1
|
Torkamani Cheriani M, Mirzaei A. Plasma-Treated Nanostructured Resistive Gas Sensors: A Review. SENSORS (BASEL, SWITZERLAND) 2025; 25:2307. [PMID: 40218819 PMCID: PMC11991042 DOI: 10.3390/s25072307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
Resistive gas sensors are among the most widely used sensors for the detection of various gases. In this type of gas sensor, the gas sensing capability is linked to the surface properties of the sensing layer, and accordingly, modification of the sensing surface is of importance to improve the sensing output. Plasma treatment is a promising way to modify the surface properties of gas sensors, mainly by changing the amounts of oxygen ions, which have a central role in gas sensing reactions. In this review paper, we focus on the role of plasma treatment in the gas sensing features of resistive gas sensors. After an introduction to air pollution, toxic gases, and resistive gas sensors, the main concepts regarding plasma are presented. Then, the impact of plasma treatment on the sensing characteristics of various sensing materials is discussed. As the gas sensing field is an interdisciplinary field, we believe that the present review paper will be of significant interest to researchers with various backgrounds who are working on gas sensors.
Collapse
Affiliation(s)
| | - Ali Mirzaei
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran;
| |
Collapse
|
2
|
Mandaglio-Collados D, Ruiz-Alcaraz AJ, Rivera-Caravaca JM, Ramos-Bratos MP, Marín F, López-Gálvez R. Analysis of key proinflammatory mechanisms in cardiovascular pathology through stimulation with lipopolysaccharide and urban particulate matter in mouse atrial cardiomyocytes. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 114:104652. [PMID: 39933631 DOI: 10.1016/j.etap.2025.104652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
Air pollution has emerged as one of the leading causes of mortality, aggravating cardiovascular diseases. Urban-particulate matter (PM) can accumulate in the cardiovascular system and through inflammation, trigger systemic damage. One of the key mechanisms of this process could be related to the activation of the inflammasome through the pre-existence of a low-grade endotoxemia and PM presence in the cells. Herein, we studied the deleterious effects of urban-PM and Lipopolysaccharide (LPS) exposure in a HL-1 mouse cardiomyocyte cell line. Urban-PM induced biological changes, including mRNA expression of pro-inflammatory genes, intracellular reactive oxygen species (ROS) generation and overexpression of inflammasome-related and structural proteins. The results revealed that urban-PM with different ultrastructure, as determined by transmission electron microscopy (TEM), is embedded inside the cardiomyocytes, leading to the recognition and activation of the inflammatory process. The increase of ROS levels and mRNA levels of pro-inflammatory genes were similarly observed in a dose-dependent manner. In addition, components and proteins of the inflammasome such as associated speck-like protein containing a CARD (ASC), caspase-1 and IL-1β were differentially overexpressed in treated HL-1 cells, as well as structural proteins like Connexin 43 (Cx43). These results provide new insights into the mechanisms that mediate innate pro-inflammatory activation in cardiomyocytes in response to air suspension pollutants.
Collapse
Affiliation(s)
- Darío Mandaglio-Collados
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain
| | - Antonio José Ruiz-Alcaraz
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain.
| | - José Miguel Rivera-Caravaca
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain; Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John and Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom; Faculty of Nursing, University of Murcia, Murcia, Spain
| | - María Pilar Ramos-Bratos
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain
| | - Francisco Marín
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain
| | - Raquel López-Gálvez
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain.
| |
Collapse
|
3
|
Chen CC, Tsai SS, Yeh CN, Yang CY. Health benefits of a reduction in ambient fine particulate matter levels for post-neonatal infant survival in Taiwan. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025:1-10. [PMID: 39987015 DOI: 10.1080/15287394.2025.2469079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Infants' and children's health is particularly susceptible to exposure to various environmental contaminant insults as their immune systems are immature and daily activities may present differing patterns of exposure. Although some studies noted an association between long-term exposure to ambient fine particulate matter (PM2.5) and increased infant mortality frequency, few investigations examined the relationship between reduced exposure to PM2.5 and changes in infant mortality rates. Therefore, this study was conducted to determine whether diminished levels of PM2.5 in Taiwan improved post-neonatal infant health. Avoidable premature post-neonatal infant mortality was employed as an indicator of health impact. A mean value was calculated for annual PM2.5 levels across Taiwan for the years 2006, 2015, and 2023. Using these averages and following WHO methodology, differences in the number of post-neonatal infant deaths attributed to ambient PM2.5 exposure were determined. PM2.5 concentrations fell markedly throughout Taiwan over the 20-year study period. In conjunction with this decline, a lowered health burden was noted, which was represented as a fall in post-neonatal infant deaths (14.8% in 2006 to 10.3% in 2023). Reduction in annual levels of PM2.5 to 10 µg/m3 was associated with a decrease in the total burden of post-neonatal infant mortality occurrence, with a 5.58-9.31% decline in PM2.5-related deaths during that period. Evidence indicates that exposure to PM2.5 air pollution poses a significant burden to Taiwan children's health. Our findings indicate that the potential benefits to children's health need to be given importance when considering improving air quality policies.
Collapse
Affiliation(s)
- Chih-Cheng Chen
- Department of pediatrics, College of Medicine, Kaohsiung Chang-Gung Memorial Hospital, Chang-Gung University, Kaohsiung, Taiwan
| | - Shang-Shyue Tsai
- Department of Healthcare Administration, I-Shou University, Kaohsiung, Taiwan
| | - Chien-Ning Yeh
- Department of Data Science and Analysis, I-Shou University, Kaohsiung, Taiwan
| | - Chun-Yuh Yang
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institute, Miaoli, Taiwan
| |
Collapse
|
4
|
Wang X, Zhou Y, Xie D, Yin F, Liang Y, Luo X. Melatonin intervention to prevent nanomaterial exposure-induced damages: A systematic review and meta-analysis of in vitro and in vivo studies. J Appl Toxicol 2025; 45:179-199. [PMID: 39090837 DOI: 10.1002/jat.4676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
Given its antioxidant, anti-inflammatory, and antiapoptotic properties, melatonin (MEL), a health-caring food to improve sleep disorders, is hypothesized to protect against nanomaterial exposure-induced toxicity. However, the conclusion derived from different studies seemed inconsistent. A meta-analysis of all available preclinical studies was performed to examine the effects of MEL on nanomaterial-induced damages. Eighteen relevant studies were retrieved through searching five electronic databases up to December 2023. The meta-analysis showed that relative to control, MEL treatment significantly increased cell viability (standardized mean difference [SMD = 1.27]) and alleviated liver function (lowered AST [SMD = -3.89] and ALT [SMD = -5.89]), bone formation (enhanced BV/TV [SMD = 4.13] and lessened eroded bone surface [SMD = -5.40]), and brain nerve (inhibition of AChE activity [SMD = -3.60]) damages in animals. The protective mechanisms of MEL against damages caused by nanomaterial exposure were associated with its antiapoptotic (decreased Bax/Bcl-2 ratio [SMD = -4.50] and caspase-3 levels [dose <100 μM: SMD = -3.66]), antioxidant (decreased MDA [in vitro: SMD = -2.84; in vivo: SMD = -4.27]), and anti-inflammatory (downregulated TNF-α [in vitro: SMD = -5.41; in vivo: SMD = -3.21] and IL-6 [in vitro: SMD = -5.90; in vivo: SMD = -2.81]) capabilities. In conclusion, our study suggests that MEL should be supplemented to prevent damages in populations exposed to nanomaterials.
Collapse
Affiliation(s)
- Xuejiao Wang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Yang Zhou
- School of Textile Science and Engineering/National Engineering Laboratory for Advanced Yarn and Clean Production, Wuhan Textile University, Wuhan, China
| | - Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Fei Yin
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Yunxia Liang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| |
Collapse
|
5
|
Lee EG, Yim SK, Kang SM, Ahn BJ, Kim CK, Lee M, Tark D, Lee GH. Phlorofucofuroeckol-A: A Natural Compound with Potential to Attenuate Inflammatory Diseases Caused by Airborne Fine Dust. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:165. [PMID: 39859147 PMCID: PMC11767036 DOI: 10.3390/medicina61010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Background and Objectives: Persistent exposure to airborne fine dust (FD) particles contributing to air pollution has been linked to various human health issues, including respiratory inflammation, allergies, and skin diseases. We aimed to identify potential seaweed anti-inflammatory bioactive reagents and determine their effects on systemic inflammatory responses induced by FD particles. Materials and Methods: While exploring anti-inflammatory bioactive reagents, we purified compounds with potential anti-inflammatory effects from the seaweed extracts of Ecklonia cava, Ecklonia stolonifera, and Codium fragile. Structural analyses of the purified compounds siphonaxanthin (Sx), fucoxanthin (Fx), dieckol (Dk), and phlorofucofuroeckol-A (PFF-A) were performed using NMR and LC-MS/MS. Results: Notably, these compounds, especially PFF-A, showed significant protective effects against FD-induced inflammatory responses in RAW 264.7 cells without cytotoxicity. Further investigation of inflammatory-associated signaling demonstrated that PFF-A inhibited IL-1β expression by modulating the NF-κB/MAPK signal pathway in FD-induced RAW 264.7 cells. Additionally, gene profiling revealed the early activation of various signature genes involved in the production of inflammatory cytokines and chemokines using gene profiling. Treatment with PFF-A markedly reduced the expression levels of pro-inflammatory and apoptosis-related genes and even elevated the Bmp gene families. Conclusions: These results suggested that PFF-A is a potential natural therapeutic candidate for managing FD-induced inflammatory response.
Collapse
Affiliation(s)
- Eun-Gyeong Lee
- Laboratory for Infection Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea; (E.-G.L.); (S.-M.K.)
| | - Sung-Kun Yim
- Marine Biotechnology Research Center, Jeonnam Bioindustry Foundation, Wando-gun 59108, Republic of Korea; (S.-K.Y.); (B.J.A.)
| | - Sang-Min Kang
- Laboratory for Infection Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea; (E.-G.L.); (S.-M.K.)
| | - Byung Jae Ahn
- Marine Biotechnology Research Center, Jeonnam Bioindustry Foundation, Wando-gun 59108, Republic of Korea; (S.-K.Y.); (B.J.A.)
| | - Chang-Kwon Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea; (C.-K.K.); (M.L.)
| | - Mina Lee
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea; (C.-K.K.); (M.L.)
| | - Dongseob Tark
- Laboratory for Infection Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea; (E.-G.L.); (S.-M.K.)
| | - Gun-Hee Lee
- Laboratory for Infection Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea; (E.-G.L.); (S.-M.K.)
| |
Collapse
|
6
|
Kumar V, S H, Huligowda LKD, Umesh M, Chakraborty P, Thazeem B, Singh AP. Environmental Pollutants as Emerging Concerns for Cardiac Diseases: A Review on Their Impacts on Cardiac Health. Biomedicines 2025; 13:241. [PMID: 39857824 PMCID: PMC11759859 DOI: 10.3390/biomedicines13010241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Comorbidities related to cardiovascular disease (CVD) and environmental pollution have emerged as serious concerns. The exposome concept underscores the cumulative impact of environmental factors, including climate change, air pollution, chemicals like PFAS, and heavy metals, on cardiovascular health. Chronic exposure to these pollutants contributes to inflammation, oxidative stress, and endothelial dysfunction, further exacerbating the global burden of CVDs. Specifically, carbon monoxide (CO), ozone, particulate matter (PM2.5), nitrogen dioxide (NO2), sulfur dioxide (SO2), heavy metals, pesticides, and micro- and nanoplastics have been implicated in cardiovascular morbidity and mortality through various mechanisms. PM2.5 exposure leads to inflammation and metabolic disruptions. Ozone and CO exposure induce oxidative stress and vascular dysfunction. NO2 exposure contributes to cardiac remodeling and acute cardiovascular events, and sulfur dioxide and heavy metals exacerbate oxidative stress and cellular damage. Pesticides and microplastics pose emerging risks linked to inflammation and cardiovascular tissue damage. Monitoring and risk assessment play a crucial role in identifying vulnerable populations and assessing pollutant impacts, considering factors like age, gender, socioeconomic status, and lifestyle disorders. This review explores the impact of cardiovascular disease, discussing risk-assessment methods, intervention strategies, and the challenges clinicians face in addressing pollutant-induced cardiovascular diseases. It calls for stronger regulatory policies, public health interventions, and green urban planning.
Collapse
Affiliation(s)
- Vinay Kumar
- Biomaterials & Tissue Engineering (BITE) Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India; (V.K.)
| | - Hemavathy S
- Biomaterials & Tissue Engineering (BITE) Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India; (V.K.)
| | | | - Mridul Umesh
- Department of Life Sciences, Christ University, Hosur Road, Bengaluru 560029, Karnataka, India
| | - Pritha Chakraborty
- Area of Molecular Medicine, Department of Allied Healthcare and Sciences, JAIN (Deemed to be University), Bangalore 560066, Karnataka, India
| | - Basheer Thazeem
- Waste Management Division, Integrated Rural Technology Centre (IRTC), Palakkad 678592, Kerala, India
| | - Anand Prakash Singh
- Frankel Cardiovascular Center, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Su W, Liu H, Han T, Wang Y, An Y, Lin Y. The effects of PM 2.5 components on the cardiovascular disease admissions in Shanghai City, China: a multi- region study. BMC Public Health 2024; 24:3621. [PMID: 39741307 DOI: 10.1186/s12889-024-21179-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND The burden of cardiovascular disease (CVD) is severe worldwide. Although many studies have investigated the association of particulate pollution with CVD, the effect of finer particulate pollution components on CVD remains unclear. This study aimed to explore the effect of five PM2.5 components ([Formula: see text], sulfate; [Formula: see text], nitrate; [Formula: see text], ammonium; OM, organic matter; BC, carbon black) on CVD admission in Shanghai City, identify the susceptible population, and provide clues for the prevention and control of particulate pollution. METHODS Daily PM2.5 components data during 2013-2019 in three districts of Shanghai were obtained from Tracking Air Pollution in China. We obtained CVD daily admissions data from relevant departments of Tongji Hospital, including basic information (sex, age, time of admissions, ICD code of root cause of admissions, etc.). First, generalized additive model (GAM) and distributed lag non-linear (DLNM) model were used to evaluate the individual effects of PM2.5 components on CVD admission in three districts of Shanghai. Then, the three regions were pooled for analysis using either a random-effects model or a fixed-effects model. RESULTS Overall, all five PM2.5 components had significant effects on CVD admission risk. BC and OM were strongly associated with daily CVD admissions, with increasing interquartile range of the concentrations, the maximum values of cumulative RR (95% CI) were 1.318 (95%CI: 1.222-1.415) and 1.243 (95%CI: 1.164-1.322), respectively. The elderly (≥ 65 years old) was more sensitive to the four PM2.5 components than the young population. [Formula: see text] and BC were strongest associated with CVD admissions in the elderly than in younger people, with increasing interquartile range of the concentrations, the maximum cumulative RR (95% CI) was 1.567 (95% CI: 1.116-2.019) and 1.534 (95% CI: 1.104-1.963), respectively. CONCLUSIONS This study found that five PM2.5 components were significant risk factors for CVD admissions and specific CVD diseases in Shanghai City. The elderly were susceptible to [Formula: see text],[Formula: see text], OM, and BC.
Collapse
Affiliation(s)
- Wanying Su
- Department of Hospital Infection Control, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Heping Liu
- Department of Hospital Infection Control, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Tiantian Han
- Department of Hospital Infection Control, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yunyun Wang
- Department of Hospital Infection Control, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yi An
- Department of Hospital Infection Control, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yan Lin
- Department of Hospital Infection Control, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| |
Collapse
|
8
|
Pak SW, Kim WI, Lee SJ, Park SH, Cho YK, Kim JS, Kim JC, Kim SH, Shin IS. TXNIP regulates pulmonary inflammation induced by Asian sand dust. Redox Biol 2024; 78:103421. [PMID: 39520910 DOI: 10.1016/j.redox.2024.103421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Asian sand dust (ASD), a seasonal dust storm originating from the deserts of China and Mongolia, affects Korea and Japan during the spring, carrying soil particles and a variety of biochemical components. Exposure to ASD has been associated with the onset and exacerbation of respiratory disorders, although the underlying mechanisms remain unclear. This study investigates ASD-induced pulmonary toxicity and its mechanistic pathways, focusing on the role of thioredoxin-interacting protein (TXNIP). Using TXNIP knock-out (KO) mice and adeno-associated virus (AAV)-mediated TXNIP overexpression transgenic mice, we explored how TXNIP modulates ASD-induced pulmonary inflammation. Mice were exposed to ASD via intranasal administration on days 1, 3, and 5 to induce inflammation. ASD exposure led to significant pulmonary inflammation, evidenced by increased inflammatory cell counts and elevated cytokine levels in bronchoalveolar lavage fluid, as well as heightened protein expression of the TXNIP/NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome. TXNIP KO mice exhibited attenuated airway inflammation and downregulation of the NLRP3 inflammasome compared to wild-type controls, while AAV-mediated TXNIP overexpression mice showed exacerbated inflammatory responses, including elevated NLRP3 inflammasome expression, compared to AAV-GFP controls. These findings suggest that TXNIP is a key regulator of ASD-induced pulmonary inflammation.
Collapse
Affiliation(s)
- So-Won Pak
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Woong-Il Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Se-Jin Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Sin-Hyang Park
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Young-Kwon Cho
- College of Health Sciences, Cheongju University, 298 Daesung-ro, Sangdang-gu, Cheongju-si, Chungbuk, 28503, Republic of Korea
| | - Joong-Sun Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Sung-Hwan Kim
- Jeonbuk Branch, Korea Institute of Toxicology (KIT), Jeongeup-si, Jeonbuk, 53212, Republic of Korea.
| | - In-Sik Shin
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
9
|
Chou X, Fang M, Shen Y, Jiang C, Miao L, Yang L, Wu Z, Yao X, Ma K, Qiao K, Lin Z. Ambient PMs pollution, blood pressure, potential mediation by short-chain fatty acids: A prospective panel study of young adults in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117316. [PMID: 39520747 DOI: 10.1016/j.ecoenv.2024.117316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/21/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The concurrent effects of particulate matter (PM) on both blood pressure (BP) and short-chain fatty acids (SCFAs) are insufficiently explored, with limited research on the potential mediating roles of SCFAs. METHODS In this prospective panel study with 4 follow-ups, we recruited 40 college students in Hefei, China, to assess the impacts of short-term exposure to PM (aerodynamic diameter ≤10 μm (PM10), ≤2.5 μm (PM2.5), and ≤1 μm (PM1)) on BP and SCFAs, along with potential mechanisms. Real-time PM data, urinary SCFAs levels, and BP indicators were systematically collected. Linear mixed-effects models assessed the relationships between PM, SCFAs, and BP. Mediation analyses explored SCFAs' mediating role in the PM-BP association. RESULTS PM exposure was positively linked to BP and negatively associated with SCFAs. For a 10 μg/m3 rise in PM10 at lag 0-72 h, there were notable reductions of 0.0019 % (95 %CI: -0.0028, -0.0010) in Acetic acid, 0.0262 % (-0.0369, -0.0155) in Propionic acid, and 0.0702 % (-0.1025, -0.0378) in Butyric acid. Systolic BP, diastolic BP, and mean arterial pressure (MAP) increased by 2.60 mmHg (0.96, 4.25), 2.24 mmHg (1.18, 3.31), and 2.36 mmHg (1.20, 3.53), respectively, per 10-μg/m3 rise in PM1 at lag 0-24 h. Decreased SCFAs levels explained significant portions (24.69-31.80 %) of the elevated MAP due to PM10. Stronger associations were found in females and individuals with abnormal BMI. CONCLUSIONS Our study shows that PM exposure decreases urinary SCFAs levels, which partially mediate the impact of PM on elevated BP. These findings enhance our comprehension of the pathways linking PM exposure to BP changes.
Collapse
Affiliation(s)
- Xin Chou
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China
| | - Miao Fang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Yue Shen
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China
| | - Cunzhong Jiang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Lin Miao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Liyan Yang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Zexi Wu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Xiangyu Yao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Kunpeng Ma
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China
| | - Kun Qiao
- Center for Reproductive Medicine, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, China.
| | - Zhijing Lin
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
10
|
Zhao H, Tao H, Fu J, Hou W, Hu C, Liu Y, Ding X, Hu D, Dai Y. Cross-sectional analysis of dyslipidemia risk in coal mine workers: from epidemiology to animal models. Sci Rep 2024; 14:26894. [PMID: 39505893 PMCID: PMC11542065 DOI: 10.1038/s41598-024-74718-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 09/27/2024] [Indexed: 11/08/2024] Open
Abstract
OBJECTIVE To investigate the association between coal dust exposure and the occurrence of dyslipidemia in coal mine workers, and identify relevant risk factors. Methods: We selected a population who underwent occupational health examinations at Huainan Yangguang Xinkang Hospital from March 2020 to July 2022. Participants were divided into two groups based on the presence or absence of dyslipidemia, and their baseline information was collected, including records of coal dust exposure. We employed single-factor analysis to identify risk factors for dyslipidemia and adjusted for confounding factors in the adjusted models. Additionally, we explored the effects in different populations using stratified analysis, smooth curve fitting, and propensity score matching. Finally, we confirmed the causal relationship between coal dust exposure and dyslipidemia by examining tissue sections and lipid-related indicators in a mouse model of coal dust exposure. Results A total of 5,657 workers were included in the study, among whom 924 individuals had dyslipidemia and 4,743 individuals did not have dyslipidemia. The results of the single-factor analysis revealed that dust exposure, age, BMI, blood pressure, and smoking were statistically significant risk factors for dyslipidemia (p < 0.05). Additionally, the three multivariate models, adjusted for different confounders, consistently showed a significant increase in the risk of dyslipidemia associated with coal dust exposure (Model 1: OR, 1.869; Model 2: OR, 1.863; Model 3: OR, 2.033). After conducting stratified analysis, this positive correlation remained significant. Furthermore, propensity score matching analysis revealed that with increasing years of work, the risk of dyslipidemia gradually increased, reaching 50% at 11 years. In the mouse model of coal dust exposure, significant coal dust deposition was observed in the lungs and livers of the mice, accompanied by elevated levels of total cholesterol (TC), alanine transaminase (ALT), aspartate transaminase (AST), and low-density lipoprotein cholesterol (LDL-C). Conclusion Exposure to coal dust significantly increases the risk of developing dyslipidemia, and this positive correlation exists in different populations, particularly with increasing years of work, resulting in a higher risk.
Collapse
Affiliation(s)
- Hui Zhao
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St,, Huainan, 232001, P.R. China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, P.R. China
| | - Huihui Tao
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St,, Huainan, 232001, P.R. China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, P.R. China
| | - Jifeng Fu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St,, Huainan, 232001, P.R. China
| | - Weilong Hou
- Huainan Sunshine Xinkang Hospital, Huainan, P.R. China
| | - Chunxiao Hu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St,, Huainan, 232001, P.R. China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St,, Huainan, 232001, P.R. China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, P.R. China
| | - Xuansheng Ding
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St,, Huainan, 232001, P.R. China.
- School of pharmacy, China Pharmaceutical University, Nanjing, P.R. China.
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St,, Huainan, 232001, P.R. China.
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, P.R. China.
| | - Yong Dai
- Joint Research Center for Occupational Medicine and Health of IHM, Anhui University of Science and Technology, Huainan, P.R. China.
| |
Collapse
|
11
|
de Oliveira Neves F, Salgado EG, de Figueiredo EC, Sampaio P, Marafão FP. Prediction of pollutant emission characteristics in ISO50001 energy management in the Americas: Uni and multivariate machine learning approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174797. [PMID: 39038677 DOI: 10.1016/j.scitotenv.2024.174797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
The American continent is experiencing significant economic and industrial development driven by sustainability principles. In this context, discussions on improving energy consumption have become increasingly frequent and dynamic across various sectors of civil society, including the implementation of energy efficiency measures as advocated by the ISO50001 energy management standard. However, there is a pressing need to investigate which socioeconomic aspects are responsible for the issuance of this certification in the Americas and how these factors relate to characteristic industrial emissions, especially particulate matter. This study aims to evaluate the socioeconomic factors influencing ISO50001 standard issuance and how these adjusted factors correlate with particulate matter of 2.5 μm and 10 μm dimensions. To achieve this, machine learning techniques were employed, considering the complex nature and risk of data overfitting. Model fitting was performed through multiple lasso regression, and the relationship between the adjusted factors was examined through cross-correlation analysis. The analyses indicate a strong correlation of adjusted macroeconomic indicators, especially with PM2.5, suggesting an association with cardiorespiratory problems and methane-related origins. This work is of great relevance to academia as it proposes new concepts regarding the interaction between energy efficiency standards and particulate matter. For the industrial sector, the adjusted factors provide guidance for standard implementation while also helping to mitigate health issues. Additionally, for the government, these results can assist in formulating policies to address specific health problems related to this area.
Collapse
Affiliation(s)
- Fábio de Oliveira Neves
- Exact Science Institute, Environmental Science Department, Federal University of Alfenas, Alfenas, Minas Gerais State, Brazil.
| | - Eduardo Gomes Salgado
- Exact Science Institute, Federal University of Alfenas, Alfenas, Minas Gerais State, Brazil
| | | | - Paulo Sampaio
- Department of University of Minho, School of Engineering, ALGORITMI Research Centre, Portugal
| | - Fernando Pinhabel Marafão
- Institute of Science and Technology, São Paulo State University (UNESP), Sorocaba, São Paulo State, Brazil
| |
Collapse
|
12
|
Tu Q, Liu G, Liu X, Zhang J, Xiao W, Lv L, Zhao B. Perspective on using non-human primates in Exposome research. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117199. [PMID: 39426107 DOI: 10.1016/j.ecoenv.2024.117199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/02/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
The physiological and pathological changes in the human body caused by environmental pressures are collectively referred to as the Exposome. Human society is facing escalating environmental pollution, leading to a rising prevalence of associated diseases, including respiratory diseases, cardiovascular diseases, neurological disorders, reproductive development disorders, among others. Vulnerable populations to the pathogenic effects of environmental pollution include those in the prenatal, infancy, and elderly stages of life. Conducting Exposome mechanistic research and proposing effective health interventions are urgent in addressing the current severe environmental pollution. In this review, we address the core issues and bottlenecks faced by current Exposome research, specifically focusing on the most toxic ultrafine nanoparticles. We summarize multiple research models being used in Exposome research. Especially, we discuss the limitations of rodent animal models in mimicking human physiopathological phenotypes, and prospect advantages and necessity of non-human primates in Exposome research based on their evolutionary relatedness, anatomical and physiological similarities to human. Finally, we declare the initiation of NHPE (Non-Human Primate Exposome) project for conducting Exposome research using non-human primates and provide insights into its feasibility and key areas of focus. SYNOPSIS: Non-human primate models hold unique advantages in human Exposome research.
Collapse
Affiliation(s)
- Qiu Tu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China
| | - Gaojing Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiuyun Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jiao Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China
| | - Wenxian Xiao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Primate Facility, National Research Facility for Phenotypic & Genetic Analysis of Model Animals, and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Longbao Lv
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Primate Facility, National Research Facility for Phenotypic & Genetic Analysis of Model Animals, and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China.
| | - Bo Zhao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China; Primate Facility, National Research Facility for Phenotypic & Genetic Analysis of Model Animals, and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
13
|
Xu J, Shi Y, He G, Guo Y, Ruan Y, Hu J, Zhu Q, Chen Z, Liang S, Zheng Y, Huang Z, Yu S, Zhu R, Dong X, Wu F, Ma W, Liu T. Effects of Long-Term Exposure to Ambient Formaldehyde on Hypertension and Angina Pectoris Symptoms: Evidence From the WHO SAGE Cohort Study. J Am Heart Assoc 2024; 13:e035341. [PMID: 39291508 DOI: 10.1161/jaha.124.035341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND We aimed to investigate the associations of long-term exposure to ambient formaldehyde with hypertension and angina pectoris symptoms in Chinese adults. METHODS AND RESULTS Participants' information was obtained from the WHO SAGE (World Health Organization Study on Global Aging and Adult Health) study. The Cox proportional hazards regression model was applied to estimate the associations of formaldehyde with hypertension and angina pectoris symptoms. Mediating effect analysis was used to investigate the mediating effect of hypertension between formaldehyde exposure and angina pectoris symptoms. Long-term exposure to formaldehyde was positively associated with the risk of angina pectoris symptoms (hazard ratio [HR], 1.66 [95% CI, 1.29-2.13], per interquartile range [IQR], 3.33, 1015 molecules/cm2) and hypertension (HR, 1.17 [95% CI, 1.02-1.34], per IQR, 3.34, 1015 molecules/cm2). The associations between formaldehyde and angina pectoris symptoms were greater in participants aged ≥65 years (HR, 1.90 [95% CI, 1.29-2.80]) and in rural areas (HR, 2.71 [95% CI, 1.54-4.77]), whereas the associations of formaldehyde with hypertension were stronger in men (HR, 1.27 [95% CI, 1.02-1.58]), rural areas (HR, 1.22 [95% CI, 0.94-1.59]), and in ever smokers (HR, 1.33 [95% CI, 1.02-1.72]). The mediation effect analysis indicated that 18.44% (95% CI, 2.17-37.65) of the association between formaldehyde exposure and angina pectoris symptoms was mediated by hypertension. CONCLUSIONS Long-term exposure to ambient formaldehyde was positively associated with hypertension and angina pectoris symptoms. The effects of formaldehyde may be modified by age, sex, urbanicity, and smoking status. Hypertension might play a mediating effect in formaldehyde-induced angina pectoris symptoms.
Collapse
Affiliation(s)
- Jiahong Xu
- Department of Public Health and Preventive Medicine, School of Medicine Jinan University Guangzhou China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine Jinan University Guangzhou China
| | - Yan Shi
- Shanghai Municipal Centre for Disease Control and Prevention Shanghai China
| | - Guanhao He
- Department of Public Health and Preventive Medicine, School of Medicine Jinan University Guangzhou China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine Jinan University Guangzhou China
| | - Yanfei Guo
- Shanghai Municipal Centre for Disease Control and Prevention Shanghai China
| | - Ye Ruan
- Shanghai Municipal Centre for Disease Control and Prevention Shanghai China
| | - Jianxiong Hu
- Department of Public Health and Preventive Medicine, School of Medicine Jinan University Guangzhou China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine Jinan University Guangzhou China
| | - Qijiong Zhu
- Department of Public Health and Preventive Medicine, School of Medicine Jinan University Guangzhou China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine Jinan University Guangzhou China
| | - Zhiqing Chen
- Department of Public Health and Preventive Medicine, School of Medicine Jinan University Guangzhou China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine Jinan University Guangzhou China
| | - Shuru Liang
- Department of Public Health and Preventive Medicine, School of Medicine Jinan University Guangzhou China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine Jinan University Guangzhou China
| | - Yuan Zheng
- Department of Public Health and Preventive Medicine, School of Medicine Jinan University Guangzhou China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine Jinan University Guangzhou China
| | - Zhongguo Huang
- Department of Public Health and Preventive Medicine, School of Medicine Jinan University Guangzhou China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine Jinan University Guangzhou China
| | - Siwen Yu
- Department of Public Health and Preventive Medicine, School of Medicine Jinan University Guangzhou China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine Jinan University Guangzhou China
| | - Ruotong Zhu
- Department of Public Health and Preventive Medicine, School of Medicine Jinan University Guangzhou China
| | - Xiaomei Dong
- Department of Public Health and Preventive Medicine, School of Medicine Jinan University Guangzhou China
| | - Fan Wu
- Department of Epidemiology, School of Public Health Fudan University Shanghai China
- Shanghai Institute of Infectious Disease and Biosecurity Fudan University Shanghai China
| | - Wenjun Ma
- Department of Public Health and Preventive Medicine, School of Medicine Jinan University Guangzhou China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine Jinan University Guangzhou China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control(Jinan University) Ministry of Education Guangzhou China
| | - Tao Liu
- Department of Public Health and Preventive Medicine, School of Medicine Jinan University Guangzhou China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine Jinan University Guangzhou China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control(Jinan University) Ministry of Education Guangzhou China
| |
Collapse
|
14
|
Scimeca M, Palumbo V, Giacobbi E, Servadei F, Casciardi S, Cornella E, Cerbara F, Rotondaro G, Seghetti C, Scioli MP, Montanaro M, Barillà F, Sisto R, Melino G, Mauriello A, Bonfiglio R. Impact of the environmental pollution on cardiovascular diseases: From epidemiological to molecular evidence. Heliyon 2024; 10:e38047. [PMID: 39328571 PMCID: PMC11425171 DOI: 10.1016/j.heliyon.2024.e38047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Environmental pollution poses a significant threat to human health, particularly concerning its impact on cardiovascular diseases (CVDs). This review synthesizes epidemiological and molecular evidence to elucidate the intricate relationship between environmental pollutants and CVDs. Epidemiological studies highlight the association between exposure to air, water, and soil pollutants and increased CVD risk, including hypertension, coronary artery disease, and stroke. Furthermore, molecular investigations unravel the underlying mechanisms linking pollutant exposure to CVD pathogenesis, such as oxidative stress, inflammation, endothelial dysfunction, and autonomic imbalance. Understanding these molecular pathways is crucial for developing targeted interventions and policy strategies to mitigate the adverse effects of environmental pollution on cardiovascular health. By integrating epidemiological and molecular evidence, this review provides insights into the complex interplay between environmental factors and CVDs, emphasizing the urgent need for comprehensive preventive measures and environmental policies to safeguard public health.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Valeria Palumbo
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Erica Giacobbi
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Francesca Servadei
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, Rome, 00078, Italy
| | - Elena Cornella
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Federica Cerbara
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Gabriele Rotondaro
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Christian Seghetti
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Maria Paola Scioli
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Manuela Montanaro
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133, Rome, Italy
| | - Francesco Barillà
- Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, Rome, 00078, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Rita Bonfiglio
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| |
Collapse
|
15
|
Topalović DB, Tasić VM, Petrović JSS, Vlahović JL, Radenković MB, Smičiklas ID. Unveiling the potential of a novel portable air quality platform for assessment of fine and coarse particulate matter: in-field testing, calibration, and machine learning insights. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:888. [PMID: 39230597 DOI: 10.1007/s10661-024-13069-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
Although low-cost air quality sensors facilitate the implementation of denser air quality monitoring networks, enabling a more realistic assessment of individual exposure to airborne pollutants, their sensitivity to multifaceted field conditions is often overlooked in laboratory testing. This gap was addressed by introducing an in-field calibration and validation of three PAQMON 1.0 mobile sensing low-cost platforms developed at the Mining and Metallurgy Institute in Bor, Republic of Serbia. A configuration tailored for monitoring PM2.5 and PM10 mass concentrations along with meteorological parameters was employed for outdoor measurement campaigns in Bor, spanning heating (HS) and non-heating (NHS) seasons. A statistically significant positive linear correlation between raw PM2.5 and PM10 measurements during both campaigns (R > 0.90, p ≤ 0.001) was observed. Measurements obtained from the uncalibrated NOVA SDS011 sensors integrated into the PAQMON 1.0 platforms exhibited a substantial and statistically significant correlation with the GRIMM EDM180 monitor (R > 0.60, p ≤ 0.001). The calibration models based on linear and Random Forest (RF) regression were compared. RF models provided more accurate descriptions of air quality, with average adjR2 values for air quality variables in the range of 0.70 to 0.80 and average NRMSE values between 0.35 and 0.77. RF-calibrated PAQMON 1.0 platforms displayed divergent levels of accuracy across different pollutant concentration ranges, achieving a data quality objective of 50% during both measurement campaigns. For PM2.5, uncertainty ( U r ) was below 50% for concentrations between 9.06 and 34.99 μg/m3 in HS and 5.75 and 17.58 μg/m3 in NHS, while for PM10, it stayed below 50% from 19.11 to 51.13 μg/m3 in HS and 11.72 to 38.86 μg/m3 in NHS.
Collapse
Grants
- 451-03-66/2024-03/200017 Ministry of Science, Technological Development, and Innovation of the Republic of Serbia
- 451-03-66/2024-03/200052 Ministry of Science, Technological Development, and Innovation of the Republic of Serbia
- 451-03-66/2024-03/200017 Ministry of Science, Technological Development, and Innovation of the Republic of Serbia
- 451-03-66/2024-03/200017 Ministry of Science, Technological Development, and Innovation of the Republic of Serbia
- 451-03-66/2024-03/200017 Ministry of Science, Technological Development, and Innovation of the Republic of Serbia
- 451-03-66/2024-03/200017 Ministry of Science, Technological Development, and Innovation of the Republic of Serbia
Collapse
Affiliation(s)
- Dušan B Topalović
- Department of Radiation and Environmental Protection, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia.
| | - Viša M Tasić
- Mining and Metallurgy Institute Bor, Zeleni Bulevar 35, 19210, Bor, Serbia
| | - Jelena S Stanković Petrović
- Department of Radiation and Environmental Protection, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | - Jelena Lj Vlahović
- Department of Radiation and Environmental Protection, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
- Department of Physics, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 4, 21 000, Novi Sad, Serbia
| | - Mirjana B Radenković
- Department of Radiation and Environmental Protection, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | - Ivana D Smičiklas
- Department of Radiation and Environmental Protection, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| |
Collapse
|
16
|
Mills A, Nassabeh S, Hurley A, Shouldis L, Chantler PD, Dakhlallah D, Olfert IM. Influence of gestational window on offspring vascular health in rodents with in utero exposure to electronic cigarettes. J Physiol 2024; 602:4271-4289. [PMID: 39106241 PMCID: PMC11376404 DOI: 10.1113/jp286493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/04/2024] [Indexed: 08/09/2024] Open
Abstract
Studies have shown cerebrovascular dysfunction in offspring with full-gestational electronic cigarette (Ecig) exposure, but little is known about how individual trimester exposure impacts offspring health. This study aimed to determine if there is a critical window during gestation that contributes to vascular and anxiety-like behavioural changes seen with full-term exposure. To test this, rats were time-mated, and the pregnant dams were randomly assigned to Ecig exposure during first trimester (gestational day, GD2-7), second trimester (GD8-14), third trimester (GD15-21) or full-term gestation (GD2-21). We also assessed the effect of maternal preconception exposure. Both male and female offspring from all maternal exposure conditions were compared to offspring from dams under ambient air (control) conditions. Ecig exposure consisted of 60-puffs/day (5 days/week) using either 5 or 30 watts for each respective exposure group. We found that maternal exposure to Ecig in the second and third trimesters resulted in a decrease (23-38%) in vascular reactivity of the middle cerebral artery (MCA) reactivity in 3- and 6-month-old offspring compared to Air offspring. Further, the severity of impairment was comparable to the full-term exposure (31-46%). Offspring also displayed changes in body composition, body mass, anxiety-like behaviour and locomotor activity, indicating that Ecigs influence neurodevelopment and metabolism. Maternal preconception exposure showed no impact on offspring body mass, anxiety-like behaviour, or vascular function. Thus, the critical exposure window where Ecig affects vascular development in offspring occurs during mid- to late-gestation in pregnancy, and both 5 W and 30 W exposure produce significant vascular dysfunction compared to Air. KEY POINTS: Exposure to electronic cigarettes (Ecigs) is known to increase risk factors for cardiovascular disease in both animals and humans. Maternal Ecig use during pregnancy in rodents is found to impair the vascular health of adolescent and adult offspring, but the critical gestation window for Ecig-induced vascular impairment is not known. This study demonstrates Ecig exposure during mid- and late-gestation (i.e. second or third trimester) results in impaired endothelial cell-mediated dilatation (i.e. middle cerebral artery reactivity) and alters anxiety-like behaviour in offspring. Maternal exposure prior to conception did not impact offspring's vascular or anxiety-like behavioural outcomes. Rodent models have been a reliable and useful predictor of inhalation-induced harm to humans. These data indicate maternal use of Ecigs during pregnancy should not be considered safe, and begin to inform clinicians and women about potential long-term harm to their offspring.
Collapse
Affiliation(s)
- Amber Mills
- Dept. of Physiology, Pharmacology & Toxicology, West Virginia University School of Medicine, Morgantown, WV 26506
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Sydney Nassabeh
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Audra Hurley
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Lainey Shouldis
- Department of Immunology and Microbial Pathogenesis, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Paul D. Chantler
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506
- Dept. of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Duaa Dakhlallah
- Dept. of Medicine, West Virginia University School of Medicine, Morgantown, WV 26506
| | - I. Mark Olfert
- Dept. of Physiology, Pharmacology & Toxicology, West Virginia University School of Medicine, Morgantown, WV 26506
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV 26506
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506
| |
Collapse
|
17
|
Yang S, Tong T, Wang H, Li Z, Wang M, Ni K. Causal relationship between air pollution and infections: a two-sample Mendelian randomization study. Front Public Health 2024; 12:1409640. [PMID: 39148655 PMCID: PMC11324489 DOI: 10.3389/fpubh.2024.1409640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Background Traditional observational studies exploring the association between air pollution and infections have been limited by small sample sizes and potential confounding factors. To address these limitations, we applied Mendelian randomization (MR) to investigate the potential causal relationships between particulate matter (PM2.5, PM2.5-10, and PM10), nitrogen dioxide, and nitrogen oxide and the risks of infections. Methods Single nucleotide polymorphisms (SNPs) related to air pollution were selected from the genome-wide association study (GWAS) of the UK Biobank. Publicly available summary data for infections were obtained from the FinnGen Biobank and the COVID-19 Host Genetics Initiative. The inverse variance weighted (IVW) meta-analysis was used as the primary method for obtaining the Mendelian randomization (MR) estimates. Complementary analyses were performed using the weighted median method, MR-Egger method, and MR Pleiotropy Residual Sum and Outlier (MR-PRESSO) test. Results The fixed-effect IVW estimate showed that PM2.5, PM2.5-10 and Nitrogen oxides were suggestively associated with COVID-19 [for PM2.5: IVW (fe): OR 3.573(1.218,5.288), PIVW(fe) = 0.021; for PM2.5-10: IVW (fe): OR 2.940(1.385,6.239), PIVW(fe) = 0.005; for Nitrogen oxides, IVW (fe): OR 1.898(1.318,2.472), PIVW(fe) = 0.010]. PM2.5, PM2.5-10, PM10, and Nitrogen oxides were suggestively associated with bacterial pneumonia [for PM2.5: IVW(fe): OR 1.720 (1.007, 2.937), PIVW(fe) = 0.047; for PM2.5-10: IVW(fe): OR 1.752 (1.111, 2.767), P IVW(fe) = 0.016; for PM10: IVW(fe): OR 2.097 (1.045, 4.208), PIVW(fe) = 0.037; for Nitrogen oxides, IVW(fe): OR 3.907 (1.209, 5.987), PIVW(fe) = 0.023]. Furthermore, Nitrogen dioxide was suggestively associated with the risk of acute upper respiratory infections, while all air pollution were not associated with intestinal infections. Conclusions Our results support a role of related air pollution in the Corona Virus Disease 2019, bacterial pneumonia and acute upper respiratory infections. More work is need for policy formulation to reduce the air pollution and the emission of toxic and of harmful gas.
Collapse
Affiliation(s)
- Shengyi Yang
- Department of Infection Control, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tong Tong
- Department of Infection Control, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hong Wang
- Department of Infection Control, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhenwei Li
- Department of Infection Control, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mengmeng Wang
- Department of Infection Control, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kaiwen Ni
- Department of Infection Control, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Han C, Cheng C, Liu Y, Fang Q, Li C, Cui F, Li X. Enhancing the health benefits of air quality improvement: a comparative study across diverse scenarios. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44244-44253. [PMID: 38937357 DOI: 10.1007/s11356-024-33919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
In many studies, linear methods were used to calculate health benefits of air quality improvement, but the relationship between air pollutants and diseases may be complex and nonlinear. In addition, previous studies using reference number as average number of diseases may overestimate the health benefits. Therefore, the nonlinear model estimation and resetting of the reference number were very important. Hospital admission data for coronary heart disease (CHD), meteorological data, and air pollutant data of Zibo City from 2015 to 2019 were collected. The generalized additive model (GAM) was used to explore the association between air pollutants and hospital admission for CHD, and to evaluate the effects on health benefits under different reference number settings. A total of 21,105 hospitalized cases for CHD were reported in Zibo during the study period. The results of the GAM showed there was a log-linear exposure-response relationship between O3 and hospital admissions for CHD, with RR (relative risk) of 1.0143 (95% CI: 1.0047 ~ 1.0239). There were log-nonlinear exposure-response relationships between PM10, PM2.5, SO2, and hospital admissions for CHD. With the increase of pollutants concentrations, the risk for hospital admission showed a trend of increasing first and then decreasing. Compared with the average hospital admissions as the reference number, health benefits calculated by hospital admissions predicted by the GAM model yielded lower. Using the World Health Organization air quality guidelines as reference, attributable fractions of O3, PM10, and PM2.5 were 1.97% (95% CI: 0.63 ~ 3.40%), 11.82% (95% CI: 8.60 ~ 15.24%), and 11.82% (95% CI: 8.79 ~ 15.04%), respectively. When quantifying health benefits brought by improving air quality, corresponding calculation methods should first be determined according to the exposure-response relationships between air pollutants and outcomes. Then, applying the average hospital admissions as reference number may overestimate health benefits resulting from improved air quality.
Collapse
Affiliation(s)
- Chuang Han
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44# Wenhuaxi Road, Lixia District, Jinan, 250012, Shandong, China
| | - Chuanlong Cheng
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44# Wenhuaxi Road, Lixia District, Jinan, 250012, Shandong, China
| | - Ying Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44# Wenhuaxi Road, Lixia District, Jinan, 250012, Shandong, China
| | - Qidi Fang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44# Wenhuaxi Road, Lixia District, Jinan, 250012, Shandong, China
| | - Chunyu Li
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44# Wenhuaxi Road, Lixia District, Jinan, 250012, Shandong, China
| | - Feng Cui
- Zibo Center for Disease Control and Prevention, Zibo, Shandong, China
| | - Xiujun Li
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44# Wenhuaxi Road, Lixia District, Jinan, 250012, Shandong, China.
| |
Collapse
|
19
|
Curtis KL, Chang A, Johnston JD, Beard JD, Collingwood SC, LeCheminant JD, Peterson NE, South AJ, Farnsworth CB, Sanjel S, Bikman BT, Arroyo JA, Reynolds PR. Differential Inflammatory Cytokine Elaboration in Serum from Brick Kiln Workers in Bhaktapur, Nepal. Diseases 2024; 12:129. [PMID: 38920561 PMCID: PMC11203241 DOI: 10.3390/diseases12060129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Previous studies involving workers at brick kilns in the Kathmandu Valley of Nepal have investigated chronic exposure to hazardous levels of fine particulate matter (PM2.5) common in ambient and occupational environments. Such exposures are known to cause and/or exacerbate chronic respiratory diseases, including chronic obstructive pulmonary disease (COPD) and asthma. However, there is a paucity of data regarding the status of systemic inflammation observed in exposed workers at brick manufacturing facilities within the country. In the current study, we sought to elucidate systemic inflammatory responses by quantifying the molecular cytokine/chemokine profiles in serum from the study participants. A sample of participants were screened from a kiln in Bhaktapur, Nepal (n = 32; 53% female; mean ± standard deviation: 28.42 ± 11.47 years old) and grouped according to job category. Blood was procured from participants on-site, allowed to clot at room temperature, and centrifuged to obtain total serum. A human cytokine antibody array was used to screen the inflammatory mediators in serum samples from each of the participants. For the current study, four job categories were evaluated with n = 8 for each. Comparisons were generated between a control group of administration workers vs. fire master workers, administration workers vs. green brick hand molders, and administration workers vs. top loaders. We discovered significantly increased concentrations of eotaxin-1, eotaxin-2, GCSF, GM-CSF, IFN-γ, IL-1α, IL-1β, IL-6, IL-8, TGF-β1, TNF-α, and TIMP-2 in serum samples from fire master workers vs. administration workers (p < 0.05). Each of these molecules was also significantly elevated in serum from green brick hand molders compared to administration workers (p < 0.05). Further, each molecule in the inflammatory screening with the exception of TIMP-2 was significantly elevated in serum from top loaders compared to administration workers (p < 0.05). With few exceptions, the fire master workers expressed significantly more systemic inflammatory molecular abundance when compared to all other job categories. These results reveal an association between pulmonary exposure to PM2.5 and systemic inflammatory responses likely mediated by cytokine/chemokine elaboration. The additional characterization of a broader array of inflammatory molecules may provide valuable insight into the susceptibility to lung diseases among this population.
Collapse
Affiliation(s)
- Katrina L. Curtis
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Ashley Chang
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - James D. Johnston
- Department of Public Health, Brigham Young University, Provo, UT 84602, USA
| | - John D. Beard
- Department of Public Health, Brigham Young University, Provo, UT 84602, USA
| | - Scott C. Collingwood
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84112, USA
- Rocky Mountain Center for Occupational and Environmental Health, University of Utah, Salt Lake City, UT 84112, USA
| | - James D. LeCheminant
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, UT 84602, USA
| | - Neil E. Peterson
- College of Nursing, Brigham Young University, Provo, UT 84602, USA
| | - Andrew J. South
- Department of Civil and Construction Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Clifton B. Farnsworth
- Department of Civil and Construction Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Seshananda Sanjel
- Department of Community Medicine and Public Health, Karnali Academy of Health Sciences, Jumla 21200, Nepal
| | - Benjamin T. Bikman
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Juan A. Arroyo
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Paul R. Reynolds
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
20
|
Aryal A, Harmon AC, Varner KJ, Noël A, Cormier SA, Nde DB, Mottram P, Maxie J, Dugas TR. Inhalation of particulate matter containing environmentally persistent free radicals induces endothelial dysfunction mediated via AhR activation at the air-blood interface. Toxicol Sci 2024; 199:246-260. [PMID: 38310335 DOI: 10.1093/toxsci/kfae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024] Open
Abstract
Particulate matter (PM) containing environmentally persistent free radicals (EPFR) is formed by the incomplete combustion of organic wastes, resulting in the chemisorption of pollutants to the surface of PM containing redox-active transition metals. In prior studies in mice, EPFR inhalation impaired endothelium-dependent vasodilation. These findings were associated with aryl hydrocarbon receptor (AhR) activation in the alveolar type-II (AT-II) cells that form the air-blood interface in the lung. We thus hypothesized that AhR activation in AT-II cells promotes the systemic release of mediators that promote endothelium dysfunction peripheral to the lung. To test our hypothesis, we knocked down AhR in AT-II cells of male and female mice and exposed them to 280 µg/m3 EPFR lo (2.7e + 16 radicals/g) or EPFR (5.5e + 17 radicals/g) compared with filtered air for 4 h/day for 1 day or 5 days. AT-II-AhR activation-induced EPFR-mediated endothelial dysfunction, reducing endothelium-dependent vasorelaxation by 59%, and eNOS expression by 50%. It also increased endothelin-1 mRNA levels in the lungs and peptide levels in the plasma in a paracrine fashion, along with soluble vascular cell adhesion molecule-1 and iNOS mRNA expression, possibly via NF-kB activation. Finally, AhR-dependent increases in antioxidant response signaling, coupled to increased levels of 3-nitrotyrosine in the lungs of EPFR-exposed littermate control but not AT-II AhR KO mice suggested that ATII-specific AhR activation promotes oxidative and nitrative stress. Thus, AhR activation at the air-blood interface mediates endothelial dysfunction observed peripheral to the lung, potentially via release of systemic mediators.
Collapse
Affiliation(s)
- Ankit Aryal
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Ashlyn C Harmon
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Kurt J Varner
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Stephania A Cormier
- Department of Biological Sciences, Louisiana State University A&M College and Pennington Biomedical Research Institute, Baton Rouge, Louisiana 70803, USA
| | - Divine B Nde
- Department of Chemistry, Louisiana State University A&M College, Baton Rouge, Louisiana 70803, USA
| | - Peter Mottram
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Jemiah Maxie
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Tammy R Dugas
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
21
|
Gao Y, Huang W, Yu P, Xu R, Gasevic D, Yue X, Coêlho MDSZS, Saldiva PHN, Guo Y, Li S. Wildfire-related PM 2.5 and cardiovascular mortality: A difference-in-differences analysis in Brazil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123810. [PMID: 38493867 DOI: 10.1016/j.envpol.2024.123810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Brazil has experienced unprecedented wildfires recently. We aimed to investigate the association of wildfire-related fine particulate matter (PM2.5) with cause-specific cardiovascular mortality, and to estimate the attributable mortality burden. Exposure to wildfire-related PM2.5 was defined as exposure to annual mean wildfire-related PM2.5 concentrations in the 1-year prior to death. The variant difference-in-differences method was employed to explore the wildfire-related PM2.5-cardiovascular mortality association. We found that, in Brazil, compared with the population in the first quartile (Q1: ≤1.82 μg/m3) of wildfire-related PM2.5 exposure, those in the fourth quartile (Q4: 4.22-17.12 μg/m3) of wildfire-related PM2.5 exposure had a 2.2% (RR: 1.022, 95% CI: 1.013-1.032) higher risk for total cardiovascular mortality, 3.1% (RR: 1.031, 95% CI: 1.014-1.048) for ischaemic heart disease mortality, and 2.0% (RR: 1.020, 95% CI: 1.002-1.038) for stroke mortality. From 2010 to 2018, an estimation of 35,847 (95% CI: 22,424-49,177) cardiovascular deaths, representing 17.77 (95% CI: 11.12-24.38) per 100,000 population, were attributable to wildfire-related PM2.5 exposure. Targeted health promotion strategies should be developed for local governments to protect the public from the risk of wildfire-related cardiovascular premature deaths.
Collapse
Affiliation(s)
- Yuan Gao
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Wenzhong Huang
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Pei Yu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Danijela Gasevic
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia; Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Xu Yue
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | | | | | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
22
|
Cao Y, Feng Y, Xia N, Zhang J. Causal associations of particulate matter 2.5 and cardiovascular disease: A two-sample mendelian randomization study. PLoS One 2024; 19:e0301823. [PMID: 38578766 PMCID: PMC10997086 DOI: 10.1371/journal.pone.0301823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/20/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND According to epidemiological studies, particulate matter 2.5 (PM2.5) is a significant contributor to cardiovascular disease (CVD). However, making causal inferences is difficult due to the methodological constraints of observational studies. In this study, we used two-sample Mendelian randomization (MR) to examine the causal relationship between PM 2.5 and the risk of CVD. METHODS Genome-wide association study (GWAS) statistics for PM2.5 and CVD were collected from the FinnGen and UK Biobanks. Mendelian randomization analyses were applied to explore the causal effects of PM2.5 on CVD by selecting single-nucleotide polymorphisms(SNP) as instrumental variables. RESULTS The results revealed that a causal effect was observed between PM2.5 and coronary artery disease(IVW: OR 2.06, 95% CI 1.35, 3.14), and hypertension(IVW: OR 1.07, 95% CI 1.03, 1.12). On the contrary, no causal effect was observed between PM2.5 and myocardial infarction(IVW: OR 0.73, 95% CI 0.44, 1.22), heart failure(IVW: OR 1.54, 95% CI 0.96, 2.47), atrial fibrillation(IVW: OR 1.03, 95% CI 0.71, 1.48), and ischemic stroke (IS)(IVW: OR 0.98, 95% CI 0.54, 1.77). CONCLUSION We discovered that there is a causal link between PM2.5 and coronary artery disease and hypertension in the European population, using MR methods. Our discovery may have the significance of public hygiene to improve the understanding of air quality and CVD risk.
Collapse
Affiliation(s)
- Ye Cao
- Department of Cardiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, P. R. China
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P. R. China
| | - Yi Feng
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P. R. China
| | - Nan Xia
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P. R. China
| | - Jiancheng Zhang
- Department of Cardiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, P. R. China
| |
Collapse
|
23
|
Yousefzadeh E, Chamani A, Besalatpour A. Health effects of exposure to urban ambient particulate matter: A spatial-statistical study on 3rd-trimester pregnant women. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123518. [PMID: 38369086 DOI: 10.1016/j.envpol.2024.123518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Pregnant women are highly vulnerable to environmental stressors such as ambient particulate matter (PM). Particularly during their 3rd trimester, their bodies undergo significant oxidative stresses. To further consolidate this dialogue into practice, the current study evaluated healthy pregnant women (n = 150 housewives; 18-40 years old; gestation age >36 weeks) from the highly polluted city of Yazd, Iran, from September to November 2021. The aerosol optical depth (AOD) data retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) were employed as influencing variables and validated using field-collected PM10 data (r = 0.62, p-value <0.01). The links between blood platelet count, enzymes (SGOT, SGPT, LDH, bilirubin), metabolic products (urea and acid uric) and different combinations of AOD data were assessed using the Generalized Additive Model. The results showed a high temporal variability in AOD (0.94 ± 0.51) but a spatially stable distribution pattern. The mean AOD during the 3rd trimester, followed by that of the three-month peak, were identified as the most significant non-linear predictors, while the mean AOD during the 1st trimester and throughout the entire pregnancy showed no significant associations with any of the biomarkers. Considering the associations found between AOD variables and maternal oxidative stresses, urgent planning is required to improve the urban air quality for sensitive subpopulations.
Collapse
Affiliation(s)
- Elham Yousefzadeh
- Environmental Science and Engineering Department, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Atefeh Chamani
- Environmental Science and Engineering Department, Waste and Wastewater Research Center, Isfahan (khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | | |
Collapse
|
24
|
Roh HT, Jeong T. In-Silico Investigation and Intelligence Analysis of Particulate Matter and Pro-Oxidant-Antioxidant Balance. IRANIAN JOURNAL OF PUBLIC HEALTH 2024; 53:972-975. [PMID: 39444482 PMCID: PMC11493561 DOI: 10.18502/ijph.v53i4.15576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 10/25/2024]
Abstract
The Article Abstract is not available.
Collapse
Affiliation(s)
- Hee-Tae Roh
- Division of Sports Science, College of Arts and Sports, Sun Moon University, Asan, Chungcheongnam-do, Korea
| | - Taikyeong Jeong
- School of Artificial Intelligence Convergence, Hallym University, Chuncheon, Korea
| |
Collapse
|
25
|
Gui J, Wang L, Liu J, Luo H, Huang D, Yang X, Song H, Han Z, Meng L, Ding R, Yang J, Jiang L. Ambient particulate matter exposure induces ferroptosis in hippocampal cells through the GSK3B/Nrf2/GPX4 pathway. Free Radic Biol Med 2024; 213:359-370. [PMID: 38290604 DOI: 10.1016/j.freeradbiomed.2024.01.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
Epidemiological studies have established a robust correlation between exposure to ambient particulate matter (PM) and various neurological disorders, with dysregulation of intracellular redox processes and cell death being key mechanisms involved. Ferroptosis, a cell death form characterized by iron-dependent lipid peroxidation and disruption of antioxidant defenses, may be involved in the neurotoxic effects of PM exposure. However, the relationship between PM-induced neurotoxicity and ferroptosis in nerve cells remains to be elucidated. In this study, we utilized a rat model (exposed to PM at a dose of 10 mg/kg body weight per day for 4 weeks) and an HT-22 cell model (exposed to PM at concentrations of 50, 100, and 200 μg/mL for 24 h) to investigate the potential induction of ferroptosis by PM exposure. Furthermore, RNA sequencing analysis was employed to identify hub genes that potentially contribute to the process of ferroptosis, which was subsequently validated through in vivo and in vitro experiments. The results revealed that PM exposure increased MDA content and Fe2+ levels, and decreased SOD activity and GSH/GSSG ratio in rat hippocampal and HT-22 cells. Through RNA sequencing analysis, bioinformatics analysis, and RT-qPCR experiments, we identified GSK3B as a possible hub gene involved in ferroptosis. Subsequent investigations demonstrated that PM exposure increased GSK3B levels and decreased Nrf2, and GPX4 levels in vivo and in vitro. Furthermore, treatment with LY2090314, a specific inhibitor of GSK3B, was found to mitigate the PM-induced elevation of MDA and ROS and restore SOD activity and GSH/GSSG ratio. The LY2090314 treatment promoted the upregulation of Nrf2 and GPX4 and facilitated the nuclear translocation of Nrf2 in HT-22 cells. Moreover, treatment with LY2090314 resulted in the upregulation of Nrf2 and GPX4, along with the facilitation of nuclear translocation of Nrf2. This study suggested that PM-induced ferroptosis in hippocampal cells may be via the GSK3B/Nrf2/GPX4 pathway.
Collapse
Affiliation(s)
- Jianxiong Gui
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Lingman Wang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Jie Liu
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Hanyu Luo
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Dishu Huang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Xiaoyue Yang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Honghong Song
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Ziyao Han
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Linxue Meng
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Ran Ding
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Jiaxin Yang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Li Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China.
| |
Collapse
|
26
|
Xia Z, Liu Y, Liu C, Dai Z, Liang X, Zhang N, Wu W, Wen J, Zhang H. The causal effect of air pollution on the risk of essential hypertension: a Mendelian randomization study. Front Public Health 2024; 12:1247149. [PMID: 38425468 PMCID: PMC10903282 DOI: 10.3389/fpubh.2024.1247149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024] Open
Abstract
Background Air pollution poses a major threat to human health by causing various illnesses, such as cardiovascular diseases. While plenty of research indicates a correlation between air pollution and hypertension, a definitive answer has yet to be found. Methods Our analyses were performed using the Genome-wide association study (GWAS) of exposure to air pollutants from UKB (PM2.5, PM10, NO2, and NOX; n = 423,796 to 456,380), essential hypertension from FinnGen (42,857 cases and 162,837 controls) and from UKB (54,358 cases and 408,652 controls) as a validated cohort. Univariable and multivariable Mendelian randomization (MR) were conducted to investigate the causal relationship between air pollutants and essential hypertension. Body mass index (BMI), alcohol intake frequency, and the number of cigarettes previously smoked daily were included in multivariable MRs (MVMRs) as potential mediators/confounders. Results Our findings suggested that higher levels of both PM2.5 (OR [95%CI] per 1 SD increase in predicted exposure = 1.24 [1.02-1.53], p = 3.46E-02 from Finn; OR [95%CI] = 1.04 [1.02-1.06], p = 7.58E-05 from UKB) and PM10 (OR [95%CI] = 1.24 [1.02-1.53], p = 3.46E-02 from Finn; OR [95%CI] = 1.04 [1.02-1.06], p = 7.58E-05 from UKB) were linked to an increased risk for essential hypertension. Even though we used MVMR to adjust for the impacts of smoking and drinking on the relationship between PM2.5 exposure and essential hypertension risks, our findings suggested that although there was a direct positive connection between them, it is not present after adjusting BMI (OR [95%CI] = 1.05 [0.87-1.27], p = 6.17E-01). Based on the study, higher exposure to PM2.5 and PM10 increases the chances of developing essential hypertension, and this influence could occur through mediation by BMI. Conclusion Exposure to both PM2.5 and PM10 is thought to have a causal relationship with essential hypertension. Those impacted by substantial levels of air pollution require more significant consideration for their cardiovascular health.
Collapse
Affiliation(s)
- Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Changsha, Hunan Province, China
| | - Yinjiang Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chao Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, Hunan Province, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xisong Liang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jie Wen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
27
|
Gui J, Liu J, Wang L, Yang X, Tian B, Luo H, Huang D, Han Z, Yang J, Ding R, Fang Z, Li X, Cheng L, Jiang L. Autophagy alleviates hippocampal neuroinflammation by inhibiting the NLRP3 inflammasome in a juvenile rat model exposed particulate matter. Toxicology 2024; 502:153730. [PMID: 38237716 DOI: 10.1016/j.tox.2024.153730] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/01/2024] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Ambient fine particulate matter (PM) is a global public and environmental problem. PM is closely associated with several neurological diseases, which typically involve neuroinflammation. We investigated the impact of PM exposure on neuroinflammation using both in vivo (in a juvenile rat model with PM exposure concentrations of 1, 2, and 10 mg/kg for 28 days) and in vitro (in BV-2 and HT-22 cell models with PM concentrations of 50-200 μg/ml for 24 h). We observed that PM exposure induced the activation of the NLRP3 inflammasome, leading to the production of IL-1β and IL-18 in the rat hippocampus and BV-2 cells. Furthermore, inhibition of the NLRP3 inflammasome with MCC950 effectively reduced neuroinflammation and ameliorated hippocampal damage. In addition, autophagy activation was observed in the hippocampus of PM-exposed rats, and the promotion of autophagy by rapamycin (Rapa) effectively attenuated the NLRP3-mediated neuroinflammation induced by PM exposure. However, autophagic flow was blocked in BV-2 cells exposed to PM, and Rapa failed to ameliorate NLRP3 inflammasome activation. We found that autophagy was activated in HT-22 cells exposed to PM and that treatment with Rapa reduced the release of reactive oxygen species (ROS) and malondialdehyde (MDA), as well as cell apoptosis. In a subsequent coculture model of BV-2 and HT-22 cells, we observed the activation of the NLRP3 inflammasome in BV-2 cells when the HT-22 cells were exposed to PM, and this activation was alleviated when PM-exposed HT-22 cells were pretreated with Rapa. Overall, our study revealed that PM exposure triggered hippocampal neuroinflammation by activating the NLRP3 inflammasome. Notably, autophagy mitigated NLRP3 inflammasome activation, potentially by reducing neuronal ROS and apoptosis. This research emphasized the importance of reducing PM exposure and provided valuable insight into its neurotoxicity.
Collapse
Affiliation(s)
- Jianxiong Gui
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Jie Liu
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Lingman Wang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Xiaoyue Yang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Bing Tian
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Hanyu Luo
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Dishu Huang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Ziyao Han
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Jiaxin Yang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Ran Ding
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Zhixu Fang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Xue Li
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Li Cheng
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Li Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China.
| |
Collapse
|
28
|
Ma Y, Zhang J, Li D, Tang L, Li Y, Cui F, Wang J, Wen C, Yang J, Tian Y. Genetic Susceptibility Modifies Relationships Between Air Pollutants and Stroke Risk: A Large Cohort Study. Stroke 2024; 55:113-121. [PMID: 38134266 DOI: 10.1161/strokeaha.123.044284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND The extent to which genetic susceptibility modifies the associations between air pollutants and the risk of incident stroke is still unclear. This study was designed to investigate the separate and joint associations of long-term exposure to air pollutants and genetic susceptibility on stroke risk. METHODS The participants of this study were recruited by the UK Biobank between 2006 and 2010. These participants were followed up from the enrollment until the occurrence of stroke events or censoring of data. Hazard ratios (HRs) and 95% CIs for stroke events associated with long-term exposure to air pollutants were estimated by fitting both crude and adjusted Cox proportional hazards models. Additionally, the polygenic risk score was calculated to estimate whether the polygenic risk score modifies the associations between exposure to air pollutants and incident stroke. RESULTS A total of 502 480 subjects were included in this study. After exclusion, 452 196 participants were taken into the final analysis. During a median follow-up time of 11.7 years, 11 334 stroke events were observed, with a mean age of 61.60 years, and men accounted for 56.2% of the total cases. Long-term exposures to particulate matter with an aerodynamic diameter smaller than 2.5 µm (adjusted HR, 1.70 [95% CI, 1.43-2.03]) or particulate matter with an aerodynamic diameter smaller than 10 µm (adjusted HR, 1.50 [95% CI, 1.36-1.66]), nitrogen dioxide (adjusted HR, 1.10 [95% CI, 1.07-1.12]), and nitrogen oxide (adjusted HR, 1.04 [95% CI, 1.02-1.05]) were pronouncedly associated with increased risk of stroke. Meanwhile, participants with high genetic risk and exposure to high air pollutants had ≈45% (31%, 61%; particulate matter with an aerodynamic diameter smaller than 2.5 µm), 48% (33%, 65%; particulate matter with an aerodynamic diameter smaller than 10 µm), 51% (35%, 69%; nitrogen dioxide), and 39% (25%, 55%; nitrogen oxide) higher risk of stroke compared with those with low genetic risk and exposure to low air pollutants, respectively. Of note, we observed additive and multiplicative interactions between genetic susceptibility and air pollutants on stroke events. CONCLUSIONS Chronic exposure to air pollutants was associated with an increased risk of stroke, especially in populations at high genetic risk.
Collapse
Affiliation(s)
- Yudiyang Ma
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating) (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University and Yichang Central People's Hospital (J.Z., J.Y.)
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang (J.Z., J.Y.)
- Hubei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China (J.Z., J.Y.)
| | - Dankang Li
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating) (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linxi Tang
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating) (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yimeng Li
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating) (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, CT (Y.L.)
| | - Feipeng Cui
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating) (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianing Wang
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating) (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Wen
- School of Architecture and Urban Planning, Huazhong University of Science and Technology, Wuhan, China (C.W.)
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University and Yichang Central People's Hospital (J.Z., J.Y.)
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang (J.Z., J.Y.)
- Hubei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China (J.Z., J.Y.)
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating) (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Tsai SS, Yang CY. Effects of long-term exposure to ambient fine particulate air pollution on all-cause mortality in Taiwan. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:942-949. [PMID: 37743654 DOI: 10.1080/15287394.2023.2261025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
According to the US Environmental Protection Agency's Integrated Science Assessment (ISA), there is a causal relationship between fine particulate matter (PM2.5) exposure and increased mortality rates. A similar association was also reported by the International Agency for Research on Cancer (IARC). While many studies are available on this relationship between PM exposure and elevated mortality frequency in Europe and North America, there are limited investigations in Asia. Thus, the aim of this study was to perform an ecological investigation to determine the relationship between exposure to ambient PM2.5 levels and all-cause mortality in 66 in Taiwan municipalities. To undertake this investigation, annual PM2.5 levels and age-standardized all-cause mortality rates were calculated for male and female residents of these areas from 2010 to 2020. Weighted-multiple regression analyses were used to obtain adjusted risk ratio (RR) controlling for possible confounding by urbanization level, physician density, and annual mean household income. Annual PM2.5 levels of each municipality were divided into tertiles. Data demonstrated that men residing in areas with intermediate tertile PM2.5 levels (21.06 to 27.29 µg/m3) and the highest tertiles levels (27.30-33.11 µg/m3) exhibited adjusted RRs of 1.06 (95% CI = 1.03-1.08) and 1.13 (95% CI = 1.10-1.16), respectively. Women in these locations displayed a similar risk, 1.03 (0.99-1.06) and 1.07 (1.04-1.11), respectively. These findings indicate that ambient exposure to PM2.5 increased risk for all-cause mortality rates in both men and women in Taiwan during this time period.
Collapse
Affiliation(s)
- Shang-Shyue Tsai
- Department of Healthcare Administration, I-Shou University, Kaohsiung, Taiwan
| | - Chun-Yuh Yang
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institute, Miaoli, Taiwan
| |
Collapse
|
30
|
Liu R, Sun Y, Di D, Zhang X, Zhu B, Wu H. PI3K/AKT/SERBP-1 pathway regulates Alisma orientalis beverage treatment of atherosclerosis in APOE -/- high-fat diet mice. PHARMACEUTICAL BIOLOGY 2023; 61:473-487. [PMID: 36825364 PMCID: PMC9970249 DOI: 10.1080/13880209.2023.2168020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 05/27/2023]
Abstract
CONTEXT Previously, we found Alisma orientalis beverage (AOB), a classic traditional Chinese medicine (TCM) formulation, had the potential effect of treating atherosclerosis (AS). The underlying mechanism was still unclear. OBJECTIVE As an extention of our previous work, to investigate the underlying mechanism of action of AOB in the treatment for AS. MATERIALS AND METHODS Network pharmacology was conducted using SwissTargetPrediction, GeneCards, DrugBank, Metascape, etc., to construct component-target-pathway networks. In vivo, AS models were induced by a high-fat diet (HFD) for 8 consecutive weeks in APOE-/- mice. After the administration of AOB (3.8 g/kg, i.g.) for 8 weeks, we assessed the aortic plaque, four indicators of blood lipids, and expression of the PI3K/AKT/SREBP-1 pathway in liver. RESULTS Network pharmacology showed that PI3K/AKT/SREBP-1 played a role in AOB's treatment for AS (PI3K: degree = 18; AKT: degree = 17). Moreover, we found that the arterial plaque area and four indicators of blood lipids were all significantly reversed by AOB treatment in APOE-/- mice fed with HFD (plaque area reduced by about 37.75%). In addition, phosphorylated expression of PI3K/AKT and expression of SREBP-1 were obviously increased in APOE-/- mice fed with HFD, which were all improved by AOB (PI3K: 51.6%; AKT: 23.6%; SREBP-1: 40.0%). CONCLUSIONS AOB had therapeutic effects for AS by improving blood lipids and inhibition of the PI3K/AKT/SERBP-1 pathway in the liver. This study provides new ideas for the treatment of AS, as well as new evidence for the clinical application of AOB.
Collapse
Affiliation(s)
- Ruiyi Liu
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
- National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
- Laboratory of Febrile Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Yan Sun
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
- National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Dong Di
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
- National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Xiyuan Zhang
- Sheyang Hospital of Traditional Chinese Medicine, Yancheng, People's Republic of China
| | - Boran Zhu
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
- National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Haoxin Wu
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
- National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| |
Collapse
|
31
|
Aryal A, Noël A, Khachatryan L, Cormier SA, Chowdhury PH, Penn A, Dugas TR, Harmon AC. Environmentally persistent free radicals: Methods for combustion generation, whole-body inhalation and assessing cardiopulmonary consequences. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122183. [PMID: 37442324 PMCID: PMC10528481 DOI: 10.1016/j.envpol.2023.122183] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Particulate matter (PM) containing environmentally persistent free radicals (EPFRs) results from the incomplete combustion of organic wastes which chemisorb to transition metals. This process generates a particle-pollutant complex that continuously redox cycles to produce reactive oxygen species. EPFRs are well characterized, but their cardiopulmonary effects remain unknown. This publication provides a detailed approach to evaluating these effects and demonstrates the impact that EPFRs have on the lungs and vasculature. Combustion-derived EPFRs were generated (EPFR lo: 2.1e-16 radical/g, EPFR hi: 5.5e-17 radical/g), characterized, and verified as representative of those found in urban areas. Dry particle aerosolization and whole-body inhalation were established for rodent exposures. To verify that these particles and exposures recapitulate findings relevant to known PM-induced cardiopulmonary effects, male C57BL6 mice were exposed to filtered air, ∼280 μg/m3 EPFR lo or EPFR hi for 4 h/d for 5 consecutive days. Compared to filtered air, pulmonary resistance was increased in mice exposed to EPFR hi. Mice exposed to EPFR hi also exhibited increased plasma endothelin-1 (44.6 vs 30.6 pg/mL) and reduced nitric oxide (137 nM vs 236 nM), suggesting vascular dysfunction. Assessment of vascular response demonstrated an impairment in endothelium-dependent vasorelaxation, with maximum relaxation decreased from 80% to 62% in filtered air vs EPFR hi exposed mice. Gene expression analysis highlighted fold changes in aryl hydrocarbon receptor (AhR) and antioxidant response genes including increases in lung Cyp1a1 (8.7 fold), Cyp1b1 (9 fold), Aldh3a1 (1.7 fold) and Nqo1 (2.4 fold) and Gclc (1.3 fold), and in aortic Cyp1a1 (5.3 fold) in mice exposed to EPFR hi vs filtered air. We then determined that lung AT2 cells were the predominate locus for AhR activation. Together, these data suggest the lung and vasculature as particular targets for the health impacts of EPFRs and demonstrate the importance of additional studies investigating the cardiopulmonary effects of EPFRs.
Collapse
Affiliation(s)
- Ankit Aryal
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, 70803, USA
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, 70803, USA
| | - Lavrent Khachatryan
- Department of Chemistry, Louisiana State University A&M College, Baton Rouge, Louisiana, 70803, USA
| | - Stephania A Cormier
- Department of Biological Sciences, Louisiana State University A&M College and the Pennington Biomedical Research Institute, Baton Rouge, Louisiana, 70803, USA
| | - Pratiti H Chowdhury
- Department of Biological Sciences, Louisiana State University A&M College and the Pennington Biomedical Research Institute, Baton Rouge, Louisiana, 70803, USA
| | - Arthur Penn
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, 70803, USA
| | - Tammy R Dugas
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, 70803, USA
| | - Ashlyn C Harmon
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, 70803, USA.
| |
Collapse
|
32
|
Cho SY, Roh HT. Impact of Particulate Matter Exposure and Aerobic Exercise on Circulating Biomarkers of Oxidative Stress, Antioxidant Status, and Inflammation in Young and Aged Mice. Life (Basel) 2023; 13:1952. [PMID: 37895334 PMCID: PMC10608750 DOI: 10.3390/life13101952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Exposure to particulate matter (PM) and exercise training can have antagonistic effects on inflammatory responses and the balance between pro-oxidants and antioxidants in the body. However, the underlying mechanisms of these effects remain unclear. This study aimed to investigate the effects of PM exposure and aerobic exercise training on oxidative stress, antioxidant status, and inflammation in mice of different ages. Two groups of male C57BL/6 mice, comprising forty 1-month-old and forty 12-month-old mice, were exposed to either PM or exercise training or both for 8 weeks. PM exposure led to significantly higher 8-hydroxydeoxyguanosine (8-OHdG), malondialdehyde (MDA), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α) levels (p < 0.05) and significantly lower superoxide dismutase (SOD) and catalase (CAT) activities (p < 0.05) in both age groups exposed to PM compared to the control groups. Conversely, aerobic exercise training led to significantly lower 8-OHdG, MDA, IL-1β, IL-6, and TNF-α levels (p < 0.05) and significantly higher SOD and CAT activities (p < 0.05) in both age groups receiving exercise training, compared to those exposed to PM. Moreover, young mice in the exercise training and PM group showed significantly lower 8-OHdG, MDA, and IL-1β levels (p < 0.05) and significantly higher SOD and CAT activities (p < 0.05) than young mice in the PM exposure group. However, these levels did not vary significantly between the group of old mice that either received exercise training or exposure to PM. Our results suggest that while PM exposure could cause pro-oxidant/antioxidant imbalances and inflammatory responses, regular aerobic exercise could ameliorate these negative effects, although these vary with age. Nevertheless, the antioxidant and anti-inflammatory effects of exercise were countered by PM exposure, especially in older mice.
Collapse
Affiliation(s)
- Su-Youn Cho
- Exercise Physiology Laboratory, Department of Physical Education, Yonsei University, Seoul 03722, Republic of Korea
| | - Hee-Tae Roh
- Division of Sports Science, College of Arts and Sports, Sun Moon University, 70 Sunmoon-ro 221 beon-gil, Tangjeong-myeon, Asan-si 31460, Republic of Korea
| |
Collapse
|
33
|
Tsai SS, Yang CY. Health benefits of reducing ambient levels of fine particulate matter: a mortality impact assessment in Taiwan. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:653-660. [PMID: 37489027 DOI: 10.1080/15287394.2023.2233985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
While numerous studies have found a relationship between long-term exposure to airborne fine particulate matter (PM2.5) and higher risk of death, few investigations examined the contribution that a reduction of exposure to ambient PM2.5 levels might exert on mortality rates. This study aimed to collect data on changes in annual average ambient levels of PM2.5 from 2006 to 2020 and consequent health impact in public health in 65 municipalities in Taiwan. Avoidable premature mortality was used here as an indicator of adverse health impact or health benefits. Annual PM2.5 levels were averaged for the years 2006, 2010, and 2020. In accordance with World Health Organization (WHO) methodology, differences were estimated in the number of deaths attributed to ambient PM2.5 exposure which were derived from concentration-response data from prior epidemiological studies. PM2.5 concentrations were found to have been decreased markedly throughout Taiwan over the two-decade study. As the PM2.5 concentrations fell, so was the health burden as evidenced by number of deaths concomitantly reduced from 22.4% in 2006 to 8.47% in 2020. Data demonstrated that reducing annual mean levels of PM2.5 to PM10 ug/m3 was associated with decrease in the total burden of mortality, with a 2.22-13.18% fall in estimated number of PM2.5-related deaths between 2006 and 2020. Based upon these results, these declines in ambient PM2.5 levels were correlated with significant improvement in public health (health benefits) and diminished number of deaths in Taiwan.
Collapse
Affiliation(s)
- Shang-Shyue Tsai
- Department of Healthcare Administration, I-Shou University, Kaohsiung, Taiwan
| | - Chun-Yuh Yang
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institute, Miaoli, Taiwan
| |
Collapse
|
34
|
Zhang J, Zhang WH, Morisseau C, Zhang M, Dong HJ, Zhu QM, Huo XK, Sun CP, Hammock BD, Ma XC. Genetic deletion or pharmacological inhibition of soluble epoxide hydrolase attenuated particulate matter 2.5 exposure mediated lung injury. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131890. [PMID: 37406527 PMCID: PMC10699546 DOI: 10.1016/j.jhazmat.2023.131890] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/27/2023] [Accepted: 06/17/2023] [Indexed: 07/07/2023]
Abstract
Air pollution represented by particulate matter 2.5 (PM2.5) is closely related to diseases of the respiratory system. Although the understanding of its mechanism is limited, pulmonary inflammation is closely correlated with PM2.5-mediated lung injury. Soluble epoxide hydrolase (sEH) and epoxy fatty acids play a vital role in the inflammation. Herein, we attempted to use the metabolomics of oxidized lipids for analyzing the relationship of oxylipins with lung injury in a PM2.5-mediated mouse model, and found that the cytochrome P450 oxidases/sEH mediated metabolic pathway was involved in lung injury. Furthermore, the sEH overexpression was revealed in lung injury mice. Interestingly, sEH genetic deletion or the selective sEH inhibitor TPPU increased levels of epoxyeicosatrienoic acids (EETs) in lung injury mice, and inactivated pulmonary macrophages based on the MAPK/NF-κB pathway, resulting in protection against PM2.5-mediated lung injury. Additionally, a natural sEH inhibitor luteolin from Inula japonica displayed a pulmonary protective effect towards lung injury mediated by PM2.5 as well. Our results are consistent with the sEH message and protein being both a marker and mechanism for PM2.5-induced inflammation, which suggest its potential as a pharmaceutical target for treating diseases of the respiratory system.
Collapse
Affiliation(s)
- Juan Zhang
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, People's Republic of China; School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen 518061, People's Republic of China
| | - Wen-Hao Zhang
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, People's Republic of China; College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Christophe Morisseau
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, United States
| | - Min Zhang
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, People's Republic of China; College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Hong-Jun Dong
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Qi-Meng Zhu
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, People's Republic of China; College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Xiao-Kui Huo
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Cheng-Peng Sun
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, People's Republic of China; College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China; School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, United States.
| | - Xiao-Chi Ma
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, People's Republic of China.
| |
Collapse
|
35
|
Zheng D, Yang Q, Wu J, Tian H, Ji Z, Chen L, Cai J, Li Z, Chen Y. Research trends on the relationship between air pollution and cardiovascular diseases in 2013-2022 - A scientometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93800-93816. [PMID: 37523085 DOI: 10.1007/s11356-023-28938-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Exposure to air pollution is linked with an elevated risk of cardiovascular diseases (CVDs) and CVDs-related mortality. However, there is a shortage of scientometric analysis on this topic. Therefore, we propose a scientometric study to explore research hotspots and directions in this topical field over the past decade. We used the core collection of Web of Science (WoS) to obtain relevant publications and analyzed them using Excel, the Bibliometix R-package, CiteSpace, and VOSviewer. The study covered various aspects such as annual publications, highly cited papers, co-cited references, journals, authors, countries, organizations, and keywords. Research on air pollution and CVDs has remarkable increase over the past decade, with notable researchers including Kan H, Brook RD, Peters A, and Schwartz J. The 3144 articles were published by 4448 institutions in 131 countries/regions. The leading countries were the USA and China, and the most published journal was Environmental Research. Mortality, hospital admissions, oxidative stress, inflammation, long-term exposure, fine particulate matter, and PM2.5 are the top areas that merit further investigation and hold significant potential for advancing our understanding of the complex relationship between air pollution and CVDs.
Collapse
Affiliation(s)
- Daitian Zheng
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, No.69 North Dongxia Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Qiuping Yang
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, No.69 North Dongxia Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Jinyao Wu
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, No.69 North Dongxia Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Huiting Tian
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, No.69 North Dongxia Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Zeqi Ji
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, No.69 North Dongxia Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Lingzhi Chen
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, No.69 North Dongxia Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Jiehui Cai
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, No.69 North Dongxia Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Zhiyang Li
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, No.69 North Dongxia Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Yexi Chen
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, No.69 North Dongxia Road, Shantou, Guangdong, 515041, People's Republic of China.
| |
Collapse
|
36
|
Moradi M, Behnoush AH, Abbasi‐Kangevari M, Saeedi Moghaddam S, Soleimani Z, Esfahani Z, Naderian M, Malekpour M, Rezaei N, Keykhaei M, Khanmohammadi S, Tavolinejad H, Rezaei N, Larijani B, Farzadfar F. Particulate Matter Pollution Remains a Threat for Cardiovascular Health: Findings From the Global Burden of Disease 2019. J Am Heart Assoc 2023; 12:e029375. [PMID: 37555373 PMCID: PMC10492946 DOI: 10.1161/jaha.123.029375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/31/2023] [Indexed: 08/10/2023]
Abstract
Background Particulate matter (PM) pollution is a significant risk factor for cardiovascular diseases, causing substantial disease burden and deaths worldwide. This study aimed to investigate the global burden of cardiovascular diseases attributed to PM from 1990 to 2019. Methods and Results We used the GBD (Global Burden of Disease) study 2019 to investigate disability-adjusted life-years (DALYs), years of life lost (YLLs), years lived with disability (YLDs), and deaths attributed to PM as well as its subgroups. It was shown that all burden measures' age-standardized rates for PM were in the same decreasing trend, with the highest decline recorded for deaths (-36.7%). However, the all-age DALYs increased by 31%, reaching 8.9 million in 2019, to which YLLs contributed the most (8.2 million [95% uncertainty interval, 7.3 million-9.2 million]). Men had higher deaths, DALYs, and YLLs despite lower years lived with disability in 2019 compared with women. There was an 8.1% increase in the age-standardized rate of DALYs for ambient PM; however, household air pollution from solid fuels decreased by 65.4% in the assessed period. Although higher in men, the low and high sociodemographic index regions had the highest and lowest attributed YLLs/YLDs ratio for PM pollution in 2019, respectively. Conclusions Although the total age-standardized rate of DALYs for PM-attributed cardiovascular diseases diminished from 1990 to 2019, the global burden of PM on cardiovascular diseases has increased. The differences between men and women and between regions have clinical and policy implications in global health planning toward more exact funding and resource allocation, in addition to addressing inequity in health care access.
Collapse
Affiliation(s)
- Mahsa Moradi
- Non‐Communicable Diseases Research CenterEndocrinology and Metabolism Population Sciences Institute, Tehran University of Medical SciencesTehranIran
- National Elites FoundationTehranIran
- Department of Environmental Health Engineering, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Amir Hossein Behnoush
- Non‐Communicable Diseases Research CenterEndocrinology and Metabolism Population Sciences Institute, Tehran University of Medical SciencesTehranIran
| | - Mohsen Abbasi‐Kangevari
- Non‐Communicable Diseases Research CenterEndocrinology and Metabolism Population Sciences Institute, Tehran University of Medical SciencesTehranIran
| | - Sahar Saeedi Moghaddam
- Non‐Communicable Diseases Research CenterEndocrinology and Metabolism Population Sciences Institute, Tehran University of Medical SciencesTehranIran
- Kiel Institute for the World EconomyKielGermany
| | - Zahra Soleimani
- Non‐Communicable Diseases Research CenterEndocrinology and Metabolism Population Sciences Institute, Tehran University of Medical SciencesTehranIran
| | - Zahra Esfahani
- Non‐Communicable Diseases Research CenterEndocrinology and Metabolism Population Sciences Institute, Tehran University of Medical SciencesTehranIran
- Department of BiostatisticsUniversity of Social Welfare and Rehabilitation SciencesTehranIran
| | - Mohammadreza Naderian
- Non‐Communicable Diseases Research CenterEndocrinology and Metabolism Population Sciences Institute, Tehran University of Medical SciencesTehranIran
- Department of Cardiovascular Medicine, Mayo ClinicRochesterMN
- Tehran Heart CenterCardiovascular Diseases Research Institute, Tehran University of Medical SciencesTehranIran
| | - Mohammad‐Reza Malekpour
- Non‐Communicable Diseases Research CenterEndocrinology and Metabolism Population Sciences Institute, Tehran University of Medical SciencesTehranIran
| | - Nazila Rezaei
- Non‐Communicable Diseases Research CenterEndocrinology and Metabolism Population Sciences Institute, Tehran University of Medical SciencesTehranIran
| | - Mohammad Keykhaei
- Non‐Communicable Diseases Research CenterEndocrinology and Metabolism Population Sciences Institute, Tehran University of Medical SciencesTehranIran
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, School of MedicineChicagoIL
| | - Shaghayegh Khanmohammadi
- Non‐Communicable Diseases Research CenterEndocrinology and Metabolism Population Sciences Institute, Tehran University of Medical SciencesTehranIran
| | - Hamed Tavolinejad
- Non‐Communicable Diseases Research CenterEndocrinology and Metabolism Population Sciences Institute, Tehran University of Medical SciencesTehranIran
| | - Negar Rezaei
- Non‐Communicable Diseases Research CenterEndocrinology and Metabolism Population Sciences Institute, Tehran University of Medical SciencesTehranIran
| | - Bagher Larijani
- Endocrinology and Metabolism Research CenterEndocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical SciencesTehranIran
| | - Farshad Farzadfar
- Non‐Communicable Diseases Research CenterEndocrinology and Metabolism Population Sciences Institute, Tehran University of Medical SciencesTehranIran
- Endocrinology and Metabolism Research CenterEndocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical SciencesTehranIran
| |
Collapse
|
37
|
Tang Q, Shen D, Dai P, Liu J, Zhang M, Deng K, Li C. Pectin alleviates the pulmonary inflammatory response induced by PM 2.5 from a pig house by modulating intestinal microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 261:115099. [PMID: 37285678 DOI: 10.1016/j.ecoenv.2023.115099] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/20/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
This study aimed to investigate whether dietary fiber pectin can alleviate PM2.5-induced pulmonary inflammation and the potential mechanism. PM2.5 samples were collected from a nursery pig house. The mice were divided into three groups: the control group, PM2.5 group and PM2.5 + pectin group. The mice in the PM2.5 group were intratracheally instilled with PM2.5 suspension twice a week for four consecutive weeks, and those in the PM2.5 + pectin group were subject to the same PM2.5 exposure, but fed with a basal diet supplemented with 5% pectin. The results showed that body weight and feed intake were not different among the treatments (p > 0.05). However, supplementation with pectin relieved PM2.5-induced pulmonary inflammation, presenting as slightly restored lung morphology, decreased mRNA expression levels of IL-1β, IL-6 and IL-17 in the lung, decreased MPO content in bronchoalveolar lavage fluid (BLAF), and even decreased protein levels of IL-1β and IL-6 in the serum (p < 0.05). Dietary pectin altered the composition of the intestinal microbiota, increasing the relative abundance of Bacteroidetes and decreasing the ratio of Firmicutes/Bacteroidetes. At the genus level, short-chain fatty acid (SCFA)-producing bacteria, such as Bacteroides, Anaerotruncus, Prevotella 2, Parabacteroides, Ruminococcus 2 and Butyricimonas, were enriched in the PM2.5 +pectin group. Accordingly, dietary pectin increased the concentrations of SCFAs, including acetate, propionate, butyrate and valerate, in mice. In conclusion, dietary fermentable fiber pectin can relieve PM2.5-induced pulmonary inflammation via alteration of intestinal microbiota composition and SCFA production. This study provides a new insight into reducing the health risk associated with PM2.5 exposure.
Collapse
Affiliation(s)
- Qian Tang
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, Jiangsu 210038, China; Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Dan Shen
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Pengyuan Dai
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Junze Liu
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Minyang Zhang
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, Jiangsu 210038, China
| | - Kaidong Deng
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, Jiangsu 210038, China
| | - Chunmei Li
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
38
|
Wang T, Liu Y, Zhou Y, Liu Q, Zhang Q, Sun M, Sun M, Li H, Xu A, Liu Y. Astaxanthin protected against the adverse effects induced by diesel exhaust particulate matter via improving membrane stability and anti-oxidative property. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131684. [PMID: 37236114 DOI: 10.1016/j.jhazmat.2023.131684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/27/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023]
Abstract
Diesel exhaust particulate matter (DPM), which has been clarified as a Group I carcinogenic agent, is still challenging in its detoxification due to the complex composition and toxic mechanisms. Astaxanthin (AST) is a pleiotropic small biological molecule widely used in medical and healthcare with surprising effects and applications. The present study aimed to investigate the protective effects of AST on DPM-induced injury and the underlying mechanism. Our results indicated that AST significantly suppressed the generation of phosphorylated histone H2AX (γ-H2AX, marker of DNA damage) and inflammation caused by DPM both in vitro and in vivo. Mechanistically, AST prevented the endocytosis and intracellular accumulation of DPM via regulating the stability and fluidity of plasma membranes. Moreover, the oxidative stress elicited by DPM in cells could also be effectively inhibited by AST, together with protecting the structure and function of mitochondria. These investigations provided clear evidence that AST notably reduced DPM invasion and intracellular accumulation by modulating the membrane-endocytotic pathway, which eventually reduced intracellular oxidative stress caused by DPM. Our data might provide a novel clue for curing and treating the harmful effects of particulate matter.
Collapse
Affiliation(s)
- Tong Wang
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Ying Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China
| | - Yemian Zhou
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Qiao Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China; Department of Pathophysiology, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Qixing Zhang
- University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Mengzi Sun
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China; Department of Pathophysiology, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Meng Sun
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Han Li
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - An Xu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China.
| | - Yun Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China.
| |
Collapse
|
39
|
Cui X, Lai W, Zhao Y, Chen C. The Exosome-Mediated Cascade Reactions for the Transfer and Inflammatory Responses of Fine Atmospheric Particulate Matter in Macrophages. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7891-7901. [PMID: 37163641 DOI: 10.1021/acs.est.3c01436] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Exposure to atmospheric particulate matter (PM) is a frequent occurrence to humans, and their adverse outcomes have become a global concern. Although PM-induced inflammation is a common phenomenon, a clear picture of the mechanisms underlying exosome-mediated inflammation of PM has not yet emerged. Here, we show that exosomes can mediate the cascade reactions for the transfer of PM and inflammatory responses of macrophages. Specifically, two fine PM2.5, namely F1 (<0.49 μm) and F2 (0.95-1.5 μm), stimulated a substantial release of exosomes from macrophages (THP-1 cells) with the order of F1 > F2, via regulation of the P2X7 receptor (P2X7R). Inhibiting P2X7R with a specific inhibitor largely prevented the secretion of exosomes. In particular, we found that exosomes served as a mediator for the transfer of PM2.5 to the recipient macrophages and activated NF-κB signaling through toll-like receptor 4 (TLR-4), thereby stimulating inflammatory cytokine release and altering the inflammatory phenotype of recipients. Importantly, the exosomes derived from PM2.5-treated macrophages induced the inflammatory responses of lung in mice. Our results highlight that exosomes undergo a secretion-particle transfer-adverse outcome chain in macrophages treated with PM2.5. Given the ubiquitous atmospheric particulate matter, these new findings underscore an urgent need for assessing the secretion of exosomes and their impact on human health via exosome-centric physiological pathways.
Collapse
Affiliation(s)
- Xuejing Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- The GBA National Institute for Nanotechnology Innovation, Guangdong 510700, China
| | - Wenjia Lai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Yao Zhao
- National Center for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- The GBA National Institute for Nanotechnology Innovation, Guangdong 510700, China
| |
Collapse
|
40
|
Zhang S, Hu J, Xiao G, Chen S, Wang H. Urban particulate air pollution linked to dyslipidemia by modification innate immune cells. CHEMOSPHERE 2023; 319:138040. [PMID: 36739990 DOI: 10.1016/j.chemosphere.2023.138040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Air particulate matter (PM) is an essential risk factor for lipid metabolism disorders. However, the underlying mechanism remains unclear. In this cross-sectional study, 216 healthcare workers were recruited to estimate the associations among the daily exposure dose (DED) of air PM, innate immune cells, and plasma lipid levels. All participants were divided into two groups according to the air particulate combined DED (DED-PMC). The peripheral white blood cell counts, lymphocyte counts, and monocyte counts and percentages were higher in the higher-exposure group (HEG) than in the lower-exposure group (LEG), whereas the percentage of natural-killer cells was lower in the HEG than in the LEG. The plasma concentrations of the total cholesterol, triglycerides, LDL-C, and apolipoprotein B were higher in the HEG than in the LEG, whereas the HDL-C and apolipoprotein A1 were lower in the HEG than in the LEG. A dose-effect analysis indicated that when the DED of the air PM increased, there were increased peripheral monocyte counts and percentages, a decreased NK cell percentage, elevated plasma concentrations of total cholesterol, triglycerides, LDL-C, and apolipoprotein B, and reduced plasma levels of HDL-C and apolipoprotein A1. In addition, the modification of the innate immune cells was accompanied by alterations in the plasma lipid levels in a dose-dependent manner. Mediation effect analysis suggested innate immune cells were the potential mediators for the associations among air PM exposure on abnormal lipid metabolism. These results indicated that chronic exposure to air PM may disturb lipid metabolism by altering the distribution of innate immune cells in the peripheral blood, ultimately advancing cardiovascular disease risk.
Collapse
Affiliation(s)
- Shaocheng Zhang
- Department of Clinical Laboratory Medicine, Suining Central Hospital, Suining, 629000, Sichuan, China
| | - Juan Hu
- Department of Clinical Laboratory Medicine, Suining Central Hospital, Suining, 629000, Sichuan, China
| | - Guangjun Xiao
- Department of Clinical Laboratory Medicine, Suining Central Hospital, Suining, 629000, Sichuan, China
| | - Shu Chen
- Department of Clinical Laboratory Medicine, Suining Central Hospital, Suining, 629000, Sichuan, China
| | - Huanhuan Wang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, Sichuan, China.
| |
Collapse
|
41
|
Tsai SS, Hsu CT, Yang C. Risk of death from liver cancer in relation to long-term exposure to fine particulate air pollution in Taiwan. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:135-143. [PMID: 36752360 DOI: 10.1080/15287394.2023.2168225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
According to the International Agency for Research on Cancer (IARC), airborne fine particulate matter (PM2.5), which is categorized as a Group I carcinogen, was found to lead to predominantly lung as well as other cancer types in humans. Hepatocellular carcinoma (HCC) is endemic in Taiwan where it is the second and fourth foremost cause of cancer deaths in men and women, respectively. Taiwan's mortality rates for liver cancer vary considerably from one region to another, suggesting that the environment may exert some influence on deaths attributed to liver cancer. The aim of this investigation was to perform an ecologic study to examine the possible link between ambient PM2.5 levels and risk of liver cancer in 66 in Taiwan municipalities. To undertake this investigation, annual PM2.5 levels and age-standardized liver cancer mortality rates were calculated for male and female residents of these areas from 2010 to 2019. Data were tested using weighted-multiple regression analyses to compute adjusted risk ratio (RR) controlling for urbanization level and physician density. Annual PM2.5 levels of each municipality were divided into tertiles. The adjusted RRs for males residing in those areas with intermediate tertile levels (21.85 to 28.21 ug/m3) and the highest tertiles levels (28.22-31.23 ug/m3) of PM2.5 were 1.29 (95% CI = 1.25-1.46) and 1.41 (95% CI = 1.36-1.46), respectively. Women in these locations shared a similar risk, 1.32 (1.25-1.4) and 1.41 (1.34-1.49), respectively. Evidence indicated that PM2.5 increased risk of mortality rates attributed to liver cancer in both men and women in Taiwan.
Collapse
Affiliation(s)
- Shang-Shyue Tsai
- Department of Healthcare Administration, I-Shou University, Kaohsiung, Taiwan
| | - Chun-Ta Hsu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - ChunYuh Yang
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institute, Miaoli, Taiwan
| |
Collapse
|
42
|
Han F, Wen G, Zhang F, Wang Z, Yu L. Effect of Microstructure on the Granule Strength of Hollow Granulated Mold Fluxes for Continuous Casting. STEEL RESEARCH INTERNATIONAL 2023; 94. [DOI: 10.1002/srin.202200480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 01/05/2025]
Abstract
During the automatic powder‐feeding process, the hollow granulated mold fluxes are easily broken due to insufficient granule strength, which leads to dust pollution and the deterioration of the properties of mold fluxes during the continuous casting. Herein, a drum‐type granule strength testing device, laser granule size analyzer, and scanning electron microscope are used to analyze the attrition mechanism of three kinds of hollow granulated mold fluxes and the effect of microstructure on the attrition mechanism. The results show that: 1) the result of the drum‐type granule strength test is in good agreement with the practical application effect of mold fluxes; 2) abrasion has dominated the breakage of three kinds of mold fluxes and the dust pollution is caused by the generation of a large number of granules with granule sizes ranging from 20 to 80 μm; 3) the uniform and dense surface film structure on the surface of mold flux effectively inhibits the abrasion and improves the granule strength of mold flux; and 4) the difference in granule size and solubility of different raw materials in the spray granulation process leads to the deposition of Na2CO3, binder, and carbon black on the surface to form the film structure.
Collapse
Affiliation(s)
- Funian Han
- College of Materials Science and Engineering Chongqing University Chongqing 400044 China
- Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials Chongqing University Chongqing 400044 China
| | - Guanghua Wen
- College of Materials Science and Engineering Chongqing University Chongqing 400044 China
- Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials Chongqing University Chongqing 400044 China
| | - Fei Zhang
- College of Materials Science and Engineering Chongqing University Chongqing 400044 China
- Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials Chongqing University Chongqing 400044 China
| | - Zhe Wang
- College of Materials Science and Engineering Chongqing University Chongqing 400044 China
- Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials Chongqing University Chongqing 400044 China
| | - Liang Yu
- College of Materials Science and Engineering Chongqing University Chongqing 400044 China
- Electron Microscopy Center of Chongqing University Chongqing University Chongqing 400044 China
| |
Collapse
|
43
|
Wang M, Han Y, Wang CJ, Xue T, Gu HQ, Yang KX, Liu HY, Cao M, Meng X, Jiang Y, Yang X, Zhang J, Xiong YY, Zhao XQ, Liu LP, Wang YL, Guan TJ, Li ZX, Wang YJ. Short-term effect of PM2.5 on stroke in susceptible populations: A case-crossover study. Int J Stroke 2023; 18:312-321. [PMID: 35722790 DOI: 10.1177/17474930221110024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Fine particulate matter (PM2.5) is a risk factor for stroke, and patients with pre-existing diseases appear to be particularly susceptible. We conducted a case-crossover study to examine the association between short-term exposure to fine particulate matter (PM2.5) and hospital admission for stroke in individuals with atrial fibrillation (AF), hypertension, diabetes, or hyperlipidemia. METHODS Patients diagnosed with acute ischemic stroke (AIS) were recruited from 2015 to 2017 in Chinese Stroke Center Alliances. We estimated daily PM2.5 average exposures with a spatial resolution of 0.1° using a data assimilation approach combining satellite measurements, air model simulations, and monitoring values. Conditional logistic regression was used to assess PM2.5-related stroke risk in patients with pre-existing medical co-morbidities. RESULTS A total of 155,616 patients diagnosed with AIS were admitted. Patients with a history of AF (n = 15,430), hypertension (n = 138,220), diabetes (n = 43,737), or hyperlipidemia (n = 16,855) were assessed separately. A 10 µg/m3 increase in daily PM2.5 was associated with a significant increase in AIS for individuals with AF at lag 4 (odds ratio (OR), 1.008; 95% confidence interval (CI), 1.002-1.014), and with hypertension (OR, 1.008; 95% CI, 1.006-1.010), diabetes (OR, 1.006; 95% CI, 1.003-1.010), and hyperlipidemia (OR, 1.007; 95% CI, 1.001-1.012) at lags 0-7. Elderly (⩾ 65 years old) and female patients with AF had significantly higher associations at lag 5 (OR, 1.009; 95% CI, 1.002-1.015) and lag 5 (OR, 1.010; 95% CI, 1.002-1.018), respectively. CONCLUSION Short-term exposure to PM2.5 is significantly associated with hospital admission for stroke in individuals with pre-existing medical histories, especially in older or female patients with AF. Preventive measures to reduce PM2.5 concentrations are particularly important in individuals with other medical co-morbidities.
Collapse
Affiliation(s)
- Meng Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Healthcare Quality Management in Neurological Diseases, Beijing, China
| | - Ying Han
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chun-Juan Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Healthcare Quality Management in Neurological Diseases, Beijing, China
| | - Tao Xue
- Institute of Reproductive and Child Health, Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Hong-Qiu Gu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Healthcare Quality Management in Neurological Diseases, Beijing, China
| | - Kai-Xuan Yang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Healthcare Quality Management in Neurological Diseases, Beijing, China
| | - Heng-Yi Liu
- Institute of Reproductive and Child Health, Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Man Cao
- Department of Health Policy and Management, School of Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xia Meng
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong Jiang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xin Yang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Healthcare Quality Management in Neurological Diseases, Beijing, China
| | - Jing Zhang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Healthcare Quality Management in Neurological Diseases, Beijing, China
| | - Yun-Yun Xiong
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xing-Quan Zhao
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Li-Ping Liu
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi-Long Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tian-Jia Guan
- Department of Health Policy and Management, School of Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zi-Xiao Li
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Healthcare Quality Management in Neurological Diseases, Beijing, China.,Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| | - Yong-Jun Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
44
|
Auto repair workers exposed to PM2.5 particulate matter in Barranquilla, Colombia: telomere length and hematological parameters. MUTATION RESEARCH/GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 887:503597. [PMID: 37003649 DOI: 10.1016/j.mrgentox.2023.503597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
Exposure to 2.5 µm particulate matter (PM2.5) in automotive repair shops is associated with risks to health. We evaluated the effects of occupational exposure to PM2.5 among auto repair-shop workers. Blood and urine samples were collected from 110 volunteers from Barranquilla, Colombia: 55 active workers and 55 controls. PM2.5 concentrations were assessed at each of the sampling sites and chemical content was analyzed by SEM-EDS electron microscopy. The biological samples obtained were peripheral blood (hematological profiling, DNA extraction) and urine (malondialdehyde concentration). Telomere length was assessed by qPCR and polymorphisms in the glutathione transferase genes GSTT1 and GSTM1 by PCR-RFLP, with confirmation by allelic exclusion. White blood cell (WBC), lymphocyte (LYM%) and platelet (PLT) counts and the malondialdehyde concentration were higher (4.10 ± 0.93) in the exposed group compared to the control group (1.56 ± 0.96). TL was shorter (5071 ± 891) in the exposed individuals compared to the control group (6271 ± 805). White blood cell (WBC) and platelet counts were positively associated with exposure. Age and TBARS were correlated with TL in exposed individuals. The GSTT1 gene alleles were not in Hardy-Weinberg (H-W) equilibrium. The GSTM1 gene alleles were in H-W equilibrium and allelic exclusion analysis confirmed the presence of heterozygous GSTM1 genotypes. SEM-EDS analysis showed the presence of potentially toxic elements, including Mg, Al, Fe, Mn, Rh, Zn, and Cu. Auto repair shop workers showed effects that may be associated with exposure to mixtures of pollutants present in PM2.5. The GSTM1 and GSTT1 genes had independent modulatory effects.
Collapse
|
45
|
Hu M, Wei J, Hu Y, Guo X, Li Z, Liu Y, Li S, Xue Y, Li Y, Liu M, Wang L, Liu X. Long-term effect of submicronic particulate matter (PM 1) and intermodal particulate matter (PM 1-2.5) on incident dyslipidemia in China: A nationwide 5-year cohort study. ENVIRONMENTAL RESEARCH 2023; 217:114860. [PMID: 36423667 DOI: 10.1016/j.envres.2022.114860] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND There is insufficient evidence of associations between incident dyslipidemia with PM1 (submicronic particulate matter) and PM1-2.5 (intermodal particulate matter) in the middle-aged and elderly. We aimed to determine the long-term effects of PM1 and PM1-2.5 on incident dyslipidemia respectively. METHODS We studied 6976 individuals aged ≥45 from the China Health and Retirement Longitudinal Study from 2013 to 2018. The concentrations of particular matter (PM) for every individual's address were evaluated using a satellite-based spatiotemporal model. Dyslipidemia was evaluated by self-reported. The generalized linear mixed model was applied to quantify the correlations between PM and incident dyslipidemia. RESULTS After a 5-year follow-up, 333 (4.77%) participants developed dyslipidemia. Per 10 μg/m³ uptick in four-year average concentrations of PMs (PM1 and PM1-2.5) corresponded to 1.11 [95% confidence interval (CI): 1.01-1.23)] and 1.23 (95% CI: 1.06-1.43) fold risks of incident dyslipidemia. Nonlinear exposure-response curves were observed between PM and incident dyslipidemia. The effect size of PM1 on incident dyslipidemia was slightly higher in males [1.14 (95% CI: 0.98-1.32) vs. 1.04 (95% CI: 0.89-1.21)], the elderly [1.23 (95% CI: 1.04-1.45) vs. 1.03 (95% CI: 0.91-1.17)], people with less than primary school education [1.12 (95% CI: 0.94-1.33) vs. 1.08 (95% CI: 0.94-1.23)], and solid cooking fuel users [1.17 (95% CI: 1.00-1.36) vs. 1.06 (95% CI: 0.93-1.21)], however, the difference was not statistically significant (Z = -0.82, P = 0.413; Z = -1.66, P = 0.097; Z = 0.32, P = 0.752; Z = -0.89, P = 0.372). CONCLUSIONS Long-term exposure to PM1 and PM1-2.5 were linked with an increased morbidity of dyslipidemia in the middle-aged and elderly population. Males, the elderly, and solid cooking fuel users had higher risk. Further studies would be warranted to establish an accurate reference value of PM to mitigate growing dyslipidemia.
Collapse
Affiliation(s)
- Meiling Hu
- School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China.
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, USA.
| | - Yaoyu Hu
- School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China.
| | - Xiuhua Guo
- School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China; National Institute for Data Science in Health and Medicine, Capital Medical University, China; Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Australia.
| | - Zhiwei Li
- School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China.
| | - Yuhong Liu
- School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China.
| | - Shuting Li
- School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China.
| | - Yongxi Xue
- School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China.
| | - Yuan Li
- School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China.
| | - Mengmeng Liu
- School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China.
| | - Lei Wang
- Department of Food and Nutritional Hygiene, School of Public Health, Capital Medical University, China.
| | - Xiangtong Liu
- School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China.
| |
Collapse
|
46
|
Moufarrej L, Verdin A, Cazier F, Ledoux F, Courcot D. Oxidative stress response in pulmonary cells exposed to different fractions of PM 2.5-0.3 from urban, traffic and industrial sites. ENVIRONMENTAL RESEARCH 2023; 216:114572. [PMID: 36244444 DOI: 10.1016/j.envres.2022.114572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/29/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
The aim of this work was to study the relationship between oxidative stress damages and particulate matter (PM) chemical composition, sources, and PM fractions. PM2.5-0.3 (PM with equivalent aerodynamic diameter between 2.5 and 0.3 μm) were collected at urban, road traffic and industrial sites in the North of France, and were characterized for major and minor chemical species. Four different fractions (whole PM2.5-0.3, organic, water-soluble and non-extractable matter) were considered for each of the PM2.5-0.3 samples from the three sites. After exposure of BEAS-2B cells to the four different fractions, oxidative stress was studied in cells by quantifying reactive oxygen species (ROS) accumulation, oxidative damage to proteins (carbonylated proteins), membrane alteration (8-isoprostane) and DNA damages (8-OHdG). Whole PM2.5-0.3 was capable of inducing ROS overproduction and caused damage to proteins at higher levels than other fractions. Stronger cell membrane and DNA damages were found associated with PM and organic fractions from the urban site. ROS overproduction was correlated with level of expression of carbonylated proteins, DNA damages and membrane alteration markers. The PM2.5-0.3 collected under industrial influence appears to be the less linked to cell damages and ROS production in comparison with the other influences.
Collapse
Affiliation(s)
- Lamia Moufarrej
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, SFR Condorcet FR CNRS 3417, Univ. Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140, Dunkerque, France
| | - Anthony Verdin
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, SFR Condorcet FR CNRS 3417, Univ. Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140, Dunkerque, France
| | - Fabrice Cazier
- Centre Commun de Mesures, Univ. Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140, Dunkerque, France
| | - Frédéric Ledoux
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, SFR Condorcet FR CNRS 3417, Univ. Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140, Dunkerque, France.
| | - Dominique Courcot
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, SFR Condorcet FR CNRS 3417, Univ. Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140, Dunkerque, France
| |
Collapse
|
47
|
Ossoli A, Cetti F, Gomaraschi M. Air Pollution: Another Threat to HDL Function. Int J Mol Sci 2022; 24:ijms24010317. [PMID: 36613760 PMCID: PMC9820244 DOI: 10.3390/ijms24010317] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Epidemiological studies have consistently demonstrated a positive association between exposure to air pollutants and the incidence of cardiovascular disease, with the strongest evidence for particles with a diameter < 2.5 μm (PM2.5). Therefore, air pollution has been included among the modifiable risk factor for cardiovascular outcomes as cardiovascular mortality, acute coronary syndrome, stroke, heart failure, and arrhythmias. Interestingly, the adverse effects of air pollution are more pronounced at higher levels of exposure but were also shown in countries with low levels of air pollution, indicating no apparent safe threshold. It is generally believed that exposure to air pollution in the long-term can accelerate atherosclerosis progression by promoting dyslipidemia, hypertension, and other metabolic disorders due to systemic inflammation and oxidative stress. Regarding high density lipoproteins (HDL), the impact of air pollution on plasma HDL-cholesterol levels is still debated, but there is accumulating evidence that HDL function can be impaired. In particular, the exposure to air pollution has been variably associated with a reduction in their cholesterol efflux capacity, antioxidant and anti-inflammatory potential, and ability to promote the release of nitric oxide. Further studies are needed to fully address the impact of various air pollutants on HDL functions and to elucidate the mechanisms responsible for HDL dysfunction.
Collapse
|
48
|
Gancitano G, Reiter RJ. The Multiple Functions of Melatonin: Applications in the Military Setting. Biomedicines 2022; 11:biomedicines11010005. [PMID: 36672513 PMCID: PMC9855431 DOI: 10.3390/biomedicines11010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of this review is to provide the reader with a general overview on the rationale for the use of melatonin by military personnel. This is a technique that is being increasingly employed to manage growing psycho-physical loads. In this context, melatonin, a pleotropic and regulatory molecule, has a potential preventive and therapeutic role in maintaining the operational efficiency of military personnel. In battlefield conditions in particular, the time to treatment after an injury is often a major issue since the injured may not have immediate access to medical care. Any drug that would help to stabilize a wounded individual, especially if it can be immediately administered (e.g., per os) and has a very high safety profile over a large range of doses (as melatonin does) would be an important asset to reduce morbidity and mortality. Melatonin may also play a role in the oscillatory synchronization of the neuro-cardio-respiratory systems and, through its epigenetic action, poses the possibility of restoring the main oscillatory waves of the cardiovascular system, such as the Mayer wave and RSA (respiratory sinus arrhythmia), which, in physiological conditions, result in the oscillation of the heartbeat in synchrony with the breath. In the future, this could be a very promising field of investigation.
Collapse
Affiliation(s)
- Giuseppe Gancitano
- 1st Carabinieri Paratrooper Regiment “Tuscania”, Italian Ministry of Defence, 57127 Livorno, Italy
- Correspondence:
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA
| |
Collapse
|
49
|
Han S, Zhang F, Yu H, Wei J, Xue L, Duan Z, Niu Z. Systemic inflammation accelerates the adverse effects of air pollution on metabolic syndrome: Findings from the China health and Retirement Longitudinal Study (CHARLS). ENVIRONMENTAL RESEARCH 2022; 215:114340. [PMID: 36108720 DOI: 10.1016/j.envres.2022.114340] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Long-term exposure to air pollution and systemic inflammation are associated with increased prevalence of metabolic syndrome (MetS); however, their joint effects in Chinese middle-aged and older adults is unknown. In this cross-sectional study, 11,838 residents aged 45 years and older from the China Health and Retirement Longitudinal Study (CHARLS) Wave 3 in 2015 were included. MetS was diagnosed using the Joint Interim Societies' definition. C-Reactive Protein (CRP) was assessed to reflect systemic inflammation. Individual exposure to air pollutants (particulate matter with a diameter ≤2.5 μm (PM2.5) or ≤ 10 μm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), and carbon monoxide (CO)) was evaluated using satellite-based spatiotemporal models according to participant residence at county-level. Generalized linear models (GLMs) were applied to examine the association between air pollution and MetS, and the modification effects of CRP between air pollution and MetS were estimated using interaction terms of CRP and air pollutants in the GLM models. The prevalence of MetS was 32.37%. The adjusted odd ratio (OR) of MetS was 1.192 (95% confidence interval (CI): 1.116, 1.272), 1.177 (95% CI: 1.103, 1.255), 1.158 (95% CI: 1.072, 1.252), 1.303 (95% CI: 1.211,1.403), 1.107 (95% CI: 1.046, 1.171) and 1.156 (95% CI:1.083, 1.234), per inter-quartile range increase in PM2.5 (24.04 μg/m3), PM10 (39.00 μg/m3), SO2 (19.05 μg/m3), NO2 (11.28 μg/m3), O3 (9.51 μg/m3) and CO (0.46 mg/m3), respectively. CRP was also associated with increased prevalence of MetS (OR = 1.049, 95% CI: 1.035, 1.064; per 1.90 mg/L increase in CRP). Interaction analysis suggested that high CRP levels enhanced the association between air pollution exposure and MetS. Long-term exposure to air pollution is associated with increased prevalence of MetS, which might be enhanced by systemic inflammation. Given the rapidly aging society and heavy burden of MetS, measures should be taken to improve air quality and reduce systemic inflammation.
Collapse
Affiliation(s)
- Shichao Han
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, China
| | - Fen Zhang
- Departments of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, China
| | - Hongmei Yu
- Pukou District Center for Disease Control and Prevention, 120 Puyun Road, Nanjing, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, USA
| | - Lina Xue
- Department of Medical Affairs, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, China
| | - Zhizhou Duan
- Preventive Health Service, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, Jiangxi, China.
| | - Zhiping Niu
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, China.
| |
Collapse
|
50
|
Chen Z, Liu P, Xia X, Wang L, Li X. The underlying mechanism of PM2.5-induced ischemic stroke. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119827. [PMID: 35917837 DOI: 10.1016/j.envpol.2022.119827] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Under the background of global industrialization, PM2.5 has become the fourth-leading risk factor for ischemic stroke worldwide, according to the 2019 GBD estimates. This highlights the hazards of PM2.5 for ischemic stroke, but unfortunately, PM2.5 has not received the attention that matches its harmfulness. This article is the first to systematically describe the molecular biological mechanism of PM2.5-induced ischemic stroke, and also propose potential therapeutic and intervention strategies. We highlight the effect of PM2.5 on traditional cerebrovascular risk factors (hypertension, hyperglycemia, dyslipidemia, atrial fibrillation), which were easily overlooked in previous studies. Additionally, the effects of PM2.5 on platelet parameters, megakaryocytes activation, platelet methylation, and PM2.5-induced oxidative stress, local RAS activation, and miRNA alterations in endothelial cells have also been described. Finally, PM2.5-induced ischemic brain pathological injury and microglia-dominated neuroinflammation are discussed. Our ultimate goal is to raise the public awareness of the harm of PM2.5 to ischemic stroke, and to provide a certain level of health guidance for stroke-susceptible populations, as well as point out some interesting ideas and directions for future clinical and basic research.
Collapse
Affiliation(s)
- Zhuangzhuang Chen
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Peilin Liu
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaoshuang Xia
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Interdisciplinary Innovation Centre for Health and Meteorology, Tianjin, China
| | - Lin Wang
- Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Interdisciplinary Innovation Centre for Health and Meteorology, Tianjin, China
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Interdisciplinary Innovation Centre for Health and Meteorology, Tianjin, China.
| |
Collapse
|