1
|
Xu Y, Liu Z, Xu J, Xu L, He Z, Liu F, Wang Y. Role of brain-derived neurotrophic factor in frailty: From mechanisms to interventions. Biomed Pharmacother 2025; 186:118016. [PMID: 40187046 DOI: 10.1016/j.biopha.2025.118016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/23/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025] Open
Abstract
Frailty is a common medical syndrome which largely increases the risk of disability, depression, falls, hospitalization and mortality. An increasing number of research suggests that frailty is reversible by medical interventions at its early stage. Therefore, efficient detection is utterly important for frail population. Since numerous biological processes have been indicated in frail population, the critical regulators in these biological processes could provide biomarkers for early detection or treatment for frailty. The brain-derived neurotrophic factor (BDNF) has been associated with several biological process ranging from cognitive function to inflammation, therefore it could be an important regulator for frailty. In this review, we would discuss the mechanism association between different indicators of frailty and BDNF. Furthermore, we summarize the approaches to interfere with BDNF in healthy and pathologic condition, which could lead to identification of potential interventional strategies for frailty.
Collapse
Affiliation(s)
- Yuanchun Xu
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Ziyan Liu
- Department of Nursing, Traditional Chinese Medicine Hospital of Tongliang, Tongliang Chongqing 402560, China
| | - Jiao Xu
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Lunshan Xu
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zongsheng He
- Department of Gastroenterology, Daping Hospital,Army Medical University, Chongqing 400042, China
| | - Fang Liu
- Department of Nursing, Traditional Chinese Medicine Hospital of Tongliang, Tongliang Chongqing 402560, China.
| | - Yaling Wang
- Department of Nursing, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
2
|
Rosok LM, Cannavale CN, Keye SA, Holscher HD, Renzi-Hammond L, Khan NA. Skin and macular carotenoids and relations to academic achievement among school-aged children. Nutr Neurosci 2025; 28:308-320. [PMID: 38989695 DOI: 10.1080/1028415x.2024.2370175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
OBJECTIVES Carotenoids are plant pigments that accumulate in human tissue (e.g. macula and skin) and can serve as biomarkers for diet quality; however, knowledge on skin and macular carotenoids in relation to cognition in children is limited. This study aimed to address this gap by assessing links between skin and macular carotenoids and academic achievement in school-aged children. METHODS Children 7-12 years old (n = 81) participated in a crosssectional study. Skin and macular carotenoids were measured with reflection spectroscopy and heterochromatic flicker photometry, respectively. Academic achievement was measured using Woodcock-Johnson IV (WJ-IV). Body Mass Index was calculated using height and weight measurements, demographic information was collected using a family demographics and pediatric health history questionnaire, and carotenoid intake was assessed using 7-day diet records. RESULTS Skin carotenoids were not related to macular pigment (r = 0.08, p = 0.22). Adjusting for age, sex, BMI percentile, household income, and total carotenoid consumption (mg/1000kcal), skin carotenoids were predictive of math (β = 0.27, p = 0.02), broad math (β = 0.36, p < 0.01) and math calculation (β = 0.38, p < 0.01). Skin carotenoids displayed trending relationships with broad reading (β = 0.23, p = 0.05) and reading fluency (β = 0.22, p = 0.07). There were no significant associations between macular pigment and academic achievement (all β's ≤ 0.07, all p's ≥ 0.56). DISCUSSION Skin carotenoids were positively associated with academic abilities in children, while macular carotenoids did not display this relationship. Future interventions examining prospective effects of changes in carotenoids in different tissues on childhood academic achievement are warranted.
Collapse
Affiliation(s)
- Laura M Rosok
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Corinne N Cannavale
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Shelby A Keye
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Hannah D Holscher
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | - Naiman A Khan
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
3
|
Huang J. Association between serum carotenoids levels and endometriosis risk: evidence from the National Health and Nutrition Examination Survey. Front Nutr 2025; 12:1513191. [PMID: 39968397 PMCID: PMC11832354 DOI: 10.3389/fnut.2025.1513191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/03/2025] [Indexed: 02/20/2025] Open
Abstract
Background The relationship between serum levels of carotenoids and endometriosis remains largely unknown. The aim of this study is to assess the association between serum levels of major carotenoids (α-carotene, β-carotene, β-cryptoxanthin, lutein/zeaxanthin, and trans-lycopene) and the risk of endometriosis in US women. Methods The data were obtained from the 2001-2006 National Health and Nutrition Examination Surveys (NHANES), which included a total of 3,636 women aged 20 to 54. Serum levels of α-carotene, β-carotene, β-cryptoxanthin, lutein/zeaxanthin, and trans-lycopene were measured using high performance liquid chromatography (HPLC) with photodiode array detection. Endometriosis was defined as self-report. Weighted multivariate logistic regression analyses were conducted to evaluate the associations of the serum levels of the major carotenoids with endometriosis risk. Additionally, restricted cubic spline (RCS) was employed to assess the possibility of nonlinear associations. Finally, subgroup analyses were utilized to estimate the influence of several covariates on the associations. Results Weighted multivariate logistic regression analyses showed that, after adjusting for all covariates taken into account, there was a significant association between serum lutein/zeaxanthin levels and reduced risk of endometriosis (Quartile 3 vs. Quartile 1: odds ratio [OR] = 0.62, 95% confidence interval [CI]: 0.42-0.90; Quartile 4 vs. Quartile 1: OR = 0.54, 95% CI: 0.36-0.81, P for trend = 0.001). However, no significant associations of serum levels of other carotenoids with endometriosis were found in multivariable-adjusted models that included all covariates. RCS analysis did not reveal any non-linear relationships. Subgroup analyses indicated that the inverse association between serum lutein/zeaxanthin levels and reduced endometriosis risk was significant only in individuals under 40 years of age, in both White and non-White populations, in smokers, and among those who had ever used oral contraceptives. Conclusion Serum lutein/zeaxanthin levels may offer protective effects against endometriosis in specific subpopulations. Further prospective research is necessary to validate these findings.
Collapse
Affiliation(s)
- Jian Huang
- Clinical Laboratory Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
4
|
Masyita A, Hardinasinta G, Astuti AD, Firdayani F, Mayasari D, Hori A, Nisha INA, Nainu F, Kuraishi T. Natural pigments: innovative extraction technologies and their potential application in health and food industries. Front Pharmacol 2025; 15:1507108. [PMID: 39845791 PMCID: PMC11750858 DOI: 10.3389/fphar.2024.1507108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025] Open
Abstract
Natural pigments, or natural colorants, are frequently utilized in the food industry due to their diverse functional and nutritional attributes. Beyond their color properties, these pigments possess several biological activities, including antioxidant, anti-inflammatory, anticancer, antibacterial, and neuroprotective effects, as well as benefits for eye health. This review aims to provide a timely overview of the potential of natural pigments in the pharmaceutical, medical, and food industries. Special emphasis is placed on emerging technologies for natural pigment extraction (thermal technologies, non-thermal technologies, and supercritical fluid extraction), their pharmacological effects, and their potential application in intelligent food packaging and as food colorants. Natural pigments show several pharmaceutical prospects. For example, delphinidin (30 µM) significantly inhibited the growth of three cancer cell lines (B16-F10, EO771, and RM1) by at least 90% after 48 h. Furthermore, as an antioxidant agent, fucoxanthin at the highest concentration (50 μg/mL) significantly increased the ratio of glutathione to glutathione disulfide (p < 0.05). In the food industry, natural pigments have been used to improve the nutritional value of food without significantly altering the sensory experience. Moreover, the use of natural pH-sensitive pigments as food freshness indicators in intelligent food packaging is a cutting-edge technological advancement. This innovation could provide useful information to consumers, increase shelf life, and assist in evaluating the quality of packaged food by observing color variations over time. However, the use of natural pigments presents certain challenges, particularly regarding their stability and higher production costs compared to synthetic pigments. This situation underscores the need for further investigation into alternative pigment sources and improved stabilization methods. The instability of these natural pigments emphasizes their tendency to degrade and change color when exposed to various external conditions, including light, oxygen, temperature fluctuations, pH levels, and interactions with other substances in the food matrix.
Collapse
Affiliation(s)
- Ayu Masyita
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong Bogor, Indonesia
| | - Gemala Hardinasinta
- Department of Agricultural Engineering, Faculty of Agricultural, Hasanuddin University, Makassar, Indonesia
| | - Ayun Dwi Astuti
- Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Firdayani Firdayani
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong Bogor, Indonesia
| | - Dian Mayasari
- Department of Pharmacy, Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
| | - Aki Hori
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Ira Nur Ainun Nisha
- Department of Biological Sciences, Faculty of Teacher Training and Education, Muslim Maros University, Maros, Indonesia
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Takayuki Kuraishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
5
|
Jayakanthan M, Manochkumar J, Efferth T, Ramamoorthy S. Lutein, a versatile carotenoid: Insight on neuroprotective potential and recent advances. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156185. [PMID: 39531935 DOI: 10.1016/j.phymed.2024.156185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Neurodegenerative diseases (NDDs) are a diverse group of neurological disorders with progressive neuronal loss at specific brain regions, leading to impaired cognitive functioning, loss of neuroplasticity, severe neurological impairment, and dementia. The incidence of neurodegenerative diseases is increasing at an alarming rate with current treatments struggling to barely prolong the inevitable. The desperation to discover a therapeutic agent to treat neurodegenerative diseases and to aid in the process of healthy recovery has opened a gateway into natural pigments. HYPOTHESIS The xanthophyll pigment lutein may bear the potential as a therapeutic agent against NDDs. RESULTS Lutein plays an important role in brain development, cognitive functioning, and improving neuroplasticity. In vitro and in vivo studies revealed the neuroprotective properties of lutein against NDDs such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and cerebral ischemia. The neuroprotective effect of lutein is evidenced by the reduction of free radicals and the simultaneous strengthening of the endogenous antioxidant systems by activating the NRF-2/ERK/AKT pathway. Further, it effectively suppressed mitochondrial aberrations, excitotoxicity, overaccumulation of metals, and its resultant complications. The immunomodulatory activity of lutein prevents neuroinflammation by hindering NF-κB nuclear translocation, regulation of NIK/IKK, PI3K/AKT, MAPK/ERK, JNK pathways, and ICAM-1 downregulation. Lutein also rescued the dysregulated cholinergic system and resolved memory defects. Along with its neuroprotective properties, lutein also improved neuroplasticity by enabling neurogenesis through increased GAP-43, NCAM, and BDNF levels. CONCLUSION Lutein exhibits strong neuroprotective activities against various NDDs. Though the investigations are in the exploratory phase, this review presents the consolidation of scattered evidence of the neuroprotective properties of lutein and urges its further exploration in clinical studies.
Collapse
Affiliation(s)
- Megha Jayakanthan
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Janani Manochkumar
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128, Mainz, Germany
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, India.
| |
Collapse
|
6
|
Ponce-García V, Bautista-Llamas MJ, García-Romera MC. "Analysis of Macular Pigment Optical Density in Childhood: A Systematic Review". Semin Ophthalmol 2024; 39:577-585. [PMID: 38717910 DOI: 10.1080/08820538.2024.2346750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE This systematic review studies the relationship between Macular Pigment Optical Density (MPOD) values and cognitive and visual function in childhood. METHODS It included cross-sectional, observational studies or controlled clinical trials in humans between 0 and 18 years of age, analyzing MPOD values in 3 main databases: PubMed, Scopus and Web of Science. The study was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement recommendations. RESULTS Thirteen studies were included in this systematic review. The relationship of cognitive function, visual function and diverse variables with MPOD was analyzed in 4, 4 and 5 studies, respectively. The age of the participants ranged between premature infants to 12 years. Most of the studies used Heterochromatic Flicker Photometry (HFP) with macular densitometer to obtain MPOD values. MPOD values ranged between 0 (undetectable) to 0.66 ± 0.03 d.u. Only 4 articles studied the relationship between MPOD values and dietary intake of lutein and zeaxanthin using questionnaires about diet. CONCLUSIONS Lutein and zeaxanthin accumulation plays an important role during the maturational stage and childhood development. Although cognitive function is more strongly correlated with MPOD values, the relationship with visual function remains unclear, and further studies are required to support this relationship.
Collapse
Affiliation(s)
- Víctor Ponce-García
- Department of Physics of Condensed Matter, Optics Area. Vision Research Group (CIVIUS), University of Seville, Seville, Spain
| | - María-José Bautista-Llamas
- Department of Physics of Condensed Matter, Optics Area. Vision Research Group (CIVIUS), University of Seville, Seville, Spain
| | - Marta-C García-Romera
- Department of Physics of Condensed Matter, Optics Area. Vision Research Group (CIVIUS), University of Seville, Seville, Spain
| |
Collapse
|
7
|
Masri A, Armanazi M, Inouye K, Geierhart DL, Davey PG, Vasudevan B. Macular Pigment Optical Density as a Measurable Modifiable Clinical Biomarker. Nutrients 2024; 16:3273. [PMID: 39408240 PMCID: PMC11478551 DOI: 10.3390/nu16193273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Carotenoids are present throughout retina and body its dense deposition leads to an identifiable yellow spot in the macula. Macular pigment optical density (MPOD) measured in the macula is vital to macular well-being and high-resolution visual acuity. MPOD has also been associated with various health and disease states. We sought to review the literature on this topic and summarize MPODs role as a measurable modifiable clinical biomarker, particularly as a measure of the eye's antioxidant capacity in the context of oxidative damage and retinal ischemia. METHODS A literature review collated the articles relevant to MPOD, carotenoid intake or supplementation, and their influence on various health and disease states. RESULTS Literature reveals that MPOD can serve as a reliable biomarker for assessing the retinal defense mechanisms against oxidative stress and the deleterious effects of excessive light exposure. Elevated MPOD levels offer robust protection against the onset and progression of age-related macular degeneration (AMD), a prevalent cause of vision impairment among the elderly population. MPOD's implications in diverse ocular conditions, including diabetic retinopathy and glaucoma, have been explored, underscoring the real need for clinical measurement of MPOD. The integration of MPOD measurement into routine eye examinations presents an unparalleled opportunity for early disease detection, precise treatment planning, and longitudinal disease monitoring. CONCLUSIONS Longitudinal investigations underscore the significance of MPOD in the context of age-related ocular diseases. These studies show promise and elucidate the dynamic nuances of MPOD's status and importance as a measurable, modifiable clinical biomarker.
Collapse
Affiliation(s)
- Abdul Masri
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA;
| | - Mohammed Armanazi
- College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada;
| | - Keiko Inouye
- College of Optometry, Western University of Health Sciences, Pomona, CA 91766, USA;
| | | | - Pinakin Gunvant Davey
- College of Optometry, Western University of Health Sciences, Pomona, CA 91766, USA;
- EyePromise, LLC, Chesterfield, MO 63005, USA;
| | | |
Collapse
|
8
|
Stringham NT, Green M, Roche W, Prado-Cabrero A, Mulcahy R, Nolan J. Lutein, zeaxanthin, and meso-zeaxanthin supplementation attenuates inflammatory cytokines and markers of oxidative cardiovascular processes in humans. Nutr Metab Cardiovasc Dis 2024; 34:1976-1983. [PMID: 38890092 DOI: 10.1016/j.numecd.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND AND AIMS Systemic inflammation and oxidation are primary contributors to the development of atherosclerosis. Oxidation of low-density lipoprotein (LDL) particles within the vascular endothelium has been hypothesized to be an initial step in the formation of atherosclerotic plaques, with inflammatory cytokines serving as the signaling mechanism for concomitant macrophage activation. Supplementation with the antioxidative macular xanthophylls (lutein [L], zeaxanthin [Z], and meso-zeaxanthin [MZ]) has been shown to aid in the reduction of inflammatory physiologic responses; therefore, we hypothesized that in our study population, supplementation with these xanthophylls would facilitate a systemic reduction in markers of inflammation and cardiovascular lipid oxidation. METHODS AND RESULTS In this double-blind placebo-controlled supplementation study, participants were randomly allocated to receive the active intervention containing L (10 mg) + MZ (10 mg) + Z (2 mg) or placebo (containing sunflower oil). Serum concentrations of carotenoids (assessed by HPLC), inflammatory cytokines (IL-6, IL-1β, TNF-α) and oxidized LDL (OxLDL; by solid-phase sandwich ELISA) were measured at baseline and at 6-months. Results showed that over the supplementation period, compared to placebo, the active group demonstrated statistically significant increases in serum concentrations of L, Z, & MZ (p < 0.05), reductions in inflammatory cytokines IL-1β (p < 0.001) and TNF-α (p = 0.003), as well as a corresponding reduction in serum OxLDL (p = 0.009). CONCLUSIONS Our data show that L, Z, & MZ supplementation results in decreased serum IL-1β, TNF-α, and OxLDL. This suggests that these carotenoids are acting systemically to attenuate oxidative lipid products and inflammation, thus reducing their contribution to atherosclerotic plaque formation.
Collapse
Affiliation(s)
- Nicole T Stringham
- Nutrition Research Centre Ireland (NRCI), Southeast Technical University, Waterford, Ireland; Northern Arizona University, Flagstaff, AZ, USA.
| | - Marina Green
- Nutrition Research Centre Ireland (NRCI), Southeast Technical University, Waterford, Ireland
| | - Warren Roche
- Nutrition Research Centre Ireland (NRCI), Southeast Technical University, Waterford, Ireland
| | - Alfonso Prado-Cabrero
- Nutrition Research Centre Ireland (NRCI), Southeast Technical University, Waterford, Ireland
| | - Riona Mulcahy
- Nutrition Research Centre Ireland (NRCI), Southeast Technical University, Waterford, Ireland
| | - John Nolan
- Nutrition Research Centre Ireland (NRCI), Southeast Technical University, Waterford, Ireland
| |
Collapse
|
9
|
Holthaus TA, Keye SA, Verma S, Cannavale CN, Burd NA, Holscher HD, Khan NA. Dietary patterns and carotenoid intake: Comparisons of MIND, Mediterranean, DASH, and Healthy Eating Index. Nutr Res 2024; 126:58-66. [PMID: 38615632 DOI: 10.1016/j.nutres.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
The Mediterranean-Dietary Approaches to Stop Hypertension (DASH) Intervention for Neurodegenerative Delay (MIND) dietary pattern is associated with reduced cognitive decline and dementia risk. However, the nutrient features that distinguish the MIND from other patterns are unknown. We investigated the relationship between accordance to the MIND pattern and carotenoid intake (phytonutrients hypothesized to confer neuroprotection) relative to the Mediterranean, DASH, and Healthy Eating Index (HEI-2020). We hypothesized that MIND diet accordance would be a stronger predictor of carotenoid intake relative to other diet indices. A total of 396 adults (aged 19-82 years) completed the Dietary History Questionnaire to assess carotenoid intake and adherence to each diet index. Stepwise regressions with adjustment for covariates followed by the Meng's Z-test were used to compare correlation strength between each diet pattern and carotenoid. All diet patterns were positively associated with lutein and zeaxanthin, β-carotene, α-carotene, and β-cryptoxanthin (all βs ≥0.38, Ps <.01). Effect size comparisons revealed that MIND accordance predicted a greater proportion of variance in lutein and zeaxanthin (all Zs ≥ 3.3, Ps < .001) and β-carotene (all Zs ≥ 2.6, Ps < .01) relative to the Mediterranean, DASH, and HEI-2020. MIND accordance explained a greater proportion of variance in α-carotene (Z = 3.8, P < .001) and β-cryptoxanthin (Z = 3.6, P < .001) relative to the HEI-2020. MIND diet accordance was disproportionately related to carotenoid intake, indicating the MIND index places greater emphasis on carotenoid-rich foods, particularly those containing lutein, zeaxanthin, and β-carotene, relative to other diet indices. Future research is needed to define the role of these carotenoids in nutritional interventions for cognitive health.
Collapse
Affiliation(s)
- Tori A Holthaus
- Division of Nutritional Sciences, University of Illinois, Louise Freer Hall, Urbana, IL 61801, USA
| | - Shelby A Keye
- Kinesiology and Community Health, University of Illinois, Louise Freer Hall, Urbana, IL 61801, USA
| | - Shreya Verma
- Kinesiology and Community Health, University of Illinois, Louise Freer Hall, Urbana, IL 61801, USA
| | - Corinne N Cannavale
- Kinesiology and Community Health, University of Illinois, Louise Freer Hall, Urbana, IL 61801, USA
| | - Nicholas A Burd
- Division of Nutritional Sciences; Kinesiology and Community Health, University of Illinois, Louise Freer Hall, Urbana, IL 61801, USA
| | - Hannah D Holscher
- Division of Nutritional Sciences; Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL 61801, USA
| | - Naiman A Khan
- Neuroscience Program, Beckman Institute of Advanced Science and Technology, Division of Nutritional Sciences, Kinesiology and Community Health, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
10
|
Hu W, Seah V, Huang V, Kim JE. Effect of Antioxidant Supplementation on Macular Pigment Optical Density and Visual Functions: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. Adv Nutr 2024; 15:100216. [PMID: 38582248 PMCID: PMC11052915 DOI: 10.1016/j.advnut.2024.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 03/14/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024] Open
Abstract
Antioxidants are bioactive molecules that function to scavenge free radicals and balance oxidative stress. Although all antioxidants can act as reactive oxygen species scavengers, their efficacy on eye health may vary. Moreover, the comparative effectiveness and potential additive effect between groups of antioxidants, hitherto, have not been systematically studied. A systematic review and network meta-analysis were conducted to investigate the comparative or additive effect of dietary antioxidant supplements on eye health. Four databases (PubMed, Embase, CINAHL, and Cochrane) were searched, and relevant randomized controlled trials were identified. Out of 60 articles selected for systematic review, 38 were included in the network meta-analysis, categorized into 8 distinct antioxidant-supplemented groups and placebo. All groups significantly increased macular pigment optical density and contrast sensitivity at low spatial frequency, whereas only the antioxidant mixture + lutein (L) + fatty acid combination exhibited significant improvements in visual acuity (hazard ratio = -0.15; 95% confidence interval: -0.28, -0.02) and L + zeaxanthin combination for photostress recovery time (hazard ratio = -5.75; 95% confidence interval: -8.80, -1.70). Especially, the L + zeaxanthin + fatty acid combination was ranked best for macular pigment optical density (surface under the cumulative ranking: 99.3%) and second best for contrast sensitivity at low spatial frequency (67.7%). However, these findings should be interpreted with caution due to low quality of evidence, primarily influenced by indirectness and potential publication bias. Overall, antioxidant supplementation was estimated to improve eye health parameters, whereas different combinations of antioxidants may also have varying effects on improving visual health from multiple perspectives. This study was registered at PROSPERO as CRD42022369250.
Collapse
Affiliation(s)
- Weili Hu
- Department of Food Science and Technology, National University of Singapore, Singapore
| | - Vernice Seah
- Department of Food Science and Technology, National University of Singapore, Singapore
| | - Vanessa Huang
- Department of Food Science and Technology, National University of Singapore, Singapore
| | - Jung Eun Kim
- Department of Food Science and Technology, National University of Singapore, Singapore.
| |
Collapse
|
11
|
Wang X, Yang C, Zhang X, Ye C, Liu W, Wang C. Marine natural products: potential agents for depression treatment. Acta Biochim Pol 2024; 71:12569. [PMID: 38812493 PMCID: PMC11135343 DOI: 10.3389/abp.2024.12569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/08/2024] [Indexed: 05/31/2024]
Abstract
Depression is a common psychiatric disorder. Due to the disadvantages of current clinical drugs, including poor efficacy and unnecessary side effects, research has shifted to novel natural products with minimal or no adverse effects as therapeutic alternatives. The ocean is a vast ecological home, with a wide variety of organisms that can produce a large number of natural products with unique structures, some of which have neuroprotective effects and are a valuable source for the development of new drugs for depression. In this review, we analyzed preclinical and clinical studies of natural products derived from marine organisms with antidepressant potential, including the effects on the pathophysiology of depression, and the underlying mechanisms of these effects. It is expected to provide a reference for the development of new antidepressant drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Chengmin Wang
- Department of Psychiatry, Shenzhen Longgang Center for Chronic Disease Control, Shenzhen, China
| |
Collapse
|
12
|
Polidori MC. Aging hallmarks, biomarkers, and clocks for personalized medicine: (re)positioning the limelight. Free Radic Biol Med 2024; 215:48-55. [PMID: 38395089 DOI: 10.1016/j.freeradbiomed.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024]
Abstract
The rapidly increasing aging prevalence, complexity, and heterogeneity pose the scientific and medical communities in front of challenges. These are delivered by gaps between basic and translational research, as well as between clinical practice guidelines to improve survival and absence of evidence on personalized strategies to improve functions, wellbeing and quality of life. The triumphs of aging science sheding more and more light on mechanisms of aging as well as those of medical and technological progress to prolong life expectancy are clear. Currently, and in the next two to three decades, all efforts must be put in a closer interdisciplinary dialogue between biogerontologists and geriatricians to enable real-life measures of aging phenotypes to be used to uncover the physiological - and therefore translational - relevance of newly discovered aging clocks, biomarkers, and hallmarks.
Collapse
Affiliation(s)
- M Cristina Polidori
- Aging Clinical Research, Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Herderstraße 52, 50931, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress- Responses in Aging- Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
13
|
Kim N, Parolin B, Renshaw D, Deb SK, Zariwala MG. Formulated Palmitoylethanolamide Supplementation Improves Parameters of Cognitive Function and BDNF Levels in Young, Healthy Adults: A Randomised Cross-Over Trial. Nutrients 2024; 16:489. [PMID: 38398813 PMCID: PMC10891801 DOI: 10.3390/nu16040489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Palmitoylethanolamide (PEA) is an endocannabinoid-like lipid mediator which is naturally produced in the body and found in certain foods. The aim of this study was to assess the effect of a bioavailable formulated form of PEA (Levagen+®) on serum BDNF levels and parameters of cognitive function in healthy adults. METHODS A randomised double-blinded placebo-controlled cross-over trial was implemented to measure the effects of a 6-week 700 mg/day course of formulated PEA supplementation versus a placebo. Participants (n = 39) completed pre- and post-assessments of a lab-based cognitive test. Serum samples were collected to measure BDNF concentrations using an immunoassay. RESULTS A significant increase in serum BDNF levels was found following PEA supplementation compared with the placebo (p = 0. 0057, d = 0.62). The cognition test battery demonstrated improved memory with PEA supplementation through better first success (p = 0.142, d = 0.54) and fewer errors (p = 0.0287; d = -0.47) on the Paired Associates Learning test. CONCLUSION This was the first study to report a direct beneficial effect of Levagen+® PEA supplementation on memory improvement as well as corresponding increases in circulating neurotrophic marker levels. This suggests that formulated PEA holds promise as an innovative and practical intervention for cognitive health enhancement.
Collapse
Affiliation(s)
- Nadia Kim
- Centre for Nutraceuticals, University of Westminster, London W1W6 UW, UK (S.K.D.)
| | - Brenda Parolin
- Centre for Nutraceuticals, University of Westminster, London W1W6 UW, UK (S.K.D.)
| | - Derek Renshaw
- Centre for Health and Life Sciences (CHLS), Coventry University, Coventry CV1 5FB, UK;
| | - Sanjoy K. Deb
- Centre for Nutraceuticals, University of Westminster, London W1W6 UW, UK (S.K.D.)
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | | |
Collapse
|
14
|
Fitzpatrick NK, Capra S, Shore A, Briskey D, Jackman S, Bowtell J, Chachay V. Newly developed dietary assessment tools for lutein and zeaxanthin are correlated with 24-hour diet recalls, but are not a valid measure of intake in Australian and United Kingdom adults. Nutr Res 2024; 122:68-79. [PMID: 38185062 DOI: 10.1016/j.nutres.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024]
Abstract
Habitual dietary intake measurement of carotenoids lutein and zeaxanthin (L/Z) has often been omitted or attempted with tools of unknown validity in past research. It was hypothesized that the dietary assessment tool, the L/Z screener, developed as part of this study, would be valid with agreement within 0.25 mg/day when compared against multiple 24-hour diet recalls in healthy Australian and United Kingdom adults. Two screeners with 91 food items were developed, 1 with a recall timeframe of a month and the other a week. Over 4 weeks, 56 Australian and 47 United Kingdom participants completed 4 weekly screeners, 2 monthly screeners, and eight 24-hour diet recalls. Validity was assessed through Bland-Altman plot analysis. L/Z intake measured by all tools was significantly correlated, with correlation coefficients from 0.58 to 0.83. Despite these correlations, the screeners were not valid, with poor Bland-Altman plot agreement when compared with the diet recalls. The Australian weekly screener performed best, demonstrating a mean difference of 0.51 mg/day and 95% limits of agreement between -1.46 mg/day and 2.49 mg/day of L/Z intake. Baby spinach, broccoli, and pumpkin provided the greatest proportion of L/Z intake. The low validity may be explained by high rates of misestimation or missed capture of moderate to high L/Z containing foods such as baby spinach. Prior research reliant on correlational statistics for L/Z tool validity should be interpreted with caution, and future screener development should prioritize accurate capture of high contribution foods.
Collapse
Affiliation(s)
- Naomi Kathleen Fitzpatrick
- School of Human Movement and Nutrition Sciences, The University of Queensland, Saint Lucia, Queensland, 4067, Australia.
| | - Sandra Capra
- School of Human Movement and Nutrition Sciences, The University of Queensland, Saint Lucia, Queensland, 4067, Australia
| | - Angela Shore
- NIHR Exeter Clinical Research Facility, University of Exeter, Royal Devon & Exeter Hospital, Exeter, EX2 5DW, United Kingdom
| | - David Briskey
- School of Human Movement and Nutrition Sciences, The University of Queensland, Saint Lucia, Queensland, 4067, Australia
| | - Sarah Jackman
- Sport and Health Sciences, St Luke's Campus, Exeter, EX1 2LU, United Kingdom
| | - Joanna Bowtell
- Sport and Health Sciences, St Luke's Campus, Exeter, EX1 2LU, United Kingdom
| | - Veronique Chachay
- School of Human Movement and Nutrition Sciences, The University of Queensland, Saint Lucia, Queensland, 4067, Australia
| |
Collapse
|
15
|
Marta-C GR, Úrsula TP, Victor PG. Effect of Mediterranean diet and blue light exposition on macular pigment optical density values in a Spanish childhood population. Heliyon 2024; 10:e23361. [PMID: 38163108 PMCID: PMC10755299 DOI: 10.1016/j.heliyon.2023.e23361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
Background Macular pigment in retina is formed by lutein and zeaxanthin. These carotenoids must be ingested. Fruit, vegetables, and eggs are rich in lutein and zeaxanthin. In adults, there are many factors that increase macular pigment values, although not enough studies have been performed in children. Objective The main aim of this study was to analyze macular pigment in children considering healthy habits and exposure to LEDs screens. Methods A cross-sectional, observational study was conducted, recruiting 27 children aged 7-13 years. Healthy habits, demographic data and exposure to LEDs were analyzed using a questionnaire. To study adherence to the Mediterranean diet, the validated KIDMED questionnaire was used. Macular pigment optical density was measured using Heterochromatic Flicker Photometry, and weight and height were also recorded and expressed by body mass index. Results The mean MPOD value was 0.45 ± 0.14. BMI percentile was studied in the children, with most of them presenting normal weight (55.55 %). Regarding the KIDMED questionnaire, ingesting a fruit or fruit juice every day increases macular pigment optical density (0.47 ± 0.13 vs 0.24 ± 0.07, p = 0.034). No correlation was found for the KIDMED questionnaire score, BMI or age with MPOD value. Conclusion Lutein and zeaxanthin intake, as well as healthy habits, increase MPOD value. However, no relation was found for several of the factors evaluated with MPOD value.
Collapse
Affiliation(s)
- García-Romera Marta-C
- Department of Physics of Condensed Matter, Optics Area. Vision Research Group (CIVIUS). University of Seville, Seville, Spain
| | | | - Ponce-García Victor
- Department of Physics of Condensed Matter, Optics Area. Vision Research Group (CIVIUS). University of Seville, Seville, Spain
| |
Collapse
|
16
|
Takekoshi H, Fujishima M, Miyazawa T, Higuchi O, Fujikawa T, Miyazawa T. Simultaneous Intake of Chlorella and Ascidian Ethanolamine Plasmalogen Accelerates Activation of BDNF-TrkB-CREB Signaling in Rats. Molecules 2024; 29:357. [PMID: 38257270 PMCID: PMC10819417 DOI: 10.3390/molecules29020357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in neurogenesis, synaptic plasticity, and cognition. BDNF is a neurotrophin that binds to tropomyosin receptor kinase B (TrkB), a specific receptor on target cell surfaces; it acts on neuronal formation, development, growth, and repair via transcription factors, such as cAMP response element-binding protein (CREB), and it is involved in learning and memory. BDNF expression is decreased in patients with Alzheimer's disease (AD). Exercise and the intake of several different foods or ingredients can increase BDNF expression, as confirmed with lutein, xanthophylls (polar carotenoids), and ethanolamine plasmalogen (PlsEtn), which are present at high levels in the brain. This study examined the effects of combining lutein and PlsEtn using lutein-rich Chlorella and ascidian extracts containing high levels of PlsEtn bearing docosahexaenoic acid, which is abundant in the human brain, on the activation of the BDNF-TrkB-CREB signaling pathway in the hippocampus of Sprague-Dawley rats. Although activation of the BDNF-TrkB-CREB signaling pathway in the hippocampus was not observed in Chlorella or ascidian PlsEtn monotherapy, activation was observed with combination therapy at an equal dose. The results of this study suggest that the combination of Chlorella and ascidian PlsEtn may have a preventive effect against dementia, including AD.
Collapse
Affiliation(s)
- Hideo Takekoshi
- Production and Development Department, Sun Chlorella Corp., Kyoto 600-8177, Japan;
| | - Masaki Fujishima
- Production and Development Department, Sun Chlorella Corp., Kyoto 600-8177, Japan;
| | - Taiki Miyazawa
- Food Biotechnology Platform Promoting Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan; (T.M.); (O.H.); (T.M.)
| | - Ohki Higuchi
- Food Biotechnology Platform Promoting Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan; (T.M.); (O.H.); (T.M.)
- Biodynamic Plant Institute Co., Ltd., Sapporo 004-0015, Japan
| | - Takahiko Fujikawa
- Laboratory of Molecular Prophylaxis and Pharmacology, Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan;
| | - Teruo Miyazawa
- Food Biotechnology Platform Promoting Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan; (T.M.); (O.H.); (T.M.)
| |
Collapse
|
17
|
Fekete M, Lehoczki A, Tarantini S, Fazekas-Pongor V, Csípő T, Csizmadia Z, Varga JT. Improving Cognitive Function with Nutritional Supplements in Aging: A Comprehensive Narrative Review of Clinical Studies Investigating the Effects of Vitamins, Minerals, Antioxidants, and Other Dietary Supplements. Nutrients 2023; 15:5116. [PMID: 38140375 PMCID: PMC10746024 DOI: 10.3390/nu15245116] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Cognitive impairment and dementia are burgeoning public health concerns, especially given the increasing longevity of the global population. These conditions not only affect the quality of life of individuals and their families, but also pose significant economic burdens on healthcare systems. In this context, our comprehensive narrative review critically examines the role of nutritional supplements in mitigating cognitive decline. Amidst growing interest in non-pharmacological interventions for cognitive enhancement, this review delves into the efficacy of vitamins, minerals, antioxidants, and other dietary supplements. Through a systematic evaluation of randomized controlled trials, observational studies, and meta-analysis, this review focuses on outcomes such as memory enhancement, attention improvement, executive function support, and neuroprotection. The findings suggest a complex interplay between nutritional supplementation and cognitive health, with some supplements showing promising results and others displaying limited or context-dependent effectiveness. The review highlights the importance of dosage, bioavailability, and individual differences in response to supplementation. Additionally, it addresses safety concerns and potential interactions with conventional treatments. By providing a clear overview of current scientific knowledge, this review aims to guide healthcare professionals and researchers in making informed decisions about the use of nutritional supplements for cognitive health.
Collapse
Affiliation(s)
- Mónika Fekete
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
| | - Andrea Lehoczki
- National Institute for Haematology and Infectious Diseases, Department of Haematology and Stem Cell Transplantation, South Pest Central Hospital, 1097 Budapest, Hungary;
| | - Stefano Tarantini
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Oklahoma Cancer Center, Oklahoma City, OK 73104, USA
| | - Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
| | - Tamás Csípő
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
| | - Zoltán Csizmadia
- Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary;
| | - János Tamás Varga
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
18
|
Devarshi PP, Gustafson K, Grant RW, Mitmesser SH. Higher intake of certain nutrients among older adults is associated with better cognitive function: an analysis of NHANES 2011-2014. BMC Nutr 2023; 9:142. [PMID: 38053133 PMCID: PMC10696734 DOI: 10.1186/s40795-023-00802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/24/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND An increasing number of adults are over the age of 65, and there is concern about the increasing prevalence of age-associated cognitive decline and poor mental health status in older adults in the United States. Several nutrients are known to have important biological roles in brain health and neurological function, but many individuals fall short of recommended intake levels. The objective of this study was to examine the association between nutrient intake and cognitive function. We also explored whether nutrient intake was associated with depression. METHODS This cross-sectional study was based on data from the National Health and Nutrition Examination Survey (NHANES) 2011-2014 and included participants ≥ 60 years of age who had reliable day 1 dietary recall data and either valid cognitive function data (n = 2713) or valid depression score data (n = 2943). The sample was stratified by gender, and cognitive functioning test (CFT) composite z-scores were analyzed by quartiles. Depression status was assessed using the Patient Health Questionnaire (PHQ-9). RESULTS Higher intake and adequacy of a number of different nutrients from food were associated with higher cognitive function in both males and females. Nutrients that showed the most consistent associations with cognitive function across intake and adequacy analyses for food in both males and females were vitamin A, vitamin E, thiamin, riboflavin, vitamin B6, folate, magnesium, potassium, zinc, vitamin K, and lutein and zeaxanthin (p < 0.05 for all). These associations were positive with increasing intake and adequacy being associated with higher CFT composite z-scores. Analysis of nutrient intake and depression yielded results that differed by gender. In females, the nutrients that showed consistent inverse associations with depression scores across both intake and adequacy analyses for food were vitamin A, vitamin C, magnesium, vitamin K, potassium, and dietary fiber (p < 0.05 for all). In males, no significant associations between nutrient intake from food and depression scores were observed. CONCLUSIONS Our findings suggest that older adults with sufficient intakes of certain essential nutrients have higher cognitive function. Future studies are needed to confirm whether a well-balanced diet and/or dietary supplements which emphasize these nutrients are effective for prevention of age-related declines in cognitive function and mood.
Collapse
Affiliation(s)
- Prasad P Devarshi
- Science and Technology, Pharmavite, LLC, 8531 Fallbrook Ave, West Hills, CA, 91304, USA
| | - Kelsey Gustafson
- Science and Technology, Pharmavite, LLC, 8531 Fallbrook Ave, West Hills, CA, 91304, USA.
| | - Ryan W Grant
- Science and Technology, Pharmavite, LLC, 8531 Fallbrook Ave, West Hills, CA, 91304, USA
| | | |
Collapse
|
19
|
Varesi A, Campagnoli LIM, Carrara A, Pola I, Floris E, Ricevuti G, Chirumbolo S, Pascale A. Non-Enzymatic Antioxidants against Alzheimer's Disease: Prevention, Diagnosis and Therapy. Antioxidants (Basel) 2023; 12:180. [PMID: 36671042 PMCID: PMC9855271 DOI: 10.3390/antiox12010180] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss and cognitive decline. Although substantial research has been conducted to elucidate the complex pathophysiology of AD, the therapeutic approach still has limited efficacy in clinical practice. Oxidative stress (OS) has been established as an early driver of several age-related diseases, including neurodegeneration. In AD, increased levels of reactive oxygen species mediate neuronal lipid, protein, and nucleic acid peroxidation, mitochondrial dysfunction, synaptic damage, and inflammation. Thus, the identification of novel antioxidant molecules capable of detecting, preventing, and counteracting AD onset and progression is of the utmost importance. However, although several studies have been published, comprehensive and up-to-date overviews of the principal anti-AD agents harboring antioxidant properties remain scarce. In this narrative review, we summarize the role of vitamins, minerals, flavonoids, non-flavonoids, mitochondria-targeting molecules, organosulfur compounds, and carotenoids as non-enzymatic antioxidants with AD diagnostic, preventative, and therapeutic potential, thereby offering insights into the relationship between OS and neurodegeneration.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Ilaria Pola
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Elena Floris
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
20
|
Dorey CK, Gierhart D, Fitch KA, Crandell I, Craft NE. Low Xanthophylls, Retinol, Lycopene, and Tocopherols in Grey and White Matter of Brains with Alzheimer's Disease. J Alzheimers Dis 2023; 94:1-17. [PMID: 35988225 PMCID: PMC10357197 DOI: 10.3233/jad-220460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Oxidative stress contributes to pathogenesis and progression of Alzheimer's disease (AD). Higher levels of the dietary antioxidants- carotenoids and tocopherols- are associated with better cognitive functions and lower risk for AD, and lower levels of multiple carotenoids are found in serum and plasma of patients with AD. Although brains donated by individuals with mild cognitive impairment had significantly lower levels of lutein and beta-carotene, previous investigators found no significant difference in carotenoid levels of brains with AD and cognitively normal brains. OBJECTIVE This study tested the hypothesis that micronutrients are significantly lower in donor brains with AD than in healthy elderly brains. METHODS Samples of donor brains with confirmed AD or verified health were dissected into grey and white matter, extracted with organic solvents and analyzed by HPLC. RESULTS AD brains had significantly lower levels of lutein, zeaxanthin, anhydrolutein, retinol, lycopene, and alpha-tocopherol, and significantly increased levels of XMiAD, an unidentified xanthophyll metabolite. No meso-zeaxanthin was detected. The overlapping protective roles of xanthophylls, carotenes, α- and γ-tocopherol are discussed. CONCLUSION Brains with AD had substantially lower concentrations of some, but not all, xanthophylls, carotenes, and tocopherols, and several-fold higher concentrations of an unidentified xanthophyll metabolite increased in AD (XMiAD).
Collapse
Affiliation(s)
| | | | - Karlotta A. Fitch
- Alzheimer’s Disease Research Center, Massachusetts General Hospital Boston, MA, USA
| | - Ian Crandell
- Center for Biostatistics and Health Data Science, Virginia Tech, Roanoke, VA, USA
| | | |
Collapse
|
21
|
Udensi J, Loughman J, Loskutova E, Byrne HJ. Raman Spectroscopy of Carotenoid Compounds for Clinical Applications-A Review. Molecules 2022; 27:9017. [PMID: 36558154 PMCID: PMC9784873 DOI: 10.3390/molecules27249017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Carotenoid compounds are ubiquitous in nature, providing the characteristic colouring of many algae, bacteria, fruits and vegetables. They are a critical component of the human diet and play a key role in human nutrition, health and disease. Therefore, the clinical importance of qualitative and quantitative carotene content analysis is increasingly recognised. In this review, the structural and optical properties of carotenoid compounds are reviewed, differentiating between those of carotenes and xanthophylls. The strong non-resonant and resonant Raman spectroscopic signatures of carotenoids are described, and advances in the use of Raman spectroscopy to identify carotenoids in biological environments are reviewed. Focus is drawn to applications in nutritional analysis, optometry and serology, based on in vitro and ex vivo measurements in skin, retina and blood, and progress towards establishing the technique in a clinical environment, as well as challenges and future perspectives, are explored.
Collapse
Affiliation(s)
- Joy Udensi
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, D08 CKP1 Dublin, Ireland
- School of Physics and Clinical and Optometric Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, D07 EWV4 Dublin, Ireland
- Centre for Eye Research, Ireland, Technological University Dublin, City Campus, Grangegorman, Dublin 7, D07 EWV4 Dublin, Ireland
| | - James Loughman
- School of Physics and Clinical and Optometric Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, D07 EWV4 Dublin, Ireland
- Centre for Eye Research, Ireland, Technological University Dublin, City Campus, Grangegorman, Dublin 7, D07 EWV4 Dublin, Ireland
| | - Ekaterina Loskutova
- School of Physics and Clinical and Optometric Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, D07 EWV4 Dublin, Ireland
- Centre for Eye Research, Ireland, Technological University Dublin, City Campus, Grangegorman, Dublin 7, D07 EWV4 Dublin, Ireland
| | - Hugh J. Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, D08 CKP1 Dublin, Ireland
| |
Collapse
|
22
|
Lu LW, Gao Y, Quek SY, Foster M, Eason CT, Liu M, Wang M, Chen JH, Chen F. The landscape of potential health benefits of carotenoids as natural supportive therapeutics in protecting against Coronavirus infection. Biomed Pharmacother 2022; 154:113625. [PMID: 36058151 PMCID: PMC9428603 DOI: 10.1016/j.biopha.2022.113625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 01/08/2023] Open
Abstract
The Coronavirus Disease-2019 (COVID-19) pandemic urges researching possibilities for prevention and management of the effects of the virus. Carotenoids are natural phytochemicals of anti-oxidant, anti-inflammatory and immunomodulatory properties and may exert potential in aiding in combatting the pandemic. This review presents the direct and indirect evidence of the health benefits of carotenoids and derivatives based on in vitro and in vivo studies, human clinical trials and epidemiological studies and proposes possible mechanisms of action via which carotenoids may have the capacity to protect against COVID-19 effects. The current evidence provides a rationale for considering carotenoids as natural supportive nutrients via antioxidant activities, including scavenging lipid-soluble radicals, reducing hypoxia-associated superoxide by activating antioxidant enzymes, or suppressing enzymes that produce reactive oxygen species (ROS). Carotenoids may regulate COVID-19 induced over-production of pro-inflammatory cytokines, chemokines, pro-inflammatory enzymes and adhesion molecules by nuclear factor kappa B (NF-κB), renin-angiotensin-aldosterone system (RAS) and interleukins-6- Janus kinase-signal transducer and activator of transcription (IL-6-JAK/STAT) pathways and suppress the polarization of pro-inflammatory M1 macrophage. Moreover, carotenoids may modulate the peroxisome proliferator-activated receptors γ by acting as agonists to alleviate COVID-19 symptoms. They also may potentially block the cellular receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human angiotensin-converting enzyme 2 (ACE2). These activities may reduce the severity of COVID-19 and flu-like diseases. Thus, carotenoid supplementation may aid in combatting the pandemic, as well as seasonal flu. However, further in vitro, in vivo and in particular long-term clinical trials in COVID-19 patients are needed to evaluate this hypothesis.
Collapse
|
23
|
Traylor MK, Bauman AJ, Saiyasit N, Frizell CA, Hill BD, Nelson AR, Keller JL. An examination of the relationship among plasma brain derived neurotropic factor, peripheral vascular function, and body composition with cognition in midlife African Americans/Black individuals. Front Aging Neurosci 2022; 14:980561. [PMID: 36092801 PMCID: PMC9453229 DOI: 10.3389/fnagi.2022.980561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
African American/Black individuals have been excluded from several lines of prominent neuroscience research, despite exhibiting disproportionately higher risk factors associated with the onset and magnitude of neurodegeneration. Therefore, the objective of the current investigation was to examine potential relationships among brain derived neurotropic factor (BDNF), peripheral vascular function, and body composition with cognition in a sample of midlife, African American/Black individuals. Midlife adults (men: n = 3, 60 ± 4 years; women: n = 9, 58 ± 5 years) were invited to complete two baseline visits separated by 4 weeks. Peripheral vascular function was determined by venous occlusion plethysmography, a dual-energy X-ray absorptiometry was used to determine body composition, and plasma was collected to quantify BDNF levels. The CNS Vital Signs computer-based test was used to provide scores on numerous cognitive domains. The principal results included that complex attention (r = 0.629) and processing speed (r = 0.734) were significantly (p < 0.05) related to the plasma BDNF values. However, there was no significant (p > 0.05) relationship between any vascular measure and any cognitive domain or BDNF value. Secondary findings included the relationship between lean mass and peak hyperemia (r = 0.758) as well as total hyperemia (r = 0.855). The major conclusion derived from these results was that there is rationale for future clinical trials to use interventions targeting increasing BDNF to potentially improve cognition. Additionally, these results strongly suggest that clinicians aiming to improve cognitive health via improvements in the known risk factor of vascular function should consider interventions capable of promoting the size and function of skeletal muscle, especially in the African American/Black population.
Collapse
Affiliation(s)
- Miranda K. Traylor
- Integrative Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, AL, United States
| | - Allison J. Bauman
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Napatsorn Saiyasit
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Carl A. Frizell
- Physician Assistant Sciences Program, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Benjamin D. Hill
- Department of Psychology, College of Arts and Sciences, University of South Alabama, Mobile, AL, United States
| | - Amy R. Nelson
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Joshua L. Keller
- Integrative Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
24
|
Wang H, Wang G, Billings R, Li D, Haase SR, Wheeler PF, Vance DE, Li W. Can Diet Supplements of Macular Pigment of Lutein, Zeaxanthin, and Meso-zeaxanthin Affect Cognition? J Alzheimers Dis 2022; 87:1079-1087. [DOI: 10.3233/jad-215736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Lutein (L), zeaxanthin (Z), and meso-zeaxanthin (MZ) are collectively called macular pigment. MZ can be converted from L in the macula. In the recent decade, many studies have been performed to investigate the effects for taking carotenoids, especially L and Z or L, Z, and MZ, as diet supplements on human health. Objective: We examined if diet supplements of L + Z or L + Z + MZ have effects on cognitive function in adults. Methods: A systemic literature search was performed in March 2021 with the following keywords: lutein, zeaxanthin, meso-zeaxanthin, cognition, cognitive, and macular pigment. The searched databases included Medline EBSCOhost, Scopus, Elsevier, Cochrane Library, ProQuest, and ClinicalTrials.gov. Findings from eight clinical trials were presented as the strongest evidence on the studied topic. Results: Most studies have found that macular pigments (L + Z) in blood or macula are positively correlated with cognitive performance. As an index of the amount of macular pigments in the brain, macular pigment optical density is related to cognitive performance in adults. In addition, there is an inverse relationship between a higher amount of macular pigment in the blood and lower risk of mild cognitive impairments or Alzheimer’s disease. Based on the findings from the clinical trials, diet supplements of L + Z or L + Z + MZ are associated with improved cognition in adults. Conclusion: The diet supplements of L + Z or L + Z+MZ are associated with better cognitive functioning, which may be via their beneficial effects on the vision.
Collapse
Affiliation(s)
- Hongwei Wang
- Department of Physiology, Henan Chinese Medicine University, Zhengzhou, China
| | - Ge Wang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rebecca Billings
- UAB Libraries, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniel Li
- University of California at Los Angeles, Los Angeles, CA, USA
| | - Shakaye R. Haase
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Pariya F. Wheeler
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David E. Vance
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wei Li
- School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
25
|
Lopresti AL, Smith SJ, Drummond PD. The Effects of Lutein and Zeaxanthin Supplementation on Cognitive Function in Adults With Self-Reported Mild Cognitive Complaints: A Randomized, Double-Blind, Placebo-Controlled Study. Front Nutr 2022; 9:843512. [PMID: 35252311 PMCID: PMC8891800 DOI: 10.3389/fnut.2022.843512] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background Lutein and zeaxanthin are fat-soluble, dietary carotenoids with high concentrations in human brain tissue. There have been a number studies confirming an association between lutein and zeaxanthin and cognitive function. Purpose Examine the effects of lutein and zeaxanthin supplementation on cognitive function in adults with self-reported cognitive complaints. Study Design Two-arm, parallel-group, 6-month, randomized, double-blind, placebo-controlled trial. Methods Ninety volunteers aged 40–75 years received either 10 mg of lutein and 2 mg of zeaxanthin, once daily or a placebo. Outcome measures included computer-based cognitive tasks, the Cognitive Failures Questionnaire, Behavior Rating Inventory of Executive Function, Profile of Mood States, and the Patient-Reported Outcomes Measurement Information System-29. Results Compared to the placebo, lutein and zeaxanthin supplementation was associated with greater improvements in visual episodic memory (p = 0.005) and visual learning (p = 0.001). However, there were no other statistically-significant differences in performance on the other assessed cognitive tests or self-report questionnaires. Lutein and zeaxanthin supplementation was well-tolerated with no reports of significant adverse effects. Conclusion The results from this trial suggest that 6-months of supplementation with lutein and zeaxanthin may improve visual memory and learning in community-dwelling adults with self-reported cognitive complaints. However, it had no other effect on other computer-based measures of cognitive performance or self-report measures of cognition, memory, mood, or physical function.
Collapse
Affiliation(s)
- Adrian L. Lopresti
- Clinical Research Australia, Perth, WA, Australia
- Healthy Ageing Research Centre and Discipline of Psychology, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- *Correspondence: Adrian L. Lopresti
| | - Stephen J. Smith
- Clinical Research Australia, Perth, WA, Australia
- Healthy Ageing Research Centre and Discipline of Psychology, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Peter D. Drummond
- Healthy Ageing Research Centre and Discipline of Psychology, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| |
Collapse
|
26
|
Dietary Lutein and Cognitive Function in Adults: A Meta-Analysis of Randomized Controlled Trials. Molecules 2021; 26:molecules26195794. [PMID: 34641336 PMCID: PMC8510423 DOI: 10.3390/molecules26195794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/03/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
Emerging literature suggests that dietary lutein may have important functions in cognitive health, but there is not enough data to substantiate its effects in human cognition. The current study was intended to determine the overall effect of lutein on the main domains of cognition in the adult population based on available placebo randomized-controlled trials. Literature searches were conducted in PubMed, AGRICOLA, Scopus, MEDLINE, and EMBASE on 14 November 2020. The effect of lutein on complex attention, executive function and memory domains of cognition were assessed by using an inverse-variance meta-analysis of standardized mean differences (SMD) (Hedge’s g method). Dietary lutein was associated with slight improvements in cognitive performance in complex attention (SMD 0.02, 95% CI −0.27 to 0.31), executive function (SMD 0.13, 95% CI −0.26 to 0.51) and memory (SMD 0.03, 95% CI −0.26 to 0.32), but its effect was not significant. Change-from-baseline analysis revealed that lutein consumption could have a role in maintaining cognitive performance in memory and executive function. Although dietary lutein did not significantly improve cognitive performance, the evidence across multiple studies suggests that lutein may nonetheless prevent cognitive decline, especially executive function. More intervention studies are needed to validate the role of lutein in preventing cognitive decline and in promoting brain health.
Collapse
|
27
|
Gazzolo D, Picone S, Gaiero A, Bellettato M, Montrone G, Riccobene F, Lista G, Pellegrini G. Early Pediatric Benefit of Lutein for Maturing Eyes and Brain-An Overview. Nutrients 2021; 13:3239. [PMID: 34579116 PMCID: PMC8468336 DOI: 10.3390/nu13093239] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 01/15/2023] Open
Abstract
Lutein is a dietary carotenoid preferentially accumulated in the eye and the brain in early life and throughout the life span. Lutein accumulation in areas of high metabolism and oxidative stress such as the eye and the brain suggest a unique role of this ingredient during the development and maturation of these organs of common embryological origin. Lutein is naturally provided to the developing baby via the cord blood, breast milk and then infant diet. The presence of this carotenoid depends on fruit and vegetable intakes and its bioavailability is higher in breastmilk. This paper aims to review the anatomical development of the eye and the brain, explore the presence and selective deposition of lutein in these organs during pregnancy and infancy and, based on its functional characteristics, present the latest available research on the beneficial role of lutein in the pediatric population. The potential effects of lutein in ameliorating conditions associated with increase oxidative stress such as in prematurity will be also addressed. Since consumption of lutein rich foods falls short of government guidelines and in most region of the world infant formulas lack this bioactive, dietary recommendations for pregnant and breastfeeding women and their child can help to bridge the gap.
Collapse
Affiliation(s)
- Diego Gazzolo
- Neonatal Intensive Care Unit, Department of Pediatrics, University G. d’Annunzio, 65100 Chieti, Italy
- Department of Pediatrics, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Simonetta Picone
- Neonatal Intensive Care Unit, Policlinico Casilino, 00169 Rome, Italy;
| | - Alberto Gaiero
- Pediatric and Neonatology Unit, asl2 Ospedale San Paolo Savona, 17100 Savona, Italy;
| | - Massimo Bellettato
- Department of Women and Child’s Health, San Bortolo Hospital, 36100 Vicenza, Italy;
| | - Gerardo Montrone
- S.S.V.D “NIDO E STEN” Ospedali Riuniti Foggia, 71122 Foggia, Italy;
| | | | - Gianluca Lista
- Neonatal Intensive Care Unit, Department of Pediatrics, Ospedale dei Bambini V. Buzzi, ASST-FBF-Sacco, 20154 Milan, Italy;
| | - Guido Pellegrini
- Department of Pediatrics and Neonatology, Presidio Ospedaliero “Città di Sesto San Giovanni, Sesto san Giovanni, 20099 Milan, Italy;
| |
Collapse
|
28
|
Polutchko SK, Glime GNE, Demmig-Adams B. Synergistic Action of Membrane-Bound and Water-Soluble Antioxidants in Neuroprotection. Molecules 2021; 26:5385. [PMID: 34500818 PMCID: PMC8434335 DOI: 10.3390/molecules26175385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/30/2022] Open
Abstract
Prevention of neurodegeneration during aging, and support of optimal brain function throughout the lifespan, requires protection of membrane structure and function. We review the synergistic action of different classes of dietary micronutrients, as well as further synergistic contributions from exercise and stress reduction, in supporting membrane structure and function. We address membrane-associated inflammation involving reactive oxygen species (ROS) that produce immune regulators from polyunsaturated fatty acids (PUFAs) of membrane phospholipids. The potential of dietary micronutrients to maintain membrane fluidity and prevent chronic inflammation is examined with a focus on synergistically acting membrane-soluble components (zeaxanthin, lutein, vitamin E, and omega-3 PUFAs) and water-soluble components (vitamin C and various phenolics). These different classes of micronutrients apparently operate in a series of intertwined oxidation-reduction cycles to protect membrane function and prevent chronic inflammation. At this time, it appears that combinations of a balanced diet with regular moderate exercise and stress-reduction practices are particularly beneficial. Effective whole-food-based diets include the Mediterranean and the MIND diet (Mediterranean-DASH Intervention for Neurodegenerative Delay diet, where DASH stands for Dietary Approaches to Stop Hypertension).
Collapse
Affiliation(s)
| | | | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA; (S.K.P.); (G.N.E.G.)
| |
Collapse
|
29
|
Macular Pigment Reflectometry: Developing Clinical Protocols, Comparison with Heterochromatic Flicker Photometry and Individual Carotenoid Levels. Nutrients 2021; 13:nu13082553. [PMID: 34444721 PMCID: PMC8399813 DOI: 10.3390/nu13082553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/26/2022] Open
Abstract
The study was designed to: (1) Analyze and create protocols of obtaining measurements using the Macular Pigment Reflectometry (MPR). (2) To assess the agreement of MPOD measurements obtained using the heterochromatic flicker photometry (MPS II) and MPR. (3) To obtain the lutein and zeaxanthin optical density obtained using the MPR in the central one-degree of the macula. The measurements were performed using the MPR and heterochromatic flicker photometry. The MPR measurements were performed twice without pupillary dilation and twice following pupillary dilation. The MPR measurements were performed for a 40-s period and the spectrometer signal was parsed at different time points: 10–20, 10–30, 10–40, 20–30, 20–40, and 30–40 s. The MPR analyzes the high-resolution spectrometer signal and calculates MPOD, lutein optical density and zeaxanthin optical density automatically. The MPR-MPOD data was compared with MPPS II-MPOD results. The MPR-MPOD values are highly correlated and in good agreement with the MPS II-MPOD. Of the various parsing of the data, the data 10–30 interval was the best at obtaining the MPOD, lutein, and zeaxanthin values (8–12% coefficient of repeatability). The lutein to zeaxanthin ratio in the central one-degree of the macula was 1:2.40. Dilation was not needed to obtain the MPOD values but provided better repeatability of lutein and zeaxanthin optical density. MPR generates MPOD measurements that is in good agreement with MPS II. The device can produce lutein and zeaxanthin optical density which is not available from other clinical devices.
Collapse
|
30
|
Wilson LM, Tharmarajah S, Jia Y, Semba RD, Schaumberg DA, Robinson KA. The Effect of Lutein/Zeaxanthin Intake on Human Macular Pigment Optical Density: A Systematic Review and Meta-Analysis. Adv Nutr 2021; 12:2244-2254. [PMID: 34157098 PMCID: PMC8634499 DOI: 10.1093/advances/nmab071] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/15/2021] [Accepted: 05/11/2021] [Indexed: 01/05/2023] Open
Abstract
Lutein, zeaxanthin, and meso-zeaxanthin are the only carotenoids found in the human macula and may have a role in visual function. These carotenoids are reported to protect the retina, and thus vision, as antioxidants and by acting as a blue light filter. Our objective was to determine a minimum concentration of lutein/zeaxanthin intake that is associated with a statistically significant and/or clinically important change in macular pigment optical density (MPOD) among adults with healthy eyes. We searched Ovid MEDLINE, CENTRAL, and the Commonwealth of Agriculture Bureau for English-language studies through to July 2020. Two reviewers screened results to identify studies that evaluated supplements or dietary sources of lutein/zeaxanthin on MPOD among adults with healthy eyes. One reviewer extracted data and assessed strength of evidence, which was confirmed by a second reviewer. Two independent reviewers assessed the risk of bias. Meta-analyses were stratified by total lutein/zeaxanthin dose. We included 46 studies (N = 3189 participants; mean age = 43 y; 42% male). There was no statistically significant change in MPOD among studies evaluating <5 mg/d of total lutein/zeaxanthin intake which primarily assessed dietary interventions for 3-6 mo (pooled mean difference, 0.02; 95% CI: -0.01 to 0.05). The pooled mean increase in MPOD was 0.04 units (95% CI: 0.02 to 0.07) among studies evaluating 5 to <20 mg/d of lutein/zeaxanthin and was 0.11 units (95% CI: 0.06 to 0.16) among studies evaluating ≥20 mg/d of lutein/zeaxanthin for 3-12 mo. MPOD increased with lutein/zeaxanthin intake, particularly at higher doses, among adults with healthy eyes. The effects of lutein/zeaxanthin intake at doses <5 mg/d or from dietary sources is less clear. Increased lutein/zeaxanthin intake can help with maintaining ocular health. Future research is needed to determine the minimum dose and duration of lutein/zeaxanthin intake that is associated with a clinically important change in MPOD or visual function.
Collapse
Affiliation(s)
| | - Saraniya Tharmarajah
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Yuanxi Jia
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Richard D Semba
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Debra A Schaumberg
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA,Evidera, Inc., Bethesda, MD, USA
| | - Karen A Robinson
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA,Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
31
|
Yagi A, Nouchi R, Butler L, Kawashima R. Lutein Has a Positive Impact on Brain Health in Healthy Older Adults: A Systematic Review of Randomized Controlled Trials and Cohort Studies. Nutrients 2021; 13:1746. [PMID: 34063827 PMCID: PMC8223987 DOI: 10.3390/nu13061746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/07/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
A previous systematic review revealed that lutein intake leads to improved cognitive function among older adults. However, the association between lutein intake and brain health remains unclear. METHODS We searched the Web of Science, PubMed, PsycInfo, and Cochrane Library for research papers. The criteria were (1) an intervention study using oral lutein intake or a cross-sectional study that examined lutein levels and the brain, (2) participants were older adults, and (3) brain activities or structures were measured using a brain imaging technique (magnetic resonance imaging (MRI) or electroencephalography (EEG)). RESULTS Seven studies using MRI (brain activities during rest, cognitive tasks, and brain structure) and two studies using EEG were included. We mainly focused on MRI studies. Three intervention studies using MRI indicated that 10 mg lutein intake over 12 months had a positive impact on healthy older adults' brain activities during learning, resting-state connectivity, and gray matter volumes. Four cross-sectional studies using MRI suggested that lutein was positively associated with brain structure and neural efficiency during cognitive tasks. CONCLUSION Although only nine studies that used similar datasets were reviewed, this systematic review indicates that lutein has beneficial effects on healthy older adults' brain health.
Collapse
Affiliation(s)
- Ayano Yagi
- Department of Cognitive Health Science, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan;
- Smart Aging Research Center, Tohoku University, Seiryo-machi 4-1, Sendai 980-8575, Japan;
| | - Rui Nouchi
- Department of Cognitive Health Science, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan;
- Smart Aging Research Center, Tohoku University, Seiryo-machi 4-1, Sendai 980-8575, Japan;
| | - Laurie Butler
- Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK;
| | - Ryuta Kawashima
- Smart Aging Research Center, Tohoku University, Seiryo-machi 4-1, Sendai 980-8575, Japan;
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
32
|
Hajizadeh-Sharafabad F, Zahabi ES, Malekahmadi M, Zarrin R, Alizadeh M. Carotenoids supplementation and inflammation: a systematic review and meta-analysis of randomized clinical trials. Crit Rev Food Sci Nutr 2021; 62:8161-8177. [PMID: 33998846 DOI: 10.1080/10408398.2021.1925870] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The aim of this study was to perform a systematic review and meta-analysis on randomized controlled trials investigating the effects of carotenoids on selected inflammatory parameters. PubMed, SCOPUS, and Web of science were searched from inception until April 2021. The random-effect model was used to analyze data and the overall effect size was computed as weighted mean difference (WMD) and corresponding 95% of confidence interval (CI). A total of 26 trials with 35 effect sizes were included in this meta-analysis. The results indicated significant effects of carotenoids on C-reactive protein (CRP) (WMD: ‒0.54 mg/L, 95% CI: ‒0.71, ‒0.37, P < 0.001), and interleukin-6 (IL-6) (WMD: ‒0.54 pg/mL, 95% CI: ‒1.01, ‒0.06, P = 0.025), however the effect on tumor necrosis factor-alpha (TNF-α) was not significant (WMD: ‒0.97 pg/ml, 95% CI: ‒1.98, 0.03, P = 0.0.059). For the individual carotenoids, astaxanthin, (WMD: ‒0.30 mg/L, 95% CI: ‒0.51, ‒0.09, P = 0.005), lutein/zeaxanthin (WMD: ‒0.30 mg/L, 95% CI: ‒0.45, ‒0.15, P < 0.001), and β-cryptoxanthin (WMD: ‒0.35 mg/L, 95% CI: ‒0.54, ‒0.15, P < 0.001) significantly decreased CRP level. Also, only lycopene (WMD: ‒1.08 pg/ml, 95%CI: ‒2.03, ‒0.12, P = 0.027) led to a significant decrease in IL-6. The overall results supported possible protective effects of carotenoids on inflammatory biomarkers.
Collapse
Affiliation(s)
- Fatemeh Hajizadeh-Sharafabad
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Sharifi Zahabi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Malekahmadi
- Nutrition Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rasoul Zarrin
- Department of Nutrition, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Alizadeh
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Nutritional cognitive neuroscience of aging: Focus on carotenoids and cognitive frailty. Redox Biol 2021; 44:101996. [PMID: 34090844 PMCID: PMC8212151 DOI: 10.1016/j.redox.2021.101996] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
The term „nutritional cognitive neuroscience” was recently established to define a research field focusing on the impact of nutrition on cognition and brain health across the life span. In this overview, we summarize the robust evidence on the role of carotenoids as micronutrients with different biological properties in persons with cognitive (pre)frailty. As neurodegenerative processes during aging occur in a continuum from brain aging to dementia, we propose the name „nutritional cognitive neuroscience of aging“ to define research on the role of nutrition and micronutrients in cognitive frailty. Further studies are warranted which integrate carotenoid interventions in multidomain, personalized lifestyle strategies. Cognitive integrity is an essential element of healthy and active ageing. Oxidative distress is strongly linked to neurodegeneration. Consumption and levels of carotenoids are linked to cognitive frailty. There is conflict of evidence for intervention trials with carotenoids in dementia. Future studies with carotenoids should be within personalized and multidomain strategies.
Collapse
|
34
|
Plant Foods Rich in Antioxidants and Human Cognition: A Systematic Review. Antioxidants (Basel) 2021; 10:antiox10050714. [PMID: 33946461 PMCID: PMC8147117 DOI: 10.3390/antiox10050714] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress can compromise central nervous system integrity, thereby affecting cognitive ability. Consumption of plant foods rich in antioxidants could thereby protect cognition. We systematically reviewed the literature exploring the effects of antioxidant-rich plant foods on cognition. Thirty-one studies were included: 21 intervention, 4 cross-sectional (one with a cohort in prospective observation as well), and 6 prospective studies. Subjects belonged to various age classes (young, adult, and elderly). Some subjects examined were healthy, some had mild cognitive impairment (MCI), and some others were demented. Despite the different plant foods and the cognitive assessments used, the results can be summarized as follows: 7 studies reported a significant improvement in all cognitive domains examined; 19 found significant improvements only in some cognitive areas, or only for some food subsets; and 5 showed no significant improvement or no effectiveness. The impact of dietary plant antioxidants on cognition appears promising: most of the examined studies showed associations with significant beneficial effects on cognitive functions-in some cases global or only in some specific domains. There was typically an acute, preventive, or therapeutic effect in young, adult, and elderly people, whether they were healthy, demented, or affected by MCI. Their effects, however, are not attributable only to anti-oxidation.
Collapse
|
35
|
Carotenoids and Cognitive Outcomes: A Meta-Analysis of Randomized Intervention Trials. Antioxidants (Basel) 2021; 10:antiox10020223. [PMID: 33540909 PMCID: PMC7913239 DOI: 10.3390/antiox10020223] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/08/2023] Open
Abstract
Recent evidence suggests that diet can modify the risk of future cognitive impairment and dementia. A biologically plausible rationale and initial clinical data indicate that the antioxidant activities of dietary carotenoids may assist the preservation of cognitive function. A meta-analysis of randomized controlled trials was conducted to examine the relationship between carotenoid supplementation and cognitive performance. A literature search was conducted in the MEDLINE (via PubMed), Scopus, Web of Science, and Cochrane databases from their inception to July 2020. A total of 435 studies were retrieved. Abstract screening using predefined inclusion and exclusion criteria was followed by full-text screening and data extraction of study characteristics and measured outcomes. A meta-analysis of eligible trials was performed using a random-effects model to estimate pooled effect size. We identified 9 studies with a total of 4402 nondemented subjects, whose age ranged from 45 to 78 years. Results of the pooled meta-analysis found a significant effect of carotenoid intervention on cognitive outcomes (Hedge’s g = 0.14; 95% confidence interval: 0.08, 0.20, p < 0.0001). There was no evidence of heterogeneity among the studies (τ2 = 0.00, I2 = 0.00%, H2 = 1.00) or publication bias. Although further studies are needed, our results suggest that carotenoid interventions are associated with better cognitive performance. Thus, these dietary compounds may help to reduce the risk of cognitive impairment and dementia.
Collapse
|
36
|
Gravesteijn E, Mensink RP, Plat J. Effects of nutritional interventions on BDNF concentrations in humans: a systematic review. Nutr Neurosci 2021; 25:1425-1436. [PMID: 33427118 DOI: 10.1080/1028415x.2020.1865758] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objectives: Brain-derived neurotrophic factor (BDNF) plays an essential role in brain and metabolic health. The fact that higher concentrations are associated with improved cognitive performance has resulted in numerous intervention trials that aim at elevating BDNF levels. This systematic review provides an overview of the relation between various nutritional factors and BDNF concentrations in controlled human intervention studies. Methods: A systematic search in May 2020 identified 48 articles that examined the effects of dietary patterns or foods (n = 3), diets based on energy intake (n = 7), vitamins and minerals (n = 7), polyphenols (n = 11), long-chain omega-3 polyunsaturated fatty acids (n = 5), probiotics (n = 8), and miscellaneous food supplements (n = 7). Results: In particular, studies with dietary patterns or foods showed increased peripheral BDNF concentrations. There are also strong indications that polyphenols tend to have a positive effect on BDNF concentrations. Four of the 11 included studies with a polyphenol intervention showed a significant increase in BDNF concentrations, one study showed an increase but this was not statistically analyzed, and two studies showed a trend to an increase. Discussion: The two polyphenol classes, phenolic acids, and other phenolic compounds were responsible for the significant effects. No clear effect was found for the other dietary factors, which might also be related to whether serum or plasma was used for BDNF analysis. More work is needed to understand the relation between peripheral and central BDNF concentrations.
Collapse
Affiliation(s)
- Elske Gravesteijn
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+ (MUMC+), Maastricht, Netherlands
| | - Ronald P Mensink
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+ (MUMC+), Maastricht, Netherlands
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+ (MUMC+), Maastricht, Netherlands
| |
Collapse
|
37
|
Davey PG, Henderson T, Lem DW, Weis R, Amonoo-Monney S, Evans DW. Visual Function and Macular Carotenoid Changes in Eyes with Retinal Drusen-An Open Label Randomized Controlled Trial to Compare a Micronized Lipid-Based Carotenoid Liquid Supplementation and AREDS-2 Formula. Nutrients 2020; 12:nu12113271. [PMID: 33114566 PMCID: PMC7693149 DOI: 10.3390/nu12113271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose: To compare the changes in visual and ocular parameters in individuals with retinal drusen who were treated with two commercially available nutritional supplements. Methods: An open-label, single-center, randomized, parallel-treatment with an observational control group design was utilized. The treatment groups included individuals with fine retinal drusen sub-clinical age-related macular degeneration (AMD), while the control group consisted of ocular normal individuals. The treatment groups were randomly assigned to the micronized lipid-based carotenoid supplement, Lumega-Z (LM), or the PreserVision Age-Related Eye Disease Study 2 (AREDS-2) soft gel (PV). Visual performance was evaluated using the techniques of visual acuity, dark adaptation recovery and contrast sensitivity, at baseline, three months, and six months. Additionally, the macular pigment optical density (MPOD) was measured. The control group was not assigned any carotenoid supplement. The right eye and left eye results were analyzed separately. Results: Seventy-nine participants were recruited for this study, of which 68 qualified and 56 participants had useable reliable data. Of the individuals who completed this study, 25 participants belonged to the LM group, 16 belonged to the PV group, and 15 to the control group. The LM group demonstrated statistically significant improvements in contrast sensitivity function (CSF) in both eyes at six months (p < 0.001). The LM group displayed a positive linear trend with treatment time in CSF (p < 0.001), with benefits visible after just three months of supplementation. Although there was a trend showing improvement in CSF in the PV group, the change was not significant after a Bonferroni-corrected p-value of p < 0.00625. Visual acuity, dark adaptation recovery and MPOD did not significantly improve in either treatment groups. Conclusion: The LM group demonstrated greater and faster benefits in visual performance as measured by CSF when compared to the PV group. This trial has been registered at clinicaltrials.gov (NCT03946085).
Collapse
Affiliation(s)
- Pinakin Gunvant Davey
- College of Optometry, Western University of Health Sciences, Pomona, CA 91766, USA; (D.W.L.); (S.A.-M.)
- Correspondence: ; Tel.: +1-909-469-8473
| | | | - Drake W. Lem
- College of Optometry, Western University of Health Sciences, Pomona, CA 91766, USA; (D.W.L.); (S.A.-M.)
| | - Rebecca Weis
- Eye Clinic of Austin, Austin, TX 78731, USA; (T.H.); (R.W.)
| | - Stephanie Amonoo-Monney
- College of Optometry, Western University of Health Sciences, Pomona, CA 91766, USA; (D.W.L.); (S.A.-M.)
| | - David W. Evans
- VectorVision/Guardion Health Sciences, San Diego, CA 92128, USA;
| |
Collapse
|
38
|
Nakajima K, Oiso S, Kariyazono H. Brain-Derived Neurotrophic Factor Up-Regulation by the Methanol Extract of Foxtail Millet in Human Peripheral Cells. J Nutr Sci Vitaminol (Tokyo) 2020; 66:284-288. [PMID: 32612092 DOI: 10.3177/jnsv.66.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) plays important roles in synaptic plasticity and neuronal differentiation. The neurotrophic hypothesis of depression, which suggests that reduced BDNF in the hippocampus underlies depression, has attracted increasing attention. Stress, a major cause of depression, leads to decreased BDNF levels, and administration of BDNF into the hippocampus shows an antidepressant effect. BDNF is synthesized in peripheral tissues as well as in the brain. Since BDNF crosses the blood-brain barrier, intake of food ingredients that elevate BDNF in peripheral tissues may be useful for the prevention and treatment of depression. However, no screening method for BDNF up-regulators in peripheral tissues has been reported. In this study, we revealed that ACHN human kidney adenocarcinoma cells secreted BDNF. In addition, we demonstrated that the methanol extract of foxtail millet up-regulated BDNF levels in ACHN cells. Our results indicate that ACHN cells could be useful in the screening for peripheral-BDNF up-regulators, and that foxtail millet may have the potential to elevate BDNF levels in peripheral tissues.
Collapse
Affiliation(s)
- Kensuke Nakajima
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University
| | - Shigeru Oiso
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University.,Graduate School of Pharmaceutical Sciences, Nagasaki International University
| | - Hiroko Kariyazono
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University.,Graduate School of Pharmaceutical Sciences, Nagasaki International University
| |
Collapse
|
39
|
Ha Y, Lee WH, Jeong J, Park M, Ko JY, Kwon OW, Lee J, Kim YJ. Pyropia yezoensis Extract Suppresses IFN-Gamma- and TNF-Alpha-Induced Proinflammatory Chemokine Production in HaCaT Cells via the Down-Regulation of NF-κB. Nutrients 2020; 12:nu12051238. [PMID: 32349358 PMCID: PMC7285056 DOI: 10.3390/nu12051238] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022] Open
Abstract
Pyropia yezoensis, a red alga, is popular and harvested a lot in East Asia and is famous for its medicinal properties attributable to its bioactive compounds including amino acids (porphyra-334 and shinorine, etc.), polysaccharides, phytosterols, and pigments, but its anti-inflammatory effect and mechanism of anti-atopic dermatitis (AD) have not been elucidated. In this study, we investigate the anti-AD effect of P. yezoensis extract (PYE) on mRNA and protein levels of the pro-inflammatory chemokines, thymus, and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22), in human HaCaT keratinocyte cells treated to interferon (IFN)-γ or tumor necrosis factor (TNF)-α (10 ng/mL each). The effect of the PYE on extracellular signal-regulated kinase (ERK) and other mitogen-activated protein kinases (MAPKs) was related to its suppression of TARC and MDC production by blocking NF-κB activation in HaCaT cells. Furthermore, astaxanthin and xanthophyll from P. yezoensis were identified as anti-AD candidate compounds. These results suggest that the PYE may improve AD and contained two carotenoids by regulating pro-inflammatory chemokines.
Collapse
Affiliation(s)
- Yuna Ha
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.J.); (M.P.); (J.-Y.K.); (O.W.K.)
- Department of Cosmetic Science and Management, Graduate School, Incheon National University, Incheon 22012, Korea
| | - Won-Hwi Lee
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.J.); (M.P.); (J.-Y.K.); (O.W.K.)
- Department of Marine Sciences, Incheon National University, Incheon 22012, Korea
| | - JaeWoo Jeong
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.J.); (M.P.); (J.-Y.K.); (O.W.K.)
- Department of Cosmetic Science and Management, Graduate School, Incheon National University, Incheon 22012, Korea
| | - Mira Park
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.J.); (M.P.); (J.-Y.K.); (O.W.K.)
| | - Ju-Young Ko
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.J.); (M.P.); (J.-Y.K.); (O.W.K.)
| | - Oh Wook Kwon
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.J.); (M.P.); (J.-Y.K.); (O.W.K.)
| | - Jongsung Lee
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 164-19, Gyunggi Do, Korea
- Correspondence: (J.L); (Y.-J.K.); Tel.: +82-32-835-8861 (Y.-J.K.)
| | - Youn-Jung Kim
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.J.); (M.P.); (J.-Y.K.); (O.W.K.)
- Department of Cosmetic Science and Management, Graduate School, Incheon National University, Incheon 22012, Korea
- Department of Marine Sciences, Incheon National University, Incheon 22012, Korea
- Correspondence: (J.L); (Y.-J.K.); Tel.: +82-32-835-8861 (Y.-J.K.)
| |
Collapse
|
40
|
Effects of Lutein and Astaxanthin Intake on the Improvement of Cognitive Functions among Healthy Adults: A Systematic Review of Randomized Controlled Trials. Nutrients 2020; 12:nu12030617. [PMID: 32120794 PMCID: PMC7146131 DOI: 10.3390/nu12030617] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Fruits and vegetables are generally rich in antioxidants such as carotenoids. Consumption of carotenoids is expected to have benefits on cognitive functions in humans. However, previous randomized controlled trials (RCT) using carotenoids have reported inconsistent results. Therefore, this systematic review (SR) aimed to summarize the effect of carotenoid intake on cognitive functions in humans. Method: PubMed, Cochrane Library, Web of Science, and PsychoINFO were searched for research papers on carotenoid intake with the criteria that 1) oral carotenoid intake was evaluated using RCTs, 2) participants were healthy young, middle-aged, or older, and 3) cognitive functions were measured using RCTs. Results: Five studies using lutein and two studies using astaxanthin met the inclusion criteria. Consumption of lutein and its isomer showed consistent results in selective improvement of visual episodic memory in young and middle-aged adults while inhibition was observed in middle-aged and older adults. One of the two included astaxanthin studies reported a significant improvement of verbal episodic memory performance in middle-aged adults. Conclusion: This SR showed that the 10 mg lutein per day for twelve months can lead to improvement of cognitive functions. Due to the small number of studies, it is difficult to conclude whether astaxanthin would have a positive effect on cognitive functions.
Collapse
|