF1A-AS2/RP11-366L20.2-miR-29c axis was characterized as the upstream regulatory mechanism of LOX gene overexpression in gastric cancer by combining correlation analysis, expression analysis, and survival analysis. Finally, we illustrated that LOX gene overexpression leads to dismal prognosis of gastric cancer, perhaps through promoting M2 macrophage polarization and tumor immune escape and enhancing drug resistance of tumor cells to chemotherapeutic drugs. Our research demonstrate that LOX may be potentially applied as a novel prognostic marker and targeting inhibition of LOX holds promise as a treatment strategy for gastric cancer.
Collapse
Affiliation(s)
- Aitao Nai
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Huihui Zeng
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Qiong Wu
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Zirui He
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shuwen Zeng
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shoaib Bashir
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Feng Ma
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jie He
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Wei Wan
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Meng Xu
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
49
|
Popova NV, Jücker M. The Functional Role of Extracellular Matrix Proteins in Cancer. Cancers (Basel) 2022; 14:238. [PMID: 35008401 PMCID: PMC8750014 DOI: 10.3390/cancers14010238] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/04/2023] Open
Abstract
The extracellular matrix (ECM) is highly dynamic as it is constantly deposited, remodeled and degraded to maintain tissue homeostasis. ECM is a major structural component of the tumor microenvironment, and cancer development and progression require its extensive reorganization. Cancerized ECM is biochemically different in its composition and is stiffer compared to normal ECM. The abnormal ECM affects cancer progression by directly promoting cell proliferation, survival, migration and differentiation. The restructured extracellular matrix and its degradation fragments (matrikines) also modulate the signaling cascades mediated by the interaction with cell-surface receptors, deregulate the stromal cell behavior and lead to emergence of an oncogenic microenvironment. Here, we summarize the current state of understanding how the composition and structure of ECM changes during cancer progression. We also describe the functional role of key proteins, especially tenascin C and fibronectin, and signaling molecules involved in the formation of the tumor microenvironment, as well as the signaling pathways that they activate in cancer cells.
Collapse
Affiliation(s)
- Nadezhda V. Popova
- Laboratory of Receptor Cell Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia;
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
50
|
Serum Lysyl Oxidase Levels and Lysyl Oxidase Gene Polymorphism in Ovarian Cancer Patients of Eastern Indian Population. Diagnostics (Basel) 2021; 12:diagnostics12010053. [PMID: 35054220 PMCID: PMC8774920 DOI: 10.3390/diagnostics12010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Lysyl oxidase (LOX) plays a dual role in carcinogenesis and studies show a higher risk of cancer in LOX G473A variants. The present study evaluated the pattern of LOX G473A polymorphism (rs1800449) and serum LOX levels in ovarian cancer patients. (2) Methods: Serum LOX levels were estimated by enzyme linked immunosorbent assay (ELISA). A polymorphism of rs1800449 of LOX gene was detected by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Selected samples were sequenced for external validation. (3) Results: A majority of study participants were from low socio-economic status. Serum LOX level was significantly higher in ovarian cancer patients as compared to control. Serum LOX level in early-stage ovarian cancer was significantly lower as compared to advanced stage (FIGO stage III & IV). Wild type GG genotype was used as reference. Genotypes AA were associated with a significant risk of epithelial ovarian cancer (OR 3.208; p value- 0.033). A allele of rs1800449 polymorphism of LOX gene, the odds ratio was 1.866 (95% Confidence Interval 1.112–3.16) p value = 0.017 (4) Conclusions: A allele of rs1800449 polymorphism of LOX gene presents an increased risk of ovarian cancer in East Indian population. Serum LOX levels could be a potential biomarker for the diagnosis and prognosis of ovarian cancer.
Collapse
|