1
|
Staudinger JL, Mahroke A, Patel G, Dattel C, Reddy S. Pregnane X Receptor Signaling Pathway and Vitamin K: Molecular Mechanisms and Clinical Relevance in Human Health. Cells 2024; 13:681. [PMID: 38667296 PMCID: PMC11049418 DOI: 10.3390/cells13080681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
This review explores the likely clinical impact of Pregnane X Receptor (PXR) activation by vitamin K on human health. PXR, initially recognized as a master regulator of xenobiotic metabolism in liver, emerges as a key regulator influencing intestinal homeostasis, inflammation, oxidative stress, and autophagy. The activation of PXR by vitamin K highlights its role as a potent endogenous and local agonist with diverse clinical implications. Recent research suggests that the vitamin K-mediated activation of PXR highlights this vitamin's potential in addressing pathophysiological conditions by promoting hepatic detoxification, fortifying gut barrier integrity, and controlling pro-inflammatory and apoptotic pathways. PXR activation by vitamin K provides an intricate association with cancer cell survival, particularly in colorectal and liver cancers, to provide new insights into potential novel therapeutic strategies. Understanding the clinical implications of PXR activation by vitamin K bridges molecular mechanisms with health outcomes, further offering personalized therapeutic approaches for complex diseases.
Collapse
Affiliation(s)
- Jeff L. Staudinger
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin Campus, 2901 St Johns Blvd, Joplin, MO 64804, USA (C.D.); (S.R.)
| | | | | | | | | |
Collapse
|
2
|
Florke Gee RR, Huber AD, Chen T. Regulation of PXR in drug metabolism: chemical and structural perspectives. Expert Opin Drug Metab Toxicol 2024; 20:9-23. [PMID: 38251638 PMCID: PMC10939797 DOI: 10.1080/17425255.2024.2309212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/19/2024] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Pregnane X receptor (PXR) is a master xenobiotic sensor that transcriptionally controls drug metabolism and disposition pathways. PXR activation by pharmaceutical drugs, natural products, environmental toxins, etc. may decrease drug efficacy and increase drug-drug interactions and drug toxicity, indicating a therapeutic value for PXR antagonists. However, PXR's functions in physiological events, such as intestinal inflammation, indicate that PXR activators may be useful in certain disease contexts. AREAS COVERED We review the reported roles of PXR in various physiological and pathological processes including drug metabolism, cancer, inflammation, energy metabolism, and endobiotic homeostasis. We then highlight specific cellular and chemical routes that modulate PXR activity and discuss the functional consequences. Databases searched and inclusive dates: PubMed, 1 January 1980 to 10 January 2024. EXPERT OPINION Knowledge of PXR's drug metabolism function has helped drug developers produce small molecules without PXR-mediated metabolic liabilities, and further understanding of PXR's cellular functions may offer drug development opportunities in multiple disease settings.
Collapse
Affiliation(s)
- Rebecca R. Florke Gee
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Andrew D. Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
3
|
Ding Y, Shao J, Shi T, Yu H, Wang X, Chi H, Wang X. Leukemia inhibitory factor receptor homodimerization mediated by acetylation of extracellular lysine promotes prostate cancer progression through the PDPK1/AKT/GCN5 axis. Clin Transl Med 2022; 12:e676. [PMID: 35172032 PMCID: PMC8849371 DOI: 10.1002/ctm2.676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Prostate cancer (PCa), an inert tumour, has a long progression period, but valid biomarkers and methods for effectively and sensitively monitoring PCa progression are lacking, prompting us to identify new predictors for diagnosis and prognosis. Posttranslational modifications characterizing receptor activation are considered potentially strong indicators of disease progression. METHODS The posttranscriptional regulation of leukaemia inhibitory factor receptor (LIFR) and its novel downstream signalling activity in PCa were studied using liquid mass spectrometry, genetically engineered mouse (GEM) models, organoid assays, lentivirus packaging, infection and stable cell line construction. RESULTS In this study, the level of acetylated K620 on LIFR in its extracellular domain was shown to predict the progression and prognosis of PCa. In PCa cells, LIFR-K620 acetylation is reversibly mediated by GCN5 and SIRT2. GEM experiments and organoid assays confirmed that the loss of LIFR-K620 acetylation inhibits PCa progression. Mechanistically, K620 acetylation facilitates LIFR homodimerization and subsequently promotes LIFR-S1044 phosphorylation and activation, which further recruits PDPK1 to activate AKT signalling and sequentially enhances the GCN5 protein level to sustain the protumour level of LIFR-K620 acetylation by preventing GCN5 degradation via CRL4Cdt2 E3 ligase. CONCLUSIONS Acetylation of extracellular K620 on LIFR reinforces its homodimerization and integrates the activities of PDPK1, AKT, GSK3β and GCN5 to form a novel positive feedback loop in PCa; this modification is thus a promising biomarker for monitoring PCa progression.
Collapse
Affiliation(s)
- Yufeng Ding
- School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Jialiang Shao
- Department of UrologyShanghai General HospitalShanghai Jiaotong UniversityShanghaiChina
| | - Tiezhu Shi
- Department of UrologyShanghai General HospitalShanghai Jiaotong UniversityShanghaiChina
| | - Hua Yu
- School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Xiang Wang
- Department of UrologyShanghai General HospitalShanghai Jiaotong UniversityShanghaiChina
| | - Honggang Chi
- Department of Traditional Chinese MedicineThe First Dongguan Affiliated Hospital of Guangdong Medical UniversityDongguanChina
| | - Xiongjun Wang
- School of Life SciencesGuangzhou UniversityGuangzhouChina
| |
Collapse
|
4
|
Niu X, Wu T, Li G, Gu X, Tian Y, Cui H. Insights into the critical role of the PXR in preventing carcinogenesis and chemotherapeutic drug resistance. Int J Biol Sci 2022; 18:742-759. [PMID: 35002522 PMCID: PMC8741843 DOI: 10.7150/ijbs.68724] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022] Open
Abstract
Pregnane x receptor (PXR) as a nuclear receptor is well-established in drug metabolism, however, it has pleiotropic functions in regulating inflammatory responses, glucose metabolism, and protects normal cells against carcinogenesis. Most studies focus on its transcriptional regulation, however, PXR can regulate gene expression at the translational level. Emerging evidences have shown that PXR has a broad protein-protein interaction network, by which is implicated in the cross signaling pathways. Furthermore, the interactions between PXR and some critical proteins (e.g., p53, Tip60, p300/CBP-associated factor) in DNA damage pathway highlight its potential roles in this field. A thorough understanding of how PXR maintains genome stability and prevents carcinogenesis will help clinical diagnosis and finally benefit patients. Meanwhile, due to the regulation of CYP450 enzymes CYP3A4 and multidrug resistance protein 1 (MDR1), PXR contributes to chemotherapeutic drug resistance. It is worthy of note that the co-factor of PXR such as RXRα, also has contributions to this process, which makes the PXR-mediated drug resistance more complicated. Although single nucleotide polymorphisms (SNPs) vary between individuals, the amino acid substitution on exon of PXR finally affects PXR transcriptional activity. In this review, we have summarized the updated mechanisms that PXR protects the human body against carcinogenesis, and major contributions of PXR with its co-factors have made on multidrug resistance. Furthermore, we have also reviewed the current promising antagonist and their clinic applications in reversing chemoresistance. We believe our review will bring insight into PXR-targeted cancer therapy, enlighten the future study direction, and provide substantial evidence for the clinic in future.
Collapse
Affiliation(s)
- Xiaxia Niu
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Ting Wu
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Gege Li
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Xinsheng Gu
- Department of Pharmacology, College of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, USA
| | - Hongmei Cui
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| |
Collapse
|
5
|
Rogers RS, Parker A, Vainer PD, Elliott E, Sudbeck D, Parimi K, Peddada VP, Howe PG, D’Ambrosio N, Ruddy G, Stackable K, Carney M, Martin L, Osterholt T, Staudinger JL. The Interface between Cell Signaling Pathways and Pregnane X Receptor. Cells 2021; 10:cells10113262. [PMID: 34831484 PMCID: PMC8617909 DOI: 10.3390/cells10113262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022] Open
Abstract
Highly expressed in the enterohepatic system, pregnane X receptor (PXR, NR1I2) is a well-characterized nuclear receptor (NR) that regulates the expression of genes in the liver and intestines that encode key drug metabolizing enzymes and drug transporter proteins in mammals. The net effect of PXR activation is to increase metabolism and clear drugs and xenobiotics from the body, producing a protective effect and mediating clinically significant drug interaction in patients on combination therapy. The complete understanding of PXR biology is thus important for the development of safe and effective therapeutic strategies. Furthermore, PXR activation is now known to specifically transrepress the inflammatory- and nutrient-signaling pathways of gene expression, thereby providing a mechanism for linking these signaling pathways together with enzymatic drug biotransformation pathways in the liver and intestines. Recent research efforts highlight numerous post-translational modifications (PTMs) which significantly influence the biological function of PXR. However, this thrust of research is still in its infancy. In the context of gene-environment interactions, we present a review of the recent literature that implicates PXR PTMs in regulating its clinically relevant biology. We also provide a discussion of how these PTMs likely interface with each other to respond to extracellular cues to appropriately modify PXR activity.
Collapse
Affiliation(s)
- Robert S. Rogers
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Annemarie Parker
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Phill D. Vainer
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Elijah Elliott
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Dakota Sudbeck
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Kaushal Parimi
- Thomas Jefferson Independent Day School, Joplin, MO 64801, USA;
| | - Venkata P. Peddada
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Parker G. Howe
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Nick D’Ambrosio
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Gregory Ruddy
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Kaitlin Stackable
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Megan Carney
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Lauren Martin
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Thomas Osterholt
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Jeff L. Staudinger
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
- Correspondence:
| |
Collapse
|
6
|
High Pregnane X Receptor (PXR) Expression Is Correlated with Poor Prognosis in Invasive Breast Carcinoma. Diagnostics (Basel) 2021; 11:diagnostics11111946. [PMID: 34829293 PMCID: PMC8624096 DOI: 10.3390/diagnostics11111946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Pregnane X Receptor (PXR) is involved in human cancer, either by directly affecting carcinogenesis or by inducing drug-drug interactions and chemotherapy resistance. The clinical significance of PXR expression in invasive breast carcinoma was evaluated in the present study. PXR protein expression was assessed immunohistochemically on formalin fixed paraffin-embedded breast invasive carcinoma tissue sections, obtained from 148 patients, and was correlated with clinicopathological parameters, molecular phenotypes, tumor cells' proliferative capacity, and overall disease-free patients' survival. Additionally, the expression of PXR was examined on human breast carcinoma cell lines of different histological grade, hormonal status, and metastatic potential. PXR positivity was noted in 79 (53.4%) and high PXR expression in 48 (32.4%), out of 148 breast carcinoma cases. High PXR expression was positively associated with nuclear grade (p = 0.0112) and histological grade of differentiation (p = 0.0305), as well as with tumor cells' proliferative capacity (p = 0.0051), and negatively with luminal A subtype (p = 0.0295). Associations between high PXR expression, estrogen, and progesterone receptor negative status were also recorded (p = 0.0314 and p = 0.0208, respectively). High PXR expression was associated with shorter overall patients' survival times (log-rank test, p = 0.0009). In multivariate analysis, high PXR expression was identified as an independent prognostic factor of overall patients' survival (Cox-regression analysis, p = 0.0082). PXR expression alterations were also noted in breast cancer cell lines of different hormonal status. The present data supported evidence that PXR was related to a more aggressive invasive breast carcinoma phenotype, being a strong and independent poor prognosticator.
Collapse
|
7
|
Molecular Mechanisms of the SLC13A5 Gene Transcription. Metabolites 2021; 11:metabo11100706. [PMID: 34677420 PMCID: PMC8537064 DOI: 10.3390/metabo11100706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/02/2022] Open
Abstract
Citrate is a crucial energy sensor that plays a central role in cellular metabolic homeostasis. The solute carrier family 13 member 5 (SLC13A5), a sodium-coupled citrate transporter highly expressed in the mammalian liver with relatively low levels in the testis and brain, imports citrate from extracellular spaces into the cells. The perturbation of SLC13A5 expression and/or activity is associated with non-alcoholic fatty liver disease, obesity, insulin resistance, cell proliferation, and early infantile epileptic encephalopathy. SLC13A5 has been proposed as a promising therapeutic target for the treatment of these metabolic disorders. In the liver, the inductive expression of SLC13A5 has been linked to several xenobiotic receptors such as the pregnane X receptor and the aryl hydrocarbon receptor as well as certain hormonal and nutritional stimuli. Nevertheless, in comparison to the heightened interest in understanding the biological function and clinical relevance of SLC13A5, studies focusing on the regulatory mechanisms of SLC13A5 expression are relatively limited. In this review, we discuss the current advances in our understanding of the molecular mechanisms by which the expression of SLC13A5 is regulated. We expect this review will provide greater insights into the regulation of the SLC13A5 gene transcription and the signaling pathways involved therein.
Collapse
|
8
|
Kawase A, Mukai H, Tateishi S, Kuroda S, Kazaoka A, Satoh R, Shimada H, Sugiura R, Iwaki M. Protein Kinase N Family Negatively Regulates Constitutive Androstane Receptor-Mediated Transcriptional Induction of Cytochrome P450 2b10 in the Livers of Mice. J Pharmacol Exp Ther 2021; 379:53-63. [PMID: 34312179 DOI: 10.1124/jpet.121.000790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 01/04/2023] Open
Abstract
In receptor-type transcription factors-mediated cytochrome P450 (P450) induction, few studies have attempted to clarify the roles of protein kinase N (PKN) in the transcriptional regulation of P450s. This study aimed to examine the involvement of PKN in the transcriptional regulation of P450s by receptor-type transcription factors, including the aryl hydrocarbon receptor, constitutive androstane receptor (CAR), and pregnane X receptor. The mRNA and protein levels and metabolic activity of P450s in the livers of wild-type (WT) and double-mutant (D) mice harboring both PKN1 kinase-negative knock-in and PKN3 knockout mutations [PKN1 T778A/T778A; PKN3 -/-] were determined after treatment with activators for receptor-type transcription factors. mRNA and protein levels and metabolic activity of CYP2B10 were significantly higher in D mice treated with the CAR activator phenobarbital (PB) but not with 1,4-bis((3,5-dichloropyridin-2-yl)oxy)benzene compared with WT mice. We examined the CAR-dependent pathway regulated by PKN after PB treatment because the extent of CYP2B10 induction in WT and D mice was notably different in response to treatment with different CAR activators. The mRNA levels of Cyp2b10 in primary hepatocytes from WT and D mice treated with PB alone or in combination with Src kinase inhibitor 1 (SKI-1) or U0126 (a mitogen-activated protein kinase inhibitor) were evaluated. Treatment of hepatocytes from D mice with the combination of PB with U0126 but not SKI-1 significantly increased the mRNA levels of Cyp2b10 compared with those from the corresponding WT mice. These findings suggest that PKN may have inhibitory effects on the Src-receptor for activated C kinase 1 (RACK1) pathway in the CAR-mediated induction of Cyp2b10 in mice livers. SIGNIFICANCE STATEMENT: This is the first report of involvement of PKN in the transcriptional regulation of P450s. The elucidation of mechanisms responsible for induction of P450s could help optimize the pharmacotherapy and improve drug development. We examined whether the mRNA and protein levels and activities of P450s were altered in double-mutant mice harboring both PKN1 kinase-negative knock-in and PKN3 knockout mutations. PKN1/3 negatively regulates CAR-mediated induction of Cyp2b10 through phosphorylation of a signaling molecule in the Src-RACK1 pathway.
Collapse
Affiliation(s)
- Atsushi Kawase
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka, Japan (A.Kaw., S.T., S.K., A.Kaz., H.S., M.I.); Biosignal Research Center, Kobe University, Hyogo, Japan (H.M.); Department of Clinical Laboratory, Kitano Hospital, Osaka, Japan (H.M.); Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka, Japan (R.Sa., R.Su.); Pharmaceutical Research and Technology Institute, Kindai University, Osaka, Japan (R.Su., M.I.); and Antiaging Center, Kindai University, Osaka, Japan (R.Su., M.I.)
| | - Hideyuki Mukai
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka, Japan (A.Kaw., S.T., S.K., A.Kaz., H.S., M.I.); Biosignal Research Center, Kobe University, Hyogo, Japan (H.M.); Department of Clinical Laboratory, Kitano Hospital, Osaka, Japan (H.M.); Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka, Japan (R.Sa., R.Su.); Pharmaceutical Research and Technology Institute, Kindai University, Osaka, Japan (R.Su., M.I.); and Antiaging Center, Kindai University, Osaka, Japan (R.Su., M.I.)
| | - Shunsuke Tateishi
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka, Japan (A.Kaw., S.T., S.K., A.Kaz., H.S., M.I.); Biosignal Research Center, Kobe University, Hyogo, Japan (H.M.); Department of Clinical Laboratory, Kitano Hospital, Osaka, Japan (H.M.); Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka, Japan (R.Sa., R.Su.); Pharmaceutical Research and Technology Institute, Kindai University, Osaka, Japan (R.Su., M.I.); and Antiaging Center, Kindai University, Osaka, Japan (R.Su., M.I.)
| | - Shintaro Kuroda
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka, Japan (A.Kaw., S.T., S.K., A.Kaz., H.S., M.I.); Biosignal Research Center, Kobe University, Hyogo, Japan (H.M.); Department of Clinical Laboratory, Kitano Hospital, Osaka, Japan (H.M.); Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka, Japan (R.Sa., R.Su.); Pharmaceutical Research and Technology Institute, Kindai University, Osaka, Japan (R.Su., M.I.); and Antiaging Center, Kindai University, Osaka, Japan (R.Su., M.I.)
| | - Akira Kazaoka
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka, Japan (A.Kaw., S.T., S.K., A.Kaz., H.S., M.I.); Biosignal Research Center, Kobe University, Hyogo, Japan (H.M.); Department of Clinical Laboratory, Kitano Hospital, Osaka, Japan (H.M.); Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka, Japan (R.Sa., R.Su.); Pharmaceutical Research and Technology Institute, Kindai University, Osaka, Japan (R.Su., M.I.); and Antiaging Center, Kindai University, Osaka, Japan (R.Su., M.I.)
| | - Ryosuke Satoh
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka, Japan (A.Kaw., S.T., S.K., A.Kaz., H.S., M.I.); Biosignal Research Center, Kobe University, Hyogo, Japan (H.M.); Department of Clinical Laboratory, Kitano Hospital, Osaka, Japan (H.M.); Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka, Japan (R.Sa., R.Su.); Pharmaceutical Research and Technology Institute, Kindai University, Osaka, Japan (R.Su., M.I.); and Antiaging Center, Kindai University, Osaka, Japan (R.Su., M.I.)
| | - Hiroaki Shimada
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka, Japan (A.Kaw., S.T., S.K., A.Kaz., H.S., M.I.); Biosignal Research Center, Kobe University, Hyogo, Japan (H.M.); Department of Clinical Laboratory, Kitano Hospital, Osaka, Japan (H.M.); Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka, Japan (R.Sa., R.Su.); Pharmaceutical Research and Technology Institute, Kindai University, Osaka, Japan (R.Su., M.I.); and Antiaging Center, Kindai University, Osaka, Japan (R.Su., M.I.)
| | - Reiko Sugiura
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka, Japan (A.Kaw., S.T., S.K., A.Kaz., H.S., M.I.); Biosignal Research Center, Kobe University, Hyogo, Japan (H.M.); Department of Clinical Laboratory, Kitano Hospital, Osaka, Japan (H.M.); Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka, Japan (R.Sa., R.Su.); Pharmaceutical Research and Technology Institute, Kindai University, Osaka, Japan (R.Su., M.I.); and Antiaging Center, Kindai University, Osaka, Japan (R.Su., M.I.)
| | - Masahiro Iwaki
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka, Japan (A.Kaw., S.T., S.K., A.Kaz., H.S., M.I.); Biosignal Research Center, Kobe University, Hyogo, Japan (H.M.); Department of Clinical Laboratory, Kitano Hospital, Osaka, Japan (H.M.); Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka, Japan (R.Sa., R.Su.); Pharmaceutical Research and Technology Institute, Kindai University, Osaka, Japan (R.Su., M.I.); and Antiaging Center, Kindai University, Osaka, Japan (R.Su., M.I.)
| |
Collapse
|
9
|
Skandalaki A, Sarantis P, Theocharis S. Pregnane X Receptor (PXR) Polymorphisms and Cancer Treatment. Biomolecules 2021; 11:1142. [PMID: 34439808 PMCID: PMC8394562 DOI: 10.3390/biom11081142] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/20/2022] Open
Abstract
Pregnane X Receptor (PXR) belongs to the nuclear receptors' superfamily and mainly functions as a xenobiotic sensor activated by a variety of ligands. PXR is widely expressed in normal and malignant tissues. Drug metabolizing enzymes and transporters are also under PXR's regulation. Antineoplastic agents are of particular interest since cancer patients are characterized by significant intra-variability to treatment response and severe toxicities. Various PXR polymorphisms may alter the function of the protein and are linked with significant effects on the pharmacokinetics of chemotherapeutic agents and clinical outcome variability. The purpose of this review is to summarize the roles of PXR polymorphisms in the metabolism and pharmacokinetics of chemotherapeutic drugs. It is also expected that this review will highlight the importance of PXR polymorphisms in selection of chemotherapy, prediction of adverse effects and personalized medicine.
Collapse
Affiliation(s)
| | | | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.S.); (P.S.)
| |
Collapse
|
10
|
Hakkola J, Hukkanen J, Turpeinen M, Pelkonen O. Inhibition and induction of CYP enzymes in humans: an update. Arch Toxicol 2020; 94:3671-3722. [PMID: 33111191 PMCID: PMC7603454 DOI: 10.1007/s00204-020-02936-7] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022]
Abstract
The cytochrome P450 (CYP) enzyme family is the most important enzyme system catalyzing the phase 1 metabolism of pharmaceuticals and other xenobiotics such as herbal remedies and toxic compounds in the environment. The inhibition and induction of CYPs are major mechanisms causing pharmacokinetic drug–drug interactions. This review presents a comprehensive update on the inhibitors and inducers of the specific CYP enzymes in humans. The focus is on the more recent human in vitro and in vivo findings since the publication of our previous review on this topic in 2008. In addition to the general presentation of inhibitory drugs and inducers of human CYP enzymes by drugs, herbal remedies, and toxic compounds, an in-depth view on tyrosine-kinase inhibitors and antiretroviral HIV medications as victims and perpetrators of drug–drug interactions is provided as examples of the current trends in the field. Also, a concise overview of the mechanisms of CYP induction is presented to aid the understanding of the induction phenomena.
Collapse
Affiliation(s)
- Jukka Hakkola
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Janne Hukkanen
- Biocenter Oulu, University of Oulu, Oulu, Finland.,Research Unit of Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Miia Turpeinen
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.,Administration Center, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Olavi Pelkonen
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.
| |
Collapse
|
11
|
Hemalatha D, Rangasamy B, Nataraj B, Maharajan K, Narayanasamy A, Ramesh M. Transcriptional, biochemical and histological alterations in adult zebrafish (Danio rerio) exposed to benzotriazole ultraviolet stabilizer-328. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139851. [PMID: 32758936 DOI: 10.1016/j.scitotenv.2020.139851] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
The occurrence of Benzotriazole Ultraviolet Stabilizer-328 (BUV-328) in different environmental and biological matrices is of immediate environmental concern. In the present study, we evaluated the toxicity of BUV-328 in zebrafish liver tissues to understand the role of oxidative damage in hepatotoxicity. Adult zebrafish were exposed to 0.01, 0.1 and 1 mg/L of BUV-328. At the end of 14, 28 and 42 days, liver tissues were examined for the responses of antioxidant enzymes, gene expression and histopathological alterations. The results indicated that superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities were elevated at concentrations of 0.1 and 1 mg/L on 14th and 28th day. Glutathione S-transferase (GST) activity and malondialdehyde (MDA) levels were elevated in all the treated groups. The transcriptional levels of genes encoding sod, cat, gpx and gst enzymes were increased at 14th day and then declined (except sod on 28th day). Moreover, transcription of cyp1a and hsp70 were up-regulated throughout the study period. Histopathological lesions such as hypertrophy, cellular and nuclear enlargement, cytoplasmic and nuclear degeneration, necrosis with pyknotic nuclei, lipid and cytoplasmic vacuolization and nuclear displacement to the periphery were found to be increased with the dose and exposure duration. In brief, our findings indicate that even a low dose of BUV-328 is toxic to induce oxidative stress and liver damage in zebrafish over a long period of exposure.
Collapse
Affiliation(s)
- Devan Hemalatha
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India; Department of Zoology, PSG College of Arts & Science, Avinashi Road, Civil Aerodrome Post, Coimbatore 641014, Tamil Nadu, India
| | - Basuvannan Rangasamy
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Bojan Nataraj
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Kannan Maharajan
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India; Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| |
Collapse
|
12
|
Cui W, Shen X, Agbas E, Tompkins B, Cameron-Carter H, Staudinger JL. Phosphorylation Modulates the Coregulatory Protein Exchange of the Nuclear Receptor Pregnane X Receptor. J Pharmacol Exp Ther 2020; 373:370-380. [PMID: 32205367 PMCID: PMC7228503 DOI: 10.1124/jpet.119.264762] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/10/2020] [Indexed: 01/09/2023] Open
Abstract
The pregnane X receptor (PXR), or nuclear receptor (NR) 1I2, is a ligand-activated NR superfamily member that is enriched in liver and intestine in mammals. Activation of PXR regulates the expression of genes encoding key proteins involved in drug metabolism, drug efflux, and drug transport. Recent mechanistic investigations reveal that post-translational modifications (PTMs), such as phosphorylation, play a critical role in modulating the bimodal function of PXR-mediated transrepression and transactivation of target gene transcription. Upon ligand binding, PXR undergoes a conformational change that promotes dissociation of histone deacetylase-containing multiprotein corepressor protein complexes while simultaneously favoring recruitment histone acetyl transferase-containing complexes. Here we describe a novel adenoviral vector used to deliver and recover recombinant human PXR protein from primary cultures of hepatocytes. Using liquid chromatography and tandem mass spectrometry we report here that PXR is phosphorylated at amino acid residues threonine 135 (T135) and serine 221 (S221). Biochemical analysis reveals that these two residues play an important regulatory role in the cycling of corepressor and coactivator multiprotein complexes. These data further our foundational knowledge regarding the specific role of PTMs, namely phosphorylation, in regulating the biology of PXR. Future efforts are focused on using the novel tools described here to identify additional PTMs and protein partners of PXR in primary cultures of hepatocytes, an important experimental model system. SIGNIFICANCE STATEMENT: Pregnane X receptor (PXR), or nuclear receptor 1I2, is a key master regulator of drug-inducible CYP gene expression in liver and intestine in mammals. The novel biochemical tools described in this study demonstrate for the first time that in cultures of primary hepatocytes, human PXR is phosphorylated at amino acid residues threonine 135 (T135) and serine 221 (S221). Moreover, phosphorylation of PXR promotes the transrepression of its prototypical target gene CYP3A4 through modulating its interactions with coregulatory proteins.
Collapse
Affiliation(s)
- Wenqi Cui
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| | - Xunan Shen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| | - Emre Agbas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| | - Brandon Tompkins
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| | - Hadley Cameron-Carter
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| | - Jeff L Staudinger
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| |
Collapse
|
13
|
Torres-Vergara P, Ho YS, Espinoza F, Nualart F, Escudero C, Penny J. The constitutive androstane receptor and pregnane X receptor in the brain. Br J Pharmacol 2020; 177:2666-2682. [PMID: 32201941 DOI: 10.1111/bph.15055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Since their discovery, the orphan nuclear receptors constitutive androstane receptor (CAR;NR1I3) and pregnane X receptor (PXR;NR1I2) have been regarded as master regulators of drug disposition and detoxification mechanisms. They regulate the metabolism and transport of endogenous mediators and xenobiotics in organs including the liver, intestine and brain. However, with proposals of new physiological functions for NR1I3 and NR1I2, there is increasing interest in the role of these receptors in influencing brain function. This review will summarise key findings regarding the expression and function of NR1I3 and NR1I2 in the brain, hereby highlighting the need for further research in this field.
Collapse
Affiliation(s)
- Pablo Torres-Vergara
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile.,Centro de Microscopía Avanzada, CMA-BIO BIO, Laboratorio de Neurobiología y Células Madres NeuroCellT, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.,Group of Research and Innovation in Vascular Health (GRIVAS Health), Universidad del Bío Bío, Chillán, Chile
| | - Yu Siong Ho
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Health and Medicine, The University of Manchester, Manchester, UK
| | - Francisca Espinoza
- Centro de Microscopía Avanzada, CMA-BIO BIO, Laboratorio de Neurobiología y Células Madres NeuroCellT, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Francisco Nualart
- Centro de Microscopía Avanzada, CMA-BIO BIO, Laboratorio de Neurobiología y Células Madres NeuroCellT, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carlos Escudero
- Laboratorio de FisiologíaVascular, Departamento de Ciencias Básicas, Facultad de Ciencias Básicas, Universidad del Bío-Bío, Chillán, Chile.,Group of Research and Innovation in Vascular Health (GRIVAS Health), Universidad del Bío Bío, Chillán, Chile
| | - Jeffrey Penny
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Health and Medicine, The University of Manchester, Manchester, UK
| |
Collapse
|
14
|
Chen K, Zhong J, Hu L, Li R, Du Q, Cai J, Li Y, Gao Y, Cui X, Yang X, Wu X, Yao L, Dai J, Wang Y, Jin H. The Role of Xenobiotic Receptors on Hepatic Glycolipid Metabolism. Curr Drug Metab 2019; 20:29-35. [PMID: 30227815 DOI: 10.2174/1389200219666180918152241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/13/2018] [Accepted: 08/20/2018] [Indexed: 01/14/2023]
Abstract
Background:
PXR (Pregnane X Receptor) and CAR (Constitutive Androstane Receptor) are termed as
xenobiotic receptors, which are known as core factors in regulation of the transcription of metabolic enzymes and
drug transporters. However, accumulating evidence has shown that PXR and CAR exert their effects on energy metabolism
through the regulation of gluconeogenesis, lipogenesis and β-oxidation. Therefore, in this review, we are
trying to summary recent advances to show how xenobiotic receptors regulate energy metabolism.
Methods:
A structured search of databases has been performed by using focused review topics. According to conceptual
framework, the main idea of research literature was summarized and presented.
Results:
For introduction of each receptor, the general introduction and the critical functions in hepatic glucose and
lipid metabolism have been included. Recent important studies have shown that CAR acts as a negative regulator of
lipogenesis, gluconeogenesis and β -oxidation. PXR activation induces lipogenesis, inhibits gluconeogenesis and
inhabits β-oxidation.
Conclusion:
In this review, the importance of xenobiotic receptors in hepatic glucose and lipid metabolism has been
confirmed. Therefore, PXR and CAR may become new therapeutic targets for metabolic syndrome, including obesity
and diabetes. However, further research is required to promote the clinical application of this new energy metabolism
function of xenobiotic receptors.
Collapse
Affiliation(s)
- Ke Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinwei Zhong
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lin Hu
- Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruliu Li
- Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qun Du
- Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiazhong Cai
- Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanwu Li
- Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Gao
- Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaona Cui
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoying Yang
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaojie Wu
- Department of Immunology, Binzhou Medical University, Yantai, Shangdong, China
| | - Lu Yao
- Jilin Medical University, Jilin, China
| | - Juji Dai
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Wang
- Department of Otolaryngology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haiyong Jin
- Department of Otolaryngology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
15
|
Oladimeji PO, Wright WC, Wu J, Chen T. RNA interference screen identifies NAA10 as a regulator of PXR transcription. Biochem Pharmacol 2018; 160:92-109. [PMID: 30566892 DOI: 10.1016/j.bcp.2018.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/14/2018] [Indexed: 01/22/2023]
Abstract
The pregnane X receptor (PXR) is a principal xenobiotic receptor crucial in the detection, detoxification, and clearance of toxic substances from the body. PXR plays a vital role in the metabolism and disposition of drugs, and elevated PXR levels contribute to cancer drug resistance. Therefore, to modulate PXR activity and mitigate drug resistance, it is imperative to fully understand its regulation. To this end, we screened a transcription factor siRNA library in pancreatic cancer cells that express high levels of PXR. Through a comprehensive deconvolution process, we identified N-alpha-acetyltransferase 10 (NAA10) as a factor in the transcriptional machinery regulating PXR transcription. Because no one single factor has 100% operational control of PXR transcriptional regulation, our results together with other previous findings suggest that the transcriptional regulation of PXR is complex and that multiple factors contribute to the process including NAA10.
Collapse
Affiliation(s)
- Peter O Oladimeji
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - William C Wright
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, United States; Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, United States; Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| |
Collapse
|
16
|
Tebbens JD, Azar M, Friedmann E, Lanzendörfer M, Pávek P. Mathematical Models in the Description of Pregnane X Receptor (PXR)-Regulated Cytochrome P450 Enzyme Induction. Int J Mol Sci 2018; 19:ijms19061785. [PMID: 29914136 PMCID: PMC6032247 DOI: 10.3390/ijms19061785] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023] Open
Abstract
The pregnane X receptor (PXR) is a drug/xenobiotic-activated transcription factor of crucial importance for major cytochrome P450 xenobiotic-metabolizing enzymes (CYP) expression and regulation in the liver and the intestine. One of the major target genes regulated by PXR is the cytochrome P450 enzyme (CYP3A4), which is the most important human drug-metabolizing enzyme. In addition, PXR is supposed to be involved both in basal and/or inducible expression of many other CYPs, such as CYP2B6, CYP2C8, 2C9 and 2C19, CYP3A5, CYP3A7, and CYP2A6. Interestingly, the dynamics of PXR-mediated target genes regulation has not been systematically studied and we have only a few mechanistic mathematical and biologically based models describing gene expression dynamics after PXR activation in cellular models. Furthermore, few indirect mathematical PKPD models for prediction of CYP3A metabolic activity in vivo have been built based on compartmental models with respect to drug–drug interactions or hormonal crosstalk. Importantly, several negative feedback loops have been described in PXR regulation. Although current mathematical models propose these adaptive mechanisms, a comprehensive mathematical model based on sufficient experimental data is still missing. In the current review, we summarize and compare these models and address some issues that should be considered for the improvement of PXR-mediated gene regulation modelling as well as for our better understanding of the quantitative and spatial dynamics of CYPs expression.
Collapse
Affiliation(s)
- Jurjen Duintjer Tebbens
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Malek Azar
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Elfriede Friedmann
- Department of Applied Mathematics, Faculty of Mathematics and Computer Sciences, Mathematikon, University Heidelberg, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany.
| | - Martin Lanzendörfer
- Institute of Hydrogeology, Engineering Geology and Applied Geophysics, Faculty of Science, Charles University, Albertov 6, 128 43 Praha 2, Czech Republic.
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
17
|
Taneja G, Chu C, Maturu P, Moorthy B, Ghose R. Role of c-Jun-N-Terminal Kinase in Pregnane X Receptor-Mediated Induction of Human Cytochrome P4503A4 In Vitro. Drug Metab Dispos 2018; 46:397-404. [PMID: 29440179 PMCID: PMC5829542 DOI: 10.1124/dmd.117.079160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/01/2018] [Indexed: 12/17/2022] Open
Abstract
Cytochrome P450 CYP3A4 is the most abundant drug-metabolizing enzyme and is responsible for the metabolism of ∼50% of clinically available drugs. Induction of CYP3A4 impacts the disposition of its substrates and leads to harmful clinical consequences, such as failure of therapy. To prevent such undesirable consequences, the molecular mechanisms of regulation of CYP3A4 need to be fully understood. CYP3A4 induction is regulated primarily by the xenobiotic nuclear receptor pregnane-X receptor (PXR). After ligand binding, PXR is translocated to the nucleus, where it binds to the CYP3A4 promoter and induces its gene expression. PXR function is modulated by phosphorylation(s) by multiple kinases. In this study, we determined the role of the c-Jun N-terminal kinase (JNK) in PXR-mediated induction of CYP3A4 enzyme in vitro. Human liver carcinoma cells (HepG2) were transfected with CYP3A4 luciferase and PXR plasmids, followed by treatment with JNK inhibitor (SP600125; SP) and PXR activators rifampicin (RIF) or hyperforin. Our results indicate that SP treatment significantly attenuated PXR-mediated induction of CYP3A4 reporter activity, as well as gene expression and enzyme activity. JNK knockdown by siRNA (targeting both JNK 1 and 2) also attenuated CYP3A4 induction by RIF. Interestingly, SP treatment attenuated JNK activation by RIF. Furthermore, treatment with RIF increased PXR nuclear levels and binding to the CYP3A4 promoter; SP attenuated these effects. This study shows that JNK is a novel mechanistic regulator of CYP3A4 induction by PXR.
Collapse
Affiliation(s)
- Guncha Taneja
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston (G.T., R.G.), and Department of Pediatrics, Baylor College of Medicine (C.C., P.M., B.M.), Houston, Texas
| | - Chun Chu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston (G.T., R.G.), and Department of Pediatrics, Baylor College of Medicine (C.C., P.M., B.M.), Houston, Texas
| | - Paramahamsa Maturu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston (G.T., R.G.), and Department of Pediatrics, Baylor College of Medicine (C.C., P.M., B.M.), Houston, Texas
| | - Bhagavatula Moorthy
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston (G.T., R.G.), and Department of Pediatrics, Baylor College of Medicine (C.C., P.M., B.M.), Houston, Texas
| | - Romi Ghose
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston (G.T., R.G.), and Department of Pediatrics, Baylor College of Medicine (C.C., P.M., B.M.), Houston, Texas
| |
Collapse
|
18
|
Elizondo G, Vega L. Ubiquitination/sumoylation: An alternative pathway to modify gene regulation directed by xenosensors. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2018.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Mohandas S, Vairappan B. Role of pregnane X-receptor in regulating bacterial translocation in chronic liver diseases. World J Hepatol 2017; 9:1210-1226. [PMID: 29184608 PMCID: PMC5696604 DOI: 10.4254/wjh.v9.i32.1210] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/21/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023] Open
Abstract
Bacterial translocation (BT) has been impeccably implicated as a driving factor in the pathogenesis of a spectrum of chronic liver diseases (CLD). Scientific evidence accumulated over the last four decades has implied that the disease pathologies in CLD and BT are connected as a loop in the gut-liver axis and exacerbate each other. Pregnane X receptor (PXR) is a ligand-activated transcription factor and nuclear receptor that is expressed ubiquitously along the gut-liver-axis. PXR has been intricately associated with the regulation of various mechanisms attributed in causing BT. The importance of PXR as the mechanistic linker molecule in the gut-liver axis and its role in regulating bacterial interactions with the host in CLD has not been explored. PubMed was used to perform an extensive literature search using the keywords PXR and bacterial translocation, PXR and chronic liver disease including cirrhosis. In an adequate expression state, PXR acts as a sensor for bile acid dysregulation and bacterial derived metabolites, and in response shapes the immune profile beneficial to the host. Activation of PXR could be therapeutic in CLD as it counter-regulates endotoxin mediated inflammation and maintains the integrity of intestinal epithelium. This review mainly focuses PXR function and its regulation in BT in the context of chronic liver diseases.
Collapse
Affiliation(s)
- Sundhar Mohandas
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantari Nagar, Pondicherry 605006, India
| | - Balasubramaniyan Vairappan
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantari Nagar, Pondicherry 605006, India
| |
Collapse
|
20
|
Sharma D, Turkistani AA, Chang W, Hu C, Xu Z, Chang TKH. Negative Regulation of Human Pregnane X Receptor by MicroRNA-18a-5p: Evidence for Suppression of MicroRNA-18a-5p Expression by Rifampin and Rilpivirine. Mol Pharmacol 2017; 92:48-56. [PMID: 28408657 DOI: 10.1124/mol.116.107003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 04/04/2017] [Indexed: 08/30/2023] Open
Abstract
Small noncoding microRNAs act as post-transcriptional regulators of gene expression involved in diverse biologic functions. Pregnane X receptor (PXR, NR1I2), a member of the superfamily of nuclear receptors, is a transcription factor governing the transport and biotransformation of various drugs and other chemicals. In the present study, we identified a specific microRNA (miR) involved in regulating the expression and functionality of human PXR (hPXR). According to bioinformatics analysis employing three commonly used algorithms (TargetScan, miRanda, and DIANA-microT-CDS), miR-18a-5p was predicted to be the top candidate microRNA regulator of hPXR. Consequently, this microRNA was selected for detailed experimental investigation. As shown in cell-based dual-luciferase reporter gene assays, functional interaction occurred between miR-18a-5p and the microRNA recognition element of miR-18a-5p in the 3'-untranslated region of hPXR mRNA. Transfection of LS180 human colorectal adenocarcinoma cells with an miR-18a-5p mimic decreased hPXR mRNA and protein expression, whereas transfection of LS180 cells with an miR-18a-5p inhibitor increased hPXR mRNA and protein expression. The decrease in hPXR expression by the miR-18a-5p mimic was associated with a reduction in the extent of hPXR target gene (CYP3A4) induction by rifampin and rilpivirine. Treatment of untransfected LS180 cells with either of these hPXR agonists decreased endogenous expression of miR-18a-5p, and this preceded the onset of CYP3A4 induction. In conclusion, miR-18a-5p is a negative regulator of hPXR expression and the hPXR agonists rifampin and rilpivirine are chemical suppressors of miR-18a-5p expression.
Collapse
Affiliation(s)
- Devinder Sharma
- Faculty of Pharmaceutical Sciences, (D.S., A.A.T., C.H., T.K.H.C.), and Food, Nutrition, and Health Program, Faculty of Land and Food Systems (W.C., Z.X.), The University of British Columbia, Vancouver, British Columbia, Canada
| | - Abdullah A Turkistani
- Faculty of Pharmaceutical Sciences, (D.S., A.A.T., C.H., T.K.H.C.), and Food, Nutrition, and Health Program, Faculty of Land and Food Systems (W.C., Z.X.), The University of British Columbia, Vancouver, British Columbia, Canada
| | - Wenjun Chang
- Faculty of Pharmaceutical Sciences, (D.S., A.A.T., C.H., T.K.H.C.), and Food, Nutrition, and Health Program, Faculty of Land and Food Systems (W.C., Z.X.), The University of British Columbia, Vancouver, British Columbia, Canada
| | - Catherine Hu
- Faculty of Pharmaceutical Sciences, (D.S., A.A.T., C.H., T.K.H.C.), and Food, Nutrition, and Health Program, Faculty of Land and Food Systems (W.C., Z.X.), The University of British Columbia, Vancouver, British Columbia, Canada
| | - Zhaoming Xu
- Faculty of Pharmaceutical Sciences, (D.S., A.A.T., C.H., T.K.H.C.), and Food, Nutrition, and Health Program, Faculty of Land and Food Systems (W.C., Z.X.), The University of British Columbia, Vancouver, British Columbia, Canada
| | - Thomas K H Chang
- Faculty of Pharmaceutical Sciences, (D.S., A.A.T., C.H., T.K.H.C.), and Food, Nutrition, and Health Program, Faculty of Land and Food Systems (W.C., Z.X.), The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
21
|
Bakshi K, Ranjitha B, Dubey S, Jagannadham J, Jaiswal B, Gupta A. Novel complex of HAT protein TIP60 and nuclear receptor PXR promotes cell migration and adhesion. Sci Rep 2017. [PMID: 28623334 PMCID: PMC5473911 DOI: 10.1038/s41598-017-03783-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PXR is a member of nuclear receptor superfamily and a well-characterized mediator of xenobiotic metabolism. The classical mode of PXR activation involves its binding to appropriate ligand and subsequent heterodimerization with its partner RXR. However, various factors such as post-translational modifications and crosstalk with different cellular factors may also regulate the functional dynamics and behavior of PXR. In the present study, we have identified that TIP60, an essential lysine acetyltransferase protein interacts with unliganded PXR and together this complex promotes cell migration & adhesion. TIP60 utilizes its NR Box to interact with LBD region of PXR and acetylates PXR at lysine 170 to induce its intranuclear reorganization. Also, RXR is not required for TIP60-PXR complex formation and this complex does not induce ligand-dependent PXR target gene transactivation. Interestingly, we observed that PXR augments the catalytic activity of TIP60 for histones. This is the first report demonstrating the exclusive interaction of TIP60 with PXR and uncovers a potential role for the TIP60-PXR complex in cell migration and adhesion.
Collapse
Affiliation(s)
- Karishma Bakshi
- Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - B Ranjitha
- Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Shraddha Dubey
- Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Jaisri Jagannadham
- Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Bharti Jaiswal
- Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Ashish Gupta
- Department of Life Sciences, Shiv Nadar University, Greater Noida, India.
| |
Collapse
|
22
|
He L, Zhou X, Huang N, Li H, Li T, Yao K, Tian Y, Hu CAA, Yin Y. Functions of pregnane X receptor in self-detoxification. Amino Acids 2017; 49:1999-2007. [PMID: 28534176 DOI: 10.1007/s00726-017-2435-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/03/2017] [Indexed: 12/19/2022]
Abstract
Pregnane X receptor (PXR, NR1I2), a member of the nuclear receptor superfamily, is a crucial regulator of nutrient metabolism and metabolic detoxification such as metabolic syndrome, xenobiotic metabolism, inflammatory responses, glucose, cholesterol and lipid metabolism, and endocrine homeostasis. Notably, much experimental and clinical evidence show that PXR senses xenobiotics and triggers the detoxification response to prevent diseases such as diabetes, obesity, intestinal inflammatory diseases and liver fibrosis. In this review we summarize recent advances on remarkable metabolic and regulatory versatility of PXR, and we emphasizes its role and potential implication as an effective modulator of self-detoxification in animals and humans.
Collapse
Affiliation(s)
- Liuqin He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry, Changsha, 410125, Hunan, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry, Changsha, 410125, Hunan, China
| | - Niu Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Huan Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Tiejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry, Changsha, 410125, Hunan, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, 410128, Hunan, China
| | - Kang Yao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry, Changsha, 410125, Hunan, China. .,College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan, China. .,Hunan Co-Innovation Center of Animal Production Safety, Changsha, 410128, Hunan, China.
| | - Yanan Tian
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan, China.,Department of Veterinary Physiology and Pharmacology, Texas A & M University, College Station, TX, 77843, USA
| | - Chien-An Andy Hu
- Department of Biochemistry and Molecular Biology, University of New Mexico, Health Sciences Center, MSC08 4670, Albuquerque, USA
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry, Changsha, 410125, Hunan, China. .,Hunan Co-Innovation Center of Animal Production Safety, Changsha, 410128, Hunan, China.
| |
Collapse
|
23
|
The Molecular Interface Between the SUMO and Ubiquitin Systems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:99-110. [DOI: 10.1007/978-3-319-50044-7_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Amacher DE. The regulation of human hepatic drug transporter expression by activation of xenobiotic-sensing nuclear receptors. Expert Opin Drug Metab Toxicol 2016; 12:1463-1477. [PMID: 27548410 DOI: 10.1080/17425255.2016.1223626] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION If a drug is found to be an inducer of hepatic drug metabolizing enzymes via activation of nuclear receptors such as pregnane X receptor (PXR) or constitutive androstane receptor (CAR), it is likely that drug transporters regulated through these same receptors will be induced as well. This review highlights what is currently known about the molecular mechanisms that regulate transporter expression and where the research is directed. Areas covered: This review is focused on publications that describe the role of activated hepatic nuclear receptors in the subsequent regulation of drug uptake and/or efflux transporters following exposure to xenobiotics. Expert opinion: Many of the published studies on the role of nuclear receptors in the regulation of drug transporters involve non-human test animals. But due to species response differences, these associations are not always applicable to humans. For this reason, some relevant human in vitro models have been developed, such as primary or cryopreserved human hepatocytes, human liver slices, or HepG2 or HuH7 cell lines transiently or stably transfected with PXR expression and reporter constructs as well as in vivo models such as PXR-humanized mice. These human-relevant test systems will continue to be developed and applied for the testing of investigational drugs.
Collapse
|
25
|
Exaggerated IL-15 and Altered Expression of foxp3+ Cell-Derived Cytokines Contribute to Enhanced Colitis in Nlrp3-/- Mice. Mediators Inflamm 2016; 2016:5637685. [PMID: 27610005 PMCID: PMC5005544 DOI: 10.1155/2016/5637685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/28/2016] [Indexed: 12/19/2022] Open
Abstract
The pathogenesis of Crohn's disease (CD) involves defects in the innate immune system, impairing responses to microbes. Studies have revealed that mutations NLRP3 are associated with CD. We reported previously that Nlrp3−/− mice were more susceptible to colitis and exhibited reduced colonic IL-10 expression. In the current study, we sought to determine how the loss of NLRP3 might be altering the function of regulatory T cells, a major source of IL-10. Colitis was induced in wild-type (WT) and Nlrp3−/− mice by treatment with dextran sulphate sodium (DSS). Lamina propria (LP) cells were assessed by flow cytometry and cytokine expression was assessed. DSS-treated Nlrp3−/− mice exhibited increased numbers of colonic foxp3+ T cells that expressed significantly lower levels of IL-10 but increased IL-17. This was associated with increased expression of colonic IL-15 and increased surface expression of IL-15 on LP dendritic cells. Neutralizing IL-15 in Nlrp3−/− mice attenuated the severity of colitis, decreased the number of colonic foxp3+ cells, and reduced the colonic expression of IL-12p40 and IL-17. These data suggest that the NLRP3 inflammasome can regulate intestinal inflammation through noncanonical mechanisms, providing additional insight as to how NLRP3 variants may contribute to the pathogenesis of CD.
Collapse
|
26
|
Pondugula SR, Pavek P, Mani S. Pregnane X Receptor and Cancer: Context-Specificity is Key. NUCLEAR RECEPTOR RESEARCH 2016; 3. [PMID: 27617265 DOI: 10.11131/2016/101198] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pregnane X receptor (PXR) is an adopted orphan nuclear receptor that is activated by a wide-range of endobiotics and xenobiotics, including chemotherapy drugs. PXR plays a major role in the metabolism and clearance of xenobiotics and endobiotics in liver and intestine via induction of drug-metabolizing enzymes and drug-transporting proteins. However, PXR is expressed in several cancer tissues and the accumulating evidence strongly points to the differential role of PXR in cancer growth and progression as well as in chemotherapy outcome. In cancer cells, besides regulating the gene expression of enzymes and proteins involved in drug metabolism and transport, PXR also regulates other genes involved in proliferation, metastasis, apoptosis, anti-apoptosis, inflammation, and oxidative stress. In this review, we focus on the differential role of PXR in a variety of cancers, including prostate, breast, ovarian, endometrial, and colon. We also discuss the future directions to further understand the differential role of PXR in cancer, and conclude with the need to identify novel selective PXR modulators to target PXR in PXR-expressing cancers.
Collapse
Affiliation(s)
- Satyanarayana R Pondugula
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL 36849, USA; Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL 36849, USA
| | - Petr Pavek
- Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, Hradec Králové 500 05, Czech Republic, European Union
| | - Sridhar Mani
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
27
|
Cruzeiro C, Lopes-Marques M, Ruivo R, Rodrigues-Oliveira N, Santos MM, Rocha MJ, Rocha E, Castro LFC. A mollusk VDR/PXR/CAR-like (NR1J) nuclear receptor provides insight into ancient detoxification mechanisms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 174:61-69. [PMID: 26921727 DOI: 10.1016/j.aquatox.2016.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/18/2016] [Accepted: 02/14/2016] [Indexed: 06/05/2023]
Abstract
The origin and diversification of the metazoan endocrine systems represents a fundamental research issue in biology. Nuclear receptors are critical components of these systems. A particular group named VDR/PXR/CAR (NR1I/J) is central in the mediation of detoxification responses. While orthologues have been thoroughly characterized in vertebrates, a sparse representation is currently available for invertebrates. Here, we provide the first isolation and characterization of a lophotrochozoan protostome VDR/PXR/CAR nuclear receptor (NR1J), in the estuarine bivalve the peppery furrow shell (Scrobicularia plana). Using a reporter gene assay, we evaluated the xenobiotic receptor plasticity comparing the human PXR with the S. plana NR1Jβ. Our results show that the molluscan receptor responds to a natural toxin (okadaic acid) in a similar fashion to that reported for other invertebrates. In contrast, the pesticide esfenvalerate displayed a unique response, since it down regulated transactivation at higher concentrations, while for triclosan no response was observed. Additionally, we uncovered lineage specific gene duplications and gene loss in the gene group encoding NRs in protostomes with likely impacts on the complexity of detoxification mechanisms across different phyla. Our findings pave the way for the development of multi-specific sensor tools to screen xenobiotic compounds acting via the NR1I/J group.
Collapse
Affiliation(s)
- Catarina Cruzeiro
- ICBAS - Institute of Biomedical Sciences Abel Salazar, U. Porto - University of Porto, Portugal; CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto, Portugal.
| | - Mónica Lopes-Marques
- ICBAS - Institute of Biomedical Sciences Abel Salazar, U. Porto - University of Porto, Portugal; CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto, Portugal.
| | - Raquel Ruivo
- CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto, Portugal.
| | - Nádia Rodrigues-Oliveira
- CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto, Portugal.
| | - Miguel M Santos
- CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto, Portugal; FCUP - Faculty of Sciences, Department of Biology, U. Porto, Portugal.
| | - Maria João Rocha
- ICBAS - Institute of Biomedical Sciences Abel Salazar, U. Porto - University of Porto, Portugal; CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto, Portugal.
| | - Eduardo Rocha
- ICBAS - Institute of Biomedical Sciences Abel Salazar, U. Porto - University of Porto, Portugal; CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto, Portugal.
| | - L Filipe C Castro
- CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto, Portugal; FCUP - Faculty of Sciences, Department of Biology, U. Porto, Portugal.
| |
Collapse
|
28
|
Acetylation of lysine 109 modulates pregnane X receptor DNA binding and transcriptional activity. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1155-1169. [PMID: 26855179 DOI: 10.1016/j.bbagrm.2016.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/19/2016] [Accepted: 01/26/2016] [Indexed: 12/31/2022]
Abstract
Pregnane X receptor (PXR) is a major transcriptional regulator of xenobiotic metabolism and transport pathways in the liver and intestines, which are critical for protecting organisms against potentially harmful xenobiotic and endobiotic compounds. Inadvertent activation of drug metabolism pathways through PXR is known to contribute to drug resistance, adverse drug-drug interactions, and drug toxicity in humans. In both humans and rodents, PXR has been implicated in non-alcoholic fatty liver disease, diabetes, obesity, inflammatory bowel disease, and cancer. Because of PXR's important functions, it has been a therapeutic target of interest for a long time. More recent mechanistic studies have shown that PXR is modulated by multiple PTMs. Herein we provide the first investigation of the role of acetylation in modulating PXR activity. Through LC-MS/MS analysis, we identified lysine 109 (K109) in the hinge as PXR's major acetylation site. Using various biochemical and cell-based assays, we show that PXR's acetylation status and transcriptional activity are modulated by E1A binding protein (p300) and sirtuin 1 (SIRT1). Based on analysis of acetylation site mutants, we found that acetylation at K109 represses PXR transcriptional activity. The mechanism involves loss of RXRα dimerization and reduced binding to cognate DNA response elements. This mechanism may represent a promising therapeutic target using modulators of PXR acetylation levels. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
|
29
|
A SUMO-acetyl switch in PXR biology. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1170-1182. [PMID: 26883953 DOI: 10.1016/j.bbagrm.2016.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/22/2016] [Accepted: 02/09/2016] [Indexed: 12/13/2022]
Abstract
Post-translational modification (PTM) of nuclear receptor superfamily members regulates various aspects of their biology to include sub-cellular localization, the repertoire of protein-binding partners, as well as their stability and mode of degradation. The nuclear receptor pregnane X receptor (PXR, NR1I2) is a master-regulator of the drug-inducible gene expression in liver and intestine. The PXR-mediated gene activation program is primarily recognized to increase drug metabolism, drug transport, and drug efflux pathways in these tissues. The activation of PXR also has important implications in significant human diseases including inflammatory bowel disease and cancer. Our recent investigations reveal that PXR is modified by multiple PTMs to include phosphorylation, SUMOylation, and ubiquitination. Using both primary cultures of hepatocytes and cell-based assays, we show here that PXR is modified through acetylation on lysine residues. Further, we show that increased acetylation of PXR stimulates its increased SUMO-modification to support active transcriptional suppression. Pharmacologic inhibition of lysine de-acetylation using trichostatin A (TSA) alters the sub-cellular localization of PXR in cultured hepatocytes, and also has a profound impact upon PXR transactivation capacity. Both the acetylation and SUMOylation status of the PXR protein is affected by its ability to associate with the lysine de-acetylating enzyme histone de-acetylase (HDAC)3 in a complex with silencing mediator of retinoic acid and thyroid hormone receptor (SMRT). Taken together, our data support a model in which a SUMO-acetyl 'switch' occurs such that acetylation of PXR likely stimulates SUMO-modification of PXR to promote the active repression of PXR-target gene expression. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
|
30
|
Tan H, Xu C, Zeng H, Wang Y, Li Y, Fan X, Chen P, Jiang Y, Chen X, Huang M, Bi H. SUMOylation of pregnane X receptor suppresses rifampicin-induced CYP3A4 and P-gp expression and activity in LS174T cells. J Pharmacol Sci 2016; 130:66-71. [DOI: 10.1016/j.jphs.2015.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/29/2015] [Accepted: 11/15/2015] [Indexed: 01/17/2023] Open
|
31
|
Kotiya D, Rana M, Subbarao N, Puri N, Tyagi RK. Transcription regulation of nuclear receptor PXR: Role of SUMO-1 modification and NDSM in receptor function. Mol Cell Endocrinol 2016; 420:194-207. [PMID: 26549688 DOI: 10.1016/j.mce.2015.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 11/01/2015] [Accepted: 11/01/2015] [Indexed: 01/13/2023]
Abstract
Pregnane & Xenobiotic Receptor (PXR) is one of the 48 members of the nuclear receptor superfamily of ligand-modulated transcription factors. PXR plays an important role in metabolism and elimination of diverse noxious endobiotics and xenobiotics. Like in case of some nuclear receptors its function may also be differentially altered, positively or negatively, by various post-translational modifications. In this context, regulation of PXR function by SUMOylation is the subject of present investigation. Here, we report that human PXR is modified by SUMO-1 resulting in its enhanced transcriptional activity. RT-PCR analysis showed that PXR SUMOylation in presence of rifampicin also enhances the endogenous expression levels of key PXR-regulated genes like CYP3A4, CYP2C9, MDR1 and UGT1A1. In addition, mammalian two-hybrid assay exhibited enhanced interaction between PXR and co-activator SRC-1. EMSA results revealed that SUMOylation has no influence on the DNA binding ability of PXR. In silico analysis suggested that PXR protein contains four putative SUMOylation sites, centered at K108, K129, K160 and K170. In addition to this, we identified the presence of NDSM (Negative charge amino acid Dependent SUMOylation Motif) in PXR. Substitution of all its four putative lysine residues along with NDSM abolished the effect of SUMO-1-mediated transactivation function of PXR. Furthermore, we show that interaction between PXR and E2-conjugation enzyme UBCh9, an important step for implementation of SUMOylation event, was reduced in case of NDSM mutant PXRD115A. Overall, our results suggest that SUMOylation at specific sites on PXR protein are involved in enhancement of transcription function of this receptor.
Collapse
Affiliation(s)
- Deepak Kotiya
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Manjul Rana
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - N Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Niti Puri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
32
|
Sugatani J, Noguchi Y, Hattori Y, Yamaguchi M, Yamazaki Y, Ikari A. Threonine-408 Regulates the Stability of Human Pregnane X Receptor through Its Phosphorylation and the CHIP/Chaperone-Autophagy Pathway. Drug Metab Dispos 2016; 44:137-50. [PMID: 26534988 DOI: 10.1124/dmd.115.066308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/02/2015] [Indexed: 11/22/2022] Open
Abstract
The human pregnane X receptor (hPXR) is a xenobiotic-sensing nuclear receptor that transcriptionally regulates drug metabolism-related genes. The aim of the present study was to elucidate the mechanism by which hPXR is regulated through threonine-408. A phosphomimetic mutation at threonine-408 (T408D) reduced the transcriptional activity of hPXR and its protein stability in HepG2 and SW480 cells in vitro and mouse livers in vivo. Proteasome inhibitors (calpain inhibitor I and MG132) and Hsp90 inhibitor geldanamycin, but not Hsp70 inhibitor pifithrin-μ, increased wild-type (WT) hPXR in the nucleus. The translocation of the T408D mutant to the nucleus was significantly reduced even in the presence of proteasome inhibitors, whereas the complex of yellow fluorescent protein (YFP)-hPXR T408D mutant with heat shock cognate protein 70/heat shock protein 70 and carboxy terminus Hsp70-interacting protein (CHIP; E3 ligase) was similar to that of the WT in the cytoplasm. Treatment with pifithrin-μ and transfection with anti-CHIP small-interfering RNA reduced the levels of CYP3A4 mRNA induced by rifampicin, suggesting the contribution of Hsp70 and CHIP to the transactivation of hPXR. Autophagy inhibitor 3-methyladenine accumulated YFP-hPXR T408D mutant more efficiently than the WT in the presence of proteasome inhibitor lactacystin, and the T408D mutant colocalized with the autophagy markers, microtubule-associated protein 1 light chain 3 and p62, which were contained in the autophagic cargo. Lysosomal inhibitor chloroquine caused the marked accumulation of the T408D mutant in the cytoplasm. Protein kinase C (PKC) directly phosphorylated the threonine-408 of hPXR. These results suggest that hPXR is regulated through its phosphorylation at threonine-408 by PKC, CHIP/chaperone-dependent stability check, and autophagic degradation pathway.
Collapse
Affiliation(s)
- Junko Sugatani
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Japan
| | - Yuji Noguchi
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Japan
| | - Yoshiki Hattori
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Japan
| | - Masahiko Yamaguchi
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Japan
| | - Yasuhiro Yamazaki
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Japan
| | - Akira Ikari
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Japan
| |
Collapse
|
33
|
Koutsounas I, Giaginis C, Alexandrou P, Zizi-Serbetzoglou A, Patsouris E, Kouraklis G, Theocharis S. Pregnane X Receptor Expression in Human Pancreatic Adenocarcinoma: Associations With Clinicopathologic Parameters, Tumor Proliferative Capacity, Patients' Survival, and Retinoid X Receptor Expression. Pancreas 2015; 44:1134-40. [PMID: 26355550 DOI: 10.1097/mpa.0000000000000405] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Pregnane X receptor (PXR) has been involved in human malignancy, either by directly affecting carcinogenesis or by inducing drug-drug interactions and chemotherapy resistance. The present study aimed to assess the clinical significance of PXR in pancreatic adenocarcinoma. METHODS Pregnane X receptor and its heterodimers' PXR/retinoid X receptor α (RXR-α), RXR-β, and RXR-γ expression were assessed immunohistochemically on tumoral samples from 55 pancreatic adenocarcinoma patients and were associated with clinicopathologic parameters, tumor proliferative capacity, and patients' survival. RESULTS Enhanced PXR expression was noted in 24 (43.6%) of 55 pancreatic adenocarcinoma cases. Pancreatic adenocarcinoma patients presenting increased histological grade of tumor differentiation showed a significant increased incidence of elevated PXR expression (P = 0.023). Enhanced PXR/RXR-β expression was significantly associated with smaller tumor size and earlier clinical stage (P = 0.005 and P = 0.003, respectively). Elevated PXR/RXR-γ expression was significantly associated with smaller tumor size and earlier clinical stage (P = 0.012 and P = 0.014, respectively) and borderline with the absence of lymph node metastases (P = 0.056). In addition, pancreatic adenocarcinoma patients presenting enhanced PXR/RXR-γ expression showed marginally longer survival times compared with those with decreased expression (log-rank test, P = 0.053). CONCLUSIONS This study supported evidence that PXR and its copartners' overexpression may be associated with favorable clinicopathologic parameters and better outcome in pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Ioannis Koutsounas
- From the *First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens; †Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos; ‡Department of Pathology, Tzaneio General Hospital, Piraeus; and §Second Department of Propedeutic Surgery, Medical School, University of Athens, Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
34
|
Cui W, Sun M, Galeva N, Williams TD, Azuma Y, Staudinger JL. SUMOylation and Ubiquitylation Circuitry Controls Pregnane X Receptor Biology in Hepatocytes. Drug Metab Dispos 2015; 43:1316-25. [PMID: 26063058 PMCID: PMC4538856 DOI: 10.1124/dmd.115.065201] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/10/2015] [Indexed: 12/25/2022] Open
Abstract
Several nuclear receptor (NR) superfamily members are known to be the molecular target of either the small ubiquitin-related modifier (SUMO) or ubiquitin-signaling pathways. However, little is currently known regarding how these two post-translational modifications interact to control NR biology. We show that SUMO and ubiquitin circuitry coordinately modifies the pregnane X receptor (PXR, NR1I2) to play a key role in regulating PXR protein stability, transactivation capacity, and transcriptional repression. The SUMOylation and ubiquitylation of PXR is increased in a ligand- and tumor necrosis factor alpha -: dependent manner in hepatocytes. The SUMO-E3 ligase enzymes protein inhibitor of activated signal transducer and activator of transcription-1 (STAT1) STAT-1 (PIAS1) and protein inhibitor of activated STAT Y (PIASy) drive high levels of PXR SUMOylation. Expression of protein inhibitor of activated stat 1 selectively increases SUMO(3)ylation as well as PXR-mediated induction of cytochrome P450, family 3, subfamily A and the xenobiotic response. The PIASy-mediated SUMO(1)ylation imparts a transcriptionally repressive function by ameliorating interaction of PXR with coactivator protein peroxisome proliferator-activated receptor gamma coactivator-1-alpha. The SUMO modification of PXR is effectively antagonized by the SUMO protease sentrin protease (SENP) 2, whereas SENP3 and SENP6 proteases are highly active in the removal of SUMO2/3 chains. The PIASy-mediated SUMO(1)ylation of PXR inhibits ubiquitin-mediated degradation of this important liver-enriched NR by the 26S proteasome. Our data reveal a working model that delineates the interactive role that these two post-translational modifications play in reconciling PXR-mediated gene activation of the xenobiotic response versus transcriptional repression of the proinflammatory response in hepatocytes. Taken together, our data reveal that the SUMOylation and ubiquitylation of the PXR interface in a fundamental manner directs its biologic function in the liver in response to xenobiotic or inflammatory stress.
Collapse
Affiliation(s)
- Wenqi Cui
- Departments of Pharmacology and Toxicology (W.C., J.L.S.), Mass Spectrometry Laboratory (N.G., T.D.W.), and Molecular Biosciences, University of Kansas, Lawrence, Kansas (Y.A.); and Department of Medicine, University of California, San Diego, La Jolla, California (M.S.)
| | - Mengxi Sun
- Departments of Pharmacology and Toxicology (W.C., J.L.S.), Mass Spectrometry Laboratory (N.G., T.D.W.), and Molecular Biosciences, University of Kansas, Lawrence, Kansas (Y.A.); and Department of Medicine, University of California, San Diego, La Jolla, California (M.S.)
| | - Nadezhda Galeva
- Departments of Pharmacology and Toxicology (W.C., J.L.S.), Mass Spectrometry Laboratory (N.G., T.D.W.), and Molecular Biosciences, University of Kansas, Lawrence, Kansas (Y.A.); and Department of Medicine, University of California, San Diego, La Jolla, California (M.S.)
| | - Todd D Williams
- Departments of Pharmacology and Toxicology (W.C., J.L.S.), Mass Spectrometry Laboratory (N.G., T.D.W.), and Molecular Biosciences, University of Kansas, Lawrence, Kansas (Y.A.); and Department of Medicine, University of California, San Diego, La Jolla, California (M.S.)
| | - Yoshiaki Azuma
- Departments of Pharmacology and Toxicology (W.C., J.L.S.), Mass Spectrometry Laboratory (N.G., T.D.W.), and Molecular Biosciences, University of Kansas, Lawrence, Kansas (Y.A.); and Department of Medicine, University of California, San Diego, La Jolla, California (M.S.)
| | - Jeff L Staudinger
- Departments of Pharmacology and Toxicology (W.C., J.L.S.), Mass Spectrometry Laboratory (N.G., T.D.W.), and Molecular Biosciences, University of Kansas, Lawrence, Kansas (Y.A.); and Department of Medicine, University of California, San Diego, La Jolla, California (M.S.)
| |
Collapse
|
35
|
Li L, Li H, Garzel B, Yang H, Sueyoshi T, Li Q, Shu Y, Zhang J, Hu B, Heyward S, Moeller T, Xie W, Negishi M, Wang H. SLC13A5 is a novel transcriptional target of the pregnane X receptor and sensitizes drug-induced steatosis in human liver. Mol Pharmacol 2015; 87:674-82. [PMID: 25628225 PMCID: PMC4366797 DOI: 10.1124/mol.114.097287] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/26/2015] [Indexed: 12/20/2022] Open
Abstract
The solute carrier family 13 member 5 (SLC13A5) is a sodium-coupled transporter that mediates cellular uptake of citrate, which plays important roles in the synthesis of fatty acids and cholesterol. Recently, the pregnane X receptor (PXR, NR1I2), initially characterized as a xenobiotic sensor, has been functionally linked to the regulation of various physiologic processes that are associated with lipid metabolism and energy homeostasis. Here, we show that the SLC13A5 gene is a novel transcriptional target of PXR, and altered expression of SLC13A5 affects lipid accumulation in human liver cells. The prototypical PXR activator rifampicin markedly induced the mRNA and protein expression of SLC13A5 in human primary hepatocytes. Utilizing cell-based luciferase reporter assays, electrophoretic mobility shift assays, and chromatin immunoprecipitation assays, we identified and functionally characterized two enhancer modules located upstream of the SLC13A5 gene transcription start site that are associated with regulation of PXR-mediated SLC13A5 induction. Functional analysis further revealed that rifampicin can enhance lipid accumulation in human primary hepatocytes, and knockdown of SLC13A5 expression alone leads to a significant decrease of the lipid content in HepG2 cells. Overall, our results uncover SLC13A5 as a novel target gene of PXR and may contribute to drug-induced steatosis and metabolic disorders in humans.
Collapse
Affiliation(s)
- Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (L.L., H.L., B.G., H.Y., Q.L., Y.S., H.W.); Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental and Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (T.S., M.N.); Department of Radiation Oncology, Case Western Reserve University, Cleveland, Ohio (J.Z.); Bioreclamation In Vitro Technologies, Baltimore, Maryland (S.H., T.M.); and Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (B.H., W.X.)
| | - Haishan Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (L.L., H.L., B.G., H.Y., Q.L., Y.S., H.W.); Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental and Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (T.S., M.N.); Department of Radiation Oncology, Case Western Reserve University, Cleveland, Ohio (J.Z.); Bioreclamation In Vitro Technologies, Baltimore, Maryland (S.H., T.M.); and Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (B.H., W.X.)
| | - Brandy Garzel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (L.L., H.L., B.G., H.Y., Q.L., Y.S., H.W.); Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental and Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (T.S., M.N.); Department of Radiation Oncology, Case Western Reserve University, Cleveland, Ohio (J.Z.); Bioreclamation In Vitro Technologies, Baltimore, Maryland (S.H., T.M.); and Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (B.H., W.X.)
| | - Hui Yang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (L.L., H.L., B.G., H.Y., Q.L., Y.S., H.W.); Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental and Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (T.S., M.N.); Department of Radiation Oncology, Case Western Reserve University, Cleveland, Ohio (J.Z.); Bioreclamation In Vitro Technologies, Baltimore, Maryland (S.H., T.M.); and Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (B.H., W.X.)
| | - Tatsuya Sueyoshi
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (L.L., H.L., B.G., H.Y., Q.L., Y.S., H.W.); Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental and Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (T.S., M.N.); Department of Radiation Oncology, Case Western Reserve University, Cleveland, Ohio (J.Z.); Bioreclamation In Vitro Technologies, Baltimore, Maryland (S.H., T.M.); and Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (B.H., W.X.)
| | - Qing Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (L.L., H.L., B.G., H.Y., Q.L., Y.S., H.W.); Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental and Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (T.S., M.N.); Department of Radiation Oncology, Case Western Reserve University, Cleveland, Ohio (J.Z.); Bioreclamation In Vitro Technologies, Baltimore, Maryland (S.H., T.M.); and Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (B.H., W.X.)
| | - Yan Shu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (L.L., H.L., B.G., H.Y., Q.L., Y.S., H.W.); Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental and Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (T.S., M.N.); Department of Radiation Oncology, Case Western Reserve University, Cleveland, Ohio (J.Z.); Bioreclamation In Vitro Technologies, Baltimore, Maryland (S.H., T.M.); and Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (B.H., W.X.)
| | - Junran Zhang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (L.L., H.L., B.G., H.Y., Q.L., Y.S., H.W.); Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental and Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (T.S., M.N.); Department of Radiation Oncology, Case Western Reserve University, Cleveland, Ohio (J.Z.); Bioreclamation In Vitro Technologies, Baltimore, Maryland (S.H., T.M.); and Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (B.H., W.X.)
| | - Bingfang Hu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (L.L., H.L., B.G., H.Y., Q.L., Y.S., H.W.); Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental and Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (T.S., M.N.); Department of Radiation Oncology, Case Western Reserve University, Cleveland, Ohio (J.Z.); Bioreclamation In Vitro Technologies, Baltimore, Maryland (S.H., T.M.); and Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (B.H., W.X.)
| | - Scott Heyward
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (L.L., H.L., B.G., H.Y., Q.L., Y.S., H.W.); Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental and Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (T.S., M.N.); Department of Radiation Oncology, Case Western Reserve University, Cleveland, Ohio (J.Z.); Bioreclamation In Vitro Technologies, Baltimore, Maryland (S.H., T.M.); and Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (B.H., W.X.)
| | - Timothy Moeller
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (L.L., H.L., B.G., H.Y., Q.L., Y.S., H.W.); Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental and Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (T.S., M.N.); Department of Radiation Oncology, Case Western Reserve University, Cleveland, Ohio (J.Z.); Bioreclamation In Vitro Technologies, Baltimore, Maryland (S.H., T.M.); and Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (B.H., W.X.)
| | - Wen Xie
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (L.L., H.L., B.G., H.Y., Q.L., Y.S., H.W.); Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental and Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (T.S., M.N.); Department of Radiation Oncology, Case Western Reserve University, Cleveland, Ohio (J.Z.); Bioreclamation In Vitro Technologies, Baltimore, Maryland (S.H., T.M.); and Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (B.H., W.X.)
| | - Masahiko Negishi
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (L.L., H.L., B.G., H.Y., Q.L., Y.S., H.W.); Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental and Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (T.S., M.N.); Department of Radiation Oncology, Case Western Reserve University, Cleveland, Ohio (J.Z.); Bioreclamation In Vitro Technologies, Baltimore, Maryland (S.H., T.M.); and Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (B.H., W.X.)
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (L.L., H.L., B.G., H.Y., Q.L., Y.S., H.W.); Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental and Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (T.S., M.N.); Department of Radiation Oncology, Case Western Reserve University, Cleveland, Ohio (J.Z.); Bioreclamation In Vitro Technologies, Baltimore, Maryland (S.H., T.M.); and Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (B.H., W.X.)
| |
Collapse
|
36
|
Pondugula SR, Flannery PC, Apte U, Babu JR, Geetha T, Rege SD, Chen T, Abbott KL. Mg2+/Mn2+-dependent phosphatase 1A is involved in regulating pregnane X receptor-mediated cytochrome p450 3A4 gene expression. Drug Metab Dispos 2015; 43:385-91. [PMID: 25561723 PMCID: PMC11024896 DOI: 10.1124/dmd.114.062083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/05/2015] [Indexed: 04/20/2024] Open
Abstract
Variations in the expression of human pregnane X receptor (hPXR)-mediated cytochrome p450 3A4 (CYP3A4) in liver can alter therapeutic response to a variety of drugs and may lead to potential adverse drug interactions. We sought to determine whether Mg(2+)/Mn(2+)-dependent phosphatase 1A (PPM1A) regulates hPXR-mediated CYP3A4 expression. PPM1A was found to be coimmunoprecipitated with hPXR. Genetic or pharmacologic activation of PPM1A led to a significant increase in hPXR transactivation of CYP3A4 promoter activity. In contrast, knockdown of endogenous PPM1A not only attenuated hPXR transactivation, but also increased proliferation of HepG2 human liver carcinoma cells, suggesting that PPM1A expression levels regulate hPXR, and that PPM1A expression is regulated in a proliferation-dependent manner. Indeed, PPM1A expression and hPXR transactivation were found to be significantly reduced in subconfluent HepG2 cells compared with confluent HepG2 cells, suggesting that both PPM1A expression and hPXR-mediated CYP3A4 expression may be downregulated in proliferating livers. Elevated PPM1A levels led to attenuation of hPXR inhibition by tumor necrosis factor-α and cyclin-dependent kinase-2, which are known to be upregulated and essential during liver regeneration. In mouse regenerating livers, similar to subconfluent HepG2 cells, expression of both PPM1A and the mouse PXR target gene cyp3a11 was found to be downregulated. Our results show that PPM1A can positively regulate PXR activity by counteracting PXR inhibitory signaling pathways that play a major role in liver regeneration. These results implicate a novel role for PPM1A in regulating hPXR-mediated CYP3A4 expression in hepatocytes and may explain a mechanism for CYP3A repression in regenerating livers.
Collapse
Affiliation(s)
- Satyanarayana R Pondugula
- Department of Anatomy, Physiology, and Pharmacology (S.R.P., P.C.F., K.L.A.) and Department of Nutrition, Dietetics, and Hospitality Management (J.R.B., S.D.R.), Auburn University, Auburn, Alabama; Department of Chemistry (T.G.), Auburn University at Montgomery, Montgomery, Alabama; Department of Chemical Biology and Therapeutics (T.C.), St. Jude Children's Research Hospital, Memphis, Tennessee; and Department of Pharmacology, Toxicology, and Therapeutics (U.A.), University of Kansas, Kansas City, Kansas
| | - Patrick C Flannery
- Department of Anatomy, Physiology, and Pharmacology (S.R.P., P.C.F., K.L.A.) and Department of Nutrition, Dietetics, and Hospitality Management (J.R.B., S.D.R.), Auburn University, Auburn, Alabama; Department of Chemistry (T.G.), Auburn University at Montgomery, Montgomery, Alabama; Department of Chemical Biology and Therapeutics (T.C.), St. Jude Children's Research Hospital, Memphis, Tennessee; and Department of Pharmacology, Toxicology, and Therapeutics (U.A.), University of Kansas, Kansas City, Kansas
| | - Udayan Apte
- Department of Anatomy, Physiology, and Pharmacology (S.R.P., P.C.F., K.L.A.) and Department of Nutrition, Dietetics, and Hospitality Management (J.R.B., S.D.R.), Auburn University, Auburn, Alabama; Department of Chemistry (T.G.), Auburn University at Montgomery, Montgomery, Alabama; Department of Chemical Biology and Therapeutics (T.C.), St. Jude Children's Research Hospital, Memphis, Tennessee; and Department of Pharmacology, Toxicology, and Therapeutics (U.A.), University of Kansas, Kansas City, Kansas
| | - Jeganathan Ramesh Babu
- Department of Anatomy, Physiology, and Pharmacology (S.R.P., P.C.F., K.L.A.) and Department of Nutrition, Dietetics, and Hospitality Management (J.R.B., S.D.R.), Auburn University, Auburn, Alabama; Department of Chemistry (T.G.), Auburn University at Montgomery, Montgomery, Alabama; Department of Chemical Biology and Therapeutics (T.C.), St. Jude Children's Research Hospital, Memphis, Tennessee; and Department of Pharmacology, Toxicology, and Therapeutics (U.A.), University of Kansas, Kansas City, Kansas
| | - Thangiah Geetha
- Department of Anatomy, Physiology, and Pharmacology (S.R.P., P.C.F., K.L.A.) and Department of Nutrition, Dietetics, and Hospitality Management (J.R.B., S.D.R.), Auburn University, Auburn, Alabama; Department of Chemistry (T.G.), Auburn University at Montgomery, Montgomery, Alabama; Department of Chemical Biology and Therapeutics (T.C.), St. Jude Children's Research Hospital, Memphis, Tennessee; and Department of Pharmacology, Toxicology, and Therapeutics (U.A.), University of Kansas, Kansas City, Kansas
| | - Shraddha D Rege
- Department of Anatomy, Physiology, and Pharmacology (S.R.P., P.C.F., K.L.A.) and Department of Nutrition, Dietetics, and Hospitality Management (J.R.B., S.D.R.), Auburn University, Auburn, Alabama; Department of Chemistry (T.G.), Auburn University at Montgomery, Montgomery, Alabama; Department of Chemical Biology and Therapeutics (T.C.), St. Jude Children's Research Hospital, Memphis, Tennessee; and Department of Pharmacology, Toxicology, and Therapeutics (U.A.), University of Kansas, Kansas City, Kansas
| | - Taosheng Chen
- Department of Anatomy, Physiology, and Pharmacology (S.R.P., P.C.F., K.L.A.) and Department of Nutrition, Dietetics, and Hospitality Management (J.R.B., S.D.R.), Auburn University, Auburn, Alabama; Department of Chemistry (T.G.), Auburn University at Montgomery, Montgomery, Alabama; Department of Chemical Biology and Therapeutics (T.C.), St. Jude Children's Research Hospital, Memphis, Tennessee; and Department of Pharmacology, Toxicology, and Therapeutics (U.A.), University of Kansas, Kansas City, Kansas
| | - Kodye L Abbott
- Department of Anatomy, Physiology, and Pharmacology (S.R.P., P.C.F., K.L.A.) and Department of Nutrition, Dietetics, and Hospitality Management (J.R.B., S.D.R.), Auburn University, Auburn, Alabama; Department of Chemistry (T.G.), Auburn University at Montgomery, Montgomery, Alabama; Department of Chemical Biology and Therapeutics (T.C.), St. Jude Children's Research Hospital, Memphis, Tennessee; and Department of Pharmacology, Toxicology, and Therapeutics (U.A.), University of Kansas, Kansas City, Kansas
| |
Collapse
|
37
|
Topal A, Atamanalp M, Uçar A, Oruç E, Kocaman EM, Sulukan E, Akdemir F, Beydemir Ş, Kılınç N, Erdoğan O, Ceyhun SB. Effects of glyphosate on juvenile rainbow trout (Oncorhynchus mykiss): transcriptional and enzymatic analyses of antioxidant defence system, histopathological liver damage and swimming performance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 111:206-14. [PMID: 25450935 DOI: 10.1016/j.ecoenv.2014.09.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 06/04/2023]
Abstract
This study aims to determine the effect of glyphosate on the transcriptional and enzymatic activity of antioxidant metabolism enzymes of juvenile rainbow trout with short term (6, 12, 24, 48 and 96 h) and long term (21 days) exposures followed by a recovery treatment. This study also aims to determine the effects of glyphosate exposure on liver tissue damage and swimming performance due to short term (2.5, 5 and 10 mg/L) and long term (2.5 and 5 mg/L) exposures. Following pesticide administration, ten fish, each as a sample, were caught at 6th, 12th, 24th, 48th and 96th -h for the short term, and at 21st day for the long term exposure study. GPx activity was found to be significantly induced 12 h after the exposure to 2.5 mg/L of glyphosate as compared with the control group. A similar degree of induction was also observed for CAT activity but not for SOD. For long term exposure, except for the GPx activity after exposure to 5 mg/L of glyphosate, the activities of all other enzymes remained on a par with the control group. It was also observed that the levels of gene expression of these enzymes were not comparable with each other. It is assumed that these differences might result from the effect of glyphosate before translation and the possible reasons for this scenario are also discussed. The results of swimming performance are found to be consistent with responses of the antioxidant system, and they are attributed to the energy metabolism. The data are also supported with liver histopathology analysis.
Collapse
Affiliation(s)
- Ahmet Topal
- Department of Basic Sciences, Faculty of Fisheries, Ataturk University, Erzurum, Turkey.
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, Erzurum, Turkey.
| | - Arzu Uçar
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, Erzurum, Turkey.
| | - Ertan Oruç
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey.
| | - Esat Mahmut Kocaman
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, Erzurum, Turkey.
| | - Ekrem Sulukan
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, Erzurum, Turkey; Aquatic Biotechnology Laboratory, Faculty of Fisheries, Atatürk University, Erzurum, Turkey.
| | - Fatih Akdemir
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey.
| | - Şükrü Beydemir
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey.
| | - Namık Kılınç
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey.
| | - Orhan Erdoğan
- Department of Molecular Biology and Genetic, Faculty of Science, Atatürk University, Erzurum, Turkey.
| | - Saltuk Buğrahan Ceyhun
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, Erzurum, Turkey; Aquatic Biotechnology Laboratory, Faculty of Fisheries, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
38
|
Liu W, Ning R, Chen RN, Hu JH, Gui HY, Wang YW, Liu J, Hu G, Yang J, Guo QL. Gambogic acid suppresses cytochrome P450 3A4 by downregulating pregnane X receptor and up-regulating DEC1 in human hepatoma HepG2 cells. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00239c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gambogic acid suppresses cytochrome P450 3A4 by downregulating pregnane X receptor and up-regulating DEC1 in human hepatoma HepG2 cells.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pharmacology
- Nanjing Medical University
- Nanjing
- China
| | - Rui Ning
- Department of Pharmacology
- Nanjing Medical University
- Nanjing
- China
| | - Rui-Ni Chen
- Department of Pharmacology
- Nanjing Medical University
- Nanjing
- China
| | - Jin-Hua Hu
- Department of Pharmacology
- Nanjing Medical University
- Nanjing
- China
| | - Hai-Yan Gui
- Maternity and Child Care Center of Xinyu
- Jiangxi
- China
| | - Yu-Wen Wang
- Department of Pharmacology
- Nanjing Medical University
- Nanjing
- China
| | - Jie Liu
- Department of Pharmacology
- Nanjing Medical University
- Nanjing
- China
| | - Gang Hu
- Department of Pharmacology
- Nanjing Medical University
- Nanjing
- China
| | - Jian Yang
- Department of Pharmacology
- Nanjing Medical University
- Nanjing
- China
| | - Qing-Long Guo
- Jiangsu Key Laboratory of Carcinogenesis and Intervention
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|
39
|
Pondugula SR, Flannery PC, Abbott KL, Coleman ES, Mani S, Samuel T, Xie W. Diindolylmethane, a naturally occurring compound, induces CYP3A4 and MDR1 gene expression by activating human PXR. Toxicol Lett 2014; 232:580-9. [PMID: 25542144 DOI: 10.1016/j.toxlet.2014.12.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/08/2014] [Accepted: 12/20/2014] [Indexed: 11/24/2022]
Abstract
Activation of human pregnane X receptor (hPXR)-regulated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1) plays an important role in mediating adverse drug interactions. Given the common use of natural products as part of adjunct human health behavior, there is a growing concern about natural products for their potential to induce undesired drug interactions through the activation of hPXR-regulated CYP3A4 and MDR1. Here, we studied whether 3,3'-diindolylmethane (DIM), a natural health supplement, could induce hPXR-mediated regulation of CYP3A4 and MDR1 in human hepatocytes and intestinal cells. DIM, at its physiologically relevant concentrations, not only induced hPXR transactivation of CYP3A4 promoter activity but also induced gene expression of CYP3A4 and MDR1. DIM decreased intracellular accumulation of MDR1 substrate rhodamine 123, suggesting that DIM induces the functional expression of MDR1. Pharmacologic inhibition or genetic knockdown of hPXR resulted in attenuation of DIM induced CYP3A4 and MDR1 gene expression, suggesting that DIM induces CYP3A4 and MDR1 in an hPXR-dependent manner. Together, these results support our conclusion that DIM induces hPXR-regulated CYP3A4 and MDR1 gene expression. The inductive effects of DIM on CYP3A4 and MDR1 expression caution the use of DIM in conjunction with other medications metabolized and transported via CYP3A4 and MDR1, respectively.
Collapse
Affiliation(s)
- Satyanarayana R Pondugula
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, AL, United States; Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, United States.
| | - Patrick C Flannery
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, AL, United States; Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, United States
| | - Kodye L Abbott
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, AL, United States; Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, United States
| | - Elaine S Coleman
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, AL, United States
| | - Sridhar Mani
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY, United States
| | - Temesgen Samuel
- Department of Pathobiology, College of Veterinary Medicine, Nursing and Allied Health, Tuskegee University, AL, United States
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
40
|
Wang YY, Yang J, Liu H, Lin FQ, Shi JS, Zhang F. Effects of tetrahydroxystilbene glucoside on mouse liver cytochrome P450 enzyme expressions. Xenobiotica 2014; 45:279-85. [PMID: 25350237 DOI: 10.3109/00498254.2014.976779] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. To investigate the effects of tetrahydroxystilbene glucoside (TSG), the main active component of Polygonum multiflorum, on mouse liver cytochrome P450 (Cyp) enzyme protein expressions. Male mice were randomly divided into the control, TSG low (10 mg/kg) and high dose (40 mg/kg) groups. After TSG intragastrical administration for 3, 5 and 7 d, mice were sacrificed and the mouse body and liver weight were detected. The Cyp enzymes and various transcription factors such as AhR, PXR and PPARα protein expressions in mouse livers were measured by Western blotting assay. 2. No significant difference of mouse body and liver weight between the control and TSG treatment groups was detected. Additionally, TSG decreased Cyp1a2 and Cyp2e1 protein expressions after TSG treatment for 3, 5 and 7 d, respectively. Moreover, TSG suppressed Cyp3a11 protein expression after TSG treatment for 5 and 7 d. Furthermore, TSG high dose inhibited AhR and PXR protein expressions after TSG treatment for 5 and 7 d, while both TSG low dose and high dose obviously decreased PPARα protein level from TSG treatment for 3 d. 3. TSG has inhibitory effects on mouse liver Cyp1a2, Cyp2e1 and Cyp3a11 protein expressions through the suppression of AhR, PXR and PPARα activation.
Collapse
Affiliation(s)
- Yan-Ying Wang
- Key Lab of Basic Pharmacology of Ministry of Education, Zunyi Medical University , Zunyi, Guizhou , P.R. China and
| | | | | | | | | | | |
Collapse
|
41
|
Sugatani J, Hattori Y, Noguchi Y, Yamaguchi M, Yamazaki Y, Ikari A. Threonine-290 regulates nuclear translocation of the human pregnane X receptor through its phosphorylation/dephosphorylation by Ca2+/calmodulin-dependent protein kinase II and protein phosphatase 1. Drug Metab Dispos 2014; 42:1708-18. [PMID: 25074870 DOI: 10.1124/dmd.114.059139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human pregnane X receptor (hPXR) is recognized as a xenobiotic-sensing nuclear receptor that transcriptionally regulates the gene expression of drug-metabolizing enzymes and transporters. Our study elucidates the mechanism by which the localization of hPXR is regulated through threonine-290. A phosphomimetic mutation at threonine-290 (T290D) retained hPXR in the cytoplasm of HepG2, HuH6, and SW480 cells in vitro and the mouse liver in vivo even after treatment with rifampicin, and a phosphodeficient mutation (T290A) translocated from the cytoplasm to the nucleus as the wild-type hPXR. The amount of the unphosphorylated wild-type yellow fluorescent protein-hPXR fusion protein but not the T290A mutant increased on Phos-tag gels in response to stimulations with rifampicin and cyclin-dependent kinase 2 inhibitor roscovitine, and a marked increase was observed in the unphosphorylated levels of the T290A mutant in nontreated cells. The Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN93 [2-[N-(2-hydroxyethyl)]-N-(4-methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine)] and transfection with anti-CaMKII small-interfering RNA (siRNA) enhanced the unphosphorylated levels of the wild-type protein. CaMKII directly phosphorylated the threonine-290 of hPXR, and the T290A mutant conferred resistance to CaMKII. The protein phosphatase (PP) inhibitor okadaic acid (100 nM) and transfection with anti-PP1 siRNA but not anti-PP2A siRNA led to reduced expression of CYP3A4 mRNA. After the rifampicin and roscovitine stimulations, PP1 was recruited to the wild-type hPXR but not the T290A mutant. These results suggest that phosphorylation at threonine-290 by CaMKII may impair the function of hPXR by repressing its translocation to the nucleus, and dephosphorylation by PP1 is necessary for the xenobiotic-dependent nuclear translocation of hPXR.
Collapse
Affiliation(s)
- Junko Sugatani
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yoshiki Hattori
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yuji Noguchi
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Masahiko Yamaguchi
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yasuhiro Yamazaki
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Akira Ikari
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
42
|
Wang YM, Chai SC, Brewer CT, Chen T. Pregnane X receptor and drug-induced liver injury. Expert Opin Drug Metab Toxicol 2014; 10:1521-32. [PMID: 25252616 DOI: 10.1517/17425255.2014.963555] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION The liver plays a central role in transforming and clearing foreign substances. The continuous exposure of the liver to xenobiotics sometimes leads to impaired liver function, referred to as drug-induced liver injury (DILI). The pregnane X receptor (PXR) tightly regulates the expression of genes in the hepatic drug-clearance system and its undesired activation plays a role in DILI. AREAS COVERED This review focuses on the recent progress in understanding PXR-mediated DILI and highlights the efforts made to assess and manage PXR-mediated DILI during drug development. EXPERT OPINION Future efforts are needed to further elucidate the mechanisms of PXR-mediated liver injury, including the epigenetic regulation and polymorphisms of PXR. Novel in vitro models containing functional PXR could improve our ability to predict and assess DILI during drug development. PXR inhibitors may provide chemical tools to validate the potential of PXR as a therapeutic target and to develop drugs to be used in the clinic to manage PXR-mediated DILI.
Collapse
Affiliation(s)
- Yue-Ming Wang
- St. Jude Children's Research Hospital, Department of Chemical Biology and Therapeutics , 262 Danny Thomas Place, Memphis, TN 38105 , USA
| | | | | | | |
Collapse
|
43
|
Glucose dominates the regulation of carboxylesterases induced by lipopolysaccharide or interleukin-6 in primary mouse hepatocytes. Life Sci 2014; 112:41-8. [DOI: 10.1016/j.lfs.2014.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/30/2014] [Accepted: 07/11/2014] [Indexed: 12/16/2022]
|
44
|
Wonganan P, Jonsson-Schmunk K, Callahan SM, Choi JH, Croyle MA. Evaluation of the HC-04 cell line as an in vitro model for mechanistic assessment of changes in hepatic cytochrome P450 3A during adenovirus infection. Drug Metab Dispos 2014; 42:1191-201. [PMID: 24764148 PMCID: PMC4053995 DOI: 10.1124/dmd.113.056663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/24/2014] [Indexed: 01/22/2023] Open
Abstract
HC-04 cells were evaluated as an in vitro model for mechanistic study of changes in the function of hepatic CYP3A during virus infection. Similar to in vivo observations, infection with a first generation recombinant adenovirus significantly inhibited CYP3A4 catalytic activity in an isoform-specific manner. Virus (MOI 100) significantly reduced expression of the retinoid X receptor (RXR) by 30% 96 hours after infection. Cytoplasmic concentrations of the pregnane X receptor (PXR) were reduced by 50%, whereas the amount of the constitutive androstane receptor (CAR) in the nuclear fraction doubled with respect to uninfected controls. Hepatocyte nuclear factor 4α (HNF-4α) and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) were also reduced by ∼70% during infection. Virus suppressed CYP3A4 activity in the presence of the PXR agonist rifampicin and did not affect CYP3A4 activity in the presence of the CAR agonist CITCO [6-(4-chlorophenyl) imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime], suggesting that virus-induced modification of PXR may be responsible for observed changes in hepatic CYP3A4. The HC-04 cell line is easy to maintain, and CYP3A4 in these cells was responsive to known inducers and suppressors. Dexamethasone (200 μM) and phenobarbital (500 μM) increased activity by 230 and 124%, whereas ketoconazole (10 μM) and lipopolysaccharide (LPS) (10 μg/ml) reduced activity by 90 and 92%, respectively. This suggests that HC-04 cells can be a valuable tool for mechanistic study of drug metabolism during infection and for routine toxicological screening of novel compounds prior to use in the clinic.
Collapse
Affiliation(s)
- Piyanuch Wonganan
- Division of Pharmaceutics, College of Pharmacy (P.W., K. J.-S., S. M. C., J.-H. C. and M. A. C.) and the Institute of Cellular and Molecular Biology (M. A. C.), The University of Texas at Austin, Austin, Texas
| | - Kristina Jonsson-Schmunk
- Division of Pharmaceutics, College of Pharmacy (P.W., K. J.-S., S. M. C., J.-H. C. and M. A. C.) and the Institute of Cellular and Molecular Biology (M. A. C.), The University of Texas at Austin, Austin, Texas
| | - Shellie M Callahan
- Division of Pharmaceutics, College of Pharmacy (P.W., K. J.-S., S. M. C., J.-H. C. and M. A. C.) and the Institute of Cellular and Molecular Biology (M. A. C.), The University of Texas at Austin, Austin, Texas
| | - Jin Huk Choi
- Division of Pharmaceutics, College of Pharmacy (P.W., K. J.-S., S. M. C., J.-H. C. and M. A. C.) and the Institute of Cellular and Molecular Biology (M. A. C.), The University of Texas at Austin, Austin, Texas
| | - Maria A Croyle
- Division of Pharmaceutics, College of Pharmacy (P.W., K. J.-S., S. M. C., J.-H. C. and M. A. C.) and the Institute of Cellular and Molecular Biology (M. A. C.), The University of Texas at Austin, Austin, Texas
| |
Collapse
|
45
|
Abstract
The pregnane X receptor (PXR) and constitutive androstane receptor (CAR), 2 closely related and liver-enriched members of the nuclear receptor superfamily, and aryl hydrocarbon receptor (AhR), a nonnuclear receptor transcription factor (TF), are major receptors/TFs regulating the expression of genes for the clearance and detoxification of xenobiotics. They are hence defined as "xenobiotic receptors". Recent studies have demonstrated that PXR, CAR and AhR also regulate the expression of key proteins involved in endobiotic responses such as the metabolic homeostasis of lipids, glucose, and bile acid, and inflammatory processes. It is suggested that the functions of PXR, CAR and AhR may be closely implicated in the pathogeneses of metabolic vascular diseases, such as hyperlipidemia, atherogenesis, and hypertension. Therefore, manipulation of the activities of these receptors may provide novel strategies for the treatment of vascular diseases. Here, we review the pathophysiological roles of PXR, CAR and AhR in the vascular system.
Collapse
Affiliation(s)
- Lei Xiao
- Cardiovascular Research Center, School of Medicine, Xi'an Jiaotong University
| | | | | |
Collapse
|
46
|
Proteasomal interaction as a critical activity modulator of the human constitutive androstane receptor. Biochem J 2014; 458:95-107. [PMID: 24224465 DOI: 10.1042/bj20130685] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The CAR (constitutive androstane receptor; NR1I3) is a critical xenobiotic sensor that regulates xenobiotic metabolism, drug clearance, energy and lipid homoeostasis, cell proliferation and development. Although constitutively active, in hepatocytes CAR is normally held quiescent through a tethering mechanism in the cytosol, anchored to a protein complex that includes several components, including heat-shock protein 90. Release and subsequent nuclear translocation of CAR is triggered through either direct binding to ligand activators such as CITCO {6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime} or through indirect chemical activation, such as with PB (phenobarbital). In the present study, we demonstrate that proteasomal inhibition markedly disrupts CAR function, repressing CAR nuclear trafficking, disrupting CAR's interaction with nuclear co-activators and inhibiting induction of CAR target gene responses in human primary hepatocytes following treatment with either PB or CITCO. Paradoxically, these effects occur following accumulation of ubiquitinated hCAR (human CAR). Furthermore, a non-proteolytic function was indicated by its interaction with a SUG1 (suppressor for Gal1), a subunit of the 26S proteasome. Taken together, these data demonstrate that the proteasome complex functions at multiple levels to regulate the functional biology of hCAR activity.
Collapse
|
47
|
Ong SS, Goktug AN, Elias A, Wu J, Saunders D, Chen T. Stability of the human pregnane X receptor is regulated by E3 ligase UBR5 and serine/threonine kinase DYRK2. Biochem J 2014; 459:193-203. [PMID: 24438055 PMCID: PMC3959618 DOI: 10.1042/bj20130558] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The hPXR (human pregnane X receptor), a major chemical toxin sensor, is a ligand-induced transcription factor activated by various xenobiotics and toxins, resulting in the transcriptional up-regulation of detoxifying enzymes. To date, little is known about the upstream regulation of hPXR. Using MS analysis and a kinome-wide siRNA screen, we report that the E3 ligase UBR5 (ubiquitin protein ligase E3 component n-recognin 5) and DYRK2 (dual-specificity tyrosine-phosphorylation-regulated kinase 2) regulate hPXR stability. UBR5 knockdown resulted in accumulation of cellular hPXR and a concomitant increase in hPXR activity, whereas the rescue of UBR5 knockdown decreased the cellular hPXR level and activity. Importantly, UBR5 exerted its effect in concert with the serine/threonine kinase DYRK2, as the knockdown of DYRK2 phenocopied UBR5 knockdown. hPXR was shown to be a substrate for DYRK2, and DYRK2-dependent phosphorylation of hPXR facilitated its subsequent ubiquitination by UBR5. This is the first report of the post-translational regulation of hPXR via phosphorylation-facilitated ubiquitination by DYRK2 and UBR5. The results of the present study reveal the role of the ubiquitin-proteasomal pathway in modulating hPXR activity and indicate that pharmacological inhibitors of the ubiquitin-proteasomal pathway that regulate hPXR stability may negatively affect treatment outcome from unintended hPXR-mediated drug-drug interactions.
Collapse
Affiliation(s)
- Su Sien Ong
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Asli N. Goktug
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Ayesha Elias
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Darren Saunders
- Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst NSW 2010, Australia
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| |
Collapse
|
48
|
Šíma M, Netíková I, Slanař O. Pregnane xenobiotic receptors and their effect on drug elimination from the organism. Prague Med Rep 2014; 114:205-13. [PMID: 24485337 DOI: 10.14712/23362936.2014.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Nuclear receptors are intracellular proteins which, having been activated by their more or less specific ligands, regulate (usually increase) the transcription of target genes. They thus participate in a regulation of a number of physiologic functions. Some of them - especially pregnane xenobiotic receptors - serve primarily as protection of the organism from the xenobiotic intoxication. This is because many xenobiotics activate their function which consists in increasing the gene expression of enzymes involved in the metabolism of xenobiotics and detoxication drug transporters. Clarification of these mechanisms enabled the understanding of the substance of many drug-drug interactions observed in the clinical practice. Polymorphism of the nuclear receptors appears to be one of the causes of the interindividual variability in response to drug administration.
Collapse
Affiliation(s)
- M Šíma
- Institute of Pharmacology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - I Netíková
- Institute of Pharmacology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - O Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech RepublicInstitute of Pharmacology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
49
|
Mani S, Boelsterli UA, Redinbo MR. Understanding and modulating mammalian-microbial communication for improved human health. Annu Rev Pharmacol Toxicol 2013; 3. [PMID: 27942535 PMCID: PMC5145265 DOI: 10.11131/2016/101199] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The molecular basis for the regulation of the intestinal barrier is a very fertile research area. A growing body of knowledge supports the targeting of various components of intestinal barrier function as means to treat a variety of diseases, including the inflammatory bowel diseases. Herein, we will summarize the current state of knowledge of key xenobiotic receptor regulators of barrier function, highlighting recent advances, such that the field and its future are succinctly reviewed. We posit that these receptors confer an additional dimension of host-microbe interaction in the gut, by sensing and responding to metabolites released from the symbiotic microbiota, in innate immunity and also in host drug metabolism. The scientific evidence for involvement of the receptors and its molecular basis for the control of barrier function and innate immunity regulation would serve as a rationale towards development of non-toxic probes and ligands as drugs.
Collapse
Affiliation(s)
- Sridhar Mani
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | |
Collapse
|
50
|
Kodama S, Negishi M. Sulfotransferase genes: regulation by nuclear receptors in response to xeno/endo-biotics. Drug Metab Rev 2013; 45:441-9. [PMID: 24025090 DOI: 10.3109/03602532.2013.835630] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pregnane X receptor (PXR) and constitutive active/androstane receptor (CAR), members of the nuclear receptor superfamily, are two major xeno-sensing transcription factors. They can be activated by a broad range of lipophilic xenobiotics including therapeutics drugs. In addition to xenobiotics, endogenous compounds such as steroid hormones and bile acids can also activate PXR and/or CAR. These nuclear receptors regulate genes that encode enzymes and transporters that metabolize and excrete both xenobiotics and endobiotics. Sulfotransferases (SULTs) are a group of these enzymes and sulfate xenobiotics for detoxification. In general, inactivation by sulfation constitutes the mechanism to maintain homeostasis of endobiotics. Thus, deciphering the molecular mechanism by which PXR and CAR regulate SULT genes is critical for understanding the roles of SULTs in the alterations of physiological and pathophysiological processes caused by drug treatment or environmental exposures.
Collapse
Affiliation(s)
- Susumu Kodama
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University , Sendai , Japan and
| | | |
Collapse
|